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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

« Metric English
Symbol .
Unit Ab}g{:g 18- Unit Abbreviation
Length. . ____ l meter. _________________ m foot (or mile) . .. ______ ft (or mi)
Time_..__.___ i second .. ____________.__ s second (or hour)_____._ sec (or hr)
Foree....___. F weight of 1 kilogram.____ kg weight of 1 pound_____ 1b
Power_______ P horsepower (metric) .. _|. __._.____ horsepower_ __________ hp
Speed v {kilnmeters per hour______ kph miles per hour. _______ mph
peed.- - ----- meters per second. ______ mps feet per second_.______ fps
2, GENERAL SYMBOLS
Weight=mg v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s> Density (mass per unit volume)
or 32.1740 ft/sec? Standard density of dry air, 0.12497 kg-m~*s® at 15° C
MasszE and 760 mm; or 0.002378 Ib-ft~* sec?
g Specific weight of “standard” air, 1.2255 kg/m® or

Moment of inertia=mk?. (Indicate axis of 0.07651 Ib/cu 1t
radius of gyration k by proper subseript.)
Coefficient of viscosity

3. AERODYNAMIC SYMBOLS

Area T Angle of setting of wings (relative to thrust line)
Area of wing Tt Angle of stabilizer setting (relative to thrust
Gap line)
Span Q Resultant moment
Chord Q Resultant angular velocity

2
Aspect ratio, % R Reynolds number, p ? where [ is a linear dimen-
True air speed sion (e.g., for an airfoil of 1.0 ft chord, 100

mph, standard pressure at 15° C, the corre-

. 1 o,
Dynamic pressure, 2° 4 sponding Reynolds number is 935,400; or for

it st otiins = oo 120 chord, 100 g, e cor
Drag, absolute coefficient CD‘:QQS? ‘: “:Eiz gi zf)iircll;vash

Profile drag, absolute coefficient C%:% z? j:;lg%‘; ((g Z;::Z]ﬁ: ;'Ir)lgﬁit(;eaaspect ratio

Induced drag, absolute coefficient Cniz% % Aq?flf pifsi?(tfrllc)kl absolute (measured from zero-
Parasite drag, absolute coefficient ODPS%, Y Flight-path angle

. . C
Cross-wind force, absolute coefficient OC:gS’
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ANALYTICAL DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS
OF CANTILEVER BEAMS BY MEANS OF STATION FUNCTIONS!

By ALExanDER MENDELSON and SELwYN GENDLER

SUMMARY

A method based on the concept of Station Functions is pre-
sented for calculating the modes and the frequencies of non-
uniform cantilever beams wvibrating in torsion, bending, and
coupled bending-torsion motion. The method combines some
of the advantages of the Rayleigh-Ritz and Stodola methods, in
that a continuous loading function for the beam is used, with
the advantages of the influence-coefficient method, in that the
continuous loading function is obtained in terms of the dis-
placements at a finite number of stations along the beam.

The Station Functions were derived for a number of stations
ranging. from one to eight. The deflections were obiained in
terms of the physical properties of the beam and Station Num-
bers, which are general in nature and which have been tabulated
Jor easy reference. Examples were worked out in detail; com-
parisons were made with exact theoretical results. For a uni-
Jorm cantilever beam with n stations, the first n modes and
Jrequencies were in good agreement with the theoretically exact
values. The effect of coupling between bending and torsion
was shown to reduce the first natural frequency to a value below
that which it would have if there were no coupling.

INTRODUCTION'

The failure of turbine and compressor blades due to vibra-
tions has led to an increased interest in the study of the
vibrations of these blades and in the determination of the
natural modes and frequencies. In such theoretical studies,
it is usually assumed that the compressor or turbine blade
acts as a cantilever beam. The calculation of the uncoupled
modes of arbitrarily shaped cantilever beams has been ex-
tensively investigated (references 1 to 4), but little work has
as yet been done on calculating the coupled modes of such
beams. If the geometry of the beam is such that coupling
exists, the coupled modes are the actual vibrational modes
that must be calculated.

Four general methods are currently in use for calculating
uncoupled modes and frequencies of nonuniform beams.
These methods are the Rayleigh-Ritz or energy method
(reference 1), the Stodola method (references 5 and 6), the
influence-coefficient method (references 4 and 7), and the
integral-equation method (references 8 and 9). For each of
these methods, computational work can usually be carried out
in several ways. For example, by the use of influence co-
efficients the modes and frequencies can be determined by

Mykelstad’s iteration procedure (reference 7) or by matrix
methods (reference 4).

Any one of these methods can be extended to the calcula-
tion of coupled bending-torsion modes. The Rayleigh-Ritz
method usually requires that the uncoupled modes be deter-
mined before the coupled modes can be computed. In apply-
ing either the Rayleigh-Ritz or the Stodola method, great
difficulty is encountered in accurately determining the higher
modes, because the lower modes must first be “swept out”
by the use of exact orthogonality conditions (reference 10);
the process will otherwise always converge back to the
lowest mode. The same difficulties are encountered in the
integral-equation method.

The influence-coefficient method reduces the problem to
one having a finite number of degrees of freedom. The beam
is divided into n intervals and a concentrated loading is as-
sumed at the center of gravity of each interval. The solution
of the resultant determinantal equation gives the first n
modes. The accuracy of the higher modes is, however, very
poor; only the first third of the modes and the first half of the
frequencies are obtained within the usual engineering accu-
racy. Carrying along so many useless modes greatly in-
creases the labor involved.

A straightforward accurate method for determining the
coupled bending-torsion modes and the frequencies of non-
uniform cantilever beams, together with applications of this
method, was developed at the NACA Lewis laboratory dur-
ing 1949 and is presented herein. This method is based on
the use of Station Functions as first discussed in refer-
ence 11. Incorporated in the method are the advantages of
the continuous-function deflections of the Rayleigh-Ritz
and Stodola methods together with the advantages of the
finite number of degrees of freedom of the influence-coefficient
method. When the method is applied to a uniform beam,
the first # roots of the resultant determinantal equation are
amply accurate for engineering purposes.

The final determinantal equation is solved herein by
matrix-iteration methods (reference 4). Any other con-
venient method may, however, be used and no knowledge
of matrix algebra is needed to carry out the calculations by
the matrix method. The work can be done by an inexperi-
enced computer, as the only operations necessary for determ-
ining each mode are cumulative multiplication and division.
In addition, for the case in which the coupling coefficient
remains constant along the beam, a simple quadratic

1 Supersedes NACA TN 2185, ‘‘Analytical Determination of Coupled Bending-Torsion Vibrations of Cantilever Beams by Means of Station Functions” by Alexander Mendelson and

Selwyn Gendler, 1950.
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formula and a series of curves are presented for determining
the first coupled mode in terms of the uncoupled modes.
Examples are developed in detail and comparisons with
exact theoretical results are included.

THEORY

In the usual influence-coefficient methods for solving
dynamical problems, a continuous body having an infinite
number of degrees of freedom is replaced by a body having a
finite number of degrees of freedom. Two principal assump-
tions are then made that introduce inaccuracies into the
solutions, particularly in the higher modes: (1) The resultant
of the inertia loads of all the infinitesimal masses in a finite
interval passes through the center of gravity of that interval;
and (2) a concentrated load that is the resultant of a dis-
tributed load produces the same deflection as the distributed
load. An attempt has been made to reduce the error due to
the second of these assumptions by the use of weighting
matrices (reference 12). Although the accuracy is thereby
increased, the effect of the first assumption is still great
enough to introduce serious errors (reference 11).

In order to eliminate these assumptions, Rauscher (ref-
erence 11) introduced the concept of Station Functions.
Instead of assuming the inertia loads to be concentrated at
the centers of gravity of the intervals, the inertia loads
and, consequently, the deflections are assumed to be con-
tinuous functions along the beam. The values of these
continuous deflection functions at the reference stations must
equal the deflections of the reference stations. The loading
on the beam is therefore a continuous function of the de-
flections of the reference stations. Inasmuch as the deflec-
tions of the reference stations can be computed from the
loading on the beam, which in turn is available from the
deflections, the deflections are therefore obtained as functions
of themselves. This procedure gives n homogeneous equa-
tions in the n deflections of the reference stations. The
resultant determinantal equation has n roots for the fre-
quency; it will be shown that for a uniform beam all these
roots are sufficiently accurate for engineering purposes if
the deflection functions are properly chosen. (For coupled
bending-torsion vibrations, 2n homogeneous equations and
2n roots are obtained for n stations.)

The deflection functions used must satisfy the boundary
conditions of the problem and also the condition that, at
any reference station, the value of the function must equal
the deflection of the reference station. Although it is always
possible to find directly a single function that will satisfy
these conditions, it is more convenient to obtain different
component functions at each station and to add all these
component functions together to give the complete deflec-
tion function. Rauscher (reference 11) calls these compon-
ent deflection functions Station Functions. For example,
the complete torsional deflection function for the beam will
have the following form:

(62) =15;‘1 J(2)8;

where ’
2 dimensionless distance along beam

6(z) torsional deflection at distance z from root
6; torsional deflection at j* station

fiz) Statior Function in torsion associated with j** station
(All symbols are defined in appendix A.)

Each Station Function must satisfy the boundary condi-
tions of the problem and the following additional conditions:
(1) At the reference station with which it is associated, the
Station Function equals the deflection of that reference sta-
tion; and (2) at all other reference stations, the Station
Function equals zero. The sum of all these Station Func-
tions will then give the complete deflection function for the
beam. The Station Functions and corresponding loading
functions are derived in appendix B for torsional vibrations,

. . . —
/ 2 i~/ i i+l n

FIGURE 1.—Cantilever beam with n stations.

bending vibrations, and coupled bending-torsion vibrations of
an arbitrary cantilever beam.

Torsional vibrations.—It is shown in appendix B that the
torsional deflections of the reference stations for a beam
divided into » intervals of length &, as shown in figure 1,
are given by the following system of equations:

I, &
01———(4.)262 - E ; auﬂi (l)
00 j=1
where

=3 Oi [IkN,k—(k—nIkMﬂ,Jr s I,M,,] @
k=1 k r=k+41

iand j=1,2,...n

w frequency of vibration

length of interval

I, mass moment of inertia per unit length about elastic
axis at root section

I, ratio of average mass moment of inertia per unit length
of k*® interval to mass moment of inertia per unit length
at root section

C, torsional stiffness of root section

C, ratio of average torsional stiffness of £™ interval to tor-
sional stiffness at root section

The Station Numbers Nj; and M, are functions only of the
integers k, 7, and » and are defined as

o

NJkEL’:Iij (2)dz

k @
My= | 1 dz

where f;(z2) represents the Station Functions derived in
appendix B and is given by

fi@)=ayztayz?+. . .+ 0wz 4)

The coefficients a@;, are determined in appendix B by
satisfying the conditions on the Station Functions. The
integrals in equations (3) are thus seen to be integrals of
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simple polynomials and the limits of integratien are integers.
The Station Numbers N, and M, are therefore rational
numbers, functions only of the integers n, k, and 7. These
numbers have been evaluated and are listed in tables I to
VIII.

If the physical properties of the beam under consideration
are known for each of the n intervals, C; and I, will be
known. The Station Numbers N, and M, can be obtained
from tables I to VIII. From equation (2), «,; can then be

easily calculated.
Equation (1) actually represents » homogeneous equations

16 _

in the » unknown deflections ¢,. With p~ 1—62=)\, these equa-
0

tions can be written as follows:
(all_‘)‘)ol'l' apletanby+. .. +a.0,=0
g 01+ (oo — Nyt 0zl . . .+ tzeb,=0
a0+ ooyt (azs— N0+ . . . F03,0,=0 (5)

anlol+an202+an803+ .o +(ann_)\)0n:0
For a nontrivial solution, the determinant of the coefficients
must vanish and the characteristic equation becomes

an—N\ o a3 coee Qg
ap o — N Qg «soe Ogp
a3l [+ 23] (133—)\ o 0. O3y =0 (6)
273 Qpg QOn3 QApn—N
or
N —[ay]|=0 (6a)

where I is the identity matrix, and [e;] is the dynamical
matrix.

Equation (6) can be solved for the » values of A by any
method available. The method used herein was to obtain
the values of A as the latent roots of the matrix [a,], which
is actually the dynamical matrix for the problem. The mode
shapes are obtained at the same time.

Bending vibrations.—The bending deflections for the beam
shown in figure 1 are given by the following system of equa-
tions (appendix B):

Yi=u’d* %09 f?{ By )
where
L | R , n . 1 ,
ﬂuE;E(mk(’bP n—Q Jk)+r=§+l My {(’b—k+§>N t+
kB—Fk—12® (2k—1)1 '
[ (3 r{ 2 )%:IM”» ®)
2and 7=1,2, ... n

m, mass per unit length of beam at root section

my ratio of average mass per unit length of £* interval to
mass per unit length at root section

B, bending stiffness at root section

B, ratio of average bénding stiffness of k* interval to bend-
ing stiffness at root section

The Station Numbers M’;, N, P's, and @'y are func-
tions only of the integers k, 7, and n and are defined by

7 R— k 22 1 )
Pru= fk _I[T<k—1>z+§ (k—1)* | gs(e)dz

o (T2l e L
Qu= [ [ 55 k-1ratg 1)3]gj<z)dz> .,

k
M,JkEf g42)dz
k-1

k
NjkEfk_lzgj(z)dz )

The Station Functions ¢,(z) are derived in appendix B and
are given by

g;(2)=bg,-z2+b3123—}-b4124+ PR +b(n+3)jz("’+3) (10)

The integrals in equations (9) are thus seen to be integrals
of simple polynomials. The Station Numbers M’z, N'z,
Py, and @', are rational numbers, functions only of the
integers j, k, and n. These numbers have been evaluated
and are listed in tables I to VIII.

If the physical properties of the beam are known for each
of the n intervals, m; and By will be known. The Station
Numbers M’ ;, N’ 1, P' i, and @' are obtained from tables I
to VIII; 8, can then easily be calculated by equation (8).

The determinantal equation is:

Bii—N\ Biz B:s v o Bin
Ba1 Baz—N Bas ... Bon
Bz B3z Bss—N. .. B =0 €8))
6!11 ﬁnz Bn3 Isnn_)‘
or
N —[B:5]|=0 (11a)
where
_ B[) 1
)\=MQ64—0?

The dynamical matrix is [8¢,].

Coupled bending-torsion vibration.—The torsional and
bending deflections due to coupled bending-torsion vibra-
tions of a cantilever beam are given by (appendix B):

n
fy=w? T8¢ S (I‘ o305+ eLyiy 14)
BQ j-l 7‘0 (1 2)

Yi_ Mo s ﬂ)
e I B, b) ]z___; 8:30;B1y To

where
7 2
e=—"-

Te0

1 I, B,

82 00 mo

[

I

r

ro absolute magnitude of projection of distance from elastic
axis to center of gravity on perpendicular to bending
direction for root section

re radius of gyration about elastic axis at root section
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The quantities a;; and B8i are defined by equations (2)
and (8). The quantities v and §;, are given by

mskgé[SkN',-k—(k—l)SkM'ijr S SM,

r=k+1

6”5211% (Sk(@'ij—ij)-l“T:%rl Sr{(i_k’*‘%)er'l' - (13)

I:ka_g;_ 1) ___(2k;1)i:|Mjr}>

where

Pu= [ [5—t—024 t—12 | 12102

_(F Tt 1 s 1 R
U= [ [5-5 G—1rety Ge—1) | fiorde

and S; is the ratio of the average static mass unbalance of
the k* interval to the static mass unbalance at the root
section.

The Station Numbers P, and @ are listed in tables I to
VIII with the other Station Numbers. The determinantal
equation becomes

Toy;—N Tay, . Tayy, el'yyy ey . €Iy,
Ty Tap—N ... Tay, el'yyr el'yse . €l'vay
Tau Tayg .Tap,—A el'vny elyns el'Youn
=0
o1 012 < e bin Bu—A\ B e B
a1 s B Bar  Ba—M. .. B
5n1 5n2 5n'n 6n1 61;2 Bnn_‘)‘
(14)
or
A —[n4]|=0 (14a)

where [7;,] is the dynamical matrix and I is the identity
matrix.

The first » roots of equation (14) will give the first =
coupled frequencies.

APPLICATIONS AND RESULTS

In applying the previously discussed method, it is necessary
to determine for a given beam the elements ay;, 84, ¥4, and
8;; of the dynamical matrices. These quantities will depend
on the physical properties of the beam and on the number of
stations chosen. If the physical properties of the beam are
known, the quantities ay;, B4, v, and §;; can be directly cal-
culated from equations (2), (8), and (13). The numbers
M, Ny Pizy Qs M 2y N' gy P’ 2, and Q5 appearing in these
equations depend on the number of stations n that are used
and can be read directly from tables I to VIII for any given
number of stations up to eight. Once these quantities have
been calculated, equations (6), (11), or (14) can be solved
for the frequencies by any method desired. The matrix-

iteration metkod used herein is simple and rapid and re-
quires no particular computing skill. As will be indicated,
however, the accuracy of equations (6), (11), and (14) is
such that relatively few stations need be used, in which
case it may be convenient to expand the determinants and
to solve the resultant low-order algebraic equation.

In order to illustrate the accuracy, this method was applied
to torsional vibrations, bending vibrations, and coupled vi-
brations of a uniform cantilever beam. The exact theoretical
values for torsional vibrations and bending vibrations of
uniform cantilevers are well known. The exact theoretical
values for the coupled bending-torsion vibration of a uniform
beam were calculated (appendix D). A comparison was
then made between the values obtained by the method
presented and the exact theoretical values. The number of
stations used was 1, 2, and 3 (n=1, n=2, and n=3). The
comparisons are summarized in table IX.

Torsional vibration.—For the case of a uniform beam,
Ci,=1,=1 and equation (2) becomes

i 7
;=2 I:Njk_(k_l) My+ Mjr] (15)
k=1 r=k+1

The values of V;; and My, are given in tables I to VIIIL.
The table to be used depends on the choice of the number
of stations.

Let n=1;
au:Nu
From table I, N;;=5/12,
a11~—5/12
and
5 nl ,
01—12 l Oo (&) 01
or
12 C C
2__ < 0 _ 0
W= [ p—2:400 1],
_ 0

The exact theoretical value for the first torsional frequency

is
. [ Cy
w=1.571 _——IOZZ

The percentage error is —1.4 when only one station is used.

The mode shape obtained by the method of Station Func-
tions agrees well with the theoretical mode shape, as is shown
in figure 2 (a).

Let n=2; then by equation (15) and table II,

8 5 57
an=NutMa=73+75=55
v 31 , 29 57
=Nt Mu=—575+48= 130
8 , 8 16
aun=NutNo=1g+75=73
31,239 13
an=NutNn=—545%516—15



DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS OF CANTILEVER BEAMS

L0 1.0

I Using n stations I
i - === Exact theoretical curve 1/
(a) //
0 OIS v
/0 -".—“ ; - i
P-"-'- : o~ -
P il : sy o ==
1 -0
(b) ®
Qf 4] NS
3 .8
o N (e)
S 10 t&’,—2.0
5 v Y
{5, A 3 20
3 0 /’ '5
; 7 ?
‘% o / Q 0 4
S TN % ! IR g
~ ~ . "" ’
_ \ B // 4 A /1
.0 = 7
oF .
(C) \‘\ /
-2.0 b4
N ()
A ~/. Samlan s
0 | 0 2 4 6 .8 .0
et Distonce from root =z
i Length of beam ~ 1
L (d)
- «d) First mode, n=3
o 2 . 4 & .8 .0 (e) Second mode, n=3.
Distance from root (f) Third mode, n=3.
Length of beam ' ]

(a) First mode, n=1.
(b) First mode, n=2.
(c) Second mode, n=2.

3

FIGURE 2.—Comparison of theoretical mode shapes with mode shapes obtained by taking n stations along the beam for torsional vibrations.

The determinantal equation then becomes Let n=3; then by equation (15) and table III,
57 57 i a11=N11+M12+M13=0.945833
60 —X 120 at19= Ny -+ M+ Mp;—0.958333
=0 ay3=Ny+ M+ M3=0.520834
_l_q E_)\ a21=N11+N12+2M13=1.033333
which gives a3 =Nz +Np+2M;3=1.011113
XI: 1.62 14 0’.31—N11+N12+N13——1 012500
0‘32_N21+N22+A 23-—2 025000
A=0.1953 = - asg= Ny + Nyp+ Nyy—1.387501
Therefore A The determinantal equation is
@=1.5714/7 0.945833—\  0.958333 0.520834
’ S 1.033333  1.883333—\ 1011113  |=0
wy=4.526 IOlOZ ) 1.012500 . 2.025000 1.387501 —\
S ™ The solutions are
The exact theoretical values are A=3.6474
N A=0.4093
w=1.571 T, ;2 A=0.1599
Therefore
=4 712\/1012 w=1.571 1002)2
The precentage errors of the first two modes, for only two oA
stations, are found to be 0 and —4. ' 0=4.6894/F ;2
The mode shapes are shown in figures 2 (b) and 2 (c). e
Agreement of the first mode with the exact theoretical shape 7.502 Cy
is excellent; the second mode agrees fairly well. @ I
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FiGURE 3.—Comparison of theoretical mode shapes with mode shapes obtained by taking n stations along the beam for bending vibrations.

The exact theoretical values are

w1=1571

- | Co
0.’2——-4.712 Iolz

s

1?

w;="7.854

The percentage errors of the first three modes, calculated
by use of three stations, are found to be 0, —0.5, and —4.5,
respectively.

The mode shapes are shown in figures 2 (d) to 2 (f). The
first two modes agree very well with the theoretical shapes;
agreement of the third mode is fair.

This procedure can be carried out as shown for any number
of stations desired.

Bending vibrations.—For a uniform beam, B,=m;=1 and
equation (8) becomes

k=1

(ka_(lgf_ 1)3_(2762* 1 ¢> M’j,]} v

Let n=1;

(16)

CBu=P— Q'

and from table I
8= 71 31 59
177630

1008 720
Therefore, from equation (7),
B,
w=3.493 m—0}4
The exact theoretical value is
_ B,
w=3.5164/7"

The precentage error for just one station is found to be

—0.65.
The mode shape is shown in figure 3 (a) and is seen to

agree very well with the theoretically exact shape.
Let n=2; then by equation (16) and table IT,

1 1
ﬁn:P'u—Q'11+§N'12—gM’12:0-422745
4 4 1 ’ 1 ’
512=P 21'—Q 21+'2—N 22—6‘M 22=0.295925
4 4 ’ 4 3 4 2 !
ﬁ21=2P 11+2P 12—Q 11—Q 12+’2‘N 12—§M 10=1.145167

3 2
Bae=2P"y 4 2P — QIZI_Ql22+§N,22_'3'M,22=0~905530
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The characteristic equation is

0.422745—X 0.295925
=0
1.145167 0.905530—X\
The roots are
M=1.2943
2=0.0339 -
0 =3.516 Bg4
0
w=21.71 B‘;
mol

The exact theoretical values are

B
w1=3.516\/m024

B,

m0l4

w=22.04

The percentage errors for two stations are therefore found
to be 0 for the first mode and —1.5 for the second mode.
The mode shapes are plotted in figures 3 (b) and 3 (¢). The
first mode agrees excellently with the theoretically exact
shape; the second mode agrees fairly well.

Let n=3; then by equation (16) and table III,
ﬂn:P'u—

Q/11+%N’12+%N113—% M’IQ_% M/13=0-270604

, 1 1 1 , 1
312:1)'21—@ 21+§N’22+§N,23—g M 22—"6 M’%: 1.009943

’ 1 1 7 1 7’ 1 7
Biz=PF'5—Q 31+§N/3z+§N S M 2g M’,=0.487441

521=2P’11+2P/12—Q,11*Q’12+

%N'12+2N’la—§ M’r% M’;,=0.648170

Bos=2P" 31+ 2P po— Q31— Q' o+
—3N’ 4 -—~2 4 ——4 ! =
S N'nt 2N = Mn— g M'5=3.266250

623:2P/31+2P'32_ Q’EI_Q,32+
. 3Nl ’ 2 7 4 4
§ 32+2N 33_§M 32"“§M 33— 1.689891
631:3P'11+‘3P’12+ 3P’13"‘Q’11—Q’12_Q,13+
gN’12+4N’13 ~M’12 130 M’;=0.985135
/332:‘3P’21+3P,2”+3PI"3_Q,21_QIQZ_Q,23+

*]\7’22+4N’23“‘— M y— 10 M’23=5.822852

/333:3P,31+3P/32+ 3P133—QI31—Q’32—Q133+ v
gN’3\2+4N’33_%M,32—'13—0 M’;;=3.204301

928716—51—-2

The characteristic equation is

0.270604—X\ 1.009943 0.487441
0.648170 3.266250—X 1.689891 =0
0.985135 5.822852 3.204301—X\
The roots are
A=6.5521
X=0.1667
A:=0.0223
Therefore L
w1-3.516 mol4
w0==22.04 Bn
gl
[ Bo
The exact values are
w;=3.516 B‘24
Lo B,
0 =22.04 4/~ =5
0;=61.70 3‘24
0

The percentage errors for three stations are found to be 0,
0, and —2.4, respectively. The modes are plotted in figures
3 (d) to 3 (f). The first two modes are seen to agree very
well with the theoretical mode shape agreement of the
third mode is fair.

Coupled bending-torsion vibrations.—A uniform beam
with the following constants was chosen:

2

y=21.—38.56
Wy

e=0.8

nZ
I'=1932

n2

T=5415

The values of a;; and 8,; are obtained as previously and are
the same as given before for n=1, n=2, and n=3. Also,
because S;=By= C,=m;=I;=1, equations (13) become

’ij=z I:Nljk_(k—l)M,jk_l_ Z M’jr]
k=1 r=k41

Zki——l{iPik_ij+r§1 [(l—k—l'%) N+

(ka_. (g —17° 2k2— 1 %.) Mjr]}
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Let n=1; then the determinant is

Fapn—N vy

0.002156—X 0.001196
- 0.081944—\|

d11 Bui—A 0.111111
The roots are
AM=0.0837
A=0.0005
B,
W1:3.46 mﬂ[l]4
B,
we=44.7 m—j‘*

The procedure for calculating the exact theoretical values is
derived in appendix D. The exact values are

B,
w1=3.49 \/Wz*

B
@ =20.6 \/ml}

— BO
w3—49.1 \/W

The percentage error for the first mode, calculated by use of
one station, is —0.9.

Let n=2; then the determinant is

Taj;—A Tay, el'yyy ey,

Tay Tagp—»X eIy el'yz
o b1z Bu—A Bz =
821 822 B2 Ba2a—N

Substituting the known values and solving for \ give for the
first two roots

M=1.3197
A=0.0412

and the frequencies become

w1=3.48\/£ol4
o

w2:197»\/%;

The percentage errors for two stations are —0.3 for the first
mode and —4.4 for the second mode.

This procedure can be carried out for any number of sta-
tions desired. For three stations, the frequencies obtained
are

B,

w=3.48 o
p— Bo

w;=20.6 P~
B

w;=48.2 —"—mi‘*

The precentage errors are —0.3 for the first mode, 0 for the
second mode, and —1.8 for the third mode.

The results obtained by the method presented are seen
to agree very well with the exact theoretical values.

These results are summarized in table IX, where a com-
parison is made with the results obtained for uncoupled
bending and torsional vibrations by use of influence coeffi-
cients with weighted matrices (reference 12). The values
using weighted matrices were taken from table I of refer-
ence 12. Tt can be seen that for a given number of stations,
the results obtained by the method presented herein are con-
siderably better than those obtained by using influence co-

T [T
Uncoupled
frequency —|
- ratio, ¥
. 100
ro SSe——— 36
SEINSSS 1
. \ﬁ\\
18 \ ™~ T |
E ‘8 \\ \_\ ;
o \ —
¥ 1°
3.6 ™
@ —
Q I /
(o} E)]zacf theoretical
4 L1
0 2 4 6 8 L.a

Coup/}‘ng coef?/cr‘enf, €

F1cURE 4.~—Variation of frequency ratio € with coupling coefficient ¢ for several values of
uncoupled frequency ratio 7.

efficients with weighted matrices. In general, it is indicated
that for a uniform cantilever beam using 7 stations along
the beam, the first n—1 frequencies and modes are in ex-
cellent agreement with exact theoretical values and even
the n* mode is given within the accuracy with which the
physical properties of the material are known. For a tapered
beam, more stations may be required, depending on the
amount of taper. The number of stations required to give
satisfactory accuracy is listed in table X. A comparison is
made by using weighted influence coefficients; the values
are taken from table II of reference 12.

The first vibrational frequency is given approximately by
equation (C2) (appendix C) when coupling exists between
bending and torsion; it is plotted in figure 4. In order to
check these curves, the exact solution was obtained (appen-
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dix D) for the ratio (w,/w;)? equal to 4 and was plotted on
the same figure. The values given by equation (C2) are
seen to be in excellent agreement with the theoretically
exact values.

The effect of the coupling between bending and torsion
is to reduce the first natural frequency below that which
would exist if there were no coupling. This effect is shown
in figure 4, wherein the value of Q is always less than 1.
This decrease in the first natural frequency due to coupling
is, however, relatively unimportant in the practical range of
(wi/wp)* >4 and €<0.75.

SUMMARY OF RESULTS

A method based on the use of Station Functions is pre-
sented for calculating uncoupled and coupled bending-torsion
modes and frequencies of arbitrary continuous cantilever
beams. The results of calculations made by this method

indicated that by the use of Station Functions derived herein,
n modes and frequencies can be obtained with sufficient ac-
curacy by using just # stations along the beam if the beam is
uniform. For a tapered beam, more stations may be re-
quired, depending on the amount of taper. The amount of
computational labor is markedly less than for other methods.
The use of Station Numbers tabulated herein further re-
duces the amount of calculation necessary. The effect of
coupling between bending and torsion is shown to reduce the
first natural frequency to a value below that which it would
have if there were no coupling.

Lewrs Fricar PropuLsioN LABORATORY,
NartioNaL Apvisory COMMITTEE FOR AERONAUTICS,
CLEVELAND, OHio, October 18, 1949.




APPENDIX A

SYMBOLS
The following symbols are used in this report: ¢:(2)
@y coefficient in equation for Station Function | ¢:(2)
in torsion r
B bending stiffness of beam, function of 2
B, bending stiffness at root section of beam
By ratio of average bending stiffness of k* Tgo
interval to bending stiffness of root
section To
by coefficient in equation for Station Function
in bending
C torsional stiffness of beam, function of z
G, torsional stiffness of root section of beam S
Ci ratio of average torsional stiffness of k* | So
interval to torsional stiffness at root | Sk
section
¢, C2, C3 constants defined in appendix B
fi(2) Station Function in torsion for j*! station | ¥
(defined in text)
g;(2) Station Function in bending for j** station | ¥
(defined in text) Yi
I mass moment of inertia per unit length of | 2
beam about elastic axis, function of z, aij, Bijy Yij,
except where otherwise defined Bigy Mis
I, mass moment of inertia per unit length of | p
beam about elastic axis at root section
I; ratio of average mass moment of inertia | ¥
per unit length of %k*" interval to mass | &
moment of inertia per unit length at root
section €
1,9,k station indices 0
gk, summation indices 6;
l length of beam by
My, Ny, P,  Station Numbers (defined in text); function
Qu, M52, N'j, of indices j, k, and n Q
P’y ' w
m mass per unit length of beam, function of z | wp
My mass per unit length of beam at root section
My ratio of average mass per unit length of | w.
k*™ interval to mass per unit length at
root section
n number of stations along beam
10

bending loading function on beam

torsional loading function on beam

absolute magnitude of projection of distance
from elastic axis to center of gravity on
perpendicular to bending direction

radius of gyration about elastic axis at
root section

absolute magnitude of projection of distance
from elastic axis to center of gravity on
perpendicular to bending direction for
root section

static mass unbalance, function of z, mr

static mass unbalance at root section, mgr,

ratio of average of static mass unbalance at
k*™ section to static mass unbalance
at root section

distance from root of beam, except where
otherwise defined

bending deflection, function of 2

bending deflection at *® station

dimensionless distance along beam, 2/é

elements of dynamical matrix defined in text

11, By

& Ue mo

uncoupled frequency ratio, (w./w,)®

length of interval along beam between
two stations

coupling coefficient, (7¢/rg)?

torsional deflection, function of 2

torsional deflection at i*" station

root of frequency equation or characteristic
root of dynamical matrix

frequency ratio, (w/w,)*

frequency of vibration

frequency of uncoupled fundamental bend-
ing mode

frequency of uncoupled fundamental tor-
sional mode

second derivative of deflection with respect
to time




APPENDIX B

STATION FUNCTIONS AND DETERMINANTAL EQUATIONS

TORSIONAL VIBRATIONS

A schematic diagram of a cantilever beam divided into n
intervals of length & is shown in figure 1. The Station
Functions for the torsional vibrations of such a beam must
satisfy the following conditions:

At
2=0 £,(0)=0 (B1)
z=n_f(n)=0 (B2)
=i fii)=1 (B3)
z=j f)=0 j#i (B4)

where f’(z) denotes the derivative with respect to z.
Equations (B1) and (B2) represent the boundary condi-

tions that must be satisfied by a cantilever beam vibrating

in torsion; equations (B3) and (B4) represent the further

conditions imposed upon the Station Functions. These
conditions will be satisfied by a function of the type
fi@)=a 2+ a2+ . . . Fagr,2tP (B5)

where the coefficients a;; must satisfy the following simul-
taneous equations obtained from conditions (B2), (B3),
and (B4):

0=au+2na;+3nasu+ . . . ++Dn"aq i (B2a)
1=tay+v"axu+%su+ . . . +i"Pa, i (B3a)
0=ja1i—{—j2a2.-+j3a3i—{— PN —I—j("+‘)a(n+1)i j#?: (B4a)

The coefficients @;, can be obtained by solving equations
(B2a) to (B4a) and the functions f;(z) determined for each
station. Equation (B5), however, can also be written in
the following form:

(z—7z(z—cy)
fl(z) :J?ﬂ

I G—pilt—ec)
J#

(B5a)

where LI represents the product for all values of 7 except
ji

j=1. The function in equation (B5a) obviously satisfies
conditions (B1), (B3), and (B4) because it has zeros at all
points specified by equation (B4), it equals 1 at the point
specified by equation (B3), and it equals zero at the point
specified by equation (B1). In order to satisfy condition
(B2), the constant ¢, is determined by substitution of equa-
tion (B5a) into equation (B2).

¢i=nfor 1 #n

ci=nf 1+ 17 fori=n
14> ——

j#n ]

Equation (B5) can be obtained from equation (B5a) by
carrying out the indicated multiplications. The complete
deflection function is then given by

169 Z_fl(z)ol +f2(2) 6+ .
=53 710,

<+ u(2)8,
(B6)

The continuous loading function ¢, (z) can now be written
as

q,(z)=1w20<z)=1w2jzi;l £(2)6; (B7)

A continuous loading function, which is a function of the
deflections at the reference stations, has thus been obtained.

BENDING VIBRATIONS

The Station Functions for the bending vibrations of the
beam shown in figure 1 must satisfy the following conditions:
at

z=0  ¢:0)=0 (B8)
z=0  ¢’(0)=0 (B9)
z=n  ¢"m)=0 (B10)
e=n  ¢""m)=0 B11)
=i gi)=1 (B12)
z=j  g(H=0  j=i (B13)

where ¢’ (2), ¢’ (), and ¢’’’ (2) denote the first, second, and
third derivatives, respectively, of g (z) with respect to z.
Equations (B8) to (B11) represent the boundary condi-
tions that must be satisfied by a cantilever beam vibrating
in bending and equations (B12) and (B13) represent the
additional conditions imposed upon the Station Functions.
These conditions will be satisfied by functions of the type

Gi(2)=0b22"+byu2®+ . . . Fbuyyiz " (B14)

where the coefficients b;; must satisfy the following equa-
tions obtained from conditions (B10) to (B13):

0=2by+6nby+...+m+3)N+2)n®Vb g,
0=060b5+24nbyu;+... +m+3)n+2)n+1Dn"b (i3 (Blla)
1=12%by+ b5+ . . . 17 b yay (B12a)
0=7%bp+7%bs+ ...+ b (nya (B13a)

(B10a)

J#

The coefficients can therefore be obtained from equations
(B10a) to (B13a) and the functions g; (2) determined for
11
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each station 7. Equation (B14) can, however, be written
in the following form:

II (z —Ne¥(z24cyztcy)
II (z D224 eyt

gi(z)= (B14a)

where II represents the product for all values of j except
i
j=t. The function in equation (Bl4a) obviously satisfies
conditions (B8), (B9), (B12), and (B13), because it has
zeros at all points specified by conditions (B8), (B9), and
(B13) and equals 1 at the point specified by equation (B12).
In order to satisfy conditions (B10) and (B11), the constants
¢; and ¢; are determined by substitution of equation (B14a)
into equations (B10) and (B11). The general forms for ¢,
and ¢; are, however, complicated and it is easier to obtain
the numerical values of these constants for each specific
case. Equation (B14) can then be obtained from equation

(B14a) by carrying out the indicated multiplications. The
complete deflection function is then given by
n
y(Z)ZE_‘;gj(Z)yj (B15)

The continuous bending loading function ¢,(z) can now be
written as

go(z)=muoly(z)= mﬁém@)yi (B16)

COUPLED BENDING-TORSION VIBRATIONS

The Station Functions for the coupled bending-torsion
vibrations are the same as previously given for the bending
vibrations and the torsion vibrations. The loading func-
tions, however, are given as follows (reference 7):

q:(2)=1w*0(2)+ S y(2)

:wz [I£,(2)6,+Sg,2) ] B17)
and
q(2)=8?0(2)+mw?y(2)
=w2};j [S,2)85+mgy(2) ] (B18)

DETERMINANTAL EQUATIONS AND DYNAMICAL MATRICES

Once the Station Functions and the corresponding loading
functions have been determined, the deflections at the
reference stations can be obtained in terms of the loading
function. A homogeneous equation in the reference-station
deflections for each station is thereby obtained. The
determinant of the coefficients of the resultant set of homo-
geneous equations can be set equal to zero; the determinantal
frequency equation is thus derived. The deflections at the
reference stations are obtained by the well-known equations
for obtaining influence coefficients.

Torsion.—The deflection at the station 7 due to the
continuous loading ¢.(z) on the beam is given by’

=i [l [ azse 0@ [ G ®19)

If Cis assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each section. Equation (B19) then becomes

00 = G l:f 2¢.(2) d2+J (1—k)q.(z )dz-l—fk q.(2) dz:l
(B20)
By substituting the relation

y=wl gff(éwf

and by assuming a constant value for I for each interval and
changing the summation order,

b=att 0 3 %; é[lkﬁk_lzfj(z) dz——(k'—l)]kﬁk_lfj(z)dz—l—

2
0]1

i el

B21)
Let
g
Jk—-l 2f/(2)dz=Ny
\ (B22)
| ey de=0a,,
Then
0,—= w2 é’ 52 é xij 0] (B23)
o Jj=1
where
a“EZ % I:IkNik_(k'—l) I)chk'{" E I1Mjr (B24)
=1 Lg r=kt+1

If G,=1I,=1 (constant cross section), then

ai,-=z [N]k—(k—l)Mjk-l— Z Mjr] (B25)
k=1 r=k+1

Let

Then
)\0¢=iai, Bj (B23a)

=

and the characteristic equation is

I [azj] _7\1| = (B27)

where I is the identity matrix.
Bending.—The deflection at the station ¢ due to the con-
tinuous loading ¢,(2) on the beam will be given by

=54J; qb(z)ﬁz%éi“zl)dzldz—{—
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If B is assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each interval. Equation (B28) then becomes

e ;:kilBk{ fk 1[— (e—1)z 41 (k—l)"’] 0(2)dz—

ke 3 1
Jk_l [%—5 (k— 1)22+§- (k—1)* | go(2)dz+

@fk" [z—% (zk—n] go(2)dz+

ap! S —(k—1)°
fk [5 (2k—1>z—%] q,,(z)dz} (B29)

By substituting the relation
7x(z)=0w’m JZI 9:,2)y; (B30)

and by assuming a constant average value for m in each in-
terval and changing the summation order,

(k m054 n

Z Bisy;

(B31)

where

Bu= 2 %{ mGP Q@+ 33 m, [(z—k +§) N+

<k3—<§—1)3_(2k;1) z) M,]} (B32)
Pg,,_f [——(k—1)2+ (k-l){l o dzs )
= [ [55 @ vretg =1 00 d2
(B33

k
N’ﬂcsf z2g52) dz
E~1

k
M'ﬂcEf 9:2) dz
k-1 J

For a uniform beam, m,=B;=1 and equation (B32) be-
comes

pu=2] (iPu— @t 33 {(i=k42) N7t

[k3—(§—1)3 (2k2—1> @] M""D (B32a)
Let
_ ESB;OWO (B34)

then the characteristic equation becomes

l[ﬂtj]“‘)‘” = (B35)

where I is the identity matrix and 8;; is the dynamical ma-
trix. In expanded form, equation (B35) becomes

|511*)\ Bz ... Bum

ﬁ2l ﬁ22_) LI B2n

ﬁnl Bn2 . Bnn—)\
where \ is a latent root of the matrix [8,;].

Coupled bending-torsion vibrations.—The deflections at
station ¢ are given as before by equations (B19) and (B28).
The loading functions ¢, and ¢, are changed as follows:

g.(z)=u?1 6(2)+S y(z)]}
¢o(2) =[S 8(2) +m y(2)]

(B36)

If these two equations are substituted into equations (B19)
and (B28) and the integrations are performed as previously,
the following relation is obtained:

w mOB

6,="2" Z‘, Toy0,+ €Ty, )
B, =

(B37)
Yi_ “’-’"i‘s— 2(611 o8, L)

Ty

where «;; and 84 are given in equations (B24) and (B32) and

7o?

G——

Tg()

1 IQBO

B Ogmo

i 1 n

=2 g [ SN =) SM it 35 8,0,

k=k+1

—_ 1 3 > L l
u=2 E{ Sz ij_QJk]+r§_187 [(1_k+2> Nt

B—Fk—1? 2k—1 . ]
( A M,.,}
where

M R EE e CR VI FACEE

(B38)

= [ [E—g t—1rtg G172

the determinantal equation therefore is
|)‘I—[7’ij]]:O

where [7;,] is the dynamical matrix, the elements of which
are as indicated in equation (B37). The matrix [7;,] is seen to
be a 2nX 2n matrix.



APPENDIX C

QUADRATIC FORMULA FOR FIRST COUPLED MODE

If only the first vibrational mode is desired, it is possible
to obtain this mode approximately by coupling together the
fundamental uncoupled bending mode with the fundamental
uncoupled torsional mode to obtain a simple quadratic
equation for the first coupled frequency. This equation is
valid when the coupling coefficient ¢ is constant along the
beam. The differential equations obtained by coupling the
fundamental uncoupled torsional mode with the funda-
mental uncoupled bending mode are:

I mass moment of inertia about elastic axis, function of z
w, frequency of uncoupled fundamental bending mode
w; frequency of uncoupled fundamental torsional mode

. denotes differentiation twice with respect to time

These equations lead to a quadratic equation in the fre-
quency ratio @, whose solution for the lowest frequency,
provided e is constant along the beam, is

o= g [V - €3

my—{—Sé—}—mwb?y:Ol 1) where
Sg-T6+Tw26=0 ) Q frequency ratio, (w/w,)?
' v uncoupled frequency ratio, (w,/w,)?
where ¢ coupling coefficient, (r/r,)*

m mass per unit length of beam, function of 2z This quadratic has been plotted in figure 4 for values of e
S static mass unbalance, function of 2 ranging from 0 to 1 and values of v = (w./w,)? from 1 to 100.
APPENDIX D
EXACT SOLUTION FOR COUPLED BENDING-TORSION VIBRATIONS OF UNIFORM CANTILEVER BEAM

The differential equations for the equilibrium of an ele- | Where i '
ment of a beam vibrating in coupled bending-torsion vibra- Q=(w/w)’
tions can be put in the following dimensionless form: .
¥ =(w/ws)
&Y, ml o Y, Let
da* ity B : dY, 3
(Dl) =Y
a2y, I 1’ o e, dx
dr o T e
dY, _y
where gr ot
h=l dY
4
Yy=6 dz Y
\
_ distance from root dY (b3
r= 2y
l dz 6
Then
e=(r/re)? Y ,
Now ’ dw5=c4Q(Y1 +1)
3 , ¢B .
" oml Yy o5
== (Y47 |
oy O
Ce=S TR Equation (D3) can be written as the single matrix equation
where £ 12.36 YO [0 0 1.0 0 0][Y
€;=2.467 Y, 0 0 0 0 0 1]|}Y,
Equations (D1) become d Ys 0 0 0 1 0 0 Y,
. : rr R A 0o 0 0 1 of|¥y,| O
Ty 4 7)) e '
(D2) Y, RY) 2 0 0 0 0 Y,
a*yY, (Y] 05(2 W —ec.) —eQ
il el Slaneb £ IR Y, TG TSR 9 0 0 0] Y,
da* Y I I % Y AL

14
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or K

Y _ 4y

dz (D4a)

where Y and A are the matrices indicated.
The solution to the matrix equation (D4) is given by

Y=e*Y, D5)

where Y is a column of arbitrary constants.
From the boundary conditions

le Yzz Y3:0
Y,=Y,=Y,=0
0
0

Y=Y O=| 0

Y5(0)
Y4(0)

If then @ is an element of the matrizant ¢4, the boundary
conditions give

at =0

z=1

Qg \on Qe
Q54 Qss Qg5 | =0 (D)
Qg4 Qs Qs

Equation (D6) is the frequency equation. It has an infinite

number of roots for w.

15
The N\ matrix of A is
T =2 0 1 0 0 0 ]
0 —A 0 0 0 1
0 0 —2A 1 0 0
0 0 0 —2A 1 0
¢ ci2 0 0 -\ 0
e a2 0 0 0 -\
L7 Y -
The characteristic equation A(A\) =0 is
)\“-{—% M—cON— (1 —e€)cqes %2=0 D7)

Equation (D7) is a cubic equation in A% Let the roots be
)\ly_kh )‘2,—)‘21 )\3;_>\3

Then by the confluent form of Sylvester’s theorem,

1 d%i-1 ()
[H e ak] (D8)
ki A=Ng

T
A:
¢ ; o;—1) dA*i-1

where F()) is the adjoint matrix, 7 is the number of distinct
roots, and «; is the multiplicity of the i* root.
If the roots are all distinct, this relation becomes

In order to determine the elements ;;, ¢4 must be evalu- eA:i FN)—e MNF(—N) (D9)
ated. Use will be made of Sylvester’s theorem (reference =1 2)\ijgi()\i—7\f)(>\i+)\j)
13).
where the adjoint matrix F'(\) is given by
_ q -
ALY AN ALY RN Moo e,
Y Y Y
Q
——ecsg)\" A—e QN —-—eﬁz A2 —e%2 A ‘—'ECL M—cQ
Y Y Y
2 Q
GO (1= docs = can? ERLLPL A2 EREL) WYY
Foy=— Y v y Y
2 2 Q
N H(1 — éeqes % A e N cONH-(1—¢) 0405 )\5+6—;§2~ X )\"+c—f{— A QN
2 2 . Q
‘ 649x4+(1‘~€)0405 % )\2 649)\4 C49R3+ (1 - 6) @— k C4Q>\2+(1 - 6) 64705 92 )\5+9j5Y— )\3 C;Q)\a
2
— 5l g G hep(1— gl _ o8y, — oy —e9TN —emn
L Y Y Y Y -

(D10)
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From equations (D9) and (D10), the elements Q;; are seen
to be given by

-
L M
Qyu=—— s & COSh)\i
“ Elg_(xﬁ—m
1

\ )\i4+c§lﬂ
Q45=—§ —<)\1.H_O\i2‘“)\j2) sinh \;
1

_ cIN; 2 .
Q= 2 N O sinh \;
joei
5 GO\ 2+c4c~"Q (1—e)
D T W (v v R LY
J
Qss="{0yy - (D1 1
3 C4ﬂ)\¢

3 —€Cs— Mg
954——§ 0= sinh A;
o
3 €5 — \;
Qes= ;‘, Mjﬂ PN cosh \;
Qgp= 123) H)E;:Z_c‘;zz) cosh )\,
j#i J

The value of the determinant in equation (D6) must be plot-
ted against the frequency; the value of the frequency for
which this determinant becomes zero is thereby obtained.
This procedure involves first solving the cubic equation (D7)

TABLE I—STATION NUMBERS

n=1
R

~.
M 1 %
;
’ »
- 5
~ &
v 008

for each assumred value of frequency parameter and then
calculating the elements of the determinant from equations
(D11). The process is evidently long and laborious.

10.

11.

12.
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TABLE II—STATION NUMBERS

n=2
J-\ k 1 2
~

1 5

M 1 2 12

N 8 8

15 is

P 0.183333 | 0.025
Q .046032 | 029365
M’ 536364 . 627273
N’ 367100 . 851948
P 933 | 057955
Q 036616 069733

13 2

M 2 T fed

31 239

N 240 240
P —0.037500 | 0.143750
0 —. 008135 181448
M — 060795 448674
N’ —034875 758685
P —.011252 | 118462
(% —.002614 | .150415
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TABLE III—STATION NUMBERS TABLE IV—STATION NUMBERS
n=3 n=4
N 1 2 3 N 1 2 3 4
P _ M 1 1022222 |  0.420630 | —0.051852 |  0.02022
N ! 0200 | sems0 | -Oo0%ms N 576455 L557937 | —. 127249 076455
> “Seanas SoEvoay | - aaosss P “104478 [020597 | —. 006581 Z002612
Q " 046577 et | ovaes 0 £048240 lossle7 | —lot4b47 £008359
Py oot oo B M 623188 “511882 | —. 082801 1042276
N  Sooade e | o N 413738 [676680 | 203719 146954
N - Sooae R vt Y o4 P 152256 1030616 |  —. 010651 1005795
Q . 038884 050843 —. 028318 4 . 039818 . 047267 —. 023551 . 018630
o 0,52 M 2 —0.647917 |  0.747917 |  0.518750 | —0.085417
N z 0520000 | Q72000 1 O-475000 N 202857 | 1207143 | 1207143 | —.299857
P Z Oesess e R P — 081920 “163021 “os1205 | — 009598
Q —. 014583 © 9202083 © 068750 (&} —. 017295 . 204828 . 090642 —. 030688
5 = uaoss - 202083 - Josron M — 211087 667412 (544025 | — 112648
N 083406 1001860 | 1 aroisa N — 116662 | 1091462 | 11260163 | —.300585
X = 083408 s i P —. 036502 1153469 [044508 | —. 015000
o = Dogars Rri R o . 008281 2193310 (007745 | —.048208
Y: 2351 o1z M 3 0.520022 | —0. 255556 63333 0522022
N 8 O Moo | haeme | §gosle N (220365 | —.381746 | 1673810 |  1.729365
‘ P 020563 | owsert “Saur1o P 062798 | —.037401 |148512 “037202
Q . 006222 —. 028963 316408 0 . 013040 —. 045624 . 335791 . 118397
Iy “Ododzz | - Dosess St M 122052 | —. 166738 582158 1643846
X “oomay | TUm | sl N l065879 | —l25%823 | 1545802 | 2164827
A CpomE | Tonaa 300138 P (020304 | —. 026235 ‘140822 060554
Y “oots7e | 014930 " Soracs @ (004551 | —.032114 -318707 “104016
M 4 —0.221701 |  0.094850 | —0.105061 |  0.543024
N —. 006544 Sl40724 | —l267841 | 1.997206
P —. 026267 ‘013391 | —lo17322 1136803
0 — 005428 ‘016301 | —.038574 J446729
M — 035456 (042628 | —.064723 ~438962
N =l 019023 (064205 | — 164169 |  1.622060
P —.005836 2006481 | —.010869 “117037
@ —.001303 loozer7 | —lopaz22 1382752
TABLE VI—STATION NUMBERS
n==6
N 1 2 3 4 5 6
TABLE V—STATION NUMBERS M 1 1.172073 | 0.391101 |—0.032371 | 0.013323 | —0.010149 | 0.008879
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s ‘040045 | omave | omors | -Soame | - P —1127634 | 176358 | 034411 | — 009203 | 006452 | —. 004561
v Tio00s | doma | iOrome | ooger | - Q —102605 | 220960 | 075401 | — 029565 | 027216 | —. 023740
ek gagte | oeoay | ioaes | -Gmme | - A1 —1303048 | 731901 | 503742 | — 085145 | 049793 | —. 038661
5 Tl | oases | Troceas | cimel | - n —1164215 | 1186681 | 1169252 | — 204736 | 223322 | —. 212149
e 0% | o | o008 | -Qadmad | —.003375 P —1050692 | 162263 | 038896 | — 011103 | 007043 | —. 005503
@ —l011384 | 203087 | 085300 | —. 035665 | 029701 | —.028708
M —0. ] . —0.
M 2 70.850000 | O-Toes3s | 0.490783 | —0.080550 | 0.049339 M 3 1.150584 (—0.404200 | 0.693794 | 0.546418 |—0,133366 | 0.089627
0 1145470 | —.310549 | 210544 M
P Zioe | Uleese | oawus | Toie | -masud 1489124 | — 597296 | 1.822457 | 1.822457 | —. 507296 | 489124
s Tiooss | s | eamer | i | -doe007 P ©130870 | —. 055056 | 156250 | 045203 | — 018184 | 011225
M — 1255330 - 699256 (523828 | —. 099723 ~058134 & (92679 | 080601 352909 | 144808 | —.077025 | . 058410
N — 130170 | 1138472 | 1219100 | —.345551 260447 , (T8 | . 2rhoes | G62160 | 003477 | —. 126314 | 083240
N Toane | tidam | Lol | sl 20447 N 141177 | 1413810 | 1745286 | 10846431 | —. 564800 | . 456509
o —.009758 1198610 (001532 | —. 042209 1034055 4 COnig | TToShas | i | -ogso | .ommiog | -oums
: : : - : : —o7 :
3 762798 | —0. ) .
M 0.7601%8 | 0311 | 0.651087 | 0.575208 | —0.126001 M 4 |—0.930965 | 0.273028 |—0.194854 | 0.502473 | 0624591 |—0.171416
465823 | 1718204 | 1923085 | —.8550573 X
P 099070 | —.04d60s | isores | o | I-Souors —.390902 | 399897 | — 488124 | 2.163786 | 2720209 | —. 033437
D184 | Onewss | 3ot | lameir | =-Olacet P —'103635 | 0036020 | — 020594 | 142229 | . 056698 | —. 020561
M 107103 | —. 228783 “633812 -513549 | —l137821 2, T-OR0LL | (043000 | —.Q6TOL | 464052 . 238215 | —.106938
N 105128 | — 344015 | 1674943 | 1.916360 | —.616234 4 T-H06a8 | L5030 | —. 150822 ) 098464 | 004424 | —. 1606043
X oy | Tiiuels ) LGmo Sioe0 | T:Biomd N —1110263 | 271857 | — 454522 | 2.185427 | 2 628772 | —. 012352
@ .007151 | —.042750 |  .335708 | 150076 | —.078385 & Tlonas | cOasiie | T oasa | -liass| . Qaane ) 022768
: : - : - : ) -8
M 4 T0.08o1d | 0187807 | —0.150325 | 0.576786 | 0.562807 M 5 0.581796 | —0.156399 | 0.092007 (0. 111954 | 0.537351 | 0. 500157
(233780 | .276637 | —.400446 | 2.100970 | 2.432887 M LTS |- 10859
P —. 062665 .025479 | —.024868 140460 -042205 : 7208221 | 231001 | —. 394888 | 2500270 | 3. 104001
o T 0oy | oEATE | omses | - ldoaa 042200 P .083006 | — 020218 | 013474 | — 018261 | 134578 | 046001
” Thi7ee | Imiviee | ez | cmeer | . imoce Q. (012025 | — 024496 | 1020806 | —. 058920 | 574036 | 243745
M Tiotou | Delse | Taames | zouae |y SM0 Yy ©120308 | — 007119 | 081568 | — 110087 | 535339 | 685021
X Tinsees | i | Triaos | 201 | 2901646 N J062735 | —. 144101 | 204080 | —. 391731 | 2499695 | 3.678582
e Ti00t | omee | Tomses | -lrme | .ol P (018841 | — 013674 | 012212 | — 018226 | 133988 | 066470
: : : @ 1004140 | — 018634 | 027119 | —. 058815 | 571521 | . 345086
M 5 0.24288 | —0.060026 | 0.050904 | —0.080137 | 0.525349 M 6 —0.209220 | 0.054246 |—0.030239 | 0.031561 |—0.064035 | 0, 510543
x 0oams | oosme | ooy | -t | 2458330 N -070042 | —. 075223 | .110987 | —.201427 | 2902746
-004952 | 1011196 S017031 | —. 044065 573787 s 000657 | T-ondszs | 004909 | —. 011243 | . 132560
; M 033722 | —.031711 2032307 | —.056459 ~432107 Ve g T O0008T | 016022 | —. 047075 | . 698254
X sz | el Oamn | T adee | daaor a7 025061 | —. 020585 | 024431 | — 049677 | 425817
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TABLE VII—STATION NUMBERS

n="7
N 1 2 3 4 5 6 7

M 1 1243487 0.376396 | —0.026266 0.009112 | —0.005%96 0.006025 | —~0.006513
N 667340 430602 | —.063889 031590 - 026481 (033195 |  —. 042160
P -218415 022882 | —.003069 001211 - 000853 000025 | —.000363
0 053049 027042 |  —.006769 003890 | —.003599 004829 |  —. 005357
M 1702228 453303 | —. 050122 019989 | —.012820 011370 | —. 011099
N 454474 597757 | —.122429 069352 | —. 057533 [062529 | —. 072080
P 1164382 032353 | —.006038 1002679 - 001831 1001689 |  —. 001614
o 1042465 038456 | —. 013441 J00361L | —. 007724 003815 |  —.010037
M 2 —1.321209 0.905437 0.446479 | —0.055674 0.020812 | —0.027896 0. 028701
N —. 570270 1. 435730 1. 028397 —. 192270 . 133730 —. 153603 . 185730
P — 154452 1182773 031439 | —.007052 004233 | —.004239 003750
0 — 031847 (228718 063932 | —. 022639 017853 | —.022136 023463
M — 357636 1764368 (485193 | —.071706 (038132 | —.031029 028988
N —.191650 1234950 1123273 | — 247832 170920 | —.170556 1188216
P — 058807 1166641 (036328 |  —. 009168 (005346 | —.004565 1004199
o ~. 013146 1209297 079621 | —. 020438 022542 | —.023823 -026110
M 3 1. 672922 —0. 511106 0.737737 0. 516672 —0. 104856 0. 081487 —0. 077078
y TS | TolTes 1. 931045 L7ise0s | — dososs (448232 | —. 498585
1 ~ 06004 1162183 1040990 | —.014225 012162 |  —. 010056
0 1037666 |  —.083877 1366024 130058 | —. 050056 063490 | —.062408
AL (355047 | — 320159 1692136 532099 | —. 108454 073511 |  —.063669
N (186003 |  —. 402459 1. 810566 1771836 | —. 484684 403671 | —. 413268
P’ . 056122 —. 048434 . 156613 . 042913 . 014528 . 010624 —. 009166
o (012374 | —. 059075 353730 137128 | —.061218 055439 | —. 056987
M 4 —1.605312 0.409927 | —0.250374 0. 629063 0.592219 | —0.182666 0.144688
¥ S | CHE | e GER) RS ) e

- —037056 . . - :
0 — 035122 063907 | —.082279 - 480975 (218352 | —.136173 (115110
M —. 317567 247432 —. 216700 . 623577 . 534350 —. 157315 . 115706
N* —. 164912 366953 —. 543417 2. 273022 2. 538692 —. 861833 . 750618
P — 049381 034761 | —.033166 147041 (050504 | —.021773 016464
o —010326 4 — 073703 479557 (212061 | —.113560 1102355
M 5 1.129029 | —0.264373 0.134585 | —0.13659 0. 551252 0.66960 | —0.220971
N sotsan | — 3saons 1334325 | —. 450675 2. 570992 3.052 | —1 42675

12126 —.033334 .019010 |  —.021700 1136202 06355 —
0 024312 | —.040333 “042147 | —. 069981 1550855 (330701 | — 168426
M (234133 | —. 168100 122050 | —.143020 568583 834247 | 197770
i B cme ) ) | el o) T

- 03601 ~.023166 J01793 -0 1 : -
o (007887 | —. 028149 1039907 | —.073007 593022 (300912 | —.160318
M 6 —0.617807 0.137401 | —0.064103 0.054068 | —0.034474 0. 507772 0.632193
Z}\)T - 222961 .(1)99169 —. 158887 189539 —. 383331 2. %ggglif 4, ggzggg

— 065852 17120 | —. 003878 003211 | —. 014243 £130010 .
) —.013170 020712 | —. 019672 026453 |  —. 060230 684756 318021
M —1125078 036131 | —.058376 057414 | —. 002005 - 516450 1704705
N —064447 127040 | —. 145336 201491 | —. 4173907 2, 931074 4. 491463
P —. 019183 011759 |  —.003393 003826 | —. 015450 “131144 069349
o ~ 004186 014281 | —. 018616 028441 | —.065330 690659 1430362
M 7 0. 205449 —0. 044613 0. 020059 —0. 015852 0. 021382 -—0.053078 0. 498306
N 1083043 |  —.064603 049675 |  —.055505 096798 | —.205079 3.334065
P [021819 | —. 005533 002756 |  —. 002373 2003481 | —. 009551 - 130932
0 |004358 | —. 006639 006106 |  —.007 014713 | —. 049981 820708
M 03302 | —. 022307 014642 | —.013579 l018939 |  —.044219 1420133
N (016093 | —.032878 036425 |  —.047602 (085721 | —. 245636 2.816717
P 1005053 | —. 003033 002001 |  —.002060 1003074 | —. 007854 L114318
o 001102 | —. 003682 004637 | —.006638 [012992 | —.041094 .716958
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TABLE VIII—STATION NUMBERS
n==8
\ k 1 2 3 4 5 6 7 8
7 ~.

M 1 1.312192 0.364019 | —0.021829 0.00649 | —0.003545 0.003081 | —0.003931 0.005039
N . 695399 . 462793 —. 052953 . 022453 —. 015893 . 016958 —. 025621 . 037691
P 225483 021401 | —.002485 J000839 | —.000499 000464 |  —.000622 £000684
Q 054447 025255 | —. 005476 1002694 | —.002103 002422 | —.003869 1004929

’ 727233 444367 | —. 043004 015242 | —.008698 007082 | —.007522 -008334
N 467152 577362 | —. 104816 1052799 | —.038988 (038933 | —.048943 - 062402
P 168111 030533 | —.005119 1002003 | —.001220 1001045 | —.001145 1228
@ 043271 036245 | 011204 006433 | —.005146 (005456 | —.007123 008863
M 2 —1.600390 0.955663 0.428400 | —0.045077 0.020351 | —0.016189 0.010610 | —0.024337
N —. 682210 1. 507998 .984086 |  —.156335 001123 | —.089039 127790 | —. 182002
P — 183160 188781 1020123 | —.005550 08 | —. 002412 1003082 | —.003289
Q —. 037524 1235968 1063696 | —.017807 011838 | —.012503 (019183 | ~—.023705
M — 415706 “797175 (468735 | —.060778 08715 | —. 021414 (021627 | —.023
N’ —. 221089 1. 282229 1. 082551 —. 209723 . 128559 —. 117660 . 140686 —. 174560
P’ —. 067464 . 170868 . 034087 —. 007611 . 003953 —. 003129 . 003272 —. 003421
Q —. 015018 214419 . 074659 —. 024428 . 016664 —. 016330 . 020358 —. 024694
M 3 2.337500 | —0.630523 0. 780389 0.491625 | —O0.082648 0.054514 | —0.06050 0.071477
N 9% —. 923581 2.036155 1631308 | —.368956 1200530 |  —.394067 534419
P 254178 | —. 083331 167794 037442 | —. 010856 007975 | —.009418 0
Q 051181 | —.101109 378439 119546 | —. 045861 041626 | —. 058605 069206
M 2586 | —. 388830 722423 512112 | —. 001426 [056607 |  —. 052469 1054058
N 20602 | —. 579786 1. 894495 1702145 | —. 408100 (310711 | —. 341167 405216
P 072148 | —. 056240 160734 1040069 |  —.012016 J008120 | —.007864 -007911
@ 015838 |  —.06853: 362854 127977 | —.050817 042360 | —. 048018 -057107
M 4 —2. 630070 0.503584 | —0.315718 0.667195 0.558819 | —0.143453 0.132430 | —0.143916
N —1.075644 1861856 |  —.786292 2. 424356 2494356 | —.786202 ©861856 | —1.075644
P . 279850 (074709 |  —. 045646 " 152881 “046081 |  —.020073 1020253 | —.019152
Q —. 055949 090392 ~—.101283 498324 . 197214 —. 104712 . 126011 —. 138032
M’ —. 466670 329868 —. 258293 650770 561588 —. 135711 . 104892 —. 100193
Y 240468 487550 | —. 646305 2. 367821 2436346 | —.743106 J681473 | —.750848
P’ 071501 045534 | —.038818 - 150902 047159 | —.018614 015440 | —.014572
g —. 015627 055337 | —.086223 491081 107950 | —.007075 l096084 | —.105178
M 5 2192095 | —0.454018 0.201514 | —0.175130 0. 584107 0.633389 | —0.237005 0. 215082
N . 890699 —. 656778 . 499217 —. 614926 2.718847 3. 393592 —1. 539301 1. 613222
P . 230544 —. 055975 . 027793 —. 027134 . 141097 058226 —. 034728 . 028253
Q . 045912 —. 067648 061577 —. 087460 601511 . 302906 —. 215987 . 203600
M 1380428 | —. 253524 165704 | —.170613 591124 14158 | —. 101506 J155413
N 1199636 | —.373346 412443 | —. 599857 2750891 3287044 | —1.241724 1. 164103
P 1059201 | —.034316 (023783 | —. 026822 142374 [054969 | —.027027 1022340
@ (012882 | —.041657 1052749 | —. 086477 1606915 (85874 | —.168026 1161236
M 6 —1.350286 0.265559 | ~0.108064 0.078152 | —0.102878 0. 520374 0.700714 | —0.274441
N —. 546005 . 383370 —. 267117 . 273370 —. 466005 2. 952258 4. 523995 —2. 046630
P 140865 (032367 | —.014611 011568 | —. 018007 131525 (070024 | —. 034431
Q —.027983 039003 | —. 032351 ‘037251 | —.071468 - 692634 1434540 | —. 248035
M’ — . 263362 163432 |  —. 008083 084195 | —. 115017 543778 1662638 | —.230699
N —.134575 240192 | —. 243600 204007 | —. 525024 3. 081687 4216400 | —1.725908
P —. 039810 [021885 | —.013810 T012656 | —.019020 135367 062213 | —.032195
@ —. 008646 (026552 | —. 030611 1040765 |  —.080395 712714 8590 — %2714
M 7 0.654484 | —0.124395 0.048081 | —0.031856 0.034801 | —0.066829 0. 484484 0. 662747
N 263837 | —.179348 118705 | . 111252 157170 | —. 370670 3. 230551 4867705
P 067914 |  —.015052 006430 | —.004626 1005472 | —.011570 126311 055545
Q 013468 | —.018172 014232 | —.014889 T028114 | —.060517 791745 1300381
M 130945 |  —. 079057 045388 | —.036054 ‘o162 | —.077799 - 500211 2357
N 066783 |  —.116059 11206 | —. 126105 (189085 | —.431248 3341811 5337391
P 019727 —. 010524 006331 —. 005328 . 006593 —. 013324 . 128649 . 072134
Q 004280 —. 012763 014029 —. 017155 . 027846 —. 069680 806281 . 519815
M 8 —0.202414 0.037821 | —0.014268 0.000104 | —0.009307 0.015388 | —0.045167 0. 487926
N —. 081470 (054494 | —.035205 L0374 | —.041992 |085181 | —.296574 3.754791
P —.020947 004560 | —.001898 001312 | —. 001443 (002573 | —.008294 ©129520
Q —. 004150 005504 | —.004201 “004221 | —. 006093 j013452 | —.051711 941457
M . 033107 . 019722 —.011093 . 008527 —. 009326 . 015058 —. 039785 414996
N’ —. 016869 . 028937 —. 027507 . 029809 —. 042089 . 083310 — 260993 3.198326
P’ —. 004979 . 002618 —. 001541 . 001252 —. 001450 . 002493 —. 007173 . 113558
g — 001080 (003174 | —. 003414 1004020 | —.006122 (013034 | —.044710 1825790
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TABLE IX—COMPARISON OF RESGLTS

Torsion Bending Coupled
Number
of N - .
i 2 2 4 4 4 4 4
stations |, /1o @, 12 gy T2 .y [T gy [0 @, molt o \/ mol ey fmot |, ™
Co Cy Co By By By By By By
Station-Function method
1 1.549 | - 3.493  |__.___.._.._._ 3.46
2 1.571 4. 526 - 3.516 2171 - 3.48 .
3 1.571 4. 689 3.516 22.04 60. 20 3.48 20.6 48.2
Weighted influence coefficients
2 1.575 539 .. 3.56 15,63 | oo || e
4 1.571 4.73 . 3.52 22,80 e[ o
Exact theoretical value
1.571 4.712 7.854 3.516 22.04 61.70 3.49 20.6 49.1
TABLE X—STATIONS REQUIRED FOR SATISFACTORY ACCURACY
Torsion Bending
Method 2 T2 12 4 4 4
tho oy [T wzx/ﬁ o J1E | [t |, fmett | [matt
Co Cy Cy By By By
Station Funections._____.______________ 1 3 4 1 2 3
‘Weighted influence coefficients....____ 2 4 | 3 L P
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force
%pam!h;l Linear
i i Sym. | Y0 8IS : . Sym- Positive Designa- |Sym-| (compo-
Designation bol | symbol | Designation | "po)” | girection tion | bol |nent along | AREUIST
axis)
Longitudinal._____.. X X Rolling__.____ L Y—7 Roll___.__.__. ¢ u p
Lateral . ... ___ Y Y Pitching._____ M Z—X Piteh..___._. 9 v q
Normal ... Z A Yawing. .. __. N X—Y Yaw_ ... ¥ w r
Absolute cosflicients of moment Angle of set of control surface (relative to neutral
0‘=_[§S C,= M C.— l position), 8. (Indicate surface by proper subscript.)
q ™ qeS T gbS
(rolling) (pitching) (yawing)
4., PROPELLER SYMBOLS
D Diameter P
D M J—
» Geometric pitch F Power, absolute coefficient Cp—p oy
p/D  Pitch ratio . 5[5V
Vv Inflow velocity Cs Speed-power coeflicient= P
vV, Slipstream velocity - 7 Efficiency
T Thrust, absolute coefficient Cr=-— Revolutions per second, rps
ontD : 14
) & Effective helix an, le=tan‘1(——-)
Q Torque, absolute coefficient OQ=——7§55 & 2w
p )’

5. NUMERICAL RELATIONS

1 hp=76.04 kg-m/s="550 ft-Ib/sec 11b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 b
1 mph=0.4470 mps 1 mi=1,609.35 m=5,280 fb

1 mps=2.2369 mph 1 m=3.2808 ft



