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4.1 INTRODUCTION 

The performance of an aircraft can adequately be described by assuming 

the aircraft is a point mass concentrated at the aircraft's center of gravity 

(eg). The flying qualities of an aircraft, on the other hand, cannot be 

described in such a simple manner. The flying qualities of an aircraft must, 

instead, be described analytically as motions of the aircraft's eg as well as 

motions of the airframe about the eg, both of which are caused by aerodynamic, 

thrust and other forces and moments. In addition, the aircraft must be 

considered a three dimensional body and not a point mass. 

The applied forces and moments on the aircraft and the resulting response 

of the aircraft are traditionally described by a set of equations known as the 

aircraft equations of motion. This chapter presents the form of the aircraft 

equations of motion used in the Flying Qualities phase of the USAF Test Pilot 

School curriculum. 

The theory presented in this chapter incorporates certain simplifying 

assumptions to make the main elements of the subject clearer. The equations 

that will be developed are not as rigorous (and complicated) as those used for 

design of modern aircraft, but the basic method is valid and will provide 

analysis techniques that are accurate enough to gain an insight into aircraft 

flying qualities. With the aid of high speed computers the aircraft 

designers' more rigorous theoretical calculations, modified by data obtained 

from the wind tunnel, can often give results which closely predict aircraft 

flying qualities. This is of substantial benefit in the development cycle of 

new aircraft. 

4.2 OVERVIEW 

An aircraft has six degrees of freedom (if it is assumed to be rigid), 

which means is has six paths it is free to follow: it can move forward, 

sideways, and down; and it can rotate about its axes with yaw, pitch, and 

roll. In order to describe the state of a system that has six degrees of 

freedom, values for six variables (unknowns) are necessary. To solve for 

these six unknowns, six simultaneous equations are necessary. For an 

aircraft, these are known as the aircraft equations of motion. 

The full aircraft equations of motion (given in sections 4.10 and 4.11) 
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reflect a rather complicated relationship between the forces and moments on 

the aircraft, and the resulting aircraft motion.  The derivation of the 

equations, however, follows a very simple pattern starting from Newton's 

second law for translational and rotational motions. 

Newton's second law for translational motions is 

F  = m <m^> (4.1) 

where F is the sum of the externally applied forces and mV is linear momentum. 

Newton's second law for rotational motions is 

dt (H) (4.2) 

where G is the sum of the externally applied moments and H  is angular momentum. 

F and G are both vector quantities which can each be represented by three 

component equations (corresponding to three dimensional space). The 

translational equation, therefore, describes the aircraft with respect to its 

three translational degrees of freedom, while the rotational equation 

describes the aircraft with respect to its three rotational degrees of 

freedom. Newton's second law, therefore, yields six equations for the six 

degrees of freedom of a rigid body. 

In order to derive the equations of motion, each side of Newton's 

equations are expanded to yield the following six nonlinear differential 

equations: 

Longitudinal 

Lateral- 
Directional 

Fx = m (U + CW - RV) 

Fz = m (W + PV - QU) 

Gy = QIy  -PR (I,  -Ix)  +  (P2  -R2)  Ixz 

Fy = m (V + RU - PW) 

Gx = P  I    + QR  (I    -  I   )   -   (R + PQ)   I 

G       = Ri, +PQ dy - lx) + (QR-P) l„ 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

4.2 



The Left-Hand Side (LHS) of these equations represent the applied forces 

and moments on the aircraft while the Right-Hand Side (RHS) stands for the 

aircraft's response to these forces and moments. Small perturbation theory 

will be used to linearize these equations so they can be solved. This will 

also yield terms known as stability derivatives which indicate the influence 

of various aircraft characteristics on the resulting aircraft motions, and are 

useful in comparing aircraft, calculating MIL-SPEC requirements, etc. The 

equations will also be used to derive aircraft transfer functions which will 

be a fundamental part of the mathematical modeling of the aircraft and its 

control system in later chapters. 

Prior to beginning the derivation of the aircraft equations of motion, a 

discussion will be presented of aircraft sign conventions and coordinate 

systems. There will also be many abbreviations and symbols used during the 

derivation of the equations of motion and in subsequent flying qualities 

chapters. A list of abbreviations and symbols is given in the last subsection 

of this chapter. 

4.3 SIGN CONVENTIONS 

The sign convention used at the Test Pilot School and the Flight Test 

Center defines a positive control movement or deflection as one that causes a 

positive aircraft movement (right yaw, pitch up, right roll). Figure 4.1 

shows this sign convention and gives the positive directions for many of the 

variables that appear in the equations of motion. The TPS (AFFTC) sign 

convention does not conform to the convention used by NASA and some reference 

textbooks. Sign conventions will be discussed in greater detail in the flight 

control systems chapter. 

4.4 COORDINATE SYSTEMS 

There are many coordinate systems that are useful in the analysis of 

vehicle motion. We will be concerned with three of these coordinate systems: 

inertial, earth axis, and vehicle axis. According to convention, all 

coordinate systems used will be right-hand orthogonal. 
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CENTER 
OF 
GRAVITY 

FIGURE 4.1.    VEHICLE FIXED AXIS SYSTEM 
AND NOTATION 

EARTH 

FIGURE 4.2.  THE INERTIAL COORDINATE SYSTEM 
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4.4.1 Inertial Coordinate System 

An inertial coordinate system is defined as a system in which Newton's 

second law is valid. The equations of motion must, therefore, be determined 

in an inertial coordinate system.  Another way of defining the inertial 

coordinate system is to assume it is an axis system fixed in space that has no 

relative motion (Figure 4.2). 

Experience with physical observations can be used to determine whether a 

particular reference system can properly be assumed to be an inertial 

coordinate system for the application of Newton's laws to a particular 

problem. For space dynamics in our solar system, the sun axis system is a 

sufficient approximation for an inertial system. For aircraft, the earth axis 

system is usually a sufficient approximation for an inertial coordinate system. 

4.4.2 Earth Axis System 

There are two earth axis systems, the fixed and the moving. Both will be 

referred to with the letters XYZ for the three coordinate axes. An example of 

a moving earth axis system is an inertial navigation platform. An example of 

a fixed earth axis system is a radar site (Figure 4.3). 

MOVING 
EARTH 
AXES 

XY PLANE IS 
HORIZONTAL 

FIXED EARTH 
AXES 

FIGURE 4.3.  THE EARTH AXIS SYSTEMS 
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In both earth axis systems, the Z-axis points toward the center of the 

earth along the gravitational vector, g. The XY-plane is parallel to the 

local horizontal while the orientation of the X-axis is arbitrarily defined 

(often defined as North). The two earth axis systems are distinguished by the 

location of their origins. The origin of the fixed system is usually taken as 

an arbitrary location on the earth's surface. The origin of the moving system 

is usually taken as the vehicle's eg. What distinguishes the moving earth 

axis system from the vehicle axis system discussed in the next subsection is 

that the moving earth axes are not fixed in orientation with respect to the 

vehicle. They are instead fixed with respect to local vertical. In the rest 

of this chapter, the XYZ (upper case) system will be assumed to be the fixed 

earth axis system unless otherwise noted. 

4.4.3 Vehicle Axis Systems 

These coordinate systems have origins fixed to the vehicle, and axes 

defined with respect to the vehicle. There are many different types, four of 

which are commonly used for describing aircraft motion: the body axis system, 

the stability axis system, the principal axis system, and the wind axis 

system. The body and the stability axis systems are the only two that will be 

used during this course. 

4.4.3.1 Body Axis System. The body axis system (Figure 4.4) is the most 

general kind of axis system in which the origin and axes are fixed to a rigid 

body. The use of axes fixed to the vehicle ensures that the moments and 

products of inertia in the equations of motion are constant, to the extent 

that mass can also be considered constant, and that aerodynamic forces and 

moments depend only upon the relative velocity orientation angles a and ß. 

The body fixed axis system is also the natural frame of reference for most 

vehicle-borne observations and measurements of the vehicle's motion and will 

be referred to as the xyz (lower case) system. 

In the body axis system the unit vectors are I, j and k with origins at 

the vehicle eg. The positive x-axis points forward along a vehicle horizontal 

reference line with the positive y-axis out the right wing. The positive 

z-axis points downward out the bottom of the vehicle, usually such that the 

xz-plane is the vehicle plane of symmetry. 
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FIGURE 4.4.  BODY AXIS SYSTEM 

4.4.3.2 Stability Axis System. Stability axes are specialized body axes 

(Figure 4.5) in which the orientation of the vehicle axis system is determined 

by the equilibrium flight condition. The xs-axis is selected to be coincident 

with the relative wind at the start of the motion. This initial alignment 

does not alter the body-fixed nature of the axis system; however, the 

alignment of the axis system with respect to the body changes as a function of 

the  equilibrium condition.   If the reference flight condition is not 

RW 

y BODY = y STAB 
I.e., THE STABILITY x,-*. PLANE 
REMAINS IN THE VEHICLE PLANE 
OF SYMMETRY 

FIGURE 4.5. STABILITY AXIS SYSTEM 
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symmetric, i.e. with sideslip, then the xs-axis is chosen to lie on the 

projection of the true velocity (VT) in the  plane of  symmetry, with  z 

also in the plane of symmetry. The moment of inertia and product of inertia 

terms vary for each equilibrium flight condition.  They are assumed constant, 

however, in the equations of motion. 

4.4.3.3 Principal Axes. These are a special set of body axes aligned with 

the principal axes of the vehicle and are used for certain applications. 

Principal axes are defined as those axes where all of the products of inertia 

are reduced to zero. The equations of motion are thus greatly simplified, but 

it is difficult to accurately describe the aircraft motion in this system. 

4.4.3.4 Wind Axes. The wind axes use the vehicle translational velocity as 

the reference for the axis system. Wind axes are thus oriented with respect 

to the flight path of the vehicle, i.e., with respect to the relative wind, 

VT. If the reference flight condition is symmetric, i.e., V lies in the 

vehicle plane of symmetry, then the wind axes coincide with the stability 

axes. The wind axes depart from the stability axes, moving with the relative 

wind, when sideslip is present. 

The relationship between the wind axes and the vehicle body axes of a 

rigid body defines the angle of attack, a, and the sideslip angle, ß. These 

angles are convenient independent variables for use in the expression of 

aerodynamic force and moment coefficients. 

Wind axes are not generally used in the analysis of the motion of a rigid 

body, because, as in the case of the earth axes, the moment of inertia and 

product of inertia terms in the three rotational equations of motion vary with 

time, a, and ß. 

4.5 DERIVATION OF THE RIGHT HAND SIDE (RHS) OF THE EQUATIONS OF MOTION 

The RHS of the equation represents the aircraft response to forces or 

moments. Through the application of Newton's second law, two vector relations 

can be used to derive the six required equations, three translational and 

three rotational. The actual aircraft will be flexible, which gives rise to 

aeroelastic effects and are additional degrees of freedom (requiring more 

variables and equations). These will be considered separately (in Chapter 12). 
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In order to derive the equations of motion we will make the following 

ASSUMPTION; The aircraft is a rigid body. 

As noted earlier, Newton's second law is valid only in an inertial 

coordinate system. For most aircraft, the fixed earth axis system can be 

assumed to be an inertial coordinate system. In order to do this, we make the 

following 

ASSUMPTION: The earth and atmosphere are fixed in inertial space. 

In addition, most motion of interest in stability and control takes place 

in a relatively short time. We can also, therefore, usually make the following 

ASSUMPTION; Mass (m) is constant (dm/dt =0). 

4.5.1 Translational Force Relations 

The vector equation for the aircraft translation from Newton's second law 

(eq. 4.1) is 

F = _ d(mv) 

dt 
(4.9) 

XYZ 

where VT is the true velocity of the aircraft.  Figure 4.6 shows how this 

vector changes in both magnitude and direction with respect to the xyz (body) 

and XYZ (fixed earth) axes. 

From vector analysis, the derivative of the velocity VT in the inertial 

(fixed earth) coordinate system is related to the derivative of V in the body 

axis system through the relationship 

T dV„ =     T 

XYZ    HF 

+ wX VT (4.10) 

xyz 
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FIGURE 4.6. TRUE VELOCITY IN BODY AND FIXED EARTH AXES 
COORDINATE SYSTEMS 

Substituting this into Equation 4.9 (and assuming mass is constant), the 

applied force is 

F = m [ ^T + w x V, ] (4.11) 

xyz 

V and w are two of the four vectors used in the equations of motion to 

describe the vehicle motion (F and G are the other two). They are defined as 

follows: 

VT = Ul + V3 + Wie (4.12) 

where 

U = forward velocity 

V = side velocity 

W = vertical velocity 

and 
to = Pi + Qj + RÜ (4.13) 
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where 

P - roll rate 

Q ■ pitch rate 

R - yaw rate 

The relationship of the true velocity and its components to a and ß  and 

the body axis coordinate system iB shown in Figure Hfl. 

I  / 

FIGURE 4.7. VELOCITY COMPONENTS AND THE AERODYNAMIC 
ORIENTATION ANGLES, a AND ß 

The angles a and ß  can be expressed in terms of the velocity components as 

follows: 

sin a W 

VTcos ß 

If ß is small (ASSUMPTION), then cos ß = 1 and 

sin a = -^- 

If a is also small (ASSUMPTION), then 

w 
a =   

4.11 

(4.14) 

(4.15) 

(4.16) 



For angle of sideslip 

sin ß = 

If ß is small, then sin ß ä ß and 

ß 

V 

V 

(4.17) 

(4.18) 

Using equations 4.12 and 4.13, the translational equation (4.11) can now 

be written in component form as 

F = m [ ÜI + Vj + Wk + 

i j k 

P Q R 

U V W 

] 

Expanding 

F = m [ÜI + Vj + Wk" + (QW - RV)i - (FW - RU)j + (PV - QU)k"] 

Rearranging 

F « m [(Ü + QW - RV)T + (V + RU - FW)] + (W + FV - QU)k] 

In component form, the sum of forces in the body axis system is 

F = Fl + FT + Fk" 
X      y ■> z 

this results in three component translational equations: 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

Fx = m (U + QW - RV) 

Fy = m (V + RU - FW) 

Fz  = m (W + PV - QU) 

4.5.2 Rotational Equations 

Once again from Newton's second law (eq. 4.2), 

(4.23) 

(4.24) 

(4.25) 

G = d(H) 
dt XYZ 

(4.26) 
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Equation 4.26 states the change in angular momentum, H, is equal to the 

applied moments, G. 

Angular momentum should not be as difficult to understand as some people 

would like to make it. It can be thought of as linear momentum with a moment 

arm included. Consider a ball swinging on the end of a string, at any instant 

of time, as shown in Figure 4.8. 

Mt 

o 

FIGURE 4.8. ANGULAR MOMENTUM 

The linear momentum of this system would be: 

Linear Momentum = mV 

Angular momentum is defined as H, where H = r X Linear Momentum and, 

since in the example of Figure 4.8, the angle between r and V is 90 

degrees, the magnitude of the angular momentum is mrV. 

Just as a force F changes linear momentum, (F = ^r mV), a moment G will 

change angular momentum (G = g^ H). A moment is related to a force in the 

same manner that angular momentum is related to linear momentum: 

Moment = r X Force 

Angular Momentum = r X Linear Momentum 

In order for us to determine the angular momentum of the aircraft, 

consider a small element of mass it^, somewhere in the aircraft, a 

distance v1   from the eg (Figure 4.9). 
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FIGURE 4.9.  ELEMENTAL DEVELOPMENT OF RIGID 
BODY ANGULAR MOMENTUM 

The angular momentum of n^ is 

H,  « rx XmVx - m, (r, XV,) 

and 

(4.27) 

(i.e., in the inertial coordinate system) 

XYZ 

Again from vector analysis, the rate of change of the radius vector r can be 

related to the body axis system (xyz) by 

V, - dri 1 W XYZ ar + co X r. (4.29) 

xyz 

since the aircraft is a rigid body rx does not change with time (assuming no 

aeroelastic effects). Therefore, the first term can be excluded, and the 

inertial velocity of the element m, is 
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Substituting this into Equation 4.27 

Hn  = n^ [^ X (ÜX rx)] 

(4.30) 

(4.31) 

This is the angular momentum of the elemental mass ir^ . In order to find the 

angular momentum of the whole aircraft, we integrate over the aircraft volume 

(V). pA is the mass density of the aricraft. 

H - ;v pA [r X (wx r)] dV (4.32) 

where 

r = xl + yj + zk (4.33) 

then 

w X r 
i j k 
P Q R 
x   y   z 

(4.34) 

The determinant can be expanded to give 

CO X r = (Qz - Ry)i + (Rx - Pz)j + (Py - Qx)k" 

therefore, Equation 4.32 becomes 

(4.35) 

H   =    K  PA 

i j k 

x y z 

(Qz-Ry)     (Rx-Pz)     (Py-Qx) 

dV 

So the cortponents of H are 

H 

H 

"    Jv   PAy
(py - Qx)dV - Jv   PAz(Rx - Pz)dV 

=    Jv   pAz(Qz - Ry)dV - Jv   PAx(Py - Qx)dV 

Hz    =    Jv   pAx(Rx - Pz)dV - Jv   pAy(Qz - Ry)dV 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

Rearranging the equations 

Hx  - p Jv p
A(y

2 + z' >dv - Q K pAx^dv - R K- pA
xzdv (4.40) 
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Hy    -    Q Jv  PA(x
2 + z2)dV - R Jv   pAyzdV - P Jv  pAxydV (4.41) 

H«    -   R Xv  PA(x
2 + y2)dV - P Jv  pAxzdV - Q Jv  pAyzdV (4.42) 

Hie integrals are now recognizable as moments and products of inertia. The 

moments of inertia are defined as 

Jv p*(y2 + z2)dv 'V    »"A 

K   PA1 Jy       *      Jv    PA<X2    +   Z2^ 

J*  -  Jv pA<x2 +y2)^ 

(4.43) 

(4.44) 

(4.45) 

These are a measure of resistance to rotation and are never zero.     They are 
illustrated in Figure 4.10. 

x-< 

d2=x2 + z2 

FIGURE 4.10.  MOMENT OF INERTIA (Iy) 

The products of inertia are defined as (Figure 4.11) 

I   =i   = r Pixy dV xy      yx      *V rK   ■* 

yz i  = L p»yz dv ty      V ^A-* 

I    r=  I    .  J  p xz dV 
XZ EX       JV ^A 

(4.46) 

(4.47) 

(4.48) 
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•X2 = ( + ) 

FIGURE 4.11. PRODUCT OF INERTIA (Ixf ) 

Products of inertia are measures of symmetry. They are zero for views having 

a plane of symmetry. 

Substituting into equations 4.40 to 4.42, we find the angular momentum of 

a rigid body is 

So that 
H «= HI + HT + HJC x      y J     z 

H - PI - QI - RI x x ** xy     xz 

H - QI - RI - PI y ** y yz     xy 

H  - RI - PI  - QI z        z      xz      yz 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

An aircraft is normally symmetric about the xz-axis as illustrated in 

Figure 4.12. In order to simplify the RHS of the equations of motion, 

therefore, we normally make the following 

ASSUMPTION; The xz-plane is a plane of symmetry. 

This causes two products of inertia, I  and I  to be zero.  These may be xy       y z 

cancelled out of the equations of motion. This restriction of the equations 

of motion (xz-plane symmetry) can be easily removed by including these terms. 

With the assumption, the angular momentum of a symmetric aircraft simplifies to 

H = (PI - RI ) I + QI 3 + (RI - PI ) k~ 
*x     xz'       yJ       z     xz' 

(4.53) 
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I.. ('„=<» 

FIGURE 4.12. AIRCRAFT INERTIAL PROPERTIES WITH 
AN x-z PLANE OF SYMMETRY 

The equation for angular momentum can now be substituted into the moment 

equation. Remember 

r dH 
G «s  — 

dt 
(4.54) 

XYZ 

applies only with respect to inertial space. Expressed in the fixed body axis 

system, the equation becomes: 

dH 
dt + w X H (4.55) 

xyz 

which is 

G - HI + H3 + HK" + 
x      yJ z 

I  3  IE 
P  Q  R 

H  H  H 
xyz 

(4.56) 

Remember, for a symmetric aircraft, 

H - (PI - RI  ) I + QI I + (RI - PI  ) E xx     xz'      yJ      z     *! 

4.18 
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Since the body axis system is used, the moments of inertia and the 

products of inertia are constant. Therefore, by differentiating and 

substituting, the moment equation becomes 

G - <PI* -KJ  i + QIyJ + (HI. -PIxz) E 

Therefore, the rotational component equations are, 

Gx = PI, +QR (Iz - Iy) - (R + PQ) lxz 

Gy = QIy - PR (Iz - lx) + (P2 - R2) Ix 

Gz     =    RI    + PQ  (I    - I   )  +     (QR - P)   I _ 

I    5    E 

P     Q     R 

(pix-RIxZ) Qly <R*z-
pi*z> 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

This completes the development of the RHS of the six equations (equations 4.23 

to 4.25, and 4.59 to 4.61). 

4.6 DERIVATION OF THE LHS OF THE EQUATIONS OF MOTION 

The equations of motion relate the vehicle motion to the applied forces 

and moments: 

LHS RHS 

Applied Forces and Moments = Observed Vehicle Motion 

Fx = m(U + QW - PV) 

Gx  = PIx + QR(Iz - Iy) - (R + PQ)I 

etc. 
yz 

The RHS of each of these six equations has been completely expanded in terms 

of easily measured quantities. The LHS must also be expanded in terms of 

convenient variables. In order to do this, we must be able to relate the 

orientation of the body axes (xyz) to the moving earth axes (XYZ).  This is 
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done through the use of Euler angles.  The moving earth axis system is used 

because we will be concerned with the orientation of the aircraft with respect 

to the earth and not its position (location of the eg) with respect to the 

earth. 

4.6.1 Euler Angles 

The orientation of any coordinate system relative to another can be given 

by three angles (Euler angles), which are consecutive rotations about the z, 

y, and x axes, in that order, that carry one frame into coincidence with the 

other. In flight dynamics, the Euler angles used are those which rotate the 

vehicle carried moving earth axis system into coincidence with the relevant 

vehicle axis system (Figure 4.13). 

J> 
4 

{ 
' oOS^e 

(flEG*TlVE*SHOW 

^ 

<+ 

FIGURE 4.13. THE EULER ANGLE ROTATIONS 
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Euler angles are expressed as YAW (i|/), PITCH (9), and ROLL (<f>). The 

sequence (YAW, PITCH, ROLL) must be maintained to arrive at the proper set of 

Euler angles. The Euler angles are defined as follows: 

\j/ - Yaw Angle  -  The angle between the projection of x vehicle axes 
onto the horizontal plane and the initial reference 
position of the X earth axis. (Yaw angle is the 
vehicle heading only if the initial reference is 
North). 

9 - Pitch Angle -  The angle measured in a vertical plane between the x 
vehicle axis and the horizontal plane. 

4> - Roll Angle -   The angle, measured in the yz plane of the vehicle 
system, between the y axis and the horizontal plane. 
This is the same as bank angle for a given i|/ and 9, 
and is a measure of the rotation about the x axis to 
put the aircraft in the desired position from a 
wing's horizontal condition. 

The accepted limits on the Euler angles are: 

-180° < y < +  180° 

-90° < 9 < + 90° 

-180° < * < + 180° 

The importance of the sequence of the Euler angle rotations cannot be 

overemphasized. Finite angular displacements do not behave as vectors. 

Therefore, if the sequence is performed in a different order than y, 9, <J>, the 

final result will be different. This fact is clearly illustrated by the final 

aircraft attitudes in Figure 4.14 in which two rotations of equal magnitude 

have been performed about the x and y axes, but in opposite order. Addition 

of a rotation about a third axis does nothing to improve the outcome. 

Euler angles are very useful in describing the orientation of flight 

vehicles with respect to inertial space. Consequently, angular rates in an 

inertial system ($, 9, ^) can be transformed to angular rates in the vehicle 

axes (P, Q, R) using Euler angle transformations as developed in the next 

subsection. 
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ROTATION SEQUENCE 1 ROTATION SEQUENCE 2 

z 1' 

ROTATE -90 
ABOUTX 

ROTATE +90° 
ABOUTY 

yn 

ROTATE +90° 
ABOUTY 

<fc 

ROTATE -90 
ABOUT X 

FIGURE 4.14. DEMONSTRATION THAT FINITE ANGULAR 
DISPLACEMENTS DO NOT BEHAVE AS VECTORS 
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4.6.2 Angular Velocity Transformations 

We need to develop equations to transform the angular rates from the 

moving earth axis system  (4», 6, $) into angular rates about the vehicle axis 

system (P, Q, R) for any aircraft attitude.  The derivation (by vector 

resolution) is presented in the following paragraphs. 

It is easy to see that when an aircraft is pitched up and banked, the 

vector y will have components along the x, y, and z body axes (Figure 4.15). 

Remember, 5j» is the angular velocity about the Z axis of the moving earth axis 

system (it can be thought of as the rate of change of aircraft heading). 

Although it is not shown in Figure 4.15, the aircraft may have a value of 6 

and ♦. In order to derive the transformation equations, it is easier to 

analyze one vector at a time. First resolve the components of ^ on the body 

axes. Then do the same with 9 and $. The components can then be added and 

the total transformation will result. 

FIGURE 4.15.  COMPONENTS OF y ALONG X, y, AND z BODY AXES. 
(NOTE: THE X AND Y AXES OF THE MOVING EARTH 
AXIS SYSTEM ARE NOT SHOWN.) 

Step 1 - Resolve the components of ty along the body axes for any 
aircraft attitude. 

It is easy to see how y reflects to the body axis by starting with 

an aircraft in straight and level flight and changing the aircraft attitude 

one angle at a time. In keeping with convention, the sequence of change will 
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be yaw, pitch and bank. 

First, it can be seen from Figure 4.16 that the Z-axis of the moving 

earth axis system remains aligned with the z-axis of the body axis system 

regardless of the angle ^ if e and 4> are zero; therefore, \j/ does not affect P, 

and Q. 

ij> (when 9 = <J> = 0) 

HORIZONTAL REFERENCE 
PLANE OF THE MOVING 
EARTH AXIS SYSTEM 

FIGURE 4.16.     DEVELOPMENT OF AIRCRAFT ANGULAR VELOCITIES 
BY THE EULER ANGLE YAW RATE   (\|/ ROTATION) 

Next, consider pitch up. In this attitude, \j) has components on the x and 

z-body axes as shown in Figure 4.17. As a result, \j/ will contribute to the 

angular rates about these axis. 

P   = ij> sin 9 (4.62) 

R   =   i> cos e (4.63) 

With just pitch, the Z-axis remains perpendicular to the y-body axis, so Q is 

not affected by \j» in this attitude. 

Next, bank the aircraft, leaving the pitch as it is (Figure 4.18). 
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HORIZONTAL 
REFERENCE 

^co»0 

FIGURE 4.17.  DEVELOPMENT OF AIRCRAFT ANGULAR VELOCITIES 
BY THE EULER ANGLE YAW RATE (G ROTATION) 

HORIZONTAL 
REFERENCE 
PLANE 

R = ^ cos 6 cos <t> k 

$ cos 0 sin <t> 

FIGURE 4.18.  DEVELOPMENT OF AIRCRAFT ANGULAR VELOCITIES 
BY THE EULER ANGLE YAW RATE (♦ ROTATION) 
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All of the components are now illustrated. Notice that roll did not 

change the effect of * on P. The components, therefore, of * in the body 

axes for any aircraft attitude are 

p «= - y sin 9 (4.64) 

(Effect of * only)      Q - * cos 6 sin 4> (4.65) 

R « y cos 6 cos 4> (4.66) 

Step 2 - Resolve the components of 6 along the body axes for any 
aircraft attitude. 

Remember, 9 is the angle between the x-body axis and the local horizontal 

(Figure 4.19). Once again, change the aircraft attitude by steps in the 

sequence of yaw, pitch, and bank and analyze the effects of 9. 

HORIZONTAL 
REFERENCE 
PLANE 

FIGURE 4.19.  CONTRIBUTION OF THE EULER PITCH ANGLE RATE 
TO AIRCRAFT ANGULAR VELOCITIES (9 ROTATION) 

It can be seen immediately that the yaw angle has no effect. Likewise 

when pitched up, the y-body axis remains in the horizontal plane. Therefore, 

i is the same as Q in this attitude and the component is equal to 

Q = 6 

Now bank the aircraft. 
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R = - 6 sin « k 

Q= 0cos4>j 
'^ 

FIGURE 4.20.  CONTRIBUTION OF THE EULER PITCH ANGLE RATE 
TO AIRCRAFT ANGULAR VELOCITIES (<f> ROTATION) 

It can be seen from Figure 4.20 that the components of 9 on the body axes are 

Q =  0 cos <j> 

R = -9 sin <f> 

(4.67) 

(4.68) 

Notice that P is not affected by 9 since by definition § is measured on an 

axis perpendicular to the x body axis. 

steP 3 ~ Resolve the components of $ along the body axes. 

This one is easy since by definition $ is measured along the x body axis. 

Therefore, $ affects the value of P only, or 

P = <(, (4.69) 

The components of *, 9, and <f> along the x, y, and z body axes for any 

aircraft attitude have been derived. These can now be summed to give the 

transformation equations. 
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P « ($ - y sin 6)1 

Q - (6 cos $ + y cos 6 sin 4>)j 

(4.70) 

(4.71) 

R -= {y cos 9 cos ♦ - 6 sin $)k" (4.72) 

With these equations it is now possible to transform the equations of 

motion written in body axis terms (U, V, W, P, Q, and R) in terms of the 

motion seen in the inertial (earth axis) system (u, V, W, ij/, e, and 4>). In 

that case, the resulting equations are six simultaneous nonlinear differential 

equations that are of the first order in U, V, and W and of the second order 

in ♦, 9, and 4>. In order to completely describe the trajectory of the 

aircraft in the inertial coordinate system, a similar transformation is 

required to relate U, V, and W to the velocities in the inertial coordinate 

system (not covered in this text). 

Equations 4.70 to 4.72 are known as the parametric equations and they, 

along with the six equations of motion, can be used to describe the complete 

motion of the aircraft. 

4.6.3 Initial Breakdown of the LHS 

In general, the applied forces and moments on the LHS can be broken up 

according to the sources shown below. 

SOURCE 

Aero- 
dynamic 

Direct 
Thrust Gravity 

Gyro- 
scopic Other 

-1 < z 
o 

o z 
2 

F, \ *T *. 0 *\>th 

F, \ ZT 
Z„ 0 ^oth 

Gv \ MT 0 MWO 
MOttl 

|üt5 

5 

Fr \ YT 
Y, 0 *oth 

G, \ Lr 0 gyro ■"oth 

G, N* NT 
0 "oth 

mU + --- (4.73) 

mW + - - - (4.73a) 

Qly + - (4.74) 

mV + --- (4.74a) 

PI.+   -- (4.75) 

R..+   -- (4.75a) 
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3. 

4. 

5. 

Aerodynamic Forces and Moments - These will be further expanded into 
stability parameters and derivatives (discussed in subsection 4.6.4). 

Direct Thrust Forces and Moments - These terms include the effect of 
the thrust vector itself - they usually do not include the indirect 
or induced effects of jet flow or running propellers (discussed in 
subsection 4.6.5). 

Gravity Forces - These vary with orientation of the gravity vector 
(discussed in subsection 4.6.6). 

Gyroscopic Moments - These occur as a result of large rotating 
masses such as engines and props (discussed in section 4.6.7). 

Other Sources - These include spin chutes, reaction controls, etc. 
(not discussed in this chapter). 

4.6.4 Aerodynamic Forces And Moments 

By far the most important forces and moments on the LHS of the equation 

are the aerodynamic terms. Unfortunately, they are also the most complex. As 

a result, certain simplifying assumptions are made, and several of the smaller 

terms are arbitrarily excluded to simplify the analysis. Remember we are not 

trying to design an aircraft around some critical criteria. We are only 

trying to derive a set of equations that will help us analyze the important 

factors affecting aircraft stability and control. 

4.6.4.1  Choice Of Axis System.  Consider only the aerodynamic forces on an 

aircraft. Summing forces along the x body axis (Figure 4.21) 

Fx  = L sin a - D cos a (4.76) 

x BODY AXIS 

x STABILITY AXIS 

FIGURE 4.21.  CHOICE OF AXIS SYSTEM 
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Notice that if the forces were summed along the x  stability axis (Figure 

4.21), it would be 

Fx = - D (4.77) 

It would simplify things if the stability axes were used for development of 

the aerodynamic forces. A small angle assumption enables us to do this: 

cos a = 1 

sin a = 0 

Using this assumption, equation 4.76 reduces to equation 4.77. Whether it be 

thought of as a small angle assumption or as an arbitrary choice of the 

stability axis system, the result is less complexity. This would not be done 

for preliminary design analyses; however, for the purpose of deriving a set of 

equations to be used as an analytical tool in determining handling qualities, 

the assumption is perfectly valid, and is surprisingly accurate for relatively 

large values of a. It should be noted that lift and drag are defined to be 

positive as illustrated. Thus these quantities have a negative sense with 

respect to the stability axis system. 

The aerodynamic terms will be developed using the stability axis system 

so that the equations assume the form, 

"DRAG"        -D + X,,  + X    + Xoth = mU    +  (4.78) 

"LIFT" -L + ZT  + Z    + Zoth = mW    +  (4.79) 

"PITCH"      VL   + ML  + M +M,„=QI    +  (4.80) A             T             gyro              oth          "   y '              ' 

"SIDE" Y,   + Y    + Y    + Y „. =mV    +  (4.81) A             T             g             oth *              ' 

"ROLL" L,   + L+ L + L „.   = PI    +  (4.82) A             T             gyro              oth                x '              ' 

"YAW" N+N+N +N,V,=RI    +  (4.83) A T gy r o o t h z 

4.30 



4.6.4.1A Coordinate Systems and Transformations. The five orthogonal coordinate 

systems are related by the figure below.  In general, you need only to rotate 

through the given angles to transfer from one set of axes to another. 

X 3 EARTH 

Axis 
% a 0i w 

BODY 

Axis 
*Z 

STABILITY 

Axis 

ß 

% 

w ^ 

.... t VELOCITY 

Axis 
*i w 

WIND 

Axis w "F *- 

FIGURE 4.21A AXIS SYSTEM RELATIONSHIPS 

It is often convenient to measure forces or moments in a certain axis system while 

the equations of motion are better understood in another.  If you are transforming 

in the direction indicated, use the normal rotation matrices. If transforming 

opposite to the indicated direction use the transpose of the rotation matrices.  In 

either case put in the measured angle(s) without changing sign(s).  For example, 

weight is measured easily in the earth axis system.  To transform to the body axis 

the process is to pre-multiply the weight vector(earth axis) by R.,  then R„ and 

then R1 as shown. 

WeightjBody = R1(01} R2(da> R3(V3> 
0 
0 
Weight 

Earth 

Where the rotation matrices are 

Rl = 

1   0      0 
0 Cos(*)  Sin(*) 
0 -Sin(*)  Cos(*) 

R„ = 
Cos(*)  0 -Sin(*) 

0    1    0 
Sin(*)  0  Cos(*) 

Cos(*) Sin(*) 0 
R3 = 

-Sin(*) Cos(*) 0 
0 0 1 

And the (*) represents the appropriate angle from figure 4.21A 
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4.6.4.2 Expansion of Aerodynamic Terms. A stability and control analysis is 

concerned with how a vehicle responds to perturbation inputs. For instance, 

up elevator should cause the nose to come up; or for turbulence caused 

sideslip, the aircraft should realign itself with the relative wind. 

Intuitively, the aerodynamic terms have the most effect on the resulting 

motion of the aircraft. Unfortunately, the above equations (that result from 

summing forces and moments), are non-linear, and exact solutions are 

impossible. In view of the complexity of the problem, linearization of the 

equations brings about especially desirable simplifications. The linearized 

model is based on the assumption of small disturbances and the small 

perturbation theory. This model, nonetheless, gives quite adequate results 

for engineering purposes over a wide range of applications; because the major 

aerodynamic effects are nearly linear functions of the variables of interest, 

and because quite large disturbances in flight may correspond to relatively 

small disturbances in the linear and angular velocities. 

4.6.4.3 Small Perturbation Theory. The small perturbation theory is based on 

a simple technique used for linearizing a set of differential equations. In 

aircraft flight dynamics, the aerodynamic forces and moments are assumed to be 

functions of the instantaneous values of the perturbation velocities, control 

deflections, and of their derivatives. They are obtained in the form of a 

Taylor series in these variables, and the expressions are linearized by 

excluding all higher-order terms. To fully understand the derivation, some 

assumptions and definitions must first be established. 

4.6.4.3.1 The Small Disturbance Assumption - A summary of the major 

variables that affect the aerodynamic characteristics of a rigid body or a 

vehicle is given below. 

1. Velocity, temperature, and altitude: These variables may be 
considered directly or indirectly functions of Mach, Reynolds 
number, and dynamic pressure. Velocity may be resolved into 
components U, V, and W along the vehicle body axes. 

2. Angle of attack, a, and angle of sideslip, ß: These variables 
may be used with the magnitude of the total velocity, V , to 
express the orthogonal velocity components U, V, and W. TIt is 
more convenient to express variation of force and moment 
characteristics with these angles as independent variables 
rather than the velocity components. 
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3. Angular velocity: This is usually resolved into components, P, 
Q, and R about the vehicle body axes. 

4. Control surface deflections: These are used primarily to 
change or balance aerodynamic forces and moments, and are 
accounted for by S , Sa, §r (the elevator, aileron and rudder 
deflection, respectively). 

Because air has mass, the flow field cannot adjust instantaneously to sudden 

changes in these variables, and transient conditions exist.  In some cases, 

these transient effects become significant.  Analysis of certain unsteady 

motions may therefore require consideration of the time derivatives of the 

variables listed above. In other words: 

VARIABLE 

D 

L 

M. 

N. 

Are a 
Function 

of 

U  a  ß 

P  Q  R 

6  S  S 
ear 

p  M  R  T e 

FIRST DERIVATIVE 

U  a  ß 

P  Q  R 

S  5  5 
ear 

assumed constant 

SECOND DERIVATIVE 

U  a  ß 

P  Q  R 

S  6  S ear 

This rather formidable list can be reduced to workable proportions by 

assuming that the vehicle motion consists only of small deviations from some 

initial reference condition. In addition, a Taylor series expansion, with 

higher order terms assumed negligible, is used to determine the effect of 

these small perturbations on the aircraft. Fortunately, this small 

disturbance assumption applies to many cases of practical interest and, as a 

bonus, stability parameters and derivatives derived under this assumption 

continue to give good results for somewhat larger motions. 

The variables are considered to consist of some equilibrium value plus an 

incremental change, called the "perturbed value." The notation for these 

perturbed values is usually lower case. For example, 

P = P0 + p 

U = n + u 
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In summary, the small disturbance assumption is applied in three steps: 

assuming an initial (equilibrium) condition (described in subsection 

4.6.4.3.3), assuming vehicle motion consists of small perturbations about this 

condition and, using a first order Taylor series expansion (described in 

subsection 4.6.4.3.4) to determine the effect of these small perturbations. 

As an additional consequence, the small perturbation assumption allows us to 

decouple the longitudinal and lateral-directional equations as discussed in 

the next subsection. 

4.6.4.3.2 Longitudinal and Lateral-Directional Equations - It has been 

found from experience that, when operating under the small perturbation 

assumption, the vehicle motion can be thought of as two independent 

(decoupled) motions, each of which is a function only of the variables shown 

below. 

1. Longitudinal Motion 

(D, L, MA) = f (U, a, k,  Q, &e ) (4.84) 

2. Lateral-Directional Motion 

(V    LA'   NA>   =   f   (&'    3'    P'   R'    Sa'    6r> <4-85> 

The equations are grouped and named in the above manner because the state 

variables of the first group U, a, a, Q, Se are known as the longitudinal 

variables and those of the second group, ß, ß, P, R, Sa, and 8r, are known 

as the lateral-directional variables. With the conventional simplifying 

assumptions, the longitudinal and lateral-directional variables will appear 

explicitly only in their respective group. This separation will also be 

displayed in the aerodynamic force and moment terms and the equations will 

completely decouple into two independent sets. 

4.6.4.3.3 Initial Conditions - As stated earlier, we will assume that 

the motion consists of small perturbations about some initial equilibrium 

condition. The condition we will assume is steady straight symmetrical 

flight. This condition is a combination of the following motions: 

Steady Flight. Motion with zero rates of change of the linear and 

angular velocity components, i.e., 

U = V = W = P = Q = R = 0. 
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Straight Flight. Motion with zero angular velocity components, P, Q, and 
R = 0. 

Symmetric Flight. Motion in which the vehicle plane of symmetry remains 

fixed in space throughout the maneuver. The unsymmetric variables P, R, V, <f>, 

and ß are all zero in symmetric flight. Some symmetric flight conditions are 

wings-level dives, climbs, and pull-ups with no sideslip. In steady straight 

symmetric flight, the aircraft is assumed to be flying wings level with all 

components of velocity zero except uo and w0. Therefore, with reference to 
the body axis 

V
T - u

0 - constant 

W0 e small constant :. o^ = small constant 

V0 * 0 ;. ß0 = 0 

P0 = Q0 = R0 « 0 

We have already found that the equations of motion simplify considerably 

when the stability axis is used as the reference axis. This idea will again 

be employed and the final set of boundary conditions will result. This, 
therefore, is another 

ASSUMPTION;       VT « UQ  = constant 

W0  = 0  ;.  «„  * 0 

v0 =0  :. ß0 « o 

(p, M, Re, aircraft configuration) = constant 

4.6.4.3.4 Expansion By Taylor Series. As stated earlier, the equations 
resulting from summing forces and moments are nonlinear and exact solutions 

are not obtainable. An approximate solution is found by linearizing these 

equations using a Taylor Series expansion and neglecting higher ordered terms. 
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As an introduction to this technique, assume some arbitrary non-linear 

function, f(U), having the graphical representation shown in Figure 4.22. 

f(U) 

■*- u 

u. 

FIGURE 4.22. APPROXIMATION OF AN ARBITRARY 
FUNCTION BY TAYLOR SERIES 

A Taylor Series expansion will approximate the curve over a short span, AU. 

The first derivative assumes the function between AU to be a straight line 

with slope 3f(U0)/3U. This approximation is illustrated in Figure 4.23. 

SLOPE=^y_ 
du 

AU 

f(U) W+»AU 
U.+ AU 

FIGURE 4.23.  FIRST ORDER APPROXIMATION BY TAYLOR SERIES 
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To refine the accuracy of the approximation, a second derivative term is 

added. The second order approximation is shown in figure 4.24. 

KU) = «^-4^1 
U„+ AU 

2! au2 AU)2 

FIGURE 4.24.  SECOND ORDER APPROXIMATION BY TAYLOR SERIES 

Additional accuracy can be obtained by adding higher order derivatives.  The 

resulting Taylor Series expansion has the form 

f(U) U0   + AU    -    f<Uo> + 3f  (U°]  AU + 1_  8'f  <Po>   (AU)2  + 1_  a3f  <UQ)   (AU)3 

au 2!       3U2 3!     au3 

+  .   .   .  + 1_  8"f  {Vo)   (AU)n 

n!     au" 
(4.86) 

If we make AU smaller, our accuracy will increase and higher order terms can 

be neglected without significant error. Also since AU is small, (AU)2, (AU)3, 

(AU)n are very small. Therefore, for small perturbed values of U, the 

function can be accurately approximated by 

f(U) 
U0 + AU 

f(U0) + 
3f<Uo> AU 
au 

(4.87) 
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We can now linearize the aerodynamic forces and moments using this tech- 

nique. To illustrate, recall the lift term from the longitudinal set of equa- 

tions (L = -Fz ). From equation 4.84 we saw that lift was a function of U, a, 

a, Q, & . The Taylor Series expansion for lift is therefore 

L = 

+ ^AU 
3U 

1 32L 

2 3U2 

, 2LA   
1 ^ 

+ — Aa +  

AU2 

Aa 

+  

+  
2 3a 

Aa +  

3a 

+ * 
3a 

+ |« +  

+ -_r  AS +  36     e 

(4.88) 

where LQ = L (U0, a,, ^ , Q0, 5e ) 
o 

In small perturbation theory, each of the variables is expressed as the sum of 

an initial value plus a small perturbated value. For example 

and 

U = U0 + u, where u = AU = U - U0 (4.89) 

Therefore 

3u =    3(U-U0)    = 91-jfc 
3U 3U 3U      3U 

/ 

3L           3L  3u 
3U           3u  3U 

3L 
3u 

= 1 (4.90) 

(4.91) 

and 
AU = u 

The second term of the expression in equation 4.88 then becomes 
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Similarly 

fg AU - |£ u (4.92) 

iAQ= "I 9 (4-93) 

And all other terms follow. We also elect to let a = Aa, ä = Aa and 5 = AS . 
e      e 

Dropping higher order terms involving u2, q2, etc., Equation 4.88 now becomes 

da     ^      e 

Lateral-directional motion is a function of ß, ß, P, R, 5 , 6 and can be 

handled in a similar manner. For example, the aerodynamic terms for rolling 
moment become 

3La    3L     dL 3L    3L      3L .. ft_. »        .- A~      A J.      A        A        A.       A. (4 QSl LA = LA +  ß +  ß +  p +  r +  S +  5      K   'yo> 

0   3ß    as    3p    3r    35a 
a  3Sr 

r 

This development can be applied to all of the aerodynamic forces and moments. 

The equations are linear and account for all variables that have a significant 
effect on the aerodynamic forces and moments on an aircraft. 

The equations resulting from this development can now be substituted into 
the LHS of the equations of motion. 

4.6.5 Direct Thrust Forces and Moments 

Since thrust does not always pass through the eg, its effects on both the 
force and moment equations must be considered (Figure 4.25). 

The component of the thrust vector along the x-axis is 

3^. = T cos s (4.96) 

The component of the thrust vector along the z-axis is 

ZT = -T sin e (4.97) 
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THRUST LINE U 

HORIZON 

Zk (DISTANCE BETWEEN 
THRUST LINE AND CG) 

-Wilnfl 

FIGURE 4.25. 

The pitching moment component is, 

ORIGIN OF WEIGHT AND THRUST EFFECTS 
ON FORCES AND MOMENTS 

"r T (Zk)  = T Z, (4.98) 

where Zk is the perpendicular distance from the thrust line to the eg and t is 

the thrust angle. For small disturbances, changes in thrust depend only upon 

the change in forward speed and engine RPM. Therefore, by the same small 

perturbation analysis used for the aerodynamic forces 

T = T (U, 
RPM ' 

T = To + 
_3T 
3u 

u + 
_ST 
36. 
RPK 

RPM 

(4.99) 

(4.100) 

Thrust effects will be considered in the longitudinal equations only since the 

thrust vector is normally in the vertical plane of symmetry and does not 

affect the lateral-directional motion. when considering engine-out 

characteristics in multi-engine aircraft, however, the asymmetric thrust 

effects must be considered. Once again, for clarity, X^ and Z will be 

referred to as "drag due to thrust" and "lift due to thrust" (a = 0 

assumption in order to use the stability axes). They are components of thrust 

in the drag (x) and lift (z) directions. Thus: 
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• 

3T 3T 
*r    "    <To + 3uu +   |lEpH  W  (cos e) (4.101) 

3T 3T 
Z

T    -    <  To  +    3^ +   -3SRPM
5

HPM>   
(sine> (4-!02) 

*r    -    <To  + lEU + IIRpM  W   l\) (4.103) 

4.6.6 Gravity Forces 

Gravity acts through the eg of an aircraft and, as a result, has no 
effect on the aircraft moments. It does affect the force equations as shown 

in Figure 4.25. For longitudinal motion, the only variable to consider is 6. 
For example, consider the effect of weight on the x-axis. 

Xg = -mg sin 0 (4.104) 

Since m and g are considered constant, 9 is the only pertinent variable. 
Therefore, the expansion of the gravity term, x , can be expressed using the 
small perturbation assumption as 

3X xq = Xo + £ e   (X_  = equilibrium condition of X ) (4.105) 

For simplification, the term Xg will be referred to as drag due to 
weight, (Dwt). This incorporates the small angle assumption that was made in 
development of the aerodynamic terms; however, the effect is negligible. 
Therefore, Equation 4.105 becomes 

3D Dwt = Do  + _H e (4.106) 
wt   ae 

Likewise the z-force can be expressed as negative lift due to weight (L ), 
and the expanded term becomes 

3L Lwt = Lo  + _JH © (4.107) 
wt   39 

The effect of gravity on side force depends solely on bank angle (<f>),assuming 
small 9. Therefore, 
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y„t    =    Yo      +-?J11 * (4.108) 
wt       3<f> 

These component equations relate the effects of gravity to the equations of 

motion and can be substituted into the LHS of the equations. 

4.6.7 Gyroscopic Moments 

Gyroscopic effects are insignificant for most static and dynamic analyses 

since angular rates are not considered large. They begin to become important 

as angular rates increase (i.e., P, Q, and R become large). For spin and roll 

coupling analyses, they are large and gyroscopic effects must be considered. 

In this basic development of the equations of motion, however, they will be 

assumed to be negligible. 

4.6.8 Expanded LHS Equations 

Using the previous developments, the expanded LHS equations become 

•»* -IB0 + £» ♦ & + f, + §, + »«., + [To + »u + «  5„„, (cos „ 
3a ^ e "" RPM 

3D 
-  [D0       + -Sge] (4.109) 

wt 

LXFT»    -m  ♦ £„ ♦ Jia + Si + {§, + || 8. ] + [-T,   + fj, + «      W   (sin «, 

+ tLo    + feel (4.110) 
wt 

3tt 3Ma 3M  •        3Ma M« ._ 
«PITCH»    MA    + —u + -*-« + ^a + -A[ + -*-  8e ]  +  [T0   + |?u + j*      &RpM](Zk ) 

o       3u 3a a. 3q 3S 9u 96
RPM 

RPM      k 

3a ^ e 
(4.111) 

3YA 3YA 3YA 3YA 3YA 3YA 3Y 

"SIDE"   \ + W* + -$* + WP + ^r + ÜT*> + TTt*r + \t +   3**       (4'112) 

3L_ 3L. 3L& 3Lt 3La 3LX ,.  ,,_. 
•ROLL"    LA    +    «-ß + —ß + -g—p + ^—r + ^-Sa   +    -**-& 

A0 3P 3ß 9P 9r 95a    a 9Sr    r 

"YAW"      N 9%      9N
A. 9N

A 9N
A 9N

A5 ™ (4 114) 
o       3p .t 3p or 96    a       96    r 3p ^ a i 
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4.7 RHS IN TERMS OF SMALL PERTURBATIONS 

To conform with the Taylor Series expansion of the LHS, the RHS must also 

be expressed in terms of small perturbations. Recall that each variable is 

expressed as the sum of an equilibrium value plus a small perturbed value 

(i.e., U = U0 + u, Q = Q0 + q, etc.). These expressions can be substituted 

directly into the full set of the RHS equations (Equations 4.23 - 4.25, and 

4.59 - 4.61). As an example, the lift equation (z-direction of longitudinal 

equations) will be expanded. Start with the RHS of Equation 4.25 

Fz = m (W + PV - QU) (4.25) 

Substitute the initial plus perturbed values for each variable. 

Fz = m [W0 + w + (P0 + p) (V0 + v) - (Q0 + q) (U0 + u)]     (4.116) 

Multiplying out each term yields: 

Fz = m [W0 + w + P0 V0 + p V0 + P0v + pv - Q0 U0 - q U0 - QQu - qu]   (4.117) 

Applying the boundary conditions, (assumptions from subsection 4.6.4.3.3), 

simplifies the equation to 

Fz = m [w + pv - qU0 - qu] = m [w + pv - q (U0 + u)]        (4.118) 
or 

Fz = m [w + pv - qU] (4.119) 

Using this same technique, the set of RHS equations become: 

Longitudinal 

"DRAG":  m (u + qw - rv) (4.120) 

"LIFT":  m (w + pv - qU) (4.121) 

"PITCH": q I - pr (I - I ) + (p2 - r2) I (4.122) 
X z 
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Lateral-Directional 

"SIDE":     m (v + rU - pw) (4.123) 

"ROLL":      p I    + qr  (I    - I  ) -  (r + pq)  I (4.124) 

"YAW":        r Iz  + pq (Iy  - IJ + (qr - p  )  lxz (4.125) 

Which are valid for small perturbations about an equilibrium condition of 
steady straight symmetric flight. 

4.8 REDUCTION OF EQUATIONS TO A USABLE FORM 

4.8.1 Normalization Of Equations 

To put the linearized expressions into a more usable form, each equation 

is multiplied by a "normalization factor." This factor is different for each 
equation and is picked to simplify the first term on the RHS of the equation. 

It is desirable to have the first term of the RHS be either a pure 

acceleration (u, p, q, or r), or angular rate (a, or ß) and these terms were 

previously identified in equations 4.84 and 4.85 as the longitudinal or 
lateral-directional variables. As shown previously 

and 

w 
T 

ß=8- (4.18) 
T 

Since we have assumed that VT = U0 and VQ = W0 = 0, we have 

and 

i^U1 (4.126) 
o 

ß=J- (4.127) 

Table 4.1 shows the normalizing factors and subsequent equations of motion. 
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TABLE 4.1 

NORMALIZING FACTORS 

Normalizing 
Equation Factor 

First Term is Now 
Pure Accel/Ang Rate Units 

"DRAG" 

"LIFT" 

"PITCH" 

"SIDE" 

"ROLL" 

"YAW" 

m 

mU„ 

_1_ 
I 

mU„ 

I 

_1_ 
I 

 +22 + = U 
m  m 

mU0 
+ iu0

+       a 

r +_ + = q_ 

y   y 

YA   YT 

L
A h 

AT • _++ =r + 

sec 
(4.128) 

[fad 
lsecJ (4.129) 

[£ad 

sec 
(4.130) 

[£ad 
lsecJ (4.131) 

[rad2] 
sec 

(4.132) 

rad 
[sec2] (4.133) 

4.8.2 Stability Parameters 

Stability parameters are quantities that express the variation of force 

or moment on the aircraft caused by a distrurbance from steady flight. They 

are simply the partial coefficients (3L/3u, etc.) multiplied by their 

respective normalizing factors. They express the variation of forces or 

moments caused by a disturbance from steady state. Stability parameters are 

important because they can be used directly as numerical coefficients in a set 

of simultaneous differential equations describing the dynamics of an airframe. 

To demonstrate their development, consider the aerodynamic terms of the lift 

equation. By multiplying Equation 4.94 by the normalizing factor 1/mU , we get 

mU„ mU„ mU0   9u —   U   +   —r=-   -5-    a   +   —r= a   +   —rr-   -^-   Q   + 
mU0   3a mU0   ^ mUQ   3q y 1    IT-  *.   [5=1(4.134) mlL   3S 

0 e sec 

a 
L- a 
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The indicated quantities are defined as stability parameters and the 

equation becomes 

Jr = SFT + L„u + L a + L-°L + L„q + L* 5  tS?l     (4.135) mU„   mU„   u   a   a   q^  s e usec 
0 0 © 

Stability parameters have various dimensions depending on whether they are 

multiplied by a linear velocity, an angle, or an angular rate. For example, 

LU i^i u tggj - tig] 

L,    [X,.   [rad]    -rfff] 

L. [nonel i   ,1g,    -    ,1g, 
The lateral-directional motion can be handled in a similar manner.  For 

example, the normalized aerodynamic rolling moment becomes 

^=\+\ß+   %ß+   \p+   \r + L
A    5a + L

A    5r [15^]    (4.136) 
II a r see 
x     x 

where 

P    I 30     sec 
X    ^ 

These stability parameters are sometimes called "dimensional derivatives" or 

"stability derivative parameters," but we will reserve the word "derivative" 

to indicate the nondimensional form which can be obtained by rearrangement. 

This will be developed later in the chapter. See subsection 4.9 for a 

complete set of equations in stability parameter form. 

4.8.3 Simplification Of The Equations 

By combining all of the terms derived so far, the resulting equations are 

somewhat lengthy. In order to economize on effort, several simplifications 

can be made. For one, all "small effect" terms can be disregarded. Normally 

these terms are an order of magnitude less than the more predominant terms. 
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These and other simplifications will help derive a concise and workable set of 

equations. 

4.8.4 Longitudinal Equations 

4.8.4.1 Drag Equation. The complete normalized drag equation is 

Aero Terms Gravity Terms 

-[ o+Da+D. ä + Du + Dq + D. 5 ] - [   »t + n 91      a     a      u      q ^    6  e J      l       e J 

m em 

Thrust Terms 
r—■ " -N 

lr   m     .     3T       .   3T 
+ ml To +   "au u + a&— 5

RPH   3  <cos s>    =   u + qw - rv (4.137) 
RPM 

Simplifying assumptions 

1. _°_  cos e - 5>_ - °wt s 0    (Steady State, Sum to Zero) 
m       mm 

2. t-g^ u + -»g  SRPM](cos e) = 0  (Constant RPM, -^ is small) 
RPM U 

3. rv = 0 (No lat-dir motion) 
The small perturbation assumption 
allows us to analyze the longitudinal 
motion independent of lateral- 
directional motion. 

4. qw = 0 (Order of magnitude) 

5. D., and D are all very small, essentially zero. 

The resulting equation is 

- [Daa + Duu + De9 +D& SJ  = Ü (4.138) 
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Rearranging 

- [u + D u + D a + DQ0] = Dc & 
U       0:0 0   G 

e 

4.8.4.2 Lift Equation. The complete lift equation is 

(4.139) 

Aero Terms Gravity Terms 

rr 

- [      + L a + L.a + Lu+Lq + L£     81 + F 
wt 

mU, mü„ 
+ Le9 ] 

Thrust Terms 

r 
1 r m   3T    3T 

Simplifying assumptions 

&RPM ] (sine) = i + ^f (4.140) 

1. 

2. 

3. 

-Lo     + 

mu0 

0 
Mt 

mu0 

T -   o  sm e 
mu0 

3T 
3uU + 

3T 
35 

RPM 
«HP«           =      0 

Lee   « 0 

* 0 (Steady State) 

3T 
(Constant RPM,-5- is small) 

dU 

(Order of magnitude, for 
small 9) 

4. pv = 0 (No lat-dir motion) 

5   ay  = q 

The resulting equation is 

- [L a + L.a + L u + L q + L 5] = 
a     a    u     <3     6  e J 

e 

Rearranging 

-La- (1+L.) a - L u + (1 - 
« a      u 

(U = u0) 

a - q 

L ) q = L. 8 g  ^      be 
e 

(4.141) 

(4.142) 
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4.8.4.3 Pitch Moment Equation. 

-   + M
A 

a + \^ + \ u + \    5e + MA q + Thrust Terms 
y e q 

= q - pr (I*  -V   + 
(P2  - g'   >   Ixz (4.143) 

y y 

This can be simplified as before (using the simplifying assumptions). NOTE: 

For convenience, we will also drop the "A" subscripts. Thus 

q- Mqq-Maa- M&i - Muu  = M Se (4.144) 
h 
e 

We now have three longitudinal equations that are easy to work with. Notice 

that there are four variables, 9, a, u, and q, but only three equations. To 

solve this problem, 9 can be substituted for q. 

q = 9, and q = 9 

This can be verified from the Euler angle transformation for pitch rate where 

the roll angle, <f>, is zero. 

1        0 

= 9 cers <(>  + ^ sy\$  cos 9 

.*. q = 9 

This gives us another restriction to this development of the equations of 

motion: 

ASSUMPTION: The initial bank angle is zero, <f> = 0. 
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4.8.5    Lateral-Directional Equations 

The complete lateral-directional equations are as follows: 

YA 
o  + Y    ß + YA   ß + YA p + YA   r + YA     5a  + YA     8r 

HlUft P • P r & & up a r 

Y0 
2Ü + V    =      ß + rU " ^ (4.145) 

mUo U0 

-A.     +    LA  ß + L.   ß + L    p + L    r + L      S+L      S 

X 

6 
a r 

j P ß P r 8_ 6 

= P + qr (^ ^y) -  (r + pq)   \z (4.146) 
Jx I, 

A.     +    N    ß + N    ß + M   p + N    r + N      5    + N      S 

I P ß P r "6 "6 
a 

=    r + pq (_J[ jO + (qr - p) j^ (4.147) 
I, I z z 

In order to simplify the equations, the following assumptions are made: 

1. A wings level steady state condition exists initially.    Therefore, 
LA   ' NA   ' YA   '  and Yo      are zero- 

0 0 0 wt 

~ •        • ** 
2. p = <j>, p = <j> (0 ~ 0, see Euler angle transforma- 

tions for roll rate, equation 4.70) 

3. The terms YA ß, LA ß, and NA ß are all small, essentially zero. 
ß    p       ß 
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4  I"  ~ r u„  " r 

5. q = 0 

6. pw = 0 

(U * U0) 

(no pitching rate in the Lateral- 
Direction equations) 

(no longitudinal motion) 

NOTE: We will also drop the "A" subscripts for convenience. 

4.9 STABILITY PARAMETER FORM OF THE EQUATIONS OF MOTION 

Using the previous subsection, the equations of motion reduce to the 

following stability parameter form: 

Longitudinal Equations 

(6) (u) (a) 

"DRAG" -D
ee 

•LIFT"        (1-L   )   9 

"PITCH"   e - M e 
q 

"SIDE 
FORCE" 

(13) 

ß-Yßß 

- U -  D U -Da «    D.    S ö       e 
e 

- L u -  (1 + L.)   a - L a =    L.    S u a « &      e 
e 

- Mu - M.a -Ma = Mc   5 u a « 6       e 
e 

Lateral Directional Equations 

(♦) (r) 

- Yp^4> +  (l-Y)   r        -    Y6   Sa   + Y6   5r 

(4.148) 

(4.149) 

(4.150) 

(4.151) 

"ROLLING      - Laß 
MOMENT" ß" 

"YAWING"    -    NQ ß 

+ <f> - LJ - -=¥-r - L r =    Ls  8    + Lr  S p                  lx             r &a  a sr  r 

X.Z     " • • 

- T— ♦ - N * + r -    N r =NS6+NSS 1 P r g      a §      r 

(4.152) 

(4.153) 
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There are six unknowns and six equations. The terms on the RHS are now the 

inputs or "forcing functions." Therefore, for any input Se, 8a , or Sr, the 

equations can be used solved to get 9, u, a, ß, <f>, and r. 

Stability parameter data is usually the format found in textbooks or NASA 

published aircraft stability and control data reports. 

4.10 STABILITY DERIVATIVES 

The parametric equations give all the information necessary to describe 

the motion of any particular aircraft. There is only one problem. When using 

a wind tunnel model for verification, a scaling factor must be used to find 

the values for the aircraft. It is difficult, therefore, to compare aircraft 

using stability parameters. In order to eliminate this requirement, a set of 

nondimensional equations can be derived. This is best illustrated by an 

example: 

Given the parametric equation for pitching moment, 

6 - Mq6 - Muu - Maa - M&i = M& 5e (4.154) 
e 

Let us derive an equation in which all terms are NONDIMENSIONAL. 

The steps in this process are: 

1. Take each stability parameter and substitute its coefficient relation 

and take the derivative at the initial condition, with other 

variables (i.e. u, a, a, &e) held constant. From subsonic 

aerodynamics, 

M = C -pU2Sc = Mq + Mu + M.a + M a - Mt 8 
Z e 

(4.155) 

Looking at  the change  in this pitching moment due  to a change  in pitch  rate 
(as an example) at the initial conditions 

M=13M        =1        m    2 
3(C      1   p tfsc) 

\ 3q iy 9q 
(4.156) 
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Cm is the only variable that is dependent on q, therefore, 

M  = 
q 

pU/ Sc 3C 

9q 21 
(4.157) 

2. Nondimensionalize the partial term: 

3C n 
has dimensions = dimensionless 

= sec rad/sec 

To nondimensionalize the partial terms, certain compensating factors are 

customarily used (Table 4.2).  In this case, the compensating factor is 

tft] 
= sec 2U0 [ft/sec: 

Multiply and divide Equation (4.157) by the compensating factor and get 

M 
pu0

2 Sc 
c 

2U0 3C 

21 
y 

c 
2"o 

3q      ' =» This term is dimensionless   (4.158) 

Checking 
3C 

3(^9-) 9<2U0
) 

dimensionless 
ft/sec 
ft/sec 

= dimensionless 

This is called a stability derivative and is written 

3C 

9(%> 

The basic nondimensional form Cm  is important because correlation be- 
q 

tween geometrically similar airframes or the same airframe at different flight 

conditions is easily attained with stability derivatives (this cannot easily 

be done with stability parameters).  Additionally, aerodynamic stability 

derivative data from wind tunnel tests, flight tests, and theoretical analyses 

are usually presented in nondimensional form. 

Stability derivatives generally fall into two classes:   static and 

dynamic.  Static derivatives arise from the position of the airframe with 
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respect to the relative wind (i.e., CL , C, , Cn , q ).  Whereas, dynamic 

derivatives arise from the motion (velocities)"of tne airframe i.e., C , C . 
L. '  m 

r    P 

3. The entire term with stability derivative is 

"V Sc c 
M^ -  -21— 2ÜT C* «3 (4.160) 

4. We can do the same for each term in the parametric equation.  For 

example, 

H  = l» 
Iy 3u 

1 
3  (Cm   1  p U2   Sc) 

I 
y 

3u (4.161) 

Since both C   and U are functions of u, then 

pSc M     =  
21 3u 

M -    PSc    [U2 

21 

3C 

n         + 2C      Un   ] 0 m 0     J 

3u 0 

(4.162) 

(4.163) 

M      = pUn
2   Sc     r3C    ^ 2Cin   . 0 [      m   + 0 ] 

21 3u U„ 

(4.164) 

but Cm  = 0 since the initial conditions are steady state. The compensating 

factor for this case is 1/U. 

M u u 
PUQ  SC 

21 U„ 
3C m U (4.165) 

5. Once all of the terms have been derived, they are substituted into 

the original equation, and multiplied by 
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21 

PV   SC 

which gives 

21 

PV  SC (4.167) 

The compensating factors for all of the variables are listed in Table 4.2. 

Variable 

TABLE 4.2 
COMPENSATING FACTORS 

Compensating 
Factor Nondimensional Variable 

p (rad/sec) 
2U„ 

bp_ = b£ 
2U, 2U„ 

q (rad/sec) 

r (rad/sec) 

ß (rad/sec) 

a (rad/sec) 

u (ft/sec) 

a (radians) 

ß (radians) 

2tL 

2U„ 

2tL 

2U„ 

U„ 

none 

none 

eg _  ce 
2U, 2U„ 

br 
2U„ 

2U„ 

Ca 
2U„ 

u_ 
u„ 

a 

ß 

4.10  STABILITY DERIVATIVE FORM OF THE EQUATIONS OF MOTION 

The simplified equations of motion in stability derivative form are shown 

in Table 4.3. The derivation of these equations has been presented to give an 

understanding of their origin and what they represent.  It is not necessary to 
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be able to derive each and every one of the equations.  It is important, 

however, to understand several facts about the nondimensional equations. 

1. Since these equations are nondimensional, they can be used to 

compare aircraft characteristics of geometrically similar airframes. 

2. Stability derivatives can be thought of as if they were stability 

parameters.  Therefore, Cm  refers to  the  same   aerodynamic 
a 

characteristics as M , only it is in a nondimensional form. o 

3. Most aircraft designers and builders are accustomed to speaking in 

terms of stability derivatives. Therefore, it is a good idea to 

develop a "feel" for all of the important ones. 

4. These equations as well as the parametric equations (eq. 4.70 to 

4.72) describe the complete motion of an aircraft. They can be 

programmed directly into a computer and connected to a flight 

simulator. They may also be used in cursory design analyses. Due 

to their simplicity, they are especially useful as an analytical 

tool to investigate aircraft handling qualities and determine the 

effect of changes in aircraft design. 

5. Sometimes non-dimensional stability derivative data are tabulated as 

a function of a and Mach number to cover the entire aircraft flight 

envelope. Equations of motion for other than 1 g flight can be 

obtained from this format given a corresponding to a particular load 

factor. 

4.11 AIRCRAFT TRANSFER FUNCTIONS 

If the Laplace transform of the stability parameter equations of motion 

(subsection 4.9) are taken, assuming zero initial conditions, and the 

equations are written in matrix notation, the following equations result (in 

terms of stability parameters for the aircraft stability axis system): 
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Longitudinal Axis: 

s - Y. 

-L ß 

-ND 

"De -(S + D   ) '                u ' -D a 

(1-Lq)s -L u -(l+L.)s - L 
a 

S2   - M S 
q 

-M u -M S - M a 
a 

1-Directional Axes: 

Y
P 

-(YpS + Y+) U-Yr)     ■ 

S2   - Lp S 
I xz 

I    s     Lr 
X 

- 
I 

xz    7 
■=—S     - N  S 
I                      P 

S - N r 

" e " 
e 

u = h 
e 

a M6 
e 

[SJ   (4.174) 

' ß ■ 
a 

Y6 
r 

* = h a 
L6 r 

r N6 N6 

(4.175) 

The above matrix equations are all that are needed for transfer function 

derivation. As an example, the transfer function relating a to S is 

Vs) " !Os7 

which can be found from Cramer's rule as 

(4.176) 

G« (s)  = 
e 

-D„ 

(1-Lq)s 

S -Ms 
q 

-(s + D ) u ' 

-L 

-M Mt 

(4.177) 

-D„ 

(1-Lq)s 

S  -MS 
q 

-(S + D ) 

-L 

-M 

-D 
a 

-(l+L )s - L 
a 

a 

-M s - M 

where the determinant in the denominator yields the characteristic equation of 

the unaugmented aircraft. Similar derivations can be used to find any single 

input, single output transfer function for the longitudinal or 

lateral-di rectional axes. 
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4.12 AIRCRAFT TRANSFER FUNCTION DATA PRESENTATION 

Examples of three formats used to present aircraft transfer function data 

are shown in Figure 4.26 and Tables 4.4 and 4.5 for the lateral-directional 
axes of the A-7A. 

The data presented in Figure 4.26 can be used in the non-dimensional 

stability derivative equations. The data presented in Table 4.4 can be used 

in the dimensional stability parameter equations. Both approaches yield the 

same transfer functions. The data in Table 4.5 are presented in transfer 

function format already (body axis system in this case). The symbol A is the 

lateral-directional characteristic equation (denominator term). The numerator 

terms are presented as 

^utput( 

input v ' 

for example Kp (s) 
a 

is the numerator term for roll rate due to aileron deflection. l/r denotes 

real axis poles or zeros (discussed in Chapter 13). C and w denotes damping 

ratio and natural frequency of poles or zeros (regardless of the subscript in 

the table). These must be converted to the form 

s = - a ±  wdj (4.178) 

where 

a = C<on and wd = w / 1 - C2 (4.179) 

A is the root locus gain (discussed in Chapter 13) of the transfer function. 

For example, the transfer function 

P    K   (s) 
G6 (s> =   a (4.180) 

A (s) 
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at 0.6 Mach, sea level has the characteristic equation 

A(s) = (s + 0.0411)(s + 4.46) [s2 + 2(0.202)(2.91)s + (2.912)]  (4.181) 

or 

A(s) = (s + 0.0411)(s + 4.46) [s + 0.59 + 2.85J) (4.182) 

and 

N^ (s) = 28.4(s - 0.00234)(s2 + 2(0.217)(3.05)s + (3.05)2)    (4.183) 
a 

The units are radians for Sa and radians per second for p, or degrees for 5a 

and degrees per second for p, since both the input and output parameters have 

similar units. If the input and output parameters have different units, as is 

the case in the transfer function 

N*y(s) 
a 

then the units are feet per second squared for a and radians for 8 .  If in 

doubt, always assume radians for angular parameters. 

Tables 4.6 and 4.7 give typical values for stability derivatives. Note 

that the tables use the general body axes (not the stability axes) which use 

the forces X and Z, not L and D. 
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(i)- 

1.2 

Cfß 

Irädj 

-.12 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA 
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(rad) 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (continued) 
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(i) 

-.04 

(i) 
SEA LEVEL \ 

^            ^ 

»^ 35,0 DO FT 

-^ ; 

1 5,000 FT 

•2      .4      .6      .8      1.0     1.2 
M 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (continued) 
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(A) 

-.40 

y6. 

(A) 

1.2 

-.03 

6<= j^R ^L  (INCLUDES SPOILER EFFECTS) 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (continued) 

4.63 



.08 

(A) 
.04 

(£) 

.006 

.004 

.002 

-.002 

.004 
.2       .4 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (continued) 
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SEA LEV 

(A) 
.1 

 35.000 FT 

0      -2      •*       6      .8      1.0     1.2 

C'a, 

(A) 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (continued) 
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\rad <±) 
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-.04 

-.06 
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-.12 

FIGURE 4.26 TYPICAL STABILITY DERIVATIVE DATA (concluded) 
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TABLE 4.4 

LATERAL-DIRECTIONAL STABILITY PARAMETERS FOR THE A-7A 

Note: Data are for body-fixed centerline axes, dean flexible airplane 

FLIGHT CONDITION 

1 2 3 4 5 6 7 8 9 

b 0 0 0 15400 15,000 15,000 15300 35,000 35300 

M 025 0.6 05 03 03 05 LI 06 05 

Y/ -0.162 -0314 -0314 -0.122 -0.187 -0310 -0.435 -03847 -0.145 

Y6. 
-0.00274 -0.0105 -0.00857 -030150 -030655 -0.00691 -030216 -030267 -030427 

Y«, 
0.0430 0.0769 0.0626 03307 03537 a0550 03192 03267 03347 

Lß* -115 -443 -5ao -8.79 -293 -663 -713 -145 -303 

H -2.00 -4.46 -9.75 -138 -2.73 -6.19 -731 -1.40 -330 

k 1.18 1.15 138 0357 0368 0343 035» 0599 0363 

L6. 534 28.4 253 3.75 173 24.1 123 756 143 

H, 232 1L4 133 132 737 113 737 3.09 655 

Nß* 138 5.74 173 0548 3.12 103 215 138 4.72 

N
P 

-O.0870 -0.168 -0319 -0.0310 -0.116 -0307 -0.169 -0.0799 -0.112 

N, -0369 -0.905 -154 -0371 -0541 -0575 -133 -0347 -<U55 

N6. 0.402 Z08 136 0380 137 1.64 134 0352 131 

N6, -153 -8.61 -1L1 -136 -554 -830 -433 -254 -5.11 

*ß  c v/vT 
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TABLE 4.5 

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A 

Note: Data are for body-fixed centerline axes, dean flexible airplane 

FUGHT CONDITION 

1 2 3 4 5 6 7 8 9 

h 

M 

0 

025 

0 

0.6 

0 

05 

15.000 

03 

15,000 

0.6 

15.000 

0.9 

15,000 

LI 

35,000 

0.6 

.35*00 

05 

A 

1/T. 

1/TR 

0.0462 

1.62 

0237 

131 

0.0411 

4.46 

0202 

251 

0.0180 

9.75 

0218 

4.68 

0.0449 

0568 

0231 

1.65 

0.0435 

2.71 

0.156 

229 

0.0214 

6.17 

0.175 

a66 

0.0102 

7.15 

0.189 

5.03 

0.0319 

128 

0.114 

131 

0.0191 

252 

aus 
238 

* A, 

WP 

534 

-0.0219 

0217 

1.49 

28.4 

-O.00234 

0217 

at» 

252 

-0.00113 

0222 

4.91 

are 
-0.0232 

0.191 

127 

17.6 

-0.00347 

0.173 

234 

24.1 

-0.00144 

0.176 

337 

123 

-0.00137 

0.173 

533 

756 

-0.00718 

0.122 

1.62 

142 

-0.00241 

0.124 

264 

A<£ 5.42 

0210 

151 

283 

0217 

3.05 

252 

0222 

451 

331 

0.183 

129 

17.7 

0.173 

234 

24.1 

0.177 

337 

123 

0.175 

532 

&04 

0.119 

1.62 

143 

ai24 

2.64 

N6 
1 

Ar 0.402 

0596 

0.0852 

235 

2.08 

1.12 

0287 

229 

136 

1.13 

0597 

326 

0280 

0.445 

0.146 

2.18 

137 

0.777 

0.151 

2.13 

1.64 

0.944 

0.446 

2.78 

1.04 

0381 

0.638 

a98 

0.652 

0.420 

0.0198 

2.03 

1.01 

0393 

0.193 

245 

< 
Aß 

^3 

-0.00274 

(0.885) 

(0.667) 

-233 

-0.0105 

326 

-0.627 

63.1 

-0.00857 

7.76 

-0254 

782 

-0.00150 

(0.726) 

(0.471) 

-391 

-0.00655 

221 

-133 

232 

-O.00691 

5.77 

-0245 

863 

-0.00216 

10.7 

-0.113 

188 

-0.00267 

a793 

-0.422 

-147 

-0.00427 

(0372) 

(103) 

-0545 

»I 
CG 

\ 

VT.   («, ) 
*y2    V2 

«, (VT. ) 

-0.766 

(0.943) 

(0.648) 

0.0696 

637 

-7.06 

229 

552 

-0310 

L76 

-161 

-1.16 

-134 

(i65) 

(10.7) 

-0.477 

(0.758) 

(0.461) 

0.0673 

7.10 

-4.16 

132 

3.12 

-0294 

159 

-638 

-0396 

-266 

(a79) 

(~*63) 

-231 

-0.146 

-753 

0397 

931 

-136 

0290 

0561 

0.0499 

352 

-0.0374 

(0.801) 

(234) 

-0.113 

130 

4.66 



TABLE 4.5 (concluded) 

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A 

Note: Data are for body-fixed centeriine axe«,'dean flexible airplane 

PUGHT CONDITION 

1 2 3 4 s    - 6 7 8 • . 

h 

M 

0 

025 

0 

06 

0 

05 

15.000 

03 

15500 

06 

15500 

05 

15,000 

LI 

35,000 

03 

35500 

05 ' 

A 

i/r. 

fa 

00462 

152 

0237 

131 

O0411 

446 

0202 

251 

O0180 

8.75 

0218 

4.68 

05449 

0568 

0231 

135 

O043S 

2.71 

0156 

239 

O0214 

6.17 

0175 

336 

00102 

7.15 

0189 

553 

O0319 

128 

0114 

LSI 

05191 

252 

0128 

238 

t 222 

^0.0224 

258 

-338 

1L4 

-0.00242 

535 

-531 

132 

-000117 

831 

-738 

183 

-O0237 

233 

-2.79 

737 

-0.00352 

431 

-445 

113 

-000147 

633 

-433 

737 

-000141 

536 

-435 

359 

-000723 

316 

-344 

635 

-050343 

439 

-43« 

< 
A^ 

i/fy 

134 

2.78 

-4.11 

109 

537 

-533 

123 

839 

-8.18 

145 

2.48 

-348 

639 

435 

-438 

103 

634 

-637 

753 

533 

-4.76 

2.75 

337 

-3.79 

631 

443 

-^431 

* 

r. 

-153 

1.13 

0538 

1.02 

-8.61 

433 

0475 

0642 

-1L1 

937" 

0.674 

0302 

-136 

0553 

0414 

1.17 

-534 

235 

0473 

0735 

-830 

6.12 

0335 

0541 

^433 

731 

O790 

0381 

-254 

0578 

O440 

112 

-5.11 

234 

0526 

0585 

< 
Aß 

Wß3 

O0430 

-0.0624 

1.73 

54.7 

00769 

-0.00199 

4.45 

120 

0.0626 

0.000266 

9.76 

186 

O0307 

-0.0603 

L14 

633 

O0537 

-0.00616 

2.70 

113 

O0550 

0000578 

6.17 

170 

O0192 

050271 

7.11 

272 

O0267 

-05178 

132 

110 

05347 

-000216 

254 

160 

»I 
CG 

12.0 

-0123 

187 

-ZOO 

180 

5L5 

-O.0145 

443 

-457 

652 

625 

-0.00502 

937 

-734 

#37 

9.74 

-0.108 

137 

-156 

2.45 

34.1 

-0.0227 

239 

-339 

430 

523 

-0.00654 

6.16 

-5.78 

«30 

224 

0500648 

756 

-651 

103 

153 

-05436 

136 

-238 

231 

304 

-4.0107 

257 

-331 

430 

4.69 



TABLE 4.6 

TYPICAL VALUES FOR LONGITUDINAL STABILITY DERIVATIVES 

STABILITY 
DERIVATIVE EQUATION 

TYPICAL 
VALUE 

C«u ~2CD~U0[ acD/ du] -0.05 

CL-[ dCD/3a J +0.1 

C*u -2cL-u0[ acL/ du] -.05 
C*„ -cD-[ acL/ 3a] -4 

C'ci -1 

s -2 

Cmu Neglect for Jets 

ma -0.3 

■"a -3 

S -8 

NOTE: EFFECTS OF Cm. AND Cmq ARE USUALLY COMBINED WHEN USING 

FLIGHT TEST DATA. 

TABLE 4.7 

TYPICAL VALUES FOR LATEPAL-DIRECTIONAL STABILITY DERIVATIVES 

STABILITY TYPICAL 
DERIVATIVE VALUE 

% -0-6 

C|0 -0.06 

Clp -0.4 

C,r +0.06 

Cna +0.11 

'p 

C. -0.12 

C„p -0.015 

"r 

Cy_ Neglect 
'p 

Cyr Neglect 
4.70 



4.13 LIST OF ABBREVIATIONS AND SYMBOLS 

Symbol      Definition 

A Gain of root locus transfer function 

b Wingspan 

c Mean Aerodynamic Chord: The theoretical chord for a wing which 
has the same force vector as the actual wing (also MAC). 

c9 Center of Gravity:  common name for the aircraft's center of 
mass. 

D          Drag:   The component of the resultant aerodynamic force 
parallel to the relative wind.   It must be specified 
whether this applies to a complete aircraft or to parts 
thereof. 

Dwt Drag due to weight. 

D0 Initial drag due to weight. 
wt 

f function 

F Applied force vector. 

Fx'Fy'
Fz     Components of applied forces on respective body axes. 

g Local gravitational vector where g is the magnitude of the 
acceleration due to gravity. 

G Applied moment vector. 

Gx,Gy,Gz Components of the applied moments on the respective body axes. 

H Angular momentum vector. 

Hx/Hy,Hz Components of the angular momentum vector on the body axes. 

i, 3,  E Unit vectors in the body axis system. 

Ix/Iyflz     Moments of inertia about respective body axes. 

(Example: ix = Jv pA (y2 + z2) dV) 

Ixy'IyZ'
Ixz   Products of inertia, a measure of symmetry. 

(Example: ixy = I yx = Jv xypAdV) 
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Symbol      Definition 

L Lift: The component of the resultant aerodynamic force 
perpendicular to the relative wind. It must be specified 
whether this applies to a complete aircraft or to parts 
thereof. 

L
A' 

M
A' 

N
A   Aerodynamic moments about the x, y and z vehicle axes. 

Loth'Moth'Noth other m°ments about the x, y and z vehicle axes. 

\,  M^,, NT    Thrust moments about the x, y and z vehicle axes. 

L; or 1     Rolling moment. 

Lwt Lift due to weight 

L0 Initial lift due to weight 
wt 

LHS Left hand side - the side of the equations of motion which 
represents the applied forces and moments on the aircraft. 

M Mach number 

M, or m Pitching moment 

m mass of aircraft 

N, or n Yawing Moment 

P,Q,R Angular rates about the x, y, and z vehicle axes. 

po' Qb' Ro Initial angular rates. 

P/q/r Perturbed values of P,Q,R, respectively. 

r Position vector measured from the eg. 

Re Reynolds number. 

RPM Revolutions per minute, used to indicate engine throttle 
setting. 

RW Relative wind 

RHS Right hand side - the side of the equations of motion which 
represents the aircraft's response to the applied forces and 
moments. 

s Laplace transform variable. 

S Wing area. 

t Time 
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Symbol Definition 

T Thrust; temperature; time constant 

T0 Initial thrust. 

U,V,W Components of velocity along the x, y, and z vehicle axes. 

uo,vo ,wo Components of velocity along the x, y, and z vehicle axes at 
zero time (i.e., equilibrium condition). 

u,v,w Small perturbations of U,V,W, respectively. 

X Vector cross product. 

V Aircraft volume 

V velocity 

VT True velocity (the velocity of the relative wind). 

wt Weight. 

X,Y,Z Axes in the earth axis system. 

X,Y,Z Aircraft velocities in the inertial coordinate system. 

\'\'\ Aerodynamic forces in the vehicle axes. 

X ,Y ,Z Gravity force in the vehicle axes. 

X ,Y ,Z Initial gravity forces, 
o  o  o 

Xoth'Yoth'Zoth Other forces in the vehicle axes. 

Xr,YT,ZT Thrust forces in the vehicle axes. 

x,y,z Axes in the body axis system. 

x
s'ys'

zs Axes in the stability axis system. 

Ywt Side force due to weight. 

YQ Initial side force due to weight. 
wt 

Zk Distance between the thrust line and the eg. 

p Air density. 

pA Mass density of aircraft. 

a Angle of attack, also a small perturbation in a. 
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Symbol Definition 

cxp Initial a. 

ß Sideslip angle, also a small perturbation in ß. 

ß0 Initial ß. 

A Characteristic equation;  also used to denote a change in a 
variable. 

Sa,$e,Sr     Deflection angle of the ailerons, elevator, and rudder, 
respectively, also small perturbations in these values. 

5
RPM Change in engine throttle setting. 

c Thrust angle. 

o Total damping, a = C« . 

C Damping ratio. 

^/6/<J> Euler angles: yaw, pitch, and roll, respectively. 

<ö Total angular velocity vector of an aircraft. 

% damped natural frequency. 

wn natural frequency. 

therefore. 
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PROBLEMS 

4.1. Draw in the vectors V , Ü, V, W, and show the angles a and (3. 

Derive a =  W/VT and ß   a V/VT using the small angle assumption. 

4.2. Define "right hand" and "orthogonal" with reference to a coordinate 
system. 

4.3. Define "moving" earth and "fixed" earth axis coordinate systems. 

4.4. Describe the "body" and "stability" axes systems. 

4.5. Given F = d/dt mVT , F is a force vector, m is a constant mass, and 

VT is the velocity vector of the mass center. Find F , F , and F 
_______       xyz 

(if VT = Ui + Vj + Wk and w = Pi + Qj + Rk) with respect to the 

fixed earth axis system. 

4.6. Given H = Jv pA (r X V) dv where pAdV is the mass of a particle, with 

r as its radius vector from the eg, and V as its velocity, with respect 

to the eg. Find Hx with respect to the fixed earth axis system. 

4.7. Write H in terms of I , I , and I , given: 
X J'    XV' X 7.   '       3"*" —"• 

\     =  J"v PA (y2 + z2 ) dV 

x '      xy '       x z 

"v PA 

\y     =     Jv   PA (xy)   <fr 

JxZ     =     Jv   PA <XZ)   & 
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4.8.  Draw the three views of a symmetric aircraft and explain why I   =0, 

Iyz = 0, and Ixz t    0. What is the aircraft's plane of symmetry? 

4.9. Using the results from Problems 4.7 and 4.8, simplify the Hx equation. 

4.10. If G = dH/dt | xyz, use the following: 

Hx " <PIx -RIxZ) 

Hy " *\ 

H  =  (RI - PI  ) 
z Z        X Z ' 

to derive Gx , Gy, and Gz. 

4 .11 Define: 

a. L 
b. M 

c. N 

d. P 

e. Q 

f. R 

4.12. Define *, <(>, e. What are they used for?  in what sequence must they be 
used? Explain the difference between y and ß. 

4.13. What are the expressions for P, Q, R, in terms of Euler angles? 

4.14. Make a chart that has 5 columns and 6 rows. The columns should contain 

the terms of the left hand side of the equations of motion. Also, name 

each equation (pitch, drag, etc.). Fill in all terms. 

4.15. What is the difference between straight flight and steady straight 

flight? 
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4.16. D, L, H - f(  ,  ,  ,  ,   ) 

Y, L, N = f(  ,  ,  ,  ,   ,   ) 

4.17. Write L/mU in terms of the stability parameters. Define L , L , L., 
u    a '   a 

g '  6 
e 

4.18. Repeat 4.17 above for the other 5 equations. 

4.19. Given       -?- =  M u +  M a + M,ä + M, S + M q T u        a       a      6  e     q ^ 
y e 

Where 

1   3M 1  3M    „   1 3M 
u        I    dU<*     I   da       a    I  «• 

y y y 3a 

1  3M 1  3M M&  = ,    M  =   
e    Iy 35e        

q    I  3q 

Find: C , C , C , C  , and C ; 
u     a a 6 g 

(Note: the compensating factor for u is 1/U0, a and 5e's compensating 

factor is 1, and i and q's compensating factor is c/2U0). 

4.20. Repeat Problem 4.19 for 

(a)     |- 
X 

<b)     f 
z 

(Note: The compensating factor for (3, 5e , and Sr is 1. The 

compensating factor for ß, p, and r is b/2U0). 
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4.21.    Given the following representative wind tunnel data: 

De = 32.2 

D = 0.0000848 
cc 

L = - 0.0000385 

L6    =    - 0.157 
e 

M.    =    0.00104 

M6    =    - 18.9 
e 

M      =    - 0.0143 

Find   a) A 

D u = - 0.00620 

L = 0 

L a 
= - 1.16 

M 
q 

= - 0.696 

M. 
a 

= - 0.000210 

L. 
a = 0 

D6 = 0 

b) GA   (s) 

O  G|   (s) 

d) Na (s) 
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