
VOLUME I 
PERFORMANCE PHASE 

CHAPTER 11 
CRUISE PERFORMANCE THEORY 

.CVT&D4 
XjnCQTJAimB^0™ 

19970116 081 

SEPTEMBER 1993 

USAF TEST PILOT SCHOOL 
EDWARDS AFB, CA 



TABLE OF CONTENTS 

Page No. 

11.1 OVERVIEW AND BASIC ASSUMPTIONS     1 

11.2 LIFT AND DRAG FUNCTIONAL RELATIONSHIPS        2 

11.3 ENGINE PARAMETER FUNCTIONAL RELATIONSHIPS     6 

11.4 ENGINE THRUST MODEL     10 

11.5 ENGINE-AHIPLANE FUNCTIONAL COMBINATIONS       12 

11.6 ENDURANCE, JET AHtCRAFT     15 

11.7 RANGE, JET AIRCRAFT        18 

11.8 THE CRUISE CLIMB     22 

11.9 DRAG POLAR DETERMINATION     30 

11.10 VARIABLE GEOMETRY AND DUAL ROTOR ENGINES     31 

11.11 PROPELLER-DRIVEN AIRCRAFT CRUISE THEORY        32 

11.12 PROPELLER-DRIVEN AIRCRAFT ENDURANCE AND 
RANGE     40 

11.13 CRUISE PERFORMANCE TESTING     45 



CHAPTER 11, CRUISE PERFORMANCE THEORY 11.1 

11.1     OVERVIEW AND BASIC ASSUMPTIONS 

This chapter examines the theory and flight tests required to determine cruise data 

presented in aircraft flight manuals. Aircraft cruise performance is dependent upon 

the combination of airplane aerodynamics and engine characteristics. Basic 

aerodynamic and engine theory applied to cruise testing are covered. Aerodynamic 

forces acting on the aircraft, i.e., lift and drag, and engine thrust and fuel flow are 
presented as functions of easily measured parameters. Engine and aerodynamic 
functions are then combined to complete the analysis. The end result provides a 

method by which engine and airplane cruise performance characteristics may be 

determined with minimum flight testing. The data obtained from the flight tests are 

used to determine cruise performance charts and tables presented in the flight 
manual, and to determine cruise specification compliance and military utility. 

The basic assumption of cruise theory is that during cruise the aircraft maintains 

level, unaccelerated flight. When the aircraft is in level, unaccelerated flight, the sum 
of the forces acting upon it equals zero. Assuming the thrust acts along the direction 

of flight (or differences in direction of thrust due to engine installation angle and 

aircraft angle of attack are negligible), the lift force, L, is equal to the aircraft weight, 

W, and the net thrust, Fn, is equal to the aircraft drag, D, as shown in Figure 11.1. 

F •* ► o 

Figure 11.1 Level Unaccelerated Flight 
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11.2    LIFT AND DRAG FUNCTIONAL RELATIONSHIPS 

The first step in the development of a method to test and analyze cruise performance 

is to use the aerodynamic lift and drag equations to derive relationships for lift 

coefficient, CL, and drag coefficient, Cp, as functions of cruise parameters (aircraft 

gross weight, pressure altitude, and speed). These, in conjunction with flight test data 

and the engine thrust model, are used to plot drag polars. 

lift can be written as 

L   =      Pa Vt S CL (11.1) 
2 

In unaccelerated, level flight, lift equals weight, therefore 

L   =    W   =     Pa V*S °L (11.2) 
2 

Recalling the definition of Mach number, M, 

M   =   X* (11.3) 

Therefore 

From the Perfect Gas law 

we know 

V2   =   M2 a2 (11.4) 

Pa    =     9a R Ta 

£*     =    R Ta (11.5) 
Pa 

Substituting Equation 11.5 into the definition of speed of sound we obtain 

a   =   ^Y R Ta   = A   J*    V (11.6) 
N p- 
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or 

11.3 

a2   =   Y   — (11.7) 

Now Equation 11.4 becomes 

vl M2 a2   =   M2   V    -2 (11.8) 

Substituting this result into Equation 11.2 we obtain 

'2  — -    --     ' J>N 

Pa) 
W   = 

=   pavj scL   =   PascL  ( 3Y .. 

or 

5CrM2Y-Pa tf    =      L I     a (11.9) 

Multiplying Equation 11.9 by      SL, we obtain 

W   = 
SCLM

2yPaPasL 

2P0 *SL 

(11.10) 

s a By definition,   Ö = —— ; therefore, Equation 11.10 becomes 
• aSL 

W    = 
S CL M

2 i h Pt aSL (11.11) 

Solving Equation 11.11 for the lift coefficient 

CL   = 
2W 

Y Ö PasL M2 S 
ÜL 

Y Pa5£ W2 5 

For a given aircraft and standard sea level conditions, Y,  
paSL, and S are constants 
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Substituting for the values of y and PSL 

C    = ("SJ (11.12) 
L 1481 M2 S 

This shows that 

Cr     =     f Ij,   ^ (11.13) -L 

From equation 11.12, lift coefficients can be easily determined for stabilized points 

flown at known values of W/8 and M. 

Drag can be written as 

D   = Pa vt S CD (11.14) 

By analyzing this equation as we did the lift equation, we obtain 

D 
c    = 6 (11.15) 

D 1481 M2 S 

From the unaccelerated, level flight assumption, thrust equals drag. Therefore 

R  =  ER (11.16) 
Ö 5 

and 

F /Ö 
CD   =     n'\ (11.17) D 1481 M2 S 

The contractor-provided engine thrust model gives Fn as a function of an appropriate 

engine parameter, such as engine speed, engine pressure ratio, or throttle angle, 

measured during stable points. Equation 11.17, coupled with the engine thrust model 

and flight test data from stable points, is used to compute drag coefficients. The 

coefficients of lift and drag from Equations 11.12 and 11.17 are plotted to construct 

the drag polar as shown in Figure 11.2. This drag polar represents the aerodynamic 
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characteristics of an aircraft and is extensively used to develop performance data 
presented in the flight manual. 

ü 

z 
UJ 
Ü 
UJ 
u. u. 
UJ 
O o 

DRAG (»EFFICIENT, CD 

Figure 11.2    Drag Polar 

Equation 11.15 can be rewritten 

D 
8 

=   f (CDtM) (11.18) 

The total drag coefficient, CD, is the sum of the parasite drag coefficient,   CDp , the 

induced drag coefficient, CDi> and the Mach drag coefficient, CDH .  Throughout the 

incompressible flow speed regime, where cruise range and endurance are optimized, 
Mach drag is negligible. Therefore, 

C-n w,    +  Cn (11.19) 

The parasite drag coefficient is constant for a given aircraft configuration.   The 
induced drag coefficient was defined in aerodynamic theory as 

r2 

%ARe 
(11.20) 
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For a given aircraft, the aspect ratio, AR, and Oswald's efficiency factor, e, are 

constants. Therefore, 

CDi   =   f (CL) (11.21) 

and, 

CD   =   CDp   +   CDi   =   f(CL) (11.22) 

Substituting CL = f (W/5, M) from Equation 11.13 into Equation 11.22 

CD   =   t\$.^ (11.23) 

From Equations 11.17 and 11.23 

11.3     ENGINE PARAMETER FUNCTIONAL RELATIONSHIPS 

The objective of cruise testing is to determine the fuel flow for any set of 
unaccelerated, level cruise flight conditions. Functional relationships between fuel 
flow, flight condition (speed and altitude), and some easily measured engine 

parameter (engine speed, for example), will next be derived. That engine parameter, 

in turn, will be used with a known engine thrust model to determine thrust, and 

therefore drag, at each set of flight conditions and measured fuel flows. 

Relationships for engine parameters, i.e., thrust, fuel flow, and engine speed, can be 

developed using the Buckingham rc   technique of dimensional analysis. 

The variables which affect thrust include true airspeed, ambient temperature, ambient 

pressure, engine speed, nozzle area, viscosity, and engine component efficiencies. 

Thus, we can write 

Fa    =    f    (Vt, Ta, Pa, N, A, |1, t]I# t]c, T\B, tlt, TlJ 

Since the component efficiencies are primarily functions of Vt, Ta, Pa, N, and A, and 

u is primarily a function of Ta and Pa , we can simplify the above equation and 

express thrust as a function of its prime variables 
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Fn    =    f    (Vtl   Ta,  Pa,  N,  A) (11.25) 

This relationship consists of n = 6 variables, which can each be expressed in terms of 
k = 3 fundamental dimensions mass, length, and time, as shown in Table 11.1. 

Variable Units Dimensions 

net thrust, Fn lbf mlf2 

fuel flow, wf lbf/sec mit"3 

true airspeed, Vt ft/sec it"1 

ambient temperature, Ta °K lV 

ambient pressure, Pa lbf/ft2 ml-V2 

engine speed, N rad/sec f1 

nozzle area, A ft2 l2 

TABLE 11.1 PBIME VARIABLES AND THEIR DIMENSIONS 

Buckingham's % theorem states that we can express these variables in terms of    n - 
k = 3 independent non-dimensional parameters. 

A linear algebraic analysis of the dimensions associated with equation 11.25 follows: 

If we choose 3 non-dimensional parameters %lf %2, 7t3 such that 

*i = p? T? A*> Fa 

tt2 = P*1 T*^ Ab* N 

*3 =Pa
Cl T? Ac> Vt 

then replacing the variables with their fundamental dimensions of mass, length, and 
time, and setting the units of each non-dimensional parameter equal to one, in the 

form m°l°t0 
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n1    :      [jnl-lt-2]ai [J2t"2]a2 [l2]*3 [mit'2]    =    [m°l°t0] 

7C' [mi-it-2]1* [J2t"2]^  [l2]* [t"1] =    [m0l°t°] 

re3    :      [ml-if2]^ [l2t~2]C2  [12]C3 [If1]      =    [m0l0t°] 

Since mass, length, and time are independent dimensions, we can equate exponents. 
For the it1 equation: 

m +   1    =   0 

I    :      -ax   +   2a2   +   2a3   +   1    =   0 

Solving the three equations for the three unknowns alf a^ a3 

a1   =   -1,        a2   =   0,        a3   =   -1 

and therefore 

1   T°       2-1 7CX     =    P/  Ta
u    A"1 Fn PaA 

A similar analysis for bx, b2, b3 and q , Cg, C3 from the 1% and Tig equations shows 

*2  = Pa  T;
1/2

A^
2
N =  ^Lv^ 

/5 

TC3  = pa°  r;1/2 A° vt = 
v. 

Therefore, we can rewrite equation 11.25 in terms of the three non-dimensional 
parameters 7^ , % , TC3 

JL-    =    f 
Pa A 

Nyß Vt (11.26) 
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Since nozzle area is approximately constant at cruise power settings, we can eliminate 

A from equation 11.26. From equation 11.3, M = Vt / a. As shown in equation 11.6 

ä     =     f{yfTa) 

Therefore 

M   =    f 

Also, since 8 is a function only of Pa, and 9 is a function only of Ta , we can rewrite 
equation 11.26 in the dimensional form 

^    =    f   (—, M\ (11.27) 

This functional relationship states that the corrected thrust parameter (FJS) is a 

function of the Mach and the corrected engine speed parameter (W/y^B). 

A relationship for fuel flow similar to equation 11.27 can be obtained by a 

Buckingham % analysis of the variables which affect fuel flow 

wf   =   f   (Vt,  Ta, Pa, N, A) (11.25) 

to arrive at a functional relationship for the corrected fuel flow 

*' - tU.A 
6y/6 \JB 

(11.29) 

These functional relationships between corrected thrust, corrected fuel flow, corrected 
engine speed, and Mach number allow us to combine the six-variable equations for 

thrust and fuel flow into simpler, three-variable equations. These equations easily 
account for variations in temperature and pressure, are applicable throughout the 

cruise envelope, and will more readily integrate with the lift and drag functional 
relationships developed in the previous section. They are also of the form in which 

an engine thrust model, explained in the next section, is provided. 
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11.4    ENGINE THRUST MODEL 

Accurate thrust data can be obtained by flight testing an aircraft and measuring the 
thrust at various airspeeds, altitudes, temperatures and power settings. In-flight 
measurement of thrust data is desirable, but aircraft engines frequently are not 
adequately instrumented to provide all the engine parameters necessary to obtain 
thrust. The ground static test is a cheaper and more frequently used method to obtain 
thrust data. Figure 11.3 is a plot of net thrust versus Mach for an engine at 100% 
RPM. The dotted lines represent specific fuel consumption, C; the solid lines 
represent altitude. Figure 11.4 is a plot of net thrust versus Mach number for the 
same engine at 95% RPM. 

Note the thrust variations between the 100% and 95% RPM plots. Many plots similar 
to Figure 11.3 and 11.4 are necessary to completely describe the thrust characteristics 
of the engine throughout the Mach and altitude range required. Data can be 
crossplotted to obtain Figure 11.5, which is a plot of engine thrust at all altitudes and 
Mach. 

Note that these data are presented in the form of the functional relationships 
developed earlier 

=    f   {-?L,M\ (11.27) 
Fn     _     ^   (_N 

ye 

(JL WÄ.    =   f   |_£L, M| (11.29) 
6v/e \,/B 

The engine manufacturer normally supplies this thrust model in the form of an 
engine-airframe thrust deck. With this model, the aircraft lift and drag characteristics 
can be determined during flight testing. Both the engine model and the derived drag 
polars are then used to correct perfomance flight test data and to predict overall 
aircraft performance characteristics. 
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MACH 

Figure 11.3 Engine Thrust Curve, 100% RPM 

u.     20,000 — 

(C 

ti     1OJ00O 

MACH 

Figure 11.4 Engine Thrust Curve, 95% RPM 
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M INCREASING 

CORRECTED RPM.N \-R 

Figure 11.5 Corrected Engine Thrust Curve 

11.5    ENGINE-AIRPLANE FUNCTIONAL COMBINATIONS 

In previous paragraphs the following aircraft and engine performance relationships 
were shown. 

f -' (11 (11.24) 

4    ■    f\^^ (11.27) 

w, f 

by/Q 
=      f ÜH (11.29) 

In this paragraph these relationships will be combined. The thrust model in 
conjunction with the drag polar are used to determine all the aircraft's performance 
characteristics. 
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In steady flight, thrust equals drag. Therefore, Equation 11.27 can be written 

Substituting this result for D/8 into Equation 11.24, we obtain 

A further reduction produces 

M   -   f   14.    JL\ (11.30) 

The functional relationship shown in Equation 11.30 is extremely important and leads 
directly to a method in which we can flight test an aircraft to obtain the cruise 

performance data presented in the flight manual. It is the basis for the "Speed Power 

Flight Test Technique." 

One method to solve this functional relationship is to fly a constant W/8 and vary M, 

obtaining u/JQ required. The test pilot preplans what pressure altitude, 8, he should 

fly for each fuel weight in order to maintain a constant W/8. While flying a constant 
W/8 profile and stabilizing at various Mach numbers, the test pilot records indicated 

airspeed, engine speed, temperature, altitude, and fuel quantity at start of the time 
interval, fuel quantity at end of the time interval, and the time interval. Data 
obtained in this flight test can be plotted in many different forms. Flight test data 
obtained from speed power tests are directly used to plot the functional relationship 
given in Equation 11.24 as shown in Figure 11.6 

T   -  MlH (11-24) 
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3 
ff 
X 

cc 

8 

INCREASING 

MACH NUMBER 

Figure 11.6   Corrected Tbrust 

Substituting Equation 11.30 into Equation 11.29 we obtain 

wf 

Ö i/B 
=   f I N    jf (11.31) 

Flight test data obtained from speed power tests are directly used to plot this 
functional relationship as shown in Figure 11.7. Parts (a) and (b) of Figure 11.7 
are for different engine/airframe combinations; thus they are considerably different. 

J«5 

UJ 

E 
S 

W  INCREASING 
d 

UJ 
3 

UJ 
CC 

.W. INCREASING 
6 

CORRECTEDRPM.N/V5 CORRECTCDRPM, N/Ve 

Figure 11.7 Corrected Fuel Flow 
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11.6    ENDURANCE , JET AIRCRAFT 

Endurance , E, is defined as 

E   =   f   dt (11.32) 

Fuel flow , wf, can be defined as the time rate of change of aircraft gross weight 

dw    lb 
dt    hi 

wf   =   -   J£2    4^ (11.33) 

The negative sign indicates the gross weight decreases with time. 

Turbojet specific fuel consumption, C, is defined as 

C   =    -^ (11.34) 

Therefore 

wf   =    CFB (11.35) 

Substituting Equation 11.33 into Equation 11.35 for wf 

-    dW   = 

dt 

and therefore 

dt   -    -    ^ (11.36) 

Substituting Equation 11.36 into Equation 11.32 for dt and integrating from an initial 

gross weight, Wu to a final gross weight, Wf, yields 

E =       r
w*   dw 

Multiplying by W/W 

CFa 

E   = |  f   -d^L   JÜ" 
CFn     W 
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Reversing the limits of integration to change the sign yields 

'»i     dW     W f"1 

CFn     W 

In unaccelerated, level flight, Fn = DandL = W. Therefore, 

F =   twi dW IW\ _  Cwi   1 IL\   dW 
iwt   CD\W) ~ iwf    C \D)    W 

Assuming L/D and specific fuel consumption are constant 

-(i)(i)-iHi)BK (11.37) 

Equation 11.37 illustrates that in order to obtain maximum endurance at a particular 

altitude, the jet powered aircraft must fly at a speed where CyCo is maximum. The 

drag coefficient equation must be examined to determine where this speed occurs. 

C2 

°D   =   °D*   +    % ARe 

Replacing  ——    by the constant K 
1t AR G 

CD   =    CDp   +    K   Cl 

Dividing both sides of the equation by CL yields 

Cn C„     +   KC} 'D      _ ßj 

Differentiating with respect to CL and equating the result to zero 

KCl   =   CDp 

Therefore 

Cn,    =    CD_ (11.38) 
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The second derivative of CD / CL with respect to CL is positive; therefore, (VCL is a 

minimum when C^ = C^ . Therefore, CL/CD maximum occurs where induced drag 

equal parasite drag. From Equations 11.37 and 11.38 it is apparent that maximum 

endurance can be obtained by flying at a speed where CL/CD or L/D is maximum. This 
is shown in Figure 11.8. 

TRUE AIRSPEED,^ 

Figure 11.8 Drag or Net Thrust Required 

Equation 11.37 appears to indicate that a jet powered aircraft could loiter equally well 

at all altitudes, provided the engine and intake duct efficiency did not change with 
altitude and specific fuel consumption, C, remained constant. 

In practice, this is not a true statement, because specific fuel consumption is 
dependent on thrust developed, internal component efficiencies, ambient air 

temperature, true airspeed, and ambient air pressure, and may change appreciably 
with increased altitude. As altitude increases, higher engine speeds are required to 

maintain a true airspeed commensurate with the minimum drag point, and engine 

efficiency improves with an increase in RPM, so endurance will generally increase 
with an increase in altitude. 
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11.7    RANGE, «JET AIRCRAFT 

Range is denned as 

Substituting Equation 11.36 for dt into Equation 11.39 

CFB 

*--'•*-£ Jwt 

Multiplying by W/W 

R   =   -    IV 
in, 

dW      W 
W      CFn 

For unaccelerated, level flight, L = W, and Fn = D 

R = - r* v k i & w -   ["' v 1   k 
Jw, C    D 

Reversing the Hmits of integration to change the sign yields 

•*i    1    „   L     dw s =   r 1  v Jk   ™ 
iwf      C D      W 

R   =   f   dS   =   J   Vdt (11.39) 

dt   =   J&L (11.36) 

(11.40) 

This is the general range equation. In order to maximize range from Equation 11.40, 
we must maximize VL/D, minimize specific fuel consumption, and have a large fuel 

fraction Wj/Wf. 

Solving the lift equation for true airspeed 

Vt   - 
2L 

\?aCLS 
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For steady state flight, L = W 

?t   - 
2W 

"iPaCLS 

Substituting this result for Vt into Equation 11.40, 

,1/2 
R  =   fWl (    2W   1      1 k M 

Jwf    {pa CL S) C   D     W 

Since UD = CL/CD 

Simplifying 

R   = C«i   (      2W    )1/2 

iwf    { pa CL Sj 

1    CL   dw 
c cD   w 

iwf  {paSJ        C {   CD ) 
dw 

Wl/2 

Assuming a constant altitude, constant angle of attack profile, and constant specific 
fuel consumption, 

R   -   LiJ 
W2   1    C^   r*t 

c   c, r w-v* dw 
D     *"f 

Integrating, 

R   =   2 
2   V/2   1    Cl'* 

Pa 5, C     Cr 
^ -i/wa (11.41) 

Examination of this equation gives the following conclusions for maximum range: 

1. Increasing altitude (decreasing pa) will increase the range. 

2. Increasing altitude (decreasing C) will also increase the range, up to the 
altitude where optimum engine efficiency is reached. Above that point, specific fuel 
consumption begins to increase, reducing range. This effect overwhelms any further 
increase from decreasing air density. 
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3. The aircraft should be flown at a speed where C^/CD is 

maximum. 

The point where (V^/CD is a maximum should be examined. The drag coefficient is 

Thus 

CD   = CDp   +   KCt 

^1/2 ci/2 

cD CDp + KCl 

Differentiating with respect to CL and equating the result to zero: 

d        Q 
1/2 \ 

4CL\cD+KC2
Lj 

=  (CDp
+KCl)l/2C£1/2-cl/2(2KCL)  = 

(CDp
+KCl) 

so 

(q,p  +  jec|) i/2C£1/2   -  2ifc2/2   =   o 

Solving for CDp 

CD     =    3JCC2 (11.81) 

or 

CDp   =   3CDi (11.42) 

The second derivative of CL^/CD with respect to CL is negative. Therefore CL^/CD 

is maximum when   CDp = 3 CDi 

Cruise flight for maximum range conditions should be conducted so that the maximum 
number of miles can be flown with the minimum amount of fuel. To determine 
increment of range obtainable from each increment of fuel burned, we must define a 

new parameter. 
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Specific range, SR, is defined as 

Multiplying by dt/dt 

SR   =    ** dw 

dR 
dw 

dt   _    dR/dt 
dt         dw/dt 

11.21 

SR    =    -i^_    ^±    = 

(11.43) 

(NAMPP) (11.44) 

where NAMPP is nautical air miles per pound of fuel. 

Figure 11.9 is a classic drag, or thrust required, curve.   The vertical axis also 
corresponds to fuel flow. 

Ö    TRUE AIRSPEED, Vt 

Figure 11.9 Airspeed for Maximum Range 

It is apparent that to maximize specific range, the aircraft must be flown at the point 

where -r^, is maximized, which is the tangent point of a fine from the origin to the 
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drag curve. At this point, —y- is minimized. Since Faz 
= D, 

Substituting the drag equation for D 

V„ 
Pa vt CD s 

Solving the lift equation for Vt and substituting 

(11.45) 

Flying at this tangent point, minimum —^, results in maximizing C^/CD , and thus 
Vt 

maximizing specific range. 

11.8    THE CRUISE CLIMB 

It is well known that the specific range of a jet airplane increases with increasing 

altitude. The reason for this may be seen from an examination of Equation 11.41, 

which shows that range varies inversely as the square root of the density, so that as 

long as C, the specific fuel consumption, does not increase markedly, a continuous 

gain in range is experienced as altitude increases. 

Actually, up to the stratosphere, C tends to decrease for most engines, so that greater 

gains in range are obtained than would be found if C were assumed constant. 

Moreover, at low altitudes, inefficient part throttle operation further increases the 

obtainable C, producing an additional decrease in range. At high altitudes (above 

35,000 to 40,000 ft) C starts to increase so that present test data reveal a "leveling off' 

in range for stratospheric conditions. As airplanes fly higher, this leveling off should 

result in an optimum best range altitude for any given gross weight, above which, 

decreases in range will be encountered. 
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Because increases in altitude result in increases in specific range, it may be reasoned 
that a gradual climb should increase overall range, provided that the climb were made 
at close to the optimum aerodynamic speed for best range and close to the engine 
throttle setting for best thrust specific fuel consumption. This thinking leads at once 
to the concept of the cruise climb. 

The cruise climb amounts first to setting the airplane to fly at the optimum range 
Mach at a given value of W/8. Then, as fuel is used up and W decreases, allow a 
gradual climb so that the ratio of W/5 is kept constant as the Mach is also held 
constant. This amounts to flight at the optimum Mach for the selected W/5   value. 

Flight test has established that the cruise climb procedure results in improved range 
performance over that obtained by flight at constant altitude (varying W/8 and M). 
A plot of maximum specific range in nautical miles per pound of fuel as a function of 
gross weight and W/8 is shown in Figure 11.10. 
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(0 

'FINISH "START 
Figure 11.10 Comparison of Cruise Climb 

and Constant Altitude Flight 
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In practice, the cruise climb is accomplished by starting out at some value of W/5, and 

establishing the optimum Mach for that W/8. Given a schedule of weight versus 
altitude presented in some convenient form, the pilot then climbs the airplane so as 

to maintain a constant W/8 and M as the gross weight decreases. This means that 
he flies from Point (1) to (2) of Figure 11.10 with the net range being given by the 

area under the curve. 

In this same figure, flight at constant altitude is illustrated by the line between (1) 

and (3), with the increase in range of the cruise climb shown as the shaded area 

bounded by the lines 1-2, 2-3, 3-1. 

We have assumed that the fuel consumption data obtained in level flight will be 

adequate to describe conditions in the cruise climb even though the cruise climb does 

not represent level flight conditions. Experiments have demonstrated that this 
assumption is satisfactory, at least for present day airplanes, for the simple reason 
that the climb rates are quite small and produce negligible errors. Accordingly, cruise 

climb fuel consumption characteristics may legitimately be computed on the basis of 
data obtained during level flight runs. 

The maximum range profile is developed from specific range data obtained on speed 

power test flights. To develop the maximum range profile, an additional parameter 

needs to be defined. 

(11.46) 

Range factor is defined as 

RF   =    (SR) {ty 

Recalling that 

R   =    f    V   dt 

SR   =    -£ 

f             dt 

(11.39) 

(11.44) 

(11.33) 
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then 

R   =   -    f   SR   dW (11.47) 

Multiplying by W/W yields 

R   =   -   f(SR) (W   M 

and therefore, 

dw R   =    -    f   RF   12E (11.48) 
J w 

For a constant Mach, constant W/8 cruise chmb, if range factor can be proven to be 
constant, it will be easy to integrate the range equation, Equation 11.48. The 
following analysis will prove range factor is indeed a constant during a constant Mach, 
constant W/8 cruise climb. Remember Equation 11.30, the basis of the speed power 
flight test technique 

(W     N M   =   f      "     -ÜU (11.30) 

Therefore, 

JL-tfi.Jj ,11.49, 

The maximum range profile is flown at a constant W/6 and M. Therefore  NJQ 

is constant. As previously discussed, 

f N      w) VJ-    -   f  IJL,    «\ (11.31) 
ö   yß 

For a constant jy/ flj and W/8 , corrected fuel flow wf/ (8 v/fl)   is constant 

=   Kx (11.50) 
8v^ 

V 
Mach is defined  M   =   —-. Therefore 

a 
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Multiplying by 
TSL 

fla. 

Since 6 = T/TSL 

or 

Since Mach is constant 

Specific range is 

M   -    _^- 
flRTa 

M - -L_ fü] 

AT   =    -K,    —^ 

Substituting Equation 11.50 and 11.51 for Vt and irf yields 

SR   = 
iqÖVH 

or 

Vt    =    K3    y/B (11.51) 

SR   =    —E (11.44) 

<?*   =    -5 (11.52) 

Substituting Equation 11.52 into the range factor definition, R = (SR)(W), yields 
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W 
5 

RF   =   K4 -£ (11.53) 

Since W/5 is constant, range factor is constant and Equation 11.48 becomes 

*    -    -   fBFJ»   -    -   RFfM 

Integrating from initial gross weight (W;) to final gross weight (Wf), 

•"* dw R    =    -    RF r*t aw 

Reversing the limits of integration to change the sign 

R     =    RF     I"'      W 
Jwf       W 

Integrating 

R   =   RF  In   —i (11.54) 
wf 

Figure 11.11 shows specific range as a function of Mach for four different constant 
W/8 conditions, i = 1,2, 3,4. Associated with each (W/5\ is a maximum specific range 
and an optimum Mach where that maximum specific range is achieved. 
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MACH 

Figure 11.11 Specific Range 

From the speed power test data the range factor for each maximum specific range is 
computed using 

(11.55) SF,    =   SR, *i 

where W4 is the standard weight used to compute the particular W/8. These data are 
plotted versus W/8 as shown in Figure 11.12. Mach for each corresponding maximum 
specific range are also plotted. 
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u. 
cc 
of o 
< RF, 
u. 
UJ 
o z 
< 

MAX 

X u 
< 
2 

M OPT 

W/5oPT 

CORRECTED WEIGHT, W/«5 

Figure 11.12 Determination of 
Maximum Range Factor, 

Optimum Weight-to-Pressure Ratio, 
and Optimum Mach For Any Given Range Factor 

The maximum range of the aircraft is obtained by flying a constant Mach, constant 
W/8 cruise climb at the optimum W/8 and associated Mach from Figure 11.12. 

It is important to understand that Figure 11.12 is good for all altitudes, gross weights 

and associated W/8's. However, the range factor curve may have gross weight 
breakouts if the ratio of fuel weight to maximum gross weight is extremely large. The 
maximum range for any given W/8 can only be attained by flying the Mach number 

associated with the maximum specific range for the W/8 as shown in Figure 11.12. 
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11.9    DRAG POLAR DETERMINATION 

Another important outcome of the speed power flight test is the determination of the 

aircraft's drag polar. Recalling that 

Cr       =        ^5
0 (11.12) 

1481M25 

and 

C     = D/* =        Fn/h (11.15) 
D 1481M2S 1481Af25 

Knowing the test W/8 and M, CL can be calculated from Equation 11.12. 

From the functional relationship 

i -f {M- D (ii-49> 
N/ JQ can be determined. Using jy/ JQ and the functional relationship 

, M\ (11.27) 

CD can be calculated from Equation 11.15. 

The aircraft drag polar can be determined by plotting CL as a function of CD from the 

speed power flight test data. 

In summary, cruise performance of a jet aircraft is determined by using the speed 

power flight test method. The data can be analyzed to determine maximum specific 

range and endurance fuel flow and associated Mach numbers. Further analysis 

results in determination of the optimum W/8 and Mach number to fly to obtain the 

maximum range of the aircraft. 
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11.10  VARIABLE GEOMETRY AND DUAL ROTOR ENGINES 

Previous sections of this chapter were restricted to constant geometry, single rotor 

engines. In this section some of the complications encountered with variable geometry 

and dual rotor engines are analyzed. In defining the performance characteristics of 

a variable geometry engine, it is advantageous to directly measure thrust. If thrust 

is directly measured, then the following functional relationship is still valid 

-^    =    flbd,  ^\ (11.24) 

This relationship combined with the constant geometry engine analysis gives 

M   =    f   {",   JL] (11.30) 
I5      W 

If thrust is not directly measured, then the following equations must be used: 

For variable geometry 

*-'(f ■%■Ä) (11-56) 

For dual rotor 

M   =    f   IT,   —,   —I (11.57) 
V6'  VG'  VQJ 

where A is the ratio of the variable area to some reference area; Nj, N2 are the two 
rotor speeds of a dual rotor engine. Engine speeds in a dual rotor engine are 

physically more difficult to measure and are less directly a function of thrust output. 
However, engine pressure ratio, EPR, is a direct measure of the thrust output of the 
engine. EPR is defined 

PT 
EPR   =    _!£ (11.58) 

PT2 

PTig and -P^are the total pressures at the exhaust nozzle and the compressor face. 

When EPR is used, it replaces the jy/ J$ term used throughout this chapter. 
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11.11   PROPELLER-DRIVEN AIRCRAFT CRUISE THEORY 

The cruise performance of a propeller-driven aircraft can be determined from engine 
horsepower curves and cruise flight test data. The data reduction equations and 
constant altitude flight test technique will be briefly discussed in this section. 

Up to this point, only drag and thrust have been considered, but in the case of the 
propeller-driven aircraft, it is more convenient to consider the aircraft performance in 
terms of power. Power is defined as the time rate of doing work. 

rv,,,^,-   -    work   _    F d Power   =   ——.—   =   —— 
time t 

Since distance, d, divided by time, t, is true airspeed, Vt, power may be expressed 

Power   =   Fn Vt 

Horsepower, HP, is the unit of power most commonly used and is defined 

rrr> no    AAA     ft~lbf     _      c r- n     ft~lbf HP   =    33,000  :     =    550   
mm sec 

When the velocity is expressed in ft/sec, horsepower is expressed 

550 

Assuming unaccelerated, level flight (Fn = D), HP must be expressed as thrust 
horsepower required, THPr. 

THPZ   =    £J£ (11.59) 

The drag equation may be written 

D   =   CD   
Ha*       +    ±=  (11.60) 

p     2 pav;s%ARe 
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Substituting Equation 11.60 into Equation 11.59, 

THPr =    ™L  = Cn   
P*VlS - r       550 D'   1100 275paVr

t5llARe 

For unaccelerated, level flight, L = W, 

CD  9aVtS                         W2 

THPT =      Dp   a    t       +  *L  1 1100 275 paVtSn ARe 

V 
Substituting Vt=—£ 

Jo 

THPt -   C°>**VlS  ♦  *£  
1100o3/2 275 pa VeS%ARe 

Multiplying by   — 
PSL 

THP  =   c^P*P«^g + W
2
PSL^ 

r        1100o3/2p5L        275 papSLVeSTt AR e 

Since a = p,/pSL 

.  OyP-^ a  t ^ 
1100 Vö 275v/öpSLVe57tAi?e 

Multiplying both sides of the equation by ft} 

r3 C
DP PSL 

ve $ w2 

y/ÖTHPI =     Up   ^ + 
1100 275 pSLVeS% ARe 

Dividing both sides of the equation by W3'2, 

yf*THPx m cDp9sLvls + WU2 (11 6l) 

F/3/2 1100 tf3/2 275 pSLVeS% ARe 
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The W in Equation 11.61 is the test weight, Wt. Eliminating weight as a variable by 

multiplying both sides of Equation 11.61 by W8 
m (the standard weight), 

(11.Ü2) 

y[ÖTHPT  _   CDppSLS 

(C 1100 

13 

(C 
wi 

275 p SL 
V„ 

(C 
SicARe 

Let 

CDp 9SL S 
K,    = 1 1100 

*2      = 275 pSL S % AR e 

Substituting these constants into Equation 11.62, 

JÖTHPX    =    K 

(€ 
\   v° } 

3 
+ K,V7l 

W\ \      V*     1 w\ (11.63) 

To simplify Equation 11.63, substitute 

yfä THPZ 

Hi 
\3/2 (11.64) 

V. 
„VL/2 (HA (11.65) 

where Piw is power required, corrected to a standard weight, and Viw is equivalent 

airspeed corrected to a standard weight. 



CHAPTER 11, CRUISE PERFORMANCE THEORY 11.35 

Now equation 11.63 becomes 

Piw    ■    Kl      (ViJ3     + *2   »f 
Kl* 

(11.66) 

Figure 11.13 is a plot of the power required for level flight of a propeller driven 

aircraft at all altitudes, temperatures, and weights. These data can be obtained from 
level flight test data in conjunction with engine horsepower data. 

UJ Q. 

is 
? EC 

si 
(£ UJ 
DC £ 

o < a. EQUIVALENT AIRSPEED FOR 
STANDARD WEIGHT, V|w 

Figure 11.13 Power Required for Level Flight 

Figure 11.14 is a typical plot of propeller engine horsepower data. The Continental 

0-470-M engine data are presented in this figure. 

The constant altitude flight test technique is used to determine cruise data for the 
propeller-driven aircraft. Steady state points are flown at different airspeeds 

throughout the flight envelope. Airspeed, Vj, temperature, Tj, altitude, Hj, manifold 
pressure, engine speed, and fuel weight are recorded at each stabilized point. Brake 

horsepower, BHP, is determined from engine horsepower curves similar to Figure 
11.14 with the manifold pressure and engine speed recorded from each stable point. 



11.36 VOLUME I, PERFORMANCE PHASE 

z 
o 
< 
5 < > 

« 
■H 
O 
I- 
»- 
o 
ui 

ID 
LUS 
Oc« 
25 
<2 

OO 
U.Z 
et 

°-tu 
UJ c 

< -I 
o 
u. 
z < s 
Q z < 
e 
iu 
5 o 
e. 
u 
(19 
E 
o z 

J 
/ 

M
A

X
IM

U
M
 P

O
W

E
R

 
C

O
N

F
ID

E
N

T
IA

L
 M

O
T

O
R

S
 C

O
R

P
. 

E
N

O
IN

E
 M

O
O

E
L:
 0

-4
70

-M
 

P
R

O
P

.O
E

A
R

 R
A

TI
O

: 
I.

O
T

O
.I

 
C

O
M

P
R

E
IS

IO
N

 R
A

TI
O

: 
2.

0 
TO

 t
 

S
U

P
-O

N
'O

E
R

 O
E

A
R
 R

A
TI

O
: 

IM
P

E
LL

E
R

 D
IA

M
E

TE
R

 
F

U
E

L
M

E
T

E
R

IN
Q

: 
F

U
E

L
O

R
A

D
E

: 
»
l/
»
6

 
C

A
R

B
. A

IR
: 

D
A

TE
: 

2-
1B

-B
7 

E
N

O
. 

S
P

E
C

. 
N

O
.: 

   
   

   
  A

P
P

R
O

V
E

D
: 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

// *// ///( / 
' 

//// '/ // 
/ 

* / // 
// j/> '/• tu -\ 

AL // 1 fa 

'/f/* 
/ 

/ 
7 j ÖK 

/ 
'/ 25I \A /«   1 

rj 
M — 

d 
■X- 
z 
tu 

. K ■ 
3 
60 
so 
tu 

. EC . 
B. 

Q 
■ -1 ' 

O 
u. 
z < 

4 

SW/i/M€ili/ *.., 
1  

  
  

1  
  

  
1  

  
 1 

  
  

1 
T

A
N

D
A

R
D

 A
L

T
IT

U
D

E
 

E
M

P
E

R
A

T
U

R
E

*C
(T

,)
* 

L  
  

.1
. 

. 
1  

  
 l
  

  
 1 

  
  

1 

/  /.^L^H-^VT*yi'y^'v N 

/*' 
*   i >     i/     i/     .;      ijiti' 
/ \ K     y—Y—7     / N 

/ '/MJM/WWt 
/ "V 

• / ' 
/ .'='J / 1/ 1 / 7° 

A 7^ "/ / /\o/| y|    / CO H 
1 

oooec 
0O0ZC 
ooo te 
ooooe 
oooez 
OO08Z 
ooozz 
OOOSZ 
OOOSZ 
OOOfZ 
OOOEZ 
OOOZZ 
OOOIZ 

OOOOZ 

00061 

0O081 

OOOZl 

00O91 

OOOSl 

000» I. 

OOOCl 

OOOZl. 

OOOLL 

OOOOl 

0006 

0008 

OOOX 

0009 

OOOS 

OOO» 

OOOC 

oooz 

oooi 

13A3T 

p 
UI 
tu 
u. 
z 
tu o 
I- 

< 

60 z 
tu 
Q 

V3S 

•ssaad CJNV *<m3JL *ais iv HHMCW 

0. 
s 
UI 
I- 
s 
< 
UI 
UI 
E 
u. 
o 
z < 
£ 
0. c 
w 
in 
UI 
E 
0. 
o 
o 
u. 
Z    2 
<       IU 
=   £ 
S  s 
Q     o 

o   — 
o   l> 

z  o 
Z   u 
p > 

i   2 

(9 
X 
z 
UI e 
3 
CQ 
CO 
UI 
E a 
D 
-1 
o 
u. 
z < 

.5 

5 
UI < 
E X 

=> i 

S i 
£ i 
Z O 
m "■ > s 
5 5 
z «i 
£ 5 
^ ft 

<    o 
3     P 

z   2 

£ O «: >. u < 
3 B. 
< X 
» a 
E < 
O u 

. o 
<►'£ 
Sa u 

E    r k. <u 
X    * ui * 

* 5 x 

i PS 
"•   So * 
u   O b u 
Z    U -  E 
3   ug o 
x   z w * 
o r E - 
—     ^ ^» t- 

2 *  E K     rf     ^ 

-. * 
8 i 

u*2 III- t 
E O B 
E o  3 o < • 

o 

FIGURE 11.14 ENGINE HORSEPOWER CURVE 



CHAPTER 11, CRUISE PERFORMANCE THEORY 11.37 

Propeller efficiency, r\ , is defined 

THP 
BHP 

(11.67) 

The propeller efficiency is obtained from wind tunnel data. Propeller efficiencies 

normally vary from 0.50 at stall airspeed to 0.80 at cruising airspeed. Piw is calculated 

from the wind tunnel propeller efficiency, the BHP from the engine horsepower chart, 

test altitude, H;, test weight, Wt, and the standard weight, Ws. 

p. 
1W 

</Ö BHP 1\1 

W (11.68) 

Equivalent airspeed, Ve, is calculated with Vi} H i} and T;. V iw is calculated using 

W 
V. 

h 
W- 

vl/2 (11.69) 

Data are obtained at different airspeeds at constant altitudes throughout the flight 

envelope. Data scatter is reduced by plotting (Piw ) (Viw ) versus (Viw )
4 as in Figure 

11.15. A straight line can be drawn through the data points. 

M5 

<s 

(Viw)4 iw 
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Points are crossplotted from Figure 11.15 to obtain Figure 11.16, the BHP required 
for level flight. 

d? 

Figure 11.16 Power Required for Level Flight 

A drag polar can also be constructed from level flight cruise data.  From Equation 

11.59 

D   = 
{THPr)   (550) 

From Equation 11.64 

THPr   = °iw ( £ j 
yfö 
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Substituting for THPr 

D   = 

pA-wA   550 

Vty/a 

Since Ve = VtV/ö 

w* V3/2 

P±W \ wl)      55° (11.70) 

Solving the drag equation for the drag coefficient 

2D 
CD   ' 

9SL Ve2 S 

Substituting Equation 11.70 for D 

1100 Piw 

cD  - 
j-3    er 

3/2 

(11.71) 

9SL Ve  S 

From Equation 11.69 

ft 

,1/2 y 
- e 

or 

"t 
\3/2 y 3 

_        ve 
W*, V- 3 

Substituting this result into Equation 11.71 

1100 Piv 
CD   =    r-^TT (11.72) 

9SL S Vj 
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Solving the lift equation for the lift coefficient 

2L 
cL  - 

PSL VJ S 

For a level, unaccelerated flight L = W, or 

From Equation 11.69 

2 W 
CL =  1— (11.73) 

PSL Ve
2 S 

V2 w 
t v.2 

Substituting this result into Equation 11.73 

2  Wc 
'L CL   =     £_^T (11.74) 

PSL * VJ 

Using Equation 11.72 for CD and Equation 11.74 for Cu we can plot a drag 

polar, Figure 11.2, from level flight cruise data. 

11.12   PROPELLER-DRIVEN AIRCRAFT ENDURANCE AND 
RANGE 

For propeller-driven aircraft, we will define brake specific fuel consumption as the fuel 

flow per brake horsepower developed 

C   =    -   dW/dt (11.75) 
BHP 

The computation of both maximum endurance and maximum range airspeeds for a 

propeller driven aircraft can be simplified if the brake specific fuel consumption, C, 
and the propeller efficiency, T]p, are assumed constant. This is generally true at the 

speeds associated with maximum range and endurance. 
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11.12.1       RANGE 

Recalling that range is defined as 

R   =   f   ds   =    f   Vdt (11.39) 

Solving Equation 11.75 for dt 

dt   -   -        dW 

BHP   C 

Substituting this result into the range equation, Equation 11.39 

_   _    ,*,    VtdW 
Jw1    BHP   C 

From Equations 11.67 and 11.59 

BHP   =    -£££-    =     L_ (11.76) 
r\p 550 r\p 

Substituting for BHP, 

Cancelling Vt /Vt 

wf  Vp   550 vt dw 
R    —     — 

D Vt   C 

.'Wt    r\p   550    dW riff     1\p    3 

Jw< D~ 

Reversing the limits of integration to change the sign 

=    r«i  T|p   5 
hf D 

»i   tip   550    dW 
R    ~ 

Assuming brake specific fuel consumption and propeller efficiency to be constant 

R   =    "\p   550    rWi      dW 
L- v nf 

r"i     dw 
Jwf      D 
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Multiplying by W/W 

"~    rwi    W_ 

Jwt      D 

TiP   550     rWt     w dW 
R    =      ^—     I -^ 

For unaccelerated, level flight L = W, or 

J*ff     CD      W 

Tip   550     rw,     CL     dW 
xC      — _ 

Assuming a constant angle of attack, 

TiP   550   (CL)    r«±    dW (CA     r«±     dW 
\CD)   hf       W 

Integrating 

Tip   550 
R   =    -1£—  In   -^ (11.77) 

Equation 11.77 indicates that for maximum range: 

1. Fly where T|p / C is a maximum. 
2. Fly at CL/CD maximum. 

Note that the altitude does not appear in the range equation for a reciprocating 

engine. However, C will decrease with an increase in altitude, causing a 

corresponding increase in range. 

CL/CD maximum occurs when parasite drag equals induced drag. This occurs at the 

tangent to the Piw versus Viw curve as depicted in Figure 11.17. Therefore, the 

airspeed for maximum range is available from level flight performance data discussed 

in the range section. 



CHAPTER 11, CRUISE PERFORMANCE THEORY 11.43 

V MAX ENDURANCE V MAX RANGE 
V VIW 

Figure 11.17 Determination of Maximum Endurance and Maximum 
Range Airspeeds 

11.12.2       ENDURANCE 

For maximum endurance an aircraft should fly at an airspeed to minimize dW/dt. 
Assuming specific fuel consumption is constant, this airspeed occurs at minimum 

BHP. Assuming propeller efficiency is constant, the airspeed for maximum endurance 

occurs where Piw is minimum, as shown on Figure 11.17. Therefore, flight test results 
(Piw versus Viw ) provide the maximum endurance airspeed. 

Endurance is defined: 

E   = 
- / 

dt (11.32) 
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Solving Equation 11.75 for dt and substituting 

E   = 
■ "/ 

dW 
(BHP)     C 

Recalling that 

DVt 
BHP   = t 

550     Tip' 
(11.76) 

E   = ■ " f 
*t    rip 550 dW 

DVtC 

Since    D   = W 
L/D' 

E   = 
rwt    T)p 550    ,L\     dW 

Jvt VtC      \D)      W 

Solving the lift equation for true airspeed 

V   = 2W 
CL p S 

1/2 

Substituting 

E   = 
rfff    Tjp 550     / L\   ( CLPS)1 *     dW 

2W ) W 

Assuming brake specific horsepower and propeller efficiency are constant 

3/2 
=    _     T]p 550    CL

a"    ^p-g   rWf _&j_ 
C Cn 2        Jw<      &T3/2 

Integrating 
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E=   Tlf550    C£ 3/2 

v/2p5 1    _    1 (11.78) 

Equation 11.78 shows that maximum endurance should be achieved by flying at low 

altitude at a speed where C^/CD is maximized. The velocity for maximum 

endurance shown in Figure 11.17 occurs where induced drag equals three times 
parasite drag. The derivation is similar to the derivation of Equation 11.42. 

In conclusion, we fly stable points in a propeller-driven aircraft to obtain a power 

required for level flight curve and drag polar. The maximum endurance and 

maximum range airspeeds are obtained from the power required for level flight curve. 

11.13  CRUISE PERFORMANCE TESTING 

The speed power flight test technique is a common method used to obtain the cruise 
performance of an aircraft. This method allows determination of both maximum 

endurance and maximum range and considerably reduces the number of flight test 
sorties required. 

The speed power flight test involves gathering fuel flow data at various altitudes, 

gross weights, and airspeeds that sufficiently define the operating envelope of the 
aircraft. These data are generally presented as shown in Figure 11.18. 

•5 

J 

H 

.H 
M. 

J+* 

/ViAfvf   rJtf*ß£^ 

Figure 11.18 Standard Fuel Flow 
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Each of the curves depicted in Figure 11.18 represents one altitude and one gross 

weight and therefore one W/8. It is important to note that these curves do not 

represent all altitude and gross weight combinations that result in the particular W/8 

of the curve, but are restricted to one altitude and one gross weight. As an example, 

an aircraft weighing 100,000 lb at an altitude of 18,000 ft has the same W/8 as a 

200,000 lb aircraft at sea level. However, it should be obvious that the fuel flow at 

18,000 ft will be much less than that at sea level, resulting in a different fuel flow 

versus Mach curve. When the specific range is multiplied by the aircraft's weight, 

however, the range factor will be the same in both cases. 

Since it is not realistic to consider taking data at only one altitude and one gross 

weight due to fuel consumption, the data must be collected within a reasonable 

tolerance and then standardized to the altitude and gross weight of interest. As a 
rule, if the W/8 of the test is held within ± 2% of the standard W/8 and the altitude 

is within ± 2,000 ft of the standard altitude, this functional relationship will hold true. 

Recalling Equation 11.29 and Equation 11.30 from the dimensional analysis of the 

fuel flow parameter, we have 

V'frfMf'} Ö J$ 

With the data from the speed power flight test, this functional relationship can be 

determined and plotted as shown in Figure 11.19 
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si 

INCREASING 

MACH 

Figure 11.19 Corrected Fuel Flow 

This functional relationship states that for a given corrected RPM,  N/^/B> 

and corrected weight, W/5, there is only one corrected fuel flow  wf/bjd. 

If W/8 is held constant during the flight test, then 

Uv/&Lst ~ Uv^J standard 

for a given N/JQ   and therefore 

i*f)e    = 
Wf 

8 y/G)t 

(ö VB), 
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Since 

M   =    f (JL     *? 

for the measured N/fö and W/8, then Mj = M,. This is the method by which the 

standard fuel flow versus Mach graph is obtained. 

From the üf/b JB versus Mach plot, the maximum endurance airspeed can be 

determined for any given W/5 by picking the point of minimum fuel flow. This 
particular plot does not readily indicate the altitude effects and whether climbing will 
increase endurance (decrease fuel flow). However, maximum endurance is the point 
of minimum fuel flow, and the effect of climbing is evident from Figure 11.18, the fuel 
flow versus Mäch plot. 

Recalling the definition of specific range, 

SR   =    -^ (11.44) 

the maximum specific range for a given corrected weight to pressure ratio, W/5, can 
be calculated from the fuel flow versus Mach plot. It is the point of tangency of a line 
drawn from the origin as shown in Figure 11.20. 
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ft)A(-Pr     A>l^VM2£/^ 

Figure 11.20 Maximum Range Mach 

Since true airspeed is proportional to Mach number 

wf   ,     wf 1 
M    "     Vt SR 

From this equation it can be seen that maximum specific range occurs where wf/ M 

is a minimum. 

Specific range can be plotted from the fuel flow versus Mach data. A typical set of 
curves is shown in Figure 11.21. 
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MACH 

Figure 11.21 Specific Range Curves 

The same information obtained from the fuel flow versus Mach curves can also be 
obtained from the specific range versus Mach curves. 
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MAX END MAX RANGE 

MACH 

Figure 11.22 Specific Range, One Altitude 

Referring to Figure 11.22, it can be seen that maximum specific range occurs at the 
peak of the curve. Maximum endurance occurs at the tangency point of a line drawn 
from the origin, since 

SR 
M 

_     V*/ 
M wf 

From this relationship it can be seen that minimum fuel flow occurs where SR/M is 
maximized. 

Taking the peaks of the specific range curves (the points of maximum specific range) 
and multiplying by the standard weight, the range factor versus W/6 curve can be 

generated. This curve is good for all altitudes and all gross weights. 

RF   =    {SR) m (11.46) 
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RF 

M 

i 
i 

! 

I 
I 

! 
I 
i 

W/6 

W/6 

Figure 11.23 Range Factor, AU Altitudes and Weights 

From the peak of the range factor curve, the maximum range factor, and thus best 
range, can be determined, using Equation 11.54. 

XBEST **W ln Hi (11.54) 
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The altitude to fly to achieve best range is determined by finding 8 for the optimum 

W/8 and test W. By plotting maximum range Mach from the peaks of the specific 
range curves for each W/8, the Mach for best range can also be determined, as shown 
in Figure 11.23. 
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PROBLEMS 

11.1       Define and write symbols for: 

Weight-to-pressure ratio 

Specific range 

Corrected thrust parameter 

Corrected fuel flow parameter 

Corrected drag parameter 

Range factor 

Specific fuel consumption 

Corrected engine speed parameter 

11.2 The design lift coefficient of the T-38A for cruise is 0.28. If design optimum 

cruise Mach is 0.88 and the aircraft wing area is 170 ft2, estimate the optimum cruise 
weight-to-pressure ratio. 

11.3 For the T-38A design cruise condition in Problem 11.2, the T-38A parasite 

drag coefficient is 0.15, the aircraft efficiency factor is 0.79, and the aspect ratio is 
3.75. What is the initial corrected thrust parameter Fn/5 required for cruise? How 
does corrected thrust parameter change during cruise climb? 

HINT: 

■S = 1481 q, SM2 + n2 

ö D» lA81S%ÄRe\b)   M2 
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11.4       During a speed power test point at 360 kts, the fuel flow was 1090 lbs/hr. 

What is the specific range for this aircraft? 

11.5       An aircraft in-flight is attaining a specific range of 0.33 NAMPP at a gross 
weight of 14,000 lbs. What is its range factor? 

11.6 How far will the aircraft in Problem 11.5 cruise on 4,000 lbs of fuel at the 

same range factor if its end cruise gross weight is 10,000 lbs? How is this 
accomplished? 

11.7 An aircraft was flown on a constant W/6 profile of 60,000 lbs. The aircraft 

standard weight was 17,820 lbs. On one speed-power point stabilized at 
30,300 ft, the fuel flow was measured to be 2,000 lbs/hr at 96% RPM. The 

ambient temperature while stabilized was measured to be 225.75°K. What 
is the standard fuel flow and RPM? 

HINT: Use Appendix A, Performance Handbook, FTC-TIH-79-1, for atmospheric 
data. 

11.8       Show that straight lines through the origin of a plot of SR versus true 

airspeed represent lines of constant fuel flow. 
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11.9       Given the following equations: 

*-^i^   M£). 
*2      =      C„       + 

c, 2 
X 

* 7C A£ e 

V, JV £3 - ">*-$       *"gM 

*5    = 
' \Wt 

Answer the following questions: 

A. Equation is the general range equation, turbojet or propeller. 

B. Equation is an endurance equation developed from aerodynamic 
analysis for turbojet aircraft. 

C. Equation is the equal to standard day corrected RPM parameter. 
D. Equation is the drag polar equation. 

E. Equation is used to calculate range available from a given fuel 
load at a given range factor. 

F. Equation is used to determine an aircraft's thrust deck. 

G. Equation is a range equation developed from aerodynamic analysis 
for turbojet aircraft. 

H. Equation is used for determining standard day corrected fuel flow 
parameter. 

I. Equation is used for determining standard day range factor from 
flight test range mission data. 
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11.10 A. The manufacturer's estimated drag polar of a YAT-37D aircraft is 
presented below. The aircraft reference wing are is 184 ft2 . Using the 
equation developed in class for corrected drag parameter (repeated below), 
estimate D/8 for a speed power point flown at W/5 of 16,168 lbs (weight is 
6,000 lbs, altitude is 25,000 ft) stabilized at Mach 0.4. 

5 
= 1481 Cn  S M2  + n' 

1481 S% ARe \5 
1 

M2 
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11.10 B. At the same speed power point described in Problem 4A, the ambient 

temperature was determined to be 233 deg K and engine RPM, N, was 

measured as 11,700 RPM. Using the manufacturer's furnished chart below, 
what is the engine corrected thrust parameter? Does this agree well with the 
results of problem 4A? 

1.800   -i 

u.' 

eoo 
11 12 

I 
13 

X10-» RPM 

I 
14 15 

11.11     The following questions apply to the YAT-37D with the drag polar and 
aircraft data given in Problem 4A. 

A. Estimate the aircraft's L/DmM. What is the significance of this point? 

B. If the aircraft weighs 6,000 lbs, what equivalent velocity should be 
flown to obtain maximum L/D? 

C. Estimate the aircraft's maximum value of CL
m ICD. What would this 

value be used for? 

D. If the aircraft weighs 6,000 lbs, what equivalent velocity should be 
flown to obtain maximum C^ / CD? What is the significance of this 
velocity? 

E.     What is the maximum range L/D for constant altitude cruise? 
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11.12     The following problem is based on data from the T-38A Category II 

Performance Test, FTC-TDR-63-27, Nov 63, AFFTC, Edwards AFB, CA. 

A. The contractor initially estimates that maximum range will result 

from a constant 0.88 Mach cruise at a constant W/5 of 54,000 lbs. Since 

you have three speed power missions available to determine optimum 

cruise, you elect to fly the three missions whose results are tabulated 

below: 

w8 
(lbs) 

Altitude 

(Hc) ft 

Maximum 

SR 

Mach for 

Max. SR 

10,094 36,000 0.357 0.87 

9,990 40,000 0.380 0.88 

9,805 45,500 0.388 0.89 

Does the speed power data verify the contractor's prediction? 

B. The contractor revises his estimate and now predicts that maximum 
range will result from a constant 0.88 Mach cruise at W/8 of 58,000 

lbs. You elect to fly a ferry range mission at these cruise conditions. 
During the climb nearing cruise altitude, you notice you have burned 

1,006 lbs of fuel. You estimate that it will take 60 lbs to stabilize at 

your initial start cruise altitude. Using the weight and fuel data given 

below, at what altitude should you begin cruise? 

After flying your constant W/5 profile for one hour and twelve 
minutes, you have to terminate cruise because of an emergency with a 

fuel reading of 980 lbs. Data reduction shows that the cruise climb was 

flown at a constant Ta of -76°F, and at a constant 0.88 Mach. If the 

aircraft traveled 75 nam in the climb to cruise altitude, what was the 

total test range? 



CHAPTER 11, CRUISE PERFORMANCE THEORY  11.61 

D. What was the test day range factor? 

E. What was the standard day range factor? 

F. Estimate what the total range of the test mission would have been ißt 

emergency had not occurred and you could have continued cruise to your 
MIL-C-5011A fuel reserve. 

G.     Does the test day range factor verify your speed power data? 

H.    If you had one more speed power mission to fly to verify maximum 
cruise range, what test conditions would you pick? 
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11.13 Given the flight test data below, which of the two altitudes would you 
choose for max endurance holding? Why? (Assume you're already at the 
selected altitude when you establish max endurance; i.e., ignore fuel required 
to climb/descend to holding altitude). 

*— 

w     A- 

30,000 FT 

20,000 FT 

0 .1 .2 .3 .4 .5 

M 
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11.14     Given the flight test data below, does Point 1 or 2 give the best range? 
Explain. 

6,000    - 

9 
•o 

2,000 

SINGLE 
ENGINE 

TWO 
ENGINES 

A-37F 
20,000 FT 

0.2 0.4 

M 

0.6 0.8 

11.15 (a) The contractor has provided the plots in Figure 1 of range factor and 

cruise Mach versus weight-pressure ratio based on his initial flight test data. 
You have just flown the speed power mission plotted in Figure 2. Does your 

data agree with the contractor's? Explain briefly. 
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(b) Using the contractor data in Part A and the fuel and weight data below, 
estimate the maximum cruise distance available. 

Gross weight at engine start 15,745 

Gross weight at start cruise 14,618 

Total usable fuel 4,375 

MIL-C-5011A fuel reserve 952 
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(c) Based on the contractor data in Parts A & B, what altitude and Mach 

would you plan to stabilize at to start cruise for maximum range? 

(d) You were held at the end of the runway for 20 minutes and did not 

start cruise until 2820 lbs remaining. You also landed at your alternate, 

terminating your cruise climb 45 min after level off with 1400 lbs. Given a 

constant temperature of -58°F, what was the standard day range factor? 

(e) Does your results confirm the contractor's estimates? Explain 

briefing. 

(f) You are carrying an AIM-9J with a special lens limited to .8 Mach. 

Assuming a start cruise weight of 14,781 lbs, at what altitude should you 
plan to level off for best range? 
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11.16     Given the test data below, plot the aircraft drag polar. 

-^    =   20,000 
o 

AR   =   18.0 

S   =    175 

At M = 0.4, N/fl = 80 

At M = 0.5, N/flJ = 90 

1600_ 

1500 _ 

ii-c|*  1400 _ 

1300 _ 

1200 _ 

80 00 

N 
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11.2 54,590 

11.3 30,880 

11.4 .33 

11.5 4620 

11.6 1550 mi 

11.7 wf    = 1815 

ANSWERS 

Ng = 87% 

11.10 A. 1,3941b 
B. 1,4001b 

11.11 A. 13.4 
B. 207ft/sec 

C. 19 

D. 272ft/sec 
E. 11.6 

11.12 B. 39,000 ft 
C. 675 nam 

D. 3,909 
F. 747 nam 


