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ABSTRACT 

Time-Frequency Analysis in Radar Backscatter Problems 

by 

Christopher Joseph McCormack 

Co-Chairs:    William J. Williams, Valdis V. Liepa 

Time-frequency techniques provide new and unique insights for analyzing electromag- 

netic scattering problems. These techniques transform functions of time or frequency into 

two dimensional functions of both time and frequency to reveal non-stationary charac- 

teristics of the signal. The theory developed herein justifies applying the frequency-time 

transform to wide bandwidth signals illuminating stationary targets. The frequency-time 

representation of the return provides more information about the target and the scattering 

than regular Fourier analysis. Along with the position of the scattering centers, frequency- 

time analysis gives insights on the target's composition and configuration. In addition, 

the performance of these transforms when applied to noise are examined and quantified. 

The statistics of a Cohen's class time-frequency transformation are derived and verified nu- 

merically. Applying the time-frequency techniques to sampled continuous-wave radar data 

from a dynamic target provides insight into target motion and generate estimates of the 

target parameters. After considering a figure of merit for evaluating the time-frequency 

distribution, a customized kernel, determined using a genetic algorithm, is used to improve 

the performance of the standard spectrogram, the Wigner distribution, and the binomial 

distribution. 
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CHAPTER 1 

INTRODUCTION 

1.1    Analysis Domains 

Many different representations may be used to analyze signals. The transformation of a 

signal from one form to another may allow simplification of the math (for example, replacing 

convolutions with multiplications), or it may provide better insight into the behavior of a 

signal (or system) by relating the measured signal to expected signal characteristics. 

Some commonly used one-dimensional transforms include the Fourier transform, the 

Laplace transform, and the Z-transform. Another type of transform moves from one di- 

mension to multiple dimensions. These multidimensional transforms also include Cohen's 

class of time-frequency distributions [12, 32] and the wavelet transform [6, 32]. 

1.1.1    Time Domain 

The time domain representation for a signal typically represents the most natural form 

of a signal. Conditions of readability force any real-world signal to have finite starting 

and ending times. This domain also relates directly to the direct measurements that can 

be obtained. The time domain representation provides the simplest view of aperiodic or 

non-stationary signals. 

When accurately measured, the time domain of the signal contains all the information 

available in the signal. Other domains might make certain relationships more clearly visible, 

but no additional information is generated. 



1.1.2 Frequency Domain 

Fourier analysis is normally introduced by starting with a function of time, g(t), and 

finding an equivalent function of frequency, G(f). This uses the Fourier integral to substi- 

tute a dependence on the frequency variable / instead of the time variable t. The frequency 

domain representation emphasizes the periodic aspects of a signal. For linear system anal- 

ysis, this provides a valuable analysis tool, both for insight into the nature of a system or 

signal and for evaluation of a system's response. 

It is important to remember that the frequency domain representation is a mathematical 

concept. Theoretically, a finite time signal will have a frequency domain representation that 

is not band limited. Infinite frequency limits are not a problem when the Fourier domain 

is treated mathematically. 

1.1.3 Time-Frequency Domain 

While both the time and frequency domain representations of a signal are complete, 

certain relationships are more apparent in the time domain (signal transitions, starts, and 

stops), while other effects are easier to identify in the frequency domain (noise level, signal 

bandwidth). Time frequency analysis attempts to maintain both time and frequency as 

joint variables to show relationships based on their interactions. 

1.2    Scattering Problems 

Time-frequency representations have been used extensively for analyzing non-stationary 

systems where the signal spectra varies as a function of time. In some cases, the objective 

was to characterize individual components of the signal. In other cases, the overall patterns 

in the time-frequency representation served as the metric for making decisions about the 

signal [1, 12]. 

Most of the work using time-frequency techniques has focused on biological and biomed- 

ical signals [1, 43]. Very little had been done to address the use of these transforms for 

problems involving electromagnetic scattering. The remainder of this dissertation explains 

the application of different time-frequency procedures to several different types of scattering 

problems. 



1.2.1 Dispersive Phenomena 

Traditional signal analysis for signals resulting from electromagnetic scattering assumes 

stationary, non-dispersive medium. Standard frequency domain techniques cannot properly 

identify effects which vary as a function of frequency. This is important for most non- 

idealized scattering targets. The dispersive nature of non-metallic materials and complex 

scattering modes tends to smear the transformed response. Time-frequency techniques allow 

the tracking of these effects. 

1.2.2 Dynamic Targets 

The basic Fourier transform assumes signal stationarity in the sense that the frequencies 

of the signal components do not change with time. For a dynamic target, this is a poor 

assumption. Using time-frequency techniques to analyze non-stationary targets maintains 

the signal's relationship to time while displaying how the frequency content of the signal 

varies with respect to time. This shows how the target movements drive the scattered 

spectrum. 

1.2.3 Noise Corrupted Signals 

When considering signal processing techniques, the usefulness of these techniques has to 

be evaluated with respect to contaminated signals. Most radar and remote sensing systems 

are noise-limited in their performance [36]. It was important to examine how well time- 

frequency analysis techniques operate in a noise-filled environment. These distributions 

tend to be very sensitive to noise when trying to track scattering modes containing very 

low signal levels. 

1.2.4 Customized Kernels 

In most sections of the dissertation, the signals were processed using standard kernels 

such as the Wigner, the spectrogram, and the binomial. This section looks at the use of 

customized kernels to generate the time-frequency representation. A genetic algorithm was 

developed which maximized the third-order Renyi entropy for the time-frequency distribu- 

tion. This customized kernel provided performance similar to a binomial and consistently 

exceeded the binomial and the Wigner distribution when evaluated. 



1.3    Summary 

Time-frequency techniques clearly demonstrated their value for analyzing radar based 

signals. For stationary targets examined with a swept frequency signal, these techniques 

can isolate different scattering centers and scattering modes. For dynamic targets, they 

provide a view of the target's dynamics unavailable in regular Fourier analysis. 



CHAPTER 2 

BACKGROUND 

This chapter outlines the basic mathematics developed and used in this research. Start- 

ing with the Fourier transform to move between the time and the frequency domains, the 

idea of changing domains to gain insight for a signal is extended to joint time-frequency 

and frequency-time domains. 

The chapter also examines the history of time-frequency analysis and discusses earlier 

developments and applications of these techniques. 

2.1    Traditional Spectral Analysis 

The Fourier transform and inverse Fourier transform are a set of relationships which 

allow representing a function in two different domains. The time, or temporal, domain 

uses time as the independent variable. For the frequency, or spectral, domain, frequency 

serves as the independent variable. Converting a time function into its frequency domain 

representation simplifies many operations and provides insight into different aspects of the 

signal that may be difficult to discern from the time domain representation. 

2.1.1    Standard Usage 

The Fourier transform is given by 
/oo 

j(T)e-«r<lT (2.1) 
-oo 

The corresponding inverse transform is 
/oo 

G(X)e^xtd\ (2.2) 
-00 

Different disciplines employ various permutations of the Fourier transform relationships. 

By using / to represent the frequency (in hertz), the transform equations above avoid a 



factor of 1/27T that appears when working with u (in radians/sec) as the frequency vari- 

able [15]. 

For discrete signals, the relationship takes a series format to relate the frequency domain 

series G{p) with the time domain series g(n) 

G{q) = £ 9(n)e-j^n (2.3) 
n=0 

where p represents the frequency index and n represents the time index. 

The corresponding inverse transform is 

g(t) = ^ G(q)e^ (2.4) 
q=0 

This discrete form treats the original g(n) as evenly spaced samples of a periodic signal. 

If the samples are taken AT seconds apart, and there are N samples covering one period of 

the signal, then in the frequency domain the samples of the spectrum will be spaced 1/AT 

hertz apart, giving a frequency resolution of AF. The spectrum will also be periodic, with 

N distinct values. When dealing with two-sided spectra, the frequency range typically is 

taken from -{N/2)AF to (iV/2 - 1)AF. 

2.1.2 Power Spectral Density 

The signal information in the frequency domain is split between the real and imaginary 

portions of the spectrum. It is often more convenient to work with the power spectral 

density, a real-valued representation equivalent to the magnitude squared values of the 

Fourier transform. It can be obtained calculating the spectrum first 

Sx(f) = \Hx(t)}\2 (2-5) 

or by taking the Fourier transform of the signal's autocorrelation function 

Sx(f) = F[RX(T)} (2.6) 

where the autocorrelation is defined as 

Rx(r) = £^ x (t + 0 x* (t - 0 dt (2.7) 

2.1.3 Limitations 

The Fourier transform has proved itself to be a powerful and useful analysis tool, but it 

does have limitations when applied to complicated signals. Fourier transforms are poorly 



suited for non-stationary signals. Although no information is lost when transforming a 

signal across domains, certain aspects and characteristics can be obscured and difficult 

to interpret. For instance, a particularly difficult aspect to distinguish with traditional 

Fourier transforms are changes in the signal's frequency, either due to the signal starting 

and stopping, or moving from one frequency to another. 

2.2    Time-Frequency Analysis 

Several methods exist for extending the basic ideas of the Fourier transform to ade- 

quately represent non-stationary signals. Instead of completely removing the dependence 

on the original independent variable, it is carried over and combined with a second inde- 

pendent variable. So instead of the transform 

A\g(x)] = G(y) (2.8) 

the new transformation gives 

B[g(x)] = G(x,y) (2.9) 

There have been many different transformations developed to provide this joint fre- 

quency representation. A large family of these, collectively known as Cohen's class, share 

many characteristics and cover the most popular time-frequency transformations [11, 12]. 

These transforms can be calculated via the ambiguity domain or via the autocorrelation 

domain. 

2.2.1    Ambiguity Domain Signal Transformations 

The time-frequency transformations used in this study are members of Cohen's class. 

These transformations generate a two-dimensional function of time and frequency which 

represents the signal energy per unit time per unit frequency [11]. Members of this class 

have the general form [7] 

Cg(t,"A) = ^ /_" fl /_~ e*"-™-^, T)g (p + 0 g* (/x - |) d/idr«    (2.10) 

and move from the time-valued function, g(t), to a function representing the distribution 

of the original signal in a mixed time-frequency domain. The resulting function of time 

and frequency, Cg(t,Lj,<f)) depends on </>(U),T), the transformation kernel chosen. This can 

be modified slightly to use non-radian frequencies by substituting u —* 2nf and £ —> 2irv. 



Applying this to the previous equation gives 

Cg(t, f, </>) = |" |^ /_" ^(^-ar/r-ar^)^ ^ ^ + 0 5* ^ _ 0 ^„fc,   (2.U) 

A Cohen's class transformation can be viewed as having three steps: moving from 

g(t) —> A9(V,T), applying a weighting function, and using a double transformation to go 

from Ag(u,T) -> Cg(t,f). 

The first step moves the signal from the time domain into a two-dimensional domain, 

similar to the ambiguity domain used in radar signal analysis [36, 47]. In the radar context, 

r represents a time shift, and / is a frequency shift. 

/oo 
g{t)g*{t + r)e^^dt (2.12) 

-00 

The first sub-transformation with Cohen's class gives something slightly different from 

the definition in equation 2.12. It is called the symmetric ambiguity function and is defined 

to be 

=   X>,r)e-^ 

(2.13) 

(2.14) 

Once the signal is moved to this ambiguity domain, a kernel function, (J)(U,T), is ap- 

plied. The choice of this kernel determines what kind of time-frequency transformation is 

used. Table 2.1 lists several of the distributions discussed by Cohen [12], along with their 

transformation kernels and some properties. 

Distribution Kernel Resolution Cross 

Name 4>(V,T) Time    Frequency Terms 

Wigner-Ville 1 High        High High 

Spectrogram Jh*{u-^)e-^uh{u + ^)du Low         High Low 

Exponential e-firVa High        High Low 

Table 2.1: Selected TF Kernels 

Each of the three distributions listed has desirable properties and liabilities. The spec- 

trogram, also called the short time Fourier transform, involves a direct tradeoff between 

time and frequency resolution. Depending on the chosen window, h(r), this time-frequency 

distribution can provide very high frequency resolution but only at the cost of poor tempo- 

ral resolution. It often provides an unrealistic viewpoint of the time-frequency structure of 

complex signals [40]. 



The second distribution, the Wigner, was introduced in the context of quantum me- 

chanics [42] and later adapted and applied to signal processing [39]. The Wigner-Ville 

distribution in general provides the highest time and frequency resolutions. The drawback 

when using this form is the presence of significant cross terms between all possible groups of 

actual signal components. This causes significant clutter and confusion when complicated, 

multi-component signals are analyzed [13, 14, 19]. 

The exponential distribution is a Reduced Interference Distributions, or RID. The goal of 

a RID is to maintain high time and frequency resolution while minimizing the contribution 

from cross terms [7]. 

2.2.2 Autocorrelation Domain Signal Transformations 

In many cases, it is convenient to work with the transformation in a different form. 

Instead of moving the signal into the ambiguity domain, the kernel can be applied using a 

convolution in the autocorrelation domain. In this case, the time frequency distribution is 

given by [21] 
/oo 

R'g(t,r)e-^dT (2.15) 
-oo 

using 

and 
/oo 

<^{v,T)e-^vtdv (2.17) 
-oo 

By defining the local autocorrelation function 

'   R9(t,T)=9(t + ^j9*(t-^j (2.18) 

this can also be written as 
/oo 

Rg(t, r) ®t M*, r)e-i2*fTdT (2.19) 
-oo 

Knowing the autocorrelation domain representation of the kernel allows one to determine 

the joint time-frequency representation with only two computationally intensive operations, 

a convolution and a Fourier transform, instead of the three Fourier transforms required by 

the original formulation in equation 2.11. 

2.2.3 Sampled Signal Analysis 

Since most work involves sampled data, the transformations take on slightly different 

discrete forms, with discrete transforms, as shown in equations 2.3 and 2.4, replacing the 



continuous transforms in equations 2.11 and 2.19. The ambiguity domain based expression 

becomes 

C9^P) = 4 £ £ £ » (™ + * V (™ ~ *) #,, /)e-^e-^V^       (2.20) 

while the autocorrelation domain expression is given by 

P— 1 OO , J v • 7 v 

C9{n,p)=    £      £*(*+ £)*•(*-^(n-M)^*1'' (2.21) 
(=0       k=-oo 
even i 

These formulations exhibit the same basic properties as seen in their continuous coun- 

terparts [21]. A major difference is the sampled signal is assumed periodic, with the period 

length matching the signal vector g(n). The overall effect is to generate a two-dimensional 

time-frequency distribution which is periodic in both directions. Properly defining the 

summation limits is essential to avoid problems of aliasing. 

2.3    Desirable Time-Frequency Distribution Properties 

When considering different time-frequency distributions, there are several desirable 

properties we would like the distribution to exhibit. They range in importance, with dif- 

ferent kernels satisfying different properties. Ideally, this joint distribution would behave 

as a power or energy density function and would share properties found in two-dimensional 

probability density functions. Table 2.2 lists these properties. 

2.3.1 Non-Negative 

Since the time-frequency distribution can be viewed as an energy density distribution, 

it does not make sense for any values in the time-frequency plane to be negative. If these 

negative values can be accepted as a numerical artifact, loosening this requirement makes 

meeting the other properties possible. 

The only common time-frequency kernel to support this property is the spectrogram [22]. 

2.3.2 Real Valued 

Since the time-frequency distribution is related to the energy spectral density, all values 

should be real. To achieve this, the time-frequency kernel possesses Hermitian symmetry 

with respect to v and r in the ambiguity domain 

^,r) = 0(-zv,-r) (2.22) 

10 



PO Non-Negative 

PI Real Valued 

P2 Time Shift Invariant 

P3 Frequency Shift Invariant 

P4 Time Marginal 

P5 Frequency Marginal 

P6 Instantaneous Frequency 

P7 Group Delay 

P8 Time Support 

P9 Frequency Support 

PIO Reduced Interference 

Table 2.2: Desirable Distribution Properties 

and possesses Hermitian symmetry with respect to r in the autocorrelation domain 

iP(t,r)=iP*(t,-r) (2.23) 

2.3.3    Time Shift Invariant 

If the original signal is shifted in time, the time-frequency distribution should exhibit 

an equivalent shift along the time axis. This condition will be met with any kernel in a 

Cohen's class transformation. 

2.3.4 Frequency Shift Invariant 

If the original signal is shifted in frequency, the time-frequency distribution should ex- 

hibit an equivalent shift along the frequency axis. The Cohen's class transformations auto- 

matically satisfy this condition regardless of the kernel selected. 

2.3.5 Time Marginal 

Paralleling the concepts of a two-dimensional probability density function, the time- 

frequency distribution should give the correct value for the instantaneous signal power at 

any time by integrating across the frequency axis 

/oo 
C9(tJ)df (2.24) 

-00 

For this condition to be met, the ambiguity kernel must be equal to 1 along the frequency 
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axis, and the autocorrelation kernel must be a delta function along the time axis. 

0(^,0)    =   1 (2.25) 

ip(t,0)    =   6(t) (2.26) 

2.3.6    Frequency Marginal 

As just mentioned for the time marginal, the power spectral density should result after 

integrating out the dependence on t. 

/oo 
Cg(t,f)dt (2.27) 

-oo 

This condition can be met using ambiguity kernels having the value of 1 along the lag 

axis {y = 0) or equivalently, an autocorrelation domain kernel which when integrated with 

respect to t will equal 1 for all values of r. 

<p(0, T)   =   1 (2.28) 

ip(t,T)dT   =    1 (2.29) 

2.3.7    Instantaneous Frequency 

The average frequency at any time should equal the instantaneous frequency. Treating 

the time-frequency distribution like a probability distribution allows expressing the average 

frequency as 

and the instantaneous frequency 

where 0(t) is the signal phase at time t. 

To achieve this property, the kernel must satisfy several conditions. It must provide a 

proper time marginal (equations 2.25 or 2.26). Also, the partial derivative of the ambiguity 

domain kernel taken with respect to the lag variable, r, and evaluated at r = 0 must be 

zero for all v 
d(f>(v, T) 

8T 
= 0 (2.32) 

T=0 
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2.3.8    Group Delay 

For a given frequency, the average time across the time-frequency distribution should 

equal the group delay of the original signal. The average time is given by 

Rötest, f)dt 

and the group delay 

W/) =   7£ nntL (2-33) 

with 6(f) giving the signal phase as a function of frequency. 

To achieve this property, the kernel must satisfy several conditions. It must provide 

a proper frequency marginal (equations 2.28 or 2.29). Also, the partial derivative of the 

ambiguity domain kernel taken with respect to the frequency shift variable, u, and evaluated 

at v = 0 must be zero for all r 

0 (2.35) 
d<j>{y, T) 

I/=0 du 

2.3.9    Time Support 

The time support property states if a signal has non-zero values only over the range 

\t\ < tc, then the time-frequency distribution should only have non-zero values over the 

same range. 

This property corresponds to an ambiguity domain kernel satisfying 

f 4>{v, T)e~^vtdf = 0 (2.36) 
oo 

or an autocorrelation kernel where 

^(*,r) = 0 (2.37) 

for \T\ < 2\t\. 

2.3.10    Frequency Support 

Frequency support means if the spectrum G(f) is zero for all |/| > fc, then the time- 

frequency distribution Cg(t,f) must also be zero when |/| > fc. 

The kernel required for this property has an ambiguity domain kernel where 

/oo 
<j)(u, T)ej2irfTdT = 0 (2.38) 

-oo 

for all \u\ <2|/|. 
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2.3.11    Reduced Interference 

The final desirable property for a time-frequency distribution is to have small inter- 

ference terms between the signal components. While not precisely defined as the previous 

properties, this is very important since interference terms can seriously hinder interpretation 

of the time-frequency distribution. 

To get reduced interference terms, the ambiguity domain representation of the kernel 

must behave as a low-pass filter with respect to both the frequency shift, v, and the time 

lag, r, axes. 

2.4    Kernel Design Procedures 

Although the properties listed in table 2.2 look formidable, it is possible to meet all the 

properties except JPO (non-negativity) through a straightforward design procedure [22]. 

The basic steps involve taking a smooth elementary function, h(t), defined over the 

region —1/2 < t < 1/2. The function should enclose an area of 1, be symmetric about 

t = 0, and go smoothly to zero as |i| approaches 1/2. 

Once this elementary function is defined, the ambiguity domain kernel is given by the 

Fourier transform, with the product VT substituted for the frequency variable 

4>(V,T)=  fh{t)e^^dt (2.39) 
f=VT 

Moving back into the autocorrelation domain, using the properties of Fourier and inverse 

Fourier transforms, the kernel becomes 

rf>{t,r)    =     14>{v,T)e-j2*utdv (2.40) 

=    £*(£) (2-4.) 

2.5    Alias-Free Formulation 

When evaluating a discrete autocorrelation function, a problem arises due to the ar- 

guments m + 1/2 and m — 1/2. While they cause no problems for continuous signals, a 

discrete signal is typically treated as undefined (or zero) for non-integer arguments. This 

limitation has the effect of zeroing out the autocorrelation for all odd lag values. When 

viewed along the lag axis (/), instead of having P points separated by AT, there are only 

P/2 points separated by 2AT. The end result is undersampling the distribution by a factor 

of 2, allowing a frequency span of only — (JV/4)AF to (iV/4 — 1)AJP before aliasing occurs. 
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To avoid this problem, it is possible to re-formulate the definition of the autocorrelation 

function to provide a half step shift to place the values back on the sample points. Phasing 

problems are avoided by incorporating a corresponding negative half step into the kernel 

definition. 

2.6 Dual of Transformations 

A quick examination of equations 2.1 and 2.2 shows the forward and inverse Fourier 

transforms differ only in the sign of the exponential term. This means any properties or 

relationships exhibited by the forward transform will also apply to the inverse transform 

simply by substituting g(—t) for G(f). 

With the discrete transforms given by equations 2.3 and 2.4, the same relationship almost 

holds. The only difference is a scaling factor 1/iV that applies to the inverse transform. 

This similarity between forward and inverse transforms, or duality [15], allows recasting 

the time-frequency transformations into frequency-time transformations. Given a function 

of frequency, one may find the temporal response as a function of frequency. Problems of 

this type are typical in measured electromagnetic scattering data. 

2.7 Emphasized Kernels 

As presented, Cohen's class covers a broad range of time-frequency distributions. Em- 

phasis has been placed on four different distributions: the spectrogram, the Wigner distri- 

bution, the binomial distribution, and a genetically derived distribution. 

2.7.1    Spectrogram 

The spectrogram, also known as the short time Fourier transform, or STFT, provides the 

most intuitive time frequency distribution. While it can be cast in the standard Cohen's 

class form with the kernel shown in table 2.1, the usual approach centers a window on 

the time of interest and takes the Fourier transform of the windowed data. Finding the 

magnitude squared of the result completes the transformation. 

The resolution provided by this transform depends on the length of the window. A long 

window provides good frequency resolution, but it degrades the transform's ability to track 

the temporal position of the signal. A narrow window improves the ability to determine the 

time of a signal component accurately, but this comes at the expense of coarse frequency 
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resolution. 

The spectrogram is best suited for signals with a slowly varying frequency content. 

While the spectrogram provides a non-negative time-frequency representation, it does not 

satisfy the time or frequency marginals. 

2.7.2 Wigner Distribution 

The Wigner distribution, also referred to as the Wigner-Ville distribution, was originally 

used in the study of quantum statistical mechanics, working with position and momentum 

instead of time and frequency [42]. Later work by Ville independently derived this trans- 

formation for signal processing, using time and frequency [39]. The ambiguity domain 

representation for the Wigner is a delta function along the time axis, t, and is independent 

of the time lag, T. 

The delta functional form of the Wigner generates two properties for the distribution. 

Having a delta function in the kernel makes it unnecessary to carry out the convolution 

with the kernel, making the transform quick to calculate. This also provides the highest 

possible resolution in the time frequency domain. 

The Wigner distribution possesses nine of the eleven desirable properties listed in ta- 

ble 2.2. The only two it fails to meet are non-negativity, PO, and it is not a reduced 

interference distribution, PIO. A drawback of the Wigner distribution is the lack of any 

smoothing in the time-frequency domain. Large cross terms exist even when the true com- 

ponents are clearly separated. While this is tolerable when few signal components exist, 

the number of cross terms, Nx, generated from N actual components is given by 

N, = ^!f» (2.42, 

2.7.3 Binomial Distribution 

The binomial distribution is typically generated using a discrete autocorrelation domain 

kernel which is closely related to the continuous exponential distribution in table 2.1. The 

binomial distribution sacrifices some of the resolution provided by the Wigner to reduce 

the cross terms, similar to how a tapered antenna array trades off pattern beamwidth for 

reduced sidelobes. 

The binomial kernel gives a reduced interference distribution which satisfies all the 

desired properties except non-negativity. 
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2.7.4    Genetic Kernel 

Chapter 7 discusses a genetic algorithm used to design a time-frequency distribution. 

The algorithm selected coefficients for a sinusoidal representation of the elementary function 

h(t) as outlined in section 2.4. 

The distributions found via this method were very similar to those provided by the 

binomial. Like the binomial, they met all the desirable properties except non-negativity. 

This kernel exceeded the binomial performance when evaluating the entropy of the resulting 

distribution. Chapter 7 gives more information on this kernel. 

2.8    Review of Time-Frequency Developments 

The basics of time-frequency techniques trace back to Fourier analysis through the short 

time Fourier transform. The spectrogram began seeing extensive use for speech signals in 

the 1940's [8, 31] due to the inadequacy of simple Fourier transforms for analyzing non- 

stationary signals. 

In 1932, Wigner introduced a means of estimating momentum and position in quantum 

mechanics [42]. The basic techniques were applied in a signal processing context by Ville in 

1948 [39], leading this approach to often be referred to as the Wigner-Ville distribution [32]. 

This had the advantage of much higher resolution than the spectrogram. 

Alternative representations for the joint time-frequency domain were developed through 

the 1950's and 1960's with researchers such as Page, Levin, Rhihaczek, and Born-Jordan. 

The widely varying characteristics of these different distributions were consolidated in 1966 

by Cohen into a general class of transformation for joint distributions [11]. With this 

representation, an arbitrary kernel <p{0,r) differentiated the different distributions. This 

formulation allowed analysis and comparisons between kernels and led to experimentation 

on new kernels [12]. 

In 1980, Claasen and Mecklenbräuker brought the Wigner distribution to the forefront 

with a series of articles discussing the strengths, weaknesses, and applications for this anal- 

ysis approach [8, 9, 10]. 

A lot of recent work has led to a better understanding of the fundamental limits of 

performance for Cohen's class distribution and finding kernel and computational techniques 

to provide the clearest time-frequency representations [2, 18, 22, 21, 45]. 
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2.9    Time-Frequency Applications 

Time-frequency representations have been used extensively for analyzing non-stationary 

systems where the signal spectra varies as a function of time. In some cases, the objective 

was to characterize individual components of the signal. In other cases, the overall patterns 

in the time-frequency representation served as the metric for making decisions about the 

signal. 

2.9.1 Marine Mammal 

A large amount of work has been conducted analyzing the whistles and other sounds 

generated by marine mammals. Decomposing these signals in the time-frequency domain 

shows dolphins and whales using frequency modulated sonar signals employing sophisticated 

techniques [1]. 

2.9.2 Biomedical 

Another area where time-frequency techniques have been applied heavily is the analysis 

of other biological signals. Some of these signals have been acoustic, such as differenti- 

ating benign jaw clicks from those requiring corrective treatment [1]. Other medical uses 

have examined the body's own electrical signal, such as trying to characterize the electroen- 

cephalogram (EEG) signals of brainwave activities associated with epileptic seizures [1]. The 

heart's electrical signals, measured with an electrocardiogram (EKG) have been analyzed 

to try and differentiate the signals of a healthy heart from a diseased heart [43]. 

2.9.3 Mechanical Engineering 

Time-frequency techniques are also finding uses in disciplines such as mechanical en- 

gineering. Researchers have monitored vibrations from cutting tools, trying to determine 

characteristics in the tool's chatter that may indicate imminent failure [1]. 

2.9.4 Electromagnetics 

Cohen's class of time-frequency distributions have not been used heavily in the field of 

electromagnetics. Some work has employed spectrograms and wavelet analysis [23, 25, 28], 

but high resolution time-frequency techniques like the Wigner and the binomial have been 

largely ignored. The typical application has been the analysis of scattering modes when 

analyzing a target illuminated by a wideband system. 
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2.10    Summary 

Time-frequency analysis has been largely ignored in the study of electromagnetic scat- 

tering. While some related work has been done, the emphasis has been on using the wavelet 

transform instead of Cohen's class distributions such as the Wigner or binomial distribu- 

tions. The typically frequency dependent nature of scattering and the time-varying spec- 

tra associated with dynamic targets make time-frequency techniques an attractive tool for 

working with scattering problems. 
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CHAPTER 3 

STATIONARY TARGETS 

3.1 Introduction 

Anechoic chambers can be used to measure both the spatial pattern and the frequency 

response of a target. As long as the measurement system provides a stable, adjustable 

frequency source, the chamber can also provide the information necessary to evaluate the 

impulse response of the target and chamber. 

3.2 Background 

Anechoic chamber measurements to determine the pulse response of a target normally 

do not use an actual pulse. Rather than deal with the physical difficulties of generating high 

power, short duration pulses, a measurement system illuminates the target with a stepped 

continuous wave (CW) signal. Instead of trying to accurately record and analyze a pulse 

return in real time, the frequency is selected, the system is allowed to reach steady state, 

and a complex-valued data point (magnitude and phase), G(fn) is collected before moving 

on to the next frequency [24, 41]. 

Using the inverse Fourier transform gives the target and chamber response as a function 

of time 

g(tn)=r-1[G(fn)} (3.1) 

which approximates the impulse response. 

If N samples are taken, each separated by A/ hertz, these samples can be transformed 

to the time domain where they will provide N samples of the impulse response over a total 

temporal span of 1/A/ seconds. 

Assuming the wave propagates at a velocity equal to the speed of light in free space, 
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v = c = 3 x 108m/s. This means the time response can be expressed as a range response 

9(r) = \g{t) (3.2) 

This same approach to finding the time response can also be applied to numerically 

simulated results. Finding the spectral response provides the sampled impulse response of 

a virtual anechoic chamber with a maximum unambiguous range 

-Rmax = _ . j. (3-3) 

Measurements within this virtual chamber have a range resolution determined by the maxi- 

mum and minimum frequencies used in calculating the transform. For iV frequencies spaced 

A/ apart, the range resolution is 

Ar = W^I)Ä7 (3'4) 

3.3    Duality and Time-Frequency Transformations 

The typical time-frequency transformations move a function of time into a time-frequen- 

cy space using the Cohen's class transformation 

Cg(t, /, <f>) = |_~ |_~ |~ eß^-Tf-rtHiv, r)g (u + 0 g* (u - 0 dudrdv       (3.5) 

This can also be viewed as a Fourier transform to convert the signal's local autocorrela- 

tion into an ambiguity function, applying a weighting function, or kernel, then doing a two- 

dimensional Fourier transform to move from the ambiguity domain to the time-frequency 

domain. 

Cg(t,f) = Trf (fZlt [FU(-V) [g (« + |) g* (« - 0] 0(",r)J) (3.6) 

Typically, instead of transforming the local autocorrelation into the ambiguity domain, 

the kernel is applied by performing a convolution along the time axis, t, in the autocorre- 

lation domain. After convolving, taking the Fourier transform of the lag variable, r, yields 

the time frequency distribution. 

Cg(t, f) = TTf [Rg(t,r) ®t 1>(t,T)] (3.7) 

with Rg(t,r) as the local autocorrelation and <g>t representing the convolution with respect 

toi. 

When beginning with a frequency domain signal, G(f), the spectral autocorrelation is 

AO(I/,/) = G(/ + 0G*(/-0 (3.8) 
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Taking the inverse Fourier transform with respect to / converts the spectral autocorre- 

lation into the same ambiguity domain representation that would have resulted if starting 

with g(t). This means the time-frequency representation for G(f) is given by 

cG{tj) = Tr}{rzlt[^) [G(P + !)G>(P-0]*(I/,T)}) (3.9) 

This result can also be obtained by applying an inverse Fourier transform on the fre- 

quency shift variable, v, from the spectral autocorrelation after convolving with the spectral 

autocorrelation kernel, ^(z^, /) 

CG(t, f) = ?£ [RG(V, f) ®/ *(*, /)] (3-10) 

Working through these transformations, the duality between forward and inverse Fourier 

transforms provides a simplification. Substituting G(f) for g(t) and working through the 

temporal time-frequency distribution steps will generate the result Ca(f,t). This simple 

switching of axis works provided 

V>C/» = #(^/) (3.11) 

This rotational symmetry will happen whenever the ambiguity domain kernel is a product 

kernel such that 

<f>(v,T) = ij>(vT) (3.12) 

All the kernels used in this chapter satisfy that condition. 

3.4    Scattering and Dispersion 

When considering the scattered radar return from a target, a variety of modes may 

contribute. Based on the target composition and physical arrangement it is possible to 

separate the returns from scattering centers which are in different range bins on the target. 

Scattering modes may be divided into dispersive and non-dispersive modes. A non- 

dispersive mode will behave identically at all frequencies. A dispersive mode will depend 

on a mechanism which is frequency dependent [33]. 

When processed using a standard Fourier transform, sharp resolution is possible on non- 

dispersive modes. The energy returned through the dispersive modes will appear spread 

across a band of range bins since the signal travels at a non-constant velocity which changes 

as a function of frequency. However, using a frequency-time transformation clearly shows 

the difference between the dispersive and non-dispersive modes, and can also differentiate 

various dispersive modes. 
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3.4.1 Reflective Returns 

Reflective returns follow from geometric optics and are found by tracing simple reflec- 

tions off the target surface with the angle of reflection being equivalent to the angle of 

incidence relative to the local normal on the target. These returns can involve single reflec- 

tions directly back to the radar or multiple bounce reflections. Over the range of frequencies 

considered these modes are non-dispersive. 

3.4.2 Creeping Waves 

Another scattering mode considered involves creeping waves which attach themselves to 

the target and travel around the target before shedding energy back toward the radar. As 

these waves travel around the target, the velocity of propagation as well as the energy shed 

toward the radar will vary as a function of frequency. At low frequencies, the waves travel 

closely attached to the surface, while at higher frequencies the waves are offset slightly from 

the surface. Using a frequency-time transform, the position of these scattering centers will 

move with frequency. The slope will be determined by how far the energy travels while in 

a dispersive mode. 

These modes are difficult to track accurately because they carry much less energy than 

the specular returns for simple targets. 

3.4.3 Combined Modes 

Finally, there are combined modes to consider. These modes have energy travel a path 

that is sometimes specular and sometimes dispersive. They can also be categorized by how 

much of the energy path is along a dispersive mode. 

3.5    Transforms Considered 

For this study, three different kernels were used to perform the frequency-time transfor- 

mation. The kernels were chosen because of their widespread use, ease of implementation, 

and the variety in their distribution characteristics. 

3.5.1    Spectrogram 

This transform is also referred to as the short time Fourier transform, or STFT. It 

involves moving a window in time across the signal and taking the transform for each 
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window. This transform gives a non-negative distribution with good noise immunity and 

low cross terms. The distribution satisfies neither marginal characteristic and generally 

provides poor resolution. 

3.5.2 Wigner 

While the spectrogram is one of the most intuitive time-frequency distributions, the 

Wigner employs the simplest kernel, a delta function. The result is a very high resolution 

technique which suffers from high interference terms. 

3.5.3 Binomial 

The binomial distribution was developed as a general purpose kernel to provide high 

resolution with low interference terms. While the binomial cannot match the resolution 

of the Wigner, the lack of large interference cross terms typically results in a clearer joint 

domain representation, especially with complicated signals 

3.6    Target Geometries 

For this study, the basic target was a 15 centimeter radius perfectly conducting sphere. 

It was chosen due to the canonical nature of the target. It was simple to numerically model, 

and the scattering from the sphere is relatively simple and well understood. The sphere 

scatters energy using two basic mechanisms: a simple reflection governed by geometrical 

optics, and dispersive scattering based on creeping waves traveling around the surface of 

the sphere. 

3.6.1    Single Sphere 

The simplest case, shown in figure 3.1, consists of a single perfectly conducting sphere 

in free space illuminated by an incident plane wave. The sphere modeled had a radius, r, 

of 15 centimeters. The solution for the scattered field was obtained by evaluating the Mie 

series [46] at the frequencies of interest. The expected returns consist of a reflective return 

off the front of the sphere which appears a distance r ahead of the phase reference at the 

sphere's center. Most of the reflected energy comes from this mode. The next contributor is 

the first creeping wave which travels an additional irr beyond the center of the sphere. Since 

the range values are based on two-way propagation times, this scattering mode appears irr/2 

behind the sphere center. The other detectable mode involves a second creeping wave, one 
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radar 

incident scattered 

Figure 3.1: Single Sphere 

which travels one-and-a-half times around the sphere before shedding energy back towards 

the radar. Since the traveling wave continually sheds energy as it travels around the sphere, 

the actual impact of this component is negligible. 

3.6.2    Two Spheres: In-line 

The second geometry, shown in figure 3.2 involved two spheres, each with a radius, r, 

1 meter 

radar 

-HH- 
15 cm 

incident        scattered 

Figure 3.2: Two Spheres: In-Line 

of 15 centimeters, placed with a distance, d, of 1 meter between their centers. Adding the 

interactions between the spheres leads to several more modes making contributions to the 

scattered signal. The primary scattering centers are the front face of each sphere, located 

r in front of the phase center (the center of the leading sphere) and d — r behind the phase 

center. The next modes involve the first creeping wave for each sphere. These appear nr/2 

behind each sphere center, or at ranges of irr/2 and d — irr/2 behind the phase center. 

When examining the returned signal, the scattering modes which involve creeping waves 
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will not have a stationary range in the frequency-time distribution.  The energy in these 

dispersive modes will also drop off as the frequency increases. 

3.6.3    Two Spheres: Broadside 

In the third sphere setup, the line between the spheres is oriented perpendicular to 

the direction of wave propagation. For this geometry, the polarization of the illuminating 

wave becomes significant when considering the interactions between the spheres due to the 

behavior of creeping waves. 

Figure 3.3 shows the two spheres at a broadside orientation to the source. As seen in 

radar 

-H K- 
15 cm 

incident scattered 

Figure 3.3: Two Spheres: Broadside 

the previous two models, the specular reflection off the front edge of the sphere will be the 

first scattering mode. In this case, the energy off both spheres will reinforce each other and 

provide a single large return a distance r in front of the phase reference. The combining 

effect will also give a large creeping wave return. Both these modes are essentially single 

sphere modes happening independently with each sphere. They do not depend on the 

incident polarization. 

The closest scattering mode to involve interactions between the spheres is the reflection 

of energy off one sphere towards the second, then off the second back in the direction of the 

source. This mode has an apparent position (d/2) — r behind the phase reference. 

Due to the sensitivity of some modes to the polarization of the illuminating field, two 

trials were computed.   The first trial oriented the E-field parallel to the line connecting 
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the spheres. This allowed sphere interactions based on creeping waves. The second trial 

oriented the E-field perpendicular to the line between the spheres. This essentially drove 

the creeping waves' contributions to cross-sphere effects to zero. 

3.7    Simulation Parameters 

The targets outlined above were simulated numerically using two different packages: a 

Mie series code for the single sphere and a body of rotation code for the two-sphere cases. 

In each case, the monostatic backscatter measured included the magnitude and phase of 

the electric field. 

For the two-sphere targets, the spectrum simulated covered the band from 1.00 gigahertz 

through 7.55 gigahertz in 50 megahertz steps. This provided 132 samples for processing. 

The 50 megahertz sampling interval provided a maximum unambiguous range scale of 3 

meters using the relationships 

J-max     =     "T~7 (o.loj 

1 
50 MHz 

(3.14) 

=   20 nsec (3.15) 

and 

c 
*Wnax     =     7) ' -'■max (6.1b) 

=   1.5xl08 —-20 nsec (3.17) 
sec 

=   3 m (3.18) 

The range resolution, Ar, depends on the span of frequencies covered by the spectral 

data. With spectral information covering the range /min to fm3x, the inverse Fourier trans- 

form can provide range resolution based on 

Ar = 2(f      -f) (3-19) 
" Umax      Jmm] 

assuming the signal propagates at the speed of light. 
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For the two-sphere targets, when /max = 7.55 GHz and /min = 1.00 GHz, the spatial 

resolution, Ar, is 2.29 centimeters. 

In general, the resolution in the frequency-time domain will depend on the length of the 

transform used after applying the selected kernel in the autocorrelation domain. With a 

frequency sampling interval of A/, an N point transform equates to 

Ar=2(iV-l)Af (3'20> 

The single sphere was simulated over a band of frequencies starting at 1.005 gigahertz 

and extending to 8.865 gigahertz with a sampling interval, A/, of 60 megahertz. These 

frequency values provide a maximum unambiguous range, Rmax, of 2.5 meters with a range 

resolution, Ar, of 1.91 centimeters. 

3.8    Results 

3.8.1    Single Sphere 

The single sphere did not provide a large amount of information. While there are a 

number of scattering modes to examine, the dynamic range between the specular return 

and the creeping waves makes even the first creeping wave difficult to see, and the second 

time around creeping wave is not discernable without special processing. This second time 

wave was only visible using double precision math for all calculation along with increasing 

the frequency sampling interval and the band of frequencies swept. 

Spectrum 

The initial spectrum for a sphere starts low and oscillates through the resonance region 

as it settles towards the final value (figure 3.4). These oscillations are due to constructive 

and destructive interference between the reflection from the front of the sphere and the 

creeping wave travelling around the sphere. The oscillations decay since the creeping wave 

intensity decreases with frequency. At first glance, the phase response is essentially linear 

as the number of wavelengths to the front of the sphere increases with frequency. However, 

close examination shows small deviations due to contributions from the creeping wave. 

Inverse Fourier Transform 

Applying an inverse Fourier transform and scaling the horizontal axis by the two-way 

propagation time provides a range profile that clearly shows the leading edge of the sphere 

28 



Single Sphere 

2 

1.9 ■ 

1.8 I - 

• 17j . 
2 
'c 
O A A A A A A 
~1.6- IP VWt 

1.5 - ■ 

1.4- ■ 

1.3 ■ ■ 

4 6 
Frequency (GHz) 

2 4 
Frequency (GHz) 

Figure 3.4: Single Sphere: Spectral Response 

0.15 meters in front of the phase reference (see figure 3.5). This plot also clearly shows 

the creeping wave at its expected positions of —irr/2 = —0.236 meters. The second-time 

around creeping wave should occupy a position at —37rr/2 = —0.707 meters, but it is not 

visible in this plot due the extremely small contribution it makes over this frequency range. 

Spectrogram 

The spectrogram for the single sphere is shown in figure 3.6. Here the specular return 

shows as a very clear band located 0.15 meters ahead of the phase reference, while the 

creeping wave is located at an approximate position of 0.24 meters behind the phase refer- 

ence. The creeping wave component is fairly clear at the lowest frequencies and becomes 

less pronounced as the frequency increases. Once again, the second-time around creeping 

wave lacks enough energy to be clearly discernible, but the distribution does exhibit a very 

slight line at the correct range. 

Wigner Distribution 

The Wigner distribution for the single sphere is shown in figure 3.7. Like the spec- 

trogram, the Wigner distribution clearly shows the specular and the creeping wave re- 
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Figure 3.5: Single Sphere: Inverse Fourier Transform 
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Figure 3.6: Single Sphere: Spectrogram 
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Single Sphere Wigner 
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Figure 3.7: Single Sphere: Wigner Distribution 

turn. The major difference is the appearance of very large cross terms between the ac- 

tual signal components. The actual signal component should be the specular reflection at 

+0.15 meters, the creeping wave at —0.235 meters, and the second-time creeping wave at 

—0.707 meters. These components give rise to cross terms at (0.15 — 0.235)/2 = —0.0425, 

(0.15 - 0.707)/2 = -0.278, and (-0.235 - 0.707)/2 = -0.471 meters. This transform is 

periodic along the frequency axis, so additional cross terms appear due to the repetitions of 

the three signal components. The specular and the specular's periodic copy cause the large 

cross term which appears at —1.175 meters. 

The creeping wave, although smaller than a nearby cross term, shows three expected 

features. In addition to appearing at the correct range, the component has a decrease in 

intensity as the signal frequency rises, and the creeping wave line also has a slight upward 

slope, indicating the propagation velocity for that mode varies with frequency, slowing down 

slightly as the frequency increases. 

Binomial Distribution 

The binomial distribution, shown in figure 3.8 shares some characteristics with the 

Wigner, but contains significantly reduced cross terms. While the cross terms between the 
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Figure 3.8: Single Sphere: Binomial Distribution 

specular and the creeping wave which appears at —.043 meters still exists, there are no 

visible cross terms due to the periodic images of the components. This representation also 

shows the changing intensity and position of the creeping wave as seen with the Wigner. 

Missing from this distribution is any visible indication of the second-time creeping wave. 

Single Sphere Summary 

Since the variation in return with respect to frequency was small, the spectrogram 

actually provided a relatively sharp view of the target in the joint frequency-time domain. 

It was unable to discern the changing propagation velocity in the creeping wave mode which 

was evident in the Wigner and binomial distributions. 

3.8.2    Two Spheres: In-Line 

When positioned one behind the other, two spheres should provide two specular scatter- 

ing modes and two readily discernible creeping wave modes. These spheres will also scatter 

based on the interaction of the spheres. The primary interaction between the spheres is the 

wave that reflects off the back sphere, travels back to the front sphere where it reflects off the 

rear surface of the sphere, then reflects off the back sphere a second time before returning 
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to the radar. Placing the phase reference at the midpoint between the two spheres means 

the specular returns should appear at distances of +0.65 and —0.35 meters, the creeping 

wave returns at +0.265 and —0.735 meters, and the triple reflection return at —1.05 meters. 

Spectrum 

Figure 3.9 gives the spectral return. The spectral response shows rapid variations in the 

In-Line Spheres Spectrum 
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Frequency (QHz) 

Figure 3.9: In-Line Spheres: Spectral Response 

scattered signal as the components combine in and out of phase with changes in wavelength 

of the illuminating plane wave. With the single sphere, these oscillations settled out as the 

frequency increased because only one significant mode existed. With the two spheres, the 

creeping wave contribution also drops off with increasing frequency but the specular returns 

continue to make significant contributions throughout the frequency sweep. 

Inverse Fourier Transform 

The inverse Fourier transform for this signal shows five clearly discernible peaks (fig- 

ure 3.10). The first four peaks correspond to the speculars off the front of each sphere (at 

0.65 meters and —0.35 meters), the creeping wave around each sphere (at .264 meters and 

—.736 meters).  The return at —1.05 meters is due to part of the specular return off the 
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Figure 3.10: In-Line Spheres: Inverse Fourier Transform 

second sphere being reflected by the first sphere before scattering back to the source. 

Spectrogram 

Viewed with the spectrogram (figure 3.11), the two speculars and two creeping waves 

are clearly visible. The doubly reflected mode also is visible. As the frequency increases, 

there is a slight drop in intensity for the creeping wave modes. The apparent position for the 

creeping wave also moves slightly over the frequency range since the creeping wave travels 

around the spheres faster at lower frequencies. 

Wigner Distribution 

The Wigner distribution for this signal, shown in figure 3.12, suffers from many large 

interference terms. All five components, two speculars, two creeping waves, and the triple 

bounce, along with their periodic copies combine to generate cross terms. All this interfer- 

ence makes it difficult to directly view the lower energy scattering components. 

Binomial Distribution 

The binomial distribution shown in figure 3.13 illustrates how much clearer a reduced 

interference distribution can be.  In this case, most of the cross terms that cluttered the 
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Figure 3.11: In-Line Spheres: Spectrogram 
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Figure 3.12: In-Line Spheres: Wigner Distribution 
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In-Line Binomial 
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Figure 3.13: In-Line Spheres: Binomial Distribution 

Wigner distribution have been suppressed. The specular reflections are clearly shown, and 

the creeping waves off each sphere can also be seen. The triple bounce component at —1.05 

meters is too small to show up in this distribution. 

In-Line Sphere Summary 

With this geometry, the main contribution comes from the front of each sphere. The 

creeping waves of the two spheres provide a small return best seen in the spectrogram. The 

spectrogram also shows the doubly reflected component at —1.05 meters. 

3.8.3    Two Spheres: Broadside — Perpendicular Polarization 

Positioning the two spheres broadside to the radar changes the number and types of 

modes expected in the returned signal. In addition to the returns from a single sphere, 

several modes exist to transfer energy between the spheres before sending it back towards 

the radar. 

The signal polarization also starts to play a major role in this geometry. Unlike the 

single sphere and the in-line spheres, this problem is no longer axially symmetric with 

respect to the direction of propagation.   The first case considered will orient the electric 
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field perpendicular to the line connecting the sphere centers. This means creeping waves 

will not scatter energy from one sphere in the direction of the other. All sphere interactions 

with this polarization are based on reflections as governed by geometric optics. Each sphere 

will act independently to provide the creeping wave component as would be seen for a single 

sphere. 

Spectrum 

As shown in figure 3.14, the spectral response is similar in some ways to the single sphere 

Broadside - Perpendicular Pol Spectrum 
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Figure 3.14: Broadside — Perpendicular Polarization: Spectral Response 

response. The reflections off the front and the creeping waves off each sphere reinforce each 

other to provide a reinforced single sphere type return. The reflections travelling between 

the spheres cause this spectrum to deviate from the single sphere response. 

Inverse Fourier Transform 

Figure 3.15 shows the inverse Fourier transform for the broadside spheres. The main 

peaks correspond to the front of the spheres at +0.15 meters, the creeping waves at —0.24, 

and a reflected mode that bounces once off each sphere before returning to the radar at 

—0.64 meters. 
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Figure 3.15: Broadside — Perpendicular Polarization: Inverse Fourier Transform 

Spectrogram 

The spectrogram in figure 3.16 shows the same three scattering modes discussed in the 

previous section due to the front of the spheres, the creeping waves, and a double reflection 

return. In addition to showing the position for these returns, the drop in creeping wave 

intensity as the signal frequency increases is also evident. 

Wigner Distribution 

Once again, the Wigner distribution, show in figure 3.17 shows the strong return off the 

front of the spheres very clearly, but it has trouble with losing the weaker components in 

the cross terms. The creeping wave shows up at the low end of the frequency sweep, but it 

drops off quickly. The cross terms between the front of the sphere and the creeping wave 

returns are evident across the entire frequency range. 

Binomial Distribution 

The reduced cross term levels of the binomial distribution, shown in figure 3.18, make 

it much easier to view the creeping wave behavior. In particular, the drop in intensity and 

the change in apparent position are both evident in the binomial distribution. 
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Figure 3.16: Broadside — Perpendicular Polarization: Spectrogram 
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Figure 3.17: Broadside — Perpendicular Polarization: Wigner 
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Broadside Perpendicular Binomial 

Figure 3.18: Broadside — Perpendicular Polarization: Binomial 

Broadside With Perpendicular Polarization Summary 

When illuminated with this polarization, the broadside spheres acted very similarly 

to a single sphere. Although modes existed which representated interactions between the 

two spheres, their contribution was relatively small, especially when viewed in the time- 

frequency domain. 

3.8.4    Two Spheres: Broadside — Aligned Polarization 

Keeping the same target position and orientation, the radar system was rotated ninety 

degrees so the incident electric field was in alignment with the line between the spheres' 

centers. This polarization will support all the scattering modes seen in previous section but 

will generate additional modes using creeping waves to transfer energy between the spheres. 

Spectrum 

The spectral response in figure 3.19 is very similar for the broadside spheres, with the 

phase response virtually identical. Once again, the magnitude of the spectrum shares some 

characteristics with the single sphere but behaves differently as the frequency increases. 
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Figure 3.19: Broadside — Aligned Polarization: Spectral Response 

Inverse Fourier Transform 

The inverse Fourier transform show in figure 3.20 contains the same peaks seen with the 

other polarization. It shows the front of the spheres, the creeping wave, and the reflection 

from one sphere, off the second, and back to the radar. Three additional modes appear 

in this plot. The return at —0.53 meters represents energy reflecting from the first sphere 

toward the second, then traveling around the back of the second sphere before returning 

to the radar. The second new mode at —0.74 meters follows a creeping wave 90 degrees 

around to the back of the first sphere, travels to the second sphere, and reattaches as a 

creeping wave for another 90 degrees before heading back to the radar. The final new mode 

employs a creeping wave around the first sphere, then reflects off the second sphere back 

towards the first where it reflects back towards the radar. This mode appears at a range of 

—0.88 meters. 

Spectrogram 

Figure 3.21 shows the spectrogram for the broadside spheres with the incident wave 

aligned with the line between the spheres. Several components appear in this distribution 

at ranges of 0.15, —0.24, —0.35, —0.53, and —0.63 meters. 
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Figure 3.20: Broadside — Aligned Polarization: Inverse Fourier Transform 
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Figure 3.21: Broadside — Aligned Polarization: Spectrogram 
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Wigner Distribution 

The large number of scattering modes leads to many cross terms in the Wigner distribu- 

tion, shown in figure 3.22 The only clearly illustrated modes are the specular reflection off 

Broadside Aligned Wigner 
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Figure 3.22: Broadside — Aligned Polarization: Wigner 

the front of the spheres and the creeping waves. There is a slight indication of the multiple 

bounce reflective component at —0.64 meters. 

Binomial Distribution 

The binomial distribution in figure 3.23 does not have large cross terms, but only three 

modes show clearly: the sphere fronts at 0.15 meters, the creeping waves, initially at —0.24 

meters, and the combined specular/creeping wave mode at —0.53 meters. The binomial 

does clearly illustrate the dispersive nature of the creeping wave mode. 

Broadside Aligned Polarization Summary 

As expected, more interactions were evident between the two spheres using this polar- 

ization. This was due to the direction of travel for the creeping waves around the spheres. 
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Figure 3.23: Broadside — Aligned Polarization: Binomial 

3.9    Summary 

Applying Cohen's class distributions to generate time-frequency distributions using 

swept frequency signals was successful and informative. This technique provided informa- 

tion on the targets and their scattering modes not readily seen using either the frequency 

or the time domain representations of the signal. By using time-frequency techniques, dis- 

persive effects were highlighted, even though the dispersion involved with these targets was 

small. 
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CHAPTER 4 

STATISTICS FOR COHEN'S CLASS TFD OF WHITE 

GAUSSIAN NOISE 

4.1    Introduction 

Time-frequency analysis is based on transforming a signal from either a function of 

time, g(t), or frequency, G(f), into a function of both time and frequency, Cff(i,/). This 

representation has the advantage of capturing the features of non-stationary signals and 

has been heavily used with acoustic signals [1], 

Two frequently used time-frequency transformations generate the Wigner distribution 

and the spectrogram [37]. These distributions belong to a larger class of distributions 

referred to as Cohen's class [12]. The derivation here will focus on this general case. 

This chapter examines the mean and variance for the time-frequency distribution of 

a noise signal. Both analytical and numerical values are presented for a sampled signal 

processed with discrete transformations. 

This analysis assumes a complex noise only signal, g(t), comprised of two independent, 

identically distributed random variables, gr(t) and &•(£), which are normally distributed 

with a white spectra. This means g(t) is independent of g(r) unless t = r. The mean, 

variance, autocorrelation, and spectrum for the noise signal are denned as: 

E[g(t)] = 0 (4.1) 

vai[g{t)] = a2 (4.2) 

Rg(r) = a26(r) (4.3) 

\G(f)\2 = \f[9(t)f = o2 (4.4) 

This white noise assumption creates problems with the continuous signal since it implies 

infinite signal bandwidth and infinite power. A finite result is possible when using a kernel 
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with finite extent in the ambiguity domain, but many transforms, such as the Wigner, 

binomial and spectrogram, do not satisfy this constraint. However, the band-limited nature 

of a discrete signal will allow this for any transformation kernel. 

Throughout this chapter, all integrations will have limits going from — oo to +00 unless 

otherwise specified. With the discrete formulas, the indices run from 0 to N — 1, where N is 

the number of data points considered or 0 to P — 1, where P is the length of the transform 

used. 

4.2    Continuous Transform 

A continuous time signal, g(t), can be represented in the joint time-frequency domain 

using a transformation belonging to Cohen's class [12], expressed as 

Cg(t,f) = JJfg(u + 0 g* (u - 0 MvrfeJ^-rt-MdudvdT (4.5) 

The three integrations in the preceding equation represent two forward and one inverse 

Fourier transforms. Using the relationships 

FtfWt)]   = Jx(r)e-^TdT 

= X(f) 

FJ?[XU)\    = jx{\)e^d\ 
= x(t) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

allows re-writing the transformation as 

C9(t,f) = TTS (rzlt \TU{_V) \g (u + 0 g* (u - 0] <^,r)}) (4-10) 

Cohen's class transformations cover a wide range of time-frequency distributions, in- 

cluding the spectrogram, the Wigner-Ville, and the reduced interference distribution (RID) 

[29]. 

From the view of implementation, this form involves three Fourier transformations and 

a simple multiply. Since multiplies in one domain correspond to convolutions in the other 

domain, equation 4.10 can be re-written as 

C9(t, /) = / /0 (« + 0 0* (u - 0 V>(t - u, r)e-^fTdudT (4.11) 

or, in a more compact form 

Cg{t,f)=rTf[Rg{t,T)®tll>{t,T)] (4.12) 
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with Rg(t,r) as the local autocorrelation, ®t representing the convolution with respect to 

t, and ip{t,r) as the autocorrelation domain kernel. 

4.2.1    Continuous Mean 

Performing a Cohen's class transformation on this signal gives a time-frequency distri- 

bution Cg(t,f). Start with the expected value of this distribution 

E{tJ][Cg(t,f)] = 

E{t,f) [///ff (« + 0 »' (« " 0 <t>(v,T)e^u-*-rtdudvdT\        (4.13) 

where the operator ify,/)[C9(£, /)] represents the expectation of Cg(t, f) and can be written 

explicitly as 

E(t,f)[Cg{t,f)] = J Jcg(t,f)fg(t,f)dtdf (4.14) 

using fg(t,f) to represent the probability distribution function for the noise signal. 

The expectation operation can move inside the integrals over r and v since they represent 

linear transformations between time and frequency domains. This gives 

E{tJ)[Cg(t,f)] = 

I JE{V>T) [y' g(u + 0 g* (u - Q e^du^»/, r)] e^2^t+^dudr    (4.15) 

The expectation operation will return zero unless r = 0.   For the case of r = 0, the 

expectation is a2. This allows rewriting the equation as 

E[Cg(t,f)} = j j j oHiTWvrfJ^^-rt-MdudvdT (4.16) 

Moving the constant a2 outside the integral and nesting the three integrals yields 

E[Cg(t, /)] = a2 f\[ ([ ei2wudv\ 4>{v, r)e^'2^td^  6(T)e^2nfTdT (4.17) 

The inner integration gives the Fourier transform of a constant which leads to a delta 

function in the frequency domain, 6(u). 

E[Cg(t,f)] = a2 j I'6(v)<j>{v,T)e-i2wtdv6{T)e-j2*fTdT (4.18) 

Both integrals contain a delta function of the integration variable.   This means the 

integrand is sampled at the point where the argument of the delta function equals zero. 

Cg(t,f) = E[Cg(t,f))=a'4>(0,0) (4.19) 
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The expected value is the noise power (the variance of the noise signal, or a2) multiplied 

by the transformation kernel, (f){v,r), evaluated at the origin. For the distributions of 

concern, </> has a value of 1 at the origin [7], giving the final result 

E[Cg(t,f)] = a2 
(4.20) 

This can also be evaluated using the autocorrelation expression of the transform, which 

begins 

E[Cg(t, f)] = jJE\g(u + 0 g* [u - 0] ^(t - u, r)e-^^dudr (4.21) 

Once again, the expectation returns a non-zero value only if r = 0 in which case it becomes 

a2. Substituting this relationship and reversing the order of integration means 

E[Cg{tJ)]   =     I I'cr2«(TM*-u,r)e--'2'r/TdudT 

=   a2 [ip(t-u,0)du 

=   a 

(4.22) 

(4.23) 

(4.24) 

The last step in the two preceding derivations assume the kernel generates a distribution 

which satisfies the time marginal property. To satisfy the time-marginal property, <f>(f, 0) 

must be one [22], which means the kernel in the autocorrelation domain must have the 

property ip(t,0) = 6(t). 

4.2.2    Continuous Variance 

Finding the variance for the time-frequency distribution is more complex. The derivation 

begins with 

var[C5(t,/)] = E [\Cg(t, f) - E[Cg(t, f)]\2} (4.25) 

Since the expected value of Cg(t, f) is a constant, the argument of the expectation can 

be expanded and simplified. 

var[Cs(t,/)]   =   E[Cg(t,f)C;(t,f)-Cg(t,f)Cg(t,f) 

-c;(tj)cgJ^+^itJ)cg
7{tJT 

=   Er 

-E 

=   E 

=   E 

Cg(t,f)C*g(t,f)\-E[Cg(t,f)]Cg(t,f) 

c;(tj)]cgl^+cglJJ)cg
T{tJT 

cg(tj)c*g(t,f)] -cg(t,f)c*g(t,fY 

Cg(t,f)C*Jt,f)  -cr4|0(O,O)|2 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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The first term can be expanded using the definition for the transformation 

C9(t,f) = jjJ9 (« + 0 9* (« - 0 4>{u,r)e^^-vt-^dudVdr (4.30) 

which means 

E[\Cg(t,f)\
2} = 

E [1119 {u+i)9* iu ~ i)^ r)eJ'27r(i/"^~/T Wz^r 

'JJJ9*(V+5)9(V~ I) ^(A>s)e'2*(~Au+Af+/s)^Ads]     (4-31) 
Reordering the integrals and moving the expectation to include only the nondetermin- 

istic elements 

*[ic.(t,/)P] - //////4KM"-lM»+t>H)] 
•4>(v, T)<J>* (A, s)e^™-^-'T-Au+At+'s WzvdrcfodAds (4.32) 

Evaluate this integral using the expectation properties of white gaussian noise. The 

values of g{t\) and g(t2) are independent unless £1 = £2. Independence allows separating 

the expectation of their product into the product of their individual expectations. For the 

case t\ 7^ £2 

E \g(h)g(t2)] = E [9(h)} E [g(t2)] (4.33) 

When applied to equation 4.32, if £1 7^ £2 / £3 / £4 then the expectation is 

£[<?(*i)s*(*2)<?*(£3)<7(£4)]   =   £b(£i)]£[s(£2)]£b(£3)]£b(*4)] (4.34) 

=   0-0-0-0 (4.35) 

=   0 (4.36) 

since the individual distributions are zero-mean gaussian random variables. 

A non-zero value results unless all four times are matched in pairs, that is, only two 

time instances £1 and £2 (which may be the same), need to be considered 

E[g(tl)g*(t1)g*(t1)g(t1)] = £[|<?(*i)|4] (4.37) 

E[9(h)9*(t1)g*(t2)g(h)} = E [\g{h)?\ E [\g{t2)\2] (4.38) 

E[g{h)g*{t2)g*{h)g{t2)) = E [\g(tl)\2] E [\g(t2)\2] (4.39) 

E[g{h)9*(t2)g*{t2)g{h)] = E [{g(h)}2] E [{g*(t2)}
2] (4.40) 
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Equation 4.37 requires u = v with the additional condition that r and s are both zero. 

Expanding this for the complex value gT\ + jgn gives 

E )g{h)\\ =   E Iffn + J9a I4 

=   E 9rl+9il+^9rl9l 

=   3CT
4
 + 3af + 2a2af 

= 3i 
4              4 

r + 3-+2- 
72 a2 

2~2 
2a4 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

since gr and & have the same distribution the total noise power a2 is split evenly between the 

real (in-phase) and imaginary (quadrature) components, making a2 = a2/2 and a? = a2/2. 

Equation 4.38 corresponds to u ■£ v and r = s = 0.   Expand using #rl + jgji and 

SV2 + J9i2 

E '\9(tl)\2' E{\g(t2tf =   E \9rl+J9il\2 E   \gr2+J9i2\2 (4.46) 

=   E 92n+9l]E[g2
2+g2

2 (4.47) 

=   a2 a2 + a2 a2 + 2a2 a2 (4.48) 

=   a4 (4.49) 

The same result occurs for equation 4.39, used when u = v and T = s ^ 0. 

Equation 4.40 is valid when u = v and r = — s ^ 0.   Here the values at each time 

instance do not get conjugated and multiplied to give the magnitude squared. 

^[OKi!)}2]^*^)}2 
=     £[(5rl+jffu)2]#[(<?r2-i<?i2)2] (4.50) 

=   E [g2
rl - gl + 2jgrigil] E [g2

2 - gf2 - 2jgr2gi2\ (4.51) 

=    (a2-a2 + 0)(a2-a2 + 0) (4.52) 

(4.53) 4   ,      4       02   2 

(4.54) 

with ar = Oi = o/y/2 allowing the move from equation 4.53 to equation 4.54. 

The three non-zero cases can be accounted for by the substitution 

4(u+§Mu-§Mw+§)*("-*). [6(T)6{S)+6(U-V)6(T-S)](T
4 

(4.55) 

into equation 4.32 

E[\Cg(t,f)\
2} = 
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111111 [6{T)6{S)+6{u'v)6{T"s)] °A 

■4>{v, r)0* (A, s)ej2^uu-t/t-fT-Xv+xt+fsUududrdvd\ds (4.56) 

Rewrite this integral as a sum of two terms, one accounting for the case r = s = 0 and 

the other r = s ^ 0. 

E[\Cg(t,f)\
2)=o\A + B) (4.57) 

where 

A   =    IIf77f6{r)6{s)(l>{p,T)(f)*(X,s)e^^vu-ut-^-Xv+xt+^dududTdvd\ds       (4.58) 

B   =    ffffffs(u - V)6(T - s)<f)(v, r)0*(A, s)e^^uu-ut-^-Xv+xt+^UududTdvd\ds 

(4.59) 

In A, the expression 6(S)6(T) allows removing two levels of integration resulting in 

A= f f f f<f>{v,0)4>*(A,0)e^^u-ut-Xv+xtUududvd\ (4.60) 

Regrouping to isolate the u and v dependencies 

A= j j (f ei2™udu\ (J e~^Xvdv\ <t>{v,0)0*(A, 0)e?2*(xt-vt>dvd\ (4.61) 

The inner integrals act as Fourier transforms of constant arguments and can be replaced 

with the delta functions, S(u) and <5(A), leaving 

A= I j 6{u)6(X)cf>{u, 0)0* (A, 0)ej2^xt-utUud\ (4.62) 

which simplifies to 

A = 0(O,O)0*(O,O) = |<£(O,O)|2 (4-63) 

In the expression for B, S(u — v) and <S(r — s) allow the substitution of v = u and s = r 

and removal of the v and s integrals, leaving 

B= f f f f<f){v,r)0*(A,T)e>2^-vu+ut+Xu-xtUududTd\ (4.64) 

Evaluating the integration over u results in 

J e-M'-^du   =   r<v-x){l} (4.65) 

=   S(v-X) (4.66) 
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When substituted into the expression for B, this allows removing the A integration. B 

becomes 

B   =     f [<f>(v,T)(f)*(v,T)ei27rMdvdT (4.67) 

=    f I\4>{u,T)\2dudr (4.68) 

Taking the expression for variance in equation 4.29 and substituting equations 4.63 and 

4.68 (A and B) 

MC,(t,f)]   =   E[\Cg(t,f)\
2]-E[Cg(t,f)}

2 (4.69) 

=   a4[A + .B]-a4|<K0,0)|2 (4.70) 

=   ff4|^(0,0)|2 +a4 yy |^(i/, r)|2di/dT-a4|^(0,0)|2 (4.71) 

=   a4 y y\<j){v,T)\2dvdT (4.72) 

Unfortunately, this integral cannot be evaluated for all possible kernels. A popular class 

of kernel functions are product kernels — that is, <j>{v, r) = 4>{yr) — with the value of 1 

at the origin (necessary for desirable marginal properties in the distribution [21]. For these 

kernels, the integrals are unbounded. 

Viewed from the autocorrelation domain, the mean square value is represented by 

E[\C9(t,f)\
2]    =   E^J Jg(u + ^g*(u-^jMt-u,T)e-^dudT 

■ 119 (v + 0 g* (v - 0 V(* - v, 8)e-Wdvda] (4.73) 

Moving the expectation to cover only the random elements and reordering the integrals 

mc,tt,m - ////«[»HM-iVHVH); 
■ip{t - u, T)%l){t - v, s)e-j2nfTe~j2*fsdudTdvds (4.74) 

As described earlier, the expectation can be represented inside this integral as two delta 

functions. 

E[\C9(t,f)\
2]   =   J11 j[6(T)6(s)+6(u-v)6(r-s)}a4 

ip(f - u, T)i>{t - v, s)e-j2nf(T+sUudTdvds (4.75) 

Writing this as the sum of two integrals and applying the properties of the delta functions 

gives the following result 

E[\Cg{tJ)\2] = ai f [^{t-u,0)i>(t-v,0)dudv + a4 J [i>(t-u,T)^(t-u,-T)dudT 

(4.76) 
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To simplify this, the standard kernel property ip(t,0) = 6(t) [22] allows removal of the 

first integral. Using a change of variables, integration limits of infinity, and symmetry 

properties of standard kernels allows writing the t — u arguments as u. 

E[\C9(t,f)\
2] = a4 + aiJ jip(u,T)tß(u,-T)dudr (4.77) 

The variance, obtained from subtracting the square of equation 4.24 from equation 4.77, 

has the same form as found earlier when working in the ambiguity domain. 

var[Cs (*,/)] = a4 f f^{u,r)^{u:-T)dudr (4.78) 

As seen before, these integrals with infinite limits are unbounded. 

4.3    Discretized Transform 

Results form the continuous transformation shows an ill-behaved expression for variance 

because of the infinite power required for a truly white noise signal. For discrete signals, a 

white signal is physically realizable because discrete signals are inherently band-limited. 

Returning to the continuous definition of the time-frequency distribution 

Cg(t,f) = IJ jg(u + 0 g* (u - 0 4>{v,T)J2^™-vt-^dudvdT (4.79) 

To discretize this, nAT will represent time and pAf the frequency where AT is the sampling 

interval and A/ the corresponding frequency resolution. 

Cg{nAT,pAf) = 

E E E 9 (rnAT + ^) ,* (rnAT - ^) <j>{qAf, I AT) 

.eJ27r(?A/mAr-9A/nAT-pA/!Ar)^j>^r^j, (4.80) 

The sampling interval, AT, can be set to 1 second without loss of generality. Since 

the frequency resolution, A/, is given by the reciprocal of the window length, NAT, the 

summations can be re-written as 

C9(n,P) = jf E E E 9 (m + 0 g* (m-±)* (£, l) e^™-<m-Pi) (4.81) 

4.3.1    Discretized Mean 

To find the expected value for the discrete distribution, the non-deterministic g(n) terms 

need to be kept inside the E[-] operator 

E[Cg(n,p)] = 
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jf E E E E [a (™ + 0 5* (m - 0] ^ (£, j) eW"»-«»-*)        (4.82) 
/      9    m 

The expectation for the 35* term is a2Si, so the equation becomes 

E[C9(n,p)] = ± EEE^ (&.') e^(^"^ 
1       l      q     m \-<v     / 

Resolving the / summation 

^[^(n,p)]   =    ^EE^O)^") 
q     m        ^ ' 

■ 2izmq 
e3  N 

(4.83) 

(4.84) 

(4.85) 

The second summation, which involves the complex exponential with respect to m will 

evaluate to zero unless q = 0, in which case the summation becomes N. The mean value 

may be re-written as 

E [Cg(n,p)} =a2Y, W (jj, 0) e-^ (4.86) 

Performing the last summation and applying the property 0(0,0) = 1 to obtain 

E[Cg(n,p)] = a2 (4.87) 

which matches the expected value found for the continuous case. 

4.3.2    Discretized Variance 

Turning to the variance calculation, we begin with the discrete Cohen's class transfor- 

mation from equation 4.81. As previously explained, the new term needed is 

E \Cg(n,p)\2] = 

E jj £ £ £ {a (>» + 5) • (m - j) * (jf,<) <*""*-- -*> 

(4.88) 
d     b     c " 

Rearranging the summation symbols and collecting random variables under the expec- 

tation operator 

E \C9(n,p)\2} = 

^££^££4KyKyK)*H)] 
■<p (jj,i\ <t>* (Ad) em^-bc)+(b-q)n+p(d-D (489) 
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As with the continuous variance, the expectation operation has three cases with non-zero 

results. These are accounted for by substituting 

E 9[™ + -)g* (m--)g* (c + -jg(c- -j 
2JJ   \        2 

The variance becomes 

= a Wd + &{m-cAl-d) (4-90) 

E )C9(n,p)\2} 

^EEEEEE^4 [Wd+fy»-c)fy-«o) 
l      q    m     d     b      c 

.0 f±Ä 0* flA ej%(qm-bc+(b-q)n+p(d- ■»)) (4.91) 

As with the continuous case, breaking this expression into two pieces and incorporating 

each 6 function relationship results in 

A 
E 

a 
\C9(n,p)\'\=j^[A + B} (4.92) 

where 

* = EEEEEEw(^W^) 
.eJ7f(9™-&c+(b-g)n+p(d-0) (4.93) 

I      q    m     d     b      c \^     / \^      / 

,ejjf-(qm-bc+(b-q)n+p(d-l)) (4.94) 

The expression for A simplifies when summed over I and d because of the properties of 

the 6 functions 

A   =   EEEE^(l.0)^(^)e'>-^"» (4.95) 
q     m     b      c 

= EEE 
q     m     b 

V^e * N -3#te </,(^'°)^(^'°)eJ1f(9m+M")     (4-96) 

The bracketed summation has two possible values.  If b ^ 0, the summation goes to 

zero. When 6 = 0, it equals N. In that case 

A=NY: y^ejw qm *(£,<>)** (0,0)6-'*' iw"n (4.97) 
q    \. m 

The summation over m will also become N when q = 0 and is zero for all other q. This 

simplifies the expression for A to 

A = N2<f>(0,0)0* (0,0) = N2\c(>{0,0)|s (4.98) 

55 



Applying the 6 functions to simplify B 

B = EEEE4hl)t*(bl)eJ¥{9m~bm+bn~qn) <4-") 
l      g    m     b       ^ ' Viv     / 

= E E E [E ^(<M)m] *(l,i) <t>* (l,i) ^{lm-qn)     (4-100) 
l      Q     b    L rn J       Vv     / \iv     / 

The bracketed summation is non-zero only when q = b, when it evaluates to N. This 

leaves the result 

* = ^EE 
l      9 

<>o (4.101) 

Substituting for A and B in equation 4.92 and using the result in the expression for 

variance 

var{C*s(n,p)}    =   E [\Cg(n,p)\'\ - C9(n,p) 

^[A + B]-(a2<j>(0,0))2 

21 

a 

N EE 
L  I      q 

AT 2-t 2-/ 
i    g 

ttJr'Q 

*kl) 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

These results parallel the continuous expressions for A and B obtained in the preceding 

section. 

In contrast to the infinite integral limits used for the continuous case, the discrete 

variance calculation involves finite summations. This allows numerically evaluating the 

variance. 

4.4    Sampled Transform 

A parallel approach considers evenly spaced gaussian noise samples, p(n), where g(n) = 

g(nAT). Transform the g(n) samples using the discrete counterparts to the Fourier trans- 

forms 

?np[x(n)]   =    5>(n)e-^" (4.106) 

(4.107) 
n=0 

!   N-l 

p=0 

=   x(n) 

pn (4.108) 

(4.109) 
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These allow expressing the transformation of the time signal to the sampled time-frequency 

domain as 

Cg(n,p) = Tlv (rz\n \Tm{-q)   <?(m + 0<?*(m-0   #?,/)}) (4.110) 

The Fourier transforms in equations 4.106 and 4.108 involve a periodicity, either real or 

implied, over a period of NAt in the time domain which provides a periodic spectra with 

frequency resolution of A/ = l/(NAt), with repeats every 1/At hertz. 

To express the transform using the autocorrelation kernel, convolve the kernel with the 

autocorrelation and take the Fourier transform with respect to the lag variable, I. 

Cg(n,p) = fip [Rg(n,l) <8>n ip(n,l)] (4.111) 

where Rg(n,l) in the local autocorrelation and ip(n,l) is the autocorrelation kernel.  The 

Fourier transform of the autocorrelation kernel gives the ambiguity domain kernel, <fi(q, I) 

Fnq[iP{n,l)) = <f>(q,l) (4.112) 

4.4.1    Data Limitations 

There is an important limitation to keep in mind when using this sampled data approach. 

The continuous definition for Cohen's class implies time shifts of ±1/2 when determining 

the discrete autocorrelation function Rg(n,l). For odd values of I this requires values at 

points between the samples. Two techniques for dealing with non-integer sample points 

yield quite different results [21]. 

One approach treats these intermediate values as zero. Unfortunately this traditional 

approach discards information provided by odd lag values and halves the maximum una- 

liased frequency. 

An alternative approach uses separate methods for odd and even lag values. By slightly 

modifying the definition for the kernel and the autocorrelation function, it is possible to 

avoid undersampling the signal. This alias-free formulation allows an unambiguous fre- 

quency range of half the sampling frequency in comparison with the traditional formulation, 

which has a range of one-fourth the sampling frequency. 

The derivations below follow the alias-free formulation in both ambiguity and autocor- 

relation domains. The traditional methodology differs by eliminating terms with odd lag 

values. 
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4.4.2    Sampled Mean 

Calculating the expected value for the time-frequency distribution computed from sam- 

pled data requires evaluating 

r 
E[Cg(n,p)] = E Fh I •'—qn ] •'i m(-q) 9 [m + -)g   [m -£)] «*,<)}) (4.113) 

When expanded, this becomes 

P    -.     N     N 

E[Cg(n,p)) = E 
1=0 iV o=0m=0     V -V        \ ^/ 

e-JT-ple-JT-qnej2g-qm 

(4-' 

Moving the deterministic portions of this expression outside the expectation operator 

p   N    N 

14) 

1 
£[C9(n,P)] = T7£E£^ N l=0q=0m=0 

I 
9   m+ö 19   \m--K 

I 
4>(q,l) e-JT-ple-JT-qneJ^-qm 

2/      V        2, _ 

(4.115) 

The expectation will be non-zero only when / = 0 and the arguments for g and g* are 

equivalent. When / ^ 0, the independence of the samples drives the expectation to zero. 

Accounting for this by replacing the E[gg*] term with a26i, makes the expected value 

E[C9(n,p)} 4EEE A^Oe-^e-^^ 
l=0q=0m=0 

Using the delta function to resolve the summation over I 

(4.116) 

E[C9(n,p)] = ^E E 0(g,O)e-'*«V**» (4.117) 
o=0 m=0 

In the summation over m make the substitution 

E e'fr«"' = N6q 
m=0 

(4.118) 

The result is 

2  iv 

£[C9(n,p)]    =    ^E^MfoOje-^ iV 
o=0 

a20(O,O) 

(4.119) 

(4.120) 

To satisfy the marginal properties, the kernel equals one at the origin [18], with the final 

result 

E[Cg(n,p)]=a2 (4.121) 
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4.4.3    Sampled Variance 

Finding the variance of a distribution requires both the mean value and the mean square 

value. The mean square value calculated using the ambiguity domain form of the time- 

frequency distribution given in equation 4.110 is 

E \C9{n,p)\\ 

=   E{F1P [rz\n {^m(_9) \g (m + 0 g* (m - 0 ] <f>(q, I) }) 

** (f-l {fc{-b) [g (c + fj g* (c- 0] 0(M)})]'} (4.122) 

E I Tip [F-qn \F, m(-q) 
9{m+li)9*^n~li) ^q^}) 

■ F-dv (^ {?<* [g* (c + 0 g (c - 0] <p(b, d)}) } (4.123) 

Expanding the Fourier and inverse Fourier transforms 

E \C9(n,p)\2] 

N     N 

e J^p'e"^9?V"<*m 

(4.124) iftbne-j%bd 

d=Q ""  ft=0 c=0 

Moving constants outside the summations and deterministic portions outside the expec- 

tation 

E[\Cg(n,p)\2} 
P    N     N     P    N    N 

= jteSSS^KVMM^'M) i=0 9=0 m=0 d=0 fc=0 c=0 
; 2TT    / j    i\     ■ 2TT , 

•</>(?, 00* (6, d)e* W" V#(«-6> V^e"-»'^ (4.125) 

To avoid an expectation of zero, the four samples under consideration must be matched 

in conjugate pairs. A non-zero value occurs when m = c and I = d, or when / = d = 0. 

m = c    l = d = 0 2a4 

m = c    I = d T^ 0 a4 

m T^ c    / = d = 0 a4 

The following substitution achieves this result: 

4(mnMm-£Kc+0s(H) = V4öm-cöl-d + PA8lf>d (4.126) 
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The mean square value becomes 

E \C9(n,p)\2] = 

\l=0 9=0 m=0 d=0 6=0 c=0 

+ EE E E EEWh,o**(&.<oe**^ vfrfc-»>vfr v-'fr*» ] (4.127) 
i=0 9=0 m=0 d=0 6=0 c=0 J 

Resolve the summation over the delta functions 

E[\Cg(n,p)\2] = 

£2 (EE EEfaWMJ*^^*^ 
y=0 9=0 m=0 6=0 

+ E E EE^O^'M^^V^e-^*" 
g=0m=0 6=0c=0 ; 

(4.128) 

In the first set of summations, the only m dependence occurs in the complex exponential 

term. This term becomes JV when q = b and is zero for all other cases. 

E \C9(n,p)\2} = 

P    N 

\    ;=og=o 

q=0 m=0 6=0 c=0 
(4.129) 

For the second set of summations, c and m dependencies occur only in the exponential 

terms and have a non-zero result only when 5 = 0 and 6 = 0. 

p    N 

E 

This reduces to 

|cs(^)l2l =-^2 I^EE WQ,D\
2
 + N

2|0(0,0)|s 

/=o 9=0 

E ic9(n,p)i2]=^f:f:i^,oi2+^4 

«=0 9=0 

(4.130) 

(4.131) 

The variance is the mean squared value minus the square of the mean value found in 

equation 4.121 

var[Cs(i,/)] = ^£][>(g,0|2 

N 
(4.132) 

i=o 9=0 
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Determining variance in the autocorrelation domain requires evaluating 

war[C9(n,P)]=E\\Cg(n,p)\2]-(E[Cg(n,p)})2 (4.133) 

Evaluate this expression by separating the odd and even lag values, I, to allow an alias- 

free formulation for Cg(n,p)[21]. 

Cg(n,p)   =      £      E  9(k + ^j9*{k-^j^n-k,l)e-^1 

1=0 k=—oo 
even I 

P-l        oo 

+   E    Es(fc + ^)^(H^)^-M)^ 
1=0 
odd I 

k=—oo 

(4.134) 

where ip'{n, I) in the modified ambiguity free-kernel for odd values of /. 

Modifying the lag index covers positive and negative values, ranging from — P/2 + 1 to 

P/2 — 1. The local autocorrelation for a lag of —P/2 must be zero to satisfy symmetry 

properties of the transform. 

--1 oo 

even I 

l==f+l   fc=-°o 

S-l 

(4.135) 

i=^P+l   fc=-oo 
odd I 

This expectation becomes 

——l 

£[|0,(n,p)|2]    =    £7 £        f)   g{k+l^g*(k-l^^n-k,l)e-^1 
f-l oo 

E E 
'=^+i A;=—oo 

even I 

f-1 oo 

E Es 
'=^+i fc=—oo 

+       E        E  9 (k + \ + I) 5* (fc + i - 0 ^(n - *,0c-^" 

odd f 

(4.136) 

Breaking up this incredibly cumbersome mess into only slightly more workable night- 

mares 

E[\Cg{n,p)\2]   =   E[A + B + C + D] (4.137) 
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=   E[A] + E[B] + E[C] + E[D] (4.138) 

where 
£-1 £-1 

A   = E      E    E  E »r* + 4Vf*-5- 
even £ even d 

(m + 0 5* fm _ 0 ^(„ _ jfe, /)^(n - m, d)e~-> W+d> (4.139) 

i--i £--1 2      x 2      * OO 00 

£ = E      E    E  E »(*+0*"(*-5) 
even f odd d 

ff (m + \ + 0 ff* (m + \ ~ f) ^U ~ *' '^'(n ~ m' d)e-j2p-p{l+d) (4.140) 

2      x 2L OO OO 

c E      E    E   E '(* + mV(* + 5 + ö 1=^1+1      d=^£+1    fe=-oom=-oo     V I       tj        \ 11) 
odd I even d 

g (m + |) 5* (m - 0 V'(" - *,0^(" ~ ™,d)e~^^1^ (4.141) 

--1 s--i oo oo 

D   = ?.. ,5.. £ ?'K+*)'K-i) /=^+l      d==f+l   k=-oom=-oo 
odd i odd d 

'9 (m + 5 + f) 9* (m + \ ~ 0 ^'(n ~ *'/),//(n ~ m' d)e_i' p('+d) (4-142) 
The expected value of A simplifies using the relationship 

E 'W)'H)'h§'{-i) = a4{6l6d + 6k^m6i-d) (4.143) 

so 

-i f-i 00 oo 

*M = °*   E      E    E   E » + «ik-m*i-«d 
i=^ + l      d==f+l   k=-oom=-oo 
even J even d 

•V»(n - it, l)i>{n - m, d)e-'W+d> (4.144) 

=   a 
OO OO 

53     53   ^(n-fc,0)^(n-m,0) 
fc=—oora=- oo 

+      E        E  1>{n-k,l)il>(n-k,-l) 

even £ 
J=^+l   *=-oo 

(4.145) 
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Following the same basic steps used to find E[A] will lead to the expected value of D. 

Since / and d must be odd in the expression for D, they cannot be zero. This means there 

will not be the 6i6d term as in equation 4.144. The expected value of D simplifies to 

f-i 
E[D]= a4      ]T        J2  tf(n-k,l)i/)'(n-k,-l) 

l==£+l   k=~oo 
(4.146) 

odd I 

The expected values of B and C are zero. In equation 4.140 the g(m + .5 + d/2) and 

g* (m + .5 — d/2) terms can combine as a complex conjugate pair only if d = 0, which is not 

possible since the summation limits d to odd values. The g(m+.5+d/2) and g*(m+.h—d/2) 

cannot match up with the g(k + l/2) and g*{k —1/2) terms. The spans, \d\ and |/|, cannot be 

equal since / must be even and d must be odd. The same limits on the summation variables 

force the value of C to zero in equation 4.141. 

The variance of the distribution now becomes 

var[C9(n,p)]    =   E[\Cg(n,p)\2]-\E[Cg(n,p)]\2 

=   E[A] + E[D] - (a2)2 

4 

(4.147) 

(4.148) 

=   a 
oo oo 

£     ^2   ij>(n-k,0)ip(n-m,0) 
k=—oo m=—oo 

£-1 

+      E        E  *l>{n-k,l)il>{n-k,-l) 
k=—oo -_p_ 

2 
even ( 
'==lr+i 

odd I 

(4.149) 

Since all the k based summations have infinite limits, the specific value of n does not 

matter, allowing n = 0. 

var[Cg(n,p)] 

<j 

00 oo f-1 
-1+   E     E   V>(-MM-m,0)+      E       E  1>{-k,lM-k,-l) 

k=—oo m=—oo 

even J 
Z=^+l   fc=-tx> 

f-1 
+   E    E *P'(-k,W(-k,-i) 

odd t 
«=^+1   fc=-oo 

(4.150) 
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If we assume the kernel provides a time-frequency distribution with the correct time 

marginal, the kernel at zero lag can be treated as a delta function, ip(n, 0) = 6n, forcing the 

first summation to a value of 1 

var[Cg(n,p)] 

=   a 
-l 

E     E M-k,QiK-k,-i)+    E     E M-k,W(-k,-i) 
l==f+l   k=-oo 
even I odd I 

£4-1    fc=-oo 

(4.151) 

4.5    Specific Distributions 

Finding actual values for the mean and variance requires a specific transformation kernel. 

This section numerically examines the mean and standard deviation obtained when using 

two members of Cohen's class, the Wigner distribution and the binomial distribution. The 

analytic results derived include both the alias-free and the traditional formulations of these 

distributions. 

4.5.1    Discrete Wigner kernel 

The discrete Wigner kernel, or perhaps more properly the quasi-Wigner kernel [30], has 

the alias-free form 

ip(n,l)   =   Sn 

which makes the alias-free variance 

\8x[Cg(n,p)] 

=   a 

£-1 2      1               00 f-i 00 

E    E *-**-* +   E £ 
i==£+i  *=-°° '=^+1 k=—00 

even I odd I 

£_1                    £_i 
2    x                    2    L 

1 
2 

1=^+1     i==f+i 
even I                 odd I 

=     <74 P7P-I 

(4.152) 

(4.153) 

(4.154) 

(4.155) 

(4.156) 
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As mentioned in section 4.4.1, the traditional formulation sets the function ip'(n,l) to 

zero. This forces all the rows in the ambiguity domain associated with odd lags to zero. 

When applied to the variance, this gives 

f-i 
vav[Cg(n,p)]    =   a4      J2       E  6-k6-k 

l==£+i   fc=-oo 
even I 

-1 

= -4   E   i 
even I 

(4.157) 

(4.158) 

(4.159) 

4.5.2    Binomial Kernel 

Kernels which generate a reduced interference distribution (RID), such as the binomial 

and the spectrogram, provide lower values for variance in the time-frequency domain than 

the Wigner. The RID kernels replace the uniform ambiguity domain weighting of the 

Wigner kernal with a tapered window before transforming the values into the time-frequency 

domain. This provides a measure of smoothing to the final distribution at the cost of some 

frequency and time resolution. 

Determining the variance for the binomial kernel is more involved since unlike the 

Wigner, the kernel does not have a simple delta function form in the autocorrelation domain. 

Exploiting the symmetry in the kernel allows expressing the variance as 

(4.160) 

Each row of the binomial kernel is given by the binomial coefficients, scaled so the sum 

across the row is unity. Both ip and ip' have the same form, allowing the two summations 

£-1                                                  £_i 
2                        OO                                                  2                        OO 

var[Cs(n,p)] = CT
4 E    EMM)]

2
+   E    E ^'(M)]2 

i==f+i *=-°°           '=^+1 k=~°° 
even I                                           odd I 

to be combined. 
f-1 

var[Cff(n,p)] = a4    £      £ [^(k,l)}2 

l==£.+lk=-oo 
(4.161) 

Row / of the kernel has l + l non-zero elements. These elements have the unsealed values 

based on the binomial coefficients 

m m\(l — m)\ 
(4.162) 
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with m = 0...l. Each element in row / must be scaled by 2 'to force the sum of the values 

across the row to equal 1. Replacing the k summation with a summation over m gives 

-i   in 
var[C<,(n,p)] = a4    ]T)     J] 

1 l\ 
2lm\(l-m)\. 

(4.163) 

This is symmetric about I = 0 reducing the variance for the alias-free form to 
p 

var[Cs(n,p)] = CT
4
 < 

»-1!     ' i + 2£iE /! 

f-f 221 ^   m! / - m)! 
1=1 m=0 L      v ' J 

(4.164) 

In the traditional form, the even lag rows have the same values, but the odd lag rows 

contain only zeros. Since summing across the zero rows is not necessary, the variance can 

be re-written as 

vax[Cg(n,p)] = a4 < 
*-i ,  . 

!+2  £   iE 
1=2 
even I 

m=0 

n 
m\(l — m)\ 

(4.165) 

Figure 4.1 shows how the variance of the Wigner and binomial distributions vary as the 
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Figure 4.1: Noise Variance vs Transform Length 

length of the transform increases. 

4.6    Numerical Results 

The numerical values were derived from a vector containing 4096 independent, normally 

distributed point with mean 0 and variance 1. The time-frequency distribution was found for 
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this vector, using traditional and alias-free formulations with varying frequency resolution. 

The values for the time-frequency distribution filled a matrix Cg(n,p). The trial mean 

was given by 

(4.166) 
1 

mean = E [Cg] = — £ ]T Cg{n,p) 
n     p 

where N is the number of time samples, in this case 4096, and P is the transform length 

and the number of frequency bins which ranged from 4 to 256. 

The variance was estimated by squaring each element in the time-frequency domain, 

finding the average of these squared values, and subtracting the square of the mean value. 

This can be expressed as 

var = 4zEEw>p)2 - m? NP 
(4.167) 

Tables 4.1 and 4.2  show how well the analytically obtained values for the distribution 

Traditional Alias-Free 

Window Mean Variance Variance 

Length ideal       trial ideal          trial ideal           trial 

4 1    0.9978 1        1.0461 2        1.9973 

8 1    0.9978 3        3.0689 5        7.0689 

16 1    0.9978 7       7.0730 11      11.0606 

32 1    0.9978 15      14.8377 23      22.7618 

64 1    0.9978 31      30.7465 47      46.5828 

128 1    0.9978 63      62.1522 95      93.6993 

256 1    0.9978 127    124.6105 191    187.3551 

Table 4.1: Wigner Statistics 

statistics match the values obtained through a computer trial. These tables show excellent 

agreement between the theoretical and experimental statistics, with only two trial variance 

values differing from the expected analytical values by more than four percent. 

These results show a growth in variance similar to that displayed when computing a 

periodogram [31]. A more complete understanding would be provided by considering the 

case of a desired signal, s(t), added to the noise considered in this chapter. This would 

allow evaluation of the performance of Cohen's class transformation as a signal estimator 

in terms of bias and asymptotic performance. 
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Traditional Alias-Free 

Window Mean Variance Variance 

Length ideal       trial ideal trial ideal trial 

4 1    0.9978 1.0000 1.0461 2.0000 1.9973 

8 1    0.9978 1.7500 1.8054 3.3750 3.4049 

16 1    0.9978 2.7480 2.8194 5.2842 5.3348 

32 1    0.9978 4.1145 4.1613 7.9568 7.9594 

64 1    0.9978 6.0152 6.0542 11.7164 11.6903 

128 1    0.9978 8.6812 8.7077 17.0188 16.9346 

256 1    0.9978 12.4538 12.3190 24.5074 24.1765 

Table 4.2: Binomial Statistics 

4.7    Summary 

Noise driving a Cohen's class transformation provides a time-frequency distribution 

with characteristics based on the kernel used and the length of the transform. Comparing 

the quasi-Wigner and the binomial kernels demonstrated a significant edge in performance 

for the binomial as the frequency resolution (and the transform length) increased. The 

quasi-Wigner displayed slightly worse than linear growth in the distribution variance as the 

transform length increased, O(N), while the binomial's variance was slightly greater than 

0(VN). 
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CHAPTER 5 

DYNAMIC TARGETS 

Studies of long wires and pairs of orbiting spheres demonstrate the usefulness of time- 

frequency distributions for the analysis of radar signals. They served as simplified models 

for moving blades of an engine propeller or a helicopter rotor. In general, the backscatter 

signal was difficult to interpret in either the time or the frequency domains. Applying the 

binomial distribution, a discrete time-frequency distribution, allows clearly associating each 

sphere with its corresponding doppler return. The binomial distribution provided a detailed 

view of the target dynamics, opening the way for target classification and identification. The 

structures and details available in the time-frequency domain were not readily exploited in 

the original signal representation. 

5.1    Introduction 

In addition to looking at dispersive targets, time-frequency techniques are also directly 

applicable to dynamic targets. With the target in motion, the scattered signal will have 

non-stationary characteristics. Focusing on these changing characteristics allows estimation 

of parameters relating to the target's geometry and insight into the target dynamics. 

Radar systems combine elements of electromagnetic theory with signal processing to 

estimate target parameters. A rudimentary system may only try to determine whether or 

not a target is present in a region. More elaborate systems provide estimates of the target's 

location and velocity and direction. Some systems extend the parameter estimation to 

provide target identification [36]. 

Simple radar analysis can determine position and radial velocity. The target location 

is resolved in polar coordinates by using time delay, AT, in the returned signal to measure 

range and the pointing direction of a narrow-beam antenna to provide the necessary angular 
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coordinates (azimuth and elevation). Transforming the returned signal into the frequency 

domain gives the doppler shift imposed on the signal by the target. Knowing this shift 

and the original carrier frequency gives the radial velocity of the target (how quickly it is 

moving directly towards or away from the radar). 

While these techniques work reasonably well for a simple return, multiple targets, or 

multiple scatterers on a single target, can obscure the analysis. Interaction terms make 

it difficult to determine the contribution from individual scatterers or scattering modes. 

Advanced methods like time-frequency analysis can isolate components from such multiple 

returns. 

5.2 Background 

The basic motion selected for this work was rotation about a point. The targets con- 

sisted of wires and spheres. The objective for the time-frequency analysis was to determine 

instantaneous target velocities based on the doppler shift of the return signal. For a carrier 

frequency of /c, the doppler shift for a point target moving with a radial velocity of v is 

fd = — (5.1) 

using c as the velocity of propagation. 

Figure 5.1 shows the basic measurement system modeled to measure these doppler shifts. 

The target was illuminated with a 1 GHz plane wave, then the scattered signal from the 

target was converted down to the baseband in-phase, /, and quadrature, Q, channels. 

For an object following a circular path, the radial velocity will follow a sinusoid with 

the maximum directly proportional to the rotational rate, frot, and the distance from the 

center of rotation, r. The maximum radial velocity is 27r/rotr, so the maximum doppler 

shift is 

/<_- ^f^ (5-2) 

The rotational rate and distance were selected in conjunction with the sampling frequency 

to avoid any ambiguities in the instantaneous doppler frequency. 

5.3 Wire Targets 

Thin, straight pieces of wire provided a relatively simple yet potentially important target 

for analysis. The insights provided from a single wire carry over into multiple wire targets. 
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Figure 5.1: Dynamic Measurement System Model 

Rotating wires serve as a simplified representation of rotating structures such as airplane 

propellers and helicopter rotors. 

5.3.1    Single Rotating Wire 

The first set of dynamic targets examined were long, perfectly conducting wires, modeled 

using the Numerical Electromagnetics Code (NEC) [5]. These simple targets illustrate how 

time-frequency distributions can be applied to a radar scattering problem. 

Since the wires used were electrically long, the backscatter pattern has several expected 

peaks. In addition to a sharp peak when the wire is broadside to the incident field, two 

other broad peaks result due to traveling waves set up on the wire. These peaks appear 

at [24] 

6P = 49.35^/Ä/Z (5.3) 

For the wires used, 2.5 and 5 wavelengths in length, these scattering wave peaks occur at 

22.1 and 31.2 degrees. 

These long wires demonstrated a second scattering property. The primary scattering 

center was located at the tip of the wire furthest from the radar. As the wire rotates, the 

primary doppler contributor will follow the movement of the outer tip of the wire. 
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Three different single wire cases were tested. In two of the trials, the wire was rotated 

around one end. In the third trial, the rotational center was placed 2.5 wavelengths beyond 

the end of the wire. This allowed the end of the 2.5 wavelength wire to reach the same 

radial velocity, and therefore generate the same doppler shift, as the 5 wavelength wire. 

Figure 5.2 illustrates these cases. 

2.5 

A y ky 

n 

2.5 

x x 

Figure 5.2: Single Wire Geometries 

The corresponding backscatter patterns for the 2.5 wavelength and the 5 wavelength 

wires are shown in figure 5.3 

2.5 Wavelengths 5 Wavelengths 

90a4 

0 180 

Figure 5.3: Single Wire Backscatter Patterns 
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Figure 5.4 shows the magnitude of the time response for these three cases. A significant 

2.5 Wavelength 

B 

350 

350 

350 

Figure 5.4: Single Wire Waveforms 

feature is how both 2.5 wavelength targets generate the same received signal power as a 

function of time. The difference in rotational centers only appears in the phase of the 

received signal. 

Taking the Fourier transform of the signals provides the power spectral densities shown 

in figure 5.5. Because the scattering centers on the wire have constantly changing velocities, 

the doppler of the scattered signal has a smeared nature, covering a range of values. The 

differences between the 2.5 and 5 wavelength wires can be seen in the maximum doppler 

achieved, with the 5 wavelength wire having twice the frequency spread. 

Another interesting feature in figure 5.5 is the difference between the 2.5 wavelength 

wires. As expected, the wire with the offset rotational center reaches the same maximum 

frequency as the longer wire. Both ends of the shorter wire are in motion, so neither tip 

stays stationary at the rotational center to make a significant contributions at the lower 

doppler frequencies. 

The binomial distribution for the single wires is shown in figure 5.6. In the joint time- 

frequency domain several characteristics of the signal become obvious. The rotational aspect 

of the wire dynamics show up in the sinusoidal envelope formed in the binomial distribution. 

The maximum doppler frequency occurs when the wire is perpendicular to the direction of 
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Figure 5.6: Single Wire Binomial Distributions 
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propagation, so it corresponds to one of the peak amplitudes in the return. The broadside 

orientation also allows each point along the wire to contribute energy to the return, creating 

a broadband frequency return as all dopplers between 0 and fmax contribute. 

The largest returns in the backscatter signal are due to the traveling wave returns. These 

show up four times in each cycle. The extreme size of this component obscures the details 

of the time-frequency distribution around these points in addition to creating cross terms. 

Another characteristic of the scattered wave shown by the time-frequency distribution 

is how the scattering favors the end of the wire furthest from the radar. On these plots, 

the sinusoidal pattern generated is asymmetric through a cycle. The trace is darker from 

the negative maximum doppler point through the positive maximum doppler one half cycle 

later. This corresponds to the time the outer tip is further from the radar than the inner 

point. The other half cycle has a lighter component and corresponds to the time when 

the fast moving outer point is closer to the radar. For the wires rotated about their end, 

the zero frequency line is stronger during this half cycle. For the offset wire, there are 

no significant contributions from the spectrum around zero hertz. However, there is still a 

jump in emphasis following the rear point. In this case, neither end of the wire is stationary, 

so the zero doppler contribution is very small. 

The offset wire has an interesting overall pattern. It has the same basic features as the 

other 2.5 wavelength wire, but a null band appears at the low doppler frequencies. At the 

maximum doppler points, the offset wire reaches the same peak frequency as the longer 

wire, as expected, but it cannot support modes with zero doppler shifts since all the points 

on the offset wire are traveling fast enough to generate a doppler shift of half the peak value. 

5.3.2    Multiple Rotating Wires 

The scattering off a 2.5 wavelength wire was extended to consider multiple wires. In 

this set of trials, the 2.5 wavelength section served as the initial target. Then a second, 

identical, wire was attached at the rotation point, positioned 120 degrees away from the 

first wire. A third wire attached to the rotation point and positioned 240 degrees away 

from the first wire completed the symmetric three-wire set. The geometries involved are 

shown in figure 5.7. The backscatter for the single wire was already shown in figure 5.3. 

The corresponding backscatter patterns for the double and triple wire targets are given in 

figure 5.8. 

The targets were rotated while illuminated with a planar incident field with the electric 

field polarized parallel to the plane of the wires.  Figure 5.9 shows the magnitude of the 

75 



2.5 

Figure 5.7: Multiple Wire Geometries 
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Figure 5.8: Multiple Wire Backscatter Patterns 
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Figure 5.9: Multiple Wire Waveforms 

received backscatter signal. The corresponding power spectral density, obtained using the 

Fourier transform, is shown in figure 5.10. 

As with the single wire trials, the dominant returns are due to traveling waves. With 

careful processing of the scattered signal, it is possible to discern portions of two sinusoidal 

patterns in the two-wire target. This is clearest in the vicinity of the maximum doppler 

shifts. Figure 5.11 shows how increasing the complexity of the target return rapidly fills the 

time-frequency response with components and cross terms that make interpretation difficult. 

The rapid changes in the power of the backscatter signal contribute to this difficulty. 

There is one additional problem encountered when trying to interpret the three-wire 

scatterer compared to the single and double wire cases. The three-wire target is the only 

one in the set that exhibits complete rotational symmetry — each third of a rotation is 

indistinguishable from the other two thirds. This makes it extremely difficult to make 

analysis without a priori knowledge of the target makeup. 

5.4    Spherical Targets 

This study used two spheres traveling in simple circular orbits. Although the spheres 

were illuminated by a planar, continuous-wave signal, the return from the two moving 
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Figure 5.12: Target Dimensions 

scatterers undergoes rapid changes in both amplitude and phase. 

Using the scattered signal allows determining the number of scatterers, their rotational 

frequency, and position of the spheres with respect to the center of rotation. By using 

time-frequency techniques, the typical estimates of these values had errors less than five 

percent. 

5.4.1    Electromagnetics Problem 

The basic problem examined involved two metallic spheres as sketched in figure 5.12. 

The target consisted of two perfectly conducting spheres with their centers separated by one 

meter. Each sphere had a radius of 15 centimeters. When illuminated by a 1 GHz incident 

plane wave, the multiple spheres created several different modes of reflected electromagnetic 

energy. These modes included specular reflections, creeping waves, and multiple bounce 

reflections. 

The original data for this experiment was generated by running a body of revolution 

simulation using two spheres as targets. The returned signal values were based on monos- 

tatic, far-field calculations. The simulation covered a frequency range of 1.0 to 7.55 GHz and 

considered observation angles over a span of 90 degrees. Viewed in polar coordinates, the 

spheres were placed with one center at (0.0,0.0,0.5) and the other center at (0.0,0.0, —0.5). 

The angle 9 ranged from 0 to 90 degrees, sampled every half degree. The symmetry of the 

two spheres allowed this data set to be extended to cover view angles from 0 to 360 degrees 
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Figure 5.13: Centers of Rotation 

with respect to the positive z-axis, measured in the x-z plane. The carrier frequency of 

1 GHz insured the doppler shifts imposed on the signal by the target rotation would be 

small enough to avoid undersampling in the frequency domain. 

5.4.2    Processing and Estimation 

To create a dynamic problem, numerical simulation placed the spheres in circular orbits 

around five different rotational centers, referred to as cases A through E. Figure 5.13 shows 

the positions chosen. Each of the five cases provided different return signal characteristics.. 

Each trial used two seconds of data sampled at a rate of 512 hertz. After applying a 512- 

point transformation, this provided resolution of 1 hertz in the frequency domain. The 

rotational rate was chosen as 3.5 hertz so the maximum expected doppler shift would not 

give an undersampled signal. Calculations for each sampling instant determined the view 

angle, then interpolated between the values in the simulated data set. In all cases, each 

sphere maintained a constant distance from the rotational center. Both spheres traveled at 

the same angular rate. 

For each of the five cases, estimates were generated of four parameters: the period 

(To), the distance from the rotational center to the first sphere (ri), the distance from the 

rotational center to the second sphere fa), and the distance between the spheres (ro). 

The period was determined using the autocorrelation, ß(r), of the time domain samples. 

The number of autocorrelation peaks, N, and the time shifts for the first and last peaks, T\ 
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and TN, provided the estimate of the period 

ib-$e? 0") 
The radii of the sphere orbits were based on the measured peak doppler shift, fdmax, 

the estimated rotational period, To, and the known illumination frequency, /$. Using equa- 

tion 5.2, the only unknown value after measuring the peak doppler shift was the radius, r. 

The estimate for the radius r\ or r2 becomes 

7X2   =   ~^J~ (5-5) 

The final value, ?*o, was found using n, r2, and the phase shift, 0, between their peak 

doppler points. The estimate of 9 depends on T\ and T2, the times each sphere generates 

their maximum doppler shift 

9 = 360T* ~ Tl (5.6) 

Using this phase shift in the law of cosines gives the sphere separation, ro as 

r0 = Jr\ + r| — 1r\r2 cos 6 (5.7) 

When generating these estimates, the period was calculated autonomously by a com- 

puter. The maximum doppler shift frequencies and times values were manually extracted 

from plots of the time-frequency distribution to allow separating the doppler components 

associated with each sphere. 

Since the spheres traveled in a circular path, their radial velocity with respect to a 

stationary observer varied sinusoidally. The velocity passed through zero at the spheres' 

closest and furthest position with respect to the observer, that is, when the sphere, the 

rotational center, and the observer were in line. The maximum velocity points were offset 

by ±90 degrees from the zero velocity points. 

The doppler shift imposed on the scattered signal is directly proportional to the sphere 

velocity, and is given by the relationship 

U = f (5-8) 

Since the two targets cannot occupy the same position of the same orbit simultaneously, 

each will have a different doppler frequency over the course of a cycle. In the cases we 

considered, the doppler returns will all have the same period, but will vary in their peak 

frequency deviations and their relative phases. 

Figure 5.14 shows a segment of the backscatter waveform.   Since the test signals are 
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Figure 5.14: Orbiting Spheres Waveform 

distinguishable only by their phasing, this figure represents the magnitude of the complex 

value signal for all five cases. 

The test signals show dramatic differences when viewed in the frequency domain. Two 

examples of the fast Fourier transform on the signal gives the spectral magnitude shown in 

figures 5.15 and 5.16. Unfortunately, the continuously changing doppler frequencies cannot 

be discerned from these graphs. These spectral graphs can also used to estimate the period 

and the maximum doppler frequency for the signal. 

Figure 5.17 shows one of the possible spectrograms for the Case E signal. This was 

calculated using a 128 point window, giving a frequency resolution of 4 hertz (compared 

with the 1 hertz resolution provided by a 512 point binomial transformation). As the figure 

shows, this form makes it difficult to associate specific frequencies with particular times. 

The binomial distribution gives a different perspective by taking the signal into the 

time frequency domain, shown in figures 5.18 and 5.19. These graphs show two sinusoidal 

components, one created by each sphere, distinguished by their magnitudes and phases. 

These differences translate into distance from each sphere to the center, and from the 

spheres to each other. 
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Figure 5.15: FFT of Case A Waveform 
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Figure 5.16: FFT of Case E Waveform 
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Figure 5.17: 128-Point Spectrogram of Case E Waveform 

300 350 400 450 
Time (sample) 

Figure 5.18: Case A Time-Frequency Representation 
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Figure 5.19: Case E Time-Frequency Representation 

To n Ti i"o 

Actual 

Estimate 

146.29 

146.33 

0.50 

0.50 

0.50 

0.50 

1.00 

1.02 

% Error 0.03 0.98 0.98 1.97 

Table 5.1: Case A Results 

5.4.3    Test Results 

Case A — Symmetric 

The first rotating sphere target had the rotational center at the midpoint between the 

spheres, indicated by position A in figure 5.13. This required no additional manipulation 

of the signal since the rotational center matches the original simulation. 

Since the spheres were equidistant from the center and traveling at the same angular 

rate, the velocity of one sphere was always the negative of the other. This means the two 

spheres impose equal and opposite doppler shifts on the returned signal. 

Table 5.1 summarizes the estimation results. Due to the high level of symmetry in this 

case, a priori knowledge that the value of To corresponded to half the actual period was 

used when generating the estimates. 
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To n T2 ro 

Actual 

Estimate 

146.29 

146.25 

0.25 

0.27 

0.75 

0.76 

1.00 

1.05 

% Error -0.02 6.44 0.98 4.75 

Table 5.2: Case B Results 

To n T2 ro 

Actual 

Estimate 

146.29 

146.33 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

% Error 0.03 0.00 0.30 0.30 

Table 5.3: Case C Results 

5.4.4    On-axis Shifts 

The next three cases share a common difference with the original data set. Case B moved 

the rotational center closer to one sphere. In case C the rotational center was colocated 

with the center of one sphere. Case D positioned the rotational center on the extension of 

the line connecting the sphere centers. In these three cases, the return signal value from 

each angle requires an additional phase factor, to account for the apparent movement of 

the original rotational center and the wavelength, A, of the illuminating signal. To move 

the origin p meters along the axis between the spheres used a phase offset a given by 

47T/9 
a 

A 
■cos(Ö) (5.9) 

The larger errors in table 5.2 are due to difficulties in estimating small lengths due to 

the small doppler shifts they produce. This same effect also contributes to the large errors 

encountered in Case E below. The results for Case C, summarized in table 5.3, and Case D, 

summarized in table 5.4, had lower errors, corresponding to the larger radii being estimated. 

To n r% »"0 

Actual 

Estimate 

146.29 

146.33 

0.50 

0.50 

1.50 

1.51 

1.00 

1.02 

% Error 0.03 -0.38 0.53 2.14 

Table 5.4: Case D Results 
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T0 n 7-2 ro 

Actual 

Estimate 

146.29 

146.25 

0.38 

0.41 

0.92 

0.92 

1.00 

1.13 

% Error -0.02 6.92 -0.35 12.58 

Table 5.5: Case E Results 

5.4.5 Off-axis Shift 

The rotational center is placed at an arbitrary position, specified as an angle and distance 

from the symmetric center. This case requires two parameters to determine the phase 

corrections. Like the previous case, the distance p factors in, but it also involves the angle 

60ff between the z-axis and the line connecting the original and new centers of rotation. 

This yields a phase correction of 

a = ^-cos{9 + eoff) (5.10) 

As shown in table 5.5, Case E exhibited the largest errors, in part because it was the 

only case where requiring estimates of the angular offset between the two time-frequency 

domain traces. In the previous four cases, we place the doppler components either exactly 

in phase, or 180 degrees out of phase. For the arbitrary rotational center placement, the 

error estimating the phase difference combines with any errors estimating r\ and T2 to give 

the total error in the ro value. 

5.4.6 Higher Order Effects 

There are several higher order effects that can arise in a dual sphere problem. The 

spherical targets will support a creeping wave, where part of the impinging energy follows 

the surface of the sphere, shedding energy as it travels around, some of it directed back 

towards the source. Energy following this path can be distinguished from the primary 

returns due to an additional time delay from their longer path. They do not show up with 

this time-frequency analysis because the primary (or specular) return and the creeping wave 

return undergo the same doppler shift. Note that at extremely high sampling rates, two 

doppler lines could arise, offset in time by the additional travel time of the creeping wave. 

For a 15 centimeter radius sphere, the wave travels an additional 0.15(7r + 2) = 0.77 meters, 

or 2.57 microseconds in free space. This would require a sampling rate over 388 MHz. 

Another observable effect involved waves reflecting off both spheres in succession before 
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return to the source. Due to the motion of the reflection points on the surface of the sphere, 

the path length traveled by the wave between the spheres varies with the observation angle, 

giving a roughly linear value over each half cycle of a rotation. The energy involved in this 

mechanism is very low compared to the specular peaks, and does not show up in most of 

the sample runs. 

5.4.7    Customized Kernel 

Since this problem was constrained to simple rotational motion, it is possible to design 

a kernel optimized to extract the expected doppler shapes. I did not explore that option 

since the rotating spheres were only serving as an example to justify research using more 

complicated targets. Customizing the kernel to the problem may provide dramatic improve- 

ments in the resolution and fidelity of the results, particularly when the signal is buried in 

noise [45]. 

5.5    Summary 

Time-frequency techniques worked very well on this problem. Examining the binomial 

distribution allowed us to extract information not readily available in other representations 

of the signal. Prom this information, we could estimate the physical parameters of the 

target with good accuracy, with only two estimates out of the group of twenty exceeding a 

five percent error. 

The techniques used here are applicable to other types of problems. Passive systems 

which measure emitted energy could also use this type of time-frequency analysis. In as- 

tronomy, an analogous problem might be the signals obtained from a binary star system. 



CHAPTER 6 

EFFECTS OF ADDING NOISE AND COMPLEXITY TO 

SCATTERED SIGNALS 

The previous chapters presented the application of time-frequency techniques to several 

electromagnetic problems. While the results have been promising, their applicability is 

limited due to the idealized conditions employed. Using simulations for the experiments 

provided signals free of the noise components with which all physical systems must contend. 

Evaluating this aspect is essential since other promising techniques for scattered signal 

analysis, such as the singularity expansion method (SEM), have shown a loss of effectiveness 

once a realistic level of noise was added to the system [4, 26]. 

For this chapter, noise signals were inserted at various power levels to determine the 

robustness of the time-frequency techniques. The signal degradation was monitored using 

the Renyi third order entropy [44] and the effects of increasing the target's complexity 

examined. 

6.1    Background 

An electronic system, especially one based on receiving scattered electromagnetic waves, 

must deal with a variety of noise sources. These sources may include thermal noise, shot 

noise, atmospheric noise, solar noise, cosmic noise, and urban noise. In some instances, 

these contributions can overpower the desired signal, making it impossible to extract any 

useful information. While some systems can increase their signal power to make the noise 

contribution insignificant, many radars cannot do this due to size, cost, or power source 

limitations. Instead, the signal processing subsystems in the radar must compensate to 

extract useful information from the imperfect received signal. 

To investigate the impact of noise, a simplified scattering model using a point target 
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was first investigated. This scattered signal was then corrupted by a noise source, in this 

case modeled using band-limited additive white Gaussian noise (AWGN). The third-order 

Renyi entropy provided a quantitative measure of the noise's impact. Various amounts of 

noise were then added to corrupt the signal to see how the received information degrades 

as the signal to noise ratios (SNR) decreases. Finally, these techniques were repeated to 

corrupt the signals from the two orbiting spheres discussed in chapter 5. 

6.2    Signal Models 

This study examined four target sets, two based on ideal scatterers and two based 

on realistic physical models. The data sets represent the scattered field from a target 

positioned along the y-axis and rotated around the £-axis. The targets were rotated at a 

rate of 3 revolutions per second and illuminated with a 2 GHz carrier. The scattered field 

was sampled for one second at 512 hertz. Placing the target pieces within 0.75 meters of 

the origin yields a maximum expected doppler shift of 

h   -   \ (6.1) 

- ^ <6-2> 
=   188.5 hertz (6.3) 

6.2.1    Point Targets 

To focus on the noise effects, the simplest possible data signal was used. Therefore, 

instead of the accurately modeled sphere scattering discussed earlier, a point target was 

placed in the far field of the radar antenna, traveling in a circular orbit of radius r as 

illustrated in figure 6.1. Since the target is in the far field, the return amplitude remains 

constant as the range changes slightly with target motion. The target motion is significant 

with respect to illuminating signal wavelength so the phase will depend on the target-radar 

separation. The target's angular position at time t depends on the frequency of rotation 

(frot) and is given by 2rfrott. 

For the carrier frequency (/c), the signal will have a wavelength 

_ 300,000km/s 
Ar — _ 

fc 

This means the signal will undergo a round-trip phase shift (9) of 

(6.4) 

9(t) = 47rC°s(27r/rott) (6.5) 
Ac 

90 



¥ 
.75 mete: M 

radar 

C3 
incident scattered 

Figure 6.1: Point Target Geometry 

radians. The returned signal is 

g(t) = e Mt) (6.6) 

With the target traveling in a circular path, the range to the target is given by a 

sinusoidal function. This means the time-frequency distribution, based on the velocity, or 

the derivative of the range, is also given by a sinusoid. The doppler shift imposed on the 

signal is based on the instantaneous radial velocity 

vTad(t) =rsm(2nfrott) 

and the carrier frequency wavelength 

fdoP(t) = 
2vrad(t) 

(6.7) 

(6.8) 

Figure 6.2 shows the difference between a traditional Fourier transform and a time 

frequency transformation for an orbiting point target. The binomial distribution clearly 

shows how the target's doppler changes as a function of time. 

The first two targets consisted of idealized point scatterers. The one point target placed 

the scatterer at the point y = 0.75 (0.75 meters from the center of rotation). The scattered 

signal from the single point target was unique since it exhibited no power fluctuations, only 

variations in phase. The two-point target, shown in figure 6.3, used this scatterer and added 

a second scatterer at y = —0.25 (0.25 meters on the opposite side of the center of rotation). 

Due to constructive and destructive interference between the scatter fields from the two 

points, variations occur in both the magnitude and phase of the signals. 

The simplified nature of these signals made them suitable for evaluation using the re- 

ceiver operating characteristic.   Calculating the receiver operating characteristic requires 
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Figure 6.4: Two-Sphere Scattering Geometry 

an apriori time-frequency distribution to determine where the targets components should 

appear. This definitive template for distinguishing false alarms from legitimate detection is 

only possible for the simplest targets. 

6.2.2    Distributed Target 

The other two targets were more difficult to analyze since the ideal point scatterers 

were replaced by numerical simulations modeling physical targets which generated more 

complicated scattered fields. The first realistic target, shown in figure 6.4, consisted of two 

metallic spheres, each 0.15 meters in radius. The centers of the spheres were positioned at 

y = 0.75 and y = —0.25 meters. The final target, shown in figure 6.5, was a 1 meter long wire 

placed along the y-axis between the points y — 0.75 and y = —0.25 meters. The scattered 

signals from these targets were not suitable for evaluation using the receiver operating 

characteristic since one could not dictate a priori what the time frequency representations 

should be for these returns. 

Each target signal was normalized to have a mean square value of 1.0. To create a 

noise-corrupted version, the target signal was added to an appropriately scaled noise signal. 

The noise signal was modeled as complex valued, with both the in-phase and quadrature 

channels having uncorrelated, normally distributed values with mean values of zero and 

equal variances. 
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Figure 6.5: Wire Scattering Geometry 

6.3    Noise Model 

Adding noise to the signal required a computational method of modeling the noise 

sources. My goal was to approximate the type of signal degradation that would be found 

in a physical radar system. The first step in developing the noise model was to identify 

the expected noise sources and their impact on the received signal. The second step was to 

determine a mathematical model for simulating these sources of noise to add to the desired 

signals. 

6.3.1    Noise Sources 

All electrical systems are subject to thermal noise due to the random movements of 

electrons within the system components. These random movements are directly related 

to the temperature of the components since temperature on the macroscopic level is due 

to kinetic energy on the atomic level. Any lossy component (including the antenna) will 

generate small noise signals at temperatures above absolute zero. A special case of thermal 

noise called shot noise affects systems which deal with small signals and large amounts of 

amplification (like a radar). This comes from the random creation and loss of carriers in 

the amplifying components of the radar. In addition to its own thermal noise, an antenna 

can also receive external noise signals, such as atmospheric noise, solar noise, cosmic noise 

and urban (man-made) noise. In most instances, thermal noise has the greatest impact on 
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system performance [27]. 

6.3.2    Additive White Gaussian Noise 

While removing noise from the random movements of electrons and charge carriers is 

impossible, modeling their impact on a system employs a straight-forward technique. Con- 

cern here was with the combined effect of an uncounted number of individual contributors, 

all following the same statistical model. Combining all these independent contributors and 

applying the central limit theorem leads to an approximately gaussian distribution for the 

noise voltage. 

Since the signals of interest are complex valued, the noise model must provide complex 

valued samples. The received signal can be viewed as two orthogonal channels: the in-phase 

channel, I, corresponding to the real portion of the complex signal; and the quadrature 

channel, Q, corresponding to the imaginary portion of the complex signal. For a narrow- 

band additive white Gaussian noise source, the noise signal is given by 

n(i) =nc(£)cos27r/oi + ns(i)sin27r/oi (6.9) 

where /o is the operating frequency of the radar, and the functions nc(t) and ns(t) repre- 

sent a Gaussian distributed, zero-mean random amplitude for the in-phase and quadrature 

channels. With orthogonal / and Q channels, the values nc(t) and ns(t) are independent 

and identically distributed. The noise power is given by 

Pn = E[n\t)] = E[n2
c(t)] + E[n2

s(t)] = 2a2 (6.10) 

While the noise in each channel has a Gaussian distribution, the magnitude of the 

noise, \n(t)\ = \/|nc|2 + |ns|
2, follows a Rayleigh distribution, and the phase is uniformly 

distributed between 0 and 2IT radians. 

This representation of additive white noise has assumed a band-limited receiver. The 

receiver band-limits the noise using a low-pass filter after mixing the scattered return with 

the carrier frequency. 

6.4    Renyi Entropy 

With all the processing performed on the scattered signals, one needed a method to eval- 

uate the resulting time-frequency distributions. At first viewed the processed time-frequency 

distributions were studied and qualitatively judged how well expected features appeared in 
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the processed return. While this qualitative approach could distinguish broad differences 

when processing simple signals, it was inadequate for differentiating the noise corrupted 

cases. These cases required a more objective, quantitative measure of performance. This 

figure of merit would also allow the development of automatic, iterative techniques. 

One measure of the complexity of a time-frequency distribution is the entropy. For a 

two-dimensional signal Cs(t,f), the Shannon entropy [17] would be 

H(CS) = - J j Cs(t,f)log2Cs(t,f)dtdf (6.11) 

There are some major problems with this entropy measure. Due to the log2 operation, 

this definition will only apply if the distribution Cs is greater than zero for all values of t 

and /. Zero values often occur in time-frequency distributions due to the limited support 

of time-frequency components, and negative values are a result in many distributions which 

allow negative values in order to satisfy the marginal distributions. 

To avoid zero and negative values in the entropy calculation, a more generalized entropy 

definition was used. For a bivariate density, P(x,y), the Renyi entropy is given by 

TT (P\ l     ,      ffPa(x,y)dxdy 
H°(p) = r^l°^ IlP(x,y)dXdy (02) 

When a = 1, the Renyi entropy matches the Shannon definition. By allowing the 

summation of values to occur before taking the logarithm, the Renyi entropy can avoid the 

zero and negative values that cause the logarithm to fail. 

Converting the double integrals with respect to time and frequency (/ / dxdy) into a 

double summation (J2 £ StSf) yields the Renyi entropy for a discrete distribution 

HaiC,M _ _i_ log2 ? ? (^11^)* + 1^ «/ (6.13, 

This form is easily coded in a computer. To compare the relative entropy between two 

distributions, the log2 StSf term is constant and can be dropped. 

The Renyi entropy exhibits five key properties when analyzing multi-component sig- 

nals [3]: 

• Ha attempts to measure the number of components 

• Ha does not count cross components for odd values of a > 1 

• Ha has an upper and lower bound 

• Ha values are invariant to signal time and frequency shifts 
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• Ha exhibits extreme sensitivity to the phases of closely spaced components. 

The first four properties are beneficial for this application, but the last property can 

cause some problems. This phase sensitivity manifests itself as misleadingly high or low 

entropy values for a distribution due to the contribution of cross-term components. Using 

reduced interference distributions reduce the cross terms and help avoid this sensitivity. 

In general, a can take on any positive value greater than or equal to one. This restriction 

guarantees the existence of the entropy measure [3]. However, for non-integer values of a, 

the entropy will yield complex numbers of limited use. When a takes on an even integer 

value, the entropy expression loses the ability to distinguish positive and negative values 

in the time-frequency distribution. This has led to the suggestion of using a = 3 for the 

entropy calculations [44]. 

In this study, the Renyi entropy values provided two different types of information. 

First, the entropy represents how much uncertainty exists in the distribution. Noise will 

increase the uncertainty, so a good processing technique will reduce the noise components 

in the final distribution, and therefore reduce the entropy. The second use for the Renyi 

value is to identify the number of significant signal components. The larger the entropy 

value, the more scatterers can be placed in the target field. With the proper selection of St 

and Sf, the number of scatterers can be estimated using [3] 

Nscat = 2H°^ (6.14) 

Unfortunately this value is valid only for idealized time-frequency distributions. Typical 

results have the components of the target signal spread in both the time and frequency 

directions, resulting in a reduction of the signal uncertainty, and an underestimated value 

for Nscat. 

6.4.1    Distribution Evaluations 

After finding the time frequency distribution, a numerical metric objectively evaluated 

the result. The first measure used was the receiver operating characteristic [38]. This 

involved generating an ideal distribution for comparison with the signal's time-frequency 

distribution. Applying a threshold to the realized signal should give a matching distribution. 

Errors can be expressed in radar terms, with a probability of detection (Pd) and probability 

of false alarm (Pfa) for each threshold. Plotting Pfa versus Pd provides a way to compare 

different distributions and the impact of adding different amounts of noise. Ideally, the 

curve would allow a Pd approaching 1.0 while keeping Pfa approximately 0.  Graphically, 
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the closer the curve gets to the upper left corner of the plot, the better the performance. 

Figure 6.6 shows some representative receiver operating characteristic curves. 

The other measure used was the Renyi entropy of the distribution [3]. This metric 

attempts to measure a distribution's information content. For a discrete time frequency 

distribution, Cg[n,m], the Renyi entropy is given by 

where St and 6f are the time and frequency resolution. 

Since entropy measures the amount of disorder in a system, the maximum entropy oc- 

curs for the distribution of a noise only signal. As the signal to noise ratio improves, the 

entropy decreases. Using different time-frequency transform kernels generated distribution 

with widely varying entropy values. This made it difficult to compare values from different 

distributions. For example, the high resolution nature of the Wigner distribution consis- 

tently provided lower entropy values than the binomial distribution for the same signal. 

Instead of the absolute entropy value from different transforms, the entropy margin, or the 

entropy improvement (in bits) over a pure noise signal was emphasised. 

6.5    Analysis and Results 

The analysis for each target considers the scatter signals with signal to noise ratios 

(SNRs) between 10 down to —10 decibels, with the special cases of zero noise (SNR = oo) 

and zero signal (SNR = —oo). They were transformed to the time-frequency domain via 

the short-time Fourier transform (spectrogram), the binomial transform, and the Wigner 

transform. 

6.5.1    Receiver Operating Characteristics 

Figure 6.6 shows some representative receiver operating characteristic (ROC) curves. 

Each plot shows the ROC for the spectrogram (lowest curve in each set), the Wigner 

distribution (center curve with circled points) and the binomial distribution (top curve). 

The binomial and Wigner distributions significantly outperformed the spectrogram, with 

the binomial typically holding a slight edge. The differences were most apparent with the 

two-point scatterer since the additional signal component led to more cross terms (and more 

errors) in the Wigner distribution. 
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Figure 6.6: Receiver Operating Characteristics 
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Figure 6.7: Entropy Margins 

6.5.2    Entropy Measures 

The performance advantage of the binomial distribution over the Wigner for complicated 

signals was also apparent from the entropy calculations. Figure 6.7 shows the entropy 

improvement over pure noise for the simple single point scatterer and for the wire. 

With the single point, the Wigner (shown with circled points) was the top performer, 

beating the binomial at high SNRs. But as the SNR decreased, the Wigner's performance 

dropped to roughly match the binomial. As the SNR dropped below —3 dB, the smoothing 

properties of the spectrogram gave it a slight advantage, although all three distributions 

performed poorly. 

For the complicated scattered signal off the wire, the results were a little different. 

Once again the spectrogram yielded the smallest entropy improvement over pure noise. 
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The existence of significant interfering cross terms dropped the Wigner's entropy margin 

(marked with circles) almost down to the spectrogram level. The binomial, a reduced 

interference distribution, performed significantly better than either the spectrogram or the 

Wigner. This advantage was evident until the SNR dropped to -10 dB, at which point the 

target return was indistinguishable from the noise. 

6.6    Summary 

The characteristics of the signal, as well as the signal's quality, as measured by the signal 

to noise ratio, have a significant impact on how well different time-frequency distributions 

will perform. The receiver operating characteristic can give a clear idea of the transfor- 

mation performance but requires an idealized distribution for comparison. The inability 

to determine an ideal distribution makes the receiver operating characteristic difficult to 

apply except for simple canonical targets. The Renyi entropy values did not require any 

additional information about the signal and could be applied to any signal, giving results 

consistent with qualitative evaluations of the distributions. 

The work presented in this chapter also demonstrated how a reduced interference dis- 

tribution like the binomial can outperform the Wigner. Although the Wigner can provide 

higher resolution with respect to both time and frequency, this resolution comes at the 

expense of large interfering cross terms that can degrade the time frequency representation. 
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CHAPTER 7 

DEVELOPMENT AND USE OF A CUSTOMIZED 

KERNEL 

The Wigner and binomial distributions represent general purpose time-frequency ker- 

nels. Although they may provide excellent time-frequency representations for many signals, 

they make no effort to exploit characteristics such as periodicity which may exist in a signal. 

This section examines the use of customized time-frequency kernels which improve on the 

performance of the general kernels. 

To examine how customized kernels might be applied, a genetic algorithm was developed 

to maximize the Renyi entropy of the time-frequency distribution. The kernel design was 

constrained to provide a kernel with reasonable properties, as outlined in chapter 2. 

7.1    Background 

Due to the generality of Cohen's class of transformation, essentially an infinite number of 

different time frequency representations can exist for a given signal [11]. Based on the results 

in chapter 6, the goal was to find a kernel which provided time-frequency distributions with 

higher Renyi entropy values than the Wigner or the binomial. 

7.1.1    Genetic Algorithms 

Genetic algorithms are an optimization technique that model the process used in evolu- 

tion and natural selection [20]. Parameters related to the value to be optimized are coded 

into genes, and sets of genes are put together to make chromosomes. Allowing the computer 

to use survival of the fittest to update the available gene pool serves as an optimization 

technique.   This has been applied to a wide variety of problems, ranging from economic 
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prediction [20] to pattern classification [35] to array antenna design [16]. 

The genetic algorithm was chosen for this problem due to the complicated mapping 

between the parameters driving the kernel and the resulting cost function. It also provided 

an opportunity to apply an optimization technique that has not been used in this area. 

Basic Procedure 

After deciding how to encode the necessary parameters genetically, the procedure fol- 

lowed is simple. An initial random population is generated. These genes are rank ordered 

based on their fitness to solve the selected problem. Those scoring the highest are carried 

into the next generation or iteration. The poorest performers are discarded. 

The next step is to fill the vacancies in the population. This is done by performing 

a genetic crossover operation between two parents selected from the previous generation's 

fittest chromosomes. 

Once this new generation is filled, the fitness of the new members is evaluated, the 

chromosomes are rank ordered, and the process of discarding members and creating a new 

generation are repeated. 

Terminating the Algorithm 

The genetic algorithm is a global search technique that typically performs well, but 

it does not have guaranteed convergence. The code implemented used two criteria for 

stopping. The first was based on the top performer not changing over a given number of 

generations. The second condition limited the total number of iterations. 

7.1.2    Problem Design 

The approach followed to select the elementary function, h(t), needed for the kernel was 

to use a genetic algorithm to select candidates. According to the design rules [22], h(t) 

should be a smooth function defined over the range —0.5 < t < 0.5 which goes smoothly to 

zero at the ends when |i| = 0.5 and has an area of 1. 

The elementary function was defined using a cosine based series 
N 

h(t) = ^2 an cos ((2ra - l)27ri) (7.1) 
n=l 

where there are N weight values, an, which are assigned values in the range 0 < an < 1. 

These weights are applied to the odd harmonics of the cosine, so each term will have a 

maximum at t = 0 and go to zero at |t| = 0.5. 
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The target used for these trials was a point target traveling in a circular path, similar 

to the case shown in figure 6.1. The point was rotated at 5 hertz a distance of 1 meter from 

the center of rotation while illuminated with a 1 gigahertz plane wave. The scattered signal 

was sampled at a rate of 512 hertz. These values were selected to provide several cycles 

over a 1 second record without doppler frequency ambiguities. 

7.2    System Optimization Results 

Once the basic encoding was selected, trials were conducted to see how well the genetic 

algorithm could select a kernel. The parameters chosen were 5 weighting coefficients, each 

coded using 5 bits. The population size was set to 30, with a maximum of 15 generations 

before terminating the genetic algorithm. While using more weights, more bits, a larger 

population, and a longer running algorithm should allow greater performance, the scope 

was selected to show the feasibility and to keep the problem scaled for execution on a 486 

computer system. 

To generate a time-frequency distribution for the test signal, the genetic algorithm 

selected the elementary function shown in figure 7.1.   This function was selected over a 

Elementary Function 

Figure 7.1: Genetically Derived Elementary Function 

period of 15 generations, during which time the third-order Renyi entropy of the resulting 

time-frequency distribution increased from an initial value of 11.2000 to the final value of 
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11.3174.   For comparison, the third order Renyi values for the Wigner and the binomial 

distributions of this signal are 10.1904 and 11.0409. 

Figure 7.2 shows the resulting time-frequency distribution for the point scatterer. This 

Genetic Derived 7FD 
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Figure 7.2: Genetically Derived Time-Frequency Distribution 

is very similar to the distribution obtained using the binomial kernel. While the genetically 

derived distribution shares the desirable distribution properties of the binomial discussed in 

chapter 3, the genetic algorithm did provide slightly lower cross terms near the maximum 

doppler points. 

7.3    Summary 

The results of using the genetic algorithm for this problem were very promising. The 

results were very close to the binomial distribution, showing the technique could meet the 

standard results. This approach needs to be taken further to try and exploit characteristics 

such as periodicities in the signal. It should be possible to have the kernel tuned to certain 

signal parameters such as the general shape and period of the signal. Used with a genetic al- 

gorithm, this would provide an adaptive processing technique giving clearer time-frequency 

distributions than the standard Wigner and binomial kernels. 
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CHAPTER 8 

CONCLUSIONS 

This work was interdisciplinary, mixing elements and concepts from electromagnetics 

with those of signal processing. The purpose was to find some new applications for some 

popular and powerful signal processing techniques. 

8.1 Stationary Targets 

Examining stationary targets, using a sweep of frequencies, allowed estimating the range 

to scattering centers on the target. By restating the transformations used in time-frequency 

analysis for use in frequency-time analysis, it was easier to determine what scattering mech- 

anisms were contributing to the scattered signal. The transformations not only returned 

information on the position of the scattering centers, but also provided insight on the dis- 

persion, if any, exhibited by the scattering mode. 

The understanding provided through this type of analysis can be applied to help control 

the scattering from a target in either a monostatic or bistatic situation. 

8.2 Dynamic Targets 

The situation with analyzing a dynamic target was very different. Here the radar gener- 

ated a continuous wave signal. The information was contained in the doppler shift imposed 

on the signal when scattered by the target. Performing time-frequency analysis on the re- 

ceived signal generated a distribution showing the target's doppler components as a function 

of time. This doppler history can be used to estimate different target parameters. 
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8.3 Noise Statistics 

Looking at how noise is processed by a transformation belonging to Cohen's class pro- 

vided an understanding on the impact of noise and how the noise in the time-frequency 

distribution relates to the transform selected. The results show a significant advantage for 

the reduced interference distributions, such as the binomial, over the standard Wigner. 

8.4 Effects of Noise and Complexity 

Time-frequency distributions are easiest to interpret when there are few signal com- 

ponents and a very high signal to noise ratio. As more components appear in the time- 

frequency distribution, they allow the formation of cross terms, typically degrading the 

clarity of the distribution. This degradation occurs whether the additional component was 

actually generated by the target or was simply caused by noise. 

The third order Renyi entropy proved to be a valuable metric for numerically evaluating 

the quality of a time-frequency distribution. These entropy values corresponded to the 

subjective quality ratings an experienced viewer would assign to the different distributions. 

The results showed the superiority of the reduced interference distribution except when 

dealing with very simple targets with almost no noise corrupting the signal. 

8.5 Customized Kernels 

The work done using a genetic algorithm provided performance exceeding the Wigner 

and binomial distribution for a simple target. Before exploring this area more thoroughly, 

careful consideration must be given to the fitness function and the genetic encoding used. 

8.6 Value of Time-Frequency Techniques 

This research has shown time-frequency analysis as a valuable tool for analysis of radar 

and other electromagnetic based signals. The ability to identify and evaluate different 

scattering modes provides insight not readily apparent in other signal representation. 

8.6.1    Image Processing 

Once a signal has been processed using a time-frequency transformation, the resulting 

function of two variables is similar in many aspects to an image. It appears that applying 
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image processing techniques, such as noise reduction or edge enhancement, may provide the 

next logical step for processing scattered signals. The image processing approach also leads 

into the area of target classification. 

8.6.2    Ultrawideband Radar 

The processing of ultrawideband radar signals is a natural extension to the work in 

this dissertation. Since an ultrawideband radar cannot apply narrowband assumptions, the 

ability to process a signal in a joint time-frequency domain should prove beneficial. 
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APPENDIX A 

Notational Conventions 

Continuous Discrete 

<f>(v, r) <f>(q,l) ambiguity domain kernel 

lf>{t,T) ip(n,l) autocorrelation domain kernel 

cg(t,f) Cg{n,p) time frequency distribution 

9(f) 9(n) time domain signal 

9r(t) 9r(n) real portion of signal 

9i(t) 9i{n) imaginary portion of signal 

G(f) G(q) frequency domain signal 

f q frequency of interest 

u,X q,b dummy frequency variable 

t n time of interest 

u,v m,c dummy time variables 

T,S l,d lag variables 

E[x] 

Tt 

r 
tf 

/* 

convolution along the t axis 

expected value of x (also written x) 

Fourier transform from g(t) to G(f) 

inverse Fourier transform from G(f) to g(t) 
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APPENDIX B 

Computer Subroutines 

This appendix lists the major Matlab routines used in this research. The routines assume 

the signal will be provided as a one-dimensional vector. The values may be real or complex. 

The values may also be pre-processed to make the input signal analytic which reduces the 

number of cross terms in the final distribution. 
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B.l    Function myspct 

As mentioned in the text, a spectrogram is also known as a short term Fourier transform 

and is generated by centering a window function at the time of interest and taking a regular 

Fourier transform of the windowed data. 

function spct=myspct(a,hl); 

'/, spct=myspct(a,hl) Calculate the two-sided spectrogram 

*/, for the given vector (real or complex) . 

'I, If the transform's half length (to be 

7, consistant with mybtfd and mywtfd) it 

7, defaults to half the vector length. 

'/, Values returned are arranged so the rows 

'/, correspond to frequencies from -hi to hl-1, and 

'/, columns correspond to time bins (0 to N-l) . 

7, cjm - 31jan96 

[n,m]=size(a) ; 7, n=#samples 

if n*m > max ([n m] ) '/,  only true for error 

spct='myspct error - only works with a vector' 

else 

if n==l; n=m; m=l; a=a.';end      7. make input a column vector 

tl=n; if nargin~=l; tl=hl*2;end   7. and set transform length 

tmp= [zeros(tl/2,1); a; zeros(tl/2,l)]; 

spct=zeros(tl,n); 

for i=i:n, 

spct(:,i)=fftshift(fft(tmp(i:i+tl-1))); 

end 

spct=abs(spct)."2; 

end 

111 



B.2    Function myfwig 

This routine generates the Wigner distribution for the input vector. The frequency 

resolution depends on the maximum time lag applied when calculating the local autocor- 

relation. This routine works with the alias-free formulation with calculations performed in 

the autocorrelation domain [21]. 

function wtfd=myfwig(a,l); 

7, wtfd=myfwig(a,l) Calculate the two-sided wigner time-frequency 

'/, distribution for the given signal vector. 

*/, If the maximum lag (1) is not specified, it 

'/, defaults to the vector length. 

*/, Values returned are arranged so the columns 

'/, correspond to frequencies from -1 to 1-1, and 

'/, rows correspond to time bins (0 to N-l) . 

7, this routine combines code from mylac.m and mywig.m 

7, - also parallels mybtfd.m 

'/,  cjm - 27aug95 - modified 2apr96 to save memory 

[m,n]=size(a) ; 7. n=#samples, m will be used for lag 

if n*m > max([n m]) 7. only true for error 

tfd='mybtfd error - only works with a vector' 

else 

if n==l; n=m; m=l; a=a.';end '/,  make input a row vector 

ml=n; if nargin"=l; ml=l;end '/,  and set maximum lag value 

7, first find the local autocorrelation 

maxd=min([n,ml]) ; 7. limit loop to range of delays 

ac=conj (a) ; '/,  conjugated a 

a=[a zeros(l.maxd)] ;       7. padded a 

lacm=zeros(maxd,n); 

for row=l:maxd; 

lacm(row,:)=a(row:row-l+n).*ac; 

112 



end 

7, next apply the wigner kernel 

'I,  we know [ml,n]=size(lacm) ; 

for r=l:maxd/2; 

row=r*2; 

lacm(row-l,:)=[zeros(l,r-l) lacm(row-l,l:n-r+l)]; 

lacm(row,:)=0.5*([zeros(l,r-l) lacm(row,l:n-r+l)] ... 

+[zeros(l,r) lacm(row,l:n-r)]); 

end; 

'/, finally, convert from autocorrelation domain to time-frequency domain 

wtfd=real(fft([lacm; zeros(l,n); conj(flipud(lacm(2:ml,:)))])); 

7,  (put negative frequencies first) 

wtfd=[wtfd(ml+l:2*ml,:); wtfd(l:ml,:)]; 

end 
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B.3    Function myfbin 

This routine generates the binomial distribution for the input vector. The frequency 

resolution depends on the maximum time lag applied when calculating the local autocor- 

relation. This routine works with the alias-free formulation with calculations performed in 

the autocorrelation domain [21]. 

function btfd=myfbin(a,l); 

7, btfd=myfbin(a,l) Calculate the two-sided binomial time-frequency 

*/, distribution for the given signal vector. 

'/, If the maximum lag (1) is not specified, it 

'/, defaults to the vector length. 

'/, Values returned are arranged so the columns 

*/, correspond to frequencies from -1 to 1-1, and 

*/, rows correspond to time bins (0 to N-l) . 

*/, this routine combines code from mylac.m and mybin.m 

'/, - also parallels mywtfd.m 

'/, cjm - 23aug95  updated to reduce memory use 2apr96 

[m,n]=size(a) ; '/, n=#samples, m will be used for lag 

if n*m > max([n m] ) 7. only true for error 

tfd='mybtfd error - only works with a vector' 

else 

if n==l; n=m; m=l; a=a.';end '/,  make input a row vector 

ml=n; if nargin"=l; ml=l;end '/„  and set maximum lag value 

7. first find the local autocorrelation 

maxd=min([n,ml]); 7. limit loop to range of delays 

ac=conj (a) ; '/,  conjugated a 

a=[a zeros(l,maxd)] ;       7. padded a 

lacm=zeros(maxd,n); 

for row=l:maxd; 

lacm(row,:)=a(row:row-l+n).*ac; 
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end 

It It It It It 

'It  At this point, lacm holds half the autocorrelation matrix, with all 

'/, values slid to the left. This means the second row should be shifted 

*/, one HALF column to the right, the second row should shift one full 

'/, column to the right, etc. This shifting will be accounted for when 

'/, the kernel is applied below. 

/«/«/s/o/o 

'/, next apply the binomial kernel 

'/, we know [ml,n]=size(lacm) ; 

krn=[.5 .5]; 

for row=2:maxd; 

lacm(row,:)=conv(lacm(row,l:n-row+l),krn) ; 

krn=conv (km, [. 5  .5] ) ; 

end; 

U It It It h 

'It  The matrix lacm now contains values ready for transforming via the 

'It  FFT into the time/frequency domain.  The values should correspond 

'It  to the upper half of the matrix generated via use of dos_auto and 

%  bin.m in the FTP distributed files. 

It It It U It 

'I,    finally, convert from autocorrelation domain to time-frequency domain 

btfd=real(fft([lacm; zeros(l,n); conj(flipud(lacm(2:ml,:)))])); 

'It     (put negative frequencies first) 

btfd=[btfd(ml+l:2*ml,:); btfd(l:ml,:)]; 

end 
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B.4    Function renyi 

This function finds the Renyi entropy for a two-dimensional array [44]. These function 

served as the fitness function for the genetic algorithm kernel. 

function h=renyi(cs,a,dt,df) 

'/, h=renyi(cs,a,dt,df) Calculate the Renyi entropy for the time- 

'/, frequency distribution cs (matrix) using 

'/, default order (a) of 3, and default delta 

*/. values (dt, df) of 1 (for 0 bits) 

*/, cjm - 10oct95 

if nargin<4; df=l; end 'I,  handle default values 

if nargin<3; dt=l; end 

if nargin<2;  a=3; end 

h = log( sum(sum( (cs/sum(sum(cs)))."a )) * dt * df) / (log(2) * (1-a)); 
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B.5    Function genalg 

This genetic algorithm tries to find a Cohen's class distribution that satisfies most of 

the desirable properties outlined in chapter 2 and maximizes the Renyi entropy of the time- 

frequency distribution. The routine uses integer coding of the genes and keeps the top half 

of each generation to serve as the parents for the next generation [20, 34]. 

function  [mg,mx]=genalg(sig,ml,nw,bw,pop,mr,mi) 

'/.  [mg,mx]=genalg(sig,ml,nw,bw,pop,mr) 

'/,       genetic algorithm to find the 'best' kernel for a Cohen's 

'/,       class TFD. The signal (sig) goes through a transform with 

'/,       max lag ml and a kernel using a cosine series with nw odd 

'/„ harmonics, with each parameter weight coded in bw bits. 

'/,       The gene pool is pop members long.  The algorithm will 

'/, iterate until the maximum performer is constant for mr 

'/,       cycles or mi cycles are completed. 

'/, Returned values are the 'best' gene per iteration and the scores. 

'/, cjm - 30jun96 

iter=0; 7. iteration count 

rpts=l; 7. number of repeats 

gl = nw*bw; 7, gene length 

mx = [] ; mg = [] ; lb=[]; 7. zero out the 'best' arrays 

pool = floor(rand(pop,gl)+.5); '/,  randomize the gene pool 

score = zeros (pop, 1); '/,  clear out scores; 

for i=pop/2+l:pop 7. after first time, we'll know these 

score(i)=real(renyi(myfgen(sig,ml,pool(i,:),nw,bw))); 

end 

while( (iter<mi) & (rpts<mr) ), 

for i=pop/2:-l:l 

score(i)=0; 

for pt=i+l:pop 

if prod(pool(i,:)==pool(pt,:))==1, score(i)=score(pt);end 

end 
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if score(i)==0, 

score(i)=real(renyi(myfgen(sig,ml,pool(i,:),nw,bw))); 

end 

end 

[score,i]=sort(score) ;        '/,  arrange by lowest to highest entropy 

pool=pool(i,:) ; 

mx=[mx; score (pop)]; 7, keep info on best 

mg=[mg; pooKpop,:)] ; 

rpts=rpts+l; 

if prod(lb==pool(pop,:))==0, rpts=l; end 

lb=pool(pop,:); 

iter=iter+l; 

for i=l:2:pop/2 '/. propagate next generation 

cp=floor(rand(l)*(gl-2)+2);  '/, pick crossover point 

pool(i  ,:) = [pool(pop+l-i,l:cp-i) pool(pop/2+i,cp:gl)]; 

pool(i+l,:) = [pool(pop/2+i,l:cp-l) pool(pop+l-i,cp:gl)]; 

end 

cp=floor(rand(l)*gl+l) ;        '/, pick random mutation point 

i=floor(rand(l)*pop/2+l);      %  limit to new offspring 

pool(i.cp) = abs(pool(i,cp)-l); '/,  flip the bit 

[iter rpts mx'] '/,  optional feedback to user 

end 
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B.6    Function myfgen 

This function generates a time-frequency distribution using the kernel as represented 

by the genetic algorithm. The returned matrix exactly matches the layout generated by 

myspct.m, myfwig.m, and myfbin.m. 

function tfd=myfgen(a,l,code,nw,bw); 

'/, tfd=myfgen(a,l,code,nw,bw) 

7. Calculate the time-frequency distribution using 

'/, a weighted cosine kernel. The n weights are coded 

"/, values between zero and 1 using bw bits.  The 

7, weights apply to an expansion of odd cosine 

'/o harmonics. 

7o Values returned are arranged so the columns 

% correspond to frequencies from -1 to 1-1, and 

7, rows correspond to time bins (0 to N-l) . 

7, this routine combines code from mylac.m and mybin.m - also parallels 

7. mywtfd.m - derived from myfbin.m 

7. cjm - 23aug95  updated to reduce memory use 2apr96 

7. cjm - 29jun96  recoded for genetic decoding and weighting 

[m,n]=size(a) ; 7. n=#samples, m will be used later for lag 

if n*m > max([n m]) 7. only true for error 

tfd='mybtfd error - only works with a vector' 

else 

if n==l; n=m; m=l; a=a.';end '/,  make input a row vector 

ml=l; 

'/,    first find the local autocorrelation 

maxd=min([n,ml]); 7. limit loop to interested range of delays 

ac=conj (a) ; 'I,  conjugated a 

a=[a zeros(l,maxd)] ; 7. padded a 

lacm=zeros(maxd,n); 
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for row=l:maxd; 

lacm(row,:)=a(row:row-l+n).*ac; 

end 

It It It It It 

'/, At this point, lacm holds half the autocorrelation matrix, with all 

'/, values slid to the left. This means the second row should be shifted 

'/, one HALF column to the right, the second row should shift one full 

7, column to the right, etc. This shifting will be accounted for when 

'/, the kernel is applied below. 

It It It It It 

V V •/ °/ •/ •/ •/ V °/ •/ •/ V •/ V V V 9IV •/ V V V V °/ •/ V V •/ V It It It It It It It It It It ft It It It It It It ft ft ft It It ft ft ft It ft It It 

7, new code for genetic coding 

7. 

bwts = [-1 2. ~(-l:-l:-bw-l)] ; 'I,  numeric weights for each code bit 

mf  = l:2:nw*2; 'I,  multiplier for odd harmonics 

wts = zeros(nw,l); 7. find weight values 

whos;pause 

for i=l:nw 

wts(i)=code((i-l)*bw+l:i*bw)*bwts; 7. code must be row vector 

end 

for row=2:maxd '/,  now apply kernel to autocorrelation 

krn=cos( ( (l:row)'*pi/(row+l)-pi/2 ) * mf ) * wts; 

krn=krn/sum(krn) ; '/,  make sure row sums to one 

lacm(row,:) = conv(lacm(row,l:n-row+l),krn); 

end 

7. 

'/,  end of new code 

It it It It It It It It It It It It It It It It It 

It It It It It 

7. The matrix lacm now contains values ready for transforming via the 
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7, FFT into the time/frequency domain. The values should correspond 

7. to the upper half of the matrix generated via use of dos_auto and 

7. bin.m in the FTP distributed files. 

/o /o /o to U 

7. finally, convert from autocorrelation domain to time-frequency domain 

tfd=real(fft([lacm; zeros(l,n); conj(flipud(lacm(2:ml,:)))])); 

'/,    (put negative frequencies first) 

tfd=[tfd(ml+l:2*ml,:); tfd(l:ml,:)]; 

end 
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