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1. INTRODUCTION 

The U.S. Army must have the capability to fire the existing inventory of artillery projectiles. All of 

these projectiles have gilding metal (Cu-10Zn) or copper rotating bands which cause a film of copper to 

be deposited on the gun surface. This deposited film is not subsequently removed by the passage of the 

next projectiles, rather, more copper is deposited. This process can continue until the barrel can become 

so built up with copper that projectiles will fail to chamber (Sarmousakis 1942 and Dugway Proving 

Ground 1943). Even before the chambering problem arises, this copper deposit causes very deleterious 

effects to shot start pressure, repeatable bore resistance, peak chamber pressure, and muzzle velocity. 

Currently fielded systems do not have a copper buildup problem as the charges contain a lead decoppering 

agent (Sarmousakis 1942; Dugway Proving Ground 1943; and Robertson 1975). Lead is no longer an 

option as a decoppering agent in new systems due to recent environmental constraints placed upon the 

system/charge (Andrulis Research Corporation 1994). Ironically, artillery soldiers' baseline blood lead 

levels are lower than that of the general population (Smart et al. 1994). 

Interestingly, coppering experiments recently performed by the Navy (Peters 1995) on two 5-in/54 

guns show that firing charges without a decoppering agent in different guns result in different coppering 

behaviors. After more than 100 nondecoppering charges were fired, one of the guns did not copper at all, 

while the other gun coppered quite a bit. Thus, experiments with alternative decoppering additives will 

be inconclusive if copper does not appear on the bore surface. A copper-laden barrel must be fired with 

charges containing the alternative additive to verify their "decoppering" capability. 

Selective electropolishing is proposed as an alternative or in addition to charge additives. 

Implemented as a part of regular maintenance, this process is relatively simple, using proven technology 

(U.S. Patents and Lafleur 1995) to remove copper from the bore. Selective electropolishing utilizes 

preferential oxidation and dissolution of the elemental material to be removed. To exploit this process, 

a current is passed through an electrolyte solution between a cathode and the barrel. Due to the physical 

configuration of the barrel, a rod was chosen as a cathode, electrically insulated from the barrel by a pair 

of sealing nylon bungs. A weak ammonium hydroxide solution was chosen as the electrolyte to reduce 

the possibility of iron corrosion, prevent the release of oxygen, and produce soluble copper oxides. The 

electrochemistry of the process is covered in the following section, with a discussion on the potential for 

bore surface damage. 



2.  DESCRIPTION OF ELECTROCHEMICAL DISSOLUTION OF COPPER FROM IRON-BASED 
SURFACES 

The electrochemical deposition and dissolution of metallic copper is relatively simple, and, in fact, has 

been used for over 70 years to produce high-purity copper. The fundamental reactions involved in this 

process are 

Cu - Cu+ + e~ E° = 0.521 V (1) 

Cu- Cu2+ + 2e" E° = 0.337 V (2) 

where E° is the reversible potential vs. the standard hydrogen electrode (SHE) potential. The reactions 

in acid solutions are complicated by the thermodynamic tendency for copper (I) to disproportionate 

according to 

2Cu+ - Cu2+ + Cu. (3) 

The problem in electrochemically oxidizing metallic copper in acidic media (reactions [1] and [2]), 

in the presence of iron, is that significant corrosion of the iron will also occur. This is readily shown by 

reference to the Pourbaix diagrams in Figures 1 and 2, following (Cockett and Morgan 1958). As shown 

in Figure 1, attempts to oxidize an Fe electrode in acid solution will dissolve Fe as either Fe2+ or Fe3+ 

depending upon the anodic potential. In alkaline solution, and depending upon pH, a number of insoluble 

solid phases (various oxides and hydroxides) will form, but in highly alkaline solutions (pH -14), again 

Fe can oxidize to the soluble species HFe02~. At extremely high anodic potentials (not well defined in 

Pourbaix [1966], but above 1.6 V vs. the reversible H2 electrode [RHE] discussed next), oxygen evolution 

will occur. In a moderately alkaline solution, Figure 2 shows that Fe will passivate by forming a stable 

film of Fe^ß. In this process, Fe is oxidized according to 

2Fe + 3H20 - Fe^ + 6H+ + 8e~. (4) 

Once the passive film forms, no further reaction will occur other than oxygen evolution from the 

passive film surface. Because of the restricted pH range, and because the ammonium ion is helpful in the 

dissolution of copper, a 0.5-mol dm-3 NH4OH aqueous solution (~2 mass %) of pH = 11.4 was chosen 

for our laboratory studies. 
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Figure 1. Pourbaix diagram for the Fe-H2Q system at 25° (only Fe, Fe(OH)2, and Fe(OH)3 solid phases 
are shown). 
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Copper treated anodically in alkaline solution is known to passivate, first forming Q^O, which is 

further oxidized to cupric oxide (CuO). At high anodic potentials, in addition to oxygen evolution, soluble 

copper species form, e.g., Cu20
2_, but, depending upon both temperature and pH, the insulating thick 

layer of CuO formed results in high electronic resistance that is accompanied by a drop in current (Mantell 

1960). To produce soluble copper species and at the same time limit the anodic potential to minimize the 

evolution of oxygen, a strong copper ligand, e.g., NH3, is quite effective. To test the removal of copper 

from Fe surfaces, a number of controlled potential and controlled current experiments were performed and 

are detailed, following. 

3. ELECTROCHEMICAL EXPERIMENTS 

Figure 3 shows the cyclic voltammogram of the second sweep at a high-purity copper surface 

(0.07 cm2) in 0.50-mol dm-3 NH4OH solution (pH —11.4). All scans in the following figures were carried 

out at a sweep rate of 50 mV/s. Although the voltammogram appears complex, at least seven 

electrochemical reactions could be identified ranging from hydrogen (A) to oxygen evolution (G), while 

not evolving Hz. These observed oxidation steps (A through G) and subsequent reduction steps (G 

through A) by reduction route F -» B' are listed in Table 1, following. While the exact processes 

occurring in the area labeled G in the figure are not completely clear, it is believed that a combination of 

copper dissolution and oxygen evolution is occurring (02 bubbles at the Cu electrode are visible in this 

potential range). As seen by comparing Figure 3 and Table 1, in the aqueous ammonia solution used in 

this study, the oxidation products of copper are readily soluble, thereby indicating the feasibility of 

dissolving copper electrolytically. In fact, the intense blue color of the copper-ammonia complex, 

Cu(NH3)4
++, is observed in the ammonia solutions after anodization. 

The cyclic voltammogram for a high-purity Fe surface (0.06 cm2) is superimposed on Figure 3. 

Because of the small currents observed at the Fe electrode, a complete interpretation of all the reactions 

occurring at this electrode is not possible, but based on the information discussed in regard to Figures 1 

and 2, it is clear that at cathodic potentials starting at around -0.6 V, hydrogen evolution starts. There is 

a small cathodic peak at around -0.5 V on the voltammogram, which is believed to be the reduction of 

an oxide to metallic Fe. On the anodic sweep starting at around -0.4 V, the Fe electrode is passivated 

presumably by Fe203, as indicated by the small (close to zero) currents observed up until the potential 

of around 1.6 V is reached. At this higher anodic potential, oxygen evolution begins. In the pH range 

provided by the 0.50-mol dm"3 NH4OH solution, we see no evidence of the formation of soluble Fe 

species. 
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Figure 3.  Cyclic voltammograms for iron and copper. 

Table 1. Reactions Identified From the Cyclic Voltammogram of Pure Cua 

Reaction Electrochemical Oxidation Mechanism E° 

2iT(aq) + 2e" - H2(g) (acid solution) 0.000 

A 2H20(Z) + 2e- - K2(g) + 20E-(aq) (alkaline solution) -0.828 

B Cu(NH3)
+(a?) + H2O(0 + e" -  CU(J) +NH4OH(a9) -0.154 

C Cu(NH3)2
+(ag) + 2H20(/) e" -  CU(J) +2NH4OH(a9) 0.125 

D Cu(NH3)4
++(a?) + 4H20(/) + 2e" -  CU(J) +4NH4OH(a?) 0.333 

E Cu(NH3)4
++(a9) + 2H2O(0 + e"   -  Cu(NH3)2

++(a9) +2NH4OH(a9) 0.541 

F Cu(NH3)4
++(a9) + 3H20(/) + e'   -  Cu(NH3)

+(a?) +3NH4OH(a9) 0.820 

G 02(g) + 4H+ + 4e" -  2H20(/)  (acid solution) 1.229 

02(g) + 2H20 + 4e" -  40B.-(aq) (alkaline solution) 0.401 

* E° is the half-cell potential vs. the SHE. 



The aforementioned experimental studies confirm that copper can easily be dissolved anodically, but 

that a passive oxide film will form over the potential ranges of interest. At high anodic potentials (see 

Figure 1), dissolution of Fe is possible, i.e., if the potential greatly exceeds 2 V. Upon the return 

(cathodic) scan, the passive film is reduced at around -0.5 V, shortly before hydrogen evolution occurs 

(see Figure 3). However, it is reasonable to assume that hydrogen embritüement will occur when 

hydrogen is evolved from iron, or particularly from a hardened steel gun tube. 

To further investigate these findings, dissolution of copper under constant current conditions was 

investigated, particularly to determine the effect of rate upon dissolution and corrosion of iron. A Teflon- 

shielded, polished iron rod with an exposed surface area of 0.196 cm2 was electrochemically plated with 

0.025 mm of copper from a saturated Cu(N03)2 solution at 100 mA for 60 s. The copper-plated rod was 

placed in the cell containing a 0.50-mol dm-3 NH4OH solution and was then anodically cleaned at 25 and 

50 mA cm-2, using a stainless steel counter electrode. Anodic cleaning at 50 mA cm for 25 min 

resulted in complete dissolution of copper from the Fe substrate, but visible pitting and oxidation were 

evident on the surface of the iron. Anodic cleaning at the smaller current density of 25 mA cm for 

35 min produced a copper-free surface with no visible corrosion of the iron substrate. The blue color of 

the complex Cu(NH3)4
++ was clearly visible at the end of this process. The rate of removal of copper at 

this lower rate was found to 7.5-10"4 mm/min, or about 1 mil/min. We conclude that the electrochemical 

dissolution of copper from an iron surface can be safely accomplished at the lower anodic rate of 

25 mA cm-2. 

4.  ANALYTICAL POTENTIAL FIELD INVESTIGATION 

Because only two coppered VIC regenerative liquid propellant gun (RLPG) tubes were available for 

the experimental demonstration portion study, numerical calculations were performed to describe the 

influence of the lands and grooves on the applied potential field between the gun and electrode. It was 

thought that there might exist some concentration factor near the corners of the lands that would result 

in a region of local high potential which may electropolish (round) the corners. These calculations were 

made using Algor, a finite element package containing electrostatic computational capabilities. The 

parameters in the calculations included electrodes of different diameter and differing electrolytic 

conductivity, as well as the applied potential level. The potential was applied between the cylindrical 

cathode and the outside of the barrel, allowing the potential field to generate itself rather than applying 

the potential to the land/groove surface of the barrel. 



Figure 4 shows the potential field around the bore surface in a region including a land groove junction 

for a cathode 1.9 cm diameter (0.75 in) with a conductivity of household ammonia (1.0 mmho/cm). The 

voltage scale in the figure is from 0.70 to 0.75 V. This very fine scale is required to reveal the variations 

in the potential field. Hence, the radial variations in the field are fairly small for a 0.55-cm electrode, and 

the resulting concentration factor produced by the corner does not pose a problem for the operation. The 

calculations provide some insight into what occurs during the process. As can be seen in Figure 5, the 

current flux levels are very nonuniformly distributed over the lands and grooves. This calculation was 

performed assuming a uniform copper deposit over the surface, again with the imposed potential applied 

to the outside of the barrel. What this current flux plot shows is that the copper (current) will initially 

flow from the outside edges of the lands. As the copper is removed, the current location will move to the 

center of the land. Once the land is clean, the middle of the groove will be the next location for copper 

removal. The copper removal finally ends with the corners of the groove. Operationally, this description 

is fairly important, as the last stage of copper removal will be in the grooves. The maintenance of the 

groove definition will require that attention be paid to continuing the application of the potential until 

enough copper is removed. 

5.  METALLURGICAL ASPECTS OF DECOPPERING 

5.1 Decoppering Agent History. Coppering of gun tubes was a serious problem by 1916. In August 

1917, the French had discovered that if the base plates of shells were coated with solder (lead-tin alloy), 

the deposits of copper in the bore "were soon converted to a brittle tin bronze and blown out of the gun" 

(Cockett and Morgan 1958). By March 1918, the French had proposed the use of foil containing 60% 

tin and 40% lead to be placed on the top of the propellant charge. Since that time, lead in the propelling 

charge has been used to deeopper large-caliber weapons. It is used as the metal foil in Army artillery 

systems (1.3% of charge weight in the M203E1), and as the carbonate in Naval gun systems (1.0% in 

NACO). 

5.2 Mechanism of Coppering. To understand decoppering, we must first understand coppering. Both 

mechanisms can (and usually do) occur simultaneously. "Coppering" means the progressive transfer of 

copper (or copper alloy) from the projectile's rotating band to the bore of the gun tube. As established 

by Montgomery (1976), projectiles are melt-lubricated during nearly their entire travel down the gun tube. 

The lubricating liquid metal film (LMF) forms just after the rotating band is fully engraved, in the first 

inch or two of travel. Some of the copper in the LMF that the projectile rides on is transferred to the gun 

tube bore. 
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Figure 4.  Finite element calculation of potential field.  (Scale is 0.70 to 0.75 V). 
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As the charge is increased, the amount of driving edge wear of the rotating band is increased, and the 

amount of coppering is increased. Wear of the driving edge is primarily due to the allowable bearing 

stress of the LMF-rotating band combination being exceeded. It is important to note that the LMF exists 

primarily due to factional heating rather than propellant gas or gun tube heating, and that copper is 

transferred in the liquid phase from the rotating band to the gun tube bore via the LMF. This is supported 

by work by Montgomery (to be published) on recovered 155-mm RLPG projectiles. Examination of the 

projectile boat tail showed a pattern of solidified small copper droplets emanating from the driving edge 

of the rotating band. 

As the driving edge wear of the rotating band increases as the projectile travels down-bore, the rotating 

band land becomes thinner. At some point the remaining band land cannot support the applied shear 

stress, and the lands shear off. This is termed "band stripping." Band stripping can occur earlier in shot 

travel if the projectile is subjected to a high torsional impulse from either rifling or charge anomalies. 

Copper from this source is in the form of loose, solid chunks and thus should not contribute significantly 

to coppering. 

5.3 Mechanisms of Decoppering. As noted previously, the first speculation on the mechanism of 

decoppering was that the deposits of copper in the bore "were soon converted to a brittle tin bronze and 

blown out of the gun." In the Dictionary of Explosives and Related Items of 1966 (Federoff and 

Sheffield), this mechanism was also advanced. 

In 1975, Robertson examined the lead-copper phase diagram, and concluded that this mechanism was 

very unlikely since there are no lead-copper intermetallic compounds and "since lead does not alloy with 

copper to any measurable extent unless the copper is also melted." (However, as noted previously, copper 

is deposited in the liquid phase.) Robertson proposed an alternative mechanism: that lead removes copper 

in gun barrels by melting and depositing on the coppered bore as a liquid or dissolving the copper, and 

that the liquid lead with copper in solution is carried out of the tube still in the liquid phase. 

Based on high-pressure, high-temperature investigations, Vezzoli and Otooni later proposed that liquid 

lead diffuses through the copper film at gun tube pressures and embrittles the copper, causing it to break 

up under the action of succeeding projectiles and gas wash. This phenomenon is known to metallurgists 

as liquid metal embrittlement, and occurs with a number of combinations of metals. Basically, a liquid 

metal that wets the surface of a substrate metal will also tend to wet the grain boundaries.  The liquid 



metal travels into the substrate via the grain boundaries, thereby weakening it. The substrate will then 

tend to fracture along the coated boundaries. In support of this mechanism of de-coppering, lead and tin 

inclusions in brass are known to cause severe embrittlement when tested near the melting point of these 

inclusions (American Society of Metals [ASM] 1986). 

A fourth possible mechanism can be proposed. When a string of leaded charges are fired, the deposit 

on the gun tube may be: Cu-Pb-Cu-Pb-Cu-Pb-... This is a very weak structure (similar to graphite), 

especially when heated, and the layers are sloughed off with each passage of a projectile. The number 

of layers formed is indeterminate if this is the operating mechanism. 

5.4 Deleterious Effects of Decoppering Additives. Not only do lead decoppering additives comprise 

a large parasitic charge mass, they can also cause premature gun tube failure. Independent from the 

possible liquid metal embrittlement of the copper film by lead, it has been shown that lead, in the liquid 

phase, also embrittles steels by liquid metal embrittlement (Cockett and Morgan 1958). Furthermore, 

because the gun tube is thermally cycled through the melting point of lead, lead is forced into cracks in 

the gun tube in the liquid phase and solidifies, wedging the cracks open. As the gun tube continues to 

be cycled, these cracks are ratcheted open. 

5.5 Long-Term Solutions to the Problem. Each of the reports by Robertson (1975) and Vezzoli and 

Otooni indicate that bismuth should be as good or better a decoppering agent than lead. They indicate 

that it has melting and boiling points somewhat lower than lead, and a very similar phase diagram with 

copper. Copper is more soluble in liquid bismuth than liquid lead, and bismuth wets copper much better 

than does lead, leading to greater liquid metal embrittlement. The embrittlement effect of bismuth for 

copper and its alloys is well documented, while liquid bismuth does not appear to embrittle steel 

(American Society of Metals [ASM] 1986). Because bismuth also has a very low toxicity, it would appear 

to be an ideal replacement for lead as a decoppering agent. Studies by the U.S. Army and the U.S. Navy 

are currently underway to verify its effect. 

Another long-term solution to the coppering problem is to use copper-free rotating bands on new 

projectiles. Soft iron (commercially pure iron, weld-overlay) bands will produce no coppering. Soft iron 

can be used because the as-deposited hardness is about the same as copper, but both the melting point and 

the allowable bearing stress are quite a bit higher, giving much less wear. Excessive band wear has been 

10 



seen in projectiles fired at top zone from developmental 52+ caliber 155-mm cannons. Projectiles may 

require soft iron bands to prevent band stripping when fired at muzzle velocities approaching 1,000 m/s. 

Furthermore, it is possible that any iron that deposits may be beneficial: it may act to "heal" 

preexisting cracks in the chromium plating, preventing attack of the underlying gun steel by propellant 

gasses. However, the slow-speed sliding properties of soft iron on chromium-plated steel may not be as 

good as copper alloys, and an iron band must be coated to prevent rust Large-caliber soft iron rotating 

bands are being studied by the U.S. Army. 

6.  SELECTIVE ELECTROPOLISHING EXPERIMENT 

Two copper-fouled 30-mm U.S. Army Research Laboratory (ARL) RLPG barrels were donated for 

this study. Liquid propellant guns are a good source of coppered gun tubes as the liquid propellant does 

not lend itself to the addition of decoppering agents due to compatibility issues. The barrels were set 

vertically so as to mitigate the bowing of the cathode, as well as to facilitate drainage of the electrolyte. 

A vacuum fluid fill system was constructed to facilitate the filling and flushing of the barrels. Household 

ammonium hydroxide (ACME brand) was used as the electrolyte (about 2% molar concentration) due to 

its alkaline nature and because it is a strong ligand for oxygen that prevents the evolution of oxygen. A 

regulated DC power supply with a current range up to 6 A was used to provide the potential. The desired 

data from the experiment included the current through the power lines and the voltage across the line. 

An inductive current meter was clipped over one of the four 10-gauge power lines. This device provided 

a voltage output proportional to the current that was recorded on a Nicolet 4094 digital oscilloscope and 

Cole-Palmer strip chart recorder. The potential was also recorded on both the Nicolet and strip chart 

recorder. The experimental setup is schematically presented in Figure 6. 

Figures 7 and 8 contain the first and second medium-caliber (30-mm) selective electropolishing 

(decoppering) voltage and current data. The experiments were performed using a constant voltage power 

supply set to 0.75 V, as can be seen in the figures. It was noticed during the experiment that an initial 

potential of 87 mV existed with the ammonia present before the power supply was connected. The 

current, above the nominal value provided by the conductance through the ammonium hydroxide solution, 

is proportional to the surface area of the copper. The current decay represents regions of copper being 

removed from the surface as well as the free ions associating themselves with the electrodes. The sharp 
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Figure 6. Electropolishing experimental setup. 
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Figure 7. Current and voltage data from the first 30-mm electropolishing experiment (barrel A). 
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Figure 8. Current and voltage data from the second 30-mm electropolishing experiment (barrel B). 

current peaks in Figure 7 are from when 500 ml of fresh ammonia were drawn into the barrel from the 

bottom. This "flushing" was performed because of what appeared to be a premature steady-state current. 

On the expanded time scale of the strip recorder, steady state is readily recognized. Typically this process 

requires about 20 min for small arms (Lafleur 1995 and Brant 1995). After the second flushing, the decay 

was somewhat abnormally affected (abnormal is relative, as this effect has not been seen before). The 

subsequent rise in current, during the third current decay period, is believed due to the flocculent nature 

of the blue copper precipitate, which was most likely shorting out the electrodes. The vacuum lines on 

the third flush were clogged with this precipitate and perhaps other solids. The barrel was initially 

swabbed, but was evidently still very fouled with residue as the blue solution was a muddy, brownish blue 

color for the first three flushes. As the experiment proceeded, each subsequent flask of withdrawn fluid 

had a fainter and fainter blue tint. The peak current decreased with each flush, as seen in Figure 7, 

perhaps reflecting the decreased surface area of copper. After four flushes, the current continued to 

asymptotically decrease to about 15 mA, despite repeated further flushes. It was deemed at the end of 

the seventh decay that all copper was most likely removed, and the experiment was ended. 
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The current and voltage for the second barrel are presented in Figure 8. This barrel contained much 

less fouling material than the first barrel. The withdrawn fluid was initially much cleaner from this barrel 

and was a brilliant blue, due to the presence of Cu(NH3)4. Following successive electropolishings, this 

brilliant blue color gradually faded in the withdrawn fluid until it was almost clear. It is interesting that 

the current peaks during the flushes for this barrel are much higher than those from the first barrel. This 

may be because this barrel was cleaner and perhaps did not have as much iron oxide on the bore surface, 

thus allowing easier passivatioa This experiment was continued even though a steady-state current of 

about 15 mA was reached very early. We desired to see if the current spikes during flushes would 

decrease as in the first barrel. Indeed, as seen in Figure 8, the magnitude does decrease, but not so 

drastically as in the first barrel. Near the end of this experiment, repetitive flushing was performed to 

represent a continuous flush system that would recirculate the electrolyte through a filter and the barrel 

by means of a pump. The peak current increased with each flush of the repetitive series. 

Figures 9 and 10 contain the star-gauge data for both barrels used in the selective electropolishing 

decoppering experiment. The solid lines are the bore deviation data taken before the experiment, while 

the dotted lines show the star-gauge data after the experiment. It is apparent that indeed some material 

was removed from both barrels. Typically this was on the order of 1/1,000 of an inch. (The precision 

of the stargage equipment is 1/1,000 of an inch.) When initially bore-scoped it was noticed that barrel 

A contained a lot of rust, whereas barrel B did not contain so much rust. Barrel A was indeed exposed 

to an oxidizing environment for quite some time before the experiment One reason so much material was 

removed from barrel A is that the duration of the experiment was longer, and that the oxide layer was 

brushed before stargaging. Furthermore, these barrels were extremely coppered, having hundreds of brass 

projectiles fired through them without any attempts to remove the copper. The macroscopic copper 

(streaks) visible in the bore-scope video tape before the experiment were not present in the bore-scope tape 

after the experiment. However, there appeared in the grooves of both barrels after the experiment a very 

fine uniform copper finish which was not present before. This is possibly due to the amount of copper 

originally in the grooves and the fact that the experiment was not performed long enough, or that copper 

from the Cu(NH3)4
++ replated the surface after the experiment. More investigation into the reasons for 

this resultant finish are required in future studies. 
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Figure 9. Stargage data for barrel A. 
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Figure 10. Stargage data for barrel B. 
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7. DISCUSSION 

We have successfully demonstrated an alternative decoppering technique in which all macroscopic 

copper deposits are removed from both barrels. Electrostatic calculations have shown that the copper will 

be removed from the lands first and the inside corners of the grooves last. An ammonium hydroxide 

solution appears to perform as well as the electrolyte due to its behavior as a strong copper ligand, its 

passivation of iron, and its minimization of oxygen evolution. 

Some of the issues to be addressed in the future involve the amount of material removed, as well as 

determining when decoppering is completed. The extracted solution's blue intensity gave some indication 

of the progress. Flocculents shorted the electrodes and blocked the extraction lines during the experiment. 

Further research into aprotic electrolytes will likely indicate a candidate electrolyte that will not cause 

passivation, thereby reducing the amount of bore material removed. Small laboratory-scale experiments 

are required to determine the characterization of the process. The presence of chromium in future artillery 

systems requires studies addressing the effects of the process upon a chromed surface. Chromium will 

most likely benefit the current technique as it will not oxidize and will behave inertly as long as the 

applied potential remains below the chromium oxidation potential. These small-scale experiments will 

assist in evaluating and guiding the gun-scale experiments. Experimental studies and post-firing analysis 

are desired to evidence the metallurgical hypothesis proposed concerning the mechanism of Pb and Bi 

alloy decoppering. This work would be connected with the large-caliber test firings by designing and 

analyzing test probes inserted into the gun. 

Other future work will involve constructing and implementing a 155-mm fieldable system. This 

system would utilize a filtered, closed recirculation loop for the electrolyte. The design must account for 

implementation as part of a regular maintenance schedule. Interestingly, different guns most likely will 

have differing coppering rates, while some may not copper at all (NOSIH 1995). It is possible that the 

muzzle velocity radar system on the weapon may be able to dynamically indicate how much copper has 

built up. 
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