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Computer Assisted Quality Control and Telemammography 
Army Report 1996 

Introduction 

This project, DAMD17-93-J-3015, started in December, 1992 and with a one year no cost 
extension is to end in December 1996. The purpose of this project was to develop systems 
to enable the integration of mammography into MDIS, to allow the acquisition of 
mammograms in facilities remote from the radiologist who will interpret the images, to 
develop automated methods of quality control of image quality and to develop methods for 
the teletransmission of digital mammograms. 

This project contains five components. 

A. The evaluation of the feasibility of interpreting mammograms on a soft copy 
viewing station. 

B. Investigation of methods for digital storage and retrieval of mammograms. 

C. The identification of mammograms that are of substandard quality. 

D. The identification of mammograms that require additional views prior to the release 
of the patient. 

E. The demonstration of the effectiveness of telemammography. 

As we complete this project, we have learned that digitized film mammograms displayed 
soft copy are not of sufficient diagnostic quality for primary interpretation of 
microcalcifications, that digital storage and retrieval of both digitized film and digitally 
acquired mammograms is feasible and that those acquired digitally are of probable 
diagnostic quality. We have developed methods of identifying mammograms that are of 
substandard quality and have demonstrated the effectiveness of telemammography when 
used with direct digital capture of breast images. We were unable to create a system that, at 
this time, is capable of automatically identifying women who need additional images. 

We will discuss the work done on each of these sub-projects and indicate the portions that 
succeeded and those that did not succeed. After these discussions, we will describe a 
working system for telemammography and quality control suitable for obtaining 
mammograms at remote sites, their transmission and the remote interpretation of 
mammograms. 

Collaborative Relationship with Army Medical Centers 

Our original intention of working with Madigan Army Medical Center (MAMC) and 
Brooke Army Medical Center (BAMC) has been modified so that we are now working with 
Colonel Robert Shah, MD at BAMC and Colonel Ted Raia's designee, (Major Morgan 
Williamson, MD) at Walter Reed Army Medical Center (WRAMC). We also consult with 
and obtain advice from Major Donald Smith, MD at MAMC. Two WRAMC radiologists 
are participating in the receiver operating characteristic (ROC) reading study of digitally 
stored and transmitted mammograms. We have had discussions with radiologists at 
WRAMC, Bethesda Naval Medical Center, Major Mike Freckleton, MD at Wilford Hall 
AFMC, and Colonel Anna Chacko, MD at BAMC regarding our findings on digital 
mammography and teledigital mammography. We have also discussed at special meetings 
with General Russ Zajtchuk, MD and his assistant Major Paul Zimnick, MD the appropriate 



utilization of digital telemammography for incorporation into the mammography van that 
they are currently working to develop. We have had discussions of the implementation of a 
clinical trial of digital telemammography at WRAMC and Ft Belvoir. 

Overview 

In summary, the following tasks have been accomplished: 

A. The evaluation of the feasibility of interpreting mammograms on a soft copy 
viewing station. An evaluation of digitized film mammograms displayed on a workstation 
showed that radiologists had great difficulty in identifying microcalcifications and also 
misidentified film defects as microcalcifications. 

B. Investigation of methods for digital storage and retrieval .of mammograms. We have 
digitized and stored several thousand digitized mammograms and approximately 250 
digitally acquired breast images. The retrieval of these images has been accomplished. The 
digitally acquired and retrieved images are of high quality and are probably of diagnostic 
quality. We are currently performing an ROC study to prove this. The digitized screen film 
mammograms are of lesser quality and do not appear adequate for primary diagnosis. They 
are clearly not acceptable when displayed soft copy. 

C. The identification of mammograms that are of substandard quality. 

1. A set of training cases has been assembled. 

A. Set A is a set of images of geometric test objects that are available in 
direct digital form as well as digitized film. The accuracy of diagnosis of microcalcifications 
on these varies with the signal to noise ratio which is related to exposure. From this data, 
the exposure level at which information loss occurs has been calculated allowing one to 
determine whether there are regions within mammograms in which full information has not 
been captured. Data from this project was reported to SPIE Medical Imaging 1995. 
(Freedman 1995) A report of this work is attached in Appendix 1. 

B. A program has been written to determine cases that are under- and 
overexposed. A set of 181 selected clinical mammograms were obtained from clinical files 
and digitized. While all of these were considered clinically acceptable originally, the 
radiologist interpreting them considered some of them somewhat overexposed or 
underexposed and listed them in a record book. Thirty images were underexposed, 83 
normally exposed and 58 overexposed based on clinical criteria. In this set, the automatic 
program provided clear classification. Of the 83 with normal exposure, 76 were so 
classified. Of the 30 underexposed images all were classified as underexposed. Of the 58 
overexposed images all were classified as overexposed. The report of this work is attached 
in Appendix 2. 

2. We have developed segmentation algorithms for digitized screen film 
mammography that divide the image into regions of different pixel values. This will enable 
us to determine the average pixel value for under- and overexposed regions of the image. 

3. Quality control procedures for the acquisition of digital images including 
mammograms using Fuji equipment have been established. Manuals for the Fuji AC-1, 
AC-3 and Fuji 9000 have been prepared. The manual for the AC-3 is attached (Appendix 
3). These manuals provide methods for quality control of data acquisition. 



D.       The identification of mammograms that require additional views prior to the release 
of the patient 

1. Our computer aided diagnosis program for microcalcifications has 
undergone further development. It can now identify 97% of microcalcification clusters in 
our test set. (Appendix 4) We are currently developing a user friendly interface so that this 
data can be easily displayed. We are currently performing a preclinical test of this system 
with the goal of determining the cause of false positive detections. Currently the system still 
has too many false positive detections to be of clinical use as an aid to the technologist for 
determining whether or not additional views will be necessary. The detection program, 
however, should be of use in aiding the radiologist in detection suspicious clusters of 
microcalcifications. Once we have completed our local preclinical trial, we expect to work 
with Major Morgan Williamson, MD at WRAMC and with Col Robert Shah, MD at BAMC 
in a larger clinical test of this algorithm. 

2. We are concurrently working on a system for microcalcification 
classification-into calcification clusters that are associated with benign disease and those 
associated with malignancy. This work which was started in 1994 was substantially 
delayed because of instability with our high resolution film digitizer. We have replaced that 
system. Automated classification combined with computer aided diagnosis of 
microcalcifications would aid the technologist not only to know where there were clusters 
of microcalcifications that might benefit from magnification views, but would also allow 
her to eliminate obtaining the magnification views in some of those patients where the 
computer could clearly indicate that the microcalcifications were benign. (Appendices 5 & 
6) At this stage in the development of these algorithms, it is still to early to implement them 
for use by technologists. 

E.       The demonstration of the effectiveness of telemammography. 

In June, 1994, we first demonstrated teledigital mammography using digitized film and 
sending the image from Washington, DC to St. Paul, Minnesota to be printed. The quality 
was not adequate for diagnosis. In 1995, we were co-developers of a system that could 
transmit Fuji direct digital mammograms with what we believe to be adequate quality. 
Digital mammograms obtained at Georgetown were stored on a hard disk, transferred to a 
WORM optical disk, recalled to the hard disk, transferred to another hard disk, transferred 
via push over T-l to another hard disk and then sent over the Internet to be stored on 
another hard disk and then laser printed. We believe that the quality is now appropriate, and 
will be spending the next few months optimizing the final image quality. We are currently 
performing an ROC study comparing digitally stored and locally transmitted 
mammographic images to the original screen film image. 

In November 1995, at the Radiologie Society of North America (RSNA) annual meeting, 
we provided Internet access to our digital mammograms through the Inforad booth of our 
industrial collaborator, Analogic. At the recent presentation for Congress on Breast Cancer 
Imaging Improvements, we continuously transmitted images from Georgetown to the 
Hubert H. Humphrey Building of the Department of Health and Human Services (HHS), 
printing them on-line using a Polaroid Helios Printer. The quality is quite high and we 
believe it is suitable for diagnosis. An ROC study based on the Polaroid dry printing 
technology is planned for the near future. The ROC study using the 3M 969 wet laser is 
currently in process. This method has been demonstrated to General Russ Zajtchuk and 
Susan Blumenthal, MD, Assistant Secretary of Health for Women's Health, HHS. 



Details of Research Performed 

For Project A.        The evaluation of the feasibility of interpreting 
mammograms on a soft copy viewing station. 

An evaluation of digitized film mammograms displayed on a workstation showed that 
radiologists had great difficulty in identifying microcalcifications and also misidentifed film 
defects as microcalcifications. For this project we collected 50 cases of cancerous and non- 
cancerous mammograms with screen film, direct digital and digitized film images. 
Digitization was performed at both 50 and 100 microns. Detailed testing of the 100 micron 
digitized screen film images showed that the four radiologists had a high degree of 
preference for the hard copy images. A detailed report is attached in Appendix 7. 

For Project R.        Investigation of methods for digital storage and retrieval 
of mammograms. 

We have digitized and stored several thousand digitized mammograms and approximately 
250 digitally acquired breast images. The retrieval of these images has been accomplished. 
The digitally acquired and retrieved images are of high quality and are probably of 
diagnostic quality. 

We have been collecting a set of cases in which we have in each case the original screen 
film mammogram, the storage phosphor 100 micron direct digital mammogram obtained on 
the latest update of equipment and software, and the biopsy specimen radiograph. We 
currently have over 130 cases containing more than 30 proven cancers. The data for the 
direct digital mammograms is stored electronically, and each of the original screen film 
mammograms has been digitized and is available in 50 micron and 100 micron formats. 
Because of an important update in software that resulted in improved digital mammography 
acquisition, an earlier dataset was not used; the current dataset has been collected since 
March 1995. We delayed starting our ROC study because the laser imagers available to us 
were not considered adequate. We received our new 3M 969 laser and created with the aid 
of Analogic Corporation an adequate interface during the Summer of 1996 and are currently 
performing our ROC analysis. 

Images are currently acquired using Fuji HR-V imaging plates and a Fuji 9000 Computed 
Radiography system. Based on problems we identified during beta testing of this system, it 
was modified and appears adequate for digital mammography. Images are automatically 
processed using Fuji's standard parameters and the unprocessed data is then stored on the 
Fuji 954 workstation. We reprocess the image data sets to meet our optimized image 
processing standards. The image data sets are then transferred for permanent storage to a 
Fuji optical disk drive to provide for long term optical disk storage. This image data can be 
transferred through an Analogic Data Acquisition System Manager (DASM) to an Analogic 
experimental workstation which serves both as a print server and a method of transferring 
the images over our internal network. The Analogic print server can (as recently developed) 
mimic the Fuji print parameters (except for Dynamic Range Control (DRC)) printing to a 
3M laser printer. It can also send processed images for printing as TIFF files to other 
printers. 

Direct Digital Images: Viewer Acceptance of Hard Copy Display 
We have displayed comparison images from the Fuji computed radiography digital system 
and conventional screen film images in several meetings. The acceptability of these images 
has been considered high by many of those viewing the images at meetings. At the RSNA 
Annual Meeting, 1994, we demonstrated with a backlit display the original screen film 
images and CR digital images of the standard breast geometric test objects, three cancers 
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(5,6, and 15 mm) manifested by microcalcifications, one 8mm cancer manifested by 
spiculated mass, and two microcalcification cases that on biopsy showed benign findings. 
We provided magnifying glasses and asked those who wished to indicate which images 
they preferred. Ninety-four percent of those who responded preferred the digital images of 
the test objects, 83% preferred the clinical microcalcification cases, and 57% preferred the 
one mass case we showed. We have shown a similar exhibit at the American Roentgen Ray 
Meeting in May 1995, where the exhibit received a bronze medal. The direct digital images 
appear to be acceptable to many of those viewing them. 

ROC Study of Direct Digital Images 
We have selected from our collected set of digitally acquired mammograms 24 biopsy 
proven cancer cases, 24 benign biopsy cases and 50 cases selected by radiologists as being 
normals for incorporation in our ROC study. In each case we have both conventional and 
digital mammograms. These cases have been randomized and radiologists are now 
providing interpretations of these comparing (in separate reading sessions one month apart 
or greater) interpretations of screen film and digital mammograms. The first readers results 
are available and showed Az screen film = 0.7373; Az digital = 0.7646 when tested for 
detection of cancer. When tested as a method of discrimination between cancer and benign 
lesions that were detected, the Az of screen film = 0.5743. The Az of the digital system = 
0.7412. We believe that when this ROC study is completed in November 1996 that it will 
show that digitally acquired, stored, and retrieved mammograms are equivalent to screen 
film mammograms. 

For Project C: Identification of mammograms that are of substandard 
quality. 

1.        A set of training cases has been assembled. 

A.       Set A is a set of images of geometric test objects that are available in 
direct digital form as well as digitized film. The accuracy of diagnosis of microcalcifications 
on these varies with the signal to noise ratio which is related to exposure. From this data, 
the signal to noise ratio (SNR) at which information loss occurs can be calculated allowing 
one to determine whether there are regions within mammograms in which full information 
has not been captured. Data from this project was reported to SPIE 1995 Medical Imaging. 
(Appendix 1) 



This report demonstrated that as one decreased the exposure, that the ability to detect the smallest 
microcalcifications was decreased. This is summarized in the following chart: 

CIRS  Detail, 6 to 80  mAs,  28  KVP 

I Screen Film 

D Storage GA 5 

Chart 1: This chart demonstrates the smallest sized test details visible on the CIRS Detail 
Phantom as exposure is varied, comparing two systems: conventional screen film 
mammography and Fuji Digital Storage Phosphor radiography, processed in Sensitivity Mode. 
At low exposure levels, the digital system allows the detection of simulated microcalcifications 
that cannot be seen in the conventional system.  This is analogous to detecting 
microcalcifications in radiodense regions of the breast. (Appendix 1) 

The major factors affecting the detectability of small details in a geometric test object are 
signal to noise ratio and contrast. Image processing can be used to change the contrast 
scale, but increasing the contrast also increases the contrast and visibility of the image 
noise. By calculating the signal to noise ratio in these images, one can determine whether or 
not full information about small microcalcifications has been obtained. Because SNR is an 
easily calculated quantity, one will then be able to use a computer to look at regions of the 
mammogram, segmented as discussed below, to determine whether or not exposure 
parameters are appropriate. 

B.       A program has been written to determine cases that are under- 
exposed and overexposed. A set of 181 selected clinical images was obtained from clinical 
files and these mammograms were digitized. While all of these were considered clinically 
acceptable originally, the radiologist interpreting them considered some of them somewhat 
overexposed or underexposed and listed them in a record book. Thirty were under 
exposed, 83 normally exposed and 58 over exposed based on clinical criteria. In this set, 
the automatic program provided clear classification. Of the 83 with normal exposure, 76 
were so classified. Of the 30 underexposed images all were classified as underexposed. Of 
the 58 overexposed images all were classified as overexposed. The report of this work is 
attached in Appendix 2. In this study, the program detected all under- and overexposed 
images correctly, but did assign 7 of the 83 normal images to the overexposed category. 
Since all of these images were considered within the acceptable range at the time of initial 
reading, though noted to be a little dark or a little light, the system is both sensitive and 
relatively specific. It should be able to serve as a good guide for the automated assessment 
of mammograms obtained at remote sites. 

2.        We have developed segmentation algorithms for digitized screen film 
mammography that divide the image into regions of different pixel values. This will enable 
us to determine the average pixel value for different regions of the image. The segmentation 
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system is adjustable and can use different thresholds. It works by looking at regional pixel 
values to determine margins within an image. In Appendix 8 , I have attached images from 
this segmentation program and a brief description. This program is used to identify regions 
of underexposure. 

3.        As our work with digitized film progressed, it became clear that 
teletransmission of digitized screen film obtained mammograms would be of limited utility 
because of the introduction of artifacts simulating microcalcifications and the obscuration of 
microcalcifications that can occur. Our report on this is in Appendix 7. Successful 
teletransmission of mammograms would require the use of digitally acquired 
mammograms. The system we chose to use for development is a storage phosphor based 
system -- the Fuji 9000. We discovered that if this machine were not maintained at a high 
level of quality, that artifacts could result resembling calcifications. A very high level of 
quality control was therefore necessary. We sent one of the faculty scientists to the Fuji 
factory training course to learn everything that he could about the machine and had him 
come back to write a quality control manual for use with this system. 

Quality control procedures for the acquisition of digital images including mammograms 
using Fuji equipment have been established. Manuals for the Fuji AC-1, AC-3 and Fuji 
9000 have been prepared. The manual for the AC-3 is attached. These manuals provide 
methods for quality control of data acquisition. If one is to produce high quality digital 
mammograms, one must have methods for assuring that the quality of image acquisition is 
high and that the machine used for this acquisition is properly maintained. Our experience 
in using storage phosphor mammography is that it requires very careful attention to 
machine cleanliness and that the functions of the machine must be checked on a regular 
basis. Attached are two articles related to QC of storage phosphor devices that we have 
recently published. (Appendices 9 ,10) The more complete manual for machine QC is also 
attached. (Appendix 2) 

For Project D.        Identification of mammograms that require additional 
views prior to the release of the patient. 

1.        Our computer aided diagnosis program for microcalcifications has 
undergone further development. It can now identify 97% of microcalcification clusters in 
our test set. We are currently developing a user friendly interface so that this data can be 
easily displayed. We are preparing to test this system in a preclinical setting working with 
Col Ted Raia, MD at Walter Reed Army Medical Center and with Col Robert Shah, MD at 
Brooke Army Medical Center. Our original goal was to develop a program that would 
enable the technologist to know when a magnification view was needed. Currently, the 
computer aided diagnosis system has been tuned for screen film mammograms digitized at 
100 micron pixel size. While our current program has a high true positive detection rate, it 
still has an average of 1 false positive detection per image. We are currently doing a careful 
analysis of the types of findings that are causing the false positives and have submitted an 
abstract to present a paper at SPIE Medical Imaging 97. A copy of this abstract is attached. 
(Appendix 2) What we are finding in our review, so far, of more than 200 images, is that 
real findings are causing the false detections. These include groups of several film defects, 
benign microcalcifications, grid artifacts, film scratches, and what we believe are dilated 
terminal ductal units in the breast. These dilated terminal ductal units are a common site of 
benign calcification formation and closely resemble the appearance of calcification clusters. 
We believe that improving our knowledge of the causes of false positives will enable us to 
develop improved algorithms and improved quality of our screen film mammograms that 
will help us avoid these problems. At present, the system would result in too many extra 
films if technologists were to use it as a guide. 
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We have written several articles describing our method of microcalcification detection. 
These are included in Appendices 4,11. 

2.        It is clear that a system that identifies calcifications that radiologists can 
easily classify as being benign would, in the end, not be useful in telemammography. We 
therefore have been working on systems to aid in microcalcification classification-into 
calcification clusters that are associated with benign disease and those associated with 
malignancy. This work which was started in 1994 was substantially delayed because of 
instability with our high resolution film digitizer. We have replaced that system. 
Automated classification combined with computer aided diagnosis of microcalcifications 
would aid the technologist not only to know where there were clusters of 
microcalcifications that might benefit from magnification views, but would also allow her 
to eliminate obtaining the magnification views in some of those patients where the computer 
could clearly indicate that the microcalcifications were benign. We have run two different 
datasets through our developing program. In the first dataset of biopsy specimen 
radiographs, the system performed moderately well in distinguishing benign and malignant 
cases. This has been previously reported. (Appendix 5) We have just completed testing a 
second, more difficult dataset of digitized screen film mammograms. In this set the 
radiologists were not able to distinguish benign from malignant (all had gone to biopsy as 
suspicious lesions after diagnostic workup). The computer program was not able to 
distinguish benign from malignant in these cases either. This was presented in 1996. 
(Appendix 6) We are now working to test a set of cases that radiologists performing 
screening mammography considered suspicious, but which were then classified into benign 
or malignant categories by diagnostic mammograms. These results have been submitted for 
presentation in February 1997, but we do not know yet whether the paper has been 
accepted. 

For Project E: Teledigital Mammography 

In June 1994, we first demonstrated teledigital mammography using digitized film and 
sending the image from Washington, DC to St. Paul, Minnesota to be printed. The quality 
was not adequate for diagnosis. In 1995, we were co-developers of a system that could 
transmit Fuji direct digital mammograms with what we believe to be adequate quality. The 
schematic diagram of this project follows: 
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Digital mammograms obtained at Georgetown were stored on a hard disk, transferred to a 
WORM optical disk, recalled to the hard disk, transferred to another hard disk, transferred 
via push over T-l to another hard disk and then sent for over Internet to be stored on 
another hard disk and then laser printed. During the annual meeting of the Radiological 
Society of North American, November 1995, we demonstrated teledigital mammography 
over the Internet transmitting images from Boston to the Radiologie Society of North 
America and printing the images in the Inforad booth of our industrial collaborator, 
Analogic. We believe the quality is now appropriate and will be spending the next few 
months optimizing the final image quality. Once image quality is optimized, we will 
perform an ROC analysis comparing the original mammogram obtained with screen film to 
the direct digital mammogram teletransmitted images in a set of proven cases. The final 
images resulted from a combination of technology developed by Fuji, Georgetown, 
Analogic Corp. and Polaroid. 

In October 1996, with further developments, we were able to demonstrate on-line digital 
teledigital mammography from Georgetown to the Hubert H. Humphrey Building of HHS 
in Washington, DC, printing images pulled over the Internet. The image quality appears to 
be of diagnostic quality. 

The system that we designed and helped to build now transmits 100 micron pixel digital 
mammograms, but could be easily converted to a 50 micron system should that become the 
standard for digital mammography and should the problems of image display be solved. 
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Summary 

The goal of this project was to develop methods to improve the ability of mammograms to 
be obtained at remote sites and to develop methods for their teletransmission to a central site 
of excellence in the interpretation of mammography. We were unable to accomplish this 
using digitized screen film mammograms, but have succeeded in doing this with direct 
digital mammograms. The ROC study that will prove this is currently underway with the 
results of the initial reader being favorable with Az screen film = 0.7373. Az digital = 
0.7646 when tested for detection of cancer. When tested as a method of discrimination 
between cancer and benign lesions that were detected, the Az of screen film = 0.5743. The 
Az of the digital system = 0.7412. We have demonstrated the effectiveness of digital 
storage and retrieval for which the same ROC study will provide the proof. We have 
demonstrated the feasibility of teletransmission of images transmitting them over the 
Internet from Georgetown to Boston to the Radiologie Society of North America annual 
meeting in Chicago and separately from Georgetown over the Internet to the Hubert H. 
Humphrey Building of the HHS in Washington, DC. We have defined quality control 
procedures for this system. We have been able to build a system that identifies under- and 
overexposed mammograms based on digitization of the mammographic films. We have 
been unable to develop a clinically useful method of directing technologists as to which 
patients need additional images during their mammogram based on the detection of 
microcalcifications. This still remains a human rather than a computer based task. 
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ABSTRACT 

It has been stated that digital mammography will reduce the exposure required for mammography. This poster explores the 
effects of decreased exposure on the information present in digital mammography. In general, the digital system performed 
better than screen film mammography with lower exposures. With the usual exposures used for screen film mammography, 
performance was equal. With high exposures sufficient to result in a dark film (OD 1.5), the digital system performed better 
than screen film with very small test objects. 

Proposals have been made to decrease the tube loading required for slot scanning devices by increasing KVP.  This would 
result in their being less object contrast due to the decreases in the absorption coefficient of calcium compared to water at 
higher KVP. This poster looks at the potential for correcting the loss in object contrast that would result from the use of 
high contrast look up tables. It was found that in the tested system, one could restore the information in one of the two test 
objects used (but not the other), but that the image processing methods used would result in an image that radiologists would 
probably find inadequate for interpretation. 

METHODS 

Tested System 

Images for this series of experiments were obtained using a GE-CGR (Milwaukee, Wisconsin) 600 T dedicated mammography 
machine.  The machine is in clinical use in an American College of Radiology approved facility and meets the quality 
standards for this approval.  The images obtained at 28 KVP at varying mAs were obtained with a molybdenum target and 
filter. Those obtained at various KVPs were obtained with a molybdenum target and an aluminum filter. The 
mammographic screen film system used is Fuji (Tokyo) Kyokko UM Fine Screen with Fuji UM-MA-HC film. The digital 
system tested is the Fuji 9000 using high resolution imaging plates (HR-V). 

Two test objects were used: the CIRS Detail (square) test object (Norfolk Virginia) and the CDMAM test object (Nuclear 
Associates, Carle Place, New York). The CDMAM test object was placed on top of four cm of acrylic. 

Image Processing Optimization 

Image processing methods are those included in the Fuji 9000 system. The optimized image processing settings for the 
detection of small objects were calculated through the application of the mathematical technique of multiple iterative response 
surfaces in geometric test objects. 



Exposure reaching the Screen Film Cassette and Storage Phosphor Cassette 

CIRS Detail Phantom 

CIRS 
detail 

mR mR 
KVP mAs pre 

grid 
post 
grid 

ODSF 

28 6 15.7 6.57 0.16 
28 12 31.6 13.22 0.18 
28 20 42.3 17.70 0.21 
28 25 53.0 22.18 0.25 
28 32 85.0 35.56 0.29 
28 40 106.6 44.60 0.42 
28 80 213.8 89.46 1.13 

KVP 
mR    mR 

) mAs pre    post 
grid   grid 

ODSF 

22 5.9 2.2     0.83 0.4 
28 3.8 5.9     2.47 1.22 
36 6.9 28.7    13.23 1.5 

CDMAM test object with 4 cm of added acrylic between test object and receptor 

KVP 
mR mR 

> mAs pre 
grid 

post 
grid 

ODSF 

28 6 2 0.84 0.16 
28 12 3.9 1.63 0.18 
28 20 5.4 2.26 0.21 
28 25 6.7 2.80 0.25 
28 32 10.9 4.56 0.29 
28 40 13.6 5.69 0.42 
28 80 27.3 11.42 1.13 

KVP 
mR     mR 

5 mAs pre    post 
grid   grid 

ODSF 

22 67.7 <1.0    <0.38 0.4 
28 8.5 2.5      1.05 1.22 
36 7.1 7.1      3.27 1.5 

OD SF = optical density on screen film image. Pre-grid = exposure above grid. Post grid = exposure below grid corrected for 
changes in grid absorption with changes in KVP. 

FINDINGS 

THE EFFECT OF INCREASES IN KVP 

When screen film mammography images and digital images obtained at different KVPs are compared, one can see that the 
higher KVP results in a decrease in the detection of small objects that cannot be retrieved with the image processing methods 
available to the authors except by the use of a very high contrast look up table (GA=9).   This high contrast look up table 
results in images that are likely unacceptable for interpretation. 



Findings in the CIRS Detail Test Object 
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This chart shows the results for the CIRS Detail (square) test object. With this test object, no difference is seen between 22 
and 28 KVP, with the smallest object measuring 200 microns. At 36 KVP, screen film, and storage phosphor processed with 
a GA of 1.2 and 5 did not allow retrieval of the smallest detail. At a GA of 9, at 36 KVP, the 200 micron objects could be 
seen, but this very high contrast image results in an unreadable appearance to the mammogram. This is because the range of 
optical densities in the original image exceeds the optimal range for this look up table resulting in images with regions that 
are maximally black or maximally white, resulting in loss of detail. In addition, the heel effect is exaggerated with these high 
contrast look up tables so that the entire breast cannot be visualized at the same time. (GA = gradient angle of the look up 
table. Storage = storage phosphor radiography.) 



Findings in th« CDMAM Test Object 

The Nuclear Associates CDMAM test object also was used to compare screen film and storage phosphor radiographs at 
various KVPs. 

Screen  Film vs Storage  Phosphor 22 
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This chart demonstrates that at 22 KVP, the screen film system shows smaller objects and for the smaller objects shows them 
at lower contrast than the digital system.   (SF= Screen Film. SR= Storage Phosphor Radiography. K = KVP) 



Screen  Film vs Storage  Phosphor 28  KVP, 4 
Layers,   LFS 
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This chart shows 
that screen film and storage phosphor demonstrate the same size objects at approximately the same contrast levels when 
obtained at 28 KVP. (SF= Screen Film. SR= Storage Phosphor Radiography. K = KVP) 
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In this chart, the CDMAM phantom demonstrates smaller objects than screen film and shows them at lower contrast (thinner 
disk). (SF= Screen Film. SR= Storage Phosphor Radiography. K = KVP.) 



Storage Phosphor at 28 and 36  KVP 
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In this chart, one can see that storage phosphor (SR) at 28 KVP performs better than SR at 36 KVP. One can see the 
smallest (130 micron) object only at 28 KVP and for the other small objects, one sees them at lower contrast at 28 KVP. 
(SR= Storage Phosphor Radiography. K = KVP.) 



Screen  Film  at 28 KVP vs  Storage  Phosphor 
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This chart demonstrates that one can see the 130 micron object at 28 KVP using screen film, but not with SR at 36 KVP. 
For most of the object in the lower third of the disk sizes shown, screen film detects them at slightly lower contrast than SR. 
(SF= Screen Film. SR= Storage Phosphor Radiography. K = KVP.) 



Screen  Film  at 22  KVP  vs  Storage 
Phosphor at 36  KVP 
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This chart demonstrates that screen film images at 22 KVP show the 100 and 130 micron objects which cannot be seen at 36 
KVP with SR. Also for all of the other size objects, screen film allows their detection at lower contrast. The best screen 
film images were obtained at 22 KVP.   (SF= Screen Film. SR= Storage Phosphor Radiography. K = KVP.) 

Conclusion regarding KVP 

Although SR with image processing allows more to be seen at 36 KVP when compared to screen film, it does not equal 
digital or screen film at 22 or 28 KVP.   Screen film images at 22 KVP show the smallest objects in this test. Within this 
test system, with both the CIRS and CDMAM test objects, one could not reclaim the information regarding the smallest 
objects when 36 KVP was used; there was better conspicuity for most objects with both the screen film and digital images 
obtained at 22 or 28 KVP. 



DIFFERENCES IN MAS AT 28 KVP 

Tests demonstrated that the digital system performed better at low mAs and at the highest level of mAs. In the intermediate 
range of exposures, the systems performed equivalently. 

Tests with the CIRS Detail Test Object 

These charts demonstrate the findings as mAs is varied at 28 KVP. 
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This chart demonstrates that at mAs less than 25, while the storage phosphor system could demonstrate objects, the screen 
film failed to demonstrate any of the objects.   At 25 and 32 mAs, the storage phosphor demonstrated smaller objects than 
screen film. At 40, and 80 mAs, the two systems performed equivalently. (Storage = Storage Phosphor Radiography. GA = 
gradient angle of the look up table.) 



Tests with the CDMAM Test Object 

This test object shows similar results, with the digital system performing better at low mAs and the system performing 
equivalently at higher mAs. 
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This chart demonstrates the effect seen as the mAs is increased from 6 to 20 mAs. Within each block, those values to the left 
are from screen film and those to the left are the digital values.   Less is seen with the screen film than with the digital 
images in this group. (SF= Screen Film. SR= Storage Phosphor Radiography. M = mAs) 



With higher mAs, the systems perform similarly: 

32 to  80 mAs Screen  Film  vs Storage 
Phosphor 28  KVP 

1.6 j 

1.4 -- 
to 

c 

1   1 + 
jf   0.8 -- 

^   0.6 
in 

a  0.4 + 

0.2 

0 bhLJiiLribijnlilHdu 
CVJ      U5     CM 

co    cvi 
CO 

CM 
T-    co 

o o    o 

Disk    Diameter 

■ SF32M 

D SF40M 

■ SF80M 

■ 
ES SR32M 

H SR40M 

B SR80M 

This chart demonstrates that the screen film and digital system are performing similarly with the larger test objects. With the 
smallest diameter objects, the screen film and digital systems allow their detection, but the screen film system allowed it to 
be seen at slightly lower contrast in this test. (SF= Screen Film. SR= Storage Phosphor Radiography. M = mAs) 

Conclusion of Tests of Changes in mAs 

In both test objects, the digital system performed better at lower mAs, and similarly at higher mAs. 



CLINICAL IMPLICATIONS FOR DIGITAL MAMMOGRAPHY 

Clinical implications of KVP findings; 

Some digital mammography machines now under development use a higher KVP so that the heat loading on the x-ray tube 
will be less. The results of this study suggest that at least with the image processing available to us, one may not be able to 
recapture the contrast information which is detectable at a lower KVP. This is related to the decreasing absorption coefficient 
of calcium with a higher KVP. 
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These three views of the CIRS detail test object demonstrate that increasing the KVP lowers contrast with storage phosphor 
systems and that this contrast information cannot be completely retrieved with image processing. 



Using a high contrast look up table to at least partially restore contrast information would also increase the contrast and 
thereby the visibility of noise. While our tests show that one can use image processing to make the digital image better than 
the screen film image at 36 KVP, it did not equal the performance of either digital or screen film images at 22 and 28 KVP in 
the CDMAM test object. 

Clinical Implications of the mAs Experiments 

The breast shows a wide variation in radiodensity.   Denser areas of the breast, if their exposure level falls into the critical 
range, will have better conspicuity of small objects with the digital system than with screen film. If one uses screen film 
images, sufficient exposure to demonstrate the smallest objects should be used.  While digital systems provide more 
information at low exposures, a decrease in exposure in the test system we used could be achieved only if one were to accept 
less than the full information the system could provide. 

CONCLUSIONS 

The use of storage phosphor digital mammography in its current configuration will not allow the exposures for digital 
mammography to be decreased if one wishes to maintain full information.   In the presence of underexposure (such as in a 
focally dense area of the breast or in generalized breast increased radiodensity), there is a point below which a digital system 
does contain more information than a screen film system. 

With increases in KVP, one has less object contrast. With the system tested, one cannot recover the contrast information lost 
at 36 KVP by image processing and still maintain an image of the breast that would be considered readable by a radiologist. 
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Quality Control in Digital Mammography: Automatic Detection of Under and Over- 
Exposed Mammograms 

Chris Y. Wu, Matthew T. Freedman, Akira Hasegawa, Seong K. Mun 
Department of Radiology, Georgetown University Medical Center, Washington, DC 

We developed a quality control system (QCS) for digital mammography that can notify 
technologists in real time of mammograms of poor image quality due to under or over 
exposure. 

Mammograms are digitized by an Lumisys Scanner at 100 micron and 12 bits per pixel. 
An automatic image segmentation technique is employed to extract area inside the breast 
in mammogram. Histograms of the segmented areas are then calculated. By analyzing the 
composition of histograms, the computer program determines whether the original films 
have properly exposed. 
Traditional image segmentation techniques are based on histogram analysis of digitized 
mammograms. However, such methods often fail with mammograms of low contrast or 
that are under-exposed because the difference in brightness across the breast skin line is so 
small that it is difficult to define boundary by thresholding or region growing techniques. 
We proposed a novel method to detect breast skin line based on statistical changes of 
gradient. 
By analyzing the histogram composition of normal, under and over-exposed films, we 
defined an image feature that describes the image intensity content of underlying 
mammograms. The criterion for determining the category of a mammogram were 
established by studying a training database of normal, under, and over exposed films. We 
can then classify the mammograms using the image feature, based on the established 
criterion. 

Over 150 real mammograms of different exposure levels were analyzed. The images were 
classified by the computer system into groups of normal, slightly under-exposed, under- 
exposed, slightly over-exposed, and over-exposed. We compared the classification results 
by computer with a radiologist's evaluation. Our QCS system was able to correctly 
classify over 85% of the cases. Receiver Operating Curve (ROC) analysis will be 
employed to evaluate the performance of the QCS system in determining the image quality 
of digital mammograms. 

Our QCS program is able to automatically determine whether a mammogram is properly 
exposed and advise a technologist to re-take additional exposures. The QCS correctly 
identified 100% of over- and under-exposed mammograms and 92% of mammograms of 
normal exposure. The QCS can help reduce the cost of recalling patients and improve the 
overall quality of mammographic service. 



Introduction 

The objective of this paper is to develop a quality control system (QCS) for digital 
mammography that can identify mammograms of poor image quality due to under or over 
exposure in real time and notify the technologists so that the underlying errors can be 
corrected immediately to obtain high quality mammograms. 

High quality of mammograms is essential for proper diagnosis in mammography screening 
examinations. In population screening mammography studies, approximately 6% of 
patients are called back for additional imaging examinations.1 These additional 
examinations can be repeat views due to inadequate quality of previous mammograms, 
magnification views, coned compression spot views, and ultrasound examinations. 
Patients call backs due to poor image quality increase the cost of the service and agonizes 
patients. A five percent repeat rate for mammography films is considered the limit of 
acceptable standards for a mammographic service.2 Identifying mammograms of 
inadequate image quality immediately after the examinations before the patients leave the 
hospital allows a technologist to re-examine a patient in case of a "bad" mammogram 
resulted for whatever reasons and obtain high quality mammograms for the patient in one 
hospital visit. This practice can reduce the number of repeat examinations and thus 
improve the quality of the mammographic service and reduce the cost of providing such 
service. 

Reviewing mammographic images that had been rejected for poor quality demonstrates 
clearly that the major errors in image quality are reflected in the histograms of density of 
the images. The images were too light, too dark, lack of contrast due to insufficient 
compression, blurring of the edges of fibers of breast tissue due to patient motion during 
the examinations, and poor positioning. In general, mammographic images taken with 
properly maintained mammographic equipment can be of poor quality for five main 
reasons: poor positioning, patient motion, inadequate compression, lack of contrast due to 
too high a KVP, under or over exposure. Our research focuses on the detection of under 
and over exposed images. Lack of compression and too high KVP can also cause the 
films to be under exposed. 

Technological issues of quality control of mammography examinations have been 
extensively discussed in the literature.2-3 However, there have been few systematic 
applications of computer assisted "intelligent" systems to solve problems in quality 
control. Sophisticated computer-aided diagnosis (CADx) algorithms have been 
successfully developed for diagnosis of breast cancer in recent years.4"10 We believe it is 
feasible to develop an automated quality control system that can identify more than 90% 
of the poor-quality mammograms that an experienced radiologist would request to be 
repeated. 

The use of computer-assisted quality control and tele-mammography can assure that 
mammograms of diagnostic quality be obtained by technologists even at the absence of a 
highly qualified mammographer. It would decrease the number of women recalled for 



repeat views, thereby decreasing the costs associated with loss of time from work and the 
additional cost of reprocessing these patients. It would also allow a more rapid report to 
be generated for those mammograms obtained at remote sites and to decrease patient 
waiting time. 

Materials and Methods 

Mammograms are digitized by a Lumisys scanner with a pixel size of 100 microns and a 
depth of 12 bits per pixel. An automatic image segmentation technique, gradient vector 
algorithm, is employed to extract area inside the breast in a mammogram. Histograms of 
the segmented areas are then calculated. By analyzing the composition of histograms, the 
computer program determines whether the original films have been properly exposed. 

Normalization 

A normalization standard is established so that mammograms digitized using different 
scanners can be analyzed and compared. Each digitized mammogram is re-scaled to 
512x380 pixels and 8 bit gray scale depth. The spatial and gray scale resolutions at this 
setting is sufficient for our purpose of histogram analysis. The reduced resolutions greatly 
decreases image size and thus the computation time and storage disk space requirement. 
Therefore, the real time implementation of the algorithm in clinical environment can be 
facilitated. 

Image Segmentation 

The level of exposure of a digitized mammogram is to be determined by the analyzing the 
histogram of the mammogram. Because the area filled by the breast on a mammogram 
varies from image to image, histograms of mammograms with similar exposure level can 
have different shapes. In addition, the area outside the breast is of no diagnostic interest in 
determining the exposure level of a mammogram. What we are really interested is the 
exposure level inside the breast. For this purpose, we developed an image segmentation 
technique to extract breast area on a mammogram. 

Traditional image segmentation techniques are based on histogram analysis of digitized 
mammograms. However, such methods often fail with mammograms of low contrast or 
with mammograms that are under-exposed because the small difference in brightness 
across breast skin line makes it difficult to define a boundary by thresholding or region 
growing techniques. However, image intensity ascends statistically from outside of breast 
to inside, even in low contrast mammograms. Based on this observation, we propose a 
novel method to detect breast skin line using a normalized differential filter. The 
normalized differential filter enhances statistical ascent of pixel values and makes the 
boundary easier to detect. 



1. Normalized Differe ntial Filters 

Calculate both x- and y-direction differentials at each pixel in an input image using 5x5 
kernels indicated in Fig. 1. 

_*1 +1 -1 -1 -1 -1 -1 

-1 +1 

-■j o +1 o 
-"I +1 

-1 +1 +1 +1 +1 +1 +1 

(a) (b) 

Figure 1 5x5 kernels for normalized differential filters 

2. Gradient Vector 

Consider each pair of pixel values in output images of the two differential filters as x and y 
components of a gradient vector, and normalize each vector. The x and y connotes of the 
normalized vector construct two output component images of the normalized differential 
filters. The component images demonstrate different characteristics between area just 
inside the breast skin line and area outside the skin line or in the center of the breast. 

The directions and magnitudes of the gradient vectors just inside the skin line of the breast 
are observed to be more homogeneous than those of other areas such as the center of the 
breast or areas outside the skin line. Therefore, gradient vectors in the area just inside the 
skin line of the breast direct consistently towards the center of the breast. In addition, the 
gray levels of the gradient vectors' component images are relatively smooth. On the other 
hand, the underlying tissue of breast parenchyma is usually non-uniform in X-ray images, 
and the area outside the breast consists of mostly random noise. Therefore, normalized 
gradient vectors in these areas point randomly to various directions and the gray levels in 
the vectors' component images show greater variation. The different regions of a 
component image is demonstrated in Figure 2. 



Figure 2 Different Regions of Gradient Vector's Component Image 

3. Determination of Breast Area 

The skin line of the breast is defined as the outer boundary of the smooth area indicated in 
Figure 2. To detect the smooth area, calculate variance of each pixel in a 5x5 kernel in a 
component image, and binarize the image at a certain threshold that has been pre- 
determined empirically. The pixels in binarized image have values of "1" inside the 
detected skin line of the breast and values of "0" outside the skin line. 

The binarized images of component x and y are merged by logical "OR" operation that is 
followed by clearing inside of the breast. The final binary image of the breast is thus 
obtained. 

4. CR Mammograms 

In the proposed method, it is assumed that random noise exists in the background of 
mammogram. In screen-film mammography, this assumption always holds because low 
frequency quantum noises that are random in nature dominate background noises. 
However, in the FUJI computed radiography (CR) systems, the background area outside 
the breast is processed and thus is often not dominated by quantum noise in the final 
displayed image. The gradient vector method can not be applied to such mammograms to 
detect skin lines of the breast. However, such sophisticated method is often not needed 
because the contrast in a CR mammograms is so high that the breast area can be easily 
segmented by simple thresholding. 

5. Scanner Sensitivity 

Because gradient vector algorithm is designed to be able to detect subtle skin lines in low 
contrast mammograms, the method is also very sensitive to low frequency noise in 
background. When mammograms are digitized by a scanner with structured background 
noises such as observable low-contrast bold lines parallel to scanning direction, the 



gradient vector method may fail to detect the true skin line because it can mistaken the 
low contrast line noise as the skin line. 

Histogram Analysis 

The pixel values in the normalized mammograms range from 0 to 255. A histogram 
normally shows two peaks. A major one represents the bulk of fibroglandular tissues in 
breast parenchyma and a minor represents the fatty tissues, as shown in Figure 3. To 
measure the level of exposure to the breast, we define Exposure Index (El) to be the ratio 
of area under the major peak divided by the area of the valley between the two peaks. The 
boundaries of the two areas that are used to define El are determined by analyzing a 
number of normal films that have been correctly exposed. When a film is correctly 
exposed, the Exposure Index is in the range of 0.5 ~ 1.5. When a film is under-exposed, 
the film appears light and area under the major peak increases, resulting in a higher EL 
When a film is over-exposed, the film appears dark and the area under the major peak 
decreases, resulting in a lower El. Average histograms of normal over- and under- 
exposed mammograms are shown in Figures 4 ~ 6, respectively. 
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Figure 3 Histogram of a mammogram 



Histogram of Normal Images 
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Figure 4 Average Histogram of Normal Mammograms 

Histogram of Over-exposed Images 
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Figure 5 Average Histogram of Over-Exposed Mammograms 



Histogram of Under-exposed Images 
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Figure 6 Average Histogram of Under-Exposed Mammograms 

Measuring the Exposure Level for CR Images 

The mammograms obtained form Fuji CR systems have been processed internally such 
that the pixel values fall in normal range even if the images are moderately under- or over- 
exposed. Therefore, the histogram approach used for screen-film system is no longer valid 
for the CR images. Alternatively, the exposure level can be measured by the quantum 
noise level in an image. Under-exposed images have higher level of quantum noise 
because a smaller number of x-ray photons were detected by the storage phosphor. Over- 
exposed images have lower level quantum noise due to a greater number of x-ray photons 
detected. We define a different El measure for CR mammograms as rms noise of a 
selected region divided by the mean value of the region. 

In Fuji CR systems, the exposure level is related to an S-number. The greater the S 
number, the lower the exposure level in a CR image. To determine whether the S-number 
is an effective measure of exposure, we imaged a breast phantom with different exposures 
and obtained S numbers for each exposure. We then calculated RMS noise levels for 
images of different exposures, as shown in Figure 7. The S-numbers increase, in general, 
with RMS noise level. However, the S-number is not a reliable measure of exposure level. 
Within a limited range of exposure, the S-numbers can vary in a much wider range. This 
observation is demonstrated more obviously by using real CR mammograms. We selected 
over 30 CR mammograms that are considered by an experienced radiologist to be within 
normal exposure range. We calculated the RMS noise for each image and compared it 
with corresponding S-number, as shown in Figure 8. The RMS levels of these 
mammograms fall within a narrow range because the images were all appropriately 
exposed. The S-numbers, however, varies greatly from image to image. 



RMS ofCR Phantom Images and their S-Numbers 
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Figure 7 Correlation between S Numbers and RMS Noise for CR Phantom Images 

RMS ofCR Mammograms and their S-Numbers 

CR Images 

o 
Z 

1.2 

0.8 

0.6 en 
|0.4- 

0.2- 

0-P 

'&$'$i':M$0'/A W$$0'Wf0&- ♦ ♦ ̂ ■yV^, 
ß-%%$8£$$ 

$M/$MM'i''&>  ;"♦:;• ■''WW$M*$/W! 

/.'/■ '■'/■"■'■■ '.'it, {'!■'% 

, V'"</' /" *//','■',' '/ 
*. itifi§ti 

o'A'/,// 
 ."V 

i 

^   : 8V>i *** 
♦♦   ♦ §''^4': 

^^^^8 

0 50 100        150        200        250        300        350 

S Number 

Figure 8 Correlation between S Numbers and RMS Noise for CR Mammograms 

Results 

1. Screen-Film mammograms 

We selected 181 cases from the past mammography examinations. The gradient vector 
algorithm failed to detect the boundary of the breast in 10 of the 181 originally selected 
cases. The selected cases were examined by a radiologist to determine the exposure level 



of the images. These images were classified by the radiologist into four categories: under- 
exposed (30), normal (83), and over-exposed (58). 

A. Exposure index by the QCSfor Classification of mammograms 

Table 1 Summary of Output of QCS 

Average '//.       4.607 1.072 0.193 

Minimum I       2-993 
0.000 0.099 

Maximum 7.720 1.328 0.808 

Median 4.747 1.139 0.122 

Standard 1.181 0.269 0.156 
Deviation 

Table 1 lists the key statistics of the three groups of images classified by the QCS. The 
three groups are well separated as shown in Fig. 9. The diagnostic performance of the 
QCS is summarized in Table 2. 
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Figure 9 Histogram of Output of QCS 

Table 2 Performance of QCS 



QCS Normal Under -Exposed Over-Exposed 

Normal (83) 76 0 7 

Under-Exposed (30) 0 30 0 

Over-Exposed (58) 0 0 58 

The QCS correctly identified 76 (92%) of the 83 normal images and all of the under- and 
over-exposed images. Notice that none of the under- and over-exposed images are missed 
by the QCS, assuring correct exposure for all mammograms. . 

B. ROC Analysis Of the Performance of QCS 

To evaluate the ability of the QCS to differentiate between normal and under-exposed or 
between norm and over-exposed images, we applied ROC analysis to the output of QCS. 

(1) Between normal and over-exposed images 

ROC Analysis of QCS to Identify 
Over-Exposed Mammograms 

0.2 0.4 0.6 0.8 

False-Positive Fraction (FPF) 

(2) Between Normal and Under-Exposed images 

The QCS system distinguishes the two types of images perfectly with an Az value of 1.0. 

Discussion 

Exposure Index characterizes the exposure level of Screen-Film mammograms accurately. 
Because the threshold values are empirically determined, the accuracy of the 



characterization is subject to variations with different types of images digitized with 
different film scanners. 

The CR mammograms are pre-processed such that the pixel values are reset to a normal 
range. Histogram based approaches of quality control are no longer applicable to CR 
images. An alternative method based on the RMS noise level in an image is developed to 
assess the exposure level in CR images. The RMS noise based method provides a better 
assessment of exposure than the S-numbers recorded for each image. 

Conclusion 

QCS is an effective system that can automatically evaluate the exposure level of a Screen- 
Film mammogram in real time. The QCS identified 100% of the under- and over exposed 
mammograms while correctly identified 92% of mammograms exposed with normal 
exposure. Technicians can be notified by such system of any mammograms of inferior 
image quality due to under- or over-exposure to the films. The use of QCS can improve 
the overall quality of mammographic services by assuring high image quality of 
mammograms and reducing or eliminating recalling patients for repeat mammograms. The 
cost saving in reduction of patient recall can be substantial. The patients will be better 
served as well. 

As digital mammography is gaining wider acceptance across the country and in the rest of 
the world, the potential of QCS applications looks very promising.  In a digital 
environment, QCS can be integrated into the image acquisition to monitor image quality 
interactively and in real time. 
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1.      Quality Control Testing On Computed Radiography 

Computed radiography (CR) based on storage phosphor (SP) detector is a 
new and complex technology for obtaining medical digital imaging. The CR 
system was developed such that its image quality in diagnosis (wide latitude, 
certainty of visual diagnosis), speed (image sensitivity), image processing, and the 
overall imaging performance exceeds or at least equals those of the conventional 
screen-film (SF) radiography systems which is considered to be "gold standard". 

The unique capability of the CR system places a new responsibility on the 
medical physicist, radiologist, and radiologic technologist to ensure that the 
digital images give the same information at least as film, and improve rather than 
degrade the image. For that reason the quality of the image must be ensured and 
each component of the system must function properly. 

The clinical knowledge about quality control (QC) and the standard 
procedures for CR devices has not yet been established and is still under 
development. This manual presents the QC testing of the CR image 
reader/recorder and film processor. The procedure includes the acceptance of 
the equipment for its image quality, image sensitivity, and overall imaging 
performance. The procedures are currently and routinely being utilized in our 
institution. 

1.1.  Introduction 
A number of digital technologies are challenging the established screen- 

film (SF) technology such that the separation of image acquisition and image 
display are no longer applicable. One of these technologies is based on storage 
phosphor (SP) imaging medium used in computed radiography (CR).1 The 
traditional SF radiography systems' components such as image acquisition, image 
display, and image archiving are combined in the film medium. But in the CR 
system they are in separate optimizable components. The CR system uses the 
standard radiographic machine, grids for scatter rejection, and cassette similar to 
the screen-film radiography system. Positioning of the patient is the same as SF 
system. The exposure technique (s) (kVp and mAs) are also similar to SF system. 

SP digital radiography systems were introduced in the mid 80s to replace 
SF imaging systems.1"3 The imaging plate for the SP system is a new film-like 
image receptor4-5; specifically designed phosphors trap and store the radiation 
energy. The stored energy is stable until scanned with a laser beam, which 
releases the energy as luminescence. The basic concept of the CR system was to 
improve the image quality to at least equal to that film.6"7 The system provides 
good diagnostic information that produces consistent sharp images with a wide 
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latitude. Because of the image digital format, it can be further modified through 
image processing, then stored for retrieval and communication in a picture 
archiving and communication system (PACS). 

The CR systems aim to replace the present SF system of analog X-rays. In 
1981 Fuji Medical Systems introduced the first CR system based on SP 
technology, Fuji Computed Radiography (FCR) system (FCR101). Fuji has been 
the leading manufacturer of CR machines since that time. Fuji has also licensed 
its system to several other companies including Toshiba (TCR 1984), Philips 
Medical Systems (PCR 1985), and Siemens AG (1988). A review of the 
literature reveals that many companies have mounted research efforts using a SP 
detector for medical imaging: Eastman Kodak Co.; Fuji Photo Film Co., Ltd.; 
N.A. Philips Corp.; Konica Corp.; E.I. duPont de Nemours & Co.; 3M Co.; 
Agfa-Gevaert N.V.; Hitachi Ltd.; Siemens AG; Toshiba Corp.; General Electric 
Corp.; Kasei Optonix, Ltd.; Mitsubishi Chemical Industries, Ltd.; Nichia Corp.; 
GTE Products Co.; and DigiRad Corp.2 Therefore a standard procedure is 
needed to ensure the system's performance and image quality. 

The complete CR system from imaging plate and cassette to 
photomultiplier and laser for the development of the image, to computer 
algorithms used for image processing and hard copy output devices must respond 
properly to the final image. Therefore each section of the CR system should be 
carefully tested and calibrated. All subsystem components of the CR device such 
as image acquisition, image processing, and image display are subject to the 
variations in performance that may cause image degradation. A few protocols 
for CR machines' QC testing have been identified by several researchers.8"10 

Currently, The American Association of Physicists in Medicine (AAPM) Task 
Group #10 is working to define acceptance tests and QC procedures for CR 
systems. The goal is to set general standards and to develop a protocol for the 
CR system. The protocols are based on several Fuji CR systems and may not 
apply to other manufacturers systems such as Agfa's CR machines. 

This manual addresses Quality Control on the CR machine from five 
points: 

• Acceptance testing 
• Establishing standards of performance 
• Continuing checks on performance of a machine that has passed 

acceptance testing and for which standards have been established. 
• Detailed tests for machines that do not pass the routine checks. 
• Routine QC testing 
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The concept that underlies this approach is as follows: 

First, make sure that the system is functioning properly. Second, obtain 
standard images on the correctly functioning system to be used as baseline 
standards for future tests. Third, obtain test images at predetermined intervals 
and compare them to the baseline images. Fourth, if the images have changed, 
do more detailed tests to find the source of the problem. 

This manual is divided into several chapters. Chapter 1 of this manual gives 
an introduction about the Computed Radiography (CR) system as well as the 
safety precautions necessary for CR devices. Chapter 2 is an important chapter 
of this manual. It explains step by step procedures on 'Quality Control testing on 
the CR image reader. In Chapter 3, the acceptance of the image recorder is 
discussed. Chapter 4 describes any issues related to imaging plates and cassettes. 
Chapter 5 describe the routine quality control testing on CR machine. The 
references are listed in Chapter 6. Appendices I and II are for troubleshooting 
for the image reader and image recorder, respectively. Appendix III must have 
standard radiographs that can be used for future comparison. 

1.2.  Safety Precautions 
The CR machine contains a built-in laser source. ALL users should read 

and understand the safety precautions listed in the Fuji SERVICE MANUAL.11"12 

To prevent any accidents or hazards that may occur during servicing, read 
the sections of the SERVICE MANUAL that apply. Electrical shock, heat injury, 
and injury from rotating parts can occur inside the CR machines. The SERVICE 
MANUAL covers the safety concerns for each task that must be performed on this 
machine. 

2.      Quality Control Testing 
On The Image Reader FCR AC-3, CR-IR318 

After the installation check is done, the machine is ready for Quality Control (QC) testing, 
for Nonuniformity, Sensitivity, and Density. 

The equipment needed to perform the complete QC test is listed below: 

• Imaging plates and cassettes of the following sizes 

14 in x 17 in (35 cm x 43 cm) 
14 in x 14 in (35 cm x 35 cm) 
lOinx 12 in (24 cm x 30 cm) 
8 inx 10 in (18 cm x 24 cm) 
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Densitometer 
Dosimeter 
5X, 10X or 20X magnifier glass 
Resolution phantoms (at least 5 lp/mm) 
Anthropomorphic phantoms(chest, hip, shoulder, hand, foot, and breast phantoms) 
Anatomical menu and image processing parameter settings. 

The exposure techniques for different anatomy vary for different institutions.   The exposure 
technique, set for the image quality is as follows: 

Distance: 1.8 m 
Voltage: 80kVp 
Amperage: 50 mA 
Time: 0.013 sec 
Dose: lmR 

CHECKING SYSTEM PERFORMANCE 
After the machine is installed, the system performance must be checked. 

To Control Power ON / OFF from machine, check the following processes: 
Verify that the REMOTE / LOCAL switch on the power supply unit 
of the machine is in the REMOTE position. 

Check the external units (LP, IDT) connected to the machine for the 
following checkpoints. 

Verify that the REMOTE / LOCAL switch of the LP is in the 
REMOTE position, and its breaker in the ON position. 
Verify that the REMOTE switch of the IDT is in the ON position 
and its power switch in the ON position. 

• Turn ON the power of the machine. 
Verify that the machine starts up normally. 

Verify that the external units (IM, LP, IDT) starts up normally to 
be ready for communication. 

• Check the ID terminal connected to the machine to ensure that: 
The REMOTE switch of the ED terminal is in the OFF position, 
while its power switch is in the ON position. 

• Power ON the machine. 
The macine does not start up yet. 
Turn ON the REMOTE switch of the ED terminal. 

Verify that the machine starts up normally. 
An example of the normal operation is the panel screen appearing when the 
machine has started up as illustrated below. 

Georgetown  University  Medical   Center Page 6 
Imaging  Science  and  Information   Systems 



Fuji  AC-3  Computed  Radiography 

(  ) B 

D SERVICE 

HEAD 

CHEST 

NECK 
w 

D 

w ABDOMEN 

^ 

UP. EXM 

PELVIS 

LOW. EXM 

Load cassette Routine /Prim. Erase/Send. Erase 

LPDMS 

Figure 2-1   Example of Screen Panel after Normal Machine Start Up 

Note LP      Laser Printer 
IM      Image Monitor 
IDT    IDentification Terminal 

"IDT" and "ID terminal" should be understood as "console". 

IMAGE QUALITY TESTING 
In this section several tests must be performed for acceptance of the machine such as check 

for Nonuniformity, Sensitivity, Density, Jitters, Formats, and check for Output 
Characters. 

Before starting the acceptance test, all IPs used in the experiment must be carefully tested 
for dust, scratches, and cracking around the edges of the plates that may cause artifacts.10 Plates 
should be cleaned regularly and should at least undergo primary erasure before the start of the test. 
This also applies to the cassette, the hinges need to be safe when it is running through the image 
reader. The lead backing used for the larger plates must be checked for nonuniformity that may 
result in image degradation and artifacts. 
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In addition, the exam room must be tested for the accuracy of the x-ray exposure and x-ray 
tube voltage and current. The dosimeter and the kVp divider were used for the measurements of 
the exposure dose and the voltage. The initial experiments were carried out on two different types 
of IPs (standard resolution, ST-V and high resolution, HR-V) with different sizes. Fuji GF-l/HR- 
G (50 speed) film was used for the extremities exams and Fuji GH-1/HR-G (400 speed) film was 
used tor the chest, skull, hip, and shoulder exams. The technique charts for different exams 
should be available for each institution that the exams are performed. 

The procedure for QC of the CR machines are as follow: 

a-       Checking for Irregularity, Sensitivity, and Density 
Turn on the power of both image reader and the laser printer to reset the unit. After all IPs 

are erased, then use the following tests using SENSITIVITY in-the TEST menu. The exposure 
techniques for these tests are listed in Table 2-1 

Table 2-1 Exposure Techniques 

No. Distance Voltage Current Time mAs mR 

1 1.8m 80kVp 50 mA 0.001 s 0.05 0.1 

2 1.8 m 80kVp 50 mA 0.013 s 0.65 1.0 

3 1.8 m 80kVp 50 mA 0.130 s 6.50 10.0 

Check for IrreguIaritiV»; 
Uniformly expose flat pattern exposure in each IPs of the following 
sizes at about 1 mR.(No.2) 
Note that size values in parentheses should be used when the 
machine is set in metric unit of measure 

14" x 17" (35 cm x 43 cm) 
14" x 14" (35 cm x 35 cm) 
10" x 12" (24 cm x 30 cm) 
8"xl0" (18 cm x 24 cm) 

Make recording in SENSITIVITY from the TEST menu of the 
display panel, and generate output. 
Verify that the image on the output film is free from nonuniformity. 
The images can be one-to-one or two-to-one. 
If any nonuniformity is found, take appropriate corrective action 
(Please See Chapter F2 of SERVICE MANUAL) 

Check for Sensitivity and Density 
Make sure that the value of the system sensitivity indicated on the film 
outputted in "Check for Irregularity" is about 200 and the 
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film density is about 1.2±0.10. 
Verify that there is no density variation in the main scanning direction. 
If anything abnormal is found, take appropriate action. 
(Please SEE Chapter F2 of SERVICE MANUAL) 

Checking for Jitters, Formats, and Output Characters 

Check for Titters 
Place two 15-cm steel scales as illustrated below on IPs of the 
following sizes, and uniformly expose them at about 1 mR. 
Note that size values in parentheses should be used when the 
machine is set in metric unit of measure. 

14" x 17" (35 cm x 43 cm) . 
14" x 14" (35 cm x 35 cm) 
10" x 12" (24 cm x 30 cm) 
8" x 10" (18 cm x 24 cm) 

The IP exposure conditions are the same as specified before. 

White Blank Image Border 

Figure 2-2 Two 15 cm steel scales for one-in-one image output. 

Make recording in SENSITIVITY from the TEST menu of the 
display panel, and generate output. 
Make sure that the border and steel-scale image on the output film 
are free from jitters. 
If any jitters is found, take appropriate corrective action. 
(Please SEE Chapter F2 of SERVICE MANUAL) 
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■iiiiiiiiuiiiiiuuiiiniiiii piiiiiiiiiiiiiiiiiiiiiniiiiq 

FIGURE 2-3 Output Film Image (Ex. : Two-in-One Image Format) 

Check for Formats 
Measure the white blank from the outermost comer of the image border of 
the film generated in "Check for Jitters" and verify that it is less than 2 mm 
with trimming set to 0. Also check that the image size of the steel scales 
corresponds to the reduction ratio listed in Table 2-2. This is refer to 
Figure 2-2. 

Table 2-2 Reduction ratio corresponds to image format on the film 

Reading Size Two-in-one image Full image 

14 in x 17 in 1/2 2/3 

14 in x 14 in 1/2 2/3 

10 in x 12 in 2/3 1/1 

8 in x 10 in 6/7 1/1 

(a) Reference 11 

If the white blank is more than 2 mm in width or if the reduction ratio is 
improper, take appropriate corrective action. 
(Please SEE Chapter F2 of SERVICE MANUAL) 

Checks for Output Characters 
Make sure that the contents of film character format information set in 
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Chapter C, Section 8 "Configuration File Setting" are indicated on film 
outpüted in "Check for Jitters". 
If anything abnormal is found with the output characters, take appropriate 
corrective action. 
(Please SEE Chapter F2 of SERVICE MANUAL) 

Checks for Output Characters 
Make sure that the contents of film character format information set in 
Chapter C, Section 8 "Configuration File Setting" are indicated on film 
outputed in "Check for Jitters". 
If anything abnormal is found with the output characters, take appropriate 
corrective action. 
(Please SEE Chapter F2 of SERVICE MANUAL) 

Output Characters 
Using the image output taken from previous studies, check the contents of the film 

character format information which is set in the initial installation set up. This is shown in Figure 
D-04. The image output should contain the following information: 

O Upper Portion of Image 
a :        Name of hospital (name of institution) 
b :       JP number 
c :        EDR mode and menu code 
d :       System JJD and image number 

O        Lower Portion of Image 
e :       Image processing conditions 

Exposare menu name 
Standardization conditions and correction item 
Engineer code and exposure table information 
Department name 
Patient ID 
Patient name (John) 
Patient name (Smith) 
Date of exposure and time 
Film mark 
Sex 
Age or birth date 
Image reduction ratio 
Set processing information 

f: 
g 
h 
i: 

k 
1: 
m 
n 
o 
P 
q 
r: 
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ba&Dd 

Figure 2-4 Schematic of film characters on one-in-one image or two-in-one-image output 

If the image output does not satisfy the output film characters, consult section D2 of the 
SERVICE MANUAL.^ 

CHECKING DMS INTERFACE FUNCTIONS 

If the Data Management System (DMS) is connected to the machine, verify that images are 
stored normally in the DMS and that are retrieved normally from the DMS. 

DISPLAYING AND CLEARING ERROR LOGS 

a-       Displaying Error Log 

Display an error log in the Maintenance Utility (M-Utility) mode, and verify that 
there has not occurred any serious error. 

Enter the M-Utility mode. 
Press the L7 key, then hit the R8 key within 1 sec.) 

L7 R8 
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(  ) B 

D SERVICE 

NECK 

W ABDOMEN PELVIS W 
UP. EXM LOW. EXM      im- 

press RETURN key. 
Prim. Erase /Send. Erase 

RETURN Reset /10/99999 
UTILITY 

FIGURE 2-5 Shifting to M-UTILITY 

Press the RESET button located at right on the rear of the ID terminal. 
After elapse of about a few seconds, when a message, 

***GET SHARED MEMORY***, 

appears, press the [ENT] key. 
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***************************************************„ 

FCR ID Terminal 

Copyright (C) 1993 by Fuji: Photo Film Co. Ltd. 
Software ID: 9302151500 
Software Version A01 

»INITIALIZATION« 

***GET SHARED MEMORY*** 

Figure 2-6 GET SHARED MEMORY Screen 

Press the ENT key before a message, ***LOAD TABLE***, appears on the screen. If you 
miss the action, turn OFF the REMOTE switch of the IS terminal and back ON to perform the 
above described procedure again, starting from the first step. Then, the Service Utility Screen 
appears as the following: 

No. 

Service Utility 

Item 

1. Install 
2. Maintenance 
3. Version Up 
4. AC-3Terminal Mode 

Figure 2-7 Service Utility Screen 

Select AC-3 Terminal Mode 
4 ENT 

Select ERROR LOG UTILITY, LIST, and ALL in sequence. 
\T |ENT [T |ENT |T |ENT 
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Then, an error log list appears 

1 Service Utility 

LIST ALL 

NO.    CODE           DATE ERROR DETAIL 
001      FFF    YY. MM. DD. HH XXXX 
002      FFF     YY. MM. DD. HH YYYYYYY 

010      FFF     YY. MM. DD. HH YYYYYYY 

EL:LIST:ALL>_ 

Figure 2-8 Display Example of Error Log List 

b- 

To scroll to the next screen, previous screen, or next line, 
manipulate as follows: 

Next Screen 

Previous Screen 

Next line 

ENT 

R7 ENT 

SP ENT 

Verify that no serious error has occurred. 
Quit the error log display. 

□ E3 0 ENT 

Clearing Error Log 

Select CLEAR and YES in sequence. 

T]pENT][T|pENT 

Then, the error log is cleared. 
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Change to the Routine Processing mode. 

OIENTI o ENT LI ENT 

CHECKING SYSTEM REMOTE OFF FUNCTION 

Verify that the machine and external unit (s) (IM, LP) connected to power OFF normally, when 
the power switch of the IDT is turned OFF. 

CLEANING COVERS 

Clean all the covers of the machine with a MOISTENED CLOTH. When the machine is 
installed for the first time, remove the protective sheets from the operation panels of image 
reader/recorder and film processor, respectively. 

2.1. Preventive Maintenance(PM) 
On The Image Reader FCR AC-3, CR-IR318 

Procedures for maintenance operations must be performed periodically to maintain the CR 
machine for good image quality and good machine operation. This is discussed extensively in 
Chapter E of the SERVICE MANUAL.!1 

2.2. Corrective Maintenance(PM) 
On The Image Reader FCR AC-3, CR-IR318 

Procedures for corrective maintenance operations must be performed when an error 
happens during the installation and operation of the CR machine. This is discussed, in detail in 
Chapter F of the SERVICE MANUAL." 

3.      Quality Control Testing 
On The Image Recorder, CR-LP414 

Inspection procedures must be performed to verify that the machine meets all the 
requirements in compliance with the specifications. When the machine is to be operated as a 
component unit of the system, check the interface as indicated in the system instructional manual 
and service manual for the equipment to be connected. If any abnormality is encountered in the 
inspection, take necessary actions as referred to Appendix II or directed in SERVICE MANUAL12 

for Image Recorder in Chapter F. 

PERFORMANCE CHECKS 
a.        Recording Screen Format Check 
Enter the service mode, perform the FLAT test pattern recording operation, and take the 
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following measurements to check whether the requirements are met. 

Main scanning 

Figure 3-1 Flat Test Pattern 

Table  3-1 
Measurement Reciuirements Tmrnl 

A 2.2 ± 0.6 
C 360+1.2 
C •360 ±1.2 
D 1.6 ±1.0 
E 1.6 ±1.0 
ID-El < 1.2 
F.G 254 ± 0.6 
IF-GI <0.5 
(K) (2.3 tvp.1) 
(D n.9tvp:> 

b.       Density Check 
This check must be performed while the film processor temperatures are thoroughly 

stabilized after machine startup. This is referred to the instructional manual for the FL-IM and 
execute the density control function to carry out density corrections before this check. 

(1) Press the CHECK DENSITY key to check the recorded density. 

(2) After completion of check, press the YES key to return to the normal mode. 

Also check that the following requirements are met. 
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With a densitometer, measure the 17-step wedge output generated in step (1) above. Check 
whether the following requirements are met. 

Table  3-2 
Step R< iquirements 
1 0.10 tvp (dependent on the foe density) 
2 0.13 tvp (dependent on the foe density) 
3 0.20 tvp (dependent on the foe density) 
4 0.30 ±0.04 
5 0.48 ±- 0.04 
6 0.66 ±0.05 
7 0.84 ±0.05 
8 1.02 ±0.05 
9 1.20 ±0.05 
10 1.38 ±0.05 
11 1.56 ±0.05 
12 1.74 ±0.05 
13 1.92 ±0.05 
14 2.10 ±0.07 
15 2.28 ±0.07 
16 2.46 ±0.07 
17 2.64 ±0.07 

Repeat steps (1) and (2) in the preceeding section three times and check that the difference between 
the maximum density values of each step is as specified below. 

 Table  3-3  
Step 1st sheet 2nd sheet 3rd sheet Maximum density difference  Requirements 
1 0.03 
2 0.03 
3 0.03 
4 0.03 
5 0.03 
6 0.03 
7 0.05 
8 0.05 
9 0.05 
10                                                                                                                                 an* 
U O05 
12 O05 
13. . O07 
14 O07 
15 O07 
16 0,07 
11 . 0.07 

c.        Image Quality Check 

After the completion of image recording film density check, perform the following image 
quality procedures: 

Georgetown  University  Medical   Center Page 18 
Imaging  Science  and  Information   Systems 



Fuji  AC-3  Computed  Radiography 

el      Checking for Unevenness and Scratches 
Enter the service mode and execute the FLAT test pattern record function to check for 

unevenness and scratches. Generate three test pattern outputs for checking purposes. Number the 
generated film outputs. 

Random unevenness in scanning line direction 
Wave-like stripe unevenness 
Vertical stripes 
Cross stripes of pixels 
Vacuum cup marks 
Streaks 10 or 13 mm apart from the film upper edge 
Static marks 
Film trailing end guide rib length not exceeding 5 mm 
(unevenness attributable to the film processor) 
Scratches 
Other irregularities 

c.2     Shading Check 
Check that there is no shading in the main scanning direction of the test pattern film outputs 

generated in the preceding check. Measure the density at five points from the side and check that 
the maximum optical density difference among the five points is not greater than 0.1. This is 
shown in Figure 3-2. 

Gradation 
ws^^^^Kt^^KM 

HBKSS**?' 

A      B      C      D     E 
1    0    0     0    0    O    1 

Resolution i 
Shading 

1 pillilllllllllll 111       ■ 

Figure 3-2 Film Location for the density measurement 

c.3     Sharpness Check 
Enter the service mode and execute the SHARPNESS1/SHARPNESS2 test pattern record. 
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Check that a 5cycle/mm pattern is clearly visible in both the main and sun-scanning directions. 

c.4      Gradation Continuity Check 
Note the density variation continuity of the continuous wedge of the test pattern film output 

generated in the preceeding section. Check that the following conditions are met. 

(1) The density gradient must be smooth. 
(2) There must be no vertical streaks due to the loss of image data bits (no pixel drop out). 

d-       Film Processor Processing Performance Check 
Check that film outputs used for the preceeding checks are dry immediately after being 

discharged from the film processor. 

SYSTEM FUNCTION CHECKS 
This section describes the image recorder acceptance inspection procedures to be performed 

for image processing system function checkout purposes. Note, however, that all the following 
checks cannot be performed depending on the external equipment connected to the image recorder.0 

a-        Machine Startup Check with Remote Power Control System 
(1) Make sure that the system power is off. Connect the external equipment to the image 
recorder. r & 

(2) Set the image recorder REMOTE/LOCAL switch to REMOTE, and then turn ON the 
circuit breaker on a lateral side of the enclosure. At this time, make sure that the image recorder is 
turned OFF. 

(3) Turn ON the external equipment. Check that the image recorder is turned ON normally. 

Note: If two or more external equipment units are connected to the image 
recorder, the image recorder turns ON when at least one external equipment unit 
is turned ON. 

b.       Remote Operation Check 
(1) After completion of the steps indicated in the preceeding section, make sure that the image 
recorder is properly connected to the external equipment (note the external equipment display or 

(2) Enter the user expansion service suspend mode and press 1TEST| key   Not£ the error jQg 

to make sure that no serious error has occurred. 

(3) rn^i!6 the
u
system is id,e*insert the tray shutter int0 ^ ima§e recorder to intentionally cause 

error 602. Clear the error condition and check that the system is restored to normal. 

c-       Machine Shutdown Check with Remote Power Control SY«t»™ 
After completion of the steps indicated in the preceeding section, make sure that all 

processed films are cleared from the image recorder. Turn OFF the external equipment Check 
that the image recorder then enters the system shutdown sequence and normally terminates in about 
3 minutes. Further, turn OFF the external equipment to check that the image recorder turns OFF 
in 10 minutes. 
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Note: If two or more external equipment units are connected to the image 
recorder, the image recorder does not turn OFF or enter the system shutdown 
sequence until all the external equipment units turn OFF. 

3.1    Preventive Maintenance (PM) 
On The Image Recorder, CR-LP414 

Procedures for maintenance operations of Image Recorder must be performed periodically 
to maintain the machine for good image quality and good machine operation. This is discussed 
extensively in CHAPTER E OF FUJI IMAGE RECORDER SERVICE MANUAL *2 

4.      Fuji Imaging Plates 

Imaging Plates 
Fuji has two basic types of plates, Standard Type (ST) and High Resolution (HR) which 

requires about 2.5 times the exposure of ST plates. These basic types have been produced in five 
generations, with later versions denoted as I, II, III, IHN, and V. Generally, mixing these 
plates will introduce undesired variability. Each individual plate has their own characteristics and 
performances. Dust, scratches, and cracking around the edges of these plates will cause artifacts 
Therfore, special care for handling these plates are necessary. 

Cassettes 
Fuji cassettes should be inspected for damage and lead-backing. The cassettes that have 

lead-backing to reduce back scatter may behave differently in QC testing. Even though ST and HR 
plates can be distinguished by a plate ID that shows through the window in the cassette, it is useful 
to color-code the outside of the cassette with a marker. This system of external marking works 
well for the FCR 7000 and FCR 9000, that can recognize the difference between ST and HR 
plates but the AC's series does not distinguish between plate types. The CR plates and cassettes 
are different in composition from screen-film systems, so x-ray phototimers must be recalibrated 
Also the size of the mammography cassettes are different from the other purpose cassettes 

o 

Storage  Conditions 
Store Fuji Imaging Plates under the following conditions : 

Before unpacking:     below 35°C (95°F) 
After   unpacking :     13 to 33°C (55 to 90°F) 

35 to 80% Relative Humidity (RH) 
Avoid direct sunlight, ultraviolet rays and ionizing radiation. 
Place Imaging Plate (IP) package horizontally and avoid bending them or 
subjecting them to strong pressure. 

Transport Conditions 
When transporting Imaging Plate cartons, never drop them and protect them from 
shock. 
Up to four cartons of Imaging Plate may be stacked.  ' 
Keep the cartons upright and in a dry place. 
Protect them from high temperatures (45°C/113°F or more), particularly during 
transport. ° 
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c. Routine Handling 
Wear soft cotton gloves when handling Imaging Plates. 
Handle them carefully. 
Do not bend, knock them against other objects, or drop them. Protect them from 
damage or staining. 

d. Cassettes 
Imaging Plates are to be loaded in special cassettes. The Imaging Plate cassette is similar in 
appearance to screen-film system cassettes, but is made from special materials for optimal 
Imaging Plate protection, and provides a window through which the Imagine Plate bar 
code may be read. to 

e. Secondary Erasure 
Imaging Plates will accumulate energy from X-rays, gamma-rays, and other radiation 
sources even if the energy is low. It is therefore necessary to erase the energy before 
using, especially when: 

An Imaging Plate is used for the first time in a day's work. 
A high speed exposure at a relative speed of 800 or more is required. 

Refer to the System Handling Manual for details on providing secondary erasure. 

f. Cleaning 
For Imaging Plate cleaning, wipe both surfaces, exercising care not to scratch the 
front surface. 
Remove dirt and dust from Imaging Plate surfaces by lightly wiping with a soft 
clean cotton cloth. 
Do not rub hard for removal of dirt and foreign matter, rather wipe gently for 
removal of such from both surfaces using ALCOHOL (e.g., ethanol anhydride or 
200 proof ethanol alchohol undenatured). 
Being anti-static, the new Imaging Plates Hfs Type and V's Type series do not 
have static build-up problems, and cleaning with Fuji AS Cleaner is unnecessary 
Isopropyl alcohol is the most recommended cleaner. 
When the imaging Plate is cleaned with Fuji AS Cleaner, be sure to wipe out with a 
dry cloth to remove any residue. When Fuji AS Cleaner is to be used, follow the 
supplied instructions. 

g-       Replacement 
Replace Imaging Plates when any of the following conditions exists: 

Scratches on Imaging Plate protective layer surfaces appear on film as scratch image 
Damage to Imaging Plate surfaces, backing layers, or any edges are detected 
Phosphor layers begin to separate from supports. 

h.       Other Precautions 
Exposed but unread Imaging Plates should not be exposed to light. 
Illumination may be needed when transferring exposed but unread Imaging Plates 
to a magazine. In that case, use X-ray film safelights, either for blue sensitive 
materials or orthochromatic ones. 
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5.      Routine Quality Control Procedures 

Finally the routine daily, weekly, monthly, semi-annual, and annually quality control 
procedure must be performed on the CR machine on a regular basis in order to maintain the 
system's performance for better image quality and better machine operation. These are as follows: 

Daily 
system inspection, check chemical levels used in film processor, inspect cassettes 
and IPs, check film supply, check film density generated from step wedge 

Weekly 
clean filters and vents on system and film processor 
clean all IPs with isopropyl alcohol only 
check chemical levels in processor and add as needed 
Image Quality Testing on Image Recorder (i.e., Density check) 

Monthly 
processor maintenance, including chemistry replacement and full cleaning of 
tanks and racks 
Image Quality Testing on Image Reader/Recorder 

Semi-Annuallv 
full preventive maintenance as described in Fuji Service Manual11'12 

Image Quality Testing on Image Reader/Recorder 

Annually 
full preventive maintenance as described in Fuji Service11"12 

Image Quality Testing on Image Reader/Recorder 
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Appendix I 
Troubleshooting On The FCR AC-3, CR-IR318 

The Fuji SERVICE MANUAL, Document No.007-200-04, 1994, Chapter 
F2, Page F2-1, has a flow chart that should be followed to troubleshoot the FCR 
AC-3 Image Reader. 
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Appendix II 
Troubleshooting On The Image Recorder, CR-LP414 

The Fuji Image Recorder, CR-LP414N/FL-IM263N SERVICE MANUAL 
Document No.006-040-00, October 31, 1991, ChapterFl, Pages Fl-1 thru Fl-82^ 
has flow charts that should be used to troubleshoot the Image Recorder. 

Appendix III 
Standard Radiographs for Future Comparison 

Test radiographs, that were produced during the initial configuration and 
acceptance testing should be kept in this Appendix for future reference. 
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GAIN OF USING IRREVERSIBLE OVER ERROR-FREE DATA COMPRESSION IN 

DIGITAL RADIOGRAPHY 

Shih-Chung B. Lo, Brian H. Krasner, Matthew T. Freedman, and Seong K. Mun 
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ABSTRACT 

Recent clinical tests indicate that digitization of a sample size of »180u seems generally accents* r 
most radiological applications in conventional radiography.  Both high iesoluttoS^K^S^f" 
systems become available in PACS implementations. However, the «^SÄSÄfe 
remains undetermined. Currently, many digital medical image systems product256 (8 bit toS      hi 
gray levels without providing a supportive information for the selection (12"blt) 

In our previous studies we found that excessive spatial resolution can be partially recovered bv error fm, 
compression. However, the excessive gray dynamic resolution is not reducible as far a   ISS 
bevondTbft wh?,^^Tfh0" CValurn ^Jtfbmnary clinical tests indicated that no inftSX exS 

Tn tw   Is        ^}Vua sanVte «» of 180^ with kser film digitization or computed radiography 
In this study, we found that a high compression method can only achieve a small fraSion Sf true 

compression efficacy over an error-free compression for a well-defined digital radiograph* imag ng svstSn 
iwÄ* ** ^ f0lK°Wing *? Procedures contain similar digital information: (a?a?Son of fl2 Si 
image and processing by a moderate irreversible compression (e.g., DCT type compression) and rh 

£t°fthe SamC TF 8-bit/0ll0Wed ^ an error-free compression met^CeTopÄtiÖ 
o? nghit 2? Pr0Cessed

K
by a* above methods require about the same digital storagf. The iS qS 

of 12-bit with 5:1 irreversible compression is very close to that of 8-bit with 3:1 error-free compression 

S^Cr?reSH10n ef?ien<i? (e-g" °-5 bit/Pixel> usinS Proced^ (^ would degrade S imaTqualhv 
DCT ctnpS^ ™JiS ^T the ^^tion procedure acts L Ser'in S 
rÜJ°uP " .Wlthout.the interference of noise, the compression efficiency of using irreversible and 
reversible compression techniques are comparable as far as information is concerned OTeversiWe an<* 

I. INTRODUCTION 

lad^ÄSffiÄ»^^ SyStenVl°r ndi0!?gy' *e m°St imP0rtant criterion is to Provide 

"Can w?^U^ aq^ffi^ ^ä8^?818" ^ ^ m°St imp0rtant issue needs t0 be add™sed is ti H« 5 aellvey a cost ettective digital system and still maintain current radiology practice1?" It seems that 
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was obtained by filtering the noise prior to a reversible compression. In other words, an irreversible 
compression can be interpreted as a digital signal processing involving a filter (hopefully 
it filters noises not signals) followed by an error-free coding. 

II. MEDICAL IMAGE FORMATION 

The purpose of image compression is to retain digital information in a compact form for storage and 
transmission. This task is closely associated with the formation of the digital image. In the past, many 
investigators have focused on the compression itself. However, we should evaluate the radiographic 
information for each image category in order to form the image and to store the image data effectively. In 
other words, we should not view image formation and compression are separate issues. In fact, image 
formation is the key point prior to the consideration of the compression issue. Determination of image size 
and gray level range would greatly impact the amount of the digital information required for an image. 

The requirement of a radiographic resolution and the modality's capability in resolving power have been 
discussed in many papers. Over the last two decades, we have seen the improvement for various image 
modalities. These researchers would eventually form the consensus of the resolution of an digital modality 
for clinical use. For example, CT was original formed as 256x256 and gradually evolved to 320x320 and to 
512x512. MRI was original formed as 128x128 and then became 256x256. Computed radiographic 
systems generate image data of 2048x2500 matrix with a 14"xl7" film. Digital radiographs through 
digitization of a film are also made into comparable size to the computed radiography. 

Unfortunately, this type of research and development was not investigated as carefully in the 
determination of the signal dynamic range. Among many digital radiographic modalities the signal to noise 
ratio of a CT image is very high. The first generation of CT systems were developed in the early 1970s. 
The image format of CT was progressively increased due to the recent improvement of system capability. 
CT numbers (pixel values) are ranged from 1000 to -1000 which correspond to physical attention 
coefficients of hard bone to air. In order to resolve 1 out of 2000 attenuation coefficients, a typical CT needs 
to pump about 5 times as much as exposure used in a conventional projection x-ray. The gray information 
provided by an MRI is limited by its weak signal. A typical 100:1 signal to noise ratio can be achieved 
which clearly indicates 12-bit data per pixel is over-stored for MRI. 

The recent development of computed radiography (CR) using storage phosphor plate technology has 
been enthusiastic. Fuji CR systems provide 10-bit per pixel for their raw data, however, the processed 
images for diagnosis are 8-bit per pixel. Images created by DR systems (e.g., laser digitizer, drum scanner 
and CCD camera) are formatted into 10-bit to 12-bit per pixel. Fuji CR raw data are not available for the 
user. The majority of image formation and compression researches in digital radiography has used images 
digitized by laser scanners. Some CCD camera venders has considered producing gray value of 16-bit per 
pixel. The development has become a race in the "dynamic range" in the course of film digitization. This is 
not a scientific way of determining a system specification in the development. CR vendors tend to like to 
output a greater number of bits per pixel. We have evaluated three laser scanners and found only 8-bit per 
pixel containing information in output dynamic range. Unfortunately, marketing decisions sometimes 
overwrite technical specifications in a company. We found that all vendors use 12-bit for the output of the 
digital values for their laser film scanner due to business reasons. In fact, medical image vendors tend to 
provide more information than necessary to protect themselves from being accused of losing image 
information and to convince customers that they have a "better product". 

In the previous investigation for the evaluation of gray dynamic range in CT, MRI and three laser 
digitizers, we found that CT images contain 12-bit information, MRIs have 7-bit information, and all three 
laser scanners can only produce 8-bit information. This does not mean that the gray value resolving power 
of laser scanners is limited to 256 levels. This experiment indicated that films digitized by a laser scanner 
can only produce 8-bit information. The limitation of the dynamic range is due mainly to quantum mottle of 
x-ray photons deposited in 180p. pixel area on a film. This is an intrinsic noise of an x-ray procedure with 
film/screen techniques and may not be contributed by a film digitizer. 

Considering a niece of high quality film, the information is decreased if one keeps dividing the testing 
region into a smaller and smaller area. Film is a media for both detecting and a viewing systems. The eve 
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integrate!) the local gray information to determine an area is darker than another or vice ve™   vm,       L '$ 
power microscope is used for viewing ofafilm. the gray information will be very difW^iff^high , ^ 
tone from a smaller area is integrated to the eve. In addition, signal-to-noise would he decr^l^g*^ ; 
2 when a tested region is evenly divided into 4 areas. A large area mav have 12-hit info^ptwT^r3-13^ i 
tested area may not have l^hit information.  Fine digitization fdivision^ does not HT2gy 
capturing, in fact, it enhances digital sampling without losing high frequency information   Ä7w?^ : 
display system showing same pixel size as signals were digitized, lower gray level in diWall^^fe 
integrated by eyes without any distortion in gray information. On the other hand, if a large niv^l^g^ 
the gray information would he altered. This phenomenon applies all digital image systems           ^-^mssfl , 

'■&■"■  :M 
■'■;?; ^;;| 

: •■•■'/ I 

III. ERROR-FREE VERSUS IRREVERSIBLE COMPRESSION ! 
'L '■";■ /■§> 

. '''.'■■'../-■  "'$> 

In this study we used several effective methods for the comparison of error-free to irreversible I 
compression We used polynomial interpolation/arithmetic coding^ and full-frame entropy codingsDÜttin J ■    f 
gray valued for error-free and transform coding, respectively. Twenty CT head images and 20 digital ehe I ;   * 
radiographs were selected from our clinical PACS as our objects for the compression studies. CT images * 
represent true large dynamic medical images and digital chest radiographs represent medical images * 
containing large noise.                                                                                                                       ""<ifec:> i 

True Large Dynamic Range Medical Image '/I 
(a) Error-free compression | 
A CT image typically consists of a circular region surrounded by air. One can clip air space off and ! 

perform a compression for the circular region. Our studies indicated that an average of 36.5% of air space 
can terminated An additional 25% of empty space is unused in 16-bit data format (only 12-bit containing « 
Ä   siv/^0*0* efficiency using polynomial interpolation followed by arithmetic coding can further 1 
Stwn   tl? Tlge da-a', Snce a compressed CT data file only takes about 29.8%   (i.e., (1 - I 

per pkel)" ^ data OT 22A% (le-' 29'8% X 75%) of original data storaSe (16"bit 

(b) Full-frame transform/Entropy coding (FFEC) 
Transform methods for compression are relatively sensitive to sharp edges. CT head images often 

S™ S? and b° vS Which w°uld.contribute large coefficients to S entire transform dSnlL. The 
purpose of decomposition image data in transform domain is to condense the "energy" of the image in a 
compact area. Transformation of such an image (e.g., CT head image) consisting of a large contrStSea is 
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an error-free compression with a great compression efficiency. The extracted area 
and the air space should be filled with an average tissue value adjacent to the area   The data reduction 

S?S!£23 ^ f ab° i- 14J% °f °riginal 12"bit CT *** ™thout creatinS obserVablfaffects? A 
ÄS PTh. fay ^ $V^g and capping method is an alternative To tackle the sharp edge 
ASiw-S ;COmPression efficiency of the split method is comparable to the sharp edge extraction 
method Without preprocessing CT images, the compression efficiency (=20% of original 12-bit CT data) is 
lower5.6 and company artifacts are higher than the above two methods * 

(c) Compression gain in CT images 

is almoes?dou°bfleUfuSTrfd Ä? ^ eXtmCÜm ^ DCT transform) over error-free compression 
Thedata^inaccuracy ^iw?n fA^' "owever' composed methods pay the price of data inaccuracy, 
phenomenaTh^Zlll °^ the blurnness of structure and the unsharpness of edge due to Gibb's 
Ssfna' DcTtVan^ olVr COmPress:on the sö™ger the phenomenon. Strictly speaking, the gain of ul£g DCT transform over error-free compression is minimal (=20% versus 29.4%)    Compression 
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CT dalr'wWe" Äffi* ^ Sh°Wn ?*? a high C°ntraSt bo^d^- Transform methods using 3-D 
SendTngor^the(^1^7 «stacked with CT slices, can gain data reduction by 5% to 10% 
depending on the CT slice gap and number of slices used in the transform. Error-free compression using 
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statistical model for coding would not be beneficial by the third dimension correlation. 2-D or 3-D Lemple- 
Ziv coding however should be able to gain a few percentage of additional data reduction. These methods are 
not readily available. 

Noise Involved Large Dynamic Range Medical Image 
Current laser film digitization and computed radiographs contain a large amount of noise mainly due to 

Poisson phenomenon when digital output ranges to 12-bit per pixel. We found that little noise contribution 
directly results from digitization devices. In the same study, we also found that only 8-bit (rounding-off 
from 12-bit) out of 12-bit data contains information. The residual images of this rounding-off operation 
consist of noise only which were evaluated by signal-to-noise and local (10x10) correlation studies1. MR 
images contain a great deal of noises too. Only 7-bit out of 12-bit data possesses information. 

(a) Error-free compression 
For chest digital radiographs, polynomial interpolation/arithmetic coding can reduce the digital chest 

radiographs down to 6.31 bit/pixel (52.4% of 12-bit image data)1. However, 4-bit (33.3%) out of 12-bit 
per pixel is noise. This implies that 60% (33.3% out of 52.5%) of the compressed data containing 
incompressible noise. This is confirmed by using 8-bit data (round-off from 12-bit) for the compression. 
The polynomial interpolation/arithmetic coding can compress this image data down to 2.64 bit/pixel (i.e., 
33.0% based on 8-bit/pixel) which is equivalent to 22.0% (33.0% x 8 /12) of 12-bit/pixel. 

(b) Full-frame transform/Entropy coding 
Full-frame transform methods are particularly advantageous to the compression of large images due to 

the effectiveness of packing correlated image information in a small area7'8'9. Data reduction down to 5% of 
12-bit data was reported for 2Kx2K chest radiographs without showing much image quality degradation. 
Block DCT techniques can achieve a slightly less compression efficiency with potential blocky artifacts, 
particularly when an image enhancement function is used (e.g., window/level, histogram equalization, or 
unsharp masking, etc.). Splitting method is recommended to reduce blocky artifacts and to prevent artifacts 
caused by sharp edges in transform domain. For small image size such as 512x512 matrix, the data can be 
reduced down to about 12%-10%. 

(c) Compression gain in digital radiographs 
The gain of using transform compression over error-free compression is about 11 times (5% versus 

55%) based on 12-bit per pixel and is about 4 times (7.5% versus 32.4%) based on 8-bit per pixel. Again 
the data inaccuracy mainly involves the blurriness of structure and the unsharpness of edge in the 
decompressed large matrix size radiographs using transform coding. If one wishes to practice transform 
coding carefully, a moderate compression is recommended. In such a condition, the compression gain is 
reduced by a factor of 2 (15% versus 32.4%) based on 8-bit per pixel as original chest radiograph. By 
limiting the quantization error in the transform domain, the root mean-square-error of the decompressed 
image from 12% of data (i.e., compression ratio of 8:1 based on original of 12-bit per pixel) is around 63 
which implies an average of 6-bit of data inaccuracy. On the other hand, 6-bit radiographs (round-off from 
12-bit data) can be compressed to 15% of original data space used by 12-bit per pixel. By further restriction 
of the quantization error, the root mean-square-error of decompressed image from 55% of the data (i.e., 
compression ratio of 2:1) is around 18, implying an average of 4-bit of data inaccuracy. Compression 
efficiency and associated compression error are shown in Table II for the comprison of using error-free 
verus FFEC for digital chest radiography studies. 

These results indicate that the transform compression techniques do not perform more compression than 
error-free compression. It mainly acts as a low pass filter and packs the "energy" with an error-free coding. 
The transform compression filters high frequency information in the transform domain, whereas the latter 
filters high frequency in the spatial domain. As long as this operation does not greatly impact the 
observation of an image, a high compression can be achieved. Since a contiguous tone image does not 
possess large values in the high frequency area in the transform domain, a low pass filtering would not 
substantially alter the structure of the image. High frequency components represent detail structure, sharp 
edge information and noise. High compression using transform methods would not be able to preserve 
them. 
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IV.    DISCUSSION AND CONCLUSIONS 

For CT images, we found that the gain of using irreversible image compression versus eror-free 
compression is very small when a moderate error is allowed. When only small error is allowed, the oror- 
fre^cTm^ssion^s a better choice in terms of compression efficiency and computation speed for 
compression and decompression. . . 

For digital radiographs, we believe that the image formation of data dynamic range is the most important 
issue now It would be not justified to capture large dynamic range of gray values with large noises and to 
filter them out in the transform domain for compression. A comparable method can be applied in the spatial 
domain by rounding off noise bits followed by a coding. We believe that gray value dynamic range is a 
physics issue not a compression issue. Without clearly defining the gray level range in image data, 
excessive noise is very costly and are not compressible by error-free techniques More than 60% of data 
would be noise after aA error-free compression. This is a critical issue to the development of PACS because 
digital radiography would consist of 60-70% data volume of total radiological information. With the 
SementatiSi of an error-free compression, it would be extremely inefficient to store and to transmit large 
vXmes of digital information and approximately half (70%x60%) of them are useless signals. 
Unfortunately, the consensus of using irreversible compression has not been received for primary diagnosis 
at this moment.   The first phase of PACS implementation most likely would be using error-free 

COmTranstai domain compression techniques are commonly considered sophisticated techniques, whereas 
the operation of using rounding off in the spatial domain is considered to be direct and invasive to the data. 
As a matter of fact, the data accuracy and compression effect is much more controllable with the latter than 
with the former methods. For a moderate compression ratio (i.e., 2- to 2.5-bit/pixel in compressed file), 
error-free compression is much more effective than transform compression techniques. The transform 
compression methods, however, can achieve higher compression efficiency (e.g., 0.5-bit/pixel) for large 
size digital radiographs without causing image quality degradation on the decompressed image. When high 
data accuracy is required, error-free compression which is limited by entropy of the data string (or 
decomposed data) is the only way for the task. One may choose not to do any compression because the cost 
effectiveness of compression efficiency is not justified in a digital system. The main negative result of 
transform compression is the data uncertainty. It is predictable that edges and small structures may result in 
ripple artifacts. Furthermore, it is difficult for users to indicate the error range in those areas. 

It is the authors' opinion that we must define the true gray level dynamic range of an image modality 
prior to the design a suitable compression. Digital radiographs involving large noise are very costly, in 
those images, 4-bit out of 16-bit is not used another 4-bit contains no information. True image information 
is stored in the top 8-bit range in which 68% of the data can be reduced with error-free compression. 1 ms w 
a very significant data reduction that only 16% of original 16-bit data space is required providing 8-Dit aaiu 
acquisition without contamination of digitization noise. <■ 

V.   ACKNOWLEDGMENTS Jj 

This work is supported in part by NIH/NCI Grant 1R29CA59763-01 and by a Whitaker Foundation 
Grant. The authors are grateful to Ms. Susan Kirby for her editorial assistance. 

VI. REFERENCES 

*Lo, SC, Krasner, B, and Mun, SK: "Noise Impact On Error-Free Image Compression," IEEE   r|« 
Med. Imaging, vol. 9, 1990, pp. 202-206. aicall   = 

2Lo, SC, Shen, A, Mun, SK, and Chen, J: "A Merthod for Splitting Digital Value in Radiology ^ 
Compression," Med. Phys. Vol. 18(5), 1991, pp. 939-946. # 

296 / SPIE Vol. 1897 Image Capture, Formatting, and Display (1993) 

Mi- 



3witten, IH, Neal, RM, and Cleary, JG: "Arithmetic Coding for Data Compression," Comm. of the 
ACM, Vol. 30, 1987, pp.520-540. 
4Lo, SC, Krasner, BH, Mun, SK, and Horii, SC,: "Full-Frame Entropy Encoding for Radiological 
Image Compression," SPIE Proc. Medical Imaging V, 1991. pp. 265-277. 
5Lo, SC: "Radiological Image Compression," Ph.D. Desertation, UCLA, Los Angeles, CA, 1986. 
6LO, SC, and Huang, HK: "Radiological Image Compression: Full-Frame Bit-Allocation Technique," 
Radiology , Vol. 155, 1985, pp. 811-817. 
7\Vintz, PA: "Transform Picture Coding," Proc. IEEE, vol. 60,1972, pp. 809-820. 
8jain, AK: "Image Data Compression: a review," Proc. IEEE, vol. 69,1981, pp. 349-389. 
9Rosenfeld, A, and Kak, AC: "Digital Picture Processing," Academic Press, 1982. 

Table I. Compression results and maximum errors with CT images 

Compression methods 
Compression results 
based on 12-bit/pixel 

Averaged top 1% 
of maximum error 

Polynominal interpolation 
/arithmetic coding 

36.5% of air space  comnression hv RFC 

(1-36.5%)       x          47%             =29.8% 0 

Full-frame DCT 
/arithmetic coding 21% 505 

Split method: 
Alternate value contour coding for 3MSB 
Full-frame DCT/arithmetic coding for R9LSB 22.5% 48 

Table n. Compression results and maximum errors with digital radiographs 

Compression methods 

Polynominal interpolation 
/ arithmetic coding 

Full-frame DCT 
/ arithmetic coding 

Compression results 
based on 12-bit/pixel 

Averaged top 1% 
of maximum error 

use of original 12-bit data      52.4 % 

round-off to 8-bit/pixel 22.0 % 

low compression 

high compression 
Split method: 
Alternate value contour coding for 3MSB _.   _   _   _   _ 
Full-frame DCT/arithmetic coding for R9LSB   I high compression 

low compression 

23.2% 

5.7% 

24.6% 

6.2% 

0 

8 

21 

217 

19 

134 
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ABSTRACT 

An adaptive image coding scheme based on Discrete Cosine Transform (DCT) is considered. A set 
of 90 features in the spatial and spectral domains leads to a subset of features which is used to 
automatically classify subimages, taken from a multimodal medical image data base. The classifier, based 
on a binary decision tree, discriminates 13 classes. In the DCT domain, a normalization matrix for each 
class is generated using the features computed on subimages. This matrix allows to select the significant 
DCT coefficients associated to a class. This method leads to a performant adaptativity for the coding 
scheme. The classifier is very simple and cheap in computing time. A given subimage is classified, 
transformed with DCT, normalized by the matrix associated to its class, quantized and coded with 
Huffman tables. 

1. INTRODUCTION 

Image analysis is a primordial step in any image processing chain. It becomes the first stage when 
the processing scheme is applied to several modalities of images. For example, an image coding method 
needs a good image understanding to be adaptive and optimal. 

Several works^»2.3 on image analysis use only one class of images. In this paper, we analyze a 
multimodal image data base. This data base has been created for the project AIM (Advanced Informatics in 
Medicine) of the Commission of European Communities. It contains about five hundred medical images 
corresponding to five modalities : 

- chest radiography; 
- hand radiography; 
- mammographies; 
- head computed X-rays tomography ; 
- magnetic resonance images of heart. 

The aim of this work is to develop an "intelligent" coding method allowing to adapt itself to these 
different modalities. So it seems very important to recognize and to modelize all types of structures on 
these modalities. Section 2 describes the analysis of the image data base and details the features used to 
modelize the local information in the images. In section 3, an unsupervised classifier based on these 
extracted features is presented. The adaptive coding procedure is then detailed (section 4). Finally, some 
results are given and discussed in section 5. 
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2. IMAGE ANALYSIS 

The quality of an adaptative compression method obviously depends on how accurate the 
parametric segmentation is. 

Thus, the choice of the parametric vector to characterize the regions of an image is critical. 

In order to perform this choice as well as possible, a great number of parameters (90) issued from 
six families have first been computed on five 128 x 128 images of the learning set, each image being 
subdivised in 16 x 16 blocks. The parametrical families used are : 

Family 1: Statistical parameters of the spatial plan (ex : histogram, mean, variance, entropy,...). 

Family 2 : Parameters of the cooccurence matrix1 (ex : contrast, entropy, energy, correlation,...). 

Family 3: Parameters of the gray level difference vector3 : (ex : mean, contrast, entropy, second angular 
moment,...). 

Family 4 : Parameters of the run-length matrix2 (ex : short run emphasis, long run emphasis, gray level 
non-uniformity, runlength non- uniformity, run percentage, low gray level emphasis, high gray level 
emphasis,...). 

Family 5 : Parameters of the pixel neighborhood matrix4 (ex : small number emphasis, large number 
emphasis, non-uniformity number, second moment, entropy,...). 

Family 6 : Parameters of the Fourier transformed plan5 : (ex : energy of the main peak, Laplacien of the 
main peak, highest contribution frequency, isotropy, energy percentage of quadrans 1 and 2, inertia 
moment of quadrans 1 and 2,...). 

A decorrelation method applied to parameters within a same family allowed us to restrain the 
number of parameters to 16. 

Finally, decorrelation on these remaining parameters (inter-family decorrelation), brought us to 
choose the 7 following features to constitute our parametric vector: 

1) Isotropy of the spectral plan (family 6) 

<ru=   I     I  u2 p(u, v) 
u*0 v*0 

TSO= l(ru-CTvl where    crv=   X      X  u2p(u, v) 

A/(0"U-0- 
9    A ^-2 u*0 v*0 

uv 

0"uv =   L      S   uv p(u, v) 
u*0 v*0 

(1) 
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privilegIdhdirIc0tion.ISOiS * ^ ^ m°re iS°tr°pic the SPectrum 1S- This means that there 

2) Inertia moment of quadrans 1 and 2 of the spectral plan (family 6) 

is no 

INER =   X    I V (u2 + v2) p(u,v) 
u*0u*0 

th* o • ThlSTP>^etfr "leasures the spectrum spread around (0, 0). If the the ongine, INER takes low values. 

3) Contraste in the co-occurence matrix with a step of 2 (family 2) 

Con(5) = 2: X   (i-j)2Pij 
i    j 

(2) 

spectrum is concentrated around 

(3) 

Con (5) takes high values when there are abrupt changes in gray levels along the direction 5. 

4) Correlation in the cooccurence matrix with a step of 2 (family 2) 

COR(8)=l £ (ijp(i,i)-VxVy)/((rxa-y) 

since the cooccurence matrix is symetric, wa have : 

Vx = Vy = l iP(i) 
i 

J       1 

COR (6) is a measure of resemblance of the image in the direction 5. 

5) Entropy of the gray level histogramme (family 1) 

H = -   1   p(x) log (p(x)) 
signal 

H caracterizes the quantity of information (order/disorder). 

6) Run length non-uniformity (family 4) 

N 

M (£ PM)2 

RLN= X 
j=l 

J=l 

RUN has a low value if the runs are equally distributed throughout the lengths. 

(4) 

(5) 

(6) 

-f 

■■■ ••/ -m 
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7) Non uniformity number of the neighborhood matrix (family 5) 

fr 

i 

«: 

NUN = 

S       K 
I   ( I Q(k,s))2 

s=l   k=l  
K     S 
I     I  Q(k, s) 

k=l  s=l 

NUN gives information on the coarseness of the image. 

The notations used are: 

n: 

6: 

Pij; 

P(i): 

V- 

Number of pixels in the block 
Is used for normalization. 

Displacement vector 

Value of the cooccurence matrix element (i, j) 

P(i) = EPij 
j 

V=l iP(i) 
i 

0-2 = X i2 p(i) - Y1 

i 

Number of sections in the run length matrix M x N. 

Value of the pixel neighborhood matrix element (k, s) 
(the matrix is K x S) 

Spectrum power of element (u, v): 
P(u, v) = II F(u, v)ll2 

Normalized spectrum power of element (u, v): 
.                 P(u, v) 

p(u, v) =  
I  P(u, v) 

U#0 V20 

(7) 

\ BLOCK CLASSIFICATION 

The seven features described in section 2, are grouped in a vector which is associated to each 
subimage. We then classify the subimages of the training set as follows : 

1) An unsupervised automatic classification method is used to form clusters by grouping similar 
g, subimages and separating dissimilar ones. The number of classes (k) is fixed and then one subimage is 
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affected to each class and is called the kernel (Ai, K< K< k). This method performs alternately the two 
following stages: u 

- Identification : subimages (x) are separated in k clusters (Pi, 1 « i « k), with 
Pi = { x / for j * i D(x, Ai)« D (x, Aj)} where D in the Euclidean metric. 

- Representation : for each cluster (Pi), a new kernel Ai is computed. This new (Ai) corresponds to the 
centroid. 

The convergence control is realized by a criteria that minimizes the intra-class inertia. 

The result is then validated with a visual comparison of subimages for each resulting class This 
leads to classes for the image data base. The classification is based on all the computed features of the six 
families. - ;: 

2) In order to realize.an automatic classifier, we use the k classes obtained with the clustering 
method. This classifier is based on a binary decision tree constructed automatically (figure 1). 

Each node of this tree is a threshold on only one feature. So, the training set is decomposed at each 
node to lead to terminal segments containing only elements of one class. Parameters which take decision 
are chosen by maximizing the Kolmogorov-Smirnov test computed on the element under each node. 

Param. 2 > S2 

Param. 2 

S2 

SI 

Figure 1. Classifier with two parameters and three classes. 

Let us give a simple example with two classes. 

Param. 1 

(nO i=l,2 is the number of subimages in the class i 
(nie, ri2Ü 

(ni, 112) 
(nir, n2r) 

for      i = 1, 2 "iC + nir = nj 
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iff 

The threshold on one feature is selected in order to maximize the Kolnogorov-Smirnov (K-S) 
distance: 

Inin2fc -n2ni£,l 

This distance is computed for each feature. The decision is taken with the feature which gives the 
maximum K-S distance (figure 1). This image analysis approach improves processing using multimodal 
data bases. It leads to a better knowledge on spatial repartition of stationnarity on images. By generating a 
map of classes for an image, we can locally adapt the coding method. 

4. CODING SCHEME 

The coding scheme presented here is base on the Joint Photographic Experts Group (JPEG) 
algorithm6. This algorithm has been developed for still image coding. The original image is partitioned 
into pixel blocks of 8 x 8 in size. Each block is independantly transformed using the Discrete Cosine 
Transform (DCT). The DCT coefficients of a block are normalized (weighted) by applying a user-defined 
normalization matrix. This matrix is the same for all the blocks of the image. This normalization allows to 
select the coefficients which are weighted with low values of the normalization matrix. The normalized 
DCT coefficients are quantized by rounding to the nearest integer, zigzag reordered and the amplitudes and 
the run lengths are coded with Huffman tables. 

original image 

CLASSIFIER 

Normalization 
Class 1 

Quantization 
and coding 
Class 1 

reconstructed image 

Normalization 
Class N 

Quantization 
and coding 
Class N 

Figure 2. Adaptive coding scheme 
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In this study, we use the map of classes generated by the image analysis step presented above, to 
locally adapt the JPEG approach. Figure 2 shows how the coding is processed. Each 16x16 block (this 
size has been chosen using the mean correlation length of the image data base) is classified through the 
binary decision tree (figure 1). It is then normalized with a matrix associated to its class. The quantization 
and coding is similar to JPEG algorithm detailed above. Note that one normalization matrix is associated to 
one class and that it depends on statistical properties of subimages clustering in each class. 

5. RESULTS 

We present here some results obtained in this study. A training set of 320 blocks is used to 
generate the classifier. It is formed by taking 64 blocks of 16 xl6 size from typical images of each 
modality. 90 features are computed; 16 of them are retained after intra-family decorrelation and only 7 
parameters are choosen after inter-family decorrelation (section 2). 

13 classes are chosen with the whole scheme of analyse. Figures 3.a and 3.b show the subimages 
16x16 corresponding respectively to class C2 and class C9 for a head computed X-rays tomography. C2 
includes the uniform blocks (low contrast; high non uniformity number for the neighborhood matrix 
(coarseness of the texture)). Class 9 presents a noisy structure, uniformly distributed, with a finer texture. 

-2 b) block of class C9 

Figure 3. Head computed X-rays tomography 

4). 
13 normalization matrix are generated using the statistical properties of the DCT domain (section 
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Finally, the coding scheme (figure 2) is applied on each 16 x 16 block of a mammogram (512 x 
512 x 8 bits) which is not included in the training set. Figure 4.a presents the original image. The 
reconstructed one with a compression ratio of 24 (0.33 bits/pixel) and a signal to noise ratio of 47.7 dB is 
presented in figure 4.b. 

The quality of this image gives no visual difference with the original mammogram. The experts 
have distinguisted the same pathologies in the two images. This result is very encouraging, but it has to 
be validated computing all the multimodal image data base and analyzing the results by experts in 
mammography. At present, our study is in this validation step. 

w fn.-   -v-s 

•igure 4.a. Original mammogram (512x512x8 bits) 4.b. reconstructed image: compression ratio = 24 
(0.33 bits/pixel); SNR = 47.7 dB. 

6.CONCLIISTON 

tntiltim HC|'laVC pre,sented an adaPtive coding scheme improved with an important analysis process of the 
fomiini. ih Tdgt baSe- ThlS Coding scheme adaPts itself t0 tocal stationnarity of medical images 
»uhim-n...«1; i base„An automatic adaptation is possible using a simple classifier which discriminates 
IV -innlii-ii- C '??•■ r each class' we have generated a normalization matrix used in the DCT domain. 
Proper i^ r • ?? , S matnx allows t0 select the significant DCT coefficients, taking into account the local 1 '       u l0cal signature based on the computed features) of each class. 

SNR valiivs^"'M-
001

^"^ °u mamm°grams are very satisfactory. Reconstructed images present a high 
iv Wttly/Jnc ilv v,,, !°nu ■ , sh comPression ratio. The method will be validated by experts after 
fe; Muc (L.siiiLs obtained on all the images of the data base. 

SPIE Vol. 1897 Image Capture, Formatting, and Display (1993) I 305 



J 

7. ACKNOWLEDGEMENTS 

The authors wish to thank Nicolas Daron and Andre Magras for their contributions in this work. >\ 

This work is supported in part by the Commission of European Communities within the Advanceri 
Informatics in Medicine program (AIM) EurlPACS project number A2009. 

8. REFERENCES 

1. R.M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification " IEEP 
Trans. Syst., Man, Cybern., vol. SMC-3, .pp. 610-621, Nov. 1973. 

2. M.M. Galloway, "Texture classification using gray level run lengths," Computer Graphics and Image 
Processing, vol. 4, pp. 172-179, June 1975. S 

3. J.S. Weszka, C.R. Dyer and A. Rosenfeld, "A comparative study of texture measures for terrain 
classification", IEEE Trans. Syst., Man, Cybern., vol. SMC-6, pp. 269-285, April 1976. 

4. C. Sun and W.G. Wee, "Neighboring gray level dependance matrix for texture classification" 
Computer vision, graphics and image processing, vol. 23, pp. 341-352, 1983. 

5. S.S. Liu and M.E. Jernigan, "Texture analysis and discrimination in additive noise", Computer 
vision, graphics and image processing, vol. 49, pp. 52-67, 1990. 

6. G.P. Hudson, "Report on the joint photographic expert group meeting", 25-27 jan. 1988, KTAS 
Copenhagen, Denmark, ISO/IEC/JTC1/SC2AVG8 N175, Rev. 2, May 1988. 

306/SPIE Vol. 1897 Image Capture, Formatting, and Display (1993) 



i-m 

WH» 

Interactive Wavelet-Based 2-D and 3-D Image Compression 

Armando Manduca 

Dept. of Physiology and Biophysics 
Mayo Clinic and Foundation 

Rochester, MN 55905 

ABSTRACT 

We have developed a software module which performs 2-D and 3-D image compression based on discrete wavelet transform / 
subband coding techniques. The software allows the user to interactively determine the tradeoff between compression ratio 
and fidelity (by viewing the results) and to interactively define specific regions of the image - of any size and shape - that are to 
be preserved with full fidelity while the rest of the image is compressed (again, viewing the results). The compression 
achieved is superior to the JPEG standard algorithm. We present sample results on a variety of medical images and direct com- 
parisons with JPEG results. We also show examples of the improvements gained by true 3-D compression of a 3-D image (as 
opposed to 2-D compression of each slice), discuss human visual system response issues, and describe extensions of the cur- 
rent approach to still more efficient compression schemes. 

1. INTRODUCTION 

Real world images expressed in a wavelet basis usually carry most of their information in a small number of wavelet coeffi- 
cients, and a large number of coefficients can be truncated to zero (effectively thrown away) with relatively little effect on the 
appearance of the image. Since only the important coefficients need to be stored, a very natural form of image compression is 
possible. This is not lossless compression, but there is often a very good tradeoff between the image appearance and the 
required storage space. Several characteristics make wavelet-based compression particularly interesting: (1) the amount of 
compression, and the fidelity of the resulting image, are directly determined by the number and accuracy of coefficients kept, 
so the user can be allowed to determine these, (2) there are theoretical reasons why wavelets should be fundamentally better 
for image compression than other common transforms, including the Discrete Cosine Transform (DCT), and (3) it is easy to 
implement a mechanism by which user-specified arbitrary regions of the image are preserved with full fidelity while compres- 
sion is carried out in the rest of the image. 

We have developed a software module in the biomedical image analysis and display package ANALYZE1 which performs 
wavelet-based compression on both 2-D and 3-D gray scale images. Using this software, a user can specify certain areas of 
interest to be preserved at maximum fidelity, while the rest of the image, which only provides context, is compressed. This 
compression is carried out interactively, and the user can view the result and decide whether to increase or decrease the com- 
pression ratio. 3-D images can either be compressed a slice at a time or, if memory allows, with a full 3-D transform, taking 
full advantage of structure along the third dimension. The compression ratios presently achieved compare very favorably with 
the JPEG standard. Such a tool may be useful in applications such as teleradiology, or in any situation where data storage or 
transmission bandwidth is limited and only certain portions of the images must be viewed at the highest resolution. In the sec- 
tions below, we present examples of the tool's operation, results on a variety of medical images, and discuss various issues 
arising from the compression scheme. 

2. DISCRETE WAVELET TRANSFORMS 

Discrete wavelet transforms have recently gained wide application in many areas of signal and image processing; some exam- 
ples in the imaging domain are spatial filtering, edge detection, feature extraction and texture analysis. Excellent review papers 
on these subjects are available23-4-5. The work presented here is based on the development and algorithms presented by Press2 

and Simoncelli and Adelson6. Like the Fast Fourier Transform (FFT), the Discrete Wavelet Transform (DWT) is a fast, linear 
operation that operates on a data vector whose length is an integer power of two, tramforming it into a numerically different 
vector of the same length2. Also like the FFT, the DWT is invertible and orthogonal, and represents the information in an 
™age in a different way. In the case of the FFT, the basis functions are sines and cosines; in the case of the DWT, they are a 

0^ / 94-; / 29-9/93/16 nn 
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hierarchical set of "wavelet functions" which satisfy certain mathematical criteria and are all translations and scalings of each 
other. Such a wavelet basis is in a sense intermediate between image data and the frequency spectrum - while image data is 
fully localized in space but totally unlocalized in frequency, and frequency data is fully localized in frequency but unlocalized 
in space, a given wavelet function is partially localized both in space and in frequency (or characteristic scale)2. 

There are infinitely many possible wavelet functions, with various classes more or less suited to particular applications, and 
perhaps the most important distinction is a tradeoff between how compact they are and how smooth they are. The more com- 
pact (and less smooth) ones are best suited for image compression, since they better represent edges and their transforms are 
the fastest to calculate (calculation time is proportional to the length of the filter). We have implemented two sets of wavelet 
functions: (1) the class discovered by Daubechies7 (we often use the simplest and most compact member of that class, termed 
DAUB4, because it's the fastest to calculate), and (2) the 5-, 9-, and 13-tap filters presented by Simoncelli and Adelson6. We 
have not yet systematically addressed the question of characterizing which wavelet functions are best for compressing which 
images and why. The examples below all use the 9-tap filter since it empirically seems to give slightly better performance. 

To compute a 1-dimensional DWT2'6, a pair of quadrature mirror filters are defined from the underlying wavelet function, and 
both are applied to the signal and subsampled by a factor of two. This splits the signal into two components, each of half the 
original length, with one containing the low-frequency or "smooth" information and the other the high-frequency or "differ- 
ence" information. The process is performed again on the smooth component, breaking it up into "high-low" and "low-low" 
components in turn, and this is repeated several times. This yields a multi-level hierarchy, with the initial "difference" compo- 
nent having many points carrying the information in the upper half of the frequency range (so these coefficients are well-local- 
ized in space but only slightly localized in frequency), and each higher level having half as many points as the previous level 
and only half the spread in frequency (so each higher level is progressively more localized in frequency and less localized in 
space). The final "smooth" signal has only a relatively few points carrying the information in the lowest frequency band.There 
is a good deal of overlap between this type of wavelet transform and subband coding, and the particular scheme described here 
is in fact identical to hierarchical subband coding with octave width subbands6. 

Like the FFT, the DWT is separable, and to apply it to a 2-D image one applies it to each dimension in turn. Usually, the filter- 
ing is performed once for each dimension, creating four subimages (low-low, low-high, high-low, high-high in x and y respec 

Figure 1. The classic Lena image and the logarithms of the amplitudes of its DWT. 

308 ISPIE Vol. 1897 Image Capture, Formatting, and Display (1993) 

i 



tively), and then recursively performed only on the low-low subimage. The DWT of the classic Lena image is shown in Figure 
1. Note the hierachical scales in each dimension, and how vertical features (high frequency in x, low in y) are captured in the 
lower right subimages while horizontal features (low in x, high in y) are captured in the upper left subimages and diagonal fea- 
tures (high in both x and y) in the upper right subimages at each level. This process partitions frequency space into octave- 
spaced oriented subbands6. A 3-D DWT can be denned as the obvious extension of the 2-D case, and a similar process with 
recursion only on the "low-low-low" subimage can be used to calculate a 3-D DWT of a volume image. 

3. IMAGE COMPRESSION WITH WAVELETS 

Real world images, since they tend to have internal morphological consistency, tend to have first-order correlations (locally 
similar luminance values), second-order or dipole correlations (e.g., oriented edge continuation), and higher-order correlations 
(e.g., texture)8. It is precisely these correlations that distinguish real-world images from random noise, but this distinction is not 
exploited in the standard pixel-by-pixel image representation8. Wavelet transforms do a good job of efficientiy encoding image 
structure by exploiting these correlations, so most of the information in the image is carried in a relatively small number of 
coefficients (this is the basic idea behind all transform-based coding methods). There are interesting analogies between wavelet 
transforms and the way the visual cortex processes incoming visual data in higher animals and humans. 

Figure 2 shows the histograms of the Lena image (left) and the amplitudes of the coefficients of its wavelet transform (right). 
The image histogram is broad and multimodal, and has high entropy. Conversely, most of the transform coefficients have zero 
or near-zero values (83% of the coefficients fall in the lowest of the 256 bins), and there is a small tail of coefficients with sig- 
nificant amplitudes. It is this latter set that is carrying most of the information in the image, and the large number with small or 
zero values can be ignored or approximated with litüe effect on the image quality. 

The DWT as described above has very desirable properties for image compression since the coefficients are localized in space 
(to varying degrees), form a multiscale representation of the image (with a constant scale factor, leading to localized frequency 
subbands with equal widths on a logarithmic scale), and have some orientation specificity6. By contrast, the coefficients in a 
full-frame DCT have no spatial localization and describe equal-width (rather than equal log-width) frequency subbands, while 
those in a block DCT have an abrupt spatial localization at a single scale, and the equal-width frequency subbands are not 
well-localized (due to the abrupt block edges)6. 

Figure 2. The histograms and cumulative histograms of the Lena image (left) and the amplitudes of its DWT (right). In 
the latter, the bin with value 0 is off the scale and contains 216822 or 83% of the total values. 

SPIE Vol. 1897 Image Capture, Formatting, and Display (1993) I 309 



mm 

3.1. Implementation 

The compression scheme currenüy implemented is based on uniformly quantizing the wavelet coefficients by dividing by a 
user-specified quantization parameter and rounding off (typically, a large majority of coefficients with very small values are 
Quantized to zero by this step)- The zeroes in the resulting sequence are then run-length encoded, and the entire sequence is 
Huffman encoded. Better coding schemes (e.g. arithmetic coding) are possible and may be implemented in the future. If the .f| 
quantization parameter is increased, more coefficients are quantized to zero, the remaining ones are quantized more coarsely. f| 
the representation accuracy decreases, and the compression ratio increases; if the parameter is decreased, the reverse happens.       j| 

To use the program, the user loads animage, selects which wavelet function touse, and invokes a2-D or 3-Dforward transform. || 
The user then specifies the quantization parameter for a trial compression, and the program performs the quantization, does the g 
mversetransfom,displaystheresulti^ 1 
rapid (typically 4 sec. for a 512x512 image on a Sparestation 2 with the 9-tap filter) and can be repeated whde varying the || 
quantization parameter (and hence the compression percentage) as desired. The user can also look at the difference image || 
between the original and the compressed result, or at a map showing which coefficients are quantized with non-zero values. The g 
compressed coefficients can be saved to disk at any time. 

I m 
32. Sample Compressions M 

Figure 3 shows the Lena image and a compressed version at 8.00% of the original size, which corresponds to 125:1 « 
compression and 0.64 bits per pixel (bpp). The RMS difference between the original and compressed images is 3.91. The ^ 
performance is significantly better than the JPEG standard algorithm10 in terms of both RMS error and subjective image quality g 
^b«low).Figure4showsanMRIimageandan8^^ * 
of a chest X-ray (this is 16-bit data; all the other examples are 8-bit data) and a 25:1 compression (RMS error = 11 77, 0.64 | 
bpp) Figures7 and 8 show a transmission light microscope image of pitting in bone tissue and a 20:1 compression (RMS error ^ 
= 3.11,0.40 bpp). Figures 9 and 10 show a rendered image of a wrist and a 10:1 compression (RMS error = 5.74. U.SU bpp). jj 

1 
3.3. Comparisons with JPEG g 

In all cases tried, this scheme achieves significantly better compression than the JPEG standard algorithm in terms of both RMS | 
error (which is of course not a good measure of image quality) and subjective quality (although this has not been verified by * 
ROCstudies) Figmes 11 and 12 show correspond wavelet and JPEG resmtsfo | 
for a magnified portion at 20:1 compression. In both cases, the artifacts are much worse for the JPEG compressions, and the j 
block edge effects are very objectionable. These are purposefully high compression ratios in order to better show the artifacts ^ 
introduced by the two methods; at lower compression ratios it becomes more difficult to discern differences. j 

■1 3.4. Human Visual System Response I 

Most image compression schemes take advantage of known properties of the human visual system (HVS) and attempt to f 
suppress information which a human viewer would not perceive anyway. For example, JPEG (and DCT-based compression 
schemes in general) use a "quantization matrix" which quantizes the higher frequencies more coarsely, m accordance with tue 
HVS spatial frequency sensitivity10. Sometimes more sophisticated schemes are used; e.g.. Lewis and Knowles9 adjust the 
Quantization parameter for individual transform coefficients based not only on spatial frequency but also on background 
luminance, edge proximity, and texture masking - all modeling well-documented HVS effects. Such attempts to obtain 
maximum compression without perceptually altering the image are quite appropriate when the image is meant only to be 
viewed especially at the same size as the original. They become more problematical if the compressed image is to be later 
magnified manipulated, processed, or automatically interpreted in some way - since information that is not visible to the human 
in the original image may still be quite relevant; in fact, extracting such information may be the point of the processing. It is 
also less clear what to do when the data is 3-dimensional and may be viewed from different orientations, or obliquely, or surface 
or volume rendered. Also, in many medical data sets the resolution is commonly different in the third dimension, further 
complicating matters. Thus, we prefer to not take advantage of HVS response effects in the general case, although we intend 
to offer such a scheme as a user-selectable option and are currently researching various alternatives. 
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Figure 3. The Lena image and a compressed version at 8.0% of the original size. 

Figure 4. An MRI image and a compressed version at 12.5% of the original size. 
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Figure 5. A portion of a chest X-ray and a compressed version at 4.0% of the original size. 

Figure 6. A magnified view of one section of the original and compressed images above. 
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Figure 7. A transmission light microscope image of pitting in bone tissue and a compressed version at 5.0% of the 
original size. 
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Figure 8. A magnified view of one section of the original and compressed images above. 
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Figure 9. A rendered image of the bones of the wrist and a compressed version at 10% of the original size. 

Figure 10. A magnified view of a section of the original and compressed images above. 
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Figure 11. Compressions of the Lena image to 3.0% of the original size with the wavelet algorithm (left) and the 
standard JPEG algorithm (right). 

I^ngiuc 12. A magnified view of a section of the Lena image compressed to 5.0% of the original size with the wavelet 
*' algorithm (left) and the standard JPEG algorithm (right). 
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3.5. Compression of 3-D Images 

As mentioned above, a 3-D DWT can be defined as the obvious extension of the 2-D case. The procedure described here can 
SS, perfonn true 3-D compression of a volume image, taking full advantage of structure along the third dimension. 
JSfigure 13. Two sample slices of a 256x256x32 MRI volume image are shown m the left column, and the 
rl^s ofTfuU 3-D 20:1 compression and individual 2-D 20:1 compressions are shown - the nuMe and nght columns 
respectively (a-ain, a high compression ratio has been chosen to better show the artifacts mtroduced). The 3-D compression is 
SSS better, with much less serious artifacts, as one would expect since the redundancy m the third dunension can be 
SS The RMS errors are 1.92 for the 3-D compression and 2.52 and 2.55 for the 2-D compressions. The obvious draw- 
back is that operating with the full 3-D transform of large volume images requires large amounts of computer memory and 
processing time (a 256x256x32 transform requires 50 seconds on a Sparcstation 2 for the 9-tap filter). 

3.6. Related Advanced Techniques 

Simoncelli and Adelson6 describe two approaches which are more advanced than the scheme here: one is based on biorthogonal 
StaLs and the other on hexagonal, non-separable filters. The biorthogonal wavelets involve one set of filters (long. 
Telltively slow to compute) for the initial compression, and a second set (very smaU and fast to compute) for Äe decompression. 
Se hexafonal filters offer improved orientation selectivity and seem to provide somewhat better performance; than die 
SaraSe futers used here. They also describe a 3-D extension using rhombic dodecahedral filters. It is also known that higher 
compression ratios can be achieved with a generalization of wavelet transforms known as wave packets . although at the 
expense of increased processing time. Mallat and Zheng" describe a more complicated approach based on the evoluüon of 
ZZ local maxima across scales and an iterative reconstruction of images from these maxima alone which may yield even 

higher compression ratios. 

3.7. Preserving Arbitrary Regions 

The partially localized nature of the wavelet transform means that the value of any one pi*el in the image depends on only a 
small number of wavelet coefficients. Thus, it is possible to specify an arbitrary region of the image and.prevent^that:region 
from beina badly degraded during the compression process by simply representing more accurately (i.e.. quantizing more 
KhSTwaveL coefficients wnich map to that region, and noting which coefficients which are treated in this way In a 
previous implementation", with a somewhat different compression scheme (the wavelet coefficients ™ ""^"g^ 
a chosen percentage of the largest ones quantized and the rest truncated to zero), such an approach worked well. All coefficient 
cote^oSS to L arbitrary regions were kept, in addition to the specified percentage of the largest ones, and those regions 
were preserved with maximum fidelity as the rest of the image was compressed. 

We have since realized, however, that even better results are obtained with a very naive approach: to the compressed image^ we 
append a compressed version of a residual image which contains the difference values between the compressed and ongmal 
images in the regions of interest and which is zero elsewhere. This residual image compresses vei^weU, and restores the region, 
of interest to precisely the original values. It is this implementation which is currently in place, and the user is allowed to deime 
any number of such regions, either as rectangular areas or by tracing out arbitrary shapes on the image. If the image is 3-D me 
user also specifies to which slices each such region is applicable. The effects of preserving a region m this> manner are shown 
in Figure {Tito top row shows the wrist image, a badly degraded 40:1 compression and the ^^^^^        -m 

the bottom row, a region has been selected to be preserved. The compressed image, which now totals 10.2% of its °^^       M 
preserves the original detail in this area, and the difference image shows clearly that there are no differences between the 
compressed image and the original in the designated area but that the large differences remain elsewhere. This approach oi       ■** 
course is independent of the use of wavelets for the initial compression, and works equally well with any other type ot unag 
compression. We are investigating whether the localized nature of the wavelet transform can be exploited to preserve arbitrary 
regions in an even more efficient manner with the current compression scheme. 
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Figure 13. Two sample slices of a 3D MRI data set (left column), the slices after 3-D compression to 5.0% of original size 
(middle column), and the slices after individual 2-D compression to 5.0% of original size (right column). 

* Itftion ri
ren.dered wrist ^age, a 40:1 compression, and the difference between the two. Bottom row: the wrist 

|^° "^gnated to be preserved, the resulting compressed image (now requiring 10.2% of the original size), 
and the difference between the two. 
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ABSTRACT 

-PP^Ä^tf ffi °f bre
h
aSt CanC6r at an ear1^ ^  How-e 

of patients who undergo bkfpsy SÄtrff ^^ M°re°Ver' °nly about 2°f 

have a major impact on the ^ffic^^L^^ ^ imPro™t * this percentage shoul 
findings in benign conditions of fahret HJ !?Au of medlcal care- Microcalcifications are commo 
cancer The daJifiSrfÄÄ?! T 1 °^ imPortant si§n fading to the detection of breas 
yet difficult task S^^^^^^^SST °f breast

1
ca?cer has *** an important an, 

and malignant conditions his resultedfn radfnSS ^ en «deifications associated with benig: 
nate category. Improvements inKS^SK^f?^ *"* ^ caJcifications into an indetermi 
breast biopsies and therebv the cost of hS° of caJ"ficatlons would decrease the number of unnecessar 
among rad'iologis*for smp"^Äf^ Äfaa^^ FmäuTm' ^^ leVds °f exeert- 
mendations for courses of action A commuteVision^Tv^hi §n°S? bre|St Cancer 0r inco™stent recom 
and consistently can be useful to aid .^^^ °h^ 

microcatciSotli classify benign and malignant 

of the nfural Network systemwls Sa^dSSaf to RQ?£afy£ "^ "^ ^ ^ P6lf™ 

1. fNTRODTTrTTOM 

that early^S^8^^1^^^ °f df* among women. However, there is clear evidence 
breast cancels ^^^^S^Z^^^^T^"^ th?-ChanCe °f Survival **patients with 
^ability for W 
decreased mortalitv (ref R)   Hnw^r uL^* „ • TT •   ^  ,   *~''- fcarlier detection has resulted in 
radiographic ^^'^^l^i^^Tf01 th™ ^ StaSe are smaI1 and frequently their 
this subtlety, thVpSSÄS^^^Ä 0f-nSSa1.^ °r beni§n abnormalities4 Because of 
30% of cases üSA^^^^^ST^^^^-

11
^

1
 
by radiol°gists is substantial. Only 10- 

^ügp^^.%^^^^^L^S^t^^ and are subjected to biopsy prove to be 
(have the ^cJ^^^^Z^S^ff11^ Wlth breas'cancer are misdiagnosed by mammography 
radiographic loSZS^^^^0^3^) ^ 10-14) Besides the subtle nature'of 
human factors such as subjective orT^inf Sic Y ? S in.radlol°glcal diagnoses can be attributed to 
simple oversight (refs 15-17) Studies ^ZltfZ Cntena' dlstraction by other image features, and of 
(refs. 18-19). These cnmifiSÄ &T* ^1?CCUIeven with exP^ienced radiologists 
possible lesions, tb^S^b^^t^^TT^ ^"u Schemes that locate ™d classify 
the automated detection schemes canserv?! ?„ w ^ I T ^ Wlth P^icular attention. Moreover, 
radiologists that is —^ -ding by two 
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reported S       50<f of h™ 5 Y ,COnside;ed j? be imp0rtant si§ns of breast cancer.  * has been 
ma^g^ demonstrate microcalcifications on 
marrmograms (refs. 20-25)   Up to 90% of cases of ductal carcinoma in situ present with microcalcifications 
UR^ PreS?nC

f
e of.^rocdcifications and the presence of breast cance 

dg&^S16 deteCtl°n °f microcalcifications will improve the efficacy of mammography as a 

chaiact^SwiSÄr ^CUr in-riignlnt a
u
nd.beni§n conditions.   Some microcalcifications are 

«nSSSy    t g       are associated Wlth a benign process. Calcified fibroadenomas have a typical 
popcorn configuration appearing coarse and solitary. Milk of calcium demonstrates sedimentation (ref 27) 

Vascular calcificaüons have a tram track appearance, typical of vascular calcifications seen in otheSal of the 
S' T1 Caklflf ÜT te,nd t0 be Smooth and round with lucent centers. Secretory calcifiSns are thick, smooth, cigar-shaped, and usually non-branching. ^m^uons are 

Some microcalcifications associated with malignancy have a typically granular or linear appearance 

£5=; ÄEÄ greater than'5 partides $■28) k particle size * WS 
configuÄ £££ 

SSSTSrW qmre CarefUl "^^ FftUrCS SUpp0rting benignity delude uniform sizf and dens tyo? the 
Snl n n ' !? 1S>rn m SCler0S1S 1

aden0sis (refs- 30>- Beni§n microcalcifications tend to be uniformly 
dense or scattered, without a segmental or linear distribution (ref. 31). The number of microcalcifications per 
Cm has been shown t0 be tbe most important predictor of malignancy, with clusters consisting of less than 10 
microcalcifications per cm2 having a high chance of benignity. Clusters consisting of microcalcifications 
numbering greater than 15 per cm2 have a higher chance of malignancy (ref. 32). 

Hiffirnk^n^Thf-^L6??01; and cIassiflcatjon of microcalcifications for the diagnosis of breast cancer is a 
m£?!i   r   J ty t0,COrreuCLly predlCt cancer is not only due t0 the over^P in appearance between 
SS, nl TnS ass°£;iated ™* beniSn and malignant conditions. Dense breasts, improper technical 
fSfX TH   °VerS!g? by- radl0l°Slste may contribute to the failure to detect microcalcifications. Differing 
^Inil^nf ammg am0ng mterPreting biologists may lead to inconsistent recommendations for management. 

• ,t Radiologists classify breast microcalcifications into one of three groups: benign, likely malignant and 
^rr^^XT Wl? indeter n,ate ^peS °f calcifications undergo a breast biopsy to eTclude 
SiSLdj K W°uUld, COrreCtly daSSlfy benign ty?68 of calcifications previously considered 
indeterminate would decrease the frequency of biopsy and therefore the cost of detection of breast cancer. 

microcJrTwiinrrf118^015 haVC bfn de,v.e!,opinS computer programs for the automated detection of 
^n dete f^^Jr ^fT^5 (

K 
fS- 33_l6)- Chan' et al (ref- 37> showed that the computer program 

approach t^elZ^f^T5 T ™y b*™ssed by radiologists, indicating that it is a promising 
approach to the automated detection of microcalcifications. More recently Wu etal (ref 38^1 anolied an 

ÄÄS^Ä^ t0 ,deteCt miCr0CalC/fiC/ti°nS- The ^tKUned * -ing lb/power^ectm 
detections of f SS Ü ? } ?0ntTnf microcalcifications, was able to eliminate 50% of false-positive 
Sons The n., rn"b f ^^ ^ 3

A
7, 3?} while Prese™S more than 95% of the true-positive 

S^v^thlr^Ztrtr^ aC^Td **■ Az Vfm °f °-85 f0r the detection of clustered microcalcifications. 
40) based on iShnnHf"^ f°r KCt%Ctl0n °^microcalcifications were also reported by Astley, et al. (ref. 
by kS^i^SJ<SleSt^atorS/ by Gnmaud' e/.a/- (ref- 41)' usinS mathematical morphology tools, and uy ^arssemeijer (ref. 42), using a stochastic method based on Bayesian decision theory. 

importam to^dhtiÄh m5rocal^flcatiof can be associated with either benign or malignant processes. It is 
portant to distinguish different types of microcalcifications after they have been identified by a detection 
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Pathological Specimen 

Radiographs 

Digitization 

Preprocessing 

CNN 

Diagnosis 

ROC analysis 

Figure 1. Overall approach for the classification of microcalcifications using CNN. 

(a) (b) 

Figure 2. Microcalcifications shown in the pathological specimen (a) and shown after being digitized with a 
high resolution (21 urn x 21 um) digitizer (b). 

SSfc 
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2.2. Convolution Neural Network 

The structure of the CNN is shown in Fig. 3 (ref. 44). The input to the CNN are ROIs of matrix size 
of 64 x 64 pixels, containing benign or malignant type of microcalcifications. Only one hidden layer is used in 
this study. The connections between input and hidden layer are grouped into seven different kernels based on 
the structure of Fukushima's neocognitron (ref. 45). There are two output units in the output layer, with each 
unit corresponding to benign or malignant class of microcalcifications. The hidden layer and the output layers 
are fully connected. Backpropagation and generalized delta rule are used in the training process (ref. 46). 

In the training process of the CNN, each image block were rotated and reflected such that the number 
of training data will be increased eight fold. The rotation and reflection would represent different orientations 
of microcalcifications in mammograms. The training with additional orientation can effectively make the CNN 
rotational invariant. 

Input Hidden Output 

Image matrix 
64x64 

Malignant 

Figure 3. Structure of a convolution neural network. 
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(a) 

(b) 

Figure 4. Training database of the convolution neural network that contains (a) 20 benign microcalcifications 
and (b) 20 malignant microcalcifications. 
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(a) 

(b) 

Kmim 5  Testing database of the convolution neural network that -contains (a) Figure 5.  1 esting udwu ^ ^ ^ malignant microcalcifications. 

20 benign microcalcifications 

636 / SPIE Vol. 2167 Image Processing (1994) 



3. RESULTS 

3.1. Database 

Forty ROIs (20 benign and 20 malignant) were randomly selected to train the CNN. Figure 4 shows 
the training database of the 40 ROIs. There are substantial variations in sizes among benign or malignant 
microcalcifications. Another 40 ROIs, shown in Fig. 5, were selected to test the trained CNN. 

3.2. Performance of CNN 

The output values from the two output units were analyzed and shown in Table I. The CNN achieved 
a sensitivity of 75% at false-positive rate of 25% (specificity = 75%). 

Table I. Output of The Neural Network 

Negative Output from CNN Positive Output from CNN 

Benign ROIs (20) 15 5 

Malignant ROIs (20) 5 15 

3.3. ROC Analysis 

Receiver Operating Characteristic (ROC) analysis (ref. 47-48) was employed to examine the output 
values from the neural network. The LABROC4 algorithm (ref. 49) developed by Metz et al. was used to fit 
ROC curves to the continuous data from the output of CNN. The ROC curve obtained is shown in Fig. 6. 
The area under ROC curve (Az) achieved by the CNN was 0.83. 

Performance of CNN for classification of 
microcalcifications based on 40 ROIs 

\ = 0.83 

0.0 J. _L ± ± 
0.0 1.0 0.2 0.4 0.6 0.8 

False-Positive Fraction 
Figure 6. ROC analysis of the performance of CNN in classifying benign and malignant microcalcifications. 
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4. CONCLUSIONS 

Even though they were based a relatively small training and testing database, they have been very 
promising, the results obtained in this study indicated the potential usefulness of CNN in classification of 
microcalcifications in mammograms digitized with high resolutions. Both a large training and testing database 
are necessary in order to train and evaluate the performance of the neural network sufficiently and reliably. 
We will be expanding our database significantly in the future. A hybrid neural network (HNN) (ref. 50) will 
be employed to classify microcalcifications based on the input of both image data and image features (ref. 51) 
that will be automatically extracted. 
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ABSTRACT 

We are developing a computer program for automated classification of clustered microcalcifications associated with be-   ^ 
nign and malignant processes in mammograms. Accurate classification of microcalcifications into benign and malignant groups 
would help improve diagnosis sensitivity as well as reduce the number of unnecessary biopsies. In this study we investigate the   ? 
effectiveness of several image features and the proposed neural network, the Trend-Oriented Radial Basis Function (TRBF). Our ^ 
database is composed of 47 benign and 81 malignant region of interest (ROI) images, a total of 128 ROIs, which are selected from   '■ 
50 micron x 50 micron digitized whole mammograms manually.   Each 256 x 256 pixel ROI image contains clustered  ''■ 
microcalcifications. First we extract 16 image features which are calculated from a binarized microcalcifications image and its two "-. 
morphological dilation images. These features are based on 3 morphological criteria: (1) size and/or shape of the calcifications, (2) 
size or shape of the "cluster", and (3) number of microcalcifications. Secondly, we apply Karhunen-Loeve(K-L) expansion to 16 
dimension feature space in order to reduce the dimension of the problem. Nextly we select two dimensional K-L features, which arc 
outcomes of K-L expansion, through a calculation of the Euclidean distance measure.   Finally we classify them based on two 
dimensional K-L features using the proposed neural network.  The proposed TRBF neural network has three layers and a new 
learning algorithm. Its cost function for the learning process consists of a sum of squares error and a sum of inverse RBFs width. 
Through the learning process, the center and the width of each RBF and the weights between hidden and output layers are decided. 
The performances of the K-L features and the TRBF neural network are evaluated through the Round-Robin method in which one 
sample is tested after learning based on the rest of the 127 samples. The two dimensional K-L features are more distinguishable than 
the raw two dimensional feature combination. The proposed TRBF network is able to define the trend of the distribution than 
former RBF networks. According to the receiver operating characteristic (ROC) curve, this system indicates a better performance 
than one trained radiologist. 

Keywords: Mammograms, Microcalcification, Classification, Feature selection, Karhunen-Loeve expansion, Euclidean distance 
measure, Neural Network, Radial Basis Function, Round-Robin method, Receiver Operating Characteristic 

1. INTRODUCTION 
In the United States, breast cancer is the leading cause of death in women between 40 and 55 years of age. At present the 

mammogram is the only proven method for detecting minimal breast cancer [1]. One important indicator of breast cancer is the 
presence of clustered microcalcification [2]. Clustered microcalcifications can be seen on mammograms in 3O%-50% cases of 
breast cancer [3]. However most mammographic calcifications are benign. Accurate classification of microcalcifications mW 
benign and malignant groups would help improve diagnosis sensitivity as well as reduce the number of unnecessary biopsies. Wu 
et al. applied a convolution neural network to classify microcalcificications in radiographs of pathologic specimens[4]. The neural 
network achieved an Az value of 0.90. 

What features are useful to distinguish benign from malignant calcifications? Various investigators have attempted this 
distinction. Roselli-Del-Turco et al. used three features to distinguish benign from malignant calcifications[5]: (1) size, shape or 
density of the calcifications, (2) size or shape of the "cluster", and (3) number of microcalcifications. Their analysis of the morpho- 
logical criteria, which led to a distinction between benign and malignant biopsy results, is one of the most thorough that has bee 
published to date (Table 1).  However it does not seem that there are conclusive features which could distinguish benign fro 
malignant calcifications very well. Figures 1 and 2 are example images of mammograms of benign and malignant calcificatio 
According to the spatial disposition result of Roselli-Del-Turco, both images seem to be malignant. In fact, the Figure 1 image i* 
benign case. . 

Most classification systems consist of four subsystems: measure, preprocess and/or transformation, feature selection, 
classification. In the design of a classification system, a common assumption is that all input features play an important discnm 
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tory role in tne classification and are essential for a specified performance. However this may not always be true in practical 
application. If the designer does not have confidence in what the effective features are, some features may be redundant or not as 
important as others. Some features also might be noise-corrupted. 

Our purpose in this paper is to investigate the effectiveness of our feature selection method and the proposed neural 
network as detailed below: 
(1) Image feature selection method for classification of clustered microcalcifications 

It is not easy to estimate appropriate image features on this classification problem. First we propose some image feature 
candidates. Secondly, some redundancy of image features is eliminated through K-L expansion. Finally we determine 
some eligible image feature combinations through the Euclidean distance measure of normalized K-L features. 

(2) Trend-Oriented Radial Basis Function neural network 
In this case, a more powerful neural network to regularize the class distribution is desired. We propose applying the original 
cost function which would be minimized at the network training.  We present the learning equations of the centers and 
widths of each RBF based on the Gradient-descent method. 

In Section 2, we propose 16 image features which might be redundant, and two dimensional K-L feature combination is determined 
through our proposed selection method.  In Section 3, we apply the Trend-Oriented Radial Basis Function to classify the data 
patterns with two dimensional feature. The performance is evaluated through the ROC analysis. 

Table 1 Distribution of mammographically evidenced microcalcifications by morphological criteria in 217 cancers and in 111 
benign lesions: positive predictive value (PPV) of each radiologic criterion 

Mm- 

1 

i 

i $ 

Total evaluated cases 
Cases with macrocalcifications 
Mammographic morphological criteria 
Spatial disposition 
laolaied 
Clustered 
Widely diffused 

. fatal number 
,|lo4 

SlO 10 
Over 10 
Numbcr/cm2 
I to 10 
II lo20 
2110 50 
Over 50 
Morphology 

. Dotlike 
: Sllcklikc 

Ramified 
Shape 
Rttular 
lrre|ular 
Radiologie density 
Low 

. Hi|h 

"Mtnmographic capacity 
Akent 
NtwioCa++. 

- ? ** 'nside opacity 
-.»♦♦ at border 
; Ma«lmum diameter 

,:°A~0.9mm 
v^« 0-9 mm 

**Wige diameter 
iJI-OJmm 

fife!**» nun 
ly*«Tl.0mm 

*W 

CANCER BENIGN PPV(%) 
1,110 2,016 

217 111 66.2 
N % N % 

40 18.4 42 37.8 48.8 
146 673 69 69.2 67.9 
31 143 0 - 100.0 

145 66.8 81 72.9 64.2 
22 10.2 25 22.9 46.8 
50 23.0 5 45 90.9 

34 15.7 27 243 55.7 
44 203 27 243 62.0 
87 40.0 48 43.2 64.4 
52 24.0 9 8.2 85.2 

151 69.6 93 83.8 61.9 
33 15.2 16 14.4 673 
33 15.2 2 1.8 943 

25 11.5 62 55.8 28.7 
192 88.5 49 44.2 79.7 

103 47.5 60 54.0 63.2 
114 52.5 51 46.0 69.1 

61 28.1 67 60.4 47.7 
33 15.2 4 3.6 89.2 

121 55.8 36 32.4 77.1 
2 0.9 4 3.6 333 

47 21.7 27 24.4 63.5 
64 295 42 37.8 60.4 

106 48.8 42 37.8 71.6 

48 22.1 27 243 64.0 
88 40.5 56 50.4 61.1 
51 23.5 9 8.1 85.0 
30 13.8 18 16.2 62-5 

pltLJ. „means microcalcifications. 
ll?*Ro*lli-Del-Tureoetal. The significance of mammographic calcification in early breast cancer detection, Radiol Med 72:7-12,1986. 
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Figure 1 Benign 
mammogram. 

Figure 2 Malignant 
mammogram. 

7 METHOD 

7..1. Preprocessing 
Figure 3 shows the overview of the entire method. 

The purpose of the preprocessing is to get a binarized 
image of clustered microcalcifications. Our image 
features are fully based on the size, shape, disposi- 
tion and the number of microcalcifications, not on 
the density. The density will be changed because of 
the overlap. Figures 4 and 5 are an original gray 
scale image and a binarized microcalcifications im- 
age, respectively. Our preprocessing algorithm is 
regarded as below. 

background trend. 

(2) T,: aC Ä'Ä'SÄ». - o-—»* "* tased -iK his,osrara-Tte maximum le,d is 
only used as a candidate of a clustered microcalcification. 

(3> T*3 SS1SS5Ä. ™" >s appiied ,o the histogram ,uan,ized image (3, ,0 remove iine artifacts v*h 

arise when microcalcifications are in the ductal structure. 

<4) SL size morpho.ogical diiation fiber is app.ied to,he outcome of process <3> to eniar ge object, 

(5> mAND oplon between the outcome (2, and the outcome (4) is doue to preserve the shape of microcaicificatious. 

m ^^^:^t^^^»«-^—*Thos: r are ,ess lhen 5 pixels''",his 
p,«ess allmicrocalcifteation, in which pixe! size is less than fve should be eltmtnated . 

7 7 Feature extraction . .     hinarized clustered microcalcifications in 
In this study our image features are based on three images; one. vlud       J^JJ^^ from a binarized cluiH 

actual images. Below is a list of 16 features which are called raw features. 

(01) number of microcalcifications N 
(02) area (pixel count) of microcalcifications in Image 1 [SI] 
(03) area (pixel count) of microcalcifications in Image2 [S2] 
(04) area (pixel count) of microcalcifications in Image3 [S3] 
(05) (S2-SD/N which is intended to be an average irregular pixel count .„rnralrifirqtions are close together, thisJj 
(06) (S3-S1VN which is intended to be one of the disposition features. When microcalcifications are g g 

should be small. 
(07) (S2-S1) which is a total pixel count of the irregularity 
mSHS3-Sl) which is intended to be one of the disposition features ^      .        , 
09   bigoest microcalcification pixe. count) - (average microcalcification pixel count) on Image 
S (aveSge microcalcification pixel count) - (smallest microcalcification pixel count) on Imagel 

(11) biggest microcalcification pixel count on Imagel 
(12) ellipsity of biggest microcalcification on Imagel 

(S  x.ellipsinn}/ 
(13) weighted average ellipsity of microcalcifications   1^ " /si RrC t 

Imagel (Figure 6) 

'-"rM 

J«1 

f 
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§S,> 

Mi 

w. 

mffis 

ROI Images Database consist of 
47 benign and 81 malignant. 

256 x 256 pixel size 

I 12 bit gray image 

Preprocess 
(1) Subtraction of averaged image 
(2) Binarization through histogram quantization 
(3) Opening to remove line artifacts 
(4) Dilation (3) to enlarge objects 
(5) AND (2) with (4) to recover the shape of Ca++ 
(6) Labeling to remove small Ca++ again 

I Binarized clustered 
microcalcification image 

I 
16-features Database regarding to 

47 benign and 81 malignant 

Feature selection 1 

Apply Karhunen-Loeve(K-L) expansion to 16 
dimension features space to reduce the dimension. 

I 16 K-L features 

Feature selection 2 

Select 2 dimension K-L features combinations 
through the calculation of the Euclidean distance 
measure 

Feature extraction 1 
Make two morphological dilation images 
(1) Dilation image with 5x5 kernel 
(2) Dilation image with 25X25 kernel 

I Three kinds of binary images 

Feature extraction 2 

16 features are extracted base on 
(1) size, shape of the microcalcifications 
(2) size or shape of the "cluster" 
(3) number of microcalcifications 

I 2 dimension K-L features 

Round-Robin method 

One sample is tested after the lerning based on the 
rest of the 127 samples. The network has three 
layers which is comprised of 2 inputs , 2 output 
nodes and about 20 hidden neurons . The 128 
samples are tested. 

I 128 network output 

Evaluation 

Receiver Operating Characteristic (ROC) 
Analysis through the LABROC4 algorithm. 

Figure 3 The overview of the method. 

(16) ax x bx 
where Image 1 is the binarized clustered microcalcification 
image, Image2 is the 5x5 kernel dilated image, and Im- 
ages is the 25x25 kernel dilated image. We know that 
these image features may be redundant or not as impor- 
tant as others, and such a redundancy should be removed 
in the next feature selection process. 

2.3. Feature selection 
The reduction of the dimensionality of a program 

in order to deliver a system for a real-world application 
has always been a main concern of researcher . In this 
study there is not a large enough database and we are not 

; sure which features are most effective. There are two ba- 
; w approaches to reducing dimensionality. One approach is to use a transformation technique such as the Fourier transformation or 
■ t   ^ ^ exPansion. Another approach is to select a subset of features by evaluating the features based on the available data. 
;,features can be evaluated in combination or individually. A combinational feature evaluation measures the separability of a subset 
f'p "^'ures which takes into account the combining effect of a set of features. Two distance measures, probabilistic distance and 
pCi'dcan distance, are commonly used to evaluate the separability in the feature space.  The Euclidean distance measure of 2 
features is defined as 

;Flgure 4 Original gray 
\ •Wie image. 

Figure 5 Binarized 
microcalcifications image. 

SPItVol. 2710/797 



Figure 6 Best-fit ellipse and 
its semimajor axes ax and 
seminior axes bx. 

Figure 7 Dilation with 5x5 
kernel. 

Figure 8 Dilation with 25x25 
kernel. 

(1) 
EDM{Fl,F2) = p(a>k)xp<.<ol)x ^ )xW(cU/> 

x    ^     ?=1   L' P      ' 1   1   L   P        1   1 

„here f, ,, are tau». „.,, and *.,, are prior probability of occurrence of class „, and ., respectively, „.,, is the number 

of pattern, in dass .„and *<» are two dements vectors from dass ., Thi, equa.io„ 1 accumulates the distance between eve, 

pair of two-element patterns that is from a different class. 

S Xhe two TmenLnal problem, it is easier to evaluate the performance of the proposed neural network. 

We use the Euclidean distance measure to evaluate the separability of ^^^ —^^ouM^w    = 
combinations is 124.   Figure 9 shows the Euclidean distance measure.of 124 ^d^^^^ combination between 
features. The highest separability combination which mdicates a ^'^uchdean ^^ microcalcif»cation image, 
the raw feature 02 [SI] and 14[ax].in which SI istheanjaof ™™*^™1« s^^ of ^calcifications in a binarized ;| 

ax is the length of semimajor axes of the best-fit e. ipse^J^* ^ ^™Reure 9, so that it is redundant to select | 
microcalcification image. But there are several peaks of the E^«^ *s^^^ 0f this database to eliminate the redun- :| 
one two dimensional combination. Then we apply K-L expansion to the cov^^iSion of this database The K-L01 feature ,? 
dancy of raw image features. Table 2 shows eigen values and e.gen vectors of the d stnbur^*^" feature mainly * 

,„ which the eigen value is maximum ^-^« ^Z  ^sleluc^is^leasure of 124 two | 

consists of raw image ^^^^^'^ Le combination which indicates a maximum Euclidean d.stanc ^ 
dimensional combinations from 16 K-L fea ures. ™e most sepa mean ^ ^ m0S, 
measure is the combination between K-L01 and K-L02   Hovveveth; resu . <tf j ^^ afe ,0 g 
separable combination is this combination between K-L01 and K-L02, because the e.cen vaiu«oiin» in j|$ 

much b   ger than the other combinations so that .here is no. much redundancy ,n seiec.'"-« > "''S*    "^ °edk 4.01 *>$ 
Fi" „re 1    13 and 14 show .he dis.ribu.ions of feature combinations berween .he raw tea ores; 01 and 14 .he normIzedK       „^ 

fnol'lized K-L05. and the normalized K-L 0. and the normalized ^^^^^^^l^% 

^,r^s= 
K-L features. .& 
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Table 2 Eigen Values and Eigen Vectors of the Distribution of this Database 

IS»' : Eigen Values = 
(0.00,        -0.00, 0.00, 

K-L16 K-L15    K-L14 
0.00, 0.00, 0.00, 0.00, 0.00, 0.01. 0.01, 0.02, 0.03, 0.04, 0.06, 0.12, 033) 

K-L13 K.-L12 K-Lll K-L10 K-L09 K-L08 K-L07 K-L06 K-L05 K-L04 K-L03 K-L02 K-L01 

gjoen Vectors = 
gaw Feature 

039 
-0.45 
-0.24 
0.13 
0.21 

-0.18 
-0.06 
0.17 
0.05 
0.27 
0.09 
0.06 
0.06 

-033 
0.23 
0.42 

K-L09 

0.07 
-0.07 
-0.06 
0.21 

-035 
0.48 

-0.05 
0.23 
0.20 

-0.12 
0.15 

-036 
0.42 

-0.19 
0.19 

-0.22 
K-L08 

-0.03 
0.03 

-0.00 
-0.18 
0.04 

-0.33 
-0.04 
-0.19 
-0.08 
0.10 

-0.05 
-0.50 
0.61 
0.19 

-0.24 
0.24 

K-L07 

Raw Feature Combination 

^ Figure 9 The Euclidean distance 
| measure of 124 two dimensional com- 
%  blnations from our 16 raw features. 

K-L Feature Combination 

Figure 10 The Euclidean distance 
measure of 124 two dimensional 
combinations from 16 K-L features. 

0.02 
0.00 
0.05 
0.10 
032 
0.28 
0.09 
0.11 

-0.59 
0.15 

-0.47 
-0.26 
-0.03 
0.07 
030 

-0.06 
K-L06 

25- 

20- 
5 
i 

5 
5 
o 
|  '0- 
tu 

5- 

, 1 ..    1 
1  1    1 

i i        i i         '1' 

-0.10 
-0.19 
-0.16 
0.05 
0.01 
0.46 

-0.13 
0.07 

-0.05 
-0.03 
-0.05 
-0.16 
-0.26 
-0.03 
-0.66 
037 

K-L05 

0.06 
0.16 
0.14 
0.06 
0.05 

-0.11 
0.13 
0.05 

-0.20 
0.02 

-0.17 
0.21 
0.26 

-0.70 
-0.41 
-0.23 

K-L04 

-0.09 
-0.08 
-0.10 
-0.00 
-0.07 
0.27 

-0.11 
0.00 

-0.15 
-0.02 
-0.13 
0.67 
031 
028 
0.02 
0.18 

K-L03 

-0.17 
0.26 
0.12 

-0.05 
0-54 
035 
0.01 

-0.08 
0.29 
0.49 
032 
0.03 
0.12 

-0.03 
0.00 

-0.03 
K-L02 

033 
033 
035 
038 

-0.04 
-0.04 
037 
037 
0.07 

-0.02 
0.05 
0.03 
0.02 
0.27 

-0.12 
032 
K-L01 

80 100 
Normalized K-L Feature Combination 

■85*5. 

Figure 11 The Euclidean distance 
measure of 124 two dimensional 
combinations from 16 normalized K- 
L features. 

1000- 

♦   BENIGN 
0    MALIGNANT 

100- 

0- M**N8«^P* *° *"**0 ° °c 

'100- 

1                  1 I 1 
1000 

Raw Feature 02 

Figure 12 The distributions of 
raw feature 02 and 14. 

1.0- 

0.5- 

o 
BENIGN 
MAUGNANT 

o 

H 
u. 
-j 

0.0- 

■0.5- 

•1.0- 

-1.5- 
i           i       r 1  

°  o0      o 
o     o<b   o 

♦o    ° o     o 

K-L Feature 01 

Figure 13 The distributions of 
K-L Feature 01 and 05. 

*   BENIGN 
O    MALIGNANT 

o° * o*      ♦ 

—1— 
0.5 

—; \— 
1.0 1.5 
K-L Feature 01 

Figure 14 The distributions of 
K-L Feature 01 and 04. 
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BENIGN MALIGNANT 

OUTPUT i 

HIDDEN 
UNITj 

2.4. Neural network 

2.4.1. Background of RBF neural network and diagram 
Here we review briefly the central features of the Radial Basis Function network. For a more 
extensive discussion see Broomhead and Lowe (1988)[6]. The network has a three layer 
feedforward architecture as shown in Figure 15. Input vectors x are propagated to the hidden 
unit (hidden unit) each of which computes a hyperspherical function of x, so that the output of 
the j th hidden unit is given by 

INPUT p 

K-L FEATURE 1        K-L FEATURE 2 

Figure 15 Architecture of a 
Radial Basis Function net- 
work. 

X-Y (2) 
J      \\\      J\\ 

where Y is the center of the Radial Basis Function for unit;', and ||...|| denotes a distance mea- 

sure that is generally taken to be the Euclidean norm. The nonlinear function 0 can be chosen 
in variety of ways and can in principle vary from one hidden unit to the next. For example, we 
have taken a Gaussian nonlinearity. 

(3) 

The outputs of the network are formed from the weighted sum of the outputs from the hidden units: 

ZJ=5>. 'jTj 
(4) 

where the synoptic weights a>r are adaptive variables that are set during the learning phase. Training data are supplied to the 

network in the form of pairs (x^ ,t \ of input and target vectors, where P =1 ...P labels the individual training pairs. The learning 

algorithm aims to minimize the sum-of-squares error defined by 

^ f(v,)2 (5) 

where zi =z;(x ) denotes the output of unit i when network is presented with input vector xp .At a minimum of E we have 

BE 

3 CO:; 
= 0 (6) 

Unlikely the widely used technique of error backpropagation(Rumellhart and McClelland 1986)[7] the leaning algorithm for RBF 
networks corresponds to the solution of linear problem. Therefore the training of the network is a fast procedure as detailed below. 

8rf(M"'),.j^ k kj IP 
Up jp 

where the matrix M ,which is the covariance matrix of the transformed data, is defined by 

kp^jp My-H 

(7) 

(8) 

H 

■k 

where <pkp^k(xp) and *;/)=*;(x,). 

2.4.2. Former RBF neural networks 
An important consideration in setting up an RBF network is the choice of the number, center vy. and width 0] of the Radial 

Basis Function (i.e., the hidden unit). The most natural choice is to let each data sample point in the training set correspond to a 
Radial Basis Function center. In this case the number of degrees of freedom in the network equals the number of items of data, and 
the network function fits exactly through each data point. If the data appear regular, but are contaminated by noise, the network wil 
learn all the details of the individual data points, rather than representing the underlying trends in the data. This phenomenon IS 
sometimes called overfitting. There are three main ways to avoid overfitting. The first, regularization (Tikhonov and Arsenin 1977. 
Bishop 1991)[8], reduces the "number of parameter measurements" (MacKay 1992) in a large model (e.g., the full model) by J| 
adding a weight penalty term to the minimization criterion. For example, minimization of the ener gy Es 

(9) Es=\l l(Vfc) +AI H 
"fsK 

• J 

is zero-order regularization. The regularization parameter A has to be chosen a priori or estimated from the data. The second ^'« 
to avoid overfitting is to explicitly limit the complexity of the network by allowing only a subset of the possible centers to PaniC" J|| 
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i. pate. This method has the added advantage of producing parsimonious networks. Broomhead and Lowe (1988) suggested choosino 
, such a subset randomly from the training mputs. Chen et al.(1991)[9] used forward seiection to choos  the centefs of le hS 

■***? P^?^-,00!-5"^0^-   ^e third way to avoid overfitting is to find the approximated solution of cent r and Ts 
after limiting the complexity of the network. At a minimum of Es we have 

3Es _ 

wr° (io) 
j 

dEs 

do-' (ID 

es w 

Ütfö 

IP 

ft 

Gradient-descent is probably the simplest approach for attempting to find the solution to this problem though of course it is not 
guaranteed to converge (Tomaso Poggio and Federico Girosi 1990). In the gradient-descent method the vaSes of v and that 
minimize Es are regarded as below: J ' 

AY: 

ACj=-t 

3Yj 

, dEs 

3GJ 

(12) 

(13) 

2,4.3. The proposed Trend-Oriented RBF (TRRF) 

%4i i(z¥-„)*+n± (14) 

AY; — 

Aa.»-/S 

3—i 
,Y. 

J—i. 
(ja. 

(15) 

(16) 

where /; is a learning parameter which is related to the rate of convergence 

Figures 16,17 and 18 show the classification performance based on the feature combination between K-L01 and K-L04 

S 
o 

O 

K-L01 

figure 16 Full size RBF. Training 
Error = 0.0. Training Error comes 
from the square root of E (Eq. 5). 

K-L01 

Figure 17 Former RBF. Training 
Error = 83.0. Training Error comes 
from the square root of E (Eq. 5). 

K-L01 

Figure 18 Proposed TRBF. Training 
Error = 88.2. Training Error comes 
from the square root of E (Eq. 5). 
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1- o 
o 
-J 

o 
_1 

v i  m K-L01 

after the learning phase regarding the full size RBF, the former RBF and the 
ntrf TRBF respectively The full size RBF has the same number of neurons 

nc^ 
method of equations 10 and 11 in which the cost catena is not Es (Eq. 9) but £ 
TEO 5) Botn the former RBF and the proposed TRBF have 20 neurons. The da k 
do* and the white dots denote benign pattern and malignant patterns, respec^ 
üve y The brightness of the classification areas are the opposite:, the, guy an 
Irk areas denote benign and malignant classes, respectively. The black dots 
denote the neuron positions. The white area is classified as neither bemgn nor 

malignant. 

^ RESULTS 
The performances of K-L features and the TRBF neural network are 

evaluated through the Round-Robin method, where one sample is tested after the 
earS»based on the rest of the 127 samples. We use the K-L feature combma- 
^between K-L01 and K-L04. The LABROC4 algorithmic *vdopedbv 
Metz et al. is used to fit the ROC curve to the continuous data from the TRBF 
otitL As you can see in Figure 18, our neural network outputs bemgn value [0, 
1  aPnd ma ignant value [0,   ] separately. If the output value is zero, the data , 

K-L 01 
Figure 2U = 0.01 Training Error 
= 90.7. where the number of neu- 
ron is 20. Training Error comes 
from the square root of E (Eq. 5) 

0.0 0.4 0.6 0-6 
False-Positive  Fraction £ 

Figure 22 ROC curve at varioüsparaija 
eters Az = 0.55 <*= 0.001Az = 0.68*j 
= 0.003Az = 0.49 at £ 0.01 ** 

1] and malignant value [0, 1] separately. It me output van* —-; ^ data is dassified as neither benign nor mail**] 
classified as negative. For example ,f both outputs ™™*"T^ % £f t conversion must be applied to makci^ 
However, the LABROC4 algorithm does not allow such separated outputs, so      outpu ^ 

combined output in [0, 1]: S 

tf =o.s-(tb-tm)*' 

,. =0.5 + (im-rA) x0.5,f„ > th 

„he,e ,, is.heeombinedou,pu,, „ „heou.pu.of,he benign node, and ,. i, the ouipu, of ,he „aiignan, „ode. «*«- 

JaT,/ is 0. ,he calcifieahon is benign, .f ,he eombined value ,, is .. ,he calafioanon ,s mahgnan, 

3 1  rnmnnrison ba^H on regulari/ntion parameter 1 narameter the more rc8ulariij 
^^-The A parameter is able to control the degree of regular -non The b gger the A   a am   e x     <| 

Figures 19,20and21snowthe^^^ 
0.003, and 0.01, respectively. Figure 22 shows an KUC curve ai vawuua    v 

achieve a high performance of Az on the ROC analysis. 
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K-L01 
Figure 23   12 neurons.   Training 
Error = 93.8.  where the A param- 
eter is 0.003. Training Error comes 
from the square root of E (Eq. 5) 

K-L01 
Figure 24   20 neurons.   Training 
Error = 88.2. where the A param- 
eter is 0.003. Training Error comes 
from the square root of E (Eq. 5) 

Si M, 
8R€I ■GsäS'' 

§-| 
lfm 

&m p» 
4-fyS if*-. 

mm m 

V2, Comparison based on the number of neurons 
The degree of regularization deeply depends on the number of neurons. 

According the size of this database, the upper limit of the number of neurons 
icons to be around 20. Because the number of the free parameter of the proposed 
TRBF is 100 when the number of neuron is 20. The network generally becomes 
more regularized at the decrement of the number of neuron. But if there is not 
itnough neurons to form the trend of the distribution, this situation cannot be 
galled regularization. Figure 23, 24 and 25 show the classification results with 
various number of neurons. The number of neuron in Figure 23,24 and 25 are 12, 
20, and 24, respectively. It seems that there is not enough neurons in Figure 23. 
figure 26 shows ROC curve at various number of neurons. The appropriate num- 
ber of neurons is required to achieve a high performance of Az on the ROC analy- 
lll. 

4. DISCUSSION AND CONCLUSION 
gfi We propose the feature selection method and the Trend-Oriented Radial 

JMJls Function (TRBF). The two dimensional K-L features are more distinguish- 
JJc than the raw two dimensional feature combination. The proposed TRBF net- 
Pfk has a better ability to define the trend of the distribution than the former RBF. 
,j!iurc 27 shows the comparison of ROC analysis between our proposed system 
fMonc trained radiologist. According to ROC curve this system indicates a better 
|S!T0rmancc than one trained radiologist. But we do not mean that these selected 

Urcs arc better than this radiologist. As you can see in Figure 14, the pattern 
§Mrib '"tion of K-L Feature 01 and 04,  two classes, benign and malignant, are 

WM overlapped. It is true that the proposed TRBF neural network boldly regu- 
"* this pattern distribution and that its regularization sometimes works better 
»his radiologist. 

•     Our feature works are (1) more theoretical discussion of the appropriate 
r of neuron and regularization parameter (2) the gathering of more data 
IJU) more investigation of how to use ROC analysis against RBF type neu- 

.     0rk. The RBF type neural network has a problem using ordinary ROC 
• Unlikely the widely used technique of error backpropagation, the RBF 
rai network may have the area which is not classified as any class. If the 

^   crn falls on such non-classified area, every output should be negative. As 

K-L 01 
Figure 25 24 neurons. Training Er- 
ror = 80'.4. where the A parameter is 
0.003. Training Error comes from the 
square root of E (Eq. 5) 

0.4 0.6 0.S 

False-Positive Fraction 

Figure 26 ROC curve at various A pa- 
rameters Az = 0.54 at 12 neurons, 
Az = 0.68 at 20 neurons, Az = 0.50 
at 24 neurons 

~\ r 
0.4 0.6 

False-Positive Fraction 

T 
0.8 

Figure 27 ROC comparison be- 
tween system and one radiologist. 
The system consists of 20 neurons 
and the regularization A = 0.003 
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we discuss in the equation 17, the system should make its output 0.5 in such a case. When the data pattern falls on the area which is 
overlapped with two classes, the system also outputs 0.5. In the former case, that pattern might have to be rejected. We can only say 

here that another ROC analysis is required for the RBF type neural network. 
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1. INTRODUCTION 

1.1. Objective 
The objective of this project was to evaluate image quality of digital mammography based on 
computed radiography (CR) and high resolution film digitizer and develop a strategy to 
implement digital mammography into the military diagnostic imaging systems (MDIS) 
environment. 

1.2. Project Schedule 
Start Date: October 1,1994 
End Date: December 31,1995 
There are total 15 months which are divided into 5 quarters. 
First Quarter (October 1. 1994 - December 31. 1994) 
Budget request: 40% 
Goals: 1. Set up of an experimental system. 

2. Study of physics characterization of data acquisition modules. 
3. Data collection and database management. 

Second Quarter (January 1. 1995 - March 31. 1995) 
Budget request: 20% 
Goals: 1. Collection of 10 clinically relevant cases in all modalities. 

2. Comparative reading of 10 cases in hard copy and soft copy. 
Third Quarter (April 1. 1995 - June 30. 1995) 
Budget request: 20% 
Goals: 1. Collection of 10 clinically relevant cases in all modalities. 

2. Comparative reading of 10 cases in hard copy and soft copy. 
3. Technical evaluation of MDIS database to determine suitability for 
digital mammography. 

Fourth Quarter (July 1. 1995 - September 31. 1995) 
Budget request: 10% 
Goals: 1. Collection of 20 clinically relevant cases in all modalities. 

2. Comparative reading of 20 cases in hard copy and soft copy. 
3. Determination of MDIS workstation functionality for digital mammography. 

Fifth Quarter (October 1. 1995 - December 31. 1995) 
Budget request: 10% 
Goals: 1. Comparative reading of 10 cases in hard copy and soft copy. 

2. Data analysis. 
3. Final report. 

1.3.  Participants 
• Case selection 

- Rebecca Zuurbier, M.D., Director of Breast Imaging, GUMC 
- Jaquelyn Hogge, M.D., Mammographer, GUMC 

• Collection of Fuji CR9000 and screen film mammograms - Dot Artz, R.T., R.M. 
• Digitization of screen film mammograms - Two part time students of Georgetown University 
• Data management and image processing - Jyh-Shyan Lin, Ph.D., ISIS Center, GUMC 
• Vicom display workstation - Akira Hasegawa, Ph.D., ISIS Center, GUMC. 
• Comparative reading - Five board-certified radiologists of Radiology Department, GUMC 

1. Matthew T. Freedman, M.D., M.B.A. - Clinical Director of ISIS Center 
2. Rebecca Zuurbier, M.D. - Director of Breast Imaging 
3. Jaquelyn Hogge, M.D. - Mammographer 
4. Wendelin Hayes, D.O. - Associate Professor of Radiology 
5. Curtis Green, M.D. - Radiologist 

ISIS Center, Dept. of Radiology, GUMC 



2. EXPERIMENTAL SYSTEM  CONFIGURATION 

2.1. Set up of an Experimental System 
The experimental system configuration is shown in Figure 1. The key components are: a Fuji 
CR9000 (FCR9000), a Lumisys film digitizer, a data acquisition and system management 
(DASM) host Sun workstation, a digitizer host Sun workstation, and a Vicom high resolution 
display workstation. 

The Fuji Computed Radiography 9000 Svstem 
The DASM controls the data transfer from the FCR9000 to the host Sun workstation through 
the small computer system interface (SCSI) cable. Each CR image contains a 2048 bytes 
image header. The CR images were then processed and transferred to the Vicom display 
workstation. A second channel interface board (SCIB) was installed for the purpose of 
simultaneously interfacing with DASM and an optical disk device. Original CR images 
including biopsy specimen were backed up in the optical disks. 

The Lumisvs 150 High Resolution Laser Film Digitizer 
Conventional screen films (SF) were digitized by a Lumisys high resolution film digitizer. 
Digitized SF images were transferred to the digitizer host Sun computer through the SCSI, 
processed, and then transferred to the Vicom display workstation. 
• The Lumisys 150 meets the film digitizer requirements by MDIS which are variable spot 
size, different film sizes (from 8" x 10" up to 14" x 17"), minimum spot size of 210 microns, 
and 10 bits minimum dynamic range (i.e., 10 bits per pixel). The density resolution and 
precision is a linear function from 0 to 3.5 optical density (OD). The Lumisys 150 film 
digitizer can determine the film size automatically. It can convert films sized from 8" x 10" up 

to 14" x 17" into digital images of 2048 pixels x 2560 lines with 12 bits per pixel (10 

Mbytes). The 8" x 10" films can also be digitized at 50 (im spot size which is equivalent to 

4096 pixels x 5120 lines with 12 bits per pixel (= 40 Mbytes). The laser spot size can be auto- 
adjusted accordingly. 
• The Lumisys 150 does not provide automatic sheet feeder. A more advanced Lumisys 200 
digitizer will have the function of automatic sheet feeder which is able to hold and automatically 
feed at least 10 x-ray films of intermixed sizes. The digitizer generates two file formats: raw 
binary image and TIFF compressed images for image preview. The image previewing 
software is the x-window view (XV) software program run on the SUN digitizer host 
computer. The Lumisys 150 does not support the American College of Radiology (ACR)- 
National Electrical Manufacturers Association (NEMA) standard. 
• Phantoms, such as CIRS, ACR, CDMAM, step wedge, and SMPTE, were digitized at 50 
micron and 100 micron and displayed on the Vicom display workstation. The Lumisys 
digitized phantoms showed satisfactory quality. 
• The Lumisys high resolution digitizer (Model: 150) is set up to digitize conventional SF at 
100 pirn resolution. Currently, the Lumisys digitizer is now located in the mammography 
reading room in Georgetown University Medical Center (GUMC) and is being used routinely 
to digitize clinical cases. Each clinical case consists of four recent and four previous 
mammograms with pathology reports. 
• The Vicom display workstation is a Pixar-based system which has four high resolution 
MegaScan monitors. Each display monitor can display image data of 2048 x 2560 x 8 bits. 
The display workstation provided window-and-level function for adjustment of image 
brightness and contrast. Each monitor can be manipulated individually. 

ISIS Center. Dept. of Radiology, GUMC 
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Figure 1. Experimental System Configuration. 
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2.2.    Study of Physics Characteristics of Data Acquisition Modules 

* Quality control (QC) on   a Fuji printer and a Fuji CR9000 

* PC of 18 cm x 24 cm image plate dP): 

Every morning each 18 cm x 24 cm IP received secondary erasure through FCR 9000 to 
ensure that a properly erased IP was in each cassette before any images were obtained. This 
process reduces possible residual radiation in the plate and ensures the best possible image. 

* PC of Fuji 9000 laser printer (LP): 
Every morning a cleaning film was run through the LP, then the density and check density 
were adjusted. A step wedge was produced from both steps. After the step wedge pattern is 
obtained from the check density, the optical density values was displayed on the LP display. 
The values and graph similar to sensitometry graph for a film processor were recorded. 

* PC of mammography film processor: 
Normal sensitometry graphing, cassette cleaning, exposure monitoring were performed 
according to ACR standard. 

The quality control for mammography film processor and Fuji LP was performed by in- 
house engineering. 

* Lumisys Film Digitizer and the Vicom Display Monitors 

* Lumisys film digitizer: 
We have performed maintenance of the Lumisys scanner periodically. The maintenance 
includes dust removal of the reflection mirror, the pinch roller, and the aperture of the 
detector, and adjustment of the voltage of both the main and the reference detectors [1]. The 
digitizer is also calibrated based on a Lumisys test pattern. The maintenance is to assure the 
digitization quality and calibration of the digitizer. 

»Vicom workstation: 
The Vicom system has four 2k x 2.5k display monitors. Each monitor can display a full data 

set of a 8 x 10" mammogram digitized at 100 micron. The brightness is 60 foot-Lamberts 
and the gray level is 256 shades. Since there is no single set of window (i.e., contrast) and 
level (i.e., brightness) values for every image display, the look-up table of the system was 
preset to a set of window and level values visually determined by a physicist, a registered 
mammographer, and a scientist. The purpose is to adjust the two monitors such that they 
have similar intensity and contrast. The contrast and brightness can be adjusted by using a 
trackball during the study of comparative reading. 

ISIS Center, Dept. of Radiology, Gil MC 



3. DATA COLLECTION AND MANAGEMENT 

3.1. Case Selection and Data Collection Protocol 
The database used in this study included 50 cancerous and non-cancerous cases. All the cases 
contained bilateral breast images, radiology reports, and related pathology reports. Biopsy was 
used as the standard proof of cancer or non-cancer. Each set of bilateral mammograms 
contained either left-right cranio caudal (CC) or left-right mediolateral oblique (MLO) views. 
We collected 50 CR soft copies, 50 CR hard copies, 50 SF hard copies, and 50 soft copies of 
digitized films. Table 1 lists the collected database of the 50 clinically relevant cases. The table 
shows fake patient identification numbers (ID) for patient confidentiality. A similar table with 
real patient name and ID is available and kept securely at GUMC. In the table, "BRST" 
represents breast, "BX" represents biopsy, "MAMMO" means mammogram, and "POS FOR 
CA" means positive for cancer. One half of the cases contained microcalcifications, one half of 
cases contained masses, and some cases of architecture distortions were included. Films were 
digitized in such a way that most patient demographic data were excluded. 

3.2. Data Management 
• The Lumisys model 150 film digitizer was set up at 100 micron scanning mode. 
• Actual size of hard copy: 

- Hard copy SF: 8 inch x 10 inch. 

- Hard copy CR: 11 inch x 14 inch. 
• Actual size of soft copy: 

- 100 micron/pixel for the CR soft copies. 
An image size is 8,404,136 bytes (including image header) per CR soft copy. 
-100 micron/pixel for the soft copies of digitized SF. 
An image size is 10,485,760 bytes (including image header) per digitized SF. 

• The soft copies of SF and CR both contain 2,048 bytes image header. 
•Storage of soft copies: DEC optical disks (595 MB per optical disk). 

A set of two digitized films (left.and right breasts) and two soft copies of CR (left and right 
breasts) has approximately 40 Mbytes, hence for 50 cases of processed and non-processed 
images we ned 50 cases x 40 Mbytes/set x 2 = 4 Gbytes = 8 DEC optical disks. For other 
ISIS research projects, such as the classification of benign and malignant microcalcifications, 
we have also digitized the mammograms at 50 |im resolution using the Lumisys film 
digitizer. Digitized image data were stored on optical disks as well as a Hewelett-Packard 
(HP) jukebox. 

3.3. Image Processing  Protocol 
- Decode the image headers of Lumisys digitized images. 
- Encode image data - rearrange display scanning lines. 
- Attach Pixar II image header. 
- Move images to the fast disks of Vicom workstation for display. 

ISIS Center, Dept. of Radiology, GUMC 
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4. COMPARATIVE READING 

4.1. Preference Study of Hard Copy and Soft Copy of Screen Films 
We performed a preference study to evaluate image quality of digital mammography derived 
from conventional screen films (i.e., hard copies) and a high resolution film digitizer (i.e., soft 
copies). We wanted to compare one view (either CC or MLO) of original mammograms with 
the digitized film at 100 micron spatial resolution. The SF hard copies were digitized and 
directly converted to Vicom format (see Section 3.3 Image Processing Protocol). Five board- 
certified radiologists, Dr. Wendelin Hayes (radiologist 1), Dr. Jaquelyn Hogge (radiologist 2), 
Dr. Matthew T. Freedman (radiologist 3), Dr. Curtis Green (radiologist 4), and Dr. Rebecca 
Zuurbier (radiologist 5), participated in this study of preference reading of soft and hard 
copies. 

• Set up of environment for human readers 
The reading environment for human readers was set up as follows: 
• Low level ambient light. 
• No time limit in the comparative reading of each case. 

• Radiologists can use trackball to control the window-and-level while viewing soft copies on 
the Vicom monitors. Note that, in this study, the window-and-level was controlled by the 
principal investigator while the radiologist requested the change of the intensity and contrast 
of the displayed images. 

• Light box was used with emulsion side facing the reader. 
• Human readers have to fill out the questionnaires (see Section 4.2) provided in this study 
• Pairs of hard and soft copies of an SF will be displayed on the light box and two Vicom 

monitors, respectively (Figure 2). The human readers filled out the questionnaire. 
• Hard copies and soft copies are both displayed in anatomically corrected views. 
• Each hard copy was labeled as #1, #2, etc. The patients' demographic data on the screen 
films were covered up (on the dull side of the SF) by using black electrical tape. 

• Comparative reading and reading-order effects 
• Sample size (Table 1): 25 cases of proven biopsy cancer and 25 cases that appeared 

malignant but were proven by biopsy to be benign. 
• In the first 25 cases, two of the human observers first read hard copies and then soft copies 

of the SF while the other three read the two modalities in the opposite order. In the second 
25 cases, the two of the human observers read soft copies of the SF first and then hard 
copies while the other three read the two modalities in the opposite order. The purpose of 
this reading order arrangement was to reduce the reading-order effects [2]. The reading- 
order effects result in the biases that occur in a situation when two or more equivalent images 
of a particular patient are read in different order by the same observer. It is normally the case 
that the image read last will tend to be interpreted more accurately than the image read first if 
any relevant information is retained by the observer from a reading of one image of the 
patient to the next. 

• During the comparative reading, the radiologist can always look back-and-forth to the two 
image modalities retrospectively and repeatedly. 

• The questionnaire contained nine questions with check mark areas. If no lesions, such as 
microcalcifications (questions I and 2), masses (question 3 and 4), and asymmetric densities 
(questions 5 and 6), were found, the check mark areas were left blank. On the other hand, if 
both hard and soft copies of SF were equally well rated, both areas were marked. 

ISIS Center, Dept. of Radiology, GUMC 



Light Box Vicom Display Monitors 

Magnifying Glass 

Fig. 2. Comparative Reading. 
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4.2. Questionnaire for Comparative Reading 

Soft copy vs. Hard copy of SF 

Viewer initial: Date:  

1. On which do you detect microcalcifications better? 
Hard copy or soft copy . 

2. Which one better characterized the microcalcifications as to malignant vs. benign? 
Hard copy or soft copy . 

3. On which do you detect masses better? 
Hard copy or soft copy . 

4. Which one better characterized the masses as to malignant vs. benign? 
Hard copy or soft copy . 

5. On which do you detect asymmetric density better? 
Hard copy or soft copy . 

6. Which one better characterized the asymmetric density? 
Hard copy or soft copy . 

7. Do you have a preference? Hard copy or soft copy . 

8. Do you see anything of clinical importance on the hard copy that you do not see on the soft 
copy?     Yes or No  

If yes, what?. 

9. Do you see anything of clinical importance on the soft copy that you do not see on the hard 
copy?     Yes or No  

If yes, what?  

*Comment:   

ISIS Center, Dept. of Radiology, GUMC 



5. QUESTIONNAIRE RESPONSES AND DATA ANALYSIS 

5.1.   Questionnaire  Responses 

From the questionnaire (a pair of soft vs. hard copies of SF), we obtained histogram bars of 
the number of soft and hard copies of SF which better characterize microcalcifications, masses, 
and asymmetric density as to malignant vs. benign. Moreover, we will have the number of 
preferred soft and hard copies of the five human readers. The five radiologists' responses to 
the specific questions in the questionnaire are shown in Table 2.1 - Table 2.5 and Figure 3.1 - 
Figure 3.5. In each table, the columns of Ql - Q9 represent answers for questions 1 through 9 
for the 50 cases, H represents hard copy, S represents soft copy, Y means yes, and N means 
no. The answer "both" or "H/S" means that there was no preference, i.e., both hard and soft 
copies were equally well accepted. The blank and the answer "neither" mean that the question 
was not applicable, i.e., the disease patterns were not seen. In each Figure 3.1 - 3.5, Rl - R9 
represent responses to Ql - Q9, respectively, H means hard copy and S means soft copy. 

For all the questions 1 - 7, Dr. Freedman prefers hard copy to soft copy in all cases. 
For all the questions 1 - 6, Dr. Zuurbier prefers hard copy to soft copy in all cases. 

Responses to question 1: 
- On which do vou detect microcalcifications better? 
Dr. Green prefers hard copy to soft copy in 38 calcification cases and no preference in 12 
cases. 
Dr. Hayes prefers hard copy to soft copy in all calcification cases. 
Dr. Hogge prefers hard copy to soft copy in 47 calcification cases and no preference in 3 cases. 

Responses to question 2: 
Which one better characterized the microcalcifications as to malignant vs. benign?: 
Dr. Green prefers hard copy to soft copy in all 37 calcification cases and no preference in 13 
cases. 
Dr. Hayes prefers hard copy to soft copy in calcification cases. 
Dr. Hogge prefers hard copy to soft copy in 48 calcification cases and no preference in two 
cases. 

Responses to question 3: 
- On which do vou detect masses better? 
Dr. Green prefers hard copy to soft copy in 6 mass cases and no preference in 26 cases. 
Dr. Hayes prefers hard copy to soft copy in 23 mass cases and soft copy to hard copy in 6 
cases. 
Dr. Hogge prefers hard copy to soft copy in 5 mass cases, soft copy to hard copy in 10 cases, 
and no preference in 35 cases. 

Responses to question 4: 
- Which one better characterized the masses as to malignant vs. benign? 
Dr. Green prefers hard copy to soft copy in 11 mass cases and no preference in 21 cases. 
Dr. Hayes prefers hard copy to soft copy in 28 mass cases and soft copy to hard copy in one 
case. 
Dr. Hogge prefers hard copy to soft copy in 4 mass cases, soft copy to hard copy in 8 cases, 
and no preference in 38 cases. 

Responses to question 5: 
- On which do vou detect asymmetric density better? 
Dr. Green prefers hard copy to soft copy in 3 asymmetric density cases and no preference in 18 
cases. 

10 
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Dr. Hayes prefers hard copy to soft copy in 6 asymmetric density cases and soft copy to hard 
copy in 2 cases. 
Dr. Hogge prefers hard copy to soft copy in 5 asymmetric density cases, soft copy to hard 
copy in 14 cases, and no preference in 31 cases. 

Responses to question 6: 
- Which one better characterized the asymmetric density? 
Dr. Green prefers hard copy to soft copy in 8 asymmetric density cases and no preference in 14 
cases. 
Dr. Hayes prefers hard copy to soft copy in all asymmetric density cases. 
Dr. Hogge prefers hard copy to soft copy in 4 asymmetric density cases, soft copy to hard 
copy in 9 cases, and no preference in 37 cases. 

Responses to question 7: 
- Do you have a preference? 
Dr. Green prefers hard copy to soft copy in all 50 cases. 
Dr. Hayes prefers hard copy to soft copy in 48 cases, soft copy to hard copy in one case, and 
no preference (i.e., equally well accepted) in one case. 
Dr. Zuurbier prefers hard copy to soft copy in 45 cases and no preference in 5 cases. 
Dr. Hogge prefers hard copy to soft copy in 36 cases, soft copy to hard copy in 8 cases, and 
no preference in 6 cases. 

Responses to question 8: 
- Do you see anything of clinical importance on the hard copy that you do not see on the soft 
copy? 
The five radiologists saw microcalcifications on the hard copy that they did not see on the hard 
copy. Sometimes dramatic window-and-level adjustment may enhance the subtle 
microcalcifications, however, the other breast will become either too dark or too bright. 
Though both masses and architecture distortion can be seen on the soft copies, they seem to 
increase the perception of normal soft tissue structures as abnormal. 

Responses to question 9: 
Do vou see anything of clinical importance on the soft copy that vou do not see on the hard 
copy? 
The five radiologists saw microcalcification-like objects on the soft copy which are actually 
film defects on the hard copies.  The five radiologists did not see anything else of clinical 
importance on the soft copy that they did not see on the hard copy. 

11 
ISIS Center. Dept. of Radiology, GUMC 



Table  2.1 Questionnaire Responses  of Radiologist   1 

Radiologist 1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
ID # H/S H/S H/S H/S H/S H/S H/S Y/N Y/N 

1 H H H N N 
2 H H H H H N N 
3 H H H H H N N 
4 H H H N N 
5 H H H H H H H N Y 
6 H H H H H N N 
7 H H H Y N 
8 H H H Y N 
9 H H H H H H H Y N 
10 H H H Y N 
1 1 H H H H H Y N 
12 H H H Y N 
13 H H ' H N N 
14 H H S H H Y N 
15 H H H H H N N 
16 H H H Y N 
17 H H H H H Y N 
18 H H H H H N N 
19 H H H N N 
20 H H H Y N 
21 H H H Y N 
22 H H H H H Y N 
23 H H H Y N 
24 H H H N N 
25 H H H H H N N 
26 H H H Y N 
27 H H H H H Y N 
28 H H H N N 
29 S H H N N 
30 H H H N N 
31 H H H H H H H N N 
32 H H H N N 
33 H S S N Y 
34 H H H N N 
35 S H H N N 
36 H H H N N 
37 "H H H Y N 
38 H H H H H N N 
39 S H neithe r     N N 
40 H H H N N 
41 H H H N N 
42 H H H N N 
43 S H H H H N N 
44 H N N 
45 H H H N N 
46 H H H N N 
47 H H H N N 
48 H H S H H N N 
49 H H S H H N N 
50 H H S H H Y N 

12 
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Figure 3.1 Questionnaire Response of Radiologist 1. 
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Table  2.2 Questionnaire Responses  of Radiologist  1 

Radiologist 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
ID # H/S H/S H/S H/S H/S H/S H/S Y/N Y/N 

1 H H H/S H/S H/S H/S H Y N 
2 H H H/S H/S H/S H/S H N N 
3 H H H/S H/S H/S H/S H Y N 
4 H/S H H/S neither S S S Y N 
5 H H S S S s S N N 
6 H H H/S neither S neither neither Y N 
7 H H H/S neither H/S neither H Y N 
8 H H neither neither neither neither H Y N 
9 H H S neither S neither H Y N 
10 H H S neither neither neither H Y N 
1 1 H H H/S H/S H/S H/S H Y N 
12 H H H/S neither H/S neither neither Y N 
13 H H S S S S S Y N 
14 H H neither neither neither neither H Y N 
15 H H H/S neither H/S neither H Y N 
16 H H H H H H H Y N 
17 H H H/S neither H/S neither H Y N 
18 H H H/S H/S H/S H/S H Y N 
19 H H neither neither S neither H Y N 
20 H H neither neither neither neither H Y N 
21 H H neither neither neither neithei H Y N 
22 H H H/S neither H/S neither H Y N 
23 H H H/S neither S neither H Y N 
24 neither neither H/S neither S neither H N N 
25 H H H neither H neither H Y N 
26 neither neither H/S neither H/S neither neither N N 
27 H H H/S neither H/S neither H Y N 
28 H •   H S neither S neither neither Y N 
29 H H H/S neither H/S neither H Y N 
30 H H H/S H/S H/S H/S H Y N 
31 H H S S S S S Y N 
32 H H H/S neither H/S neither H Y N 
33 H H S S S S S Y N 
34 H H S neither S neither no Y N 
35 H H H/S S H/S S S N N 
36 H H H H H H H Y N 
37 H H neither neither neither neither H Y' N 
38 H H S S S S both Y N 
39 H H H/S neither H/S neithei H Y N 
40 H H H/S neither H/S neithe H Y N 
41 H H H/S S H/S S S Y N 
42 H H H H H H H Y N 
43 H H H H H H H Y N 
44 H H H/S neither H/S neithe H Y N 
45 H H H/S neither H/S neithe H Y N 
46 H H H/S neither H/S neithe H Y N 
47 H H neither neither neithe neithe H Y N 
48 H H neither neither neithe neithe H Y N 
49 H H S S S S S Y N 
50 H H H/S neithe H/S neithe H Y N 
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H        No Preference S 
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H        No Preference S 

50 

H        No Preference S 

R4 

25-1 

0 i 
H        No Preference 
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Figure 3.2 Questionnaire Response of Radiologist 2. 
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Table 2.3 Questionnaire Responses of Radiologist 3 

Radiologist 3 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 

ID # H/S H/S H/S H/S H/S H/S H/S Y/N Y/N 

1 H H H H H H H Y N 

2 H H H H H H H Y N 

3 H H H H H H H N N 

4 H H H H H H H Y N 

5 H H H H H H H Y N 

6 H H H H H H H N N 

7 H H H H H Y N 

8 H H H H H Y N 

9 H H H H H Y N 

10 H H H H H Y N 

1 1 H H H H H H H Y N 

12 H H H H H Y N 

13 H H H H H H H Y N 
14 H H H H H H H Y N 

15 H H H H I H Y N 

16 H H H    I     H H Y N 
17 H H H H H Y N 
18 H H H H H H H Y N 
19 H H H H H Y N 
20 H H H H H Y N 

21 H H H H H Y N 
22 H H H H H Y N 

23 H H H H H H H Y N 
24 H H H H H Y N 

25 H H H H H N N 

26 H H H H H H H N N 

27 H H H H H H H N N 

28 H H H H H H H Y N 

29 H H H Y N 
30 H H H N N 

31 H H H H H H H Y N 

32 H H H H H N N 

33 H H H H H H H N N 
34 H H H Y N 
35 H H H H H N N 

36 H H H H H Y N 
37 H H H H H Y N 

38 H H H H H H H Y N 
39 H H H H H N N 
40 H H H H H Y N 
41 H H H H H H H Y N 
42 H H H H H H H N N 
43 H H H H H H H Y N 
44 H H H N N 
45 H H H H H H H Y N 
46 H H H H H H H Y N 
47 H H H Y N 
48 H H H H H Y N 
49 H H H H H N N 
50 H H H H H N N    | 
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H        No Preference H        No Preference 
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Figure 3.3 Questionnaire Response of Radiologist 3. 
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Table 2.4 Questionnaire Responses of Radiologist 4 

Radiologist 4 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
ID # H/S H/S H/S H/S H/S H/S H/S Y/N Y/N 

1 H H H/S H/S H/S H H Y N 
2 H H H H H/S H/S H N N 
3 H/S H/S H/S H H N N 
4 H H H/S H/S H N N 
5 H/S H/S H/S H/S H N N 
6 H/S H/S H/S H/S H N N 
7 H/S H/S H/S H/S H N N 
8 H/S H/S H/S H/S H N N 
9 H H H H H H H Y N 
10 H H H N N 
1 1 H H H/S H/S H/S H H Y N 
12 H H H H H N N 
13 H/S H H N N 
14 H H H/S H H Y N 
15 H/S H/S H N N 
16 H H H H H Y N 
17 H H H Y N 
18 H H H/S H/S H Y N 
19 H H H/S H H N N 
20 H/S H H N N 
21 H H H/S H/S H Y N 
22 H H H/S H H Y N 
23 H H H Y N 
24 H/S H/S H N N 
25 H/S H/S H/S H/S H N N 
26 H/S H H Y N 
27 H H H/S H H Y N 
28 H H H/S H/S H/S H/S H Y N 
29 H/S H/S H N N 
30 H H H/S H/S H N N 
31 H/S H/S H/S H/S H/S H/S H N N 
32 H/S H/S H N N 
33 H H H Y N 
34 H H/S H N N 
35 H/S H/S H/S H/S H N N 
36 H H H N N 
37 H H H H H Y N 
38 H/S H/S H/S H/S H/S H/S H N N 
39 H H H H H Y N 
40 H H H/S H/S H Y N 
41 H H H/S H H/S H H Y N 
42 H H H/S H/S H/S H/S H Y N 
43 H H/S H/S H/S H/S H/S H N N 
44 H Y N 
45 H H H/S H/S H Y N 
46 H/S H/S H/S H/S H N N 
47 H/S H/S H N N 
48 H H H H H/S H/S H N N 
49 H H H/S H/S H Y N 
50 H H H/S H/S H Y N 
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H        No Preference H        No Preference 
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50- 

H        No Preference H        No Preference 
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Figure 3.4 Questionnaire Response of Radiologist 4. 
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Table  2.5  Questionnaire Response  of Radiologist  5 

Radiologist 5 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
ID # H/S H/S H/S H/S H/S H/S H/S Y/N Y/N 

1 H H H H H H H Y N 
2 H H H H H N N 
3 H H H H H N N 
4 H H H H H H H N N 
5 H H H H H N N 
6 H H H H H N N 
7 H H H H H H H Y N 
8 H H H Y N 
9 H H H N N 
10 H H H H H N N 
1 1 H H H H H H H N N 
12 H N N 
13 H N N 
14 H H H H H H H Y N 
15 H H H N N 
16 H H H H H Y N 
17 H H H H H N N 
18 H H H Y N 
19 H H H N N 
20 H H H H H H H N N 
21 H H H H H H H Y N 
22 H H H H H H H Y N 
23 H H H H H H H Y N 
24 H N N 
25 H H H H H N N 
26 H H H H H N N 
27 H H H Y N 
28 H H H Y N 
29 neithei N N 
30 neither N N 
31 H H H Y N 
32 H H H N N 
33 neither N N 
34 H H H N N 
35 H H H Y N 
36 H H H Y N 
37 H H H H H Y N 
38 H H H H H Y N 
39 neither N N 
40 H H H Y N 
41 H H H H H N N 
42 H H H Y N 
43 neithe N N 
44 H H H H H N N 
45 H H H H H H H N N 
46 H H H N N 
47 H N N 
48 H H H Y N 
49 H H H H H N N 
50 H H H Y N 
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Figure 3.5 Questionnaire Response of Radiologist 5. 
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5.2. Comments of the Five Radiologists 

Dr. Haves's Comments: 
- Prefer the hard copy to soft copy. 
- Microcalcifications were difficult to see on soft copies unless the contrast was increased 

considerably, however, at that time the remainder of the breast is too dark. 
- Microcalcifications can not only be identified more easily on hard copy (10 line pairs), they 

can also be better defined on hard copy as to benign vs. malignant. 
- Due to the magnification with soft copies, masses sometimes are more easily detected and 

better characterized with soft copies. 
- On soft copies it was difficult to evaluate the skin without changes in density. 
- By changing density on soft copy skin retraction can be better detected than on hard copy 

without "hot light". 
- Can better define number and sizes of calcifications and detect more scattered 

microcalcifications on hard copy. 
- Can not determine adequate number of microcalcifications on soft copy. Microcalcifications 

are better delineated on hard copy. However, because of the lower resolution on soft copy, 
some microcalcifications are smudged and can not be seen on soft copy. 

- Some easily identified artifacts on the hard copy almost look like microcalcifications on the 
soft copy. Artifacts are more clearly defined on hard copy. 

Dr. Hogge's Comments: 
- Calcifications are lost on soft copies in areas of dense tissue - this is a serious limitation. 
- Masses are better depicted on soft copies in parts with fatty breasts, but not in dense breasts. 

Dr. Freedman's Comments: 
- Soft copy naturally makes it harder to see microcalcifications and sometimes they can not be 

seen at all. 
- Masses and asymmetry density are lower central on soft copies and therefore harder to 

search. 

Dr. Green's Comments: 
- Manipulation of the window-and-level took time and diverted vision and attention away from 

the image being diagnosed. 
- Some images, especially those containing dense tissues, needed to be enhanced dramatically 

in the contrast, however, the information in other breast areas is lost. 

Dr. Zuurbier's Comments: 
- In general, the soft copy images have a "gauze-y" veil-like effect (and resolution). 
- Soft copy seems to increase the perception of normal soft tissue structures as abnormal. 
- Soft copy loses faint but important microcalcifications in dense tissue. 
- Hard copy provides better sense of the contrast of whole image, normal and abnormal soft 

tissues. 
- See detail of dense soft tissue better on hard copy. 
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6. CONCLUSIONS 

• Image Spatial Resolution - Our study results showed that, in general, the five 
radiologists preferred hard copy to soft copy screen films. It also showed that the disease 
patterns are better characterized on hard copy than on soft copy SF. Because of the spatial 
resolution of the soft copy, some subtle microcalcifications in the dense tissue area are not well 
characterized and become difficult to detect. Furthermore, some obvious film defects on the 
films become microcalcification-like on the soft copy where spatial resolution and contrast 
become lower than those on the hard copy. Specifically, the screen film hard copy has a spatial 

resolution of approximately 10 line pairs per millimeter while the digitized 100 fim SF (i.e., 
soft copy) has only about 5 line pairs per millimeter. The results indicate that high spatial 
resolution is important in the identification of some subtle and faint microcalcifications in the 

dense breast area. Direction digitization of screen film at 100 u.m and without other image 
enhancement is not adequate to retain the important clinical information of the 
microcalcifications, especially those are small and subtle microcalcifications which lie in the 
dense breast areas. The radiologists experience and training in reading soft copy may have 
some effects on the study results. 

• Classification of Benign and Malignant Diseases - The classification of benign and 
malignant disease patterns, such as microcalcifications and masses, presented a very 
challenging task for the radiologists. Our study results showed that the five radiologists 
achieved average 50% accuracy in the classification of benign and malignant disease patterns. 
The five radiologists found single or multiple disease patterns in all 50 cases (see also the 
"MAMMO FINDINGS" in Table 1), however, only 25 cases were biopsy proven cases. The 
50% accuracy on cancer case was measured no matter what the disease - microcalcification, 
mass, or architecture distortion. The study of using artificial neural network (ANN) and 
computer-aided diagnosis- (CADx) to classify benign and malignant microcalcifications is 
currently under intensive investigation at ISIS Center. 

• Display Workstation - The Vicom display workstation which provides 8 bit (256 gray 
levels) display is not sufficient to the contrast information on the films as perceived by the 
radiologists. The contrast and intensity of the abnormal soft tissues as opposed to that of 
normal soft tissues are better perceived on the hard copy; the abnormal and normal soft tissues 
of the soft copy have similar contrast and intensity when displayed on the monitors. In some 
cases, masses and architecture asymmetry were easier to detect on the soft copy partly because 
of the magnification when displayed on the display monitors. However, the high contrast on 
the hard copy make the masses better characterized than on soft copy. 

• Periodic Maintenance and Quality Control - Periodic maintenance of film digitizer 
and QC on Fuji CR9000 and display monitors are necessary in digital mammography of the 
MDIS environment. We are in the process of acquiring a multi-format pattern generator and a 
comprehensive display evaluation system for QC on high resolution display monitors. 

• On-going Researches - The results of this study indicate that, based on our current 
experimental setting, soft copy display is not good enough to be clinically useful. However, 
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improvement and optimization of display equipment and advanced image processing, such as 
the unsharp masking technique provided by Fuji CR systems, may make soft copy display 
more clinically useful. Two possible research directions: one is to apply image processing to 
enhance microcalcifications especially in the dense breast areas of 100 micron images, the other 
is to use 50 mm images and a higher gray level (10 or 12 bit) instead of an 8 bit display 
monitor. 
- The dispay of the full image dat of a mammogram digitized at 50 micron resolution (4096 

pixels x 5120 lines x 12 bits) may require roaming of the image on the 2048 pixels x 2560 
lines display monitor. The potential effects, such as the diversion of vision and attention away 
from the region-of-interest being viewed, caused by roaming and other image manipulations 
need to be further investigated. 
- We have developed a region-based image processing technique to enhance the visibility of 
subtle microcalcifications in the dense tissues. The comparative study of SF and the processed 
100 micron SF images is currently under development. 

7. ADDENDA 

7.1. Acronym / Symbol Definition 

ACR - American College of Radiology 
ACR-NEMA -   ACR-National Electrical Manufacturers Association 
CDMAM - Contrast detail mammogram-phanton 
CIRS - Computerized Imaging Reference Systems 
CR - Computed radiography 
DASM - Data acquisition and system management 
GUMC - Georgetown University Medical Center 
LCC - Left cranio caudal 
LMLO - Left mediolateral oblique 
MDIS - Military diagnostic imaging systems 
QC - Quality control 
RCC - Right cranio caudal 
RMLO - Right mediolateral oblique 
SCIB - Second channel interface board 
SCSI - Small computer system interface 
SF - Screen film 
SMPTE - Society of motion picture and television engineers 

7.2. References 

[1]  Lumisys, Lumiscan Service Manual: Model 100/150/200. Sunnyvale, CA 94086, 1994. 
[2]  C. E. Metz, "Some practical issues of experimental design and data analysis in radiological 

ROC studies," Investigative Radiology, vol. 24, pp. 234-245, 1989. 
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(B) 

(D) 

The result of detecting the regions of suspicious 
masses based on enhanced mammogram. 
(A') enhanced mammogram; 
(B) breast boundary; 
(C) enhancement by segmentation; 
(D) suspicious masses extraction. 



Quality Control of Storage Phosphor Digital 
Radiography Systems 

Matthew Freedman, Dot Steller, Hamid Jafroudi, and Seong Ki Mun 

imoölnt ,QC) °f St°rage Ph°sph0r devi<« » 
31,    m ?SSUnng th3t the ima9e formation en- 
.MAC  It"       9e ^.ana9ement and communication 

(IMAC) system ,s suff.cient for diagnosis. QC of stor- 
age phosphor digital radiography systems is comp.ex 
because of the self-corrective nature of the imaged 
pronssmg software used in these machines. Cur- 
rently, one must produce hard copy to perform ad- 
equate QC. Inspection of images vJh reject anT.yst 
and mspect.on of cassettes and imaging p,ates has 
helped us ln our QC program. For those QC tests using 
control l,m,ts, the appropriate settings for these limits 
are unknown. Starting approximations are given Ret 
ommended tests are described 
Copyright © 1995by W.B. Saunders Company 

KEY WORD: Digital radiography quality. 

Ty GITAL PROJECTION radiography is an 
-1^ important method for introducing radio- 
graphs information into image management 
and communication (IMAC) systems. There are 
four methods of digital radiography currently 
used m medicine and dentistry. These are based 
on storage phosphors, charge coupled devices 
selenium receptors, and image intensifier tubes' 
inis paper will discuss the quality control (QC) 
of devices using storage phosphor technology 
based on the author's experience with Fuji and 
Agfa systems. There have been several prior 
reports on QC of storage phosphor digital 
radiography machines.'-* At this time, the au- 
thors use hard-copy output for performing QC 
of storage phosphor projection radiography de- 
vices. In this report, the term "computed radiog- 
raphy ' (CR) is used to apply to devices using 
storage phosphor technology. 

CR has introduced new requirements for 
quality control that are different from those 
needed with other imaging technologies The 
balancing of optical density that occurs with CR 
systems means that it is more difficult for the 
radiologist to detect malfunction of the equip- 
ment by simple inspection of the image: a more 
complex system is necessary. 

The image processing software of CR devices 
results m a robust system designed to internally 
correct errors in exposure. The mechanisms 
installed to correct errors in exposure also 
function  quite effectively in  minimizing the 
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effect on the final image quality of many inter- 
nal errors of machine functioning that could 
occur. Therefore, in clinical practice one tends 
to see total failure of components rather than 
progressive deterioration of image quality The 
manufacturers of the machines we have tested 
provide only limited supporting functions for 
doing QC of the internal functioning of the 
machine. 

The QC program we use is derived from our 
iü months of experience with an Agfa Diagnos- 
tic Center (ADC; Mortsel, Belgium) prototype, 
49 months of experience with a Fuji (Tokyo 
Japan) AC-1 (modified to an AC-l-f with later 
modification to their high-resolution system) 
and 10 months experience with a Fuji 9000 
Approximately 100,000 Fuji CR images are now 
obtained annually. Information was also ac- 
quired from manuals provided by Agfa and Fuji 
and from attendance at the Fuji course used for 
training their service personnel. 

The most frequent errors detected by our QC 
program are based on human factors rather 
than machine factors. 

In this report, the authors will be describing 
simple QC procedures that can be used to 
assess drift from preselected standards of perfor- 
mance. These standards should be first mea- 
sured after the machine has been initially cali- 
brated by the manufacturer and undergone 
acceptance testing. A longer document on accep- 
tance testing and QC is available from the 
authors.3 It is assumed that the readers are well 
acquainted with the meaning of the image- 
processing factors on the Agfa or Fuji machine 
they operate. Additional information on optimiz- 
ing image appearance is available in the litera- 
ture. •  This report first discusses the types of 
failure and then the method of detecting fail- 
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ures. Suggestions are included for machine 
design changes in CR devices that might either 
decrease the incidence of failures or improve 
their early detectability. 

TYPES OF CR FAILURES 

The purpose of a QC program is to find 
systematic or generalizable failures early enough 
so that their effect on overall performance is 
minimal. The process combines a search for 
minor deviations from standards that, if contin- 
ued, would worsen and a review of specific 
process failures. The difficulties in QC analysis 
are in differentiating minor deviations that rep- 
resent trends toward failure from random varia- 
tions that are self correcting (The data for doing 
this are currently lacking) and the appropriate 
generalization from the specific failure to the 
process that caused the failure. 

Patients vary and, therefore, failure of one 
image may be caused by patient variability or 
machine failure. Each component of a machine 
is designed to have a range of tolerance of 
performance that depends on engineering fac- 
tors related to the cost of greater perfection. 
Therefore, a certain amount of variability is 
expected. 

Failures can result from human failure or 
machine failure. Certain aspects of the design of 
the CR machine increase the chance of human 
failure. Certain human factors increase the 
chance of machine failure. 

HUMAN FAILURE AND IMAGE QUALITY 
OF CR DEVICES 

The most common cause of failed images, in 
our experience, is technologist error. The three 
main causes of technologist error are lack of 
sufficient training in CR, curiosity leading to 
experimentation, and machine complexity. 

Training 

CR is not a simple replacement device for 
screen-film radiography. CR introduces several 
new important concepts that technologists must 
learn. For example, in CR, resolution is depen- 
dent on image plate size; good image quality 
requires the correct selection of the body part 
on the identification (ID) station; two images on 
the same imaging plate (IP) require exposure 

balancing different than in screen film radiogra- 
phy; and post processing is necessary for some 
images. Collimation methods can affect image 
quality on the Fuji AC-1 and Agfa ADC proto- 
type, but, apart from very small field sizes, 
usually do not affect images on the Fuji 9000. 
Because the machine corrects for errors in 
exposure, wide variation in exposure can occur 
and patients may be exposed to excess radia- 
tion.6 Many failures result from lack of proper 
training in this new modality. A prior report6 

shows the long-term beneficial effect of technolo- 
gist training. 

Curiosity Leading to Experimentation 

Technologists are curious about the equip- 
ment they use and are interested in creating the 
best image possible. Given the opportunity, 
some will try to figure out how the machine 
works by trying different settings of the machine 
parameters, knowing they can usually save a bad 
image by post-processing on the workstation. 
Because of a lack of level of access control on 
the ID terminal, what was intended as a one- 
time experiment can be loaded into the ID 
terminal memory as a permanent change affect- 
ing many subsequent images. In our initial 
3-month experience with the Fuji 9000, we 
identified unauthorized technologist-induced 
changes in image-processing settings 12 times. 
Because of this, we incorporated into our train- 
ing program hands-on training on how to prop- 
erly experiment with the system without causing 
damage. By enlisting the technologists into the 
search for better imaging with CR, we both 
decreased the incidence of unauthorized changes 
(one in the last 5 months) and received several 
suggestions for improved image quality that we 
have added to our routine. 

In the ninth month, the Fuji 9000 shut down 
because the memory card was completely filled. 
The system adds each new image processing 
setting to its memory rather than overwriting 
the prior changes. When the memory is full, the 
system shuts down requiring reloading of soft- 
ware. 

Software controls limiting changes in image 
processing settings to a few key operators would 
decrease the unauthorized resetting of the fac- 
tors. 



QUALITY CONTROL 
69 

Machine Complexity 

The operation of these machines is complex 
and can result in errors. For example, the 
technologist must enter the body part radio- 
graphed into the ID terminal. Technologists 
often do several examinations on the same 
patient stacking the cassettes and may not 
remember which cassette represents which body 
part. In our multiple image trauma studies, 
~ 10% of imaging plates will have the body part 
misidentified. When used for bedside examina- 
tions, the lack of a clip on the cassette to hold 
the patient identification card results in a misid- 
entification rate of ~ 1 in 80 images. 

When CR is used to enter data into an IMAC 
system, orientation of the image on the affects 
whether the final image will be upright; select- 
ing antero-posterior or postero-anterior projec- 
tion will affect which side the heart is on, etc. 
The technologist who tries to get a better image 
through post processing or to correct the effects 
of misidentification of body parts to create a 
proper image is limited by lack of knowledge of 
a complex image-processing system. We have 
found that hands-on training in image process- 
ing allows the technologist to correct most of 
the errors and increases technologist satisfac- 
tion. Machine simplification would be impor- 
tant in decreasing the incidence of technologist 
error. 

MACHINE FAILURE AND DECREASED IMAGE 
QUALITY IN CR DEVICES 

There are five components of the machine 
that can result in decreased CR image quality in 
an IMAC system: the cassette, imaging plate, 
image plate reader, image processing software, 
and the image display device. We will not 
discuss the display device. 

Self-Correcting Features ofCR Image Quality 

The designers of CR systems have made the 
systems largely self-corrective to factors that 
might result in image-quality degradation. The 
software that corrects for variation in IP expo- 
sure by measuring the exposure and then setting 
a sensitivity or "S" value to control the final 
image density will also correct variations among 
imaging plate x-ray absorption, IP light emis- 
sion, laser power used in the plate reader, 

deterioration of the light guide and photomulti- 
plier device. It will also correct for certain 
deterioration in the system electronics. Detect- 
ing variations in imaging plates or machine 
function by monitoring the S value in clinical 
cases is likely to be masked by variability in 
exposure settings and patient size. In prior 
work, we found that well trained and supervised 
technologists still showed a fivefold variability 
of S numbers on bedside chest radiographs.6 

A failing CR system that adjusts its sensitivity 
to correct for gradual component degradation 
would introduce more noise into the image (the 
image would have a lower signal-to-noise ratio). 
However, the self-corrective nature of the CR 
machine obscures the visibility of the noise 
through filtering (on the Fuji systems this is the 
RT factor). The Agfa ADC prototype provides 
software for measuring the signal-to-noise ratio; 
the Fuji software does not. 

The self-correcting features for image appear- 
ance built into the CR machines to make them 
robust for variations in exposure make it quite 
difficult to detect gradual machine or IP deterio- 
ration based on clinical image output. There- 
fore, tests of machine function must disable 
these features before the test. 

Cassettes 

The cassettes are one of the weak links in CR 
systems. They need frequent inspection to check 
on the hinges, ID windows, latches, and lead 
backing (if lead backed). Failures of each of 
these have resulted in failures of our Fuji 
system. One third of our 14- x 17-inch Fuji 
cassettes placed in the Fuji 9000 failed in the 
first month because of broken ID windows 
jamming the machine. The machine jammed 
once because of detachment of the lead of the 
lead-backed cassettes. Fuji has redesigned the 
cassettes. We are testing the recently intro- 
duced new model, so far without failures. The 
Agfa cassettes have not broken. 

Imaging Plates 

The IPs develop an electrostatic charge over 
time that attracts dust. Dust can result in white 
or black spots. Intense white spots on an image 
result from reflection of the laser beam more 
directly into the light guide. Black spots in the 
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imaee result from local failures in the erasure/ 
Son of the IP: the nonactivated^rtion o 
the IP will not record the exposure information 
on the next exposure. White dots can be con- 
Zed wkh microcalcifications in digital mam- 
rgraphy and foreign matter in extremity radio- 
is (Digital mammography using Fuji CR is 
S ctical use in Europe and Japan and * m 
clinical trials in the United States.) 

?Ps can develop fissures and scratches on 
their surface. These can be detected on images 
„adefrom these plates and on direct inspection 
of the IP surface. These defects cannot be 
laired and, if they interfere with diagnosis, 
he^should be replaced. On the Fuji system 
he ID number of the IP is recorded on the 

hard-copy image. On the Agfa system, the IP 
v,.r k matched with the image in the ID 

^ da bit We have had to replace three 
station aa damaged in machine 

^ÄuÄ^ 
S 90i0 and Fuji AC1 started to appear afe 
5 months of use. We have rep aced 14 o   he 
H- x 17-inch IPs (two thirds of our IPs of üus 
size), two 10- x 12-inch IPs, and two 18- x 
24-cm IPs for cracks. „„„H TP« for 

We have recently received redesigned IPs tor 
Jtn our Fuji units. The new destgn should 
provide greater mechanical strength. 

IP Reader 
The IP reader contains mechanical transport 

mechanisms, a laser, a light guide, a photomulti- 
plier device, and IP erasure device. Each of 
tse systems can result in image degradation 
The transport mechanism can jam and shut 
Z*Z machine, dust cari interfere, j*h he 
light guide, and the laser, photomultipher, and 
!Sure light can slowly deteriorate or rapidly 
fail   Slow deterioration is difficult to detect 
be aue of the image self-correction feature of 
the solare. Dust on the light gu.de can result 
n streak or lines on the final image. Laser-scan 
position accuracy degradation can result ,n 
uneven edges of a sharply defined object. 

After the initial 3 months of use of the tuji 
90Sta which jams were frequent and usually 
caused by the cassette problems described above, 
wenow experience approximately one jam every 

2 weeks   The machine can jam from IP or 
2 weeics. i ieht-euide malahgn- 
cassette transport errors, ugni g 
ment was detected once on the Fuji AC-1. 1 *e 
Erasure Ut on the Fuji 9000 has failed once 
Snginautomaticshutdownofthemachine. 

The Image-Processing Software 
The image-processing software on CR de- 

vices i   quiteComplex.  Once a machine is 

this inadvertently or as a prank Three times, 
ou   Fuji machine has reverted from our pre- 
yed mage-processing settings to Fujf s ong - 
nal settings during machine repairs and power 
outages. We have not had similar prob ems wnh 
the Agfa processing software. A list ot me 
p'efe^ed image-processing settrngs for 
body part should be maintained so that if the 
Ltüngs revert, the optimized settings can be 
reemered. Because this is a particular problem 
of the Fuji system, it would be helpful if Fuji 
codd providl a memory card to users so hey 
could store their preferred settings and reload 
them as needed. 

ENVIRONMENTAL CAUSES OF DECREASED 
IMAGE QUALITY 

Dust is one of the main causes of image- 
nualitv degradation in CR devices. The IPs, 
XouVuse become static charged and avidly 
attracfdu"  Control of environmental dust * of 

hlgUsSFuji CR devices have to be trained to 
always lose the door of the unit between use. U 
would be helpful if this feature were automatic 
3<s it is on the Agfa machine. . 
"ST„eTght guidge on «he Fuji9000 has r=ed 
Heanini for dust three times in 9 montns, 
hTeler, U is »sualiy c.eaned when «he mactoe 
case is opened for any purpose. Dust is .dem. 
Sin images requiring specia, c eamng 
approximately three times a weefc Because u. 
CR system is a closed system, the ca se««e . 

dust accumulation on the IPs snoui 
within the machine. Because of the amount o 
dust accumulating inside our Fuji 9000   Hij. 
se^ice has recommended that their yearly pre 
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ventive maintenance be performed at 10 months 
to allow full cleaning of the machine. The air 
vents on the machine should be cleaned weekly. 
We usually remove 2 to 4 cc of dust weekly. 

Liquids (especially blood and other protein- 
aceous body fluids) can permanently damage 
the imaging plates and possibly damage the 
light guide resulting in expensive repairs. We 
train our technologists to enclose the cassette in 
a cover when it might be contaminated with 
body fluids. 

QUALITY CONTROL TEST 
RECOMMENDATIONS 

There are three methods appropriate for 
quality control of CR devices: component inspec- 
tion, reject analysis, and control chart methods. 
All three methods are important. 

Component Inspection 

Cassettes and IPs are both subject to failure. 
IPs should be cleaned weekly and whenever dirt 
artifacts are found on an image. This is an 
appropriate time to inspect the cassettes for 
partial failures of hinges, ID windows, lead 
backing, and clasps, and to check the imaging 
plates for scratches, stains, fissures, and cracks. 
Bad components should be replaced. 

Reject Analysis 

Reject analysis or repeat analysis collects all 
images that have been replaced with repeat 
images and attempts to analyze the nature and 
cause of the failure. Failures may result from 
unique problems or generic problems. In CR, 
an analysis of images resulting from repeat 
exposures or from post processing should both 
be reviewed. When hard copy is used, the bad 
images can be kept for later review. When only 
soft copy is used, a paper or electronic record 
should be kept of images requiring repeats. 
Placing the images in an electronic QC folder 
would simplify their analysis. 

Action should be taken based on the reject 
analysis appropriate to the problem found. The 
most frequent problems identified by repeat 
analysis are related to technologist error: im- 
proper positioning, improper exposure factors, 
incorrect selection of body part on the ID 
station, incorrect selection of imaging plate size 
or resolution, and incorrect matching of high- 

resolution IPs with appropriate exposure. The 
action taken in these cases is technologist educa- 
tion. 

Reject analysis resulted in our changing some 
of our preset image processing to accommodate 
a wider variety of patient sizes. 

Control Limit Tests 

Quality control limit tests are set to measure 
a factor repeatedly for possible deviations from 
a standard. Control limits (or action limits) are 
set so that action can be taken when the 
measurement deviates beyond a certain amount 
from the standard. These control limits can be 
derived in two ways: first, from recording a large 
number of readings on machines that are func- 
tioning appropriately and using two or three 
standard deviations from the mean as the con- 
trol limits or, second, by determining the level at 
which the deviation from the standard results in 
some measurable important change in function 
or output or becomes predictive of impending 
component failure. 

Appropriate factors to measure using control 
limits include S numbers, image optical density, 
and signal-to-noise ratio. However, currently, 
setting clinically relevant control limits on these 
factors is mainly guess work. We have not 
detected any incipient machine failures that 
showed variations in these numbers, nor have 
we seen failures of a type expected to result in 
variations in these numbers. 

Monitoring of the S Number 

The S number is used on the Fuji systems to 
indicate the amplification used to correct for 
differences in exposure. There is no Agfa equiva- 
lent. 

Monitoring of the S number in clinical cases 
may indicate problems caused by x-ray machine 
failures or technologist errors. In clinical cases, 
S variability is much more likely to be caused by 
exposure and patient-specific differences rather 
than machine failure.6 

Monitoring of S numbers resulting from a 
standard exposure would detect poor-quality 
imaging plates, deterioration of imaging plates, 
decreased laser power, photomultiplier deterio- 
ration, malalignment of the light guide, and 
partial or complete failure of the erasure pro- 
cess. Each of these failures would result in less 
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signal reaching the computer for analysis. The 
computer would correct for these deviations by 
increasing the S number to create an image of 
appropriate optical density for the body part. 

There are two complementary methods of 
testing these image acquisition components: use 
a standard flat-field exposure in auto mode and 
follow the S numbers graphically over time, or 
set a standard S number in the fixed mode and 
measure the resulting optical densities of the 
serial images. On the Agfa system, one tests the 
system by setting the machine in fixed mode and 
measuring the optical density of the output 
image on serial images. 

Setting the Control Limit on S Numbers 

If one chooses to obtain a standard exposure 
using standard parameters, one should see a 
variability of S numbers with SD of about 10% 
because that is the manufacturing limit set for 
the internal control system of the manufacturer. 
Thus, one can choose to use two or three SDs as 
the control limit. In making this decision, one 
would want knowledge of the clinical impor- 
tance of variations of S numbers of this magni- 
tude and the predictive value of machine failure 
of S number variability that exceeds that limit. If 
one is to accept a 60-point spread from an S of 
200, one would want to know whether that 
magnitude of difference has any clinical signifi- 
cance in diagnosis or any effect on the early 
detection of machine failure. 

Currently we have no information of the 
predictive value of variations in the S number as 
an indicator of incipient machine failure. For 
research purposes, it would be helpful to com- 
pile this data from multiple sites and evaluate 
its predictive value. We are currently compiling 
this data on our two Fuji machines. 

Is it clinically important to limit variation to 
60 units from a mean S of 200? Workers in this 
area would agree that there is some level of 
exposure below which information is lost.7 For 
chest radiographs (which would normally have 
an S of 200), an S greater than 500 may result in 
some loss of information about the locations of 
tubes in the mediastinum.8 In our experience, 
there is a loss of information about tubes and 
lines in the mediastinum that occurs between an 
IP exposure of 0.13 and 0.06 mR. It is likely that 
the S number required for full information will 

differ with different diagnostic tasks. The re- 
quired IP exposures for most clinical diagnostic 
tasks are not known. Loss of information would 
tend to occur in focal areas of the images 
receiving the least information. Because the "S" 
number reflects an average exposure over all 
regions of the IP and information loss is likely to 
occur only in those regions of the IP receiving 
the least exposure, it is difficult to determine the 
relevance of a change in the global S number to 
diagnostic accuracy. 

At the moment, using control limits to an S of 
200 of ±60 units seems reasonable, but without 
much supporting evidence that it is meaningful. 

Setting Control Limits for Optical Density (OD) 

As with the S number, there is no evidence 
that variability of OD in serial images taken 
with a standard exposure has any predictive 
value of potential machine failure or serves as 
an indicator of component degradation. 

Variations in (OD) that cause the image to 
fall more in the toe or shoulder of the contrast 
curve can affect diagnosis. In the more usual CR 
operating modes of auto or semi mode, the 
image processing will automatically correct the 
optical density so the main effect in most clinical 
uses of CR will be that differences in exposure 
affect the noise in the image, rather than its OD. 
Thus, the clinical meaning of variations in OD 
occurring during QC studies is unknown. 

Measuring Signal-to-Noise Ratio 

Signal-to-noise measurements can be made 
on the Agfa workstation, but not on the Fuji 
machines. Tracking of this measurement would 
track performance of multiple components: the 
IP and components of the plate reader. We are 
unaware of any data on the predictive value of 
this for predicting failure of components. Values 
of SNR affecting diagnosis would vary with the 
image features of the disease in question. We 
are not aware of current data that would suggest 
appropriate control limits for this factor. 

QC RECOMMENDATIONS 

Initial Control Images 

The machine should be properly calibrated 
by the manufacturer and acceptance testing 
completed. Then images should be obtained 
using available phantoms. One should use a 
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well-calibrated x-ray machine that is expected 
to be available for many years. Variability will 
be reduced if the same IP is used for both the 
initial and follow-up tests. 

Images of phantoms. For each available 
phantom (chest, hand, skull, or whatever is 
available), obtain two images processed with 
your standard algorithm settings for that body 
part. These images should be stored for future 
comparison with new images obtained with the 
same exposure and image-processing factors. 
Although we do not recommend routinely re- 
peating these images, they may prove helpful in 
confirming that a change in image quality de- 
tected on the step wedge test (test B) has 
occurred. 

Images of a step wedge. Images of a step 
wedge should be obtained at 80 kilovolt peak. 
On the Fuji machine, the image should be 
obtained on a 14- x 17-inch cassette set in fixed 
mode, S, 200; processed with GA, 1; GT, A; GS, 
0; GC, 1.0; and RE, 0. RN and RT can be any 
value. Adjust exposure (mAs) until the step 
wedge is well exposed with most levels visible. 
Record exposure factors (kVp, mAs, focal-spot 
film distance, focal-spot size). Make two such 
exposures. Print final images. Change to GA, 2; 
reprint new images. Reset image processing to 
GA, 1; RN, 5; RT, S; and RE, 10. Reprint new 
images. Store for comparison with later images. 

Scan accuracy image. A scan accuracy image 
should be obtained. Place a steel ruler in the 
center of the imaging plate with edges parallel 
to the cassette hinges (perpendicular to the scan 
lines). Expose at 80 kVp, 1 mR approximate 
exposure. Record factors used. Process as organ 
name: sensitivity, organ code: 0900, semi mode, 
density: 1.0. Wait 10 minutes before processing 
IP. Store film for reference. Interpretation of 
this image is done by using a high-power magni- 
fier (8x) to examine the edge of the steel ruler. 
The edge should appear straight. 

Spatial resolution. Using a standard resolu- 
tion phantom oriented obliquely to the edge of 
the cassette, obtain an image on a 14- x 17-inch 
standard imaging plate at 80 kVp at approxi- 
mately 1 mR. Record exposure factors used. 
Process as organ name: sharpness, organ code: 
0901, semi mode, density: 1.0. Store image for 
future reference. Repeat with a high-resolution 
imaging plate if used at your site. 

S number monitoring. Select a 14- x 17-inch 
imaging plate. Erase the plate. Use a flat-field 
exposure at 80 kVp and approximately 1 mR. 
This should result in an S of approximately 200. 
This should be monitored weekly using the 
same IP and same exposure. 

ROUTINE QC PROCEDURES 

Daily/Weekly 

Reject analysis. All rejected images should 
be inspected by the QC technologist as they are 
rejected (if possible) or at least daily. A pro- 
posed explanation for the image failure should 
be recorded for each image. The accumulated 
images over the preceding 4 weeks should be 
reviewed weekly looking for trends. Action 
should be taken as trends are detected. 

Weekly 

Check that the settings of image-processing 
algorithms have not changed. The commonly 
used algorithms should be checked weekly. The 
uncommonly used settings should be checked 
every 4 weeks (one-fourth done each week). 
Alternatively, if these factors could be stored on 
a memory card, one would simply reload the 
whole set of optimized factors each week with- 
out having to check for changes. 

Using a standardized flat-field exposure, check 
the S number as described in "S number moni- 
toring." Graph sequential results. Use control 
limits of ±60 units. 

Repeat the standard step wedge image as 
described above and process it with the three 
indicated image-processing settings. Visually 
compare the new image with the original. If 
there is any visible change, measure to confirm 
the change. If greater than 0.25 OD units in any 
cell, investigate to find the cause. 

Clean and inspect cassettes and imaging 
plates. 

Monthly 

Repeat the scan accuracy test as described 
above. Inspect both edges of ruler with 8x to 
20 x magnifier to look for unevenness of scan 
lines. 

Repeat resolution test as described above in 
"spatial resolution." Compare resolution on the 
original and current images. 
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INTRODUCTION: 

Procedures for assuring the quality of image generation by Storage Phosphor 

Radiography (SR) machines have not been defined by the manufacturer and do not 

appear to have been described elsewhere. The information given in this article is 

based on experiences with several Fuji AC-1, several Fuji 7000, and one AGFA 

ADC. AGFA has designed a test phantom for SR that will be available in the future. 

The phantom tests geometric consistency and gray scale features of SR. 

To assure that all components of the machine are functioning correctly global 

methods for testing the machine need to be devised, recommended time intervals 

suggested, and methods for testing individual components need to be developed. 

Based on our combined experience, the following methods are recommended. 

TESTING THE MACHINE FOR PROPER INITIAL CALIBRATION; 

The Fuji machines, as delivered and released for clinical use were found not to be 

intercalibrated. Thus images obtained with the same exposure and same image 

processing routines had visibly different appearances. The following procedure is 

recommended for initial checks of calibration: 

a. take two imaging plates for each machine you wish to test. 

b. erase each plate 

c. If available radiograph the AGFA SR phantom, if not place a standard step 
wedge on each plate. Expose each plate to a standardized, approximately 
200 speed exposure. Do not collimate. Be certain that the orientation of the 
plate and the stepwedge is the same for all exposures. If not using a grid, use 
the longest possible tube-film distance to minimize the heel effect. 

d. Process two plates on each machine. Use the 2 algorithm settings that you 
expect to use most often (e.g. PA Chest, foot). Use algorithms that are set 
in the Fuji Auto mode. Use standard processing on the AGFA machine rather 
than DAM processing 

e. Measure the optical density (OD) of each step on the plate. Graph these 
findings. 
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f.      For each body part selected, the curves of the step wedge should be identical. 
A variation of up to 5 % may be acceptable. 

This test procedure tests the proper function of the image plate reader, the auto 

mode PRIEF for the body part, the consistency of the Fuji G factors across 

machines, the settings of the laser camera, and the consistency of function of the 

film processor. 

If the machines pass the tests they are appropriately cross calibrated for the two 

algorithm settings tested. One should test for cross calibration on all algorithms 

commonly used. 

If the machines fail the test, then tests of individual components will be necessary. 

These are described below. 

GLOBAL TEST OF THE CALIBRATION OF THE FUJI G FACTORS: 

These tests can be used to test the calibration of the image processing G factors, 

testing eitherthe machine calibration orthe calibration of a workstation that controls 

a laser print image. 

These tests may or may not be necessary. Because they are time consuming, they 

are probably not necessary if the first global test demonstrates correct cross 

calibration, but may be necessary if clinical use suggests that there are problems 

with cross calibration. 

TESTOFTHE GS FACTOR: The GS factor is a factor that shifts the gradient curve 

up or down by the number of OD units represented by the value of the GS factor. 

a. set the machine to process the image with a GT of A and a GS of 0. 

b. Take a standardized image of a stepwedge or of the AGFA phantom. 

c. Process the image 

d. Measure and graph the step wedge OD values 

e. Reset the machine with all factors remaining the same, except that the GS 
factor is set at 0.5. Repeat the above process. 

f. a graph of both groups of stepwedge values should show that they are 0.5 OD 
units apart. 

TEST OFTHE GA FACTOR: The GA factor is the slope of the characteristic curve 

of the system 

a. Set the machine to process the image with a GS of 0, a GT of A and a GA of 
1,GCof 1 

b. Obtain a standardized image of a stepwedge or of the AGFA phantom. 

c. Process the image 
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d. Repeat with GA factors of 2, and then with GA factor of 3. 

e. Measure and graph the OD measurements of the image of the stepwedge. 

f. Measure the slope of the mid portion of the characteristic curve. 

g. The relative slopes of the three curves should be that the curve with a GA of 
2 is twice as steep as that with a GA curve of 1. The slope of the curve with 
a GA of 3 should with 3 times as steep as that with a GA of 1. 

TEST OFTHE GC VALUE: The GC value is the rotation point around which the GA 

factor rotates the gradient curve. 

a. Use the same initial data set as use for the determination of GA calibration 
given above. 

b. Set the machine to a GC value of 1.5, a GA of 1, a GT of A and a GS of 0. 

c. Expose the stepwedge or AGFA phantom to the standard exposure 

d. Reset the machine so that the GC value is 1.5 and a GA of 2, with all other 
values remaining the same. 

e. Take an exposure of the standard stepwedge with the standard exposure. 

f. Measure and graph the values. 

g. The three different settings of GA set above (with a GC of 1) should cross 
approximately at an OD of 1. The two settings with the GC of 1.5 and GAs of 
1 and 2 should cross at approximately OD 1.5. 

TESTS OF CALIBRATION OF THE R FACTORS: 

Tests of the calibration of the R factors require the calculations of the modulation 

transfer function (MTF) or square wave function and a comparison of these values 

for several different settings of the R factors. Currently, no standardized numbers 

for the MTF values are available. Tests of R factor intercalibration are not yet 

devised. 

TESTS OF INDIVIDUAL COMPONENTS: 

TESTS OFTHE IMAGING PLATES: 

The imaging plates should be checked for surface defects and for uniformity. 

Checks for surface defects. The imaging plates should be examined under white 

and ultraviolet light for any scratches or other surface unevenness. In some cases 

the ultraviolet light will demonstrate defects that are not detected in white light. 

Checking for uniformity. This is performed by looking at the light emission that 

occurs from an imaging plate when exposed to radiation. The ST III Fuji imaging , 

plate corresponds to a light output similar to a single 400 speed screen. The > 

uniformity of light output can be tested by placing a single sheet of 400 speed filmj 
*'*&- :*\ - .ö ,ß 
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and a sheet of foam in a cassette against the imaging plate and exposing the plate 

to a 200 speed exposure. The film is then processed and visual inspection and 
measurements should show a uniform pattern of optical density apart from any heel 
effect that may be present. 

TESTS OF IMAGING PLATE ERASURE: 

Following a standard (50 to 400 speed) exposure of a stepwedge or other phantom, 
the imaging plate should undergo Fuji secondary erasure (or standard erasure on 
the AGFA unit). A second 400 speed flat field exposure should be made and the 
plate processed. Any residual image that appears on a subsequent image would 
indicate incomplete erasure. If the imaging plate is processed the second time with 
no additional flat field exposure, then the machine would amplify any small amount 
of residual information and still create an image whether or not the erasure system 
is working. 

TESTS OF LASER CAMERA: 

This is described in the Fuji applications manual, and this description is not 
repeated here. 

TESTS OF THE FILM PROCESSOR: 

Testing the film processor is normally done by using a test strip produced by the 
laser camera. The Fuji recommendation for correcting problems in OD on this 
computer generated sensitometry strip is to adjust the power of the laser camera. 
Up to a point, this is acceptable. Beyond some point this procedure becomes 
unacceptable because, even if you correct processor problems in OD by 
overexposing or underexposing the film, the noise level on the film will be increased, 
either from too high a processor temperature or by bad processor chemistry. For 
this reason, when more than minimal deviations from the OD are found on the 
computer generated laser printed sensitometry strip, it is suggested that a film 
sensitometry strip be run through the processor. 

Ihe film spnsitomstrv strip- A film sensitometry strip can be made by exposing the 
laser film to 20 flashes of a blue or green sensitometer. The film is then placed as 
the top film in the film holder. If a computer generated sensitomtry strip is then run, 

I the standardized light sensitometry strip will appear on its edge. This can then be 
^Compared to a standard strip obtained when it is known that the processor 
^Chemistry and temperature are correct. If one uses the same box of film for 
jiMnsitometry, then this procedure would also detect problems in film consistency. 
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CHECKING THE ALGORITHM SETTINGS: 

One of the most common problems encountered in the use of the Fuji machines is 

the tendency for the technologists to experiment with the image processing 

settings. It is important to check these settings at fairly frequent intervals to be 

certain they have not been changed . 

A RFCOMMENDED INTERVAL FOR CHECKING THE STORAGE PHOSPHOR 

IMAGING MACHINES: 

Initial checks of machine intercalibration should be done when the machines are 

first delivered and also whenever major repairs are made. Checks of the imaging 

plates should also be done for each new imaging plate. Once the machines are in 

operation, the incidence of machine problems has been low. In approximate order 

of frequency the following types of problems have been detected: 1. Changes in 

image processing settings., 2. Dirt or scratches of the imaging plate. 3. Problems 

related to the film processor. 4. Incomplete erasure caused by inadvertent 

overexposure of the image plate. 5. General system failure. 

RFCOMMENDED INTERVAL FOR QUALITY CONTROL PROCEDURES: 

CONTINUOUS:       Inspection of images as made for obvious machine failure. 

Run computer generated strip to check on film processor. DAILY: 

WEEKLY: 

MONTHLY: 

Check image processing settings for all commonly used body 
parts and 1/4 of the less commonly body parts. 

Clean exteriors of cassettes. 

Clean and check image plates. 

Do global check of stepwedge or AGFA phantom image and 
compare to baseline image. 

NEW FILM LOT:      Run sensitometry strip with old and new film. 

MAJOR REPAIRS: Run global test for machine intercalibration as described 
above. 

SUMMARY: 

Quality control problems of storage phosphor imaging systems have been mainly 

related to lack of intercalibration of the machines at the time of initial delivery. Once 

intercalibration is accomplished, the major problems have been related to 

unauthorized changes in the imaging processing settings, scratches and dirt on the 

imaging plates, and problems with the film processor. Routine quality control 

checks should be performed at various intervals as listed above. Continuous 

inspection of images should be made by a supervising technologist forthe sporadic 

failures that can occur. 
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Summary 

As pan of a comprehensive computer-aided diagnosis scheme for detection of breast 
abnormalities in mammograms, we are developing a computer algorithm o detect and 
measure skin thickening in mammograms. The outside breast conÄSa^d bSd on 
local gradient operations and adaptive gray-value thresholding■ FollowÄS 
determination of the internal skin line as a local gradient minimum, the skin Wcknes is 
measured perpendicular to the skin surface. The software was wri ten in C and Foman 
SÄ)ISÄTÄ b°th °V DEC VAXstati0" 3500 and a IBM Powersta.ion (RTSC 
6000 Series 560) As input, digitized mammograms 2k x 2k in size with a pixel size of 
0.1 x 0.1 mm2 and 10 bit grayscale were used ^ 
The developed computer algorithm was shown to be able to automatically measure 
breast skin thickness ,n digitized mammograms. Both focal areas ofTkin th cke^nsas 
well as generalized skin thickening were detected. Adequate digit z^tion Proved'obi an 
important prerequisite for successful operation, since an insuffici^n dynamic ranee of 
dig.tizat.on may result m loss of the external skin surface dynamic range or 
The described algorithm for detection of skin thickening in digital mammoerams shows 
potential for use in our "intelligent" workstation for the computer asTÄTavsiso 

~a°.Siot.1Ch CUrremly inClUdCS thC deteCti0" °f mass '«ionfand dSered 

Wc are developing computer-aided diagnosis schemes to assist radiologists in breast 
cancer diagnosis on mammograms [1,2,7,8], Although breast skin thickening may occur 
in a vanety of benign disorders like edema, inflammation or scarring, it can also indicate 
underlying malignant disease and may be the only mammographic sign of an 

inflammatory carcinoma [4-6]. The purpose of our study is to develop a computer 

^ «Igonthm to automatically detect and measure skin thickening in digital mammograms. 

:; Alfl"'rinl anfl MrtfiPd i 

ItoTlZ** Ski" detCCti0n alg0rithm' Conventional SCT«"-fi^ mammograms were 
? Of 0 n mC

2
a ,aSer fllm digiÜZer LD 4500) Whh 10 bit *»"*«*»» and a pixel size 

I     '       • 1 mm  y,elding a matrix size of 2048x2580 for a 8" x 10" film. The dynamic 
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range for digitization was set to include 0 - 3.5 optical density. The software was written 

in C and FORTRAN and can operate both under VMS (DEC VAX 3500 workstation) 
and UNIX (IBM Powerstation, RISC 6000 Series 560). 

The skin detection algorithm consists of the following steps: 

(1) Initial coarse segmentation of the image is based on a global histogram analysis 

establishing mean values for dark (direct exposure) and white (no exposure) image areas. 

(2) Determination of the breast region is achieved using adaptive gray-level thresholding 
based on the local pixel intensity of the direct exposure background. 

(3) Potential internal skinline points are identified as a local gradient minimum within a 
certain distance from the outside breast contour (Fig. 1). 

(4) An optimal track through these points is found using an energy function based on 
connectivity and distance from outside breast contour. 

(5) Skin thickness is measured perpendicular to the outside breast contour. 

As a preliminary evaluation, two expert mammographers (R.A.S., C.J.V.) were asked to 

mark the external and internal skin border in five mammograms with skin thickening 

ranging between 4 mm and 2.2 cm. To assess the accuracy of the computer algorithm, 
the distance between each point marked by the radiologists and the computer output was 
calculated. 

Results 

The program was shown to be able to automatically detect and measure skin thickening 

in digitized mammograms. Both focal as well as generalized thickening was detected by 
the program. In the preliminary evaluation of five cases, there was good correlation 
between the computer results and the points marked by the radiologists (Fig. 2). The 
mean distance between the markings by the radiologists and the computer output was 
less than 1 mm in all cases (Table 1). The accuracy was higher in patients with only mild 
skin thickening of less than 1 cm (case #1, #2, #3). In these patients the maximum 

difference between radiologists markings and computer output was less than 2 mm. In 

areas with skin thickening of 1 cm or more (case #4, #5), differences of up to 4 mm for 
the internal skin line were found. 
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Fig. 1: Gray value profile of the breast perpendicular to the outside breast border The 
.n.ernal sk.n contour ,s .dent.fied as a local gradient minimum. Skin thickness in this 
c-cnmple (case #1) measures approximately 3 mm. 
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i Contour (X) al°ng thC imemal Skinline »d as whi* (+) along the external skin 



H\ 
464 

.e%5i*Ä3?.j 

Table 1: Mean and maximum distance between computer-generated border and 

radiologists markings for both the external and internal skinline. Results from the two 
radiologists were combined. 

#1 

n 

#3 

#4 

#5 

Case      Skin Thickness1        Distance2 between Computer Border and Radiologists Markings 

number of points       mean distance maximum skinline 

5 mm 

6 mm 

7 mm 

15 mm 

22 mm 

n=146 

n = 215 

n=105 

n=136 

n= 161 

n = 232 

n= 144 

n= 151 

n= 145 

n= 181 

0.23 ±0.17 mm 

0.21 ±0.17 mm 

0.29 ± 0.24 mm 

0.29 ± 0.27 mm 

0.26 ± 0.20 mm 

0.22 ± 0.20 mm 

0.50 ±0.32 mm 

0.81 ±0.67 mm 

0.30 ± 0.20 mm 

0.74 ± 0.84 mm 

0.7 mm 

1.5 mm 

1.5 mm 

1.4 mm 

1.0 mm 

1.5 mm 

1.6 mm 

2.7 mm 

1.5 mm 

3.9 mm 

external 

internal 

external 

internal 

external 

internal 

external 

internal 

external 

internal 

1 values represent the maximum skin thickness found for each case. 

2 for each point marked by the radiologists, the shortest Euclidean distance to the corresponding computer 

border was calculated. 

Discussion 

Breast skin thickening can occur in a variety of benign disorders like edema, 

inflammation or scarring, however, it may also indicate underlying malignant disease 

[4-6]. Evaluation of the skin in mammograms is often difficult and may require the use 

of a hotlight in conventional mammography or special window settings in digital 

mammography. Thus, skin abnormalities may be easily overlooked and we have seen a 

case, in which the diagnosis of cancer was significantly delayed by this oversight. As 

pan of a computer-aided diagnosis scheme for detection of breast abnormalities in 

rnamograms, we are developing a computer algorithm to detect and measure skin 

thickening in mammograms. 

Skin thickness in normal mammograms may vary between 0.5 and 3 mm and is usually 

greater in the inferior and medial portions of the breast [5,6]. Poor radiographic 

technique may impair visualization of the external skin surface and lead to 

underestimation of skin thickness [6]. For the same reason adequate digitization with a 

wide dynamic range is crucial when analyzing the skin in digitized mammograms [3]. 

Preliminary evaluation of our skin detection algorithm shows good correlation between 

computer-reported  and radiologists-determined skin  thickness  for five clinical 
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mammograms. The mean difference between radiologists markings and computer results 

was less than 1 mm in all cases. Only in a few areas with marked skin thickening of 

more than 1 cm, points with differences of 2 - 4 mm were found. 

By outlining areas of skin thickening, the computer results can be used to assist 

radiologists in detecting skin abnormalities on mammograms. The described 

segmentation of mammograms with reliable and accurate delineation of the outside 

breast contour may also serve as an entry point to our other automated analysis schemes 

in mammography including those for the detection of masses and clustered 

microcalcifications, which have been developed in our laboratory [1,2,7,8]. 
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Abstract 

This paper describes an automatic computer searching system for detecting clustered 
microcalcifications. A fuzzy classification modeling was employed to extract each suspected 
microcalcification possessing similar physical parameters. Therefore, only those possible classes 
were evaluated using a sophisticated convolution neural network which requires a great deal of 
computation and serves as a discriminator. Based on the detected spots, many of them are true 
microcalcifications, the computer can easily make a determination when 5 spots are located within a 
defined region. However, when a cluster consists of only two to four suspicious spots a fuzzy 
function was used to determine the inclusion of other spots near the cluster. This can be very 
important for the detection of subtle cases. The membership of the latter fuzzy function was 
composed of the distance between the suspected spots as well as the output values of the convolution 
neural network. 

We have tested the improved algorithms on our research database consisting of 45 
mammograms. The results indicated that the fuzzy classification modeling decreased the number of 
false-positives from 2,874 to 1,067 suspected spots per image without increasing any false-negative 
detection. The over-all performance in the detection of clustered microcalcifications through the 
updated algorithms was 90% sensitivity at 0.5 false-positive per image. The computation time using 
a DEC-Alpha workstation was decreased from 5 minutes to about 3 minutes per image. 

1. Introduction 

Although mammography has a high sensitivity for examination of breast cancers when 
compared to other imaging modalities, studies indicate that radiologists do not detect all cancers that 
are visible on retrospective analyses of the mammograms!-8. These missed detections are often a result 
of the very subtle nature of the radiographic findings. However, many missed diagnoses factors can be 
attributed to human errors including subjective or varying decision criteria, distraction by other image 
features, or simple oversight1"2. These problems may be reduced by an appropriate altering system 
which can assistant in detecting and/or analyzing the mammographic lesions consistently and 
reproducibly. A well-trained computer system, that can be one of such a device, may draw the 
radiologist's attention to subtle image features that require more careful evaluation, or provide some 
quantitative measure of the likelihood of malignancy by comparing the image features of the lesions 
with those in its database. 

Several investigators have been developing computer programs for automated detection of 
microcalcifications on mammograms9-14. It is difficult to compare the performance of these programs 
because the reported performance strongly depends on the degree of subtlety of microcalcifications on 
the test samples used. Our goal has been to detect subtle cases such as faint microcalcifications 
superimposed on dense breast regions, fibroglandular lines, or ducts. In this paper, we describe an 
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improved computer search system for the detection of clustered micorcalcifications. Our methods 
include (a) fuzzified rules to enhance the extraction of suspected spots, (b) an artificial convolution 
neural network (CNN) to distinguish microcalcifications from background spots (noise), and (c) a 
fuzzy clustering method to group the detected calcifications. 

2. Detection Methods 

2.1. Wavelet Filtering for Background Reduction and Extraction of Suspected Microcalcifications 
We used Daubechies 8-tap wavelet kernel to perform 3-level wavelet transform; only the 

lowest frequency compartment was eliminated for high-pass filtering15. We did not selectively 
enhance the isolated coefficients on the other high or medium frequency compartments because the 
reconstructed suspected areas were used for further evaluation in the artificial vision neural network to 
be discussed. Many microcalcifications were easily seen on the reconstructed mammogram after the 
wavelet filtering. In fact, a simple thresholding technique can extract obvious microcalcifications at 
this stage16"17. To detect those subtle microcalcifications, namely microcalcifications of 1-2 pixels in 
size, near the noise level in the local region, we need to use very low level threshold to extract all the 
suspect spots. In practice, several threshold from high to low level intensity were used to extract 
various contrast spots. Note that the filtered image has a mean value of 0. 

2.2. Pre-Screening of Suspected Microcalcifications Using Gaussian Modeling 
At this point, more than 10,000 spots per image may be selected if a threshold value near the 

standard deviation of the local region is used. Each local standard deviation, calculated excluding the 
high intensity pixels in the region, is considered the background fluctuation. The background noise is 
primarily attributed to the breast parenchyma and x-ray quantum mottle (Poisson noise). Typically, the 
denser the area the higher the noise. As far as calcifications are concerned, we expect that large 
calcifications (> 500 Jim) possess high contrast in intensity and vice versa. 

When a suspected spot is extracted, five parameters at the local area of the original image were 
computed, namely (i) the contrast of the peak (i.e, the peak intensity against the mean of the 
background) (C), (ii) the mean value of the local background around the peak (B), (iii) the standard 
deviation of the local background (SD), (iv) the size of the spot in pixel (SZ), and (v) the gradient of 
the spot from the center to peripheral (G). 

For each parameter, p e {C, B, C/SD, SZ, G}, the membership function is modeled by 
Gaussian distribution. The modeling is based on the true microcalcifications of the training 
mammograms. 

Ujip) = exp|-(py. - pj2/a(p)} ...(1) 

where j represents all the true microcalcifications in the training set, N is the total number of 

microcalcifications, a(p) = —— s(/?, - p0f , and Po = — £p 
N-lj=v ' Nj=i ' 

A set of mixed fuzzy and crispy rules are given below18"19 

Rule 1. If SZ is very large, then reject. 
Rule 2. If B is large and C/SD is small, then reject. 
Rule 3. If B is small and C/SD is very small, then reject. 
Rule 4. If C is large and SZ is very small, then reject. 
Rule 5. If C and SZ are large and G is very small, then reject. 
Rule 6. If rules 1-5 do not apply, submit for further evaluation by the CNN. 
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Membership functions for the linguistic labels (i.e., very small, small, large, very large) are defined by 
the domain of each parameter normalized by the mean value of the parameter obtained in the trainin* 
set. 

2.3. Convolution Neural Network as an Artificial Vision System 13-14,20 

2.3.1. The structure of the convolution neural network (CNN) 
The CNN is a simplified version of the neocognitron2i. We used a convolution constrained 

neural network with the well known backpropagation method for training. Readers are encouraged to 
see the detailed description and the structure of the CNN in the references 
*,       wfiCally'the comPJ

uter Iocates the bri§ht sPot at the center of the patch, which was extracted 
through the pre-scan procedure, for the CNN evaluation. The operation between each kernel and the 
image block follows a standard 2-D convolution calculation. For the forward signal propagation the 
resultant values of the weighting factors of the kernel convoluting the element values of the front layer 
are collected into the corresponding matrix elements on the receiving layer. The collected value at 
each element is further operated with a Guassian-like or sigmoid function in the forward propagation 

„w~t f
EaÄSSpfCte?.image bl°uCk,0f NxN pixels indicated "> the pre-scan program is extracted as an 

object for CNN classification. The first hidden layer consists of 12 groups. Each group has 12x12 
pixels formatted in a square array. The second hidden layer also consists of 12 groups  Each group 
has 8x8 pixels. In our experiment, both one and two hidden layer systems were tested for the 
evaluation of microcalcifications. The output layer has only one node which is fully connected to the 
second hidden layer. 

It is important to realize that the total number of nodes needed in the hidden layers somewhat 
depends on the total number of training samples. Since we plan to expand our database and the use of 
rotated versions of an input matrix, we expect that our training samples will be very large in the future 
The number of layers used should depend upon the sophistication of the features that the neural 
network is intended to perceive. The more complicated the disease patterns, the more layers are 
required to distinguish high order information of image structures. Since microcalcifications are 
considered relatively simple in terms of image patterns, two hidden layers and one output node should 
be able to handle various cases based on our experience. 

2.3.2. Backpropagation training with Gaussian-like and sigmoid activation functions 
The mam difference between conventional weights and kernel weights is that conventional 

weights are independent and kernel weights are constrained by grouping. We believe that the latter is 
more powerful than the former method for direct image pattern recognition. Training requires many 
iterations for the network to obtain solutions for all weights applied to the propagation while the error 
function reaches a minimum value. 

By looking at the CNN processing, one may find that signals are filtered and modulated as in a 
complicated circuit system. Signal propagation from one layer to the next is composed of a two-step 
calculation: (a) adaptive convolution combiner and (b) an activation function (Gaussian-like and 
sigmoid function are used in this study). To be exact, the Gaussian-like activation function is used at 
the first hidden layer and the sigmoid function is applied at the second hidden and output layers given 
by bqs. (2) and (3), respectively. J     ° 

,,    s   .       2xexpj-   I    [^((«,v);«,m)x^((i-«,j-v);ffl)] 

1 + expi-   I    [kx{(u,vy,n,m)xSxMi-uJ-v);m)) 
-(2) 

10/SPlEVol.27W 



Sx({i,j);n) = , ^ ...(3) 
1 + exp^-   I    [iI((«,v);B1m)xSI.1((i-HI;-v);m)] 

[^    u,v,mco/i J 

where Gx((i,j); n) orSx((i,j); n) represents the signal at node (i,j), ntn group, and x layer. kx((u,v); n, m) 
denotes the weighting factor value of net (u,v) in nth group of x-1 layer which connects mth group of x 
layer. m<=>n represents the connection between the two groups. 

The error function which is expected to reach a local minimum through the error 
backpropagation training can be given as 

T 
E = ^X  [yK)-So(no)]2 ...(4) 

n0= 1 

where y(n0) and S0(n0) are the target output and calculated output signals for output node n0, 
respectively. T is the total number of output nodes. Based on Eqs. (2), (3) and (4), the iterative 
version of kernel weights for sigmoid function derived by the generalized delta rule is given as 

kx((u,v); n,m)[t+l] = kx((u,v); n,m)[t] + r\£ 5x((ij); n) Sx_i((i-uj-v);m) 

+ oAkx((u,v);n][t] ...(5) 

where t is the iteration number during the training, T| is the gain for the current weight changes, a is the 
gain for the momentum term received in the last learning loop, and 8 is the weight-update function 
which is given as 

5x((ij);n)= Sx((i,j);n)[l - Sx((i,j);n)] Qx((i,j); n) ...(6) 

and Qx((i,j); n) =      £     kx+1((u,v);n,m)x8x+i((i+u,j+v); m). 
u,v;n<=>m 

Similarly, the iterative version of kernel weights for Gaussian-like activation function derived 
by the generalized delta rule is given as: 

kx((u,v); n,m)[t+l] = kx((u,v); n,m)[t] +r^ 5x((i,j); n) Sx.i((i-u,j-v);m) 
•j 

+ aAkx((u,v);n)[t]. ...(7) 

In this study, all weighting factors including the kernels were initially given a normalized 
random number. The normalization is based on the number of nets connecting to a destination node in 
the next layer. 

2.3.3. Output value of the TNN 
After the training, all weights in the neural network are fixed. Since we only use one node at 

the output layer, the output value of 1 or close to 1 should be considered as a determination of a 
positive determination by the CNN. Otherwise, the low output value is a negative determination. It is 
very difficult to use 0.5 as a cut-off point using the trained neural network. The cut-off point may be 
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shifted by the inevitable bias in the training cases. In practice the cut-off point is established by many 
clinical cases in a rigorous evaluation study. 

2.4. Fuzzy Clustering Based on CNN Outputs and Distance between Suspected Microcalcifications 
In general, clustered microcalcifications of more than 5 within a 1 cm2 area are a clinically 

significant sign of potential breast cancer. However, clusters containing only 3 or 4 
microcalcifications are sometimes seen in subtle cases. The distance between suspected 
microcalcifications, which receive a relatively high output value from the CNN, were calculated. Once 
a short distance is found between two spots (less than 1.5 cm), then a pre-cluster status is engaged. 
The remaining suspects were also evaluated to test the possible clustering with the group. Two main 
parameters, namely, the distance (dij) from the spot, /, to the center of the suspected cluster./ and the 
CNN output value of the spot 0[. are evaluated for the possibility of engaging a cluster. Only if dy is 
shorter than a predefined distance dr2 and 0;. is greater than a low bound of CNN output value Oi, the 
likelihood of being a member of a cluster be considered 

f O., for     dtj<drl      and     0->Ol 

m^0iA^~\Oiy\{dr2-d.^{drl-drS\ for     dr2>d.>drl      and      LMij>01 
-(8) 

where dri denotes the near cluster distance. The first situation includes those spots possessing 
relatively high output values and are close to the cluster. The second situation represents those spots 
very high CNN output value with a reasonably short distance from the existing cluster. A fuzzified 
factor, [{dr2 -dij)/(dr2 -drj)], is used to decrease its likelihood of being a member in the cluster as the 
distance is increased. In either case, the resultant value of its likelihood membership should be higher 
than Oi,; otherwise its application of being a member in the cluster will be rejected at this stage. Both 
situations will be considered as members in the cluster. The updated likelihood of a cluster, if the new 
member is qualified, is given by 

for     Nj>3     and     LMh>LMij>LMl 

(LCjXNj+LM^/lNj+l)     for     lMQ>IMh -(9) 

where Nj denotes the number of existing members in the cluster. LMh and LMi represent the high and 
low bounds of membership qualification, respectively, for being included in the cluster. The number 
of members in the cluster is also updated: 

tf.=Nj+l     for     (Nj>3     and     LMh> LM..> LM,)     or     (LM;j>LMh). ...(10) 

3. Results 

A total of 65 mammograms were digitized by a LumyScan film digitizer with a spot size of 
lOOum. Each mammogram takes 2048x2430x12 bits of computer space. Of these mammograms, 20 
were used as the training set. In this training set, each mammogram contains a biopsy proven clustered 
microcalcifications. A total of 159 microcalcifications are embedded in 20 clusters. The remaining 45 
mammograms were used for the test set. Of these mammograms, 38 contain biopsy proven clustered 
microcalcifications. A total of 220 microcalcifications are embedded in 41 clusters. 

3.1. Results of the Pre-Scan 

In the prescan study, the average initial detection of suspected spots was 82,568 spots per 
image. Using the conventional contrast discrimination method, we could narrow this number down to 
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2,874 spots per image with 5 false-negatives out of 220 microcalcifications. However, the fuzzy 
modeling further reduced the suspected areas to 1,067 spots per image with 2 false-negative findings. 
These two microcalcifications are overlapped with fibroglandular tissues. Further testing indicated 
that these two spots could not be detected by the convolution neural network either. 

3.2. Results of CNN and Fuzzy Clustering 

Of 41 true clustered microcalcifications, only 3 cases possess less than 5 microcalcifications in 
each cluster. The fuzzy clustering was able to include these three cases for final group evaluation. 
However, total of 15 and 8 false-positive clusters consisting of 3-4 suspected spots were also included 
in the final fuzzy clustering evaluation for the 1- and 2-hidden layer CNN, respectively. Using 1- 
hidden layer CNN, 5 out of 15 false-positive clusters contributed significant LC values which degraded 
the performance of the entire system. None of the 8 false-positive clusters in 2-hidden layer system 
produced a high LC value and did not contribute negative impact on the overall Az performance. 
Figure 1 shows the Az's of the two systems with various CNN training errors. Syntax Sn/Hm/Kt 
indicates the CNN parameters: image block size nxn, m hidden layers, and kernel size t*t. 

LOT 

Az 0.9- 

0.8- 

SI6/H2/K5 

S16/H1/K5 

T T 
0 20 40 60 80        100       120 

Total Output Squared Error in the CNN-BP Training 

Figure 1. Final system performance using 1-hidden and 2-hidden layer CNN. 

4. Discussion and Conclusions 

The purpose of the pre-scan is to reduce the number of false positives without losing the suspect 
spots. Since our goal is to detect subtle mirocalcifications, we should not tighten the screening 
parameters. Because tightened parameters will force fuzzy logic to exclude the subtle 
microcalcifications. Although over 170,000 spots on 20 mammograms were evaluated in the fuzzy 
model training study, most of them are correlated and can not represent the diversity in 
microcalcification patterns. In this study, loosened parameters were used in the fuzzy modeling to 
discriminate the noises of the mammographic background. We found that a significant number of false- 
positives were reduced when the fuzzification of the measured parameters was employed. This result 
indicated that the fuzzy system is able to find a large common area (or areas) in the multidimensional 
space containing many false-positives and without producing additional false-negatives. 
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These results would greatly reduce the load of CNN which is the computational bottleneck of 
this computer search program. Although the pre-scan has eliminated a large number of suspected 
microcalcifications, the majority of the remaining suspects are still false-positives. The convolution 
neural network is then used to discern the true and false-positives. The pre-scan failed to detect on the 
same clustered, hence the cluster was not detected. We also used the CNN to evaluate the two specific 
areas, the out values of CNN were 0.003 and 0.14. This meant that even if the pre-screening had 
included these two true microcalcifications, the CNN would have still missed them. 

We found that the fuzzy clustering involving CNN output values and distance between spots is 
an effective method to determine microcalcification cluster. Particularly in the 2-hidden layer system, 
this coupling method can detect subtle microcalcification clusters and at the same time exclude false- 
positives. 
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