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Section 1 

Introduction 

Under previous efforts we have begun the development of a benchmarking methodology for 
assessing the performance of scalable high performance computers for real-time embedded 
applications [Brown, et al., 1994]. The purpose of this paper is to further extend this 
benchmarking methodology and to suggest an initial benchmarking activity, a real-time two- 
dimensional fast Fourier transform (FFT), to test out what we propose. The overall goal is the 
development of a rigorous and uniformly embraced methodology for performance assessment 
applicable to scalable real-time embedded computing. This is especially critical now as research 
papers are beginning to appear assessing the use of scalable high performance computing in 
real-time embedded applications. Some of these papers report meaningless or flawed 
performance results from the standpoint of the motivating applications. 

Assessments will be needed across a wide spectrum. Initial assessments need to establish 
baseline processor performance using native processing and communication libraries and hand- 
tuned code. The focus here will be on establishing the "existence proof that a particular 
processor/system software pairing can deliver desired levels of scalable sustained performance. 
Simple and standardized tests are needed to provide a common methodology for comparing 
disparate approaches (MIMD versus SIMD, meshes versus crossbars, packet switched versus 
circuit switched). System software assessments need to focus on relevant real-time operating 
system benchmarks to determine the time-scale (granularity) at which guarantees can be made. 

Support tools (e.g., performance monitors) and interoperability layers (e.g., Message Passing 
Interface (MPI) and MessageWay implementations) need to be assessed as they become 
available. The focus at this stage will be on quantifying the impact on real-time embedded 
performance of those techniques that offer more portability. As parallel software design 
processes are developed for real-time applications (e.g., data flow shells, more general 
partitioning and mapping tools), previous baseline benchmarks need to be repeated with these 
higher-level tools, again to assess the impact on performance. Performance impacts of any 
proposed security and fault-tolerant techniques also need to be quantified. A key aspect of all 
these assessments will be to determine the range of applicability (scalability) of potential 
solutions. 

Three levels of benchmark complexity are considered. Low-level benchmarks are designed to 
narrowly focus on the performance of some crucial component of the parallel system. Kernel- 
level benchmarks provide useful parametric information on the computational and 
communication building blocks of subsequent real-time implementations. Finally, compact 
application benchmarks incorporate representative system behavior and are implemented 
according to the design-to-specification methodology described in this paper. 



Section 2 describes our proposed real-time embedded benchmarking methodology, including 
the use of a real-time test bench. The emphasis is on how the benchmarking methodology must 
change to incorporate the requirements of real-time embedded processing. A unified treatment 
of utilization, speed up, and efficiency for periodic real-time processing is given. Section 3 
discusses where the benchmarks will come from. One of our points is that there already exist a 
variety of higher-level benchmarks (kernels and compact applications) that can be incorporated 
into our methodology. We examine by example how real-time requirements influence the 
design of lower-level benchmarks. 

Section 4 lists a number of related benchmarking efforts. In particular a potential collaboration 
with the Rome Laboratory C3I Parallel Benchmark Suite [Metzger, 1994] is described. 
Section 5 considers how our notion of scalability for real-time embedded applications 
compares to traditional notions of scalability from scientific computing. Section 6 states the 
conclusions. Appendix A contains an initial real-time benchmark specification of a two- 
dimensional FFT treated as a compact application to provide a test case of the proposed 
methodology. Appendix B contains a kernel-level benchmark specification of a data remapping 
function relevant to a two-dimensional FFT. 



Section 2 

Real-Time Embedded Benchmarking Methodology 

In this section we propose a real-time embedded benchmarking methodology for scalable high 
performance computing. The notion of using a software test bench to assess steady-state real- 
time performance is introduced. The components comprising a high-level real-time compact 
application benchmark are described. A unified treatment of utilization, speed up, and 
efficiency for periodic real time applications is given. 

2.1 Background 
A previous focus of our work was on creating a benchmarking methodology that supported the 
development of parallel software for real-time embedded applications [Brown, et al., 1994, 
1995a, b]. This parallel software development process involved running benchmarks designed 
to assess the level of real-time performance that the scalable massively parallel processor, or 
more precisely its components, could deliver on processing and communication kernels. These 
kernels were men combined into a single implementation using a variety of parallelization 
approaches so that the application's timing requirements were satisfied. 

The process was iterative and involved a series of benchmarks that incorporated increasingly 
more of the application's requirements. The approach was to make the initial benchmarking 
results highly predictive by including in the single component benchmarks much of the 
infrastructure and overhead required in a real-time implementation. This methodology has 
proved useful in developing scalable parallel software for real-time signal processing 
applications, and we propose to expand it to attack the real-time embedded benchmarking 
problem in general. 

2.2 Design to Specification and Real-Time Scalability 
The specification of the timing requirements and their impact on the benchmarking 
methodology is what distinguishes the proposed approach. The essential point is to treat timing 
and functional specifications on an equal footing. A design-to-specification methodology 
provides the most meaningful assessment of competing approaches. In this methodology the 
timing requirements of representative applications are extracted and specified. The objective 
then becomes to complete the processing within the timing specification. The smallest size of 
the scalable high performance computer that meets both the functional and timing requirements 
is determined. This minimum machine size metric is perhaps the most compelling overall 
metric for the case of embedded applications. This methodology provides an easily 
understandable way of comparing different approaches (e.g., tools) on the same scalable 
platform. Competing architectures can be compared by converting the minimum sized solutions 
to common measures of size, weight, power, and price. 



Scalability for real-time embedded applications can now be placed on a solid footing. The 
primary concern is to maintain the real-time requirements as the complexity of the problem is 
increased. This increase in complexity often follows from an increase in the input problem size 
with the algorithm fixed, but one relevant alternative could be to examine a sequence of 
increasingly complicated algorithm enhancements that correspond to proposed upgrades of 
system functionality. In some settings the real-time requirements could be scaled as well. Each 
benchmark must clearly state how the real-time requirements are adjusted as a function of 
problem complexity. The rate of growth of the minimum machine size then becomes a metric in 
which to compare prospective solutions. This approach will reveal those proposed solutions 
that have limited scalability—solutions that can satisfy today's requirements, but that have 
limited potential for the applications that are driving current investments in scalable computing. 
Section 5 discusses how mis notion of "design-to-specification" scalability compares to 
traditional notions of scalability popular in the scientific computing community. 

2.3 Real-Time Test Bench 
A crucial component of the benchmarking methodology is to use a "test bench" to measure the 
real-time performance of the software under realistic steady state conditions. This is done with 
a dedicated data source responsible for providing data to the function under test and a 
dedicated data sink responsible for collecting desired results. Because I/O is often the "last 
frontier" for these embedded systems, early evaluations will implement the test bench on the 
machine itself. In other words, we "pick up" the processing after the I/O has occurred and the 
data has been appropriately buffered. An actual system implementation would incorporate the 
actual I/O interface, which can then be easily integrated with the test bench source and sink. 

The test bench provides realistic stimulus to the function under test. For example, in a periodic 
hard real-time situation, the program is run for a long duration so that the data source generates 
many instances of the problem. The corresponding solutions are collected at the data sink and 
time stamped. A key metric in this case is the worst case difference between the times of 
successive solutions. It corresponds to a lower bound on the period that the particular parallel 
system can sustain. In contrast to scientific computing benchmarks, this approach correctly 
accounts for behavior that affects the regularity of the processing, such as unpredictable 
overheads encountered in non-real-time operating systems. 

Soft real-time or event driven scenarios can also be incorporated in this test bench 
methodology. In this case the system's response to increasing load is characterized, where the 
data source could initiate events to be processed according to a prescribed scenario. 

2.4 Real-Time Benchmark Specifications 
In general, a high-level real-time compact application benchmark specification should consist of 
a functional specification, a timing specification, the guidelines for conducting the scalability 
study (how to scale the problem complexity and the timing specifications, if desired), and 
implementation guidelines. Implementation guidelines describe any unique aspects of the test 



bench, the acceptability tests, and the reporting requirements. Sequential code written in a high- 
level language (e.g., C) that runs on a workstation or personal computer with a standard 
operating system (e.g., UNIX) should also be supplied along with sample input and output 
results. This executable version of the functional specification can be used to construct more 
specific test sets for the parallel implementation. The sequential code implementing the function 
under test would not necessarily be the best starting point for the parallel implementation, and 
developing a more suitable sequential implementation could be the first step in the parallel 
software development process. 

In many of the applications under consideration, the timing specification is given in terms of a 
periodic sequence of input data sets Xl5 X2, X3,..., X,-,... Two real-time requirements are 
typical in these periodic applications: the period is the time interval between successive inputs 
and the latency is the length of time required to process a single instance X,-, measured as the 
interval of time between when the data set X,- leaves the data source and the corresponding 
results arrive at the data sink. The requirement for the period is often easily determined from 
how fast data is coming off of a sensor and how much of it is to be processed. The latency is a 
system-specific quantity, some systems have short latency requirements, some have long 
latency requirements. The strictness of the latency requirement governs the difficulty of the 
parallel software development task and the efficiency of the parallel implementation. Because of 
the important role that latency plays, we often specify at least two benchmark cases 
corresponding to a strict and loose latency requirement. 

As an illustrative example, and as a way of getting started, we provide in Appendix A a real- 
time benchmark specification called RT_2DFFT, a real-time two-dimensional FFT benchmark. 
Initial implementations of the proposed methodology using this benchmark are planned on 
several parallel machines, e.g., the Intel Paragon, the MasPar MP-1/2 [Koester and Rushanan, 
1996], the Mercury MCV9, and on a network of workstations. Our plan is to make the 
resulting code, including examples of the test bench implementation, available to the 
community for additional optimizations and enhancements. A version of the test bench written 
using MPI is planned as a portable starting point. However, optimizations would be 
encouraged as we believe mat there is a short-term need to establish the feasibility of highly 
efficient implementations on general purpose scalable massively parallel processors. The 
performance impact of software portability and ease of programming must eventually be 
assessed. 

2.5 Auxiliary Performance Metrics 
Our primary focus is on comparing scalable high performance computing alternatives by 
establishing the size of the smallest machine that can satisfy both the functional and timing 
specifications. In this section we discuss a number of other metrics that have been used to 
characterize the performance and scalability of high performance computers. In the present 
context, we are especially interested in notions that measure the efficiency of the system under 
test. "Efficiency" has taken on a specific meaning within the parallel processing community to 
mean "average speed up." We first introduce an alternative notion of efficiency in terms of 



processor utilization and then relate it to traditional notions of speed up and efficiency. The 
discussion focuses on real-time applications that are characterized by period and latency 
constraints. 

In embedded applications it is desirable to know how well we are using the, often limited, 
computing resources that are at our disposal, hence our interest in measuring some notion of 
processor utilization. Knowledge of this sort is certainly important in the design process as it 
can help determine when code optimization has reached a point of diminishing returns. It is 
also relevant from the standpoint of assessing the scalability of a proposed system. If there is a 
big drop in the processor utilization as the system is scaled, then mis is an indication of trouble. 
This would also be reflected in the minimum machine size metric, but the utilization measure 
could provide additional insight. Notions of utilization alone are not sufficient to compare the 
performance of different platforms. 

For a given periodic real-time implementation, we define the utilization metric to be the 
percentage of the peak operational rate that the high performance computer is actually able to 
sustain. Often single precision floating point operations per second (flop/s) are of interest, but 
we give the definition in terms of generic operations per second (op/s). The peak performance, 
denoted by peak_op/s(n), must be agreed upon ahead of time and be expressible as a function 
of the number of processors n. Usually peak_op/s(n) = n[peak_op/s(l)]. The number of 
operations required to process a single problem instance must be specified, and is denoted by 
#op. For consistency, all concerned must use the specified #op in the utilization calculation, 
regardless of the number of operations that are actually implemented by a given approach. This 
assumption is less controversial when the algorithms employed are fairly standardized, as is 
often the case in signal processing applications. Given an n processor implementation, the 
minimum sustainable period that can be supported, denoted by period(n), must be determined. 
This is best done using a consistent source-sink test bench discussed previously. Then the 
sustained operational rate, denoted by sustained_op/s(n), is given by #op/period(n). The 
processing utilization (as a percentage) is defined as 

utilization(n) = [sustained_op/s(n)] I \peak_op/s(n)] x 100 (%). 

Note that the processing utilization is a function of the minimum period that can be sustained 
for a sequence of input problems. It has nothing to do with the latency of individual solutions. 

In contrast, speed up is concerned with the latency for a single problem instance. The speed 
up, S(n), is usually defined as the computation time for a problem instance when a single 
processor is used divided by the computation time for the problem instance when n processors 
are used. Care must be used when establishing the single processor baseline to assure 
meaningful results [Sahni and Thanvantri, 1996]. Because of problems in this regard, many in 
the parallel processing community argue against relying on speed up to measure the 
performance of a parallel system. 



In parallel processing, "efficiency" is usually defined for an n processor system as 

efficiencyparallel(n) = S(n)/n. 

This notion of efficiency can be interpreted as average speed up. In the embedded community 
the word "efficiency" is sometimes used to refer to what we have termed "utilization," and 
some care must be taken to make the correct interpretation. As defined here, utilization and 
efficiency involve different aspects of the periodic real-time implementation, namely utilization 
is associated with periods, while efficiency is associated with latencies. Usually these 
quantities, period and latency, have quite different real-time requirements, with the case of 
latency greater than the period being common in signal processing applications. Although some 
applications (e.g., control) may require that the latency be equal to the period, the distinction 
should be maintained between the two concepts. A second, more minor distinction is that the 
efficiency metric embodies a comparison of the performance of two different sized machines 
(one processor versus n processors), whereas utilization compares the actual and theoretical 
performance of a single machine (with n processors). 

Next we explore how efficiencyparaiiei and utilization are related (but are still not the same 
concept) if they are defined consistently. This is accomplished by defining speed up in terms of 
the period sustained as 

Speriodin) = period(l)/period(n). 

Here, as before, period(n) is the minimum period that a machine with n processors can sustain, 
again measured using a realistic source-sink test bench. Then, assuming that peak_op/s(n) = 
n(peak_op/s(l)), a calculation gives 

Speriodin) = n [utilization(n)]/[utilization(l)]. 

So that, 

efficiencyperiodn) = Speri0din) In = [utilization(n)]/[utiUzation(l)]. 

Thus efficiency (as usually defined in parallel processing, but for periods instead of latencies) 
corresponds to the ratio of the processing utilizations obtained for n processors and for one 
processor. A sign of a "scalable" high performance computing implementation is that this 
measure of efficiency is close to 1, i.e., the utilization is close to being constant as a function of 
n. This corresponds to what we suggested previously. Note, though, that this notion of 
efficiency is just comparing two different sized implementations and is not making any 
statement about how "good" either of them are relative to resource use (the lay definition of 
efficiency useful for embedded applications). Thus the progression of the actual values of 
utilization(n) as the number of processors n is increased is a more useful way of characterizing 
both the resource usage and the scalability of an embedded implementation. In Section 5 we 
contrast this approach with approaches that measure the rate of increase in problem size 



required to keep parallel processing efficiency constant as the number of processors is 
increased—the so called isoefficiency metric [Grama, et al., 1993]. 



Section 3 

Where Do the Benchmarks Come From? 

The choice of benchmarking functions and their level of implementation complexity is crucial. 
Different application areas suggest their own unique real-time processing requirements. 
Judgments on the potential for future success of scalable massively parallel processing 
technology must be considered in the choice of application domains. Many of the initial 
insertions of this technology will focus on signal processing applications such as synthetic 
aperture radar (SAR) image formation or space-time adaptive processing (STAP). The SAR 
application was the motivation behind the real-time two-dimensional FFT benchmark 
specification given in Appendix A. Other motivating applications, including, for example, 
multiple-hypothesis inferencing and image processing, are equally compelling and are 
mentioned in related benchmarking efforts in Section 4. 

There are many existing scientific parallel processing benchmarking efforts, some 
incorporating functions that are relevant to real-time embedded applications. The 
PARKBENCH effort [Hockney and Berry, 1994], for example, organizes its benchmarks into 
three levels: low-level, kernel, and compact applications. In this section we focus on low-level 
benchmarks that are suggested because of real-time concerns. Kernel-level benchmarks and 
compact applications are briefly discussed and will be derived primarily from the existing 
efforts listed in Section 4. 

3.1 Low-level Real-Time Benchmarks 
Low-level benchmarks are designed to narrowly focus on the performance of some crucial 
component of the parallel system. Examples of low-level benchmarks in PARKBENCH 
include TICK1 and TICK2, which are designed to measure the resolution and accuracy of the 
clock used in the benchmark measurements. The COMMS1 benchmark in PARKBENCH 
measures the basic communication properties of a message-passing computer. In this section 
we describe examples of low-level benchmarks that are suggested because of real-time issues. 
These particular illustrations were derived from our work developing a real-time 
communications scheduling service for scalable massively parallel processors [Games, et al., 
1994,1995, Brown, et al., 1996] and are only meant to be representative. The impact of the 
hard real-time context is evident in all of the benchmark specifications presented below. Two 
categories of low-level synthetic benchmarks are introduced. They concern system clock 
capabilities and mechanisms for effecting time-driven schedules via interrupts. 

System Clock Calls 
A good system clock is obviously desirable for time-driven hard real-time scheduling. More 
generally, the system clock is the basis of instrumentation necessary to establish other 
benchmarks. The contrast in how we must treat the system clock compared with 



PARKBENCH is striking. For one thing, it is imperative that clock resolution and accuracy 
must be very good relative to the standards originally envisioned in their TICK1 and TICK2 
experiments. We hereby assume very good resolution and accuracy of the underlying clocks. 
These qualities must be verified at some point, but other means than running benchmark code 
are probably more appropriate for this job at the levels of resolution and accuracy available 
(microseconds). 

We advocate a subtle modification of what is to be measured: the accuracy and overhead of the 
available user-level system clock calls when being used as instrumentation or a scheduling 
mechanism are critical and can be evaluated by benchmarks. Typically, one will attempt to 
determine when, in an actual run, a particular event occurs by inserting a clock call in the code 
and doing something with the returned value that allows it to be retrieved later. The relation of 
the actual time of the event to the value returned by this call, as well as the degree of 
interference of these insertions, are what need to be evaluated. This is the goal of the CLOPS 
benchmark described below. 

It is helpful to standardize the basic instrumentation insertions. The combination of obtaining a 
clock value, storing it, and preparing for the next measurement can be accomplished in C by 
something like 

A[i++]   =   timer(); 

where A is an appropriately sized and typed array, and timer () is the best available system 
clock call, e.g., dclock () on the Paragon. A single instance of this basic instrumentation 
insertion will be called a clock operation (clop). Crudely put, one wants to determine the 
maximum rate of clock operations per second (clop/s). This gives an idea of how long one 
measurement takes and, together with bounds on the actual underlying clock accuracy, enables 
one to estimate the accuracy and overhead we want. 

The CLOPS benchmark simply iterates clock operations in a tight loop until interrupted by 
Control-C and then writes the array of times to a file. Included in the specification are 
requirements that the writes to memory are prevented somehow from inducing page faults, the 
size of the array holding time values is not exceeded, and there is only one application process 
running. 

The alternative of halting when a predetermined bound is reached requires a comparison 
involving the running index i at each timer call. This is a seemingly insignificant extra 
overhead, except that, when the timer call really amounts just to reading a memory location (as 
with dclock) instead of a system call, the modest extra overhead may be easily detectable. 

The average clop/s, as indicated by a long run of CLOPS, can be quite misleading, especially 
for non-real-time operating systems. Closer examination of the data will probably indicate that 
operating system time-outs of various sizes are occurring, in spite of there being only one 
applications process and no paging. In the case of OSF1 on the Paragon, a graph of timer call 
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index versus consecutive timer value difference will show one low band corresponding to the 
values one might naively expect from this experiment, but other bands are observable. The 
maximum time between consecutive timer calls is radically greater than the average. 

The operating system itself is being tested by CLOPS as much as the clock. Our ability to 
depend on clock operations for measuring system performance on other benchmarks may be 
severely limited unless time-outs can be eliminated or measurements can be restricted reliably to 
intervals between long time-outs. Even benchmark results stated with coarse granularity require 
rigorous bounding of the operating system time-outs over intervals. 

Interrupts for Scheduling 
Operating systems often provide facilities for sending interrupt signals to processes at 
predetermined times, often periodically. A typical example is the ualarm call, which can be 
used to send a signal every time a fixed number of microseconds has elapsed, at the first 
opportunity the operating system has to communicate with the process. One application of such 
interrupts in a real-time context is to implement time-driven scheduling. The benchmark IACC 
assesses the accuracy of the interrupt mechanism, and IOVERHEAD assesses its overhead. 
Together they can be used to establish the scheduling granularity supported by the interrupt 
facility in question. 

IACC tests periodic interrupt accuracy on a gradually decreasing sequence of periods until the 
interrupt mechanism is found not to perform adequately for the period being tested. Each 
period is tested by having the operating system use the given interrupt mechanism to interrupt a 
basic work activity (incrementing a variable) a fixed number of times or until the interrupts 
become too inaccurate. This is judged by having the interrupt handler calculate when each 
interrupt should be, read the clock when it actually occurs, and check to see if the difference 
exceeds an error parameter. In one variant the prediction is made by adding the period to the 
actual time of the previous interrupt, while a more rigorous variant calculates by dead 
reckoning from the initial interrupt using the period and the ordinal of the interrupt. 

IOVERHEAD runs a basic loop that just increments a variable a prespecified number of times, 
but which is interrupted at a given period, where the interrupt handler does nothing. When the 
interrupt period is great, the overhead is near 0, and a base, 0-overhead time to perform the 
specified number of increments can be determined. As the interrupt period is decreased 
(probably by a factor of two each time), the overhead of the interrupt mechanism is easily 
determined. The limiting factor may either be that below a certain period interrupts are lost (so 
the actual interrupts don't get any more frequent below that point), or the overhead may 
increase sharply. Our experience with ualarm on the Paragon indicates that the former 
happens. 

This presentation is intended to indicate the general nature and some of the important themes of 
a more mature development of low-level benchmarks for evaluating the ability of a system to 
support real-time applications. One such theme is that care must be taken to avoid subtle traps 
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when fine time measurements are being made, even in very simple experiments. Another is the 
prominence of the operating system as a determining factor for the benchmarks' results. 

3.2 Kernel Benchmarks and Compact Applications 
Intermediate-level benchmarks involving computation and communication kernels are needed 
to provide an assessment of the real-time performance the hardware and system software can 
deliver on the building blocks of associated applications. Kernel-level benchmarks should be 
designed to provide useful parametric information to support subsequent real-time 
implementations. Examples include single processor computational timings as a function of 
input size or distributed data remapping times for a fixed data size as a function of the number 
of processing nodes. Care must be taken to specify the interface requirements of the kernel- 
level benchmarks so that the results are realistic. For example, if the data originates in the 
memory of another processing node, then the overhead required to move the data across the 
network needs to be included. Characterizing the variability of the kernel-level results is 
essential from the real-time perspective. An example of a kernel-level benchmark for a 
"distributed corner turn" is given in Appendix B. 

At the highest level are the compact application benchmarks. These benchmarks consist of a 
few thousand lines of code and incorporate representative system behavior not found in kernel- 
level benchmarks. These broader benchmarks allow the testing of proposed real-time software 
design and implementation methods. A number of sources of compact applications are listed in 
Section 4. Some effort will be needed to add real-time requirements to these existing 
specifications. A template for a real-time compact application benchmark specification is given 
in Appendix A using the two-dimensional FFT as an example. 
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Section 4 

Related Efforts 

In this section we describe four existing benchmarking efforts/methodologies and compare and 
contrast them to our proposed effort. A collection of more focused efforts that also could be a 
source of benchmarking kernels/compact applications are also listed. 

4.1 PARKBENCH 
The Parallel Kernels and Benchmarks (PARKBENCH) committee was founded at 
Supercomputing'92 to establish a comprehensive set of benchmarks that will be generally 
accepted by both scientific computing users and vendors of parallel systems [Hockney and 
Berry, 1994]. One of the objectives of the PARKBENCH committee is to set standards for 
benchmarking methodology and the way results are to be reported. They are developing a 
rigorous and scientifically tenable methodology for studying the performance of high- 
performance computer systems. Where relevant, we will adopt their philosophy and 
terminology. The focus on scientific computing and non-real-time "batch" processing means 
that their methodology must be augmented along the tines described above to be applicable to 
real-time embedded applications. 

The 1994 PARKBENCH methodology stipulates specific languages and communications 
software (mainly F77 with PVM message passing) for their parallel benchmarks and views 
them as a measure of the hardware and compiler. Thus, one can compare two different Fortran 
compilers for the same machine, but one cannot use their benchmarks to compare a Fortran 
implementation with a C implementation, or PVM message passing with another kind. Our 
benchmarks are intended not to be language specific (although portability issues do arise) and 
are to be thought of as measuring the complete combination of hardware and supporting system 
software. For instance, the operating system is a significant variable, especially in the real-time 
context. It is not mentioned in the PARKBENCH material. 

4.2 C3I Parallel Benchmark Suite 
The Rome Laboratory C3I Parallel Benchmark Suite is a 30-month program (beginning in 
October 1994) whose goal is to develop a suite of benchmarks aimed at furthering the use of 
high-performance computing for future C3I systems [Metzger, 1994]. Honeywell Technology 
Center, Minneapolis, MN, is the prime contractor and is being supported by ALPHATECH, 
Inc., and Vipin Kumar (Univ. of Minnesota). The benchmark suite is to be designed to assess 
parallel hardware architectures as well as parallel software development tools and processes. 
The program will select core algorithms from computationally challenging C3I applications and 
specify a set of derived benchmarks along the lines of the NAS Parallel Benchmarks. A key 
objective of the program is to disseminate the benchmarks and initial implementations as widely 
as possible, including the use of World Wide Web sites and netlib. 
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Benchmark specifications at the level of compact applications in the PARKBENCH 
classification will be defined. The initial set of 12 application areas include: plot-track 
assignment, SAR processing, hypothesis testing, route optimization, discrete-event simulation, 
tracking, threat analysis, decision support systems, terrain masking, map-image correlation, 
image understanding, and pattern recognition. 

"Real time" was not included in the ground rules of the Rome Laboratory C3I Parallel 
Benchmark Program. Even so, there should be a great deal of synergy between our proposed 
real-time embedded benchmarking effort and this program. In particular we will use the 
infrastructure being set up under the Rome Laboratory program to widely disseminate our real- 
time embedded benchmarking results. We are also very interested in this program's 
suggestions relating to the quantification of level of software development effort and other 
intangibles like "ease-of-use" and associated productivity of using tools as part of the software 
development process. Finally, the Rome Laboratory C3I Parallel Benchmark Suite will be a 
rich source of relevant benchmarking specifications. 

4.3 Hartstone 
Hartstone (Weiderman and Kamenoff, 1992) is a benchmarking methodology designed to 
assess a system's real-time performance. This approach incrementally loads the combined 
hardware-software system and then assesses its ability to meet prescribed real-time constraints. 
In particular, the purpose of a Hartstone implementation is to measure the breakdown point of a 
real-time system. This is the point when the computational and scheduling load causes a hard 
deadline to be missed. The Hartstone benchmark series is a collection of synthetic benchmarks 
that include scenarios with periodic tasks (harmonic and nonharmonic) and aperiodic tasks with 
hard or soft deadlines. The complexity of these benchmarks place them at the kernel-level in the 
PARKBENCH classification. 

The Hartstone Distributed Benchmark (Kamenoff and Weiderman, 1991) extends the 
Hartstone methodology to real-time distributed systems. In this setting there is a set of tasks 
located on different physical nodes that communicate via messages. Both the tasks and the 
messages between them have real time constraints. As in the uniprocessor case, the 
methodology increases the workload on the system until a real-time breakdown occurs. In this 
case, however, communication and task scheduling is considered both separately and in 
combination. We have done some preliminary experiments with the Distributed Hartstone 
methodology on the Intel Paragon [Brown, et al., 1994]. As real-time system services become 
available for massively parallel processors, we will adopt these ideas and develop a series of 
Hartstone MPP Benchmarks to assess the capacity of this system software. 

4.4 Transactions Processing Performance Council Benchmarks 
The major commercial applications of scalable massively parallel processors is to intensive 
database applications such as on-line transactions processing (OLTP) and off-line decision 
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support. The use of MPPs for these tasks is becoming increasingly common in commercial 
"command and control" applications. The notion of leveraging these trends and incorporating 
these same functions into scalable MPPs involved in real-time embedded applications such as 
military command and control systems is just beginning to be explored. As these ideas take 
hold there will be an increasing need to expand the scope of the real-time, embedded 
benchmarking effort to include such database intensive processing. 

The Transactions Processing Performance Council was founded in 1988 with a goal to define 
domain specific benchmarks for transaction processing and database systems. It is interesting 
to note that the benchmark specifications contain many of the same ideas being proposed here 
for real-time processing; for instance, the separation of the system under test and the driver 
system (test bench) and the requirement to assess performance in the "steady state." We will 
adopt their standard methodology and benchmarks (denoted by TCP-A, TCP-B, and TCP-C) 
to the emerging real-time embedded database applications. A major difference is expected to be 
the time scales at which the processing must be completed. For instance, decision support 
queries will need to be completed in cycle times on the order of minutes, or even seconds, as 
opposed to hours. 

4.5 Other Focused Efforts 
There are a variety of programs that are focusing on various real-time embedded applications 
from which it should be possible to extract kernels and compact application benchmarks. 
Examples involving STAP include the DARPA/Lincoln Laboratory "Mountain Top" and the 
Rome Laboratory MultiChannel Airborne Radar Measurement (MCARM) programs. We have 
extracted a real-time STAP benchmark specification from previous off-line analysis of 
MCARM data. Examples involving SAR and automatic target recognition include efforts 
involving the Lincoln Laboratory Advanced Detection Technology Sensor and the Sandia 
National Laboratory's SAR and automatic target recognition test bed. 

A particularly compelling future use of scalable high performance computers will be in 
applications that blur the distinction between signal processing and data processing, as in recent 
"smart" signal processing approaches. An example of this is a decision-directed SAR image 
formation procedure called planar subarray processing (PSAP) [Perry, et al., 1994] currently 
under development as part of DARPA/STO's "Clipping Service" SAR program. 

Finally, there is also a need to coordinate with other complementary research efforts. For 
example, the ARPA-sponsored Rapid Prototyping of Application Specific Signal Processors 
(RASSP) program is focusing on improving the process of developing application-specific 
processors for many of these same real-time embedded applications. The RASSP program has 
a number of application demonstrations underway that could provide benchmarks to be 
implemented with general-purpose massively parallel processors. Our initial implementation on 
the Intel Paragon [Brown, et al., 1995a, b] of the RASSP SAR benchmark [Zuerndoerfer and 
Shaw, 1994] is a good example of this. Also, the tools that the RASSP program is developing 
at the front end of the design process can be applied to the parallel software development 
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problem, and these tools need to be compared to similar tools that are being developed by the 
high performance computing community. 
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Section 5 

Scalability Comparisons 

In this section we discuss previous approaches to scalability developed by the scientific 
computing community and contrast them to our notion of scalability for real-time embedded 
parallel processing. Traditionally parallel processing for scientific applications has used 
multiple processors to reduce the amount of time (latency) required to execute an algorithm for 
a single problem instance. In real-time applications of parallel processing, the goal is to meet 
specified real-time requirements. For example, in signal processing applications, there are 
usually both period and latency requirements involving multiple problem instances. In Section 
2.5, we contrasted various "efficiency" measures relevant to these two domains. This section 
examines scalability measures in a similar way. We first review a number of scalability 
approaches that have been applied in scientific computing. 

The progression of reduced execution times as additional processors are added is often 
regarded as a key descriptor of how effective parallel processing is for the particular 
application. A system's scalability refers to the rate of reduction of run times as the number of 
processors is increased. The notion of "speed up", S(n) in the notation of Section 2.5, has been 
used to compare the run time of various sized systems. For a fixed problem size, there is a limit 
to the speed up that can be obtained with some applications bottoming out quickly because they 
contain large proportions of unavoidably sequential operation (Amdahl's law). As a result, 
there have been alternative measures of scalability proposed that describe the behavior of the 
system as both the problem size and the number of processors are increased [Gustafson, 
1988]. 

In the fixed-time approach [Gustafson, et al., 1990,1991], an algorithm-machine combination 
is evaluated in terms of how much work it can perform in a fixed amount of time. In the 
scalable language-independent Ames Laboratory one-minute measurement (SLALOM) 
benchmark, the execution time is limited to one minute. The problem size grows with system 
size, and the largest problem size that can be accommodated is limited by the prescribed 
execution time. This problem size increase varies with algorithms, machines, and their 
combination, and this rate of growth provides a quantitative measurement of scalability. 

In the isospeed approach [Sun and Rover, 1994], an algorithm-machine combination is 
scalable if the achieved average speed of the implementation (often expressed as flop/s-per- 
processor and computed over the duration of the run) on the given machine can remain constant 
with increasing numbers of processors, provided the problem size can be increased with 
system size. Again, the rate of growth of the problem size required to maintain a fixed average 
speed as the number of processor grows provides a quantitative measurement of scalability. 

In the isoefficiency approach [Grama, et al., 1993], an algorithm-machine combination is 
scalable if the efficiency (defined in this setting to be S(n)/n) on the given machine can remain 
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constant with increasing numbers of processors, provided the problem size can be increased 
with system size. Again, the rate of growth of the problem size required to maintain a fixed 
efficiency as the number of processor grows provides a quantitative measurement of 
scalability. 

The fixed time scalability approach is perhaps closest in spirit to what we are proposing for 
real-time embedded applications. We instead emphasize a dual notion: for a given problem 
size, determine the smallest machine size that is required to meet a prescribed real-time 
requirement (often including, for example, both period and latency constraints). As the 
problem size and potentially the real-time requirement are scaled, the rate of increase in this 
minimum system size is what we suggest be used to compare alternative solutions. 

The isospeed concept is somewhat relevant to the present context since maintaining constant 
average speed is related to the notion of achieving a fixed percentage of the peak processing 
rate (processing utilization) as the problem and machine sizes are increased. The notion of 
processing utilization defined in Section 2.5 was concerned with periodic situations. Pipelining 
or "round robin" are common parallel processing techniques used to maintain a constant period 
and processing utilization independent of problem size. However, the processing latency for 
any single instance increases with the depth of the pipeline or the amount of round robin 
replication, and so this solution would not satisfy the isospeed criterion as defined for latency. 

As it stands, the isoefficiency metric is less easily related to our current concerns. Maintaining a 
fixed average speed up appears to bear little relation to satisfying a prescribed timing 
requirement. In Section 2.5, a similar notion of efficiency was defined for periodic processing, 
and a connection was made between this measure of efficiency being near 1 and maintaining a 
constant level of processing utilization. There the focus was on a given n-processor machine 
and a fixed problem, and the minimum period that could be sustained needed to be determined. 

We have proposed an alternative benchmarking perspective that explicitly treats real-time 
requirements (periods, latency, responsiveness) when considering the scalability of a parallel 
processing solution for real-time embedded applications. Rather than focusing on increasing 
the machine size and then determining the problem size that is needed to accomplish some 
scalability criterion, our proposed approach is more "problem-centric." For a given problem, 
we determine the machine size required to meet a specified timing requirement, and then scale 
the problem complexity (including potentially the real-time requirements). For a given real-time 
implementation, the software development process might determine the period and latency 
satisfied as a function of the number of processors n. Although, such parametric studies are 
closer to the original motivation of parallel processing, the multiple problem instances found in 
periodic processing situations provide relief from Amdahl's law. As long as the real-time 
latency requirement allows for it, adequate processing utilization can often be maintained by 
processing parts of many problem instances simultaneously. 
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Section 6 

Conclusion 

There are a plethora of benchmarks associated with large-scale scientific computing and 
significant controversy surrounding their use and interpretations. Many current benchmarking 
efforts embrace the "big is better" mentality of large-scale scientific computing, which is not 
relevant to embedded applications, and ignore real-time requirements or the need to characterize 
performance variability. Irrelevant benchmarking will become an increasing problem as 
researchers less familiar with requirements of real-time embedded computing are drawn in by 
this new application area. There is a clear need for coordination across the embedded high 
performance computing field to standardize an appropriate benchmarking methodology for real- 
time embedded applications. 

This paper proposed a benchmarking methodology that treats functional and temporal 
performance on an equal footing and that compares solutions in terms of the minimal hardware 
required to meet fixed real-time specifications. The assessments are conducted using a software 
test bench that measures the steady-state real-time behavior. The design-to-specification 
methodology can be coupled with increasing problem complexity to produce meaningful real- 
time scalability assessments. Strict size, weight, and power requirements are overriding 
concerns in embedded computing, and the proposed benchmarking approach is designed to 
make relevant assessments in this regard. 

Three levels of benchmark complexity were considered. Low-level benchmarks are designed to 
narrowly focus on the performance of some crucial component of the parallel system. Kernel- 
level benchmarks provide useful parametric information on the computational and 
communication building blocks of subsequent real-time implementations. Finally, compact 
application benchmarks incorporate representative system behavior and are implemented 
according to the design-to-specification methodology described in this paper. Appendix A 
provides a template for a real-time compact application benchmark specification using the two- 
dimensional FFT as an example. Appendix B describes an associated kernel-level data 
remapping benchmark. 
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Appendix A 

RT_2DFFT: Real-Time Two-Dimensional FFT 
Benchmark Specification 

The RT_2DFFT benchmark is designed to assess the performance of a two-dimensional fast 
Fourier transform (FFT). The two-dimensional FFT is a kernel commonly used in synthetic 
aperture radar (SAR) processing, among other applications. In this benchmark, the two- 
dimensional FFT is treated as a compact application to illustrate the proposed real-time 
benchmarking methodology. The benchmark assesses the parallel processor's ability to deliver 
high sustained utilization on an FFT. It also assesses the performance impact of a "distributed 
corner turn" global communication operation (see Appendix B). This is particularly relevant as 
the problem size increases and more distributed processing resources are required to meet the 
real-time requirement (as in higher resolution and/or wider area SARs). Strict and loose latency 
requirements are both considered in the benchmark. The RT_2DFFT benchmark specification 
consists of a functional specification, a timing specification, a scalability study specification, 
and implementation guidelines. 

Notation: In the following the complex numbers are denoted by C. The set of vectors of size n 
with entries in a set A is denoted by A"; the set of two-dimensional arrays of size m x n is 
denoted by Am x n. For an array X = {Xy} in Am x n, the notation jc;t * denotes the zth row of X 
and x*j denotes they'th column of X 

Functional Specification: We assume the availability of an FFT algorithm, y = FFT(X, 
FFTsize), where x and y are complex vectors of size FFTsize and y is the discrete Fourier 
transform (DFT) of x. See for instance [Press, et al., 1986, page 381]. For n a positive integer, 
the RT_2DFFT benchmark applies the FFT to the rows of an n x n input matrix X to form the 
intermediate matrix Y. The output matrix Zis then formed by applying the FFT to the columns 
of Y. The functional specification of the RT_2DFFT benchmark is given in Figure A-l. Single 
precision floating point processing is assumed. 
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y = RT_2DFFT(X, n) 

Input: n a positive integer 
Input: X = {x^}eCnXn 

Auxiliary; Y = {yij}eCnXn 

Output: Z = {zö}€C"x" 

Algorithm: 
for ie{0, 1, ..., n-1}, y,* =FFT(xi»,n) 
for 7 e {0, 1, ..., n-1}, z.tj = FFT(y».,n) 

Figure A-l. The RT_2DFFT Benchmark Functional Specification 

Timing Specification: The timing specification of the RT_2DFFT benchmark is given in terms 
of a periodic sequence of input matrices Xh X2, X3,..., Xh ... Two requirements are typical in 
these periodic applications: the period is the time interval between successive input matrices 
and the latency is the length of time required to process a single instance X,-, measured as the 
interval of time between when the matrix X,- leaves the data source and the corresponding 
results arrive at the data sink. This benchmark fixes the period at 1 second and considers two 
separate latency cases: 

Case 1: period = latency = 1 second 
Case 2: period = 1 second, no constraint on latency 

The 1 second period for n = 1024 or 2048 corresponds roughly to the computational 
requirements of the SAR system described in [Zuerndoerfer and Shaw, 1994]. In the 
RT_2DFFT benchmark the timing specification is fixed for all problem sizes. 

Scalability Study Specification: The scalability study for the RT_2DFFT benchmark 
increases the size of the n x n input matrix, while the period and latency is kept fixed. The 
objective is to determine the minimum machine size that meets the real-time requirement. The 
values of n to be considered are: 256, 512,1024, 2048, 4096, 8192, and 16,384. Table A-l 
shows the computational throughput requirements expressed in Mflop/s. We assume an FFT of 
length n requires 5nlog2n floating point operations, so that the total number of floating point 
operations for the RT_2DFFT benchmark is 10n2log2« . This requirement is common to both 
latency cases and is based on the single period of 1 second. Table A-l also shows the memory 
requirements in megabytes (MB) to store one copy of the input matrix, assuming 8 bytes per 
element (single precision floating point complex). 
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Table A-l. Processing Rate and Memory Requirements 
for the RT 2DFPT Benchmark 

n Mflop/s MB 
256 5.2 .5 
512 23.6 2 

1,024 104.9 8 
2,048 461.4 32 
4,096 2,013.3 128 
8,196 8,724.2 512 
16,384 37,581.0 2,048 

Distributed Memory Implementation Guidelines 

1. The input matrix must be stored originally on a source node(s) in memory that is not directly 
associated with the processors that implement the RT_2DFFT function. The matrix must be 
stored in row major or column major form. 

2. When establishing timing performance the same matrix can be repeatedly input to the 
processors that implement the RT_2DFFT function (to avoid the need for disk I/O). 

3. The results must be output to a sink node(s) and stored in memory not directly associated 
with the processors that implement the RT_2DFFT function. The result matrix must be 
stored in row major or column major form. 

4. The source and sink nodes may be implemented on the same or different processing nodes. 

5. The processing latency for a problem instance is measured as follows. A time stamp ts is 
calculated at the data source right before the input data for this instance is sent from the 
source node. A second time stamp tc is calculated at the data sink right after the 
corresponding results are received by the sink node. The processing latency for this problem 
instance is then tc - ts. This requires a synchronized global clock if the source and sink are 
on physically separated nodes. Period measurements are calculated as the difference of 
successive values of tc corresponding to successive problem instances. Latency and period 
measurements can be calculated off-line from the time stamp data. Care must be taken that 
data collection does not cause any unintended disk I/O to occur during a run. 

6. In the case that the input matrix (and output matrix) does not fit in the memory of a single 
node, then multiple source and sink nodes are necessary. The time stamp ts of a problem 
instance should occur before any data is sent from the multiple sources. The processing of 
that instant is considered completed when all sink nodes have received all their results. 
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7. A benchmark run to establish valid timing performance should last for at least 15 minutes to 
account for any operating system dropout problems. 

8. The following information and statistics should be calculated for a single benchmark run 
(during a post processing stage): 

a. Histogram of period measurements. Maximum, average, and minimum period. The 
benchmark is considered valid only if the maximum period observed is less than or 
equal to the period specification: 1 second. This must be repeatable. 

b. Histogram of latency measurements. Maximum, average, and minimum latency. The 
benchmark is considered valid only if the maximum latency observed is less than or 
equal to the latency specification. This must be repeatable. 

c. Some small number of initial problem instances can be ignored to eliminate start-up 
anomalies, if present. If this is done, then the number of ignored instances should be 
stated. 

9. For each latency case and for each feasible problem size, the smallest machine that produces 
a valid benchmark result should be determined. Machine size is measured in terms of the 
number of processing nodes used, not including processing nodes used to implement the 
source and sink. The only exception to this rule is that any "excess" source and sink nodes 
beyond the minimum number that are required to store one copy of the input and output 
matrices should also be counted in the machine size. Standard commercial-off-the-shelf 
hardware and system software configurations should be used. If a machine supports 
multiple configurations (for example, different amounts of memory at the processing 
nodes), then these different configurations must be itemized and benchmarked separately. 

10. The maximum period measurement for a benchmark run is used to determine the sustained 
Mflop/s processing rate: 10n2log2« /(maximum period measurement). This value should be 
divided by the theoretical peak processing rate of the size machine used in the processing to 
determine the processing utilization percentage. 

11. The following scalability plots should be generated for each latency case: 

a. Minimum machine size as a function of problem size. 

b. Processing utilization percentage as a function of problem size. 
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Appendix B 

RT_CornerTurn: Real-Time Distributed Corner 
Turn Benchmark Specification 

The RT_CornerTurn benchmark is designed to assess the performance of the "distributed 
corner turn" global communication operation. It is a kernel-level benchmark designed to 
provided useful parametric information to support subsequent real-time implementations. 
Corner turning is the name given for transposing a matrix in some signal processing 
applications. To meet stringent real-time latency constraints the rows or columns of the 
matrices involved are often distributed across many processing nodes. 

The corner turn data redistribution operation usually consists of three phases as shown for the 
case of four processing nodes in Figure B-l. The rows of the matrix are assumed to be divided 
equally among the four processing nodes. First there are memory transposes or local "corner 
turns" at the nodes that take each node's portion of the matrix stored by rows, say, and restores 
it by columns. This is required if the information is to be packaged into large messages for 
more efficient transmission. The second phase corresponds to the data distribution phase 
shown in step 2 of Figure B-l. In this "all-to-all" communication step each node communicates 
some portion of its data to every other node. Finally, a second memory copy at the processing 
nodes is needed to unpack the messages and to store the result by columns for subsequent 
processing. 

1/4 rows 1/4 rows 1/4 rows 1/4 rows 

Stepl 
form messages 

L   i   i   J 
Tr Tr Tr Tr 

Step 2 
data 

redistribution 

Step 3 
unpack messages H   H   H Tr 
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Figure B-l. Corner Turning 
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There are two versions of the RT_CornerTurn benchmark: "in place" and "pipelined." In the 
"in place" version, steps 1,2, and 3 take place on the same group of AT processing nodes. This 
corresponds to the case that the processing and corner turn occur in place on a single set of 
nodes that process both the rows and columns. In the "pipelined" version, step 1 occurs on a 
group of "source" nodes, the step 2 data redistribution occurs over the network connecting the 
source nodes and a group of "sink" nodes, and step 3 occurs on the sink nodes. This 
corresponds to the case that the source nodes process the rows of the matrix and the sink nodes 
process the columns. 

For each value of n and N, the corner turn function should be individually timed 1000 times. 
There are two approaches for obtaining the time for a single corner turn iteration: (1) timing at a 
single processing node and (2) taking the maximum of all processing node times. For 
simplicity we initially consider option 1. A barrier synchronization is implemented before each 
corner turn iteration to separate the communications involved for each iteration. Since the 
variability of the results are of interest for real-time applications, a histogram should be 
computed from these 1000 measurements along with the minimum, average, and maximum 
times. Some initial number of iterations can be added to account for any start up anomalies 
before the 1000 timings are computed. 

Sample C code based on the Message Passing Interface (MPI) is given below. The variable 
comm_only can be set to a nonzero value if only the data redistribution portion is to be timed. 

for (i = 0; i < ITER; i++) 
{ 
MPI_Barrier (MPI_COMM_WORLD); 
t = get_the_time (); 

if (comm_only == 0) 
stepl_transpose (buffA, buffB); 

status = MPl_Alltoall (send_buff, chunk_size, 
MPI_CHAR,recv_buff, chunk_size, 
MPI_CHAR,MPI_COMM_WORLD); 

if (comm_only == 0) 
step3_reorder (recv_buff, send_buff); 

delta[i] = (double)((get_the_time 0 - t)) / 
UNITS_PER_SEC; 

} 
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Scalability Study Specification 

The scalability study for the RT_CornerTurn benchmark increases the number of processing 
nodes AT while the n x n input matrix size is kept fixed. Separate studies are performed for 
individual values of n to be considered: 256,512,1024, 2048, 4096, 8192, and 16,384. In 
this case the amount of work involved in step 1 and step 3 and the message size in step 2 
decrease as the machine size is increased. However the number of messages involved in step 2 
increases, and the time to perform this message passing will eventually dominate. 

The RT_CornerTurn benchmark assumes that annxn input matrix of complex numbers is 
stored "by rows" as evenly as possible on N processors. The input parameter n is fixed and the 
number of processors N is varied over a range of values for each benchmark run. The lower 
bound on N is the number of nodes required to store the matrix and any buffers used. The 
upper bound on N is determined by the machine size (or the input matrix size). The corner turn 
operation remaps the data and stores the matrix "by columns" as evenly as possible. No 
particular approach to the coiner turn is specified. In particular multi-stage procedures are 
allowed. 

Usually group communication benchmarks of this sort assume a fixed message size and let the 
machine size increase or, for a fixed machine size, let the message size increase. In both cases 
the underlying matrix size is scaled up as part of the study. Scalability approaches that scale the 
problem size are not as relevant for the real-time applications under consideration. In these real- 
time applications data-parallel processing is usually employed across the rows and columns of 
a fixed matrix to meet prescribed real-time period and latency constraints. What needs to be 
determined is the overhead contributed by the distributed corner turn operation as a function of 
machine size. This information, along with the processing rates sustainable on the row and 
column processing can be used to size a real-time implementation. Characterizing the variability 
is important also to allow enough slack in the implementation so that real-time requirements are 
not violated. 
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MISSION 

OF 

ROMELABORA TORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


