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AERONAUTIC SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Symbol 

. Metric English 

Unit Abbrevia- 
tion Unit Abbreviation 

Length  
Time  
Force   . 

I 
t 
F 

meter.        _        _ _      .  _ m 
s 

kg 

foot (or mile) _   _     _   .. 
second (or hour)      
weight of 1 pound 

ft (or mi) 
sec (or hr) 
lb 

second                 
weight of 1 kilogram  

Power  
Speed  

P 
V 

horsepower (metric)  horsepower 
miles per hour_ 
feet per second, _ 

hp 
mph 
fps 

/kilometers per hour _ 
(meters per second_ 

kph 
mps 

2. GENERAL SYMBOLS 

W 
9 

m 

I 

S 
Sa 

G 
b 
c 

A 

V 

L 

D 

D0 

Dt 

D, 

G 

Weight—mg 
Standard acceleration of gravity= 

or 32.1740 ft/sec2 

W 
Mass=— 

9 

= 9.80665 m/s2 

of 

-s2 at 15° C 

Moment   of   inertia=m&2.    (Indicate   axis 
radius of gyration k by proper subscript.) 

Coefficient of viscosity 

3. AERODYNAMIC SYMBOLS 

v Kinematic viscosity 
p Density (mass per unit volume) 
Standard density of dry air, 0.12497 kg-m" 

and 760 mm; or 0.002378 lb-fr* sec2 

Specific  weight  of  "standard"   air,   1.2255  kg/m3  or 
0.07651 lb/cu ft 

Area 
Area of wing 
Gap 
Span 
Chord 

Aspect ratio, -~ 

True air speed 

Dynamic pressure, ~pV2 

Lift, absolute coefficient CL=—Q 

Drag, absolute coefficient CD=—q 

Profile drag, absolute coefficient GDo—rxi 

Induced drag, absolute coefficient CD.= -i 

Parasite drag, absolute coefficient CDJ)=-~ä 

C 
Cross-wind force, absolute coefficient Cc=   e 

go 

i„ Angle of setting of wings (relative to thrust line) 
it Angle of stabilizer setting  (relative to thrust 

line) 
Q Resultant moment 
12 Resultant angular velocity 

R Reynolds number, p —'- where H is a linear dimen- 

sion (e.g., for an airfoil of 1.0 ft chord, 100 
mph, standard pressure at 15° C, the corre- 
sponding Reynolds number is 935,400; or for 
an airfoil of 1.0 m chord, 100 mps, the corre- 
sponding Reynolds number is 6,865,000) 

a Angle of attack 
e Angle of down wash 
an Angle of attack, infinite aspect ratio 
a,-. Angle of attack, induced 
a„ Angle of attack, absolute (measured from zero- 

lift position) 
y Flight-path angle 
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ANALYTICAL DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS 
OF CANTILEVER BEAMS BY MEANS OF STATION FUNCTIONS1 

By ALEXANDEK MENDELSON and SELWYN GENDLER 

SUMMARY 

A method based on the concept of Station Functions is pre- 
sented jor calculating the modes and the frequencies of non- 
uniform cantilever beams vibrating in torsion, bending, and 
coupled bending-torsion motion. The method combines some 
of the advantages of the Rayleigh-Ritz and Stodola methods, in 
that a continuous loading function for the beam is used, with 
the advantages of the influence-coefficient method, in that the 
continuous loading function is obtained in terms of the dis- 
placements at a finite number of stations along the beam. 

The Station Functions were derived for a number of stations 
ranging from one to eight. The deflections were obtained in 
terms of the physical properties of the beam and Station Num- 
bers, which are general in nature and which have been tabulated 
for easy reference. Examples were worked out in detail; com- 
parisons were made with exact theoretical results. For a uni- 
form cantilever beam with n stations, the first n modes and 
frequencies were in good agreement with the theoretically exact 
values. The effect of coupling between bending and torsion 
was shown to reduce the first natural frequency to a value below 
that which it would have if there were no coupling. 

INTRODUCTION 

The failure of turbine and compressor blades due to vibra- 
tions has led to an increased interest in the study of the 
vibrations of these blades and in the determination of the 
natural modes and frequencies. In such theoretical studies, 
it is usually assumed that the compressor or turbine blade 
acts as a cantilever beam. The calculation of the uncoupled 
modes of arbitrarily shaped cantilever beams has been ex- 
tensively investigated (references 1 to 4), but little work has 
as yet been done on calculating the coupled modes of such 
beams. If the geometry of the beam is such that coupling 
exists, the coupled modes are the actual vibrational modes 
that must be calculated. 

Four general methods are currently in use for calculating 
uncoupled modes and frequencies of nonuniform beams. 
These methods are the Eayleigh-Ritz or energy method 
(reference 1), the Stodola method (references 5 and 6), the 
influence-coefficient method (references 4 and 7), and the 
integral-equation method (references 8 and 9). For each of 
these methods, computational work can usually be carried out 
in several ways. For example, by the use of influence co- 
efficients the modes and frequencies can be determined by 

Mykelstad's iteration procedure (reference 7) or by matrix 
methods (reference 4). 

Any one of these methods can be extended to the calcula- 
tion of coupled bending-torsion modes. The Eayleigh-Eitz 
method usually requires that the uncoupled modes be deter- 
mined before the coupled modes can be computed. In apply- 
ing either the Eayleigh-Ritz or the Stodola method, great 
difficulty is encountered in accurately determining the higher 
modes, because the lower modes must first be "swept out" 
by the use of exact orthogonality conditions (reference 10); 
the process will otherwise always converge back to the 
lowest mode. The same difficulties are encountered in the 
integral-equation method. 

The influence-coefficient method reduces the problem to 
one having a finite number of degrees of freedom. The beam 
is divided into n intervals and a concentrated loading is as- 
sumed at the center of gravity of each interval. The solution 
of the resultant determinantal equation gives the first n 
modes. The accuracy of the higher modes is, however, very 
poor; only the first third of the modes and the first half of the 
frequencies are obtained within the usual engineering accu- 
racy. Carrying along so many useless modes greatly in- 
creases the labor involved. 

A straightforward accurate method for determining the 
coupled bending-torsion modes and the frequencies of non- 
uniform cantilever beams, together with applications of this 
method, was developed at the NACA Lewis laboratory dur- 
ing 1949 and is presented herein. This method is based on 
the use of Station Functions as first discussed in refer- 
ence 11. Incorporated in the method are the advantages of 
the continuous-function deflections of the Rayleigh-Eitz 
and Stodola methods together with the advantages of the 
finite number of degrees of freedom of the influence-coefficient 
method. When the method is applied to a uniform beam, 
the first n roots of the resultant determinantal equation are 
amply accurate for engineering purposes. 

The final determinantal equation is solved herein by 
matrix-iteration methods (reference 4). Any other con- 
venient method may, however, be used and no knowledge 
of matrix algebra is needed to carry out the calculations by 
the matrix method. The work can be done by an inexperi- 
enced computer, as the only operations necessary for determ- 
ining each mode are cumulative multiplication and division. 
In addition, for the case in which the coupling coefficient 

1 Supersedes NACA TN 2185, 
Selwyn Gendler, 1950. 

remains   constant   along   the   beam,   a   simple   quadratic 

Analytical Determination of Coupled Bending-Torsion Vibrations of Cantilever Beams by Means of Station Functions" by Alexander Mendelson and 
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formula and a series of curves are presented for determining 
the first coupled mode in terms of the uncoupled modes. 
Examples are developed in detail and comparisons with 
exact theoretical results are included. 

THEORY 

In the usual influence-coefficient methods for solving 
dynamical problems, a continuous body having an infinite 
number of degrees of freedom is replaced by a body having a 
finite number of degrees of freedom. Two principal assump- 
tions are then made that introduce inaccuracies into the 
solutions, particularly in the higher modes: (1) The resultant 
of the inertia loads of all the infinitesimal masses in a finite 
interval passes through the center of gravity of that interval; 
and (2) a concentrated load that is the resultant of a dis- 
tributed load produces the same deflection as the distributed 
load. An attempt has been made to reduce the error due to 
the second of these assumptions by the use of weighting 
matrices (reference 12). Although the accuracy is thereby 
increased, the effect of the first assumption is still great 
enough to introduce serious errors (reference 11). 

In order to eliminate these assumptions, Rauscher (ref- 
erence 11) introduced the concept of Station Functions. 
Instead of assuming the inertia loads to be concentrated at 
the centers of gravity of the intervals, the inertia loads 
and, consequently, the deflections are assumed to be con- 
tinuous functions along the beam. The values of these 
continuous deflection functions at the reference stations must 
equal the deflections of the reference stations. The loading 
on the beam is therefore a continuous function of the de- 
flections of the reference stations. Inasmuch as the deflec- 
tions of the reference stations can be computed from the 
loading on the beam, which in turn is available from the 
deflections, the deflections are therefore obtained as functions 
of themselves. This procedure gives n homogeneous equa- 
tions in the n deflections of the reference stations. The 
resultant determinantal equation has n roots for the fre- 
quency; it will be shown that for a uniform beam all these 
roots are sufficiently accurate for engineering purposes if 
the deflection functions are properly chosen. (For coupled 
bending-torsion vibrations, 2n homogeneous equations and 
In roots are obtained for n stations.) 

The deflection functions used must satisfy the boundary 
conditions of the problem and also the condition that, at 
any reference station, the value of the function must equal 
the deflection of the reference station. Although it is always 
possible to find directly a single function that will satisfy 
these conditions, it is more convenient to obtain different 
component functions at each station and to add all these 
component functions together to give the complete deflec- 
tion function. Eauscher (reference 11) calls these compon- 
ent deflection functions Station Functions. For example, 
the complete torsional deflection function for the beam will 
have the following form: 

n 

(feO=E/i(s)»i 

where 
z dimensionless distance along beam 
6{z) torsional deflection at distance z from root 
6] torsional deflection at jth station 

fj(z)    Station Function in torsion associated with jth station 
(All symbols are defined in appendix A.) 

Each Station Function must satisfy the boundary condi- 
tions of the problem and the following additional conditions: 
(1) At the reference station with which it is associated, the 
Station Function equals the deflection of that reference sta- 
tion; and (2) at all other reference stations, the Station 
Function equals zero. The sum of all these Station Func- 
tions will then give the complete deflection function for the 
beam. The Station Functions and corresponding loading 
functions are derived in appendix B for torsional vibrations, 

l 

r—tf^l 
-+- H A^ (- -+- 
2 i-l i i + l 

FIGURE 1.—Cantilever beam with n stations. 

bending vibrations, and coupled bending-torsion vibrations of 
an arbitrary cantilever beam. 

Torsional vibrations.—It is shown in appendix B that the 
torsional deflections of the reference stations for a beam 
divided into n intervals of length 5, as shown in figure 1, 
are given by the following system of equations: 

where 
1^0 J'=l 

(1) 

atj = :±)rlhNjk-(k-l)IkMik+ ±,   IrMJ      (2) 
4=1 O* |_ r=k+l J 

i and j—1, 2, . . . n 

w   frequency of vibration 
S    length of interval 
I0 mass moment of inertia per unit length about elastic 

axis at root section 
Ik ratio of average mass moment of inertia per unit length 

of ktu interval to mass moment of inertia per unit length 
at root section 

C0 torsional stiffness of root section 
Ck ratio of average torsional stiffness of kth interval to tor- 

sional stiffness at root section 
The Station Numbers Nik and Mjk are functions only of the 

integers k, j, and n and are defined as 

NJk=        zfj(z)dz 
J k-1 

Mik= I     jj{z)dz 
Jk-l 

(3) 

where jt{z)  represents  the  Station Functions  derived in 
appendix B and is given by 

f](z)=auz+a2jZ
2+. . . +a(n+1)is

Cn+1) (4) 

The coefficients a(J are determined in appendix B by 
satisfying the conditions on the Station Functions. The 
integrals in equations (3) are thus seen to be integrals of 



DETERMINATION  OF  COUPLED  BENDING-TORSION  VIBRATIONS  OF  CANTILEVER BEAMS 

simple polynomials and the limits of integration are integers. 
The Station Numbers Nik and Mlk 'are therefore rational 
numbers, functions only of the integers n, k, and j. These 
numbers have been evaluated and are listed in tables I to 
VIII. 

If the physical properties of the beam under consideration 
are known for each of the n intervals, Ck and Ik will be 
known. The Station Numbers Nlk and Mik can be obtained 
from tables I to VIII. From equation (2), atJ can then be 
easily calculated. 

Equation (1) actually represents n homogeneous equations 
1   0> 

'IoS2 in the n unknown deflections 0t.   With - 

tions can be written as follows: 

(«11 — X) 01+«1202+ «1303+ • • • +aiB0n = O 

«2101+ («22 — X)02 + «2303+ ■ • • + a2K0re=O 

«3101+ «3202+(«33— X)03 + •   •   ■ + «3n0» = O 

= X, these equa- 

(5) 

Ö« 101+ «K202+ «,«303+ • •  • +(«n« —X)0n = O 

For a nontrivial solution, the determinant of the coefficients 
must vanish and the characteristic equation becomes 

«11- -X  aJ2        «13 •   •   «in 

«21 «22—X   a23 .•   •   a2n 

Ä31 «32        «33 — X     . ■   ■   «3» 

«nl «n2      «n3         •   • •    «»» — X 

= 0 (6) 

or 
|X7-M| = 0 (6a) 

where I is the identity matrix, and [atj] is the dynamical 
matrix. 

Equation (6) can be solved for the n values of X by any 
method available. The method used herein was to obtain 
the values of X as the latent roots of the matrix [afJ], which 
is actually the dynamical matrix for the problem. The mode 
shapes are obtained at the same time. 

Bending vibrations.—The bending deflections for the beam 
shown in figure 1 are given by the following system of equa- 
tions (appendix B): 

(7) 

where 

ßu = S i (mk(iP'jk- Q'jk) + S   m 
)t=i JO* \ r=*+l 

,{(t-i+!)#vh 

[■ 
F-(ifc-l)3   (2Jfc —l)i ]MV|) (8) 3 2 

i and j=l, 2, . . . n 

m0 mass per unit length of beam at root section 
mk ratio of average mass per unit length of kth interval to 

mass per unit length at root section ^    ,. 
B0 bending stiffness at root section 
Bk ratio of average bending stiffness of kth interval to bend- 

ing stiffness at root section 

The Station Numbers M'jk, N'lk, P'ik, and Q'jk are func- 
tions only of the integers Ar, j, and n and are defined by 

P'jlc^£_^j-(k-l)z+^(k-iy'jgj(z)dz 

M'jk= \      gj(z)dz 

zgj{z)dz 
J k-l 

(9) 

N' 

The Station Functions g^z) are derived in appendix B and 
are given by 

gj(z) = b2jz
2+b3jz

3+bilz
i+ . . . +ö(re+3)^

(n+3)     (10) 

The integrals in equations (9) are thus seen to be integrals 
of simple polynomials. The Station Numbers M'jk, N'jk, 
P'jk> and Q'jk are rational numbers, functions only of the 
integers j, k, and n. These numbers have been evaluated 
and are listed in tables I to VIII. 

If the physical properties of the beam are known for each 
of the n intervals, mk and Bk will be known. The Station 
Numbers M'jk, N'jk, P'jk, and Q'jk are obtained from tables I 
to VIII; ßn can then easily be calculated by equation (8). 

The determinanta! equation is: 

(ID 

011- -X 012 013 . 01» 

021 022- -X 023 •   02» 

031 032 033- -X . ■   03» 

0.1 0n2 0,3 •   Pnn ~ -X 
or 

(Ha) |X/-[0«]! = O 

where 

x^ -Bo   1 
m054 o>2 

The dynamical matrix is [j3w]. 

Coupled bending-torsion vibration.—The torsional and 
bending deflections due to coupled bending-torsion vibra- 
tions of a cantilever beam are given by (appendix B): 

0<="2 2^* ± (r«„0,+«r74,^) 
(12) 

where 

res> 

l~S2C0m0 

r0 absolute magnitude of projection of distance from elastic 
axis to center of gravity on perpendicular to bending 
direction for root section 

rsa radius of gyration about elastic axis at root section 
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on 

The quantities atj and ßtj are denned by equations (2) 
and (8).    The quantities yt1 and 8tJ are given by 

7u = il^[SkN'jk-(k-l)SkM'jk+ jb SrM'jr~\ 

«=g^(s*(*p*-<2^+r|^1^{(*-fe+|)^+ )- (13) 

^"X-! K4 tf-^+f (fc-i)3]//2)rf2 

where 

and Sk is the ratio of the average static mass unbalance of 
the kth interval to the static mass unbalance at the root 
section. 

The Station Numbers Pjk and Qjk are listed in tables I to 
VIII with the other Station Numbers. The determinantal 
equation becomes 

r«ir -x r«12 • ■ ralre «rTll er7l2   . ■ eTyln 

r«21 Ta22—X ■ • r«2B erT2i «r722  • • ■  eTyzn 

r«ni r«„2 ■   •  A ann~ -X eTyn i iTyn2    . ■  ■ eYynn 

«ii 5i2 ■   •   «In ßn- X j312       . ■ ■ ßm 

«21 «22 •   •   «2» ßti fe-X . ■   ■   &» 

«nl «rc2 .  .  onn iS.i ßm •   • ßnn      X 

or 
|x/-h«]|=o 

(14) 

(14a) 

where [ritj] is the dynamical matrix and / is the identity 
matrix. 

The first n roots of equation (14) will give the first n 
coupled frequencies. 

APPLICATIONS AND RESULTS 

In applying the previously discussed method, it is necessary 
to determine for a given beam the elements aM, ßtl, yih and 
St} of the dynamical matrices. These quantities will depend 
on the physical properties of the beam and on the number of 
stations chosen. If the physical properties of the beam are 
known, the quantities atj, ßtj, ytJ, and Stj can be directly cal- 
culated from equations (2), (8), and (13). The numbers 
Mjk, Njk, Pjk, Qjk, M'jk, N'jk, P'jk, and Q'jk appearing in these 
equations depend on the number of stations n that are used 
and can be read directly from tables I to VIII for .any given 
number of stations up to eight. Once these quantities have 
been calculated, equations (6), (11), or (14) can be solved 
for the frequencies by any method desired.    The matrix- 

iteration method used herein is simple and rapid and re- 
quires no particular computing skill. As will be indicated, 
however, the accuracy of equations (6), (11), and (14) is 
such that relatively few stations need be used, in which 
case it may be convenient to expand the determinants and 
to solve the resultant low-order algebraic equation. 

In order to illustrate the accuracy, this method was applied 
to torsional vibrations, bending vibrations, and coupled vi- 
brations of a uniform cantilever beam. The exact theoretical 
values for torsional vibrations and bending vibrations of 
uniform cantilevers are well known. The exact theoretical 
values for the coupled bending-torsion vibration of a uniform 
beam were calculated (appendix D). A comparison was 
then made between the values obtained by the method 
presented and the exact theoretical values. The number of 
stations used was 1, 2, and 3 (n=~\, n=2, and 7i=3). The 
comparisons are summarized in table IX. 

Torsional vibration.—For the case of a uniform beam, 
Ck=Ik=l and equation (2) becomes 

««= S [N»-(JC- !) M*+ S   Mir~] (15) 
fc=l L r=Jt+l J 

The values of Njk and M/& are given in tables I to VIII. 
The table to be used depends on the choice of the number 
of stations. 

Let 7i=l; 

From table 1,2Vu=5/12, 

•aii = --Nu 

and 
.au = 5/12 

ft —— I2 0 ,,2fl 7f Wfl 

or 

£02 = 
12 C0 

5 hi2 = 2.400 § 

w=1.549 fcl 

The exact theoretical value for the first torsional frequency 
is 

co=1.57] 
/ p 

V T I2 

The percentage error is —1.4 when only one station is used. 

The mode shape obtained by the method of Station Func- 
tions agrees well with the theoretical mode shape, as is shown 
in figure 2 (a). 

Let 7i=2; then by equation (15) and table II, 

an = Nn+ M1; 
_8_    _5_=57 

:15 + 12~ 60 

«12 = JV2l+M22= — 
31     29 = 57 

240+48~ 120 

-\T        I     TIT "       I       " 1 ^ 
a21=iVll+iVl2=l5+T5 = 15 

«22 = N2l + NM = — 
31      239_13 

240 + 240 —15 
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(e)  Second mode, n=2. 

FIGURE 2.—Comparison of theoretical mode shapes with mode shapes 

The determinantal equation then becomes 

57 
60" 

-X 
57 
120 

16 
15 

13    , 
15_> 

which gives 

Xi= = 1.6214 

x2= = 0.1953 

Therefore 

.4 .6 .8 1.0 
Distance from root      x 

Length of beam    '   I 

.(d) First mode, n=3. 
(e) Second mode, n=3. 
(f) Third mode, re=3. 

obtained by taking n stations along the beam for torsional vibrations. 

Let ?i=3; then by equation (15) and table III, 

an=iV11H-M12+Mi3=0.945833 
a12=iV21+M22+M23=0.958333 
a13=i\r314-M32+M88=0.520834 
a21=AT11+iV12+2M13=1.033333 
«22=^21+A722+2M23=1.883333 
aM==JV'n+JV'M+2Afn=1.011113 
a31=JV11+Ar

12+iVi3= 1.012500 
a32=iV21+A^22+A7'23=2.025000 

a33 = JV3l+iV32 +2V33 = 1.387501 

«,= 1.571 

a>2=4.526 

The exact theoretical values are 

w, = 1.571 

I Go 

Go. 

o(2 

I2 

0!2=4.712 
IG0 

The precentage errors of the first two modes, for only two 
stations, are found to be 0 and —4. ,.    ■... • 

The mode shapes are shown in figures 2 (b) and 2 (c). 
Agreement of the first mode with the exact theoretical shape 
is excellent; the second mode agrees fairly well. 

The determinantal equation is 

0.945833-X 
1.033333 
1.012500, 

The solutions are 

Therefore 

0.958333 
1.883333-X 
2.025000 

X1=3.6474 
X2=0.4093 
X3=0.1599 

0.520834 
1.011113 
1.387501-X 

=0 

«,= 1.571 

<u2=4.689 

co3=7.502 

I Co 
V/o? 

/"Co" 

TO 

/"Co" 
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1.0 

(a) 

(b) 

^-. ~~. 
^^~~~ -~z^' (c) 
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Cd) 

1.0 

-1.0 
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13   1.0 

13 
c 

CD 

.8 1.0 0 .2 .4 .6 
Distance from root    x 
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(a) First mode, »=1. 
(b) First mode, m=2. 
(c) Second mode, n=2. 

FIGUKE 3.—Comparison of theoretical mode shapes with mode shapes 

The exact theoretical values are 

-1.0 

-2.0 

' i        i        i        i 
— Using n stations 
-Exact theoretical curve 

-^ ^.ji y^ 

(e) 

,-'' \ 

,y \ /! 

H /; 
\ 

V /          / 
1 

\ 
/ 

- (V 
.2 .4 .6 .8 

Distance from root     x_ 
I 

«i=1.571 

«2=4.712 

«3 = 7.854 

la 
Vw2 

[Ik 

[a 

The percentage errors of the first three modes, calculated 
by use of three stations, are found to be 0, —0.5, and —4.5, 
respectively. 

The mode shapes are shown in figures 2 (d) to 2 (f). The 
first two modes agree very well with the theoretical shapes; 
agreement of the third mode is fair. 

This procedure can be carried out as shown for any number 
of stations desired. 

Bending vibrations.—For a uniform beam, Bk=mk= 1 and 
equation (8) becomes 

|8«=S|»^'*-Q'#+S [(i-k+£)N',T+ 
k=l( T=k+\ L\ */ 

(^=^-^i)Mv|   .   ,•        (16, 

Let %— 1 ; 
i=P'n-Q'i 

Length of beam 

(d) First mode, n=3. 
(e) Second mode, n=3. 
(f) Third mode, n=3. 

obtained by taking n stations along the beam for bending vibrations. 

and from table I 
^71       31   = 59 

Pu    630    1008    720 

Therefore, from equation (7), 

«=3.493. ' B° 

The exact theoretical value is 

«=3.516. 

The precentage error for just one station is found to be 
-0.65. 

The mode shape is shown in figure 3 (a) and is seen to 
agree very well with the theoretically exact shape. 

Let n=2; then by equation (16) and table II, 

/3ii=-P'ii-<2'n+!iV'12-iM'i2=0.422745 

0u=P'21-g,„+iiV'B-iAf,
M=O.295925 

/32i=2P'n + 2P'i2-(3'„-(3'i2+|iV'i2-|M'i2=l. 145167 

^2=2P'2i+2P'22-(3'2i-Q
/22+|ivT,

22-|M'22=0.905530 
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The characteristic equation is 

0.422745-X 

1.145167 

The roots are 

0.295925 

0.905530-X 
= 0 

Xi= 1.2943 

X2=0.0339 

'. «i = 3.516 

«2 = 21.71 Bo_ 

The exact theoretical values are 

«i = 3.516 

«2=22.04 

I B0 

\ro0P 

V 

VmoZ4 

The percentage errors for two stations are therefore found 
to be 0 for the first mode and —1.5 for the second mode. 
The mode shapes are plotted in figures 3 (b) and 3 (c). The 
first mode agrees excellently with the theoretically exact 
shape; the second mode agrees fairly well. 

Let n=3; then by equation (16) and table III, 

ßu=P'n-Q'n+\N\2+^N'n-\ M'12-i M']3=0.270604 

/3i2=P'2i-<2,2i+|iV,22+|iV'2,-i M'n~ M'23= 1.009943 

/313=P,3i-e,3i + ^'32+|Af'33-| M'M-| M'33=0.487441 

?21—2r   \\-\-1r   12  Q  11        V 12 + 

|iV'I2 + 2iV'i3-§M\ 

P22—2r 2i + 2r 22     (,/2i     V 22 

3 

M'13 = 0.648170 

:iV'92+2iV'23-|M'22-|M/
23=3.266250 

^23 — 2r 3i + 2.r 32     V 3i     y 32 + 

The characteristic equation is 

|7V'32+2iV'33-|M/
32-|M'33= 1.689891 

ßil — 3r   utöX    12+ Of   13       y ii       Y  i2       (,/ 13 + 

|^',2+4Ar'i3-jM',2-^M'i3=0.985135 

p32— ö" 21To" 22 + 3r   23       Y 21        V 22      y 23 + 

5 
;Af,22 + 4iV'23-^M'22-^M'23=5.822852 

P33 — 3r  3i +or 32+or 33     Q 3i     (^ 32     (,; 33 + 

|jV',2 + 4iV'3,-|M',2—yM'33 = 3.204301 

0.270604 —X 1.009943           0.487441 

0.648170 3.266250 —X    1.689891 

0.985135 5.822852           3.204301-X 

The roots are 
Xi=6.5521 

X2=0.1667 

X3=0.0223 
Therefore 

ü,i=3-5i6V^ 
^=22-°4V^ 
«3=60.20 J-^j 

The exact values are 

«i=3.516 

, = 22.04 

«3=61 

I B0 

Vrnoi4 

The percentage errors for three stations are found to be 0, 
0, and —2.4, respectively. The modes are plotted in figures 
3 (d) to 3 (f). The first two modes are seen to agree very 
well with the theoretical mode shape; agreement of the 
third mode is fair. 

Coupled   bending-torsion vibrations.—A  uniform  beam 
with the following constants was chosen: 

7=^=38.56 
«6 

e=0.8 

r n 
193.2 

2 

er= 7T 

241.5 

The values of atl and ßi} are obtained as previously and are 
the same as given before for n = l, n=2, and w=3. Also, 
because Sk=Bk=Ck=mk=Ik=l, equations (13) become 

k = l L r = fc+l J 

928716—51 2 
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Let 7i=l; then the determinant is 

Tan—\     eTyn 0.002156-, 

«11            jSn-X 0.111111 

The roots are 
\!=0.0837 

X2=0.0005 

"i=3-46V;S 
co2 = ■W£ 

0.081944-X 

The procedure for calculating the exact theoretical values is 
derived in appendix D.    The exact values are 

co!=3.49 

O!2=20 

co3=49 

I B0 

"VmoP 

\m0l* 

The percentage error for the first mode, calculated by use of 
one station, is —0.9. 

«r7,2 

eTy22 

= 0 

Let 7i=2; then the determinant is 

r«ii- X TaV2 eTju 

Ta2i r«22—X «T72i 

«11 «12 /8n — X 

«21 «22 021 

Substituting the known values and solving for X give for the 
first two roots 

Xi=1.3197 

X2=0.0412 

and the frequencies become 

The percentage errors for two stations are —0.3 for the first 
mode and —4.4 for the second mode. 

This procedure can be carried out for any number of sta- 
tions desired.    For three stations, the frequencies obtained 
are 

a>!=3.48 
B^ 

md* 

I B0 
Vm0Z4 

= 48.2 JA 
Vm0i

4 

co2=20.6 

co3 

The precentage errors are —0.3 for the first mode, 0 for the 
second mode, and —1.8 for the third mode. 

The results obtained by the method presented are seen 
to agree very well with the exact theoretical values. 

These results are summarized in table IX, where a com- 
parison is made with the results obtained for uncoupled 
bending and torsional vibrations by use of influence coeffi- 
cients with weighted matrices (reference 12). The values 
using weighted matrices were taken from table I of refer- 
ence 12. It can be seen that for a given number of stations, 
the results obtained by the method presented herein are con- 
siderably better than those obtained by using influence co- 

1.0 

Uncoupled 

- rr 
re 

=que 
itio; 

[inn 
36 
16 

ncy 
r 

9 

3 

2 

—/ 
ofi 'act thee re tic ol 

.a .4 .6 .6 
Coupling coefficient, e 

1.0 

FIGURE 4.—Variation of frequency ratio n with coupling coefficient e for several values of 
uncoupled frequency ratio 7. 

efficients with weighted matrices. In general, it is indicated 
that for a uniform cantilever beam using n stations along 
the beam, the first n— 1 frequencies and modes are in ex- 
cellent agreement with exact theoretical values and even 
the 7i.th mode is given within the accuracy with which the 
physical properties of the material are known. For a tapered 
beam, more stations may be required, depending on the 
amount of taper. The number of stations required to give 
satisfactory accuracy is listed in table X. A comparison is 
made by using weighted influence coefficients; the values 
are taken from table II of reference 12. 

The first vibrational frequency is given approximately by 
equation (C2) (appendix C) when coupling exists between 
bending and torsion; it is plotted in figure 4. In order to 
check these curves, the exact solution was obtained (appen- 
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dix D) for the ratio (CO,/ü)6)
2
 equal to 4 and was plotted on 

the same figure. The values given by equation (C2) are 
seen to be in excellent agreement with the theoretically 
exact values. 

The effect of the coupling between bending and torsion 
is to reduce the first natural frequency below that which 
would exist if there were no coupling. This effect is shown 
in figure 4, wherein the value of Q is always less than 1. 
This decrease in the first natural frequency due to coupling 
is, however, relatively unimportant in the practical range of 
(ü);/w6)

2>4 and e<0.75. 

SUMMARY  OF RESULTS 

A method based on the use of Station Functions is pre- 
sented for calculating uncoupled and coupled bending-torsion 
modes and frequencies of arbitrary continuous cantilever 
beams.    The results of calculations made by this method 

indicated that by the use of Station Functions derived herein, 
n modes and frequencies can be obtained with sufficient ac- 
curacy by using just n stations along the beam if the beam is 
uniform. For a tapered beam, more stations may be re- 
quired, depending on the amount of taper. The amount of 
computational labor is markedly less than for other methods. 
The use of Station Numbers tabulated herein further re- 
duces the amount of calculation necessary. The effect of 
coupling between bending and torsion is shown to reduce the 
first natural frequency to a value below that which it would 
have if there were no coupling. 

LEWIS FLIGHT PROPULSION LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

CLEVELAND, OHIO, October 18, 1949. 



APPENDIX A 

SYMBOLS 

B 
Bo 
Bk 

ha 

C 
C0 

Ck 

The following symbols are used in this report: 

f coefficient in equation for Station Function 
in torsion 

bending stiffness of beam, function of z 
bending stiffness at root section of beam 
ratio  of  average  bending  stiffness of ktb 

interval   to   bending   stiffness   of   root 
section 

coefficient in equation for Station Function 
in bending 

torsional stiffness of beam, function of z 
torsional stiffness of root section of beam 
ratio of average torsional   stiffness   of ktb 

interval   to   torsional   stiffness   at   root 
section 

constants defined in appendix B 
Station Function in torsion for jtb station 

(defined in text) 
Station Function in bending for jtb station 

(defined in text) 
mass moment of inertia per unit length of 

beam about elastic axis, function of z, 
except where otherwise defined 

mass moment of inertia per unit length of 
beam about elastic axis at root section 

ratio of average mass moment of inertia 
per unit length of ktb interval to mass 
moment of inertia per unit length at root 
section 

station indices 
summation indices 
length of beam 
Station Numbers (defined in text); function 

jk,    of indices j, k, and n 

h 

i,j,k,n 
3,k,r 
I 

Qjk, M jk, 

Mjlc, i\jk, in, 
N' 

jk, <?'. jk 

m 
m0 

mk 

mass per unit length of beam, function of z 
mass per unit length of beam at root section 
ratio of average mass per unit length of 

kih interval to mass per unit length at 
root section 

number of stations along beam 

&(s) 
2<(2) 
r 

S 
S0 

sk 

y 

z 
aij, Pij, fij, 

8ij, Vij 

r 

y 
8 

bending loading function on beam 
torsional loading function on beam 
absolute magnitude of projection of distance 

from elastic axis to center of gravity on 
perpendicular to bending direction 

radius  of gyration  about  elastic  axis  at 
root section 

absolute magnitude of projection of distance 
from elastic axis to center of gravity on 
perpendicular  to  bending  direction  for 
root section 

static mass unbalance, function of z, mr 
static mass unbalance at root section, m0r0 

ratio of average of static mass unbalance at 
kth   section   to   static   mass   unbalance 
at root section 

distance from root of beam, except where 
otherwise defined 

bending deflection, function of z 
bending deflection at itb station 
dimensionless distance along beam, x/S 
elements of dynamical matrix defined in text 

i/o Bo_ 
S2 C0 m0 

uncoupled frequency ratio, (ut/wb)2 

length of interval along beam between 
two stations 

coupling coefficient, (r0/rg0)
2 

torsional deflection, function of z 
torsional deflection at itb station 
root of frequency equation or characteristic 

root of dynamical matrix 
frequency ratio, (U/üJ5)

2 

frequency of vibration 
frequency of uncoupled fundamental bend- 

ing mode 
frequency of uncoupled fundamental tor- 

sional mode 
second derivative of deflection with respect 

to time 

10 



APPENDIX B 

STATION FUNCTIONS AND DETERMINANTAL EQUATIONS 

TORSIONAL VIBRATIONS 

A schematic diagram of a cantilever beam divided into n 
intervals of length 5 is shown in figure  1.    The Station 
Functions for the torsional vibrations of such a beam must 
satisfy the following conditions: 
At 

2 = 0   /,(0) = 0 (Bl) 
s=w   ft(n) = 0 (B2) 
z=i    /*(*)= 1 (B3) 
2=i    /<(j) = 0   j*i (B4) 

where/'(z) denotes the derivative with respect to z. 
Equations (Bl) and (B2) represent the boundary condi- 

tions that must be satisfied by a cantilever beam vibrating 
in torsion; equations (B3) and (B4) represent the further 
conditions imposed upon the Station Functions. These 
conditions will be satisfied by a function of the type 

fi{z)=auz+a2iz
2+ . . . +ain+1)iz

u+1) (B5) 

where the coefficients atj must satisfy the following simul- 
taneous equations obtained from conditions (B2), (B3), 
and (B4): 

0 = au + 2na2( + 3n2a3i + . . . +(n+l)n"ain+1)l    (B2a) 

l=iali + i*alli + i*aii + . . . +i<-n+»a^ 1)t (B3a) 

0=jali+j2att+jlalt + . . . +j<*+»a(n+1)i j^i   (B4a) 

The coefficients a{, can be obtained by solving equations 
(B2a) to (B4a) and the functions fi(z) determined for each 
station. Equation (B5), however, can also be written in 
the following; form: 

/*(*)= 
n(2— j)z{z—C,) 

"n(i— j)i(i — ci) (B5a) 

where II represents the product for all values of j except 

j=i. The function in equation (B5a) obviously satisfies 
conditions (Bl), (B3), and (B4) because it has zeros at all 
points specified by equation (B4), it equals 1 at the point 
specified by equation (B3), and it equals zero at the point 
specified by equation (Bl). In order to satisfy condition 
(B2), the constant Ci is determined by substitution of equa- 
tion (B5a) into equation (B2). 

Ci = n for i^n 

Cl=n/l+ 1 \ 
I        1 + S-5-J \ pi n—j/ 

for i = ? 

Equation (B5) can be obtained from equation (B5a) by 
carrying out the indicated multiplications. The complete 
deflection function is then given by 

0(2)=/.(2)01+/2(2)02+   •   •   •   +/„(Z)0. 
n 

(B6) 

The continuous loading function q, (z) can now be written 
as 

qt(x) = Ia2d(z) = Ia>2J}fj(z)dj (B7) 

A continuous loading function, which is a function of the 
deflections at the reference stations, has thus been obtained. 

BENDING VIBRATIONS 

The Station Functions for the bending vibrations of the 
beam shown in figure 1 must satisfy the following conditions: 
at 

2 = 0 gt(0)=o (B8) 

2 = 0 g'i(0)=o (B9) 

2 = 71 </"«(»)=o (BIO) 

2=71 g'"t(n)=0 (Bll) 

z=i 9&)=l (B12) 

Z=j 9t(3) = 0 j^i (B13) 

where g' (2), g" (z), and g'" (2) denote the first, second, and 
third derivatives, respectively, of g (2) with respect to 2. 

Equations (B8) to (Bll) represent the boundary condi- 
tions that must be satisfied by a cantilever beam vibrating 
in bending and equations (B12) and (B13) represent the 
additional conditions imposed upon the Station Functions. 

These conditions will be satisfied by functions of the type 

gt(z) = b2tz
2+bstz*+. . .+b(n+3)iz<n+*> (B14) 

where the coefficients bi} must satisfy the following equa- 
tions obtained from conditions (BIO) to (B13): 

0 = 2&2i + 67i&3i+. ■ .+(n+3)(n + 2)7i,(K+1>ö(M+3)i (BlOa) 

0 = Qb3i + 2inbu+. . . +(n+3)(n + 2)(n+l)nnbin+3)i (Blla) 

1 = i2b2i+i*b3l+. . .+iu+3'6u+3)j (Bl2a) 

0=?b2i+j3b3i+...+j("+vb(n+3){   j*i (Bl3a) 

The coefficients can therefore be obtained from equations 
(BlOa) to (Bl3a) and the functions gt (2) determined for 

11 
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each station i.    Equation (B14) can, however, be written 
in the following form: 

<G0= 
U(z-j)z2(z2 + c2z+c3) 

U{i—j)i2(i2+c2i + cs) 
(Bl4a) 

where IT represents the product for all values of j except 

j=i. The function in equation (Bl4a) obviously satisfies 
conditions (B8), (B9), (B12), and (B13), because it has 
zeros at all points specified by conditions (B8), (B9), and 
(B13) and equals 1 at the point specified by equation (B12). 
In order to satisfy conditions (BIO) and (Bll), the constants 
c2 and c3 are determined by substitution of equation (Bl4a) 
into equations (BIO) and (Bll). The general forms for c2 

and c3 are, however, complicated and it is easier to obtain 
the numerical values of these constants for each specific 
case. Equation (B14) can then be obtained from equation 
(Bl4a) by carrying out the indicated multiplications. The 
complete deflection function is then given by 

y(z)=12gAz)yj (B15) 

The continuous bending loading function qt{z)  can now be 
written as 

q„(z) = mu2y(z) = mw2i>lgi(z)yJ 

COUPLED BENDING-TORSION VIBRATIONS 

(B16) 

The Station Functions for the coupled bending-torsion 
vibrations are the same as previously given for the bending 
vibrations and the torsion vibrations. The loading func- 
tions, however, are given as follows (reference 7): 

qt(z) = Iw26(z) + Sw2y(z) 

= "2i: [imOt+Sgfc) y,\ (Bl7) 

qb(z) = So>2d(z) + ma>2y(z) 

= u2it [SU?)Oi + mgfc) Vj] (B18) 

DETERMINANTAL EQUATIONS AND DYNAMICAL MATRICES 

and 

Once the Station Functions and the corresponding loading 
functions have been determined, the deflections at the 
reference stations can be obtained in terms of the loading 
function. A homogeneous equation in the reference-station 
deflections for each station is thereby obtained. The 
determinant of the coefficients of the resultant set of homo- 
geneous equations can be set equal to zero; the determinantal 
frequency equation is thus derived. The deflections at the 
reference stations are obtained by the well-known equations 
for obtaining influence coefficients. 

Torsion.—The deflection at the station i due to the 
continuous loading qt(z) on the beam is given, by ' 

ei = p£qt(sy£ ^1 dz + S2£qt(z) £' ^ dz      (B19) 

If C is assumed to have a constant value for each interval, 
these integrals may be written as the sum of integrals over 
each section.    Equation (B19) then becomes 

0i=|-i:iTr   za.OOdz+r   (l-k)qt(z)dz+(\t(z)dz~\ 
Oo fc=l CjtLJt-l J k-l Jk J 

(B20) 
By substituting the relation 

2«(2)=«2/i:/>(2)fly 

and by assuming a constant value for I for each interval and 
changing the summation order, 

di = ^h2^±1\±l~\lAk   zfj(z)dz-(k-l)h(k Mz)dz + 
O0; = l   (i=ll-iL     J k-l Jk-1 

JW>(Hi0' CB21) 
fk 

zjj(z)dz=Njk 
J k-l 
J* k 

fj(z)dz**M,t 
k-l 

Let 

(B22) 

Then 

where 

h 
t/Q        .7=1 

<xij=i:^T[ikNJk-(k-i)ikMjlc+ s i 
* = 1  Mfc L r = k+l 

If Ck=Ik=l (constant cross section), then 

k=l L r=k+l J 

(B23) 

■rMirJ   (B24) 

Let 

Then 

X = 
C0 

I0w
282 

7=1 

and the characteristic equation is 

\[atj\ — \I\ = 0 

(B25) 

(B26) 

(B23a) 

(B27) 

where / is the identity matrix. 
Bending.—The deflection at the station i due to the con- 

tinuous loading qt(z) on the beam will be given by 

Jo Jo 

SJi  q"iz)io 

{z — zl){i — z?) 
B 

(g —Si)Qä —zQ 
B 

dzidz-{- 

dz,dz (B28) 
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If B is assumed to have a constant value for each interval,       where I is the identity matrix and ßi} is the dynamical ma- 
these integrals may be written as the sum of integrals over 
each interval.    Equation (B28)  then becomes 

\l_x \j-\ (* - !)2z +| (*-1)3] «»(*)<*« + 

ro*-* 
By substituting the relation 

fc3-(ifc-l)! 

] qb(z)dz 

qt,(z) = a>tmj}gj(z)y} 

(B29) 

(B30) 

and by assuming a constant average value for m in each in- 
terval and changing the summation order, 

where 

yt=^D— ZJ ßtivs 
■Do      ;'=l 

(B31) 

(B32) (*!=^!_e*z±) i) MV] 

'*-        22X2) dz J/c-1 

'«=        2X2) dz 
Jk-i 

M 

(B33) 

For a uniform beam, mk=Bk=l and equation (B32) be- 
comes 

k = l \ r = k+l (\ 2/ 

'k'-jk-iy   (2k-1) . 

Let 

[^|=^-^i]Mv|) 

B. 
a)254mn 

then the characteristic equation becomes 

\[ßt,]-\I\ = 0 

(B32a) 

(B34) 

(B35) 

trix.    In expanded form, equation  (B35) becomes 

011- -X 012         • •   •      ßl» 

02! 022-X   . ■     02» 

0,1 0n2        •    • Pnn X 

(B35a) 

where X is a latent root of the matrix [ßtj]. 

Coupled bending-torsion vibrations.—The deflections at 
station i are given as before by equations (B19) and (B28). 
The loading functions qt and qb are changed as follows: 

qt(z) = ^[Id(z) + Sy(z)) 

g_b(z) = ü>2[S8(z) + my(z)] 
(B36) 

If these two equations are substituted into equations (Bl9) 
and (B28) and the integrations are performed as previously, 
the following relation is obtained: 

u>2m084 

"~BT J=i \ '0/ 

71=—w~~ 2 ( su ei+ßuzr ) 
' 0 -°0       J=l \ ' 0/ 

(B37) 

where aw and <3W are given in equations (B24) and (B32) and 

r„2 

r= 1 /»Bo 
52 C0m0 

7(^S^-r&iV^-(Ä:-l)S,M^+ £ S,M'J 

*=1 -D*;( r = t+l       L\ -V 

(—V-2 —2^ v Mdl (B38) 

where 

pJk=£_i[^-(k-i)z+±(k-iy']fj(z)dz 

the determinantal equation therefore is 

|x/-[u„]| = o 

where [77^] is the dynamical matrix, the elements of which 
are as indicated in equation (B37). The matrix [r?^] is seen to 
be a 2»X 2n matrix. 



APPENDIX C 

QUADRATIC FORMULA FOR FIRST COUPLED MODE 

If only the first vibrational mode is desired, it is possible 
to obtain this mode approximately by coupling together the 
fundamental uncoupled bending mode with the fundamental 
uncoupled torsional mode to obtain a simple quadratic 
equation for the first coupled frequency. This equation is 
valid when the coupling coefficient e is constant along the 
beam. The differential equations obtained by coupling the 
fundamental uncoupled torsional mode with the funda- 
mental uncoupled bending mode are: 

my-\-S8 +wiu6
2y=0) 

Sy+I6+Iwt
2e=0  ) 

(Cl) 

where 

m  mass per unit length of beam, function of z 
8   static mass unbalance, function of z 

I   mass moment of inertia about elastic axis, function of z 
co6 frequency of uncoupled fundamental bending mode 
o>, frequency of uncoupled fundamental torsional mode 
..   denotes differentiation twice with respect to time 

These equations lead to a quadratic equation in the fre- 
quency ratio 0, whose solution for the lowest frequency, 
provided e is constant along the beam, is 

0: 
1-7 M-»]    «"* W    2(1-e) 

where 

Ü   frequency ratio, (o)/cü»)2 

7   uncoupled frequency ratio, (co,/cos)
2 

€    coupling coefficient, (r/rg)
2 

This quadratic has been plotted in figure 4 for values of e 
ranging from 0 to 1 and values of y = (wt/wby from 1 to 100. 

APPENDIX D 
EXACT SOLUTION FOR COUPLED BENDING-TORSION VIBRATIONS OF UNIFORM CANTILEVER BEAM 

The differential equations for the equilibrium of an ele- 
ment of a beam vibrating in coupled bending-torsion vibra- 
tions can be put in the following dimensionless form: 

d*Yx    ml* 
dx* 

d2Y2 

dx2 

B 
JYi+^ctY. 

where 

IV   2V    II2 

Y^y/r 

Y2=6 

distance from root 
x=- 

l 

e=(r/rg)2 

Now 

where 

Equations (Dl) become 

o>2 _c4B 
ml* 

o>t
2= 

a 
= c5 Ip 

c4= 12.36 

Cs = 2.467 

g,=c4o(F1+r2) 

d2Y2 

dx2 
cß v -e   I i- 
7 

cSl 

(Dl) 

(D2) 

where 

Let 

fi = (co/o!S)2 

7 = (OO,/OJö)2 

Then 

dYl 

dx 

ill 
dx 

dYi 
dx 

dY2 

dx 

dY6 

= YX 

Yt 

Y, 

= Ffi 

-cßiY. + Y,) 
dx 

dp>=-cJ$((Yl+Y2) dx 7 

Equation (D3) can be written as the single matrix equation 

(D3) 

d_ 
dx 

Y; 

Y2 

Y3 

Y, 

Y, 

YR 

'    0 

0 

0 

0 

c4tt 

— tcsQ 

L   y 

o 

o 

o 

o 

Ctß 

— c5Q 
0     0     0 

0" ~Ff 

1 Y2 

0 Yz 

0 r4 

0 F5 

0 Y, 

(D4) 

14 
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or 
d-f=AY 
ax 

(D4a) 

where F and A are the matrices indicated. 
The solution to the matrix equation (D4) is given by 

Y=eAzY, 

where F0 is a column of arbitrary constants. 
From the boundary conditions 

(D5) 

at    x = Q        Yt = F2=F3=0 

x=l      F4=F6=F6=O 

~   0   ~ 
0 

Fo=F(0) = 
0 

Yt(Q) 
F.(0) 

_^.(0)_ 

If then £lt] is an element of the matrizant eA, the boundary 
conditions give 

(D6) 

Equation (D6) is the frequency equation.    It has an infinite 
number of roots for co. 

In order to determine the elements ti(1; eA must be evalu- 
ated. Use will be made of Sylvester's theorem (reference 
13). 

044 ^45 "46 

o« Ö55 ^56 

"64 "65 "66 

The X matrix of A is 

~     —X 0 1 0 0 0 

0 — X 0 0 0 1 

0 0 — X 1 0 0 

0 0 0 -X 1 0 

c4Q c4Q 0 0 — X 0 

c50 
 £ 

7 7 
0 0 0 

The characteristic equation A(X)=0 is 

Xe+^ x4-c4OX2-(l-e)c4c5-=0 
7 7 

(D7) 

Equation (D7) is a cubic equation in X2.    Let the roots be 

Xi, — Xi, X2, — X2, X3,    X3 

Then by the confluent form of Sylvester's theorem, 

er = 
r        1       dai-i r    e^(X)    -1 

U |(a«-l) d\-i-i    n(X-X*)«*      , v     ' 

where F(\) is the adjoint matrix, r is the number of distinct 
roots, and at is the multiplicity of the ith root. 

If the roots are all distinct, this relation becomes 

»   e*tFQit)-e-\F(-\t) e    hi 2xin(x<-x,)(xi+x,) (D9) 

where the adjoint matrix F(X) is given by 

F(\y- 

X5+^ X3 

7 
c4QX 

0,, 

7 
X5—c4fiX 

c4£2X2+(l- - e)CiC5 
5! 
7 

C4OX2 

c4fiX3+(l-e)c4c5 — X      c4QX3 

7 

C4fiX4+(l—e)c4c6 —X2     c4fiX4 

7 

eeß X4 
L      7 7 7 

X4+^ X2 

7 

_^e£^x2 

7 

X5+^ X3 

7 

c4OX2+(l-e) 

C4S2X3+(l-e) 

-e^X3 

cSl 

c4c5£22 

7 

c4c50
2 

X3+ 

c50 
— e — X 

7 

X4+^ X2 

7 

X6 + ^ X3 

7 

X2+c5 

c,n 

c4n 

X4—c40 

C4C5 

X3+^ X      c4$2X 
7 

X4+^ X2    c4flX2 

7 

CSL 
X    c4GX2+(l-«) —O2    X5+^X3    c4flX3 

-A* 
7 

-£^?X      X«-c4fiX 
7 

(D10) 



16 REPORT   1005—NATIONAL  ADVISORY  COMMITTEE  FOR AERONAUTICS 

From equations (D9) and (D10), the elements Qtj are seen 
to be given by 

4 . c5S2     2 
3    Ai  -| Aj 

044= —XI ^ /. ■>—;-*. coshX, fci n (X,2 -X,2) 

7 3 

i=i x* n (X; -X/) 

c4aXi2 3 

i=l  XjII (Xi  —\j ) 

sinh X< 

sinh \{ 

C4ÖXt
2 + ^^(l-6) 

i=l x^n^2 

= -2 

_c4OX4
2 

( 

— eC5" X< 

,=1 n(x4
s-x,*) 

-x/) 

cosh Xj 

sinh Xj 

«65=-ZI 

fcf n (x*2-x/) 

— «Cs - X4 
7 

sinh X, 

i=i XjII (Xj —X/) 
coshXj 

ß66= — S TT^ 2—^ coshX; n (x*2- -x,2) 

(DU) 

The value of the determinant in equation (D6) must be plot- 
ted against the frequency; the value of the frequency for 
which this determinant becomes zero is thereby obtained. 
This procedure involves first solving the cubic equation (D7) 

for each assumed value of frequency parameter and then 
calculating the elements of the determinant from equations 
(Dll).    The process is evidently long and laborious. 
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TABLE I—STATION NUMBERS 

«=1 

~^\ k 
l i  ^\^ 

M l 
2 

N 
5 

12 
3 

P 
20 
7 

Q 
180 
2 

M' 
5 

N' 
13 

45 
71 

P' 
630 
31 

Q' 
1008 

TABLE II—STATION NUMBERS 

n = 2 

1 2 

11 5 
M 1 

12 12 
N 8 8 

15 15 
P 0.183333 0. 025000 
Q .046032 . 029365 

M' .536364 . 627273 
N' . 367100 . 851948 
P' . 137933 . 057955 

Q' . 036616 . 069733 

13 29 
M 2 

48 48 
31 239 

N 240 240 
P -0. 037500 0.143750 
O -. 008135 . 181448 

M' -.060795 . 448674 
N' -.034875 .758685 
P' -.011252 . 118462 

Q' -.002614 . 150415 
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TABLE III—STATION NUMBERS 

n=3 

^"\ k 
1 2 3 

M l 0. 950000 0. 450000 -0. 050000 
N . 545833 . 587500 -.120833 
P . 186310 . 032143 -.005357 
Q . 046577 . 038244 -.011756 

M' . 596268 . 533205 -.097426 
N' .399646 . 708205 -.239994 
P' . 148013 . 042560 -.012798 
Q' . 038884 . 050843 -.028318 

M 2 -0. 525000 0. 725000 0. 475000 
N -. 241667 1.175000 1. 091667 
P -. 068452 . 160714 . 031548 
Q -. 014583 .202083 . 068750 

M' -.149356 .602896 . 625418 
N' -.083406 . 994860 1. 475153 
P' -. 026378 . 143948 . 057937 
Q' -. 006034 . 181698 . 127659 

M 3 0. 235185 -0.153704 0. 568519 
N . 106019 -. 231944 1. 513426 
P . 029563 -. 023677 . 139749 
Q . 006222 -. 028963 . 316408 

M' . 040630 -.072928 . 445812 
N' . 022325 -.111744 1.200133 
P' . 006972 -. 012081 . 118007 
Q' . 001579 -.014830 . 267865 

TABLE IV—STATION NUMBERS 

n==4 

TABLE V—STATION NUMBERS 

w = 5 

^\. k 1 2 3 4 5 

M 1 1.097991 0.408755 -0. 040898 0.019866 -0.013120 
N . 608222 . 527493 -. 100112 .069159 -.058445 
P . 202887 . 026908 -.005074 .002776 -.001627 
Q . 049943 .031910 -.011210 . 008927 -.006836 

M' . 649902 . 492141 -. 070298 . 034939 -.024007 
N' . 427616 .647530 -. 172488 . 121519 -. 107639 
P' . 156411 . 036908 -.008903 . 004824 -.003375 
Q' .040729 . 043977 -.019678 . 015509 -.014228 

M 2 -0. 839550 0. 799339 0. 493783 -0.089550 0. 049339 
N -.373049 1. 282044 1.145470 -.310549 . 219544 
P -.103119 . 169599 . 037952 -.011949 .006007 
O -.021583 . 212792 . 083245 -.038398 . 025243 

M' -.255330 . 699256 . 523828 -.099723 .058134 
N' -.139170 1.138472 1. 219101 -.345551 . 260447 
P' -.043239 . 157833 . 041704 -.013166 .008078 
Q' -.009758 . 198610 . 091532 -.042299 . 034055 

M 3 0. 762798 -0. 313591 0. 651687 0. 575298 -0.126091 
N . 329315 -.465823 1. 718204 1.923065 -.559573 
P . 089079 -.044602 . 150488 . 049347 -.014691 
0 . 018334 -.054326 . 340126 . 157843 -.061693 

M' . 197103 -.228783 .633812 . 573549 -.137821 
N' . 105126 -.344915 1. 674943 1. 916360 -.616234 
P' . 032115 -.034985 . 148520 . 048803 -.018600 
<?' . 007151 -.042759 . 335798 . 156076 -.078385 

M 4 -0. 548214 0.187897 -0.159325 0. 576786 0. 562897 
N -.233780 . 276637 -.400446 2.109970 2.432887 
P -.062665 . 025479 -.024868 .140460 .042295 
0 -. 012809 .030950 -.055302 .458397 . 177006 

M' -. 117990 . 117132 -.136452 . 557359 .664560 
N' -.062435 . 175188 -.344108 2. 041363 2.901646 
P' -. 018958 . 017186 -.021868 . 137234 . 063512 
Q' 
M 

-.004201 .020954 -.048664 .447980 . 267043 

5 0. 214238 -0.069026 0.050904 -0.080137 0. 525349 
N .090928 -.101352 . 127410 -.283759 2. 458336 
P . 024289 -.009225 . 007667 -.013645 . 134478 
Q . 004952 -.011196 . 017031 -.044065 . 573757 

M' . 033722 -.031711 . 032307 -.056459 . 432107 
N' . 017789 -.047311 .081140 - 200039 2. 030260 
P' . 005389 -.004593 .005002 -.009675 . 116059 
0' .001192 -.005596 .011120 -.031249 .495663 

^\ k 
1 2 3 4 

M 1 1.022222 0.429630 -0.051852 0.022222 
N . 576455 . 557937 -.127249 . 076455 
P . 194478 . 029597 -.006581 .002612 
0 . 048240 . 035167 -.014547 .008359 

M' . 623188 . 511882 -.082891 . 042276 
N' .413738 . 676680 -. 203719 . 146954 
P' . 152256 . 039616 -.010651 . 005795 
Q' .039818 . 047267 -.023551 . 018630 

M 2 -0. 647917 0.747917 0. 518750 -0. 085417 
N -.292857 1. 207143 1. 207143 -. 292857 
P -.081920 . 163021 . 041295 -.009598 
0 -. 017295 . 204828 . 090642 -. 030688 

M' -.211987 . 667412 . 544025 -.112648 
N' -.116662 1.091462 1. 269193 -.390585 
P' -.036502 .153469 . 044508 -.015000 
<?' -.008281 . 193310 . 097745 -.048203 

M 3 0. 522222 -0. 255556 0. 633333 0. 522222 
N . 229365 -.381746 1. 673810 1.729365 
P .062798 -. 037401 . 148512 .037202 
0 . 013040 -. 045624 . 335791 . 118397 

M' . 122052 -. 166738 . 582158 . 643846 
N' . 065879 -. 252823 1. 545802 2.164827 
P' . 020304 -.026235 . 140822 . 060554 
<?' . 004551 -. 032114 . 318707 . 194016 

M 4 -0. 221701 0.094850 -0.105961 0.543924 
N -. 096544 . 140724 -.267841 1.997206 
P -.026267 . 013391 -.017322 . 136803 
Q -.005428 . 016301 -.038574 . 446729 

M' -.035456 . 042628 -.064723 . 438962 
N' -.019023 . 064205 -.164169 1. 622066 
P' -.005836 . 006481 -.010869 .117037 
<?' -.001303 . 007917 -.024222 . 382752 

TABLE VI—STATION NUMBERS 

m=6 

^\.  *• 1 2 3 4 5 6 

M l 1.172073 0.391101 -0. 032371 0. 013323 -0. 010149 0. 008879 
N . 638800 . 501856 -.078978 . 046300 -. 045644 . 048522 
P . 210893 . 024685 -.003894 . 001823 -. 001498 .001143 
V . 051551 .029221 -.008595 . 005860 -. 006322 . 005949 
M' . 676394 .474177 -.059129 . 026582 -.018685 . 015649 
N' . 441269 . 621067 -.144759 . 092370 -.083901 . 085903 
P' . 160476 . 034473 -. 007337 . 003631 -.002691 .002241 
V . 041616 . 041021 -.016206 .011674 -. 011350 .011694 

M 2 -1. 066598 0. 853106 0. 468124 -0. 070505 0. 044513 -0. 035782 
N -.466718 1. 360105 1. 081893 -. 244062 . 199948 -.195451 
P -.127634 . 176358 . 034411 -.009203 . 006452 -. 004561 
V -. 026505 . 220969 . 075401 -.029565 . 027216 -. 023740 
M' -. 303948 . 731991 . 503742 -. 085145 . 049793 -. 038661 
N' -. 164215 1. 186681 1.169252 -.294736 . 223322 -. 212149 
P' -. 050692 . 162263 . 038896 -.011103 . 007043 -. 005503 «' -. 011384 . 203987 . 085309 -.035665 . 029701 -. 028708 

M 3 1. 150584 -0. 404200 0. 693794 0. 546418 -0. 133366 0. 089627 
N . 489124 -. 597296 1. 822457 1.822457 -.597296 . 489124 
P . 130870 -.055956 . 156259 . 045293 -. 018484 . 011225 
Q . 026719 -. 068060 . 352909 . 144808 -.077925 . 058410 
M' . 267118 -. 275585 . 662165 . 553477 -. 126314 . 083246 
N' . 141177 -. 413819 1. 745286 1. 846431 -. 564890 . 456509 
P' . 042839 -. 041308 . 152473 . 045980 -. 017100 .011713 
y . 009490 -. 050434 . 344556 . 146998 -. 072063 . 061097 

M 4 -0. 930965 0. 273028 -0.194854 0. 592473 0. 624591 -0.171416 
N -.390902 . 399897 -.488124 2.163786 2. 720209 -. 933437 
P -.103635 . 036020 -.029594 . 142229 . 056698 -. 020561 
V -. 021011 . 043690 -. 065761 . 464052 . 238215 -. 106938 
M' -. 210538 . 182630 -. 180822 . 598464 .604424 -. 166643 
N' -.110263 . 271857 -.454522 2.185427 2. 628772 -.912352 
P' -.033225 . 026154 -.028221 . 143453 . 053359 -. 022768 «' -.007320 . 031846 -. 062753 . 468015 . 224100 -. 118729 

M 5 0.581796 -0.156399 0. 092907 -0.111954 0. 537351 0. 599157 
N . 242612 -.228221 . 231501 -. 394888 2. 509279 3.194001 
P . 063996 -. 020218 . 013474 -.018261 . 134578 . 046991 
V . 012925 -.024496 . 029896 -.058920 . 574036 . 243745 
M' . 120308 -.097119 . 081568 -.110987 .535339 . 685021 
N' . 062735 -.144101 .204039 -.391731 2. 499695 3. 678582 
P' . 018841 -.013674 . 012212 -. 018226 . 133988 . 066470 
Q' . 004140 -.016634 . 027119 -. 058815 . 571521 . 345986 

M 6 -0. 209220 0. 054246 -0. 030239 0. 031561 -0. 064035 0. 510543 
N -.086982 . 079042 -. 075223 . 110987 -. 291427 2. 902746 
P -. 022893 . 009657 -. 004323 . 004969 -. 011243 .132560 
V -.004616 . 008425 -. 009587 . 016022 -.047575 . 698254 

M' -. 033141 . 025961 -.020586 . 024431 -. 049677 . 425817 
N' -. 017248 . 038471 -. 051417 . 085977 -.225999 2. 427820 
P' -. 005173 . 003631 -. 003042 . 003877 -.008676 . 115150 
Q' -.001135 . 004415 -. 006753 . 012502 -.036708 . 606979 
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TABLE VII—STATION NUMBERS 

n = 7 

^\ k 
1 2 3 4 5 6 7 

M 1 1. 243487 0.376396 -0.026266 0. 009112 -0. 005896 0. 006025 -0. 006513 

A" . 667840 . 480602 -.063889 . 031590 -.026481 . 033195 -. 042160 
P .218415 . 022882 -. 003069 . 001211 -.000353 .000925 -. 000363 

Q . 053049 . 027042 -.006769 . 003890 -.003599 .004829 -. 005357 

M' . 70222S . 458303 -. 050122 . 019989 -.012820 . 011370 -. 011099 

A' .454474 . 597757 -.122429 . 069352 -. 057533 . 062529 -. 072080 
P' .164332 . 032358 -. 006088 . 002679 -.001831 . 001639 -. 001614 

Q' . 042465 . 038456 -.013441 . 003611 -. 007724 . 003815 -.010037 

M 2 -1. 321299 0. 905437 0.446479 -0.055674 0.029812 -0. 027896 0. 028701 
N -. 570270 1. 435730 1.028397 -.192270 .133730 -. 153603 . 185730 

P -.154452 . 182773 . 031489 -.007052 . 004233 -. 004239 .003780 

Q -.031847 . 228718 . 063932 -.022639 . 017853 -.022136 .023463 

M' -.357636 . 764868 . 485193 -.071706 .038132 -. 031029 . 028988 

If -.191650 1. 234950 1.123273 -. 247832 . 170920 -.170555 . 188216 

P' -.058807 .166641 . 036328 -. 009168 .005346 -. 004565 . 004199 

0' -.013146 .209297 . 079621 -. 029438 .022542 -.023823 . 026110 

M 3 1. 672922 -0. 511106 0. 737737 0. 516672 -0.104856 0.081487 -0. 077078 

N . 701415 -.751768 1. 931045 1.718603 -.468955 .448232 -. 498585 

P . 185S35 -. 069049 . 162183 .040990 -.014225 . 012162 -. 010056 

Q . 037666 -.083877 . 366024 . 130958 -.059956 .063490 -.062403 

M' . 355047 -.329159 . 692136 .532099 -.108454 . 073511 -. 063669 

N' . 186093 -.492459 1.819566 1. 771836 -. 484684 . 403671 -.413268 
P' .056122 -.048434 . 156613 . 042913 -.014528 . 010624 -.009166 

0' 

M 

.012374 -.059075 . 353730 .137128 -.061218 . 055439 -. 056987 

4 -1.605312 0. 409927 -0. 250374 0. 629063 0. 592219 -0.182666 0.144688 

JV -.664780 . 597643 -.625274 2. 291470 2. 574726 -1. 002357 .935220 
P -. 174510 . 052757 -.037056 . 147488 . 051939 -. 026098 . 018551 

0 -.035122 .063907 -.032279 . 430975 . 218352 -.136173 . 115110 

M' -.317567 . 247432 -.216700 . 623577 . 584350 -.157315 .115706 

N' -. 164912 .366953 -. 543417 2. 273022 2. 538692 -.861833 . 750618 

P' -.049381 . 034761 -.033166 . 147041 .050504 -.021773 . 016464 

0' -. 010326 .042284 -.073703 . 479557 .212061 -. 113560 . 102355 

M 5 1.129029 -0. 264373 0.134535 -0.136596 0. 551252 0. 663960 -0. 220971 

N .464325 -.384003 . 334325 -. 480675 2. 570992 3. 589325 -1. 425675 

P . 121269 -.033334 . 019010 -.021700 . 136202 . 063551 -. 027154 

0 .024312 -.040333 . 042147 -. 069981 .5S0S55 . 330701 -.168426 

M' . 234133 -. 168109 .122950 -.143020 . 56S533 . 634247 -.197770 

A™ . 120971 -.248403 . 306705 -. 503635 2.649577 '  3.397336 -1. 281188 

P' . 0360S4 -.023166 . 017933 -. 022914 . 139031 . 057851 -. 027322 

0' . 007887 -. 028149 .039907 -. 073907 . 593022 . 300912 -.169318 

M 6 -0. 617807 0.137401 -0.064103 0. 054063 -0. 034474 0. 507772 0. 632193 

N -. 252961 . 199169 -. 158887 . 189539 -. 383331 2. 883613 4. 007039 

P -. 065852 . 017129 -. 003878 . 003211 -.014243 . 130010 . 051386 

f) -.013170 . 020712 -. 019672 .026453 -. 060230 . 634756 . 318021 

M' -.125078 . 036131 -.058376 . 057414 -. 092005 . 516450 . 704705 

N' -.064447 . 127049 -.145336 . 201491 -.417397 2. 931074 4. 491463 

P' -. 019183 . 011759 -. 003393 . 003826 -. 015450 .131144 . 069349 

Q' -.004186 . 014281 -. 018616 . 028441 -.065330 . 690659 . 430362 

M 7 0. 205449 -0. 044613 0.020059 -0. 015852 0. 021332 -0.053078 0. 498306 

N .083943 -.064603 . 049675 -. 055505 . 096798 -. 295079 3.334065 

P .021819 -.005533 . 002756 -. 002373 . 003481 -. 009551 .130932 

0 . 004358 -. 006689 . 006106 -. 007644 . 014713 -. 049931 . 820708 

M' .033023 -.022307 .014642 -.013579 . 018939 -.044219 . 420133 

N' .016993 -.032878 . 036425 -.047602 . 035721 -.245636 2.816717 

P' .005053 -. 003033 . 002091 -.002060 . 003074 -. 007854 . 114318 

0' . 001102 -. 003682 . 004637 -. 006638 . 012992 -.041094 . 716958 
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'EABLE VIII—STATION NUMBERS 

n = 8 

^\ k 
1 2 3 4 5 6 7 8 

M l 1.312192 0.364019 -0.021829 0.006490 -0.003545 0.003081 -0.003931 0.005039 
2V . 695399 . 462793 -.052953 .022453 -.015893 . 016958 -.025621 . 037691 
P .225483 . 021401 -.002485 .000839 -.000499 .000464 -. 000622 .000684 
Q . 054447 . 025255 -.005476 . 002694 -.002103 .002422 -.003869 .004929 
M' .727233 . 444367 -.043004 . 015242 -.008698 . 007082 -. 007522 .008334 
N' . 467152 . 577362 -. 104816 . 052799 -.038988 .038933 -.048943 .062492 
P' . 168111 . 030533 -.005119 .002003 -.001220 . 001045 -.001145 .001228 

Q' . 043271 . 036245 -.011294 .006433 -.005146 .005456 -.007123 .008863 

M 2 -1.600390 0.955663 0.428499 -0.045077 0.020351 -0. 016189 0. 019610 -0.024337 
N -. 682210 1. 507998 . 984086 -.155335 . 091123 -. 089039 . 127790 -.182002 
P -. 183160 . 188781 .029123 -.005550 .002808 -. 002412 . 003082 -.003289 
Q -.037524 . 235968 . 0636% -.017807 .011838 -. 012593 .019183 -.023705 
M' -.415706 . 797175 . 468735 -.060778 . 028715 -. 021414 . 021627 -.023284 
2V -. 221089 1.282229 1.082551 -.209723 . 128559 -. 117660 .140686 -. 174560 
P' -.067464 .170868 . 034087 -.007611 . 003953 -. 003129 .003272 -.003421 
Q' -. 015018 . 214419 . 074659 -.024428 . 016664 -.016330 .020358 -.024694 

M 3 2. 337500 -0. 630523 0. 780389 0.491625 -0.082648 0. 054514 -0.060500 0.071477 
N . 967933 -.923581 2.036155 1.631308 -.368956 .299530 -.394067 .534419 
P . 254178 -.083331 . 167794 . 037442 -. 010886 . 007975 -.009418 . 009602 
Q .051181 -.101109 .378439 . 119546 -.045861 . 041626 -.058605 .069206 
M' .462586 -.388839 . 722423 .512112 -.091426 .056607 -. 052469 .054058 
N' .240602 -.579786 1. 894495 1. 702145 -.408100 .310711 -. 341167 . 405216 
P' . 072148 -.056240 .160734 . 040069 -.012016 .008120 -. 007864 .007911 
Q' .015838 -.068533 .362854 . 127977 -.050617 . 042369 -.048918 . 057107 

M 4 -2. 630070 0. 593584 -0.315718 0. 667195 0. 558819 -0.143453 0.132430 -0.143916 
N -1.075644 . 861856 -. 786292 2. 424356 2. 424356 -. 786292 .861856 -1.075644 
P -.279850 .074709 -.045646 . 152881 . 046981 -.020073 . 020253 -. 019152 
Q -.055949 . 090392 -. 101283 . 498324 . 197214 -. 104712 .126011 -. 138032 
M' -.466670 .329868 -. 258293 . 650770 . 561588 -.135711 . 104892 -. 100193 
N' -. 240468 . 487559 -.646305 2.367821 2. 436346 -.743106 . 681473 -. 750848 
P' -.071591 .045534 -.038818 . 150902 . 047159 -.018614 . 015449 -.014572 

Q' -.015627 . 055337 -.086223 . 491981 . 197950 -.097075 .096084 -.105178 

M 5 2.192995 -0. 454018 0. 201514 -0.175130 0. 584107 0.633389 -0. 237005 0. 215982 
N . 890699 -.656778 . 499217 -.614926 2. 718847 3. 393592 -1. 539301 1.613222 
P . 230544 -.055975 . 027793 -.027134 .141097 .058226 -.034728 .028253 
Q . 045912 -.067648 . 061577 -.087460 .601511 .302906 -.215987 .203600 
M' . 389428 -.253524 . 165704 -.170613 . 591124 . 614158 -.191506 . 155413 
N' . 199636 -.373346 . 412443 -.599857 2. 750891 3. 287844 -1.241724 1.164103 
P' . 059201 -.034316 . 023783 -.026822 . 142374 .054969 -.027027 .022340 

Q' . 012882 -.041657 . 052749 -.086477 . 606915 . 285874 -.168026 . 161236 

M 6 -1.350286 0. 265559 -0.108064 0.078152 -0.102878 0. 520374 0.709714 -0. 274441 
N -.546005 . 383370 -.267117 . 273370 -. 466005 2.952258 4. 523995 -2.046630 
P -.140865 . 032367 -.014611 .011568 -.016907 . 131525 . 070024 -.034431 
Q -.027983 . 039093 -.032351 . 037251 -.071468 . 692634 .434540 -.248035 
M' -.263362 . 163432 -.098083 .084195 -.115917 . 543778 .662638 -.230699 
N' -.134575 . 240192 -.243600 . 294907 -.525024 3.081687 4. 216400 -1.725908 
P' -.039810 .021885 -. 013810 . 012656 -.019020 .135367 . 062213 -.032195 
Q' -.008646 . 026552 -.030611 . 040765 -.080395 .712714 .385904 -. 232314 

M 7 0.654484 -0.124395 0. 048081 -0.031856 0.034801 -0.066829 0. 484484 0.662747 
N . 263837 -.179348 . 118705 -.111252 . 157170 -.370670 3. 239551 4.867795 
P . 067914 -.015052 . 006430 -.004626 .005472 -.011570 . 126311 .055545 
Q . 013468 -.018172 . 014232 -.014889 .023114 -.060517 . 791745 . 399381 
M' . 130945 -.079057 . 045388 -.036054 .041862 -.077799 . 500211 . 723527 
N' . 066783 -.116059 . 112606 -.126105 . 189085 -.431248 3.341811 5. 337321 
P' . 019727 -.010524 . 006331 -.005328 .006593 -.013324 . 128649 .072134 

Q' .004280 -.012763 .014029 -.017155 .027846 -.069680 . 806281 . 519815 

M 8 -0. 202414 0.037821 -0.014268 0.009104 -0.009307 0. 015388 -0.045167 0. 487926 
N -.081470 .054494 -.035205 .031774 -.041992 .085181 -.296574 3. 754721 
P -.020947 .004560 -. 001898 . 001312 -.001443 . 002573 -.008294 . 129520 
Q -.004150 .005504 -.004201 . 004221 -.006093 . 013452 -.051711 . 941457 
M' -.033107 . 019722 -.011093 . 008527 -.009326 .015058 -.039785 . 414996 
N' -.016869 .028937 -.027507 . 029809 -.042089 .083310 - 260993 3.198326 
P' -.004979 . 002618 -.001541 . 001252 -.001450 . 002493 -.007173 .113558 

Q' -.001080 . 003174 -.003414 .004029 -.006122 . 013034 -.044710 . 825790 
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TABLE IX—COMPARISON OF RESULTS 

Number 
of 

stations 

Torsion Bending Coupled 

V Co V Co 8V Co 
«it/^ 

V  Bo V   Bo V Ba V  Bo 
a>      /m0(4 
«"2-4/  

V  Bo 
,,,     lm0ll 

V   Bo 

Station-Function method 

1 
2 
3 

1.549 
1.571 
1.571 

3.493 
3.516 
3.516 

3.46 
3.48 
3.48 

4.526 
4.689 

21. 71 
22.04 

19.7 
20.6 7.502 60.20 48.2 

Weighted influence coefficients 

2 
4 

1.575 
1.571 

5.39 
4.73 

3.56 
3.52 

15.63 
22.80 

Exact theoretical value 

1.571 4.712 7.854 3.516 22.04                  61. 70 3.49 20.6 49.1 

TABLE X—STATIONS REQUIRED FOR SATISFACTORY ACCURACY 

Method 

Torsion Bending 

V Co V Co V c0 
<"ii/^ 

V  Bo 
,,     /™oi4 

V   Bo 
«"311^- 3 V   B„ 

1 
2 

3 
4 

4 1 
3 

2 
6 

3 
Weighted influence coefficients  
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Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis 

Force 
(parallel 
to axis) 
symbol 

Moment about axis Angle Velocities 

Designation Sym- 
bol Designation Sym- 

bol 
Positive 
direction 

Designa- 
tion 

Sym- 
bol 

Linear 
(compo- 

nent along 
axis) 

Angular 

Longitudinal  
Lateral      

X 
Y 
Z 

X 
Y 
Z 

Rolling  
Pitching  
Yawing  

L 
M 
N 

Y >Z 
Z >X 
X >Y 

Roll  
9 

u 
V 
w 

P 
9 
r 

Pitch  
Yaw   Normal     

Absolute coefficients of moment 

P —k P -M. P -N 

°'    qbS °m_gcS °n~qbS 
(rolling) (pitching) (yawing) 

Angle of set of control surface   (relative  to  neutral 
position), 5.    (Indicate surface by proper subscript.) 

D 

P 
p/D 
V 
v, 
T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient CT 

i, PROPELLER SYMBOLS 

P Power, absolute coefficient CP=—-y^ 
' pn'Lr 

PF
5 

Pn? Cs        Speed-power coefficient = 

"pra2D* 

Torque, absolute coefficient CQ= 
ptfiy- 

Efficiency 
Revolutions per second, rps 

Effective helix angle=tan"'f^z^; ) 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/W550 ft-lb/sec 
1 metric horsepovver=0.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

1 lb = 0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


