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PREFACE 

This summary of sound propagation in the sea is based on notes for a course of lectures first 
given at TRW Systems Inc. in Washington D.C. in 1970 and on several subsequent occasions 
in San Diego, Ca. and Washington D.C. as a short course sponsored by Technology Service 
Corporation, Silver Spring, Md. The original notes — that were intended to eliminate exten- 
sive notetaking in class — have here been revised, expanded, updated, hopefully made more 
coherent, and adorned with references whereever possible, so that the interested reader can 
follow up on a particular topic. 

The specialized topic of sound propagation in the ocean has by now a surprisingly vast 
literature and encompass a wide variety of phenomena and effects. This was true even 20 years 
ago, when the present author, with Aubrey Pryce, wrote "A Summary of Acoustic Data" to 
give systems engineers a useful summary of basic design and prediction data. Of the various 
subjects treated, propagation was left till last, and then, because of its magnitude, was "farmed 
out" to selected experts who graciously provided write-ups of their areas of propagation exper- 
tise. Since then the literature has greatly expanded; a count of the number of papers in one 
journal (JASA - The Journal of the Acoustical Society of America) shows a total of over 500 
papers and Letters-to-the-Editor on one part of it alone. Additional research findings are 
reported in other journals, such as the Journal of Underwater Acoustics and Soviet Physics- 
Acoustics, as well as in the many reports of Navy laboratories and contractors. As a result, 
no claim is made that what follows is complete and comprehensive; rather, like most sum- 
maries, it reflects the interests and knowledge of the author, perhpas to an inordinate degree. 
Yet it is hoped that it will be useful as a point of departure to those getting started in, already 
working on, or merely in need of, some information concerning its subject. 

The author is indebted to Captain Henry Cox, USN, then of the Defense Advanced Research 
Projects Agency (DARPA), and to Dr. Frank Andrews of The Catholic University of America, 
for their encouragement and support in the preparation of this summary. My thanks are also 
due to CDR V. P. Simmons, USN, of DARPA for his many efforts in seeing this manuscript 
through to publication. 
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CHAPTER  I 

HISTORICAL REVIEW 
AND METHODS OF INVESTIGATION 

HISTORICAL REVIEW 

Early Achievements 
The earliest quantitative studies in underwater sound were concerned with the speed of sound in natural bodies 

of water. In 1827, Colladon and Sturm (1) measured the speed of sound in Lake Geneva, and obtained results 
surprisingly close to modern values. Many years later, in response to the needs of radioacoustic ranging and depth 
sounding, the speed of sound was determined more accurately at sea. In 1923, Stephenson (2) timed the trans- 
mission of a bomb explosion between two hydrophones a known distance apart in Long Island Sound, while at 
about this same time. Heck and Service (3) measured the travel time of pulses reflected from the sea bottom and 
determined the velocity from depth obtained by wire sounding. These measurements established the velocity of 
sound in sea water for many years thereafter. 

Concerning propagation generally, the first theoretical and field investigations were done by German scientists 
during World War I. In a paper published in 1919, entitled (English translation) "On the Influence of Horizontal 
Temperature Layers in Seawater on the Range of Underwater Sound Signals" (4), the effects on sound velocity of 
temperature, salinity and pressure were deduced from existing static measurements on water, and the equations of 
sound rays in the presence of gradients of their quantities were obtained. Shorter ranges in summer than in winter 
were said to be expectable due to downward refraction in summer and upward refraction in winter; this expectation 
was borne out by measurements made before the war in six widely scattered shallow water areas over a one-year 
period. This paper was far ahead of its time, and is an indication of the highly advanced state of German physics 
in the early years of this century. 

In the militarily lean years of the 1920's following World War I, no attention was given to propagation, other 
than to sound velocity in sea water for application to depth sounding as just mentioned. Rather, the work during 
these years in the U.S. and the U.K. was necessarily directed to hardware — most importantly to the development 
of sound projectors and receivers for echo ranging. However, by the early 1930's, enough sea-going experience had 
accumulated to prove that the ranges being obtained with the newly-developed equipment were extremely variable, 
both from area to area and even, in a single area, at different times of day. It was soon clear that this erratic vari- 
ability could not be blamed on the equipment or the observers, but must somehow be due to the ocean itself. To 
determine the cause, and to obtain basic data for design and prediction, a continuing measurement program was 
initiated in 1934 by a.small group of scientists and engineers at the Naval Research Laboratory, using the destroyer 
SEMMES as the echo-ranging vessel and the submarine S-20 as the target. From transmission runs, the "absorption" 
coefficient* at frequencies from 17 to 30 kHz was measured off Long Island, Guantamamo, Cuba, and in the 
Atlantic and Pacific approaches to the Panama Canal, and order-of-magnitude values of the "reflection co- 
efficient"** of the submarine was obtained. Several reports by E. B. Stephenson were published in the years 1935- 
1939(5-7). 

A mysterious vagary of propagation that received much attention during this time was the regular reduction of 
echo ranges observed during the afternoons of calm sunny days. This phenomenon was soon dignified by the term 
"Afternoon Effect." At first, a biological cause involving the generation of gas bubbles by photosynthesis or an 
after-lunch lethargy of sonar operators (!) was suspected, since the then-crude temperature data indicated no change 
in the temperature structure of the upper ocean. By 1937, the use of sensitive thermometers placed at close intervals 
along a wire showed that warmer water, which developed near the surface during sunny days was sufficient to cause 
downward ray bending and to carry the sound from a shallow source downward, away from a shallow target. An 
example of some early observations by R. L. Steinberger (8) of the Afternoon Effect, showing the correlation 
between a negative temperature gradient and poor transmission, is given in Figure 1. The finding that small shallow 
temperature gradients were important led to the development of the mechanical bathythermograph — a non- 
electronic device (Fig 2) giving a trace of temperature against depth on a smoked glass slide — which, by the start 
of World War II in 1941 was installed on all U.S. destroyers and patrol craft in order to give them their own 
capability to determine the temperature conditions in the upper few hundred feet of the water column at the time 
and place where they were needed. 

*This coefficient was poorly named. It was the slope of the line fitted to the transmission data after allowing for spherical spread- 
ing, and included the effects of refraction as well as absorption. 

**Equivalent, in modern terminology, to "target strength". 
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NUMBER 
OF 
PAPERS 
PER 
YEAR 

1930 1940 1950 1960 1970 1980 

YEAR 

Fig. 2. Number of papers and letters to the editor per year in JASA 1977 on the subject "Propagation 
of Sound in Water. Attenuation. Fluctuation" (Class 13-2 - 30.20 - 43.30B), as obtained from the 
Cumulative Indices to 1968 and individual Journal volumes beyond. The curve illustrates an exponential 
increase of published papers beyond 1950. 
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World War II Achievements 

The establishment of the National Defense Research Committee was a major impetus for a great influx of 
physicists and acousticians into underwater sound early in World War II. Much attention was given to propagation 
phenomena, and much of our present understanding and quantitative data stems from the work of Division 6 of the 
NDRC. At the end of the War, this work was summarized by the various Divisions in a Summary Technical Report. 
That for Division 6, under the general subject of Subsurface Warfare, was issued in 23 volumes, one of which, 
entitled Physics of Sound in the Sea, is a fine summary of propagation as it was known and understood at the time 
(9). It contains chapters on deep-water transmission, shallow-water transmission, intensity fluctuations, and ex- 
plosions as sources of underwater sound, each written by an eminent acoustician. This wartime work remains today 
a valuable source of information on propagation at the high frequencies (15-30 kHz) and out to comparatively 
short ranges (to about 6000 yds) of interest to the wartime sonars. 

Post-War Achievements 

The years since the War have seen a great expansion of knowledge of propagation, in response to the persistent 
trend in sonar over the years to lower frequencies and longer ranges. Of the many noteworthy accomplishments in 
propagation made during the last 30 years, the following ten may be cited: 

(1) The discovery of the cause of the excess attenuation of sound in sea water at frequencies in the ranqe 
5-100 kHz. 

(2) Measurements of bottom loss in many deep-water areas for application to bottom-bounce sonars in those 
areas. 

(3) An elucidation of the propagation characteristics and losses in the Deep Sound Channel and in the surface 
duct. 

(4) An understanding of the nature of propagation in the Arctic (i.e., under an ice cover). 
(5) Measurements of wavefront coherence and stability. 

(6) The discovery of an excess attenuation at frequencies below 1 kHz, and its explanation in terms of a minor 
constituent of sea water. 

(7) The discovery and understanding of the occurrence of convergence zones in deep water. 
(8) The easy production of ray diagrams and wave theory predictions through the use of digital computers. 
(9) Measurements of extremely accurate values for the velocity of sound in sea water, making possible accurate 

range prediction for fire control purposes. 

(10) Generally speaking, an improvement of our prediction capability for propagation in deep water, out to 
longer ranges and to frequencies not previously considered. 

As mentioned in the Preface, propagation research continues at an ever-increasing rate. As evidence of this. 
Figure 5 is a plot of the number of papers in the subject category entitled "Propagation of Sound in Water. At- 
tenuation. Fluctuation" appearing in the Journal of the Acoustical Society of America since its founding in 1929. 
Evidently, the number of papers in this category doubles about every five years, with half the total number so far 
having appeared in the years 1972-1977. It appears that of all the many ramifications of underwater sound and 
sonar, propagation has been, and continues to be, the most popular from a research standpoint, thus indicating 
that the ocean, like the human ear, is still a fascinating subject for acoustic study. 

Some Remaining Major Problems in Propagation 

In spite of its long history and the high level of current research activity, a number of problem areas still remain 
in the general subject of sound propagation in the sea. Five of these are the following: 

(1) An extension of the frequency range of present knowledge to higher frequencies (beyond 60 kHz) and to 
lower frequencies (below 20 Hz). 

(2) A prediction capability for shallow water transmission, especially at low frequencies and the long ranges 
of interest for passive sonars. 

(3) A better understanding and more measurements of second-order effects, such as fluctuations and wave- 
front coherence, and their exploitation in system design and prediction. 

(4) Statistical validation, compared to the real ocean, of the many elaborate mathematical techniques, sup- 
ported by digital-computer computations, now available for solving propagation problems. This means making quan- 
titative statistical comparisons with the body of field data, using the available input parameters for each sgement of 
that data. 

(5) More and better quantitative values for the propagation parameters, obtained from at-sea measurements, 
for use as primary working data by the sonar design engineer and predictor. 

For the acoustic historians, some excellent historical summaries of sonar covering the era prior to and during 
World War II are available. These are papers by Wood (10), Klein (11) and Lasky (12-14) which authoritatively 
deal with this interesting, formative period of the subject. No historical summary of sonar in the post-War period 
has yet appeared in an unclassified publication. 
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Methods of Research 
A wide variety of techniques are available, and have been used, in propagation studies. Most widely used at the 

present time is computer modelling, wherein a mathematical model of the ocean is set up and exercised by a com- 
puter program. The results of such studies, however, while relatively inexpensive to carry out, are often of hardly 
more than academic interest unless closely tied to real-world data, because of the difficulty of realistically modelling 
the real ocean. Of a similar nature to computer models are analog models, wherein the ocean is physically modelled 
in a laboratory tank, usually scaling the frequency according to the size of the tank. An example is the work of 
Wood (15) on shallow water propagation using a tank 20 feet long, 5 feet wide and 8 inches deep. 

In the laboratory, too, the velocity of sound in sea water has been measured to an exquisite degree of precision 
by a variety of techniques (16), while the attenuation coefficient has been determined in the laboratory by mea- 
suring the rate of decay of sound in a resonant glass sphere containing sea water (17). 

Concerning sea-going studies and measurements, a variety of different measurement platforms have been used. 
These include 

(1) Two ships, one a source ship and the other a receiving ship, changing the range between them and making 
a transmission run so as to yield level vs. range (18)*. In echo-ranging studies, one ship is the target submarine from 
which echoes are obtained and recorded. This is the oldest, and now classic, technique, but it is now almost obsolete 
because of the expense and slowness of using two ships and the availability of other sources, receivers and platforms. 

(2) One ship and an aircraft, where the latter drops explosive sound signals while flying toward or away from 
the former (19). 

(3) One aircraft alone, using sonobuoys for reception and recording on board the aircraft (20). A surface ship, 
launching a sonobuoy and steaming away from it, may replace the aircraft, though at a sacrifice of the range to 
which a run can be made and speed of conducting the field exercise. 

(4) One bottommed hydrophone or hydrophone array, cable-connected to shore, receiving signals transmitted 
from a ship (21) or the explosive shots dropped by an aircraft (22). 

(5) Two bottomed transducers, one a source, the other a receiver, in studies of the fluctuation of sound trans- 
mission between two fixed points in the sea (24). 

Rectification of Transmission Run Data 
When a transmission run has been made, it is desirable to fit the data to some simple rational model that gives 

the results some physical meaning. A commonly used model is 

10 log lr = 10 log lQ - (N log r - Ar) 

where 10 log lr is the measured signal level at range r, 10 log lQ is the source level of the source of sound, and N 
and A are coefficients to be found from the data. The N log r term is the spreading loss; the Ar term, called, during 
World War II, the transmission anomaly, includes every other source of loss (assumed proportional to range). For 
physical reasonability, N has to be assumed to be either 10, 20 or 30, corresponding to cylindrical, spherical, or 
hyperspherical spreading (spherical spreading plus time stretching). In shallow water, there is theoretical justification 
to take N = 15 under some circumstances (25). No other values of N, while they may fit the data better statisti- 
cally, are physically meaningful. Transmission run data are readily fitted to this model, after selecting a value for N 
by plotting TL - N log r against range and determining A from the slope of a straight line through the plotted 
points. 

For transmission in sound channels, an appropriate model is 

10 log lr= 10loglo-(10logro + 10logr + Ar) 

where r0 is a constant and N is taken as 10. A rectified plot of measured data fitted to this model yields 10 log r0 

from the intercept of the line at r = 1 yd and A from the slope as before. Fig. 4 is an example of field data 
"rectified" according to this expression. Here 10 log lr + 10 log r is plotted against r;the slope of the fitted line, in 
any octave frequency band, is the attenuation coefficient in that band. The intercept of the line at 0 miles (actually 
1 yd.) is the quantity 10 log l0 - 10 log r0, from which r0 can be found if the source level 10 log lQ is known. 

*The references in this section are to examples reported in literature, where some experimental details can be found. 
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CHAPTER 2 

SOME BASIC THEORY 

Introduction 
This chapter presents a bare-bones rudimentary introduction to the theory of sound propagation in the ocean, 

with the aim of showing how the physical properties of the ocean medium determine the propagation in terms of 
the wave equation and how the latter is solved in the most simple of cases. 

Our approach will be to show how the wave equation is derived from some simple equations of physics and then 
go on to the wave acoustic solution and the ray acoustic solution. One or the other of these solutions are en- 
countered in all theoretical descriptions of propagation. We will end with a statement of the strong and weak points 
of these two theoretical formulations, and give a brief description of some of the extant computer models based on 
the theory. 

A vast literature is available to the reader interested in pursuing the theory further. Excellent starting points are 
two chapters in Physics of Sound in the Sea (1) written at the end of World War II by some of the eminent 
acousticians of the time. A number of books (2-5) are available. Current theoretical developments can be found in 
almost any issue of the monthly Journal of the Acoustical Society of America (JASA). 

The Basic Equations Of Physics 

We will restrict ourselves to the classical, simple case of low amplitudes in a non-viscous perfect fluid We will 
ignore the effects of high amplitudes, with their interesting non-linear effects, viscosity (no absorption) and rigidity 
(no shear waves). 

For this most simple case, there are four equations of physics that underlie the propagation of sound- 
fa) Equation of Continuity. No mass of fluid is created or destroyed: any difference in the amount of fluid 

entering or leaving a given volume must be accompanied by changes in density. That is, there are no sound sources 
or sinks anywhere in the medium. For small changes in density, this leads to the equation 

9s _     / 9ux      9uy      3u2\ 
3t      ~\dx        By      ~oTJ 1> 

where s is the "condensation" = -~-, p is the instantaneous density, po is the ambient density, and ux, u , uz are 

the three components of the particle velocity of the fluid. 
(b) Equations of Motion. The force components per unit volume of fluid can be written 

f    - o   -^x 

f   _     9uy 
V    Po IT 2) 

, 3uz 
/z = PO-ZY 

provided no shear forces (viscosity) are involved and provided all velocities and accelerations are small (i e higher 
order terms neglected). These equations are essentially nothing more than Newton's Second Law: force equals mass 
times acceleration. 

(c) Equation of State. This is a relation between the pressure P, temperature T, and density p, which may be 
written ' 

P = f(p,T) 
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For small changes in density and pressure, and for adiabatic (i.e., rapid) changes, meaning that there is no conduc- 

tion of heat, this relationship becomes 

p = Ks 3) 

where p is the incremental pressure, or the difference between the instantaneous pressure and the ambient pressure. 
K is a proportionality factor relating p to s and is called the bulk modulus of the fluid. 

(d) Equations of Force. The three components of force per unit volume of a non-viscous fluid are related to 

the pressure acting on a unit volume according to 

/x 
3p 

3x 

JY 3y 

These equations say merely that the force in a given direction is the negative of the rate of change of pressure in 

that direction. 

Derivation of the Wave Equation 
The wave equation is a partial differential equation that combines the above four sets of equations. The synthesis 

is accomplished as follows: 
(a) Eliminate fx, fy, fz from 4) and 2). 
(b) Differentiate 3) with respect to x, y and z and substitute in a). 
(c) Differentiate again and add. 
(d) Substitute 1), and obtain a partial differential equation in terms of the condensation s. 
(e) Use 3) again to eliminate s and obtain an equation in terms of p. 

The result is 

^1E = J</92p + 92p + d2p] 
at2      Po\fo?    W   W) 

The quantity -£- can be shown to have the dimensions of the square of a velocity and may be replaced by c2. Our 
"o 

final result is a relationship between the temporal and spatial changes of pressure in a sound wave, called the wave 
equation: 

9!£ - J#* + 1!P + #s\ 
at2 V 3x2      9y2      dz2J 

Solutions Thereof 
For a particular problem, the wave equation we have just obtained must be solved for the boundary and initial 

conditions that apply in that problem. Boundary conditions are the known pressures and particle velocities existing 
at the boundaries of the medium. In underwater sound, one ubiquitious boundary condition is that the pressure p 
is zero along the plane (or wavy) sea surface. Initial conditions are those of the source of sound, whose location is 
usually taken to be at the origin; p(o,o,o,t) ordinarily is a known function that describes the manner is which the 
source varies with time. The initial (source) conditions play no part in ray acoustics, in which the sound field is 
described by rays. Both boundary and initial conditions are needed for a wave theory solution; such a solution is 
therefore complete, at least to the extent that the model of the real world that it assumes is accurate. The wave 
theory solution is difficult or impossible to obtain whenever the real surface and sea bottom have to be realistically 
approximated. 
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Wave Theory 
In one dimension the wave equation is 

92p _    2  92p 

3t2       C    9x2 

This was known to the mathematicians of the 18th century to be satisfied by an (arbitrary) function of (t-x/c) or 
(t+x/c). This may be seen by differentiating f(t±x/c) twice and noting that the wave equation is satisfied regardless 
of what the function f may be. Moreover, it can be shown that p=f(t±x/c) is necessary as well as sufficient; that is, 
any function not of this form cannot satisfy the wave equation. 

If the pressure p=f (t-x/c) at an arbitrary point xi and an arbitrary time ti happens to be same as that at points 
x2 at time t2, then we must have tx -X!/c = t2 - x2/c, from which it follows that c = (xj-XjJAtj-ta). The quantity 
c may therefore be interpreted as the velocity of propagation along the line from x2 to Xj. Similarly, from 
p=f(t+x/c), c may be seen to be the propagation velocity from xl to x2. Therefore, functions with arguments 
(t-x/c) represent waves travelling in the +x direction; those having arguments (t+x/c) represent waves going in the 
-x direction. 

If the 3-dimensional wave equation is transformed to spherical coordinates, it will be found that functions of the 
form 

1 r 
p =-/(t±-!-) 

r c 

will be solutions. These represent spherical waves radiating to or from the origin. Commonly selected functions are 
the cosine, sine and exponential functions which are added to satisfy the source and boundary conditions. 

Returning to one dimension, we try solutions of the form 

p = iMx) eiw(t-^ 

where \pM is any function of the space coordinate x. One substituting, we find i//(x) has to satisfy the relationship 

.,  .       c2 d21//       n 

ordx2 

which has the solution 

t//(x) = A sin kx + B cos kx 

where k = c/co and w = 2wf. 
Let us now apply this to waves travelling vertically between a plane pressure-release sea surface where p=0 and a 

plane rigid bottom, where p is a maximum. Take the x coordinate to be in the vertical, and let the surface be at x=0 
and the bottom at x=H. The upper boundary condition requires that p(0)=0, from which it follows that B=0. Our 
solution is now 

p = Asinkx • e
iw(t-^ 

To satisfy the lower boundary condition, we return to the basic equations and eliminate f„ from 2) and 4)  and 
obtain 

9u 1  9p 
9t p  9x 

Since the particle velocity u=0 at x=H, 9u/9r must be zero there also or 

SU"' 
Hence we must have 
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Hence we must have 

so that 

Ak cos kH = 0 

knH = (n+j)ff; n = 0,1,2... 

These values of k are called eigenvalues or characteristic values, one for each value of n, i.e. 

(n+-)7r 

kn =        H~~~ 

For a single frequency source of plane waves, we then have as a solution of the wave equation 

p= Asink^e^n^) 

The An and 0 can be inserted to take care of the characteristics of the source. Only frequencies con=ckn can propa- 
gate between the surface and bottom. The sum of an arbitrary number of such terms will also be a solution of the 
wave equation. Thus, for a multi-frequency source, we would have 

p = 2 Ansinkny • e'""'7""^' 
n 

for each term of which the eigenvalues kn are defined by kn=(n+1/2)?r/H. The various terms of this sum are called 
normal modes. With a broad-band source, the medium permits only certain discrete frequencies (determined by this 
relationship) to propagate. 

The case of horizontal propagation in a layer of water between the surface and the bottom is much more 
interesting than this trivial case of vertical propagation, and some aspects of it will be considered when discussing 
propagation in shallow water. 

Ray Theory 
In the expression for a plane wave travelling in the +x direction, p=f(t-x/c), let the argument (t-x/c) be desig- 

nated by if. ip designates those parts of the wave having the same pressure amplitude p. Note that x=c(t-ip), so that 
<p may be regarded as a kind of phase angle. With increasing time v? determines the distance x at which p is a con- 
stant. Such distances are, in three dimensions, surfaces of constant phase, called wave-fronts. 

The defining equation of the wave-fronts is 

W(x,y,z) = c(t-</>) 

and it can be shown (1, p. 44) that the partial differential equation of these surfaces is 

32W    a2w    a^w      2 

ax2     ay
2     az2 

+ "5^2" + ~^zr = "   (x,y,z) 

where n2(x,y,z) is the square of the index of refraction and the (x,y,z) indicates that n is a function of the co- 
ordinates. In terms of sound velocity, 

n = c0/c(x,y,z) 
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where c0 is a constant. The above relationship is called the eikonal equation, so-called from the Greek word "eikon", 
for image. 

Successive normals to the wave fronts W are called rays and are the paths of energy flow away from the source. 
Within any bundle of adjacent rays, called a pencil, the acoustic energy flux is a constant; that is, the energy con- 
tained within the bounding rays of a pencil of rays is everywhere constant. In ray theory, there is no "leakage" of 
energy out of the pencil, and the interesting effects of diffraction and scattering have no place in ray theory. 

What good is the eikonal equation vis-a-vis the wave equation? There are two important advantages to it: 

1) It has no time dependence and the propagation it describes is independent of frequency 

2) It leads to a set of ordinary differential equations that describe the paths of individual rays. These equations 
are 

d(na) 3n 
ds 3x 

d(nj3) 3n 
ds 3y 

d(nY) 3n 
ds 3z 

where a, ß, y are the direction cosines of a ray at any point (x,y,z) viz: dx/ds=a; dy/ds=0; dz/ds=7. 
To see what these mean, take the two-dimensional case in x and y and let n be a function of y only. That is, we 

put 3n/3x=o and ignore the third equation in z. Then, in terms of the angle 0 of the ray with the x direction! we 
can write 

a = cos 0 
ß = sin 0 

and we have 

d(ncosfl) _       d(n sin 0) _ dn 
ds '      ds dy 

where the total derivitive dn/dy can replace 3n/3y, since n depends on y only. The first of these two equations says 
that, along any individual ray, (n cos 0) is a constant: 

n cos 9 = —J°-T cos Ö = a constant = cos 0O 

giving 

c0      _   c(y) 

cos0o      cos0 

This is Snells' Law, a relation that is a always used, in one form or another, in drawing ray diagrams. The second 
equation leads to expression for the radium of curvature of a ray at any point. It can be shown (1, p. 47) that 

J_ = d0 = _ defy) CQS0Q 
R      ds dy       cn 
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since d0/ds is the reciprocal of the radius of curvature R. For a linear velocity gradient, c=c0+gy; this gives 

1  _ -g cos 9o 
R~~        co 

This is a constant for any one ray, which therefore is an arc of a circle. With positive g, the verity increases in the 
+y direction; the minus sign means that the center of curvature is in the negative or -y direction. F,g. 1 illustrates 
the above result for a ray starting upward with a velocity increasing in the upward (+y) direction. 

Comparison of Wave and Ray Theories 
A comparison between the two theories may be made by the following statements: 
(1) wave theory gives a formally complete solution, applicable under all conditions; ray theory does not handle 

problems involving diffraction and scattering, such as sound in a shadow zone. 
(2) wave theory is valid for all gradient conditions; ray theory is said (2) to hold only when (Ac/c)/Ay<<1A. 

Practically this is equivalent to saying that the velocity gradient (in sec"1) must everywhere be less than the 
frequency. Another statement is that the fractional change in velocity Ac/c, in a distance of one wave-length 

(Ay=X) must be less than unity. 
(3) wave theory gives a mathematical solution that is difficult to interpret; ray theory gives a ray dtagram show- 

ing visually and sometimes dramatically, where the source energy is going. 
(4) wave theory cannot handle real boundary conditions existing in the sea, but requires simplified modeling 

thereof- ray theory handles many realistic boundary conditions easily. 
(5) in contrast, wave theory accounts for any arbitrary source function; ray theory gives a result that does not 

involve the nature of the source. . 
(6) before the advent of digital computers, practical wave theory solutions could be obtained only for long 

ranges, where only a few trapped modes were important; ray theory was limited to short ranges where only 
a few rays were necessary to describe the sound field. Nowadays, this distinction has vanished. 

(7) practically speaking, wave theory is used at low frequencies whenever the validity of ray theory is question- 
able- ray theory is used at high frequencies when the fundamental requirement of ray theory - that the 
sound energy radiated by the source into a pencil of rays remains within that pencil - is felt to be valid. 

Computer Models . 
Before the advent of the digital computer, considerable mathematical ingenuity was required to get an answer 

from either theory Nowadays, the problem is one of mathematical programming, in either the ray or mode solu- 
tions, to incorporate the most nearly realistic conditions into the problem and to do so in the most economical 

manner of computer time. . _ 
A great variety of computer "models" are available. The FACT model (6) is the Navy Interim Standard Propaga- 

tion Model for ocean environments that may be reasonably treated by assuming a flat bottom and a range-indepen- 
dent sound-speed profile. The FACT model computes propagation loss from source to receiver as a function of 
range and frequency. The model is based on classical ray theory, but has been augmented with h.gher order 
asymptotic corrections in the vicinity of caustics. This has been done in order to yield a more complete model of 
diffraction effects Three model approaches to combining energy arriving via different ray paths are available to the 
FACT model user. These approaches include the coherent summation of all ray paths, an rms summation of ray 
paths and a combination of coherent and rms summations referred to as the "semi-coherent" option. A coherent 
summation of all ray paths will produce rapid oscillations in the computer propagation loss as a function of range. 
These rapid oscillations are smoothed out by an rms summation, but so are significant long-term interference effects. 
The semi-coherent option attempts to overcome these problems by using an rms summation of all ray paths except 
for those selected paths which experience significant, but predictable, coherence effects. These paths are coherently 

combined. . 
Many other models, using either ray-trace or normal mode computational techniques, are available. Among these 

are TRIMAIN (7) and GRASS (8) of the Naval Research Laboratory and CONGRATS (9) and FFP (10) (Fast 
Field Program) of the Naval Underwater Systems Center. Other Navy laboratories and contractors have their own 
programs many of which are modifications of others to suit particular programming and output requirements (11). 
All require as input data a velocity profile, the bottom profile along the direction of propagation, and bottom loss 
as a function of angle. In many, these can vary with range, so as to be different in different range segments. 
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Fig. 1. In a linear velocity gradient, such that c(y)=c0+gy, where g is the gradient, a ray leaving the origin at 
angle 0p is a circle of radius c0/g cos 90. All the rays from the origin have their centers along the hori- 
zontal line through 0 a distance of c0/g below x=o. For a proof of the circularity of rays in a linear gradient 
see Chap. 3. 
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Ray theory programs can handle horizontal variations in the velocity profile or water depth relatively easily. 
Wave theory solutions, however, have difficulty accommodating problems where the sound velocity, c, is a function 
of range as well as depth. A theoretical method to overcome this difficulty is the parabolic approximation technique 
(12) in which the two-dimensional wave equation containing two second-order partial derivatives (an elliptic equa- 
tion) is converted into an equation containing a first and a second order partial derivative (a parabolic equation), 
for which solutions can be obtained. The parabolic method is limited to conditions such that the fractional changes 
in sound velocity over one wavelength are small (the condition of validity of ray theory), and to small angles of the 
propagation direction with the horizontal. These restrictions are not severe, however, for prediction problems in 
long-range propagation in the ocean, for which the method has particular value. 

The question arises, given these various propagation models, which one is the best for predicting the actual 
transmission loss measured at sea. This question has not yet been answered. A number of workshops have been 
held wherein different models have been compared with each other - as to results, cost, computer memory require- 
ments, etc. (13, 14). But no extensive statistical comparisons have been made against field data. Here everything 
depends on the validity of the input data; if the comparison is poor, it is likely that the input parameters are in- 
correct, or vary incorrectly with range. With uncertain input data, an elaborate computer program is useless (the 
GIGO (Garbage In, Garbage Out) principle of computer programming). 
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CHAPTER 3 

THE VELOCITY OF SOUND IN THE SEA 

Historical Introduction 
As noted earlier, the velocity of sound — or, more properly, the speed of sound — was the subject of the earliest 

investigations of sound propagation. In the determination by Collodon & Sturm in Lake Geneva in 1827, mentioned 
before in Chapter 1, a bell was struck by a hammer underwater at the same instant that a light flash was produced in 
air. An observer in a boat 13.5 km. away determined the interval between the light flash and the arrival of the under- 
water signal to be 9.4 ± 0.2 seconds. Thus, the value of velocity obtained was 13,500/9.4 = 1440 meters/sec, at 
8.1°C. This is doubtless a lucky result, for the modern value for distilled water at this temperature is 1439.2. A 
century later, Stephenson (1) found a velocity of 1453 m/sec over a distance of 15,500 meters, by measuring the 
arrival times of bomb explosions on a line of five hydrophones in Long Island Sound. 

Complementary such direct field measurements during the period between World Wars I and II were various com- 
putations of velocity from Newton's equation using static measurements of the density of fresh and sea water at 
various pressures. Here may be mentioned the tables produced by Heck and Service (2), Mathews (3), and Kuwahara 
(4), the latter of which was regarded as the last word on the subject during the World War II years, and for some 
years thereafter. 

Advances in electronics made possible precise measurements of sound speed in the laboratory by various kinds of 
interferometers and pulse timing methods. Here may be mentioned the work of Del Grosso (5), Wilson 
(6), McSkimmin (7), Holton (8) and Carnvale, et al. (9). Another electronic device is the sound velocimeter, which 
has been used at sea by Mackenzie (10) and Hays (11). Present values of the velocity of sound in the sea are accurate 
to perhaps 0.2%, and the quantity is the best known of all the variables on which the propagation of sound depends. 

Newton's Equation 

The sound speed - a dynamic quantity - can be derived from certain static measurements on fluids. As just 
mentioned, for many years this method gave the most accurate values of sound speed in sea water over a wide range 
of pressure, temperature and salinity. It is based on the following relationship, attributed to Newton: 

-y2 

(«)"' 

where c is the velocity of sound, p is the density, and ß is the adiabatic compressibility.* Since K = — ^r— and v = — 
v  dp p ' 

where v is the specific volume (= volume of a unit mass), we can write the above expression as 

c = v 

where the ratio of specific heats y is the conversion factor from the measured isothermal quantity to the adiabatic 
values required in the Newton equation. 

Methods of Measurement 

Many methods have been used to measure the speed of sound in sea water. Table I is a summary of these meth- 
ods, along with an example of their use in the literature. 

The static laboratory method uses Newton's equation, together with values for the specific volume (v) or density 
(p) as a function of pressure in the laboratory. The tables of Kuwahara (4), for example, used values of the specific 
volume of water tabulated by Ekman in 1908; the tables of Heck and Service (2) used data by Bjerknes & Sanström 
published in 1910. Such tables are, of course, no better than the basic physical measurements on which they were 
based; modern-day velocity measurements show that the Kuwahara velocities, used for many years, are regularly 
too low by about 3 m/sec. The static method has been superceded by the various direct methods, although modern 
measurements (12) of the specific volume of sea water have been made for other purposes. 

The dynamic methods (involving a moving sound wave or pulse) can be grouped into laboratory or sea-going 
methods.   In   the   former  category   are various   kinds  of interferometers, which themselves are of two types. 

*not the isothermal compressibility, since sound waves do not ordinarily allow time enough for appreciable heat flow between 
condensations and rarefactions. 
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Table I 

Methods of Sound Speed Measurement 

LABORATORY 

STATIC 

DYNAMIC 

Method 

Newton's Formula 

Interferometers 
Variable path, 

Fixed Freq. 
Variable Freq, 

Fixed path 

Pulse Timing 

Example 

Kuwahara (4) 

Del Grosso (5) 

McSkimmin (7), Urick (13) 

Greenspan & Tsiegg (14), 
Newbauer & Dragonette (23), 
Wilson (15). 

SEAGOING 

DYNAMIC 

STATIC 

Velocimeters 

Bathythermographs 

Various commercial 
manufacturers 

Mechanical BT (Obsolete in U.S. Naval Usage) 
Expendable BT (XBT) 
Airborne BT (AN/SSQ-36) 
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A variable-path, fixed-frequency interferometer is one in which the frequency is held fixed and the acoustic path- 
length is varied so as to produce an interference pattern. In Fig 1b, a motion of the receiving hydrophone through 
one wavelength causes the output of a bridge circuit to change through one cycle, enabling the wavelength to be 
measured. In the interferometer used by DelGrosso (5), a reflecting plate was used instead of a receiver. In a variable- 
frequency, fixed-path interferometer Fig 1a, the frequency shift required to produce a one-cycle change in output is 
measured and the wavelength is computed. An interferometer of this kind was used by McSkimmin (7) for measure- 
ments on distilled water, while Urick (13) used one for velocity measurements at sea early in World War II. Pulse 
timing has been the favorite recent method for precise velocity determinations. In this method, the travel time of a 
short pulse through a known path length of the sample is measured. Pulse timing was employed by Wilson in accu- 
rate measurements of distilled (14) and sea (6) water, and is the basic principle of the sing-around velocimeter, 
first used by Greenspan and Tschiegg (15). Sing-around velocimeters are now made by various commercial manufac- 
turers, and are used in research work for obtaining accurate sound speed profiles at sea. The sing-around principle is 
illustrated in Fig2. 

When the electronic complexity of the velocimeter prevents its use, various kinds of bathythermographs (BT's) 
may be employed to measure the principal variables on which sound speed depends: temperature and depth. Since 
salinity variations in the deep, open, ice-free sea are usually negligible, a curve of temperature vs. depth (a bathy- 
thermogram) is a faithful replica of the velocity profile in the open ocean, once it is adjusted to allow for the effect 
of depth. 

Various kinds of BT's are in use on naval and research vessels. The mechanical BT was developed before World 
War II and was a non-electronic device lowered from, and retrieved by, a ship underway. It gave a trace of temper- 
ature vs. depth on a small smoked or gold-plated glass slide that was read on a special viewer. Its principal disadvan- 
tages were the difficulty of reading the trace and the necessity of recovering the instrument. The expendable bathy- 
thermograph (XBT) is a device for obtaining the temperature profice without having to retrieve the sensing unit. 
A cutaway view of an XBT is shown in Fig 3. It basically consists of a thermistor probe ejected from the moving 
vessel and allowed to sink at a known constant rate after launching. The probe is connected to measurement elec- 
tronics on board the vessel by a fine wire contained on two reels, one remaining on board the ship underway, the 
other inside the streamlined probe. As the probe sinks at a fixed, known speed, both reels unwind simultaneously, 
leaving the wire at rest in the water with little or no tension placed upon it. The thermistor bead changes its resis- 
tance with changing temperature. On board the vessel a trace is obtained of resistance (or temperature) against 
time (or depth) by means of a special recorder. This system has almost completely replaced the older, retrievable 
mechanical bathythermograph on board U.S. naval vessels. A variant of the XBT has been developed for use from 
aircraft; it incorporates a radio link instead of a connecting wire, as with sonobuoys. The aircraft version is called 
the Airborne Bathythermograph AN/SSQ-36. 

More traditionally, velocity can be computed from Nansen casts that provide water samples retrieved from a 
depth in the sea, on which temperature and salinity are measured. 

Sound Velocity in Sea Water 
Three independent variables determine the velocity of sound. These are 
1. temperature 
2. salinity (weight of dissolved solids in grams contained in 1 kilogram of sea water, expressed in parts per thou- 

sand (pptorO/00)) 
3. pressure. 

However, the functional dependence of velocity on these quantities is complex. Various workers who have com- 
puted or measured velocity as a function of one or more of these parameters have published different empirical 
expressions for the dependence. For zero depth, some examples are 

Kuwahara (4) (1939) 
c = 1445.5 + 4.664T - .0554T2 + 1.307 (S-35) + . . . 

Del Grosso (5) (1952) 
c= 1448.6+4.6618T- .0523T2 + 1.25 (S-35)+.. . 

Wilson (6) (1960) 
c= 1449.2+ 4.623T- .0546T2 +1.391 (S-35) +. . . 

In these expressions, c is the velocity in meters per sec, T is the temperature in degrees C, and S is the salinity in 
parts per thousand. The + . .. means that higher order and cross-product terms follow, such as terms in T3, (S-35)2, 
(S-35)T, etc. The differences between various formulas are discussed by Mackenzie (16) and are less than about 
3 meters/sec, or 0.3%. 

The search for accurate empirical expressions for c as a function of temperature, salinity and depth is not at an 
end. A more recent example is an expression by Del Grosso (17) containing 19 terms, each with coefficients to 12 

3-3 



Distance 
I Fixed | 

I 

VARIABLE 
FREQUENCY (C) 
OSCILLATOR 

DRIVER 

I 
RECEIVER 

„.III. 
Di-mD 

OUT 

BRIDGE 

FIXED 
FREQUENCY (~) 
OSCILLATOR 

Distance 
|variable| 

BRIDGE 

(a) (b) 

Fig. 1.    Two types of interferometers: a) variable-frequency, fixed-path; b) variable path fixed-frequency. 

3-4 



DRIVER RECEIVER 

PULSER 

SYNC 

0 n 

AMPLIFIEl    *« 

COUNTER 

(FREQUENCY METER) 
Fig. 2.    The sing-around principle 

3-5 



electrical       _  _ 
contacts"**"—T vl^tw'Sl 

rt'tiiiniiiK 
pin 

probe 
wire s7 

thcrmi 

shipboard 
spool 

launch 
container 

probe 
housing 

Fig. 3.    Cutaway View of an XBT. A special launcher and an electronics - recorder unit complete the system. 

3-6 



significant figures. This deceptive accuracy is included for computer applications. Del Grosso (18) has published 
some tables based on his formula that may be useful when precise velocities are required and when computerization 
of a complex formula is not justified. For most practical needs a simpler expression is adequate, such as the one 
given by Leroy (19): 

c(m/sec) = 1493.0 +3(T-10) - .006(T-10)2 - .04(T-18)2 + 
1.2(S-35)- .OKT-18) (S-35) +D/61. 

where D is the depth in meters. This formula is said to be valid to 0.2 m/sec in the range 

T:-2°to24.5°C. 
S: 30 to 42 ppt 
D: Oto 1000 m 

Another expression, based on an examination of many oceanographic measurements, has been given by Mackenzie 

1448.96+4.591T- 5.304x10~2 T2 +2.374x10"4 T3 

+ 1.340(S-35) + 1.630x10"2 D + 1.657x10"7 D2 

- 1.025x10'2 T(S-35) - 7.139x10"13 TD3 

These 9 terms are said to fit the Del Grosso expression mentioned above to a standard deviation of 0.07 m/sec over 
the range: Temperature T: 0 to 30°C; S: 30 to 40 ppt and D: 0 to 8000 m. 

Tables of sound velocity in English units (velocity in feet per sec, temperature in degrees Fahrenheit and depth 
in feet) converted from Wilson's tables (6) have been published (21). Curves of velocity against depth, with temper- 
ature as a parameter, are given in Figure 4. 

Pressure Dependence 

Kuwahara's tables give a pressure term that, expressed in terms of depth in the sea, amounts to + 0.0181 meters/ 
sdc per meter, or feet/second per foot. That is, the sound velocity increases by 1.81 feet per second in 100 feet or 
by 1.81 meters per sec. in 100 meters. 

The more recent tables of Wilson (6) give a lower value than this, namely + 0.0170 sec.-1. This is a large percent- 
age change from the older value that may have an important effect in long-range deep-sea propagation, such as to 
change the distance of convergence zones. 

The Velocity Profile 

The end-product of a velocimeter or BT lowering is the velocity profile - a plot of sound velocity vs depth The 
BT gives the profile down to several hundred feet, while the velocimeter may be lowered to as great a depth as the 
available cable permits. 

Fig 5 shows an average profile and its extremes obtained from Nansen casts taken over a 9-year period at a loca- 
tion 15 miles SE of Bermuda (22). This typical deep-sea profile may be divided into a number of layers having 
different properties as shown on the figure. At the top, in contact with the air above, is the diurnal layer exhibiting 
day-night variability and responding to changes in meteorological conditions. Below it, down to a depth of a few 
hundred meters, lies the seasonal thermocline in which seasonal heating and cooling effects take place. Next comes 
the mam thermocline in which the principal change of temperature - or sound velocity - in the water column 
occurs. At deep abyssal depths lies the deep isothermal layer having water at a temperature near 4°C- since this 
layer is isothermal, the sound velocity increases with depth. Because of the reversal of velocity gradient in the 
profile there is a depth of minimum sound velocity (in Fig 4 it lies at 1200 meters) having a profound effect on 
long-range sound propagation. Not all the layers just mentioned are present in every profile; for example in the 
Arctic, the upper three layers are absent and isothermal water prevails throughout the water column below a shallow 
surface layer of variable salinity due to melting ice. 

Since the oceans become cooler toward the poles, the main and seasonal thermoclines become less pronounced 
in higher latitudes. The effect is to make the depth of the velocity minimum (or the "axis" of the Deep Sound 
Channel) more shallow with increasing latitude, so as to lie just under the ice in the Arctic. Examples of the effect 
of latitude in the South Pacific Ocean may be seen in Fig 6. 

Charts giving the depth of minimum velocity and the minimum velocity itself in the Atlantic and Pacific Ocean 
have been published in the Journal of Geophysical Research (23) (24). The velocity profile in various areas of the 
North Atlantic Ocean, as determined mainly by reduction of oceanographic data, may be found in Refs. (25) and 
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Ray Tracing 
Once the velocity profile is known, the paths of sound rays in that profile can be found using various ray tracing 

techniques. The earliest of these was a slide rule (27) developed by the Woods Hole Oceanographic Institution during 
World War II. It used the same principle as that employed in some modern computer programs. The velocity profile 
is broken up into layers having a linear gradient, in which the rays are arcs of circles, as shown in the Appendix. In 
each layer, a circular arc is drawn of the appropriate radius of curvature. A ray is "traced" by starting it off at the 
source at a given angle and following it along from layer to layer. Alternatively, the profile may be broken up into 
isovelocity layers and Snell's Law used to trace the straight line segments of a ray from layer to layer. Once a pair 
of rays have been drawn using the basic ray postulate of ray theory that energy does not cross rays, the intensity 
lr at range r of the pencil of rays can be computed from the vertical separation of the rays Ah, according to the 
expression (28) 

r      r2      Ah      vs 

where AÖ is the angular separation of the two rays in radians at the source and vs/vr is the ratio of the velocity 
at the source to that at the receiver. This simple formula is rigorous within the limitations of ray theory as long as 
Ah + 0, that is, away from caustics and foci. Every laboratory appears to have its own ray trace program embodying 
these principles in one form or another. 

When the profile can be assumed to approximate a suitable analytic mathematical form, the ray parameters 
(range, depth, travel time) may be expressed analytically. Some of these expressions are listed in Table I. The most 
interesting profile is vz = v0 cosh (AZ), where A is a constant. For this function a perfect focus exists at a distance 
7T/A from an axial source; moreover, the travel time along every ray is the same, and equal to ?r/v A. 

Examples of actual ray diagrams will be seen in the chapters to follow. 

Need for Accurate Values 
Accurate sound velocities are needed whenever a travel time in the sea has to be converted to a distance. This 

need arises in fathometry (which, as we have seen, was the original incentive to determinations of sea water velocity) 
and in fire control, where an accurate target range is needed from sonar data to launch a missile, such as a torpedo. A 
third application is in missile impact location by SOFAR triangulation, where the time of a signal axially travelling 
in the Deep Sound Channel is to be converted to a distance, where it serves to locate the point of impact. 
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Table I 
Ray Parameters for Various Profile Functions 

From Reference 29 

 Z=0 

3-12 



REFERENCES 

1. E. B. Stephenson, Velocity of Sound in Sea Water, Phys. Rev. 21, 181, 1923. 
2. N. H. Heck and J. H. Service, Velocity of Sound in Sea Water, USC&GS Special Publication 108,1924. 
3. D. J. Mathews, Tables of the Velocity of Sound in Pure Water and Sea Water for Use in Echo Sounding and 

Sound-Ranging, Admiralty Hydrographie Dept, 1939. 
4. S. Kuwahara, Velocity of Sound in Sea Water and Calculation of the Velocity for use in Sonic Sounding, 

Hydrographie Review 16, No. 2, 123 (1939). 
5. V. A. Del Grosso, Velocity of Sound at Zero Depth, NR L Report 4002, 1952. 
6. W. D. Wilson, Speed of Sound in Sea Water as a Function of Temperature, Pressure and Salinity, JASA 32, 

641, June 1960. See also extensions and revised formulas in JASA 32, 1357, Oct 1960 and in JASA 32, 1357, 
Oct 1960 and in JASA 34, 866, June 1962. 

7. H. J. McSkimmin, Velocity of Sound in Distilled Water for the Temperature Range 20°-75°C, JASA 37, 325, 
1965. 

8. G. Holton et al. Ultrasonic Velocity Measurements in Water at Pressures of 10,000 kg/cm2, JASA 43, 102, 
1968. 

9. A. Carnvale et al. Absolute Sound Velocity Measurement in Distilled Water, JASA 44, 1098, 1968. 
10. K. V. Mackenzie, Sound Speed Measurements Using the Bathyscaph TRIESTE JASA 33, 85, 1961. 
11. E. E. Hays, Comparison of Directly Measured Sound Velocities with Values Calculated from Hydrographie 

Data, JASA 33, 85, 1961. 
12. W. Wilson and D. Bradley, Specific Volume of Sea Water as a Function of Temperature, Pressure and Salinity, 

Deep Sea Research 15, 355, 1968. 
13. R. J. Urick, An Acoustic Interferometer for the Measurement of Sound Velocity in the Ocean, U. S. Navy 

Radio and Sound Lab. (now NOSC) Report S-18, 1944. 
14. W. D. Wilson, Speed of Sound in Distilled Water as a Function of Temperature and Pressure, JASA 3/, 1067, 

Aug 1959. 
15. M. Greenspan and C. E. Tschiegg, Rev. Sei. Instr. 28, 897, 1957; also JASA 37, 1038, July 1959; also, Tables 

of the Speed of Sound in Water, JASA 31, 75, Jan 1959. 
16. K. V. Mackenzie, Formulas for the Computation of Sound Speed in Sea Water, JASA 32, 100, Jan 1960. 
17. V. A. Del Grosso, New Equations for the Speed of Sound in Natural Water, JASA 56, 1084, 1974. 
18. V. A. Del Grosso, Tables of the Speed of Sound in Open Ocean Water, JASA 53, 1384, 1973. 
19. C. C. McLeroy, Simple Equations for Accurate and More Realistic Calculation of the Speed of Sound in Sea 

Water, JASA 46, 216, 1969. 
20. K. V. Mackenzie, Effect of Sound Speed Equations on Critical Depths in the Ocean, JASA 62 (S1), S(19)A 

1977. 
21. A. M. Lyons (Miss), Sea Water Sound Speeds Expressed in English Units, Naval Ordnance Lab Tech Rept. 

63-168, 1963. 
22. L. M. Jones & W. A. VonWinkle, Sound Velocity Profiles in an Area South of Bermuda, Underwater Sound 

Lab Rept. 632, 1965. 
23. J. Northrop and J. G. Colborn, Sofar Channel Axial Sound Speed and Depth in the Atlantic Ocean, J. Geoph. 

Res. 79, 5633, 1974. 
24. R.   Johnson   and    R.   Norris,   Geographic   Variation   of   Sofar   Speed   and   Axis   Depth   in   the   Pacific 

Ocean, J. Geoph. Res. 73, 4695, 1968. 
25. Oceanographic Atlas of the N. Atlantic Ocean, Part VI: Sound Velocity, USN Oceanographic Office Pub. No. 

700, 1967. 
26. "Velocity Profile Atlas of the N. Atlantic" (2 vols), USN Air Development Center, 1966. 
27. Calculation of Sound Ray Paths Using the Refraction Slide Rule, Bur. of Ships, Navy Dept. May 1943. 
28. R. J. Urick, Principles of Underwater Sound, McGraw Hill Book Co., New York, 2nd Ed. 1975, p. 120. 
29. H. Kaufman, Velocity Functions in Seismic Prospecting, Geophysics, 18, 289, 1953. 
30. Handbook of Oceanographic Tables, USN Oceanographic Office Special Publ. 68, 1966. 
31. R. N. Denham and A. C. Kibblewhite, Sound Velocity Structure etc., art. in Antarctic Oceanology \l, Ant- 

arctic Research Series, 19, Am. Geophysical Union, 1972, pp. 41. 

3-13 



APPENDIX 

A Short, Clever Proof of the Circularity of Rays in a Linear Gradient 
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Referring to the figure, consider a medium in which the velocity varies with depth according to vz = vQ + gz, 
where z = o is selected arbitrarily. In this medium, consider a ray which becomes horizontal at a depth zmax where 
the velocity is vmax. Now, at any other depth z where the velocity is vz, this ray has a grazing angle 6 given by 

Vz Vo+gz Vo 
cos( -+z, 

Vmax      Vo+9zmax 
max 

An inspection of the figure will show that this relationship is satisfied only by a circle having its center at a distance 
v0/g above z = o. This proof is given in L. L. Nettleton, Geophysical Prospecting for Oil, 1st Ed., McGraw Hill Book 
Co., 1940 pp. 257-8. 
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CHAPTER 4 

ATTENUATION AND ABSORPTION 

Introduction 
The various sources of loss of a sound wave may be grouped into two types: spreading loss and attenuation loss. 

Spreading includes focussing and defocussing effects and is depicted by the ray diagram. Attenuation includes the 
losses due to absorption, leakage out of ducts, scattering and diffraction. With one exception, these are all processes 
wherein the energy radiated by a sound source is redistributed in space and they are not shown in a ray diagram. The 
exception is absorption, which involves the conversion of the elastic energy of a sound wave into heat and results in 
a heating up of the medium in which it occurs. 

Theory 
In an absorptive medium, a certain fraction of the intensity of a sound wave is lost — converted to heat — in a 

given distance. If this fraction is dl/l then in the distance x we can write for a plane wave 

— = - ndx 
I 

where n is a proportionality coefficient and the minus sign denotes a loss of intensity. On integration, we find that 
in travelling from X! to x2 the intensity l2 of the plane wave at x2 is related to its intensity l! at Xj by 

l2 = li exp  [- n (x2 - X!>] 

Taking logs to the base 10 and writing 10n logi0e = a, we obtain 

10 log (l2/li) = - a (x2 - x,) 

By custom in underwater sound, in order to avoid small values, a is expressed in db per kiloyard (1000 yds) in much 
of the literature. In metric units, as in the recent literature, a is expressed in db per kilometer. At very low fre- 
quencies where a in even these units is a small quantity, a better unit would be db per megayard or megameter. (One 
megayard is approximately 500 nautical miles). 

In reading the physics literature it is necessary to be careful about whether a refers to intensity or pressure. Since 
pressure is proportional to the square-root of intensity in a plane wave, the pressure coefficient is one-half of the 
intensity coefficient. 

Historical Summary 
The earliest work on a for sea water was done in 1935 by Stephenson (1) of NRL Sea measurements at 30 kc 

gave a value of 6.5 db/ky, though much variability was found. Other measurements at sea were made just prior to 
and during World War II. During the post-war years a number of sources of attenuation have been discovered and 
many additional measurements of attenuation coefficient have been made, mostly at frequencies below 10 kHz. 
Measured values at lower frequencies throughout the years have always been higher than would have been expected 
by extrapolating higher frequency values downward, and have pointed to new and unsuspected attenua- 
tion-producing processes. 

Our knowledge of the magnitude of the attenuation coefficient extends from about 20 Hz to 60 kHz in the 
open-ocean environment. No measured data exists outside this range in the natural deep-sea medium, although 
there are a number of laboratory measurements at frequencies beyond 60 kHz in fresh water and in simulated 
sea water. 

Frequency Dependence 
The dependence of a on frequency is complicated, indicating that in different frequency bands various different 

processes are involved. That is, different processes or mechanisms are dominant over others in different parts of the 
spectrum. 
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In Fig 1, the solid curve shows approximately the variation of a vsf for sea water over the range 1 Hz to 10 MHz. 
Over this large frequency range, it is convenient to divide the curve into four parts, in each of which it may be 
suspected, from the shape of the curve, that different processes operate. These will be discussed in reverse order, 

highest first. 

Region IV 
The classic sources of absorption in fluids are heat conduction and viscosity. Heat conduction creates a loss by a 

heat-flow from the compressed parts of a sound wave to the rarefactions; this contribution to the total absorption 
is negligibly small for water. Viscosity was shown by Rayleight (2) to result in an amplitude absorption coefficient 

equal to ÜZLiL.The intensity coefficient is twice this, or 167r,^  f2, in units of cm-1 when cgs values are used. The 
3X2pc 3pc3 

theoretical basis of these results is given in the Appendix. On substituting values for fresh water and converting a to 
db/ky, we obtain 

a = 6.1x1CT5 f2 (kHz), db/ky 

Thus, a is proportional to f2 and amounts to 61 db/ky at 1 MHz. In Fig 1, this is the curve BB\ 
However, subsequent measurements on distilled water did not agree with this theory. For example, Fox and Rock 

(3) in 1941, by measuring the pressure exerted on small beads and discs by a sound wave at different distances, 
found appreciably higher values. The measured coefficients were two to four times higher than would be predicted 
by classical theory shown by the line A-A1 in Fig 1. 

This excess absorption has been accounted for by Hall (4) by postulating a two-state structure for water. The 
lower energy state is the normal state; the higher energy state is one where the molecules have a more closely packed 
structure. A compressional wave causes molecules to transfer from the more open state to the closely packed state; 
there is a time-delay involved in this process and its reverse, causing dissipation of acoustic energy. Liebermann (5) 
showed that this could be taken care of by postulating a volume viscosity-coefficient for water ß'. If p' = 2 p, where 
M is the ordinary shear viscosity coefficient, then the excess absorption is correctly accounted for. These two coeffi- 
cients are included in the classical theory of viscosity; see Lamb (6). Hall (4) computed a time constant 
of 1.6 x 10"12 sec at 30°C for this relaxation process. 

Region III 
While the absorption of pure water can be explained in this way, an additional process is required for sea water. 

At frequencies between 5 kHz and 100 kHz, measurements of a in sea water, made during World War II, showed a 
to be about 30 times its value in fresh water at the same frequency. 

An explanation for this major discrepancy was soon found in terms of another relaxation process having a longer 
time constant or relaxation time. Generally speaking, in acoustic terms, a relaxation process is one in which some 
equilibrium condition is distributed by a passing sound wave, with a phase or time lag between the alternations of 
pressure and the "response" of the medium. At low frequencies, a near-equilibrium condition is maintained through- 
out the pressure cycle, resulting in small absorption; as the frequency increases, the process lags further behind, 
resulting in increased absorption; at frequencies well above the reciprocal of the relaxation time, the process is 
unable to "follow" the rapid variations and a constant value of a results. 

The specific relaxation process invoked for sea water is ionic relaxation of one of its dissolved ionized salts. At 
first, it was thought that sodium chloride (NaCI), because it is the principal dissolved salt in sea water, was responsi- 
ble (5); later measurements on NACL solutions by Wilson and Leonard (7), however, showed no additional absorp- 
tion. The culprit was eventually found to be magnesium sulphate (MgS04). Kurtze and Tamm (8) assumed the 
existence of MgS04"H20 complexes which split up into ions of Mg, OH, H and S04 on the passage of a sound wave; 
the dissociation takes time, and thereby extracts energy from the sound wave. The relaxation time at 20 C is 1/130 
kHz, i.e., 1/130,000 sec. The expression for a vs. frequency was given by Liebermann (5) as 

Aw20 , 
a =  — + BOJ

2 

1 +co20 
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where u> = 2nf, A = 2.9x1(T5 sec/cm, B = 1.2x10~17 sec2/cm, 9 = relaxation time ^ 1.1X10"6 sec. The units of a 
are cm-1. A, B and 6 are functions of temperature and pressure. The first term is the part of the coefficient due to 
ionic relaxation; the second is that due to viscosity. 

Subsequently, Schulkin and Marsh (9) reviewed the theory and the literature on sea water absorption and pre- 
sented the following formula: 

2.34x 1CT* SfTf2       3.38x10"6 f2 

 !   +  
f^+f2 1 - 6.54x1 CT4P 

where 

S   =salinity in parts per thousand 

f-p= relaxation frequency =21.9x10 

52(T 

T+273/kHz 

T = Temperature in degrees Centigrade 
f =frequency in kHz 
P =pressure in atmosphere (1 atm = 33 ft of water) 
a =absorption coefficient in nepers/meter. To convert to db/ky, it is necessary to multiply by 7.943 x 103. 

The coefficients in this expression were based on field data yielding 30,000 values for a between 2 and 25 kHz out 
to ranges of 24 kiloyards. 

The first term in the first bracket is the contribution of the magnesium sulphate relaxation process; the second is 
that of viscosity, the temperature dependence of which turns out to be conveniently related to fj, the relaxation 
process of MgS04. Converting to db per kiloyard and with S = 35 parts per thousand we obtain 

0.65f2f-r      0.027f2 

f2+f2 db/ky 

at zero depth. On inspection it will be seen that for Kfy, the first, or MgS04, term is proportional to the square of 
the frequency, while when f >f-j- it is constant. Thus, for f<^f-p 

0.65f2 

■T 

0.027f2 0.677f2 

while for fiM-i 

a = 0.65fT + 
0.027f2 

T as given by the expression above depends strongly on temperature, and is plotted in Fig 2. 

The effect of pressure is given by the second bracketed term. In 15,000 ft of water (P = 460 atm) this coefficient is 

(1- 6.54 x 460 x 10-4) = .70 

Thus, the absorption at 15,000 feet is only 70% of its near-surface value. This pressure effect is important for long 
range propagation via deep acoustic paths in the sea. 

More recently, measurements by Bezdek (10) in the Pacific Ocean at 75 kHz over vertical and horizontal paths 
at depths of 700 and 3400 meters have shown the pressure coefficient to be about twice as great as thought pre- 
viously, or to decrease by 4 percent per thousand feet of depth. The cause of this discrepancy has not been deter- 
mined. If true, it means that the attenuation of high frequency sound over deep paths is significantly less than had 
been anticipated. 
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Region II 
At frequencies below 1 kHz, it was found by Thorp (11), on compiling measured data, that measured values 

of a were nearly an order of magnitude higher than the above formulas, when extrapolated downward in frequency, 
would predict. Fig 3 is taken from this paper. 

Various processes have been put forth to account for this excess attenuation. They have been 
explosive transmission effects (March) (12) 
diffraction out of the base of the DSC (Brown & Raff) (13) 
scattering by inhomogeneities (Urick) (14) 
eddy viscosity (Schulkin) (15) 
relaxation process, unspecified (Urick) (16) (Thorp) (17) 
fish (Weston) (18) 
particles (Duykers) (19). 

In order to sort out these processes, an ambitious program of direct measurement was undertaken by the U.S. 
Navy Underwater Systems Center. As part of this program, measurements of a using TNT charges were made by 
Browning et al (20) in the Deep Sound Channel (DSC) of Lake Superior, which has a minimum depth of 500 feet 
over the path 100 miles long used for the measurements. The axis of the DSC was at 100 feet. In the 
range 700-8900 Hz, the measured values of a were about the same as those in sea water. The excess over expected 
values was attributed to scattering by variations in the thermal gradients near the surface of the Lake. Later, some 
yet unspecified relaxation process common to both fresh and sea water was postulated (21). 

In a chemical relaxation process, whatever it may be, the relaxation frequency is likely to be temper- 
ature-dependent. And, if some process of this kind indeed exists, it was reasoned that measurements in different 
bodies of water of different temperature should throw light on the process. 

With this in mind, field data were obtained in the Mediterranean Sea, where a sound channel exists in the summer 
season with an axial temperature of 13°C. These measurements (22) were interpreted as indicating a relaxation 
frequency of 1.7 kHz, compared to a value of 1.0 kHz in the cooler (4°C) Atlantic Ocean. However, the nature of a 
process having such a long relaxation time remained a mystery. 

The mystery appears to have been dissipated by laboratory measurements of Yeager et al (23) who used the 
temperature-jump technique to establish boric acid, B(OH3), as having a long relaxation time. Boron is an extremely 
minor constituent of sea water; yet its relaxation-time is low enough and its concentration in sea water high enough 
to account for the small amount of absorption existing at frequencies below 1 kHz (less than 0.1 db per kyd). 

At frequencies less than a few hundred Hz. Meilen, et al (24) (25), have postulated scattering by large-scale in- 
homogeneities to be the dominant process of attenuation in the Deep Sound Channel. This process is said to produce 
a constant attenuation, independent of frequency, amounting to .003 db/ky or 3 db per megayard in the open 
ocean. The result of all this may be seen in Fig 4. 

An intriguing possibility is that there is a difference between the deep Atlantic and Pacific Oceans,.as far as 
attenuation is concerned. Measurements by Meilen and Browning (26) in the Pacific indicate a smaller a than in 
the Atlantic, suggesting some real difference in the chemistry of the two oceans. This difference is postulated to be 
one of pH, or acidity. The average pH of the Pacific is about 7.7 and that of the Atlantic 8.1. This slight difference 
(the Pacific is more acidic than the Atlantic) is sufficient to cause the Pacific attenuation coefficient to be only 
half that in the Atlantic at the same frequency. The difference in the pressure dependence of the coefficient, re- 
ported by Bezdek and mentioned above, is doubtless the result of this same cause. 

Region I 
Here we enter the realm of speculation, by seeking an explanation for the suggestion of higher values of a at 

frequencies of 20 Hz and below. Such observations are few in number. One explanation is that below 20 Hz, leakage 
occurs out of the Deep Sound Channel (within which the measurements must necessarily be made) because of the 
failure of such frequencies to be trapped in the Channel. A calculation (15) using a formula taken from the radio 
literature shows that the first mode fails to be trapped, or is just cut-off - at a frequency of a fewer cycles per 
second. The formula is 

16 

'" (f)" w = y<2>/2l—J d 

where Amax is the maximum trapped wavelength, occurring at the cutoff frequency, d is the depth of the axis of 
the sound channel and Av/v is the proportional change in sound velocity or the "strength" of the channel. Using 
d = 3000 ft, Av/v = 100/5000 = .02, we get Xmax = 1066 ft, corresponding to a frequency of 4.69 Hz. 

4-6 



T» 
>s 

•a: 

TJ 

LJ 
O 
Ü. 
U. 
LÜ 
O 
O 

O 

< 
ID 

Id 
h- 

< 

FREQUENCY  IN   kHz 
Fig. 3.    Measured Coefficients vs Frequency as Compiled by Thorp (11). Symbols are at-sea data points taken from 

the literature. 

4-7 



,002 to .004 
db/ky 

MAGNESIUM 
SULFATE 

SCATTERING 
BY BLOBS OF 
INHOMOGENEITY 

100 1000 10,000 

Hz 

Fig. 4.    Diagrammatic View of the Attenuation Processes in the Region 100-10,000 Hz. 

4-8 



Methods of Measurement 
The attenuation coefficient can be measured at sea or in the laboratory using samples of real or simulated sea 

water. The at sea measurements are made as a transmission run, where a receiver is held fixed and the source is 
varied in range, followed by rectification of the data (Chap 1) after playback in the laboratory. The slope of the 
rectified line is the desired attenuation coefficient. This is the only method suitable at frequencies below about 
10 kHz, where the coefficients are so small that long distances are required for the measurement. In the laboratory 
an equivalent range-run, using pulses and a moveable source or receiver, can be made for attenuation determina- 
tions above a few hundred kilohertz, and even an acoustic interferometer can be used for the purpose at such fre- 
quencies. A number of investigators have used a nearly-spherical glass flask filled with water and excited by a pulse; 
the decay of a resonance of the spherical volume is proportional to the absorption coefficient of the fluid inside. 
This method was employed by Leonard and colleagues in their discovery of MgS04 as the cause of the excess at- 
tenuation in sea water at kilohertz frequencies. 

Attenuation as a Function of Frequency, Temperature and Pressure 
At various times over the years, various empirico-theoretical expresssions have been published for a in terms 

of the variables on which it depends. One of the most useful and easy to understand is the following 

0.1f2 40f2 

a(db/ky) = 0.003 +  +  + 0.000275f2 

1+f2        4100+f2 

The four terms are, in order, 1) a constant term due to large scale-scattering (mentioned above), 2) boric acid re- 
laxation 3) magnesium sulphate relaxation 4) viscosity — another relaxation process having a very short integra- 
tion time. There is no temperature or pressure dependence in this expression, and it is useful only as an approxima- 
tion. 

Based mostly on a review of laboratory measurements. Fisher and Simmons (27) have proposed the following 
expression for a constant salinity of 35 ppt and a pH equal to 8: 

a=A]-f-bf2+A2P217^f2+A3P3f2 

where A1# A2, A3, f1( f2 are complicated functions of temperature and P2 and P3 are functions of pressure. The 
three terms give the effects of boric acid, magnesium sulphate and viscosity, respectively. A pressure dependence 
factor for the boric acid relaxation (the term Pi) was not given, due to lack of data. Fig 5 is a plot of this expression 
for zero depth, while Fig 6 shows the effect of pressure for two depths (3000 and 6000 meters approximately) and 
at two temperatures (4° and 30°C) in terms of the ratio relative to the absorption coefficient at the surface. Finally, 
from this same paper Fig 7 summarizes very well the frequency dependence of the three constituent causes of sea 
water absorption. 

Schulkin and Marsh (28) have made a review of the available theory and data for the boric acid relaxation some- 
what similar in scope to the earlier review of the magnesium sulphate effect made by these same authors many years 
earlier (9). The low frequency excess absorption due to the presence of boron in the sea (ößA^ was f°und to be 

Qfrf
2 

aBA=—2—2  x        nepers/meter 
r 

where 

Qx105 =3.1x10(0'69(pH    6) nepers/wavelength. 

f =6.1(—)1/210<3-1051/T>kHz 
r 35 
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Figure 6.  Relative effect of pressure (depth) on the absorption coefficient according to the formulas of 
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Fig. 6. Relative Effect of Pressure (Depth) on the Absorption Coefficient According to the Formulas of Fisher and 
Simmons (27) for S = 35ppT, pH = 8, depth zero. There is no pressure dependence of the boric acid absorp- 
tion. 
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This expression, said to fit ex sting laboratory and sea data very well, includes the effects of temperature, pH, and 
salinity. with pressure believed to have only a secondary effect. A somewhat more convenient functional description 
of the boric acid absorption has been provided by Meilen and Browning (29): 

Af2 

«DA"              „ db/km 
BA    1+(f/fr)

2 

A=0.11 10tpH" 8] 

f = 10(T-4)/100 

where T is in degrees C and f is in kHz. 
Fora number of temperature and pH values, a and f  are evaluated in the following table: 

T(°C fr(kHz) A(pH = 7.6) A(pH = 8.0) A(pH = 8.2) 

4 1 .044 .110 .174 
10 1.15 .038 .096 .151 
20 1.45 .030 .076 .104 
30 1.82 .024 .060 .096 
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THEORETICAL APPENDIX 

Mostly from Kinsler and Frey, pp. 220-225 

The equation of state for a perfect fluid is 

p= ks 

= P0
c2s 1> 

where  k =  the bulk modulus 
s   =   the condensation, or proportional change in density. 

When viscosity is added, this equation is modified (Kinsler and Frey, p. 220) to 

9s 
p = ks + /x—-- 2) 

9t 

This inclusion of viscosity, attributed to Stokes, adds an additional term to the wave equation which becomes for 
plane waves 

32P      ,    92P +  n     a2
P 

9t2       C°   3x2      p0    9x31 

Here ß is an effective total viscosity coefficient. The viscosity term causes the pressure and condensation 
in a sinusoidal wave to have a phase difference. To show this, we may take p = P0eicot and assume s = Seiwt, where 
S may be complex. Substitution in the Stokes equation yields a relation between S and P : 

Po = (k + icoju)S 3) 

and the condensation lags the pressure by a phase angle equal to 

CJjU       coju 
ip=tan     = ,i^1 

k k 

and the equivalent relaxation time is 

r = — =—,</^1 
co      k 

which means that the velocity of sound is reduced by viscosity. For water, this effect is extremely small. Comparing 
Equations 1) and 3) we note that 
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which means that the velocity of sound is reduced by viscosity. For water, this effect is extremely small. Comparing 
Equations 1) and 3) we note that 

p c2 = k + icoLi = c2 + iwu 
*o o 

"oC2=Poco-ic^ 

(1    icdju     \ 

° co  V       2    «„'S   / 

Ha Co 

Introducing the above complex expression for c into the solution of the one-dimensional wave equation, we get 

x con 
p    ico{t-x/c) = p -Mt-— (1+y2  —)] 

P    Koe Koe co poc2
Q 

= P.e- °°2/Z .eiM-x/co) 

°    2/>oco 

= P e_kxe"a't~ x^co' 

where 

co2M 27r2f2M 

2o c3 p c3 Ho o ^o o 

Here ju includes all sources of viscosity. Going back to the basic hydropdynamic equations, it turns out that 

where ß. is a longitudinal or volume viscosity coefficient and ßs the ordinary shear coefficient. Stokes assumed 
that the fluid shows no viscous effects under uniform compression, whence it follows in theory that n = 4/3 /is. 
Putting this in the expression for k, we find 

8     7T2f2 

3   Poco     S 
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The intensity coefficient is twice this or 

16    7T2f2 

3   p c 3     s Mo o 

where k is in units of cm 1 with CGS units. To convert to db/ky, it is necessary to multiply k by (10 log-me) x 
(no. of cm. in one ky) = 4.34x91.4x103 =4x105. On substituting//. = .01 poise; cn= 1.5x105 cm/sec-p„= 1 we 
find ° °      ' 

or at 1 mHz, a = 61 db/kyd. 

k 
•- = 1.53x10-16 cm"1 or 
f2 *2 

a 

f2 
6.1x10-11 db/ky 
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CHAPTER 5 

THE SURFACE DUCT 

Introduction 
The surface duct occurs just below the sea surface whenever the processes of stirring by the wind and convection 

caused by surface cooling and evaporation produce a layer of quasi-isothermal water. Within this layer, called the 
mixed-layer by oceanographers and the surface duct by acousticians, sound is trapped, though sometimes poorly so 
because of losses at the boundaries. While the mixed layer has long been known to be an acoustic trap, the causes 
and magnitude of the losses within it have been of interest only since the post-World War II advent of long-range 
sonars. A literature summary of the nature and acoustics of the surface duct may be found in a doctoral thesis by 
Schulkin (1). 

Occurrence 
The mixed layer is a characteristic feature of the temperate, windy regions of the world's oceans. The thickness 

of the layer varies with the seasons; the median layer depth in the North Atlantic between latitudes 40°N & 50°N is 
200 ft in the Winter (Jan-Mar), 90 ft in Spring (Apr-June), 70 ft in Summer (July-Sept) and 150 ft in Autumn (Oct- 
Dec). However, an appreciable fraction, perhaps 20%, of the BT's that are judged to have a mixed layer really do not 
qualify as having an acoustic surface duct because of the occurrence of a small negative gradient within the layer. 

Processes of Formation 
Two processes originating at the sea surface act to cause mixing of the upper water of the sea. One is the process 

of mixing by the turbulent wind, which transfers some of its energy to wave motion and thence to turbulence in the 
sea below. As the wind continues to blow, this turbulence extends to deeper and deeper depths. If a temperature 
gradient extends up to the surface and the wind rises, the heat of the upper part of the gradient layer, 
or thermocline, is carried downward by the wind-caused turbulence. If, in addition, heating from above occurs, and 
if a deep isothermal layer is present initially, a mixed layer of warmer water develops on top of the thermocline. This 
progressive development of the layer occurs in the spring and early summer, as illustrated in Fig. 1. 

The other process of mixing is cooling at the top by (a) a lower air temperature and (b) evaporation, producing 
instability and convection; stirring now exists due to convection as well as to wind-caused turbulence. As the cooling 
takes place, the layer deepens. This occurs in the autumn (Fig 1). 

On calm, sunny days, the near-surface waters heat-up and wind stirring is negligible. During the day a thermocline 
develops in the first tens of feet of water and the Afternoon Effect of surface-ship sonars occurs. During the night, 
cooling occurs and the near-surface thermocline disappears. 

These processes often cause the base of the mixed layer to be sharp and well-developed. When a persistent wind 
has prevailed for a long time, field measurements show that layer is indeed well-mixed and is isothermal to within a 
few-hundredths of a degree centigrade. 

When the layer lies on top of a strong thermocline, a sharp break in the BT occurs at the base of the mixed layer, 
producing an extremely strong gradient of temperature. At other times, under transitory conditions, the break at 
the base of the layer is ill-defined and the layer is often no longer strictly isothermal. 

A well-developed mixed layer may be likened to the atmosphere below a deck of cumulus clouds on a warm 
summer afternoon. 

Other characteristics of the layer affecting propagation are 1) the rough sea surface, 2) the presence of air bubbles 
just under the surface and 3) the occurrence of internal waves at the base of the layer. All of these act to scatter, 
absorb and diffract sound so as to destroy the effectiveness of the duct as an acoustic trap. 

Conditions for Ducting 
For a surface duct to exist, the negative temperature gradient within it (if - as is usual in the deep open sea - 

salinity gradients are negligible) must not exceed a certain value determined by the effect of pressure on sound 
velocity. In isothermal water, the pressure gradient of sound velocity amounts to .017 m/sec/m = .017 ft/sec/ft = 
.017 sec"1, as mentioned in Chap. 3. The temperature gradient at 15°C that happens to produce this particular 
velocity gradient is 1°C in 180 m. If a negative gradient less than this should exist, a duct will be formed; if greater, 
ducting will be absent. When the negative gradient just happens to equal this value, an iso-velocity condition, with 
straight-line propagation paths, exists. The gradients associated with the surface duct are so small that a small change 
of gradient laterally, or over a period of time, can either produce or destroy the mixed-layer duct. 
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Fig. 1.    Generalized Seasonal BT's and Monthly BT's at an open ocean location. From Ref. 1, quoted from another 
source. 
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Radio Ducts in the Atmosphere 
There is a close analogy with the ground-base ducts of radio transmission in the atmosphere. These have been 

studied more extensively, and at an earlier date, than their underwater counterparts. For example, in a 1947 paper, 
Pekeris (2) applied normal mode theory to transmission measurements made by NRL in 1944, and determined the 
attenuation coefficients for the first and second modes responsible for long-distance propagation. The modern 
underwater analog of this kind of work is the elaborate theory of Pedersen and Gordon (3) published some twenty 
years later. 

Ray Theory Model 
The surface duct may be viewed as a half-channel with its sound channel axis at the surface and with an image 

half-channel above the surface. Ray theory is readily applied to such a channel. 
Let there be a point source of sound in a duct with plane boundaries as shown in Fig. 2. At short ranges, spher- 

ical spreading (TL = 20 log r) must occur, while at long ranges, cylindrical spreading (TL = 10 log r) must occur. Let 
the two regions, equivalent to the near-field and the far-field of the source in the duct, be separated a range r0; 
thus, there is spherical spreading out to r0 and cylindrical spreading from r0 to a range r. r0 is sometimes referred 
to as the transition range (between the two types of spreading). The transmission loss can therefore be written 

TL=20logro + 10logr/rQ 

= 10logrQ + 10logr 

In order to estimate r0 we invoke ray theory plus an assumption concerning the distribution of sound in the duct 
at ranges well beyond r0. Assuming 1) that all of the sound radiated between angles + 0 and - 0 stays within the 
duct and 2) that the intensity of sound is uniform throughout the duct at long ranges, it is easy to show (4) that for 
small 0, 

=  H_ __H_ 
0      2 sin 0      20 

where 0 is the angle with the horizontal at the source of the maximum trapped ray and H is the duct thickness. 
Leakage out of the duct is taken care of in this model by an attenuation coefficient aL in addition to the ordinary 
volume absorption coefficient a. Adding leakage and absorption, we obtain for the average transmission loss in the 
duct 

TL= 10logro + 10logr + (aL + a) rx 10~3 

where r0 and r are in yards and aL and a are in db/ky. This is a general expression applicable to all sound channels. 
Since 0 decreases with increasing source depth, the average intensity in the duct should decrease with'source 

depth, once the source gets below the depth at which the pressure-release effect of the surface is negligible (about 
A/4). In a layer of depth H and source depth ds, it follows from geometry that 

„2           2  (H-dS> 02    =  §- 
R 

where R is the radius of curvature of the rays in the linear gradient of the layer. Hence we have for the average 
intensity in the duct 

o lo 21 
— • 20 
rH rH 

2(H-ds 
% 
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Fig. 2.    Conceptual Model for Duct Transmission. On the assumption of uniform intensity in the duct at a long 
range, it can be shown that rQ = H/20. 
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where l0 is the source intensity at 1 yd. If now we assume symmetry in depth dependence between source and 
receiver, and normalize by reciprocity to obtain the same average intensity when sound and receiver and inter- 
changed, it can be shown (5) that for a receiver depth dr 

'r= — 
i0 r 3 /2\y2 /     ds\% /     dr \% lo 

r>"0 

where 1/r0, the reciprocal of the transition range, is the factor in the brackets. This shows that the intensity varies 
as HP /2, becoming greater as H becomes smaller for the same ds/H and dr/H. A thin duct is a better trap than a thick 
duct when leakage is negligible. 

Wave Theory Models 
On the other hand, wave theory is extremely complicated and has only been worked out exactly for a smooth 

non-scattering) surface. In one case, for transmission at 530 and 1030 Hz out to 10 kyds (6), as many as 40 modes 
for the bi-linear gradient case were summed on a computer and compared with ray theory summations. Ray theory 
was found to produce caustics and shadow zones where none existed in mode theory or in the observed data. At 
short ranges the accuracy of the mode approach was limited to the number of modes summed. 

On the.other hand, when mode theory is compared to field data such as the comprehensive Lockheed measure- 
ments (7), the results are poor, probably due to the neglect of the effects of the rough sea surface. This particular 
comparison was summarized in a short JASA paper by Eden and Nicols (8), but the agreement between mode 
theory and the field data is strikingly poor even though the authors claim success in their attempt to fit an elaborate 
theory to the real world. 

Wave theory predicts that for any kind of ducted propagation there should be a cut-off-frequency below which 
the duct ceases to act as a trap. The wavelength then becomes too great to "fit" in the duct, and the attenuation 
becomes large. Near the cut-off frequency only a single mode is well-propagated. The relation between maximum 
trapped wavelength Amax and duct thickness H was worked out long ago for the ground-base ducts of ratio (9) (10) 
to be 

y2 
H = 36^max 

where Xmax and H are in feet. ForXmax= 10 ft (500 Hz), H = 160 ft; for Xmax = 100 ft (50 Hz), H = 770 ft Fig 3 
is a plot of this expression. 

The complete series of modes, and their attenuation coefficients, were worked out by Voorhis (11) for the case 
of a smooth sea surface. The results, however, are all but meaningless for the real sea whose roughness so greatly 
determines the propagation. A more elaborate theoretical treatment is given by Brekhovskikh (12), again for the 
smooth surface. 

Ray diagrams show the presence of caustics and foci in the surface duct, similar to those in the Deep Sound 
Channel; these have not been observed in field data, probably because they are "washed out" by surface scattering. 

Leakage by Surface Scattering 
Schweitzer (13) has shown a way by which the scattering by elements of the rough surface can be added up 

intensity-wide to give the intensity below the layer. He used a scattering function given in a book by Beckman 
and Spizzichino (14), together with values of sea surface slope as a function of wind speed due to Cox and Munk 
(15). Agreement was found with certain measured data. The source of sound below the duct was believed to be 
those parts of the surface not far from the receiver in the direction toward the source. 

In addition to roughness scattering, the sea surface sometimes has a layer of air bubbles beneath it that have 
been hypothesized (16) to contribute to duct losses by absorption and scattering. 

Leakage by Diffraction 
Even for a perfectly calm sea there will be some leakage due to diffraction, or "transverse diffusion" out of the 

lower boundary. This has been the subject of theoretical (17) and experimental (18) Russian papers. The latter 
employed artificial ducts in laboratory tanks with an un-ruffled surface. Yet it seems likely that when the sea is even 
slightly rough, the roughness must overwhelm the loss by diffraction so as to make it of negligible significance at 
relatively high frequencies. 

The upshot of all of this is that there exists an optimum frequency for any duct, at which the total loss is 
a minimum, as illustrated diagramatically in Fig. 4. Above the optimum, a higher frequency results in higher losses 
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Fig. 3.     Lowest Frequency Trapped in a Duct of a Given Depth or Thickness. 
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Fig. 4.    Loss to a fixed range in a surface duct. The optimum frequency is that at which the total loss is a minimum. 
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due to absorption and leakage; below the optimum, the loss increases with decreasing frequency due to diffraction; 
low frequencies and long wavelengths can no longer "fit" into the duct. 

Internal Waves 
The lower surface of the mixed layer is characterized by the presence of internal waves. These are crenulations of 

the temperature structure, wherein a particular temperature occurs at different depths at different places; hence, a 
surface of constant temperature in the sea is wavy. These waves are not stationary but travel with a characteristic 
speed. In the Pacific, a common deep water internal wave pattern in the main thermocline shows wavelengths of 
about 12 miles with an amplitude of 50-100 feet, decreasing with depth. 

A vast literature exists on the subject (19). Not too much is known of their acoustic effects. They are unlikely to 
have much effect on aL unless the duct is thin, but would produce large fluctuations in the sound field below the 

duct. 
A moving sonar, such as a minehunting set echo-ranging on a bottom mine, would experience echo fluctuations 

as the target passed in and out of shadow zones. Ray diagrams for such refractive effects have been drawn (20-21), 
and an acoustic variability in transmission said to be caused by internal waves has been reported (22). An exhaustive 
tank and theoretical study is available (23). Yet, while internal waves are fascinating to oceanographers, it is likely 
that their acoustic effects are limited to adding to the many sources of variability in the sea. 

Magnitude of the Leakage Coefficient 
Expressions for the leakage coefficient as a function of the three variables on which it depends - frequency, 

duct thickness, and surface roughness or sea state - have been published by several investigators through reduc- 
tion of measured field data. The three extant expressions have different ranges of validity, and are not entirely 
concordant. 

/.  A leakage coefficient aL has been deduced by Schulkin (24) from extensive measurements made in the 1950's, 

to be 

a' = 1.64 (fh)1/2 db/limiting ray cycle 

where f is in kHz, h is the mean wave height in feet, and aL is the loss in the distance of one bounce of the limiting 
ray of the duct. Calling this distance x0, we have x0 = V§FTH, and using R = 5000/.017 = 3 x 10s ft = 100 ky, we 
have x0 = 0.52 ^/h^ (x0 in kyds, H in ft) so that 

1.64(fh)1/2 /fh\% 
o.   = y-= 3.18 —       db/ky 

L 0.52H/2 \H/ 

where f is in kHz, h in feet, H in feet. This expression was said to be valid over the range 3<fh<70 kHz ft. Relating 
h to the sea state s by the expression h = 0.4s2 we get 

«L = 2sfc)'' 
db/ky 

//. A somewhat different empirical formula was obtained by Saxton, Baker and Shear (25) from NRL field 
data at 10 kHz. They fitted their data by the relationship aL = 1200 (1.4)s (RH)_/2 db/ky, where the radius of 
ray curvature R and the layer depth H are in yards. If we take R = 105 yds and convert the layer depth to feet, 
we obtain 

aL = 6.6(1.4)sH-1/2 

for a frequency of 10 kHz. While different in form from the Schulkin expression given above, the two expressions 
give substantially identical values foraL (near 1.9 db/ky) at 10 kHz for a 100 ft layer in sea state 3. 
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///. A third empirical expression for the leakage coefficient has been published by Baker (26). Based on 4 sets 
of field data at 3.25, 3.5 and 7 kHz, for sea state 2 to 5, for layer depths 80 to 220 ft, source and receiver depths 30 
to 60 ft., the expression is 

26.6f 
a, = 

t(1452 + 3.5T)H] 
(1.4)sdb/ky 

where f and H are in kHz and ft, respectively, and s is the sea state. T is the temperature in °C (the term 3.5T is 
negligible for practical work). The formula is said to fit the data on which it is based to a mean error of 2 db and a 
standard deviation of 7 db. 

Transmission Loss Prediction 

For estimating the loss to be expected at a given range in a duct characterized by a surface roughness (such as the 
sea state) and thickness, the design engineer and performance predictor have available a number of models All are 
based on field data and have restricted ranges of Validity, but, unfortunately, are often discordant 

I. Model Expressions with Leakage Coefficient 

This prediction model uses the simple near-field far-field expression given above, plus one of the above expres- 
sions for a, : r 

TL= 10logro + 10logr + (a+aL) rx 10" 

where the transition range is 

r   =^-)1/2-(1-ds/H)-^.(1-d,/H)-,/= 0      3f2 

where   R = ray radius of curvature «* 10s yds 
H = layer depth 
d$ = source depth 
dr = receiver depth 
a = volume absorption coefficient, see Chap. 4 
aL = leakage coefficient 

//. AMOS Data 

i MAW^™,^50'5 the USN Underwater Sound Laboratory (now NUSC) and the USN Hydrographie Office 
(now NAVOCEANO) carried out a two-ship transmission survey at various frequencies between 2.5 to 25 kHz at 
many locations in the North Atlantic. The data were fitted to theoretico-empirical expressions by Marsh & Schulkin 

n I tna\ZTT^ubsec'uent|y evaluated and plotted for a number of frequencies and depth combinations by R P 
Delaney (28). The transmission loss values from this source for 2, 5, and 10 kHz are given as tables in the Appendix 
tor a number of depth combinations. 

///.  TRW-Lockheed Data 

In 1967, The Lockheed Company and the Navy Electronics Laboratory made an exhaustive series of trans- 
mission measurements using two ships. Pings at 7 different frequencies between 500 and 8000 Hz were received at 
^ hydrophones on a string extending down to 1500 ft at ranges from 4 to 20 miles with layer depths 100-400 ft 
I he resulting data was analyzed and fitted (7) to the theory of Pedersen and Gordon (3) 

WnrLUbS?qUent,?naly:f °f thiSuame d3ta WaS made by TRW' ,nc- (29) in order t0 use !t for P^dictive purposes. 
Surprisinglyr, no dependence in the data on any of the expected variables (frequency, layer depth, sea state) could 
be found. The oss in the range 10-30 kyds, for source and receiver near the surface, could be represented by a 
single curve equivalent to y 

TL = 20 log r + 0.25r x 10~3 
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This expression is plotted in Fig. 5. The effect of source or receiver depth is shown by the separate "correction" 
curve of Fig 6 along with curves for ±5 and ± 26 relative to the average (AVE). 

IV. Baker Expressions 
W.F. Baker (26) in 1975 published expressions for the loss in a surface duct using essentially the model expres- 

sion given above. The field data fitted by the expressions cover the frequency band 3.25 to 7.5 kHz, the ranges 
from 1 to 30 kyds and layer depths from 80 to 220 ft. These formulas are given in Appendix II. 

V. Loss Below the Duct 
Once a value for TL in the duct is obtained, the additional loss to a point in the shadow zone far 6e/ow the 

duct (below about twice the layer depth) can be obtained from 

TL=28- 2.5s 

where TL is the excess loss to a below-duct receiver and s is the sea state. This expression was obtained by Roebuck 
(30) from theoretical arguments based on the sea surface scattering as the principal loss mechanism and supported 
by field data at frequencies between 3 and 10 kHz and at ranges from 2 to 20 kyds. 
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APPENDIX I 

AMOS TRANSMISSION LOSS TABLES 

The following three tables give the transmission loss at 2, 5, and 10 kc for a number of different layer depths and 
transducer combinations. The values were read from machine-computed plots obtained by R. P. Delaney in 1960 
from the semi-empirical equations originally derived by Marsh and Schulkin (27) from the AMOS transmission 
data. The three tables are given for one transducer (the "source") at depths of 50, 250, and 900 feet; the other 
transducer (the "target") is located at depths of 50, 300 and 600 feet. Dashes indicate a loss too high to be read 
from the plots. 

Some hesitancy should be felt in relying too heavily on these values for prediction purposes. Neither the sea 
state, nor the temperature gradient below the layer, appear as determining factors for the transmission loss. It has 
been found that the AMOS equations have a probable error of 5 to 10 db when used to predict actual losses. The 
values given should therefore be regarded as only rough guides to the loss that might be experienced in the field 
under the stated conditions. 
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APPENDIX I, Contd. 

50 FT. SOURCE 

50 ft. Target 300 ft. Target 600 ft. Target 
Layer 
Depth 5ky 10 ky        20 ky 5 ky 10 ky       20 ky 5 ky 10 ky 20 ky 

0' 2kc 87 107   85 102   82 99 — 
5kc 95 — — 90 — — 85 - - 

10 kc 105 - - 98 - - 90 — — 

20' 90 107   86 103   81 100 — 
96 — — 90 — — 82 107 — 
106 - - 99 - — 91 — — 

50' 82 90 110 87 105   80 103   
85 95 — 88 — — 81 110 - 
88 105 - 102 - — 92 — — 

100' 77 85 95 84 100   78 100 — 
79 87 103 86 105 - 80 107 - 
82 95 - 94 - — 88 — — 

150' 75 84 93 78 92 100 77 98 _ 
76 86 99 81 96 108 79 105 — 
79 92 - 85 102 — 86 — — ' 

250' 74 83 90 76 86 95 77 93 107 
75 84 95 78 90 100 79 97 - 
78 89 - 81 95 110 84 105 — 

400' 74 82 88 75 84 92 76 87 97 
75 83 93 76 88 96 79 90 101 
78 88 105 80 91 108 83 96 - 
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APPENDIX I, Contd. 

250 FT SOURCE 

50 ft Target 300 ft. Target 600 ft. Target 
Layer 
Depth 5ky 10 ky 20 ky 5ky 10 ky 20 ky 5ky 10 ky 20 ky 

0' 2kc 85 102   81 99   77 95 
5kc 90 — — 85 105 _ 79 102   

10 kc 97 — - 91 - - 85 - - 

20' 86 104 _ 78 99 _ 77 95 _ 
92 — — 79 106 — 78 102   
99 — — 81 - - 82 - - 

50' 87 105 _ 77 100   77 96 
94 — — 78 107 — 79 104   

101 — — 79 - - 84 - - 

100' 83 100 _ 76 101   75 97 
85 105 — 76 107 — 77 105 — 
89 — — 79 - - 81 - - 

150' 78 92 100 75 96 107 75 99 
80 94 107 76 100 — 77 105   
83 100 — 80 105 - 81 - - 

250' 77 87 94 75 90 97 75 95 106 
78 88 100 72 92 103 78 99   
81 94 — 82 97 - 81 105 - 

400' 75 83 92 75 85 94 75 87 97 
76 85 96 78 87 97 77 88 101 
79 90 108 80 92 110 80 94 - 
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APPENDIX I, Contd. 

900 FT. SOURCE 

50 ft. Target 300 ft. Target 600 ft. Target 
Layer 
Depth   5ky    10 ky   20 ky    5 ky    10 ky   20 ky    5 ky    10 ky   20 ky 

0' 2kc 80 97   75 91   74 90   

5kc 82 106 — 77 ' 98 — 75 95 - - 

10 kc 86 - - 80 106 - 78 102 — 

20' 78 97   75 92   73 86   

81 105 — \ 76 100 — 74 90 — 
85 - - 80 107 - 77 100 — 

50' 77 97   75 93 _ 73 85 _ 

81 106 — 76 100 — 74 90 — 
86 - - 80 - - 75 99 — 

100' 77 97   75 95   73 85   

81 105 — 76 105 — 74 90 — 
85 - - 83 - - 75 97 — 

150' 76     96     -     75      95    -     72      85 
80     105     -     76     102     -     73      90 
85     -      -     83     -     -     75      97 

250' 76 95   75 95   72 85   

78 100 — 77 100 — 73 90 — 
84 - - 80 - - 75 95 — 

400' 76 90 105 75 88 105 73 84 106 
77 94 — 76 91 — 74 87 — 
83 102 - 79 97 - 77 93 — 
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APPENDIX II 

DUCT EXPRESSIONS ACCORDING TO W. F. BAKER 
(J.A.S.A. 57, 1198, May 1975) 

Prediction Formulas 
Short Ranges: 

Long Ranges: 

(r < 350Hft < 3500 yds, H = 100 ft) 

TL       =   20logr + (a+aL)rx 10-3 

r =   range in yds 
a, ttL   =  dB/ky. 

TL= 10logrQ + 10logr + (a+aL) rx 10" 

(r>.350Hftyds) 

10 log rQ = 20.9 + 5 log Hft 

Leakage Coefficient 

26.6f 
L      [(1452 + 3.5t)Hl/2 y2 (1.4)"dB/kyd 

f in kHz, t in deg. centigrade, H in ft. 

Limits of Test Data 

freqs : 3.25-7.5 kHz 
r : 1-30 kyds 
Layer depth  : 80-220 ft 
Source and receiver depth : 30-60 ft 
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CHAPTER 6 

THE DEEP SOUND CHANNEL 

Introduction 
The Deep Sound Channel (DSC) is sometimes referred to as the SOFAR channel from its earliest use in acousti- 

cally locating aviators downed at sea. It is now used for locating missiles instead of aviators, as part of the MILS 
(Missile Impact Location System) network for missile-impact location (1). Its existence has been well known since 
World War II, when the earliest investigations were made and a SOFAR net was established in the Pacific. In later 
years it has provided the necessary long range transmission paths for investigations of the attenuation coefficient 
in the sea at low frequencies. Today it remains the best natural non-radio channel for long distance communication, 
should such communication become necessary. However, as will be seen, the transmission distortion of the DSC, 
caused by multipath effects, is severe. Yet the sound from a small (1-2 lb.) explosion can be heard easily above 
background at distances of thousands of miles. 

The DSC is caused by the fact that the deep sea is warm on top and cold below. The surface warming effect is 
not sufficient to extend all the way to the bottom and is limited to the upper part of the water column where it 
forms the main thermocline. Below it, the sea is nearly isothermal (near 40° F) and therefore has a positive velocity 
gradient (Fig. 5, Chap. 3). 

Accordingly, a depth of minimum velocity exists, called the "axis" of the DSC, toward which sound rays are 
continuously bent by refraction. 

In the DSC, the ray-path propagation is by a series of upward and downward arcs, alternately concave and 
convex, that are the result of the reversal of the velocity gradient at the axis. These ray pathslare illustrated by the 
now classic ray diagram of Fig 1, drawn by hand (2) during World War II, showing the propagation from a source 
on the axis of the DSC, and, incidentally, showing a convergence zone at a range of 32 miles. 

The upper and lower limits of the DSC are determined by the velocity profile and the water depth. Usually the 
near-surface region of the profile has the highest velocity. If the water depth is great enough, there is a depth below 
the axis where the velocity is the same as that at the surface. This depth is sometimes called the critical depth and 
forms the lower limit of the DSC. It is "critical" in that a receiver below it will not receive low-loss refracted sound 
from a distant shallow source, but instead only weak sound travelling via bottom reflected or RSR paths. When the 
water depth is less than critical, a near-surface source similarly lies outside the DSC and cannot transmit to long 
ranges via low-low ducted paths. These considerations are illustrated in Fig 2. 

Transmission Loss in the DSC 
The loss expression for surface ducts applies also for the DSC; namely 

TL= 10logro+10logr + (a + aL)rx 10"3 

where rQ is the transition range between spherical and cylindrical spreading, and a. is the duct leakage coefficient. 
In the DSC, signal stretching caused by multipath propagation requires that TL be the energy-density transmission 
loss, in which all multipath contributions are added up, rather than the intensity transmission loss. Also, between 
a deep source and a deep receiver in the DSC, it is not (yet) possible to separate a and a.; low-frequency attenua- 
tion coefficients (Chap. 4) measured in the DSC always tacitly assume a. = 0. 

As mentioned in Chap. 1, rQ and a can be found from field measurements of TL by "rectifying" them by plotting 
(TL+10log r) against r, as described in Chapter 1 and illustrated by a published example in Fig 3. For the DSC, 
the rectified plot will be sensibly linear, with a slope equal to a and intercept equal to 10 log r . a depends only 
on relative measurements (it is a slope), but rQ involves all the system calibrations and its value is correspondingly 
uncertain in any series of experiments. For example, 10 log rQ was found (3) to lie between 32 and 36, depending 
on frequency band while another series of measurements (4), with another velocity profile, found values between 
46 and 51. Additional measurements of 10 log rQ for the DSC are 35 db by Webb and Tucker (5) and 50 to 54 
db by Sussman et al (6). The great disparity in the measurements of r0 stems not only from calibration uncer- 
tainties, but also from lateral variations of the velocity profile along the transmission path. 

We should note here that TL as found by the above expression is the average TL over the width of the chan- 
nel at range r. Ray diagrams show that the DSC is full of foci, caustics and shadow zones, causing TL to change 
markedly with depth and range. We will consider these irregularities in dealing with convergence zones in the next 
chapter. 
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Fig. 1.    Ray diagram for an axial source in the DSC. Ref. 2 
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Water Depth 
Less Than Critical 

Water Depth 
Equal to Critical 

Depth Water Depth 
Greater Than Critical 

Figure 2. Velocity profile and the critical depth, in a) the water depth equals the critical depth and the 
entire water column forms the DSC. In b) and c), sound sources shallower than A in b) and deeper than 
B in c) would lie beyond the DSC. Condition c) is required for the formation of a CZ (next chapter). 
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Attenuation Coefficient 
Most studies of the DSC have been done with explosive sources because of their high-level, broad frequency band 

and convenience of use. In analyzing field recorded data, the shot signals are filtered, squared and integrated before 
conversion to TL. The earliest determinations of attenuation coefficient were made long ago by Ewing and Worzel 
(2), who found values between 25 and 50 db per my (1my = 106 yds) at frequencies between 14 and 4000 cps; 
for example, one particular value was 49.8 db/my in the band 56-350 Hz. These are far too high by modern values 
which average only about 1 db/my in this range. Examples of-some more modern measurements are those of Refs 
(3) (7) and (8). 

Signal Envelope — On Axis 
When both source and receiver are on the axis, the sound from a distant axial explosion in the DSC has a charac- 

teristic envelope. The received signal is a long, drawn-out blob of triangular envelope that rises gradually out of 
noise, reaches a peak, and then suddenly ceases. 

In the SOFAR method of aviation rescue, aviators downed at sea were supposed to launch an explosive sound 
signal detonating on the axis of the DSC that was received by widely separated shore stations. Using triangula- 
tions based on the instant of cessation of the received signals, the position of the source could be found to within 
a few miles. In MILS, where the approximate point of impact is known beforehand and the horizontal velocity 
to various receiving stations can be determined, better accuracies can be obtained. 

The front end of an axial signal is caused by ray arrivals leaving the source at high angles, extending up and down 
near to the limits of the channel, and taking a relatively small number of path oscillations about the axis. The rear 
end represents energy travelling near the axis of the channel and making many, though small, oscillations about 
the axis. The density of ray arrivals (number of arrivals per unit time) increases with time during the signal dura- 
tion and becomes infinite at the instant of peak intensity. The axial ray itself is a caustic and has, in ray theory, 
an infinite intensity. Individual ray arrivals can sometimes be identified near the beginning of an axis-axis signal 
(if the S/N is large), but the tail always has a smooth build-up caused by the high density of ray arrivals. A series 
of signal envelopes from an axis source to an axial receiver at different ranges between Bermuda and the Azores 
may be seen in Fig 4. Note the increasing signal duration with increasing range. 

It can be shown theoretically (8) that the time duration of the axial signal in a bi-linear channel is related to 
the angle of the limiting ray of the channel according to 

6Co 

where D is the signal duration at range r, 6L is the inclination ot the limiting ray trapped in the channel, and C0 

is the axial velocity. Taking, as an example, 0L = 1/5 radian (a typical value) and C0 = 1490 m/sec. (1/C = 1240 
sec/kilomile), the rate of increase of duration with range (= D/r) becomes 1240/(6x25) = 8.3 seconds pericilomile. 
In rough confirmation of the theory, a value of 10 sec/kilomile was found in the Atlantic (2) between Eleuthera 
and Bermuda and 9.4 sec/kilomile was measured (3) between Bermuda and the Azores; in the Pacific, in one experi- 
ment, values of only 4 sec/kilomile were observed (9), possibly because of the ubiquitous presence of seamounts 
in the area. 

Signal Envelope - Off Axis 
When source and/or receiver depart from the axis, individual ray arrivals begin to be discernable, and the smooth 

cresendo of the axial signal disappears. In one experiment (10), a series of drops were made around a semi-circle 
600 miles from Bermuda, as shown in Fig 5. In this series, air-dropped explosive charges detonating at 800 feet 
were received by a hydrophone on the DSC axis at 4000 feet. The received signals, shown in Fig 6, were found 
to consist of individual arrivals that occured in pairs over a time interval of about 5 seconds. These arrivals could 
be identified by ray calculations. The arrival pairs were identified as (11, 12) - (12, 12); (12, 13) - (13, 13) etc. 
to (15, 16) - (16, 16), where (11, 12) stands for a ray having 11 crests and 12 troughs in its oscillating path be- 
tween source and receiver. A characteristic envelope persisted for most of the drops, and pointed to an essentially 
uniform oceanic environment, at least over the east and south of Bermuda. Only very weak signals were received 
from the northeast, probably because of the pressure of seamounts in the area. Ray calculations also gave fairly 
good agreement with the observed intensities of the arrivals. 

The arrival pattern varies with source and receiver depth combination. In another experiment (11), a series of 
explosive charges were air-dropped in clusters at locations 150 miles apart between Bermuda and Antigua. The 
shot signals were received on axial and bottomed hydrophones at Bermuda, Antigua and Eleuthera. The deto- 
nation depths were 800, 1500, 3000, 4000, 6000, 8000, 10,000 and 12,000 feet. The received signals were found 
to lose their smooth triangular envelope completely when they were off-axis, and to acquire a "character" that 
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Fig. 5.    Chart of Drop locations circling Bermuda at a distance of 600 miles. Ref. 10. 
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was sensitive to depth, but not greatly sensitive to distance, as may be seen in Fig 7. This "character" represents 
simply the time and intensity pattern of the various ray arrivals. The 12,000 foot depth was beyond the limit of 
the channel so that only weak refracted-surface-reflected paths occurred. 

Effect of Bottom Topography 
When a portion of the bottom extends up into the DSC, some of the ray paths will be intercepted and a "shad- 

ow" of the bottom will be manifested in the received signals. The most striking example of this occurs when an 
island lies between source and receiver. The shadowing effect of Bermuda was said (9) to have been observed in 
1945 by Ewing and Worzel in their early SO FAR experiments. They are said to have found that signals were not 
received at Bermuda from bombs detonated in the shadow of Bermuda at ranges less than 700 miles, but were 
received beyond 700 miles. This may have been due to horizontal refraction or else to diffraction, as in an optical 
shadow. 

However, a bottom obstacle penetrating the DSC only part-way will obstruct only some of the ray paths. If it 
does not extend up to the axis, only certain high-angle rays will be affected and the front end of the received signal 
will be reduced in amplitude. 

If a ridge or a seamount should completely intercept the axis, the rear, high-amplitude tail will be eliminated 
and a profound effect on the level of the signal will occur. For example, crossing the Mid-Atlantic Ridge between 
the Azores and the UK was found (3) to reduce the energy density of the signals on the other side by about 30 db. 
The signals recorded at Bermuda on the other side of the Ridge were shortened and reduced in intensity so as to 
be just barely above noise, as illustrated in Fig 8. This is more strikingly shown by the two sample signal envelopes 
of Fig 9. The effect of the Ridge is to cut off all but a short piece of the signal, which, across the Ridge, just barely 
is perceptible above the background of noise. 

Effect of a Changing Velocity Profile Along the Path 
Not much is known about the effect of non-uniform velocity structure for long-distance SOFAR transmission. 

In one case (3), the channel axis became shallower during a run and low values of attenuation were reported. In 
another (9), the duration of SOFAR signals was found to reach a maximum, and then begin to decrease with in- 
creasing range instead of the normal linear increase, an effect that was attributed to poor sound channel conditions 
along part of the path. 

Northward from Hawaii the channel axis becomes shallower with increasing latitude, so that a shallow source 
finds itself closer to the axis of the DSC as the range increases northward. As a result, the transmission becomes 
better than it would be if the axis of the DSC were at constant depth. This is illustrated by Fig 10 which shows the 
velocity profile and measured transmission loss for 60 ft shots dropped at various distances northward from an axial 
hydrophone at Hawaii. 

It is becoming increasingly clear that the ocean is by no means as laterally uniform as had been tacitly assumed 
for many years. Recently, the effects of horizontal non-uniformity have received considerable attention. It has been 
found (12), for example, that deep hydrophones at Bermuda receive more sound, by about 10 dB, from 800-foot 
shots fired on the other side of the Gulf Stream than on the near side in the Sargasso Sea. This is essentially the 
same as the latitude effect, in that the change in the profile, when going across the Gulf Stream, is such as to carry 
sound downward to a deep receiver and away from a shallow receiver. In another measurement (13), a different 
attenuation coefficient was found in the North Pacific between latitudes 30-40 N and 50-60 N, the latter being 
higher than the former; this is likely to be again due to the profile, which has its axis shallower in the North than 
in the South, causing shallower transmission with higher attenuation in the more northerly latitudes. Essentially 
this same effect was found off Australia and New Zealand in the South Tasman Sea (14). In this same area also 
(15), differences in transmission in different directions out to 3000 km from a hydrophone off New Zealand were 
found to be correlated with the properties of the different water masses encountered in different directions. Appar- 
ently, in making propagation predictions out to long ranges, great care has to be used to properly account for vari- 
ations in the velocity profile along the transmission paths. 

Signal Stretching and Range Computation in the DSC 
The distinction between energy density and intensity is particularly important for the DSC. Because of stretch- 

ing, amounting to about 10 sec per kilomile in mid-latitudes, the peak intensity of an axial explosive shot signal 
should fall-off more rapidly with distance by a factor of 1/r than the fall-off due to spreading alone. Thus, when 
the energy density spreads like r"1, the intensity should fall-off like r~2. A pseudo-spherical spreading law results 
when cylindrical spreading is combined with a time-stretching proportional to range. 

Measured peak intensities of axial SOFAR signals at 1 kilomile have been reported (3) to be 128 db re 1 juPa in 
the band 50-150 cps for a 4-lb charge, and 140 db re 1 juPa in another experiment (16) in an unspecified band for 

6-9 



A     i •   A. ■„ ' ;«>V    > v.\»   '/v.vv. ... . >»V.,Vv..... . ,,, 

iHil« 
(       '«H/l!r,. 

:. i; :W- 

<"ÜMO 

i*" 

■'•V. 

■(■yvv^^VvW^'uo.vv, 

i 
.Hi»*. 

. :„..-V 
. • ■.-,»•'' i 

Source 
_ Depth 

800' 

1500 

3000 

4000 

-**"-**. X-tfcW"'*'' *•«/■   W>>W    *w     **   %«    ,_  ... -»■    ■ -   - •     

m-M 

WWVo 

.... . :....uf.i-j-i-tj.;.:.; 
I 1«.~~ *«-*..! /.,. 

0 — 

 •■• . ■ •■■ :■-■-- ■'. :••-.;     V       ■ ■ •   »       ,   '     ■ : 

■ -   ■   .   ■        ■*..... .-'A   . ^..   ..   .   m  -      .\U+.i   «** .     -w^^ «/-... -V»->»".-A.V ,.. 

. . _ I ■    . .       ...._*.._'..:..     . . iwitcs 

6000 

8000 

10,000' 

Fig. 7. Signal envelopes from shots fired at different depths at a signal location. Distance 400 miles. Receiver 
was an axial hydrophone at 4000 ft at Bermuda. The arrival structure is determined by the available ray 
paths from the source. Ref. 11. 

6-10 



MILES 

-♦JO 

:r NOT RECEIVED 
W^j*^^                                                                                                     WRITING 

,011*00                                         «a*     OHM        (      *               (       «**••     «fun              SPEED 

1820 

-♦*• 
-• NOT RECEIVED 1900 

•H»*                        »Tim                         «f«*>              |       «W»                        »flVi»                        *Wf»                     wttftt» I                       I     j                 I                       |                      i                       1    |                 1                       1                       i                       1     ]                 I                      !                       1 

A                                    a                    -♦» 2000 

i                i                ill                i               '                ■     I          '                '                '           .   '     1 

-♦*■ 
8                                       -+» -• 

toff»              , »ft*»                   ,ft*»0               ,'•*«»                     ***                 wwo^^^ 
i            i       j    i            t                         '       1    '            '            '            '       1    '   ■        ' 

A: DUD 
2060 

.         HI«O                 ,,1,7«                 mi«                 um-                  nflw                'fr~ 
i           i           i         f i           '           i           'I1           '           '           '         1 

2130 

MM»                   Iffteo                     »A»                    «At»                   M»f                      »**• 
•1     ■      ■ .   •.._  •!     •      •      •      '1     •      :  

HIGH LOCAL 
NOISE 

HIGH LOCAL 
NOISE 

2200 

2250 

2350 

    -«•    ' 
 :■: A-    ■•;:•■■•■   :.;8:   ■                          -«.    . 

»w»                    J"»w                    '»»••                    nuu                     HUM                  '»»•• 
i |        i           i           i           i |        i           i           i           i r       i           i           i 

-• 
--» 

'A '    '                   .9                                             ■ —— 

miM      i      '""'I      ,      ",w'             ,M**i             """              IBf*i 

2440 

■        A                             8 
* ♦»       . 2520 

It«»                         ItCtM                           „«»,                        |Jft                                ,,—j                        |jni, 1        ' '1 • i.... i X... i.... i .... i T    i        i 

Fig. 8.    A continuation of Fig 4, but on the other side of the Mid-Atlantic Ridge. Two shots were dropped at each 
range shown on the right. "A" is a 1500 ft shot; B is a 3500 ft shot near the axis of the DSC. Ref. 7. 

6-11 



CN4      O 
S n 
u 

r-l o 

c 

u 

•a 

I       I 
8 
o 

*~» 
a) 
(3 

0) 
u 

Xi 

o 
+ 
I 

■a 
c 

o 
o 
o 

> 

O o 
in 

T3 

E 

E 
o 

5 
ir 
o 
+■* 
c 

JO 

< 
■6 

0) 
x: 

C/3 

c 
o 

o 
.c 
co 

a> a 
o 
a> > 
c X 

HI o 
  o aj n 
1- < 

CO IM 
± 

DC 

< o 
IT) 

LL ^— 
O o 
V3 LO 

ai 
O) 

6-12 



01 
M 
e 

ex! 

O 

O 
1) 

n to 
•o^ 
>. to 
M H 

0) 

a> a) 
MS c 
w    o 

o 
o 
o 

o 
o 
VD 
en 

O 
CO 

.c 
■H* 
a 
CD 

-Ö 

O ■*-» 

O o 
CM £ 
cl w 

'to 
3 
to 
I 

O 
O to 
CO 
CM 

X 

o o 
CM 

O 
O o 
CM „ 

■a 
Ss 

o 
tu 

DC 

to 
I 

+-< 

0 

o 
Q. 
> 
'u 
o 

■o c m 

o 

•a o o 
o 

o o o 
CM 

o 
o o 

o o o 
o o o 
in 

o o o 

B2333K 'qadaa 

6-13 



a 4-lb charge. Taking the latter to be 10-200 cps, and converting to a 1 -lb charge by applying a correction of -10 
log (charge weight in lbs), and to a 1 Hz band by applying a correction of -10 log (bandwidth in Hz), the two 
measured intensities become 102 and 108, respectively. 

As an exercise, let us find the range at which the peak spectrum level of the shot signal becomes 10 db above 
the level of ambient noise. Taking a value of +71 db re 1 juPa for the ambient level in the deep sea with moderate 
shipping, and using 105 as the average of the measured intensities at 1 kilomile, we obtain 

10=(SL-TL)-NL, 
= 105-20 log r-ar- 71, 

where spherical spreading is taken to be the range-law for the peak intensity of the signal, and r is the range in 
kilomiles. Taking a = .001 db/ky = 2 db/kilomile, we find 20 log r + 2ar = 24, so that r = 5 kilomiles, the computed 
range at which the peak of a 1 lb. SOFAR shot should be 10 db above ambient noise. As a crude verification of 
this is the observation (17) that a 4-lb depth charge detonated off Australia was "heard" at Bermuda 12 kilomiles 
away. 

Non-Refracted Paths 
Not all propagation paths in the DSC are entirely refracted paths. When source or receiver or both lie beyond 

the limits of the channel, only reflected paths that encounter either surface or bottom, or both, are possible. RSR 
paths are reflected above by th» surface, and refracted below by the velocity gradient. RBR paths are refracted 
above and reflected below by the bottom. Attenuation coefficients for RSR paths have been measured (18) and 
found to be higher by a factor of 1.5 than those for entirely refracted paths, probably because of losses at or near 
the sea surface. 

Doubly reflected paths from both surface and bottom, together with scattering from these boundaries, form 
the weak, rapidly decreasing tail beyond the time of sudden cessation of long range SOFAR signals. 

Transmission Loss-Shallow Source and Receiver 
For CW propagation - i.e. when all multipaths are summed - a working expression for TL between a shallow 

source and receiver (1000 ft.) in the deep ocean is 

TL = 40+ 10logr + oxx 10~3 

This approximates a large number of field tests in the range 50-250 Hz beyond a range of about 10 miles. It indi- 
cates cylindrical spreading plus absorption beyond a transition range of 10,000 yds. (10 log r0 = 40 db). 

The maximum trapped ray in a deep sound channel 5000 yds. deep in mid-latitudes has an inclination angle 
of ±15°. If we assume 1) that the sound emitted by the source within ±15° is trapped in the duct and the sound 
beyond ±15° is lost to the duct and 2) that the trapped sound is uniformly distributed in depth throughout the 
duct, we find, using the expression given in the preceding chapter, 

r   =_H_=_5000^=9700ydS/ 
°    2 sin0      2 sin 15 

confirming surprisingly well the empirical value for rQ in the above expression. 
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APPENDIX  I: THE ARCTIC, A SPECIAL CASE 
OF THE  DEEP SOUND CHANNEL 

Introduction 
The Arctic has some of the characteristics of both the Mixed Layer Channel and the Deep Sound Channel. It 

is a half-channel with its axis at the surface, which, typically, is ice-covered. One boundary, to which sound is 
continually refracted, is the rough surface underneath the ice cover. It is this feature which gives the Arctic its 
unique propagation characteristics. Fig 7 7 is a ray diagram for propagation in the Arctic Ocean for a typical veloc- 
ity profile. 

The Arctic Ocean 
The Arctic is a roughly circular sea extending in depth down to 1500-2000 fathoms and divided into two parts 

by a partition called the Lomonosov Ridge. Large portions of its area are less than 1000 fathoms deep. It is bor- 
dered by various major indentations like the White Sea, Chukchi Sea and Bering Sea less than 100 fathoms in depth. 
Its major characteristic is its cover of sea-ice that occurs everywhere in winter and over much of it in summer. 
Within this cover are floating ice islands, in particular one called Ice Iceland T3, that have served as measurement 
platforms for much of the acoustic work that has been done. 

The lack of solar heating in the area causes the main thermocline of the temperate oceans to be absent. Positive- 
gradient water extends up to shallow depths in summer and all the way up to the ice in winter. The axial depth 
is shallow, often within a few hundred feet of the surface. In the summer in open water, a small negative gradient 
extending to 100 feet or more is often present. Strong salinity gradients occur due to melting ice and river dis- 
charges and may serve to accentuate the positive velocity gradient and destroy any shallow negative that might 
otherwise be present. 

Acoustic Advantages of Working in the Arctic 
Although the Arctic presents many difficulties to research workers, because of its low temperatures, high winds 

and isolation, it has a number of favorable qualities from an acoustic standpoint. The ice forms a stable platform 
for gathering acoustic data, and sensors and arrays can be readily deployed through leads or man-made holes in 
the ice. The velocity profile is free from diurnal and seasonal effects below a shallow surface layer, and tends to 
be uniform over great distances. Finally, a low ambient noise level often exists, especially with an unbroken shore- 
fast ice cover, low wind speeds, and rising temperatures. 

Propagation Measurements 
In deep water, Arctic transmission data were collected by USNUSL from 1958-1962 and were reported by 

Meilen and Marsh (1), and Marsh and Meilen (2). The work was continued by General Motors and reported by 
Buck and Greene (3) and Buck (4) (5). In shallow Arctic waters the Canadians have been most active, with reports 
by Milne (6) (7) (8) and Macpherson (9). 

The U.S. measurements were made using the drifting ice island T-3 as the receiving platform; other ice islands, 
as well as ships and aircraft, have been used as platforms for sound sources. 

Attenuation 
Most observed Arctic transmission loss data can be fitted by an equation of the form 

TL = constant + 10 log r + arx10-3 

where the constant can be interpreted as 10 log (transition range). Values of a over a range of frequencies as com- 
puted from this model are plotted in Fig 12, based on measurements reported by Buck (5). The data from various 
sources show no agreement at all as to the constant term; various measurements give values between 30 and 50 
(r0= 1-100 kyds). 

Note from Fig 12 how much greater a is in the Arctic than in the Deep Sound Channel, on which our low- 
frequency attenuation values rest. Also, there is a suggestion, in the small amount of data below 20 Hz, for a to 
level off at frequencies near 10-20 Hz; in work by Milne (7), the transmission for the octave 12-24 Hz was poorer 
than in the octave 25-50 Hz. 

Causes of Losses 
The excess attenuation over that of the ice-free DSC is obviously due to the ice-cover. In the DSC, paraxial 

rays carry most of the energy; in the Arctic, these rays encounter many reflections from the under-ice surface and 
are highly attenuated. Thus, roughness-produced scattering is the dominant cause of Arctic attenuation. A minor 
cause of loss is the sea bed, which is shallower than it is in the deep ocean basins. Although many Arctic transmis- 
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mission encounter water of 1000-foot depth over a part of their distance, the existence of upward refraction and 
the dominant effect of the ice cover cause the bottom to be unimportant as a source of loss in the Arctic. 

Because of the overwhelming effect of ice on the propagation, the magnitude of the excess attenuation in the 
Arctic should be determined by the statistics of the under-ice surface. Diachok (10) modelled this surface as an 
ensemble of half-cylinders, representing sea-ice ridges, for which the theory of scattering had previously been worked 
out by Twersky (11). Good agreement was found between measured transmission data out to 300 miles and the 
theory using reasonable values for the size and number per unit distance of the cylinders. 

Signal Characteristics 
Arctic-transmitted signals have features both similar to, and different from, those of the Deep Sound Channel. 

Explosive signals show the characteristic elongation of SOFAR signals, but do not show the steep buildup and 
sudden cessation. The signal duration in one reported series (2), amounted to 15 seconds per kilomile. 

Arctic explosions also show frequency dispersion, with high frequencies occurring at the beginning of the signal 
and low frequencies toward the tail. This has been interpreted in terms of normal modes; low order mode arrivals 
have been identified in Arctic signatures (9) (12) (13). 

Comparison with Ice-Free Waters: A Summary 
Relative to non-Arctic acoustics, Arctic acoustics may be qualitatively characterized in the following way: 

Transmission: Better, due to prevailing upward refraction and the shallow depth of the channel axis. 
Less Variable, due to more constant meterological conditions. 

Ambient Noise: Lower under a continous ice cover with rising temperatures. Higher in a non-continuous 
cover or in falling temperatures. 

Surface Scattering:   Higher, because of the rough under-ice surface. 
Volume Scattering:  Lower, due to a smaller amount of marine life. 

In another way, we can compare the Arctic with the ice-free ocean of lower latitudes by its two principal dis- 
tinguishing characteristics: its ice cover and its velocity profile: 

EFFECTS RELATIVE TO  THE OPEN SEA 
PERMANENT ICE COVER 1. An  increased transmission  loss due to scattering, especially at frequen- 

cies greater than about 30 Hz. 
2. An increased reverberation level at low sea states. 
3. A more variable ambient noise level, sometimes very quiet and at other 

times and places, very noisy. 

COLD SURFACE WATER 1. Upward refraction at all depths. 
(Positive Velocity Gradient) 2. No convergence zones. 

3. A scattering layer just under the ice with an annual, rather than a diurnal, 
migration. 

Loss Prediction in the Arctic 
The available Arctic loss data have been summarized by Buck (14) in a form useful for prediction purposes 

(Fig 13). These curves give the average measured transmission loss in the Arctic at a number of frequencies, based 
on the available data; the standard deviation of the various data points from the smooth curve is stated for each 
frequency. The dashed line shows spherical spreading (TL = 20 log r). It is evident that the transmission in the 
Arctic degrades rapidly with increasing frequency above 20 Hz. As a function of range, the transmission is better 
than it would be in the free-field (i.e., with spherical spreading) out to some range, and is poorer beyond. As in 
shallow water (Chap. 8) this peculiarity is the result of opposing influences on the propagation. At short and mod- 
erate ranges, ducting improves the transmission; at long ranges the repeated encounters with the under-ice surface 
degrades it. Subsequent data confirming the validity of the curves of Fig 13 has been reported by Bradley (15) 
for the marginal ice zone East of Greenland. 

The Matched Filter of the Arctic 
In the DSC, as we have seen, a short pulse is received on the axis at long ranges as a long, drawn-out pulse with 

an envelope of increasing amplitude until its sudden cessation. The Arctic is essentially a limiting, or special case 
of the DSC, having two important peculiar features: 1) its axis lies at the surface so as to form a half-channel and 
2) the surface is covered with ice. Feature 1) causes a short pulse from a shallow source to be received at a shallow 
receiver as a long pulse, just as in the DSC in lower latitudes, as long as the surface is smooth and free of ice. But, 
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with the ice-cover of Feature 2), the build-up of amplitude toward the tail of the pulse is lessened or absent al- 
together, since it is due to shallow ray arrivals undergoing many surface encounters and therefore suffering severe 
attenuation by scattering. The latter process is frequency-selective, with high frequencies attenuated more than 
low. The result is that a broadband pulse, as from an explosion, is received as an elongated pulse showing frequency 
dispersion, with lower frequencies occurring toward the tail of the pulse and higher frequencies toward the front. 
A filter "matched" to the Arctic would have the same characteristics of elongation and dispersion, but reversed 
in time; it compresses an elongated pulse into a short pulse of greater amplitude, giving a greater signal-to-noise 
ratio when used as part of the processing system at a distant receiver. For a given range interval, the matched filter 
would be valid over much of the Arctic Ocean, since both the ice-cover and the velocity profile are uniform over 
wide areas, and the bathymetry, though variable, plays no part in the transmission. 

6-21 



REFERENCES FOR APPENDIX   I 

1. R. H. Meilen and H. W. Marsh, Underwater Sound Propagation in the Arctic Ocean, AVCO Marine Electronics 
Report MED-65-1002, 1965. 

2. H. W. Marsh and R. H. Meilen, Underwater Sound Propagation in the Arctic Ocean, JASA 35, 552, 1963. 
3. B. M. Buck and C. R. Greene, Arctic Deep Water Propagation Measurements, JASA 36, 1526, 1964. 
4. B. M. Buck, Arctic Acoustic Transmission Loss and Ambient Noise, GM Def. Res. Labs. TR 66-20, June 1966. 
5. B. M. Buck, Low Frequency Underwater Acoustic Measurements in the Arctic Ocean, AC Electronics Def. 

Res. Labs. TR 69-10, 1969. 
6. A. R. Milne, Acoustics under Arctic Sea Ice, Pac. Nav. Lab. Report 63-1, 1963. 
7. A. R. Milne, A 90 km Sound Transmission Test in the Arctic, JASA 35, 1459, 1963. 
8. A. R. Milne, Shallow Water Under Ice Acoustics in Barrow Strait, Pac. Naval Lab. Report 14, Oct. 1959. 
9. J. D. Macpherson, Effect of Ice on Long Range Underwater Sound Propagation, Jour. Brit. IRE 26, 293, 

1963. 
10. O. I. Diachok, "Effects of Sea-Ice Ridges on Sound Propagation in the Arctic", JASA 59, 1110, 1976. 
11. V. Twersky, Scattering of Sound by Rough Surfaces, JASA 29, 209, 1957. 
12. K. Hunkinsand H. Kutschale, Shallow Water Propagation in the Arctic Ocean, JASA 35, 542, 1963. 
13. H. Kutschale, Long-Range Sound Transmission in the Arctic Ocean, Jour. Geophys. Res. 66, 2189, 1961. 
14. B. M. Buck, Arctic Acoustic Transmission Loss and Ambient Noise, paper in Arctic Drifting Stations (J. E. 

Sater, editor), Arctic Inst. of North Am., 1968. 
15. D. L. Bradley, Long Range Acoustic Transmission Loss in the Marginal Ice Zone North of Iceland, U.S. Naval 

Ordnance Lab. Rept. 72-217, 1973. 

6-22 



APPENDIX II: TRANSITORY  INTERNAL CHANNELS IN DEEP WATER 

Intermediate in depth between the Deep Sound Channel, with its axis at a depth between 3000 and 4000 feet 
(about 1000 meters) in mid-latitudes, and the ice-covered Arctic where its axis lies at or just below the surface, are 
sound channels of a more restricted area and of a seasonal occurrence. Such channels have their axes at a shallow 
depth, and although they are of a more local transitory nature, they often have a strong effect on Naval operations. 

Two examples may be mentioned. One occurs during the summer between Long Island and Bermuda where 
the peculiar conditions of the Gulf Stream cause a reversal of the normal velocity gradient and a velocity mini- 
mum or channel axis near 300 feet (100 meters). 

Another shallow summertime channel exists in the Mediterranean Sea. In this region the heating by the sun of 
the upper layers of water, together with an absence of mixing by the wind, causes a strong near-surface negative 
gradient to develop during the summer and early autumn months. This thermocline overlies isothermal water at 
greater depths. The result is a strong sound channel with its axial depth near 300 feet (100 meters). During the 
late autumn, the profile gradually return to its wintertime conditions, wherein isothermal water and a positive 
velocity gradient extend throughout the water column all the way up to the surface. During the summer season 
the near-surface negative gradient and the resulting strong downward refraction greatly limit the range of surface 
ship sonars. By way of compensation, the summertime channel in the Mediterranean produces convergence zones 
for a near-surface source in the same way as does the deep-ocean sound channel, although the zone range is much 
less (typically, 20 miles or 37 km) because of the smaller thickness of the channel. The critical depth is, in summer, 
only about half that of the Atlantic Ocean, ranging from zero in winter to about 1800 meters in summer. In most 
of the basins with the exception of the Baltic Sea, into which the Mediterranean is partitioned by shallow sills, 
the critical depth is less than the water depth, so that convergence zones regularly occur. At the same time, reli- 
able surface ducts do not exist from April to September. A good summary of Mediterranean propagation has been 
published by Leroy (1). 

REFERENCE  FOR APPENDIX II 
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CHAPTER 7 

CAUSTICS AND CONVERGENCE ZONES 

Introduction 
This chapter concerns the distribution of sound throughout the Deep Sound Channel (DSC). This distribution 

is by no means uniform, but is characterized by a complex series of shadow zones and convergence zones (CZ's) 
whose presence and extent are determined by the velocity profile and the location of surface, bottom and source 
relative to the profile. The various shadow zones are never completely "dark" but are insonified to some extent 
by sound travelling over reflected paths. The various convergence zones, bounded by caustics, are regions of high 
intensity having great practical importance for Naval sonars. 

The existence of convergence zones and their associated caustics in the Deep Sound Channel is readily demon- 
strated by drawing a ray diagram. The ray diagram (Fig 1, Chap. 6) published in the open literature in 1947 by 
Ewing and Worzel (1) clearly shows convergence at a range of 32 miles. Yet the existence of CZ's was considered as 
classified information in this country for nearly 15 years thereafter. In an anonymous review written to glorify the 
Russian advances in acoustics since the "Great October Socialist Revolution" of 1917, CZ's are said to have been 
discovered in the Black Sea by the Soviets (2) (by A. L. Sosedova) in 1954. In this country a landmark paper on 
CZ's by F. E. Hale (3) appeared in the open literature in 1961. 

Caustics Generally 
In one dictionary (4) a caustic is defined as "the envelope of rays emanating from a point and reflected or re- 

fracted by a curved surface". In our case, the "curved surface" is the reverse bending of rays occurring in the DSC. 
A caustic may be thought of as a surface formed by the envelope of the intersections of the 3-dimensional rays from 
the source; alternatively, in a 2-dimensional ray-diagram, a caustic is a curve formed by the intersections of adjacent 
rays in the diagram. A focus occurs when a caustic degenerates to a point or to a small region of space. 

In conventional ray theory, the intensity of sound on a caustic is infinite. In modified ray theory using the 
W.K.B. approximation (amounting to a hybrid ray-wave theory) the sound field at and near a caustic is finite and 
calculable. In this theory the sound field on one side turns out to be oscillatory and on the other, exponentially 
decaying. The oscillatory side, in our case, is the CZ, the other lies on the other side. The theory of the sound 
field near a caustic is given by Brekhovskikh (5). 

Convergence Gain 
Let the intensity at a point, at distance r from a source, be lr and the intensity at unit range be l0. Then we can 

write 

r 

where F is a focussing factor. 10 log F may be called the convergence gain. In terms of transmission loss, 

10logF= 10 log r2 +10loglr_ 
'o 

= 10 log r2 -TL 

The convergence gain is thus the difference between the loss due to spherical spreading and the observed loss. It 
is the negative of the transmission anomaly defined and used during World War II to quantify the departure of 
measured data from what would be expected in the ideal medium. Convergence gain is the amount of improve- 
ment in transmission produced by convergence. Sometimes it is taken to be difference relative to spherical spread- 
ing plus absorption, rather than to spherical spreading alone. 

Caustics in the DSC 
There is a definite pattern to the caustics of the refracted rays from a source within the DSC. This caustic pat- 

tern is illustrated diagrammatically in Fig 1. It has the following features: 
1. The horizontal ray leaving the source is itself a caustic, beyond a distance of one whole loop from the source 

(A-A). 
2. From its crests and troughs, pairs of caustics radiate in upward and downward directions (B-B). 
3. The entire pattern moves in range and depth as the source depth changes. 
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B B 

AXIS 

Figure 1. Caustic pattern for a source above the axis. A similar pattern exists for a source below the 
axis, but the caustics are displaced in depth and range. When the source is on the axis, the caustics 
radiate in pairs from the straight-line path along the axis, which is itself a caustic. 
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4. Often, depending on the details of the velocity profile at shallow depths, there is a caustic formed at short 
ranges by the upward-going rays leaving the source after they start downward (C-C). 

5. There is a focus (intersection of caustics) at successive crests and troughs of the horizontal ray leaving the 
source. The source thus appears to have an "image" at these focal points. 

6. Other caustics exist, such as those formed by reflected paths such as RSR (Refracted, Surface-Reflected). 
The pattern thus amounts to a complex system of caustics, foci, and associated convergence zones that exists 

throughout the entire extent of the DSC. 

Source near the Surface 
To understand what happens for a near-surface source, it is necessary to consider the upward- and downward- 

going rays separately. 
Fig 2 shows the caustic formed by the downward-going rays from a shallow source. The various rays A, B . .. E 

leaving the source in downward directions are turned around by upward refraction below the axis of the DSC and 
intersect on the other side. The locus of the intersections AB, BC, CD, and DE of rays infinitely close together 
at the source forms a caustic having a convergence zone on the far side. When the sea surface gets in the way, before 
intersection can take place, the rays are reflected and a reflected caustic is produced beneath the surface. Thus the 
sea, with its peculiar velocity profile, acts like a lens, bringing rays together that would otherwise continue to di- 
verge. 

Upward-going rays from the source are drawn in Fig 3. Often, depending on the profile above the depth of the 
source, a downward-going caustic is formed at the outer boundary of the direct sound field, while, as before, after 
reversal at deep depths, an upward-going caustic is formed at longer ranges with a high-intensity, or convergence, 
zone at the far side. The CZ formed by the upward-going rays lies at a longer range than the CZ formed by down- 
going rays. Between the direct sound field and the caustic is a shadow-zone to which only bottom-reflected rays 
can penetrate. 

When the source is quite close to the surface, the convergence zones of the upward and downward-going rays 
overlap and merge together. The result is an extremely complicated sound field having numerous caustics at shal- 
low depths. This single convergence zone is commonly called the convergence zone; the two zones of which it is 
composed are called half-zones. 

Effects of Changing Source Depth 
Fig 4 is a series of ray diagrams for a succession of source depths for a typical velocity profile with the axis at 

3000 feet. The first pair of half-zones are indicated by x and y, while the shadow zones between such pairs of half- 
zones are designated by a and b. Let us imagine that the source is descending, and, following the succession of ray 
diagrams, see what happens as the source descends: 

(1) The half-zones x, y separate, the inner half-zone moving inward, the outer half-zone moving outward. 
(2) The shadow zones a, b (insonified only by bottom-bounce paths) at shallow depth fill up and disappear 

when the source reaches the critical depth (Chap. 6) here at 12,000 feet. 
(3) The shadow zone between half-zones deepens and widens. 
(4) When the source reaches the critical depth, no caustics appear at ranges shorter than the range to the first 

"image" of the source. 
The rays from a source at critical depth are shown in Fig 5. Ray paths from any deep source are sometimes 

called Reliable Acoustic Paths because they are not subject to the near-surface vagaries of shallow-going ray-paths. 
Fig 6 shows the movement of the caustics from a descending source, as deduced from ray diagrams like those 

of the previous figure. A caustic diagram for a source on and above the axis of the DSC similar to Fig 6 has appeared 
in a Russian paper (6). 

Conditions for Convergence 
The primary condition for convergence is that the source must lie within the DSC. There must exist, as a re- 

fracted ray, the ray leaving the source horizontally. If this ray is reflected at either boundary, the caustic pattern 
is destroyed and no convergence is possible. Another requirement for convergence is that the water depth be greater 
than the critical depth, in order that there be room, so to speak, for deep-going rays to be turned around and con- 
verge. There must be a depth excess in the velocity profile as related to the water depth. When the depth excess 
exceeds a few hundred meters, a CZ is likely to occur. For water depths less than critical, the rays that would con- 
verge if the water were deeper are cut off by the bottom and become bottom-reflected without convergence. 

Because of the fact that the deep depths of the sea are essentially at the same temperature the world over, the 
velocity of sound at a given depth is nearly the same in all oceans and depends only on the depth. On the other 
hand, at shallow depths, the velocity of sound is determined essentially by the surface temperature. These two 
peculiarities, the surface temperature and with the water depth, determine whether or not a depth excess exists 
and, therefore, whether or not a CZ will occur. Thus, oceangraphic charts of surface temperature and water depth 
are the prediction tools for the existence of a CZ at any location. 
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Fig. 4.    Ray diagrams for different source depths for a profile having the same sound velocity at the surface and at 
10,500 ft., and with channel axis at 3000 ft. 
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Fig. 6.    Caustic patterns for a source above, on and below the axis. The arrows show their movement in range as 
a source descends. 
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It becomes apparent that CZ's are less likely to occur for a shallow source in summer than in winter at any one 
location. 

Although the existence of a CZ depends on whether the critical depth is greater or less than the water depth, 
the range to the first CZ, if it does exist, depends only on the critical depth itself. The shallower the critical depth 
the shorter the range to the first CZ. 

In temperate latitudes of the North Atlantic, the CZ range is near 30 miles and decreases northward. In the Medi- 
terranean the CZ range is only 10 to 20 miles due to the shallowness of the critical depth. In the Arctic the CZ 
range is very short or absent altogether. 

The solid curve of Fig 7 is a curve of critical depth vs. surface temperature for mid-latitudes in the North Atlantic 
and North Pacific Oceans. When entered with water depth on the left and surface temperature horizontally, the 
point so located determines the presence or absence of a CZ. Should a CZ be present, the range to the first CZ can 
be found from the dashed curve and the range scale on the right. Slight variations exist between major oceans. 
The Underwater Sound Laboratory (now Naval Underwater Systems Center) has issued a CZ slide rule giving these 
relationships for the N. Atlantic, the N. Pacific, Mediterranean and Norwegian Seas. 

Effect of Range on CZ's 
Successive CZ's get wider with increasing range, until at a range beyond a few hundred miles they coalesce. The 

result is a smooth variation of loss with range, with cylindrical spreading plus attenuation determining the transmis- 
sion loss. 

This was most graphically observed in shot signals recorded by Nutile and others (7) between Antigua and New- 
foundland. Beyond 600 km, successive CZ's formed by ray paths taking between 10 and 45 loops, overlapped and 
coalesced so as to form a smooth curve of transmission loss vs. range, without the CZ maxima observed at shorter 
ranges. 

Results of Field Studies 
The peculiarities of the sound field in the deep sea at ranges out to 110 miles were investigated in a succession 

of field trips, carried out by the Naval Ordnance Laboratory (now Naval Surface Weapons Center) over a period 
of years. The work was done at a single spot East of Eleuthera, where the depth excess in 16,000 feet of water 
amounted to about 1000 feet. The field observations tend to verify the general features of convergence as described 
above. 

The field work was done with a surface ship and deep hydrophones, together with an aircraft to drop explosive 
charges. Two kinds of source patterns were employed: (1) charge drops at constant depth at close range intervals 
(V2 to Vh mi) and (2) drops at different depths at a few different ranges. Results have appeared in a number of 
reports (8) (9) (10) (11). Some of the findings were as follows: 

1. Convergence gains in the half-zones average about 5 to 10 db, with half-zone widths of 3 to 5 miles. The 
second half-zones show a slower fall-off of intensity with range than do the first half-zones, presumably because 
of scattered sound trapped in the surface duct. 

2. Convergence was observed in different bands down to the 25-100 Hz band, though with a somewhat lower 
gain and with less sharp zone boundaries. 

3. The inner boundaries of the zones are extremely sharp, and show an increase of intensity of 10-15 db or 
more within a small fraction of a mile. 

4. At ranges less than the first CZ, four bottom-bounce ray arrivals (B, BS, SB, SBS) occur. As the caustic of 
the first half-zone is approached with increasing range, the first two (B, BS) draw together in time and reach a 
maximum as the caustic is crossed; in the second half-zone, the same happens to the other pair of arrivals (SB, 
SBS). 

5. At longer ranges, the pattern of ray arrivals becomes more complex and at 80 mi becomes difficult to inter- 
pret without help from travel-time computations. 

6. The observed transmission losses agree roughly with the spacing of rays in the ray diagram. 
7. The total energy flux density computed by adding the flux densities of seven charges detonating over the 

thickness of the DSC falls off with distance according to cylindrical spreading plus absorption, with an absorption 
coefficient about the same as that generally accepted for the DSC. 

8. Using a string of 6 hydrophones 2000 ft apart, an 800 ft source was found to be in a CZ at all ranges, with 
different hydrophone depths "picking up" the zone signals at different ranges. As the source range increased, the 
strong zone-signals progressed up the string and down again in successive half-zones, as illustrated in Fig 8. 

9. The vertical coherence of CW sound (using a 1120 Hz CW source) was greater within the half-zones than 
outside them because of the existence of essentially a single propagation path in the half-zones. The practical result 
of this finding is the likelihood of a higher array gain for a vertical array located within a CZ than outside it. A 
vertical array in a CZ would accordingly have a higher signal-to-noise ratio because of the combined effects of con- 
vergence gain and coherence. 
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CHAPTER 8 

SHALLOW WATER DUCTS 

Introduction 
The acoustics of shallow water is a subject beset by contradictions. Of all aspects of propagation in the sea, it 

has the largest literature. It presents fascinating problems to the theoretician. It has accumulated a surprising number 
of transmission runs, made all over the world by British, Canadian, New Zealand and U.S. sea-going scientists. Yet, 
this accumulation of theory and measurement has failed to give us the quantitative understanding required for long- 
range prediction and optimum sonar design. This understanding is far less than we now have for deep water. The 
reason is the complexity of the problem: in shallow water the surface, volume and bottom properties all are impor- 
tant, are spatially and temporally variable and cannot be modelled realistically in a satisfactory way. 

What is Shallow Water? 
Two definitions of shallow water may be made. One is hypsometric, the other acoustic. The hypsometric defini- 

tion is based on the fact that some continents have continental shelves of gentle slope, generally bordered by the 
100-fathom (200 meters) contour line, beyond which the bottom rapidly falls off into deep water. By this defini- 
tion "shallow" water means continental shelf water bordered by the 100-fm line on the off-shore side and by about 
100 feet on the in-shore side, the shallowest depth for submerged submarine operations. In the following, we restrict 
ourselves to coastal waters and to frequencies useful for submarine detection and surveillance, neglecting the waters 
of bays and harbors and problems of mines and mine countermeasures. 

The acoustic definition is that shallow water exists whenever the propagation is characterized by numerous 
encounters with both surface and bottom. By this definition, some "shallow" water environments are acoustically 
deep. Most torpedo problems are acoustically deep water problems, and some environments, such as the Gulf of 
Maine and the Scotian Shelf, where strong internal sound channels exist, are deep water environments. On the other 
hand, the deep ocean may be considered "shallow" at long ranges when the propagation is by repeated surface 
and bottom reflections. 

Transmission Runs 
A total of some 4000 transmission runs has been estimated to exist in the unclassified literature. These have been 

(and are being) made in many areas of the world since World War II. Fig. 1 is a sampling of transmission loss data (1) 
obtained in different areas by different investigators under conditions of a negative gradient in the frequency band 
0.5 to 1.5 kHz. The heavy straight line is the line (on a logarithmic range scale) of spherical spreading. 

Two features of Fig. 1 are of immediate interest. One is the spread of the data, amounting to about 40 db at 10 
miles (20 kyds) under the rather broad range of gradient and frequency included. The other feature is for the trans- 
mission to be better than in the free field (spherical spreading) at short and moderate ranges and to be worse at 
longer ranges. This peculiarity is caused by trapping in the shallow water duct, which improves the transmission at 
short ranges, and by boundary losses at long ranges, which degrade the transmission. 

High-Frequency Measurements 
The earliest shallow water transmission runs were made at 12 and 24 kHz during World War II, and the results 

were summarized in two reports, based on work done off the West Coast (2) and East and Gulf Coasts (3) of the 
United States. Appendices I & II repeat verbatim some of the conclusions stated in these reports. Although dating 
from World War II, they summarize much of our current understanding of shallow-water transmission at high fre- 
quencies. 

As a short summary of these findings, the transmission at 12 kHz and 24 kHz may be said to depend in the 
following way on the following eight factors: 

1. Frequency Improves between 24 kHz and 12 kHz. 
2. Bottom type Improves between mud (worst) and sand (best). 
3. BT Gradient Improves with smaller gradient. 
4. Water depth Improves with water depth  between 60 and 600 ft. with a negative gradient. From 

600-1200 ft., becomes worse. 
5. Layer depth Improves with layer depth when source and receiver are in-layer at low wind speeds 

(Beaufort wind force 1), at high wind speeds (Beaufort wind force 3), no change. 
6. Wind speed Improves with lower wind speeds. 
7. Receiver depth Improves with increasing receiver depth with a negative gradient. 
8. Salinity Improves with a salinity gradient (off the Mississippi delta). 
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Fig. 1.    A compilation of transmission runs from the literature. The run designations referred to a table of experi- 
mental conditions given in the report. Reference 1. 
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A sample of the quantitative results of the wartime work at 24 kHz in seen in Fig. 2. This figure shows a quantity 
called R40, plotted against d2, the depth in the bathythermogram at which there is a 0.3°F negative change in 
temperature. R40 is the range at which the loss is 40 db higher than the loss to 100 yds.; that is, the transmission 
loss equals 40 + 40 = 80 db at the range denoted by R40. Many of the above qualitative statements can be verified 
quantitatively from this data. 

Low Frequency Measurements — An Example 
A more recent field study emphasizing lower frequencies and the longer ranges of interest to passive sonars in 

shallow water was made off the West Coast of Florida (4). In this study, explosive sound signals were air-dropped 
out to 50 miles from a research vessel anchored in 200 feet of water in directions parallel to and at right angles to 
the gentle bottom slope. Recordings of shot signals were made at hydrophone depths of 80 and 180 feet, in and 
below a 100-foot mixed layer. Fig. 3 illustrates the findings in octave bands between 25 and 6400 Hz, while Ap- 
pendix 3 repeats the conclusions drawn from this series of field measurements. 

Model Studies 
As analogs of real-world shallow water conditions, and as validation of theory, work has been done in the labora- 

tory and in very shallow natural waters. Several laboratory scale models have verified many of the qualitative predic- 
tions of simple theory. Knudsen (5) used a rectangular tank (100x 160 cm) having a layer of oil over a layer of salt 
solution, and measured the sound field with a tiny hydrophone. A study of the effects of slope, roughness and 
bottom rigidity was done by Eby et al (6). Wood (7) used a large tank and optical means to display the complexities 
of the real world. Natural models have also been studied; for example, Scrimger (8) worked in a 10 foot lagoon over 
a 300 ft distance; Tonakonov (9) studied the transmission in a reservoir 2 to 8 meters deep over a 1.5 km distance, 
and Urick and Moore (10) made measurements in 4 feet of water off Panama City, Florida. These studies have served 
as a bridge between theory and real-world transmission runs. 

Theory 
Normal mode theory for the simplest shallow water model was worked out long ago by Pekeris (11) and Ide, Post 

and Fry (12). It appears in books by Officer (13), Brekhovskikh (14) and Tolstoy and Clay (15). This most simple 
two-layer case has the following characteristics: 

Surface: smooth 
Water: constant depth 

homogeneous (no gradient) 
Bottom: smooth 

non-layered (semi-infinite) 
fluid (no shear waves, i.e. no rigidity) 
homogeneous (no density or velocity gradients) 
non-absorbent 

This simple model is thus the crudest approximation to reality. In subsequent years, numerous theoreticians have 
treated other models that are closer to the complications of the real world, for example, an absorbing bottom (16), 
a viscoelastic bottom (17) a layered bottom (18) (19), a sloping bottom (20) and a velocity gradient in the liquid 
layer (21). 

Ray theory is illustrated in Fig 4a. Between the source S and receiver R, various ray paths are possible. Of the 
infinity of rays leaving S, only certain discrete rays reach R. These are called eigenrays, in analog with the normal 
modes of mode theory. These eigenrays may be designated by a pair of numbers, such as 2,2, denoting the number 
of surface and bottom bounces. The sound field is the sum of all the ray contributions when spreading, boundary 
losses (= loss per bounce times the number of bounces) and phase (including phase changes at the boundaries) have 
been allowed for. The pressure at R may be written 

m   n 
Re RR exp (i(kr- m^c - WR)) 

PD = Po 2   -^—s — 
R n,m r 

where Rg, <^s, R„, V'B are tne (real) reflection coefficients and phase shifts at the surface and bottom. In a practical 
case, the summation is readily, though tediously, done on a computer. The difficult part in the ray trace computa- 
tion is to sort out the eigenrays from the many rays that are traced in the computation. Depending on the computer 
program, a wide variety of complications can be included, such as a bottom loss that varies with angle, and a variable 
water depth, and a variable velocity profile. 
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Fig. 2.    The range R40 plotted against temperature gradient. Frequency 24 kHz, hydrophone depth 8 to 30 feet. 
World War II data. Reference 2. 
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depth 80 feet, shot depth 60 feet. The sloping straight lines show spherical spreading (20 log r). Steps of 
10 db are shown at the left. Crosses are outbound data points, circles inbound of the shot-dropping aircraft. 
Sea calm; bottom, coral, sand and mud. Reference 4. 
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normal modes of the first three orders. The two waves are inclined at angle so as to satisfy the conditions of 
a pressure-release (soft) surface and a pressure-reinforcement (hard) bottom. 
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By contrast, only relatively s 
lined above, Brekhovskikh (14, 
bottom the expressions 

mple conditions can be treated by normal mode theory, 
p.338) gives for a free (pressure-release) surface and 

For the simplest case out- 
a hard (pressure-doubled) 

* = 
2m    °°                                          l 

S    (cosh bnzj (cosh bpz) Hn (xpr) 
H    ß=o                * °                K        0     K 

bc = i (£ + 1/2) TT/H 

if.    Ic   + k„ ..„1, 

H0 
(xgr) = Hankel function of the first kind 

= (2/7TXßr),/2e(ixßr-7r/4),r>X 

xß= [(kh)2- (ß + 1/2)
2772]/H;k=27rA 

,1 +„ *: I.M2  :. 4.1 :.._i 4. _x :_o. 

are the excitation function for a source at depth z0 and the reception function for a receiver at z. 
This is one form of solution of the wave equation for the stated boundary conditions. Other, though equivalent, 

forms are given by Ide, Post and Fry (12) and Pekeris (11). Each of the terms in the summation are called normal 
modes and, as shown in Chapter 2, may be represented by a pair of plane waves - one upgoing, the other down- 
going - travelling outward in range, and "standing" in depth, so as to give a particular amplitude variation in depth 
that depends on the particular mode. These waves are shown in Fig. 4b for ß = 0, 1 and 2. Here ß = 0 is the "first" 
mode, following Brekhovskikh's numbering. For a given water depth, there is a value of k = 2n/\ such that xg = 0 
for ß = 0. Wavelengths longer than this (= smaller k) will make xg imaginary, even for ß = 0, and damping will set in. 
The wavelength which makes xg = 0 is the cut-off wavelength that begins to be too long to "fit" in the duct. The 
corresponding frequency is the cut-off frequency for the first mode. The condition is: 

kcH =  (0 + 1/2)TT 

2H 
 =% 
\ 

H_ 

Vc 

where Xc is the cut-off wavelength of the first mode and H is the water depth. When the bottom is not completely 
"hard" (c2<°°), the cut-off relation is 

£-*I.-I- 

where ci/c2 is the velocity ratio of water to bottom. A nomogram facilitating the calculation of the first mode 
cut-off frequency fc = Cj Ac is given in Fig. 5. 

The above summation of modes for the simplest case is readily done on a computer. But for more complicated 
conditions, the theoretical solutions soon become almost intractable. For example, the mathematics for the 3-layer 
case may be seen in the book by Brekhovskikh (14, p. 387) and has been computed by Bucker and Morris (19). 
Mode theory and calculations for many natural conditions occurring in real-world shallow water have not yet been 
worked out. 
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Dispersion and Distortion of a Short Pulse in Shallow Water 
Pekeris (11) first described the distortion produced by shallow water transmission of a short pulse, such as that 

from an explosion. For two fluids separated by a plane interface, the signal is received as two waves: a ground wave 
and a water wave. According to theory, the ground wave begin first and increases in both amplitude and fre- 
quency; the water wave begins later while the ground wave is coming in, and increases in amplitude and decreases 
in frequency. An example of these waves is shown in Fig. 6a. Both waves terminate with the same amplitude at a 
common frequency, called the Airy-phase, which is the minimum frequency on a plot of group velocity vs. fre- 
quency such as that of Fig. 6b. 

The superposition of the two waves represents the signal when only one mode is effectively present, as is the case 
at long ranges when there is boundary attenuation. A slightly different dispersion pattern exists for the second and 
higher modes. The result is apt to be a complicated signal. A sorting out of frequency and time can be done with a 
sound spectrograph, which yields a record (22) like that of Fig. 6c. The water wave often dominates the ground 
wave, which occurs as a low-amplitude, low-frequency precursor to the water wave. 

The result is a long drawn-out blob whose duration increases with range. Brekhovskikh (14, Fig. 141) gives a plot 
of the ratio of the Airy-phase velocity to the water velocity. As an example, when the ratio of bottom density to 
water density is 2, and the ratio of sound velocities in the two media is also 2, the velocity of the Airy-phase is 
0.81 times the water velocity. One field experiment (4) using explosive sources gave pulse durations that increased 
with range at the rate of .01 sec per mile, a rate identical - perhaps by chance - to that of propagation in the Deep 
Sound Channel. 

Approximation Methods 
Approximations to the exact theory are useful for a number of reasons: 
1) the boundary and medium conditions for a particular transmission run are never known exactly. 
2) the details of the sound field are of no practical significance, and only the "average" field is of interest. 
3) there is always some uncertainty in measured data, or in other parameters if a range prediction is to be made. 
4) the effects predicted by theory, such as the dispersion phenomena described above, are not always of practical 

interest. 
5) a quick handy formula is useful when a computer calculation cannot be made. 
For these reasons, a number of relatively simple expressions for the transmission loss in shallow water have 

appeared in the literature. Examples are those of Marsh and Schulkin (23), Macpherson and Daintith (24) and Urick 
for the isovelocity (25) and downward-refraction cases (26). The latter two will be briefly described by way of 
illustration. 

The first report for isovelocity conditions (25) concerns the summation of the rays of ray theory and the modes 
of mode theory on an intensity basis, without regard to phase. Because of reasons 1, 2 and 4 above, we are justified 
in ignoring phase and summing rays or modes on a power basis. When this is done, both computer summation of 
discrete images and modes and mathematical integration of continuously distributed images and modes give simple 
results. For the loss-less case (no boundary losses), it is found that the transmission anomaly* becomes 

li 
TA= 10log—— = -10log (r/H) - lOlogw 

r  I r 

where I, is the intensity at unit range and lr the intensity at range r. For the lossy case (with boundary losses), when 
the loss coefficient in decibels is taken to be proportional to the grazing angle at the boundaries, the result of'image 
summation is 

TA = 5 log L-5 log (r/H)+ 2.0 

where L is the slope of the boundary reflection loss coefficient in db per degree of grazing angle. This expression 
has been found to be valid at ranges such that 13.2Lr/H>1. It is identical to a more complicated expression given 
by Macpherson and Daintith (23). The term -5 log r/H means that the intensity falls off as the-3/2 power of the 
range. Mode summation gives an answer identical to this when many modes are trapped (2HA-**>). When the num- 
ber of trapped modes is not large (2HA = 10, 20, etc.) an additional loss exists due to mode stripping. Fig 7 is an 
example of the end-product of the theory. This is a series of curves for discrete values of the loss coefficient, giving 
TA as a function of normalized range r/H with 2HA as a parameter. Such cases are alleged to be useful for making 
a quick estimate of TA under isovelocity conditions. 

•The transmission anomaly is the difference between the observed loss and that due to spherical spreading. Thus, TA = TL - 20 
log r. A negative TA means that the received level is higher than it would be with spherical spreading. 
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Fig. 6.    (a) Ground wave and water wave vs. time. 
(b) Dispersion curve of group velocity vs. frequency. fA is the Airy frequency. 
(c) Diagrammatic sound spectrogram showing mode arrivals, (a), (b), Reference 11; (c) Reference 22. 
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The second report (26), for negative velocity gradients, deals with the summation of rays in the linear gradien 
case where the rays are concave-downward circular arcs. A ray taking £ bounces to range r will have the intensity 

'ß = 7-R£/Xß 

where R# is the bottom loss of the fi-th ray and X£ is its skip distance. The total intensity becomes 

'TOTBIß 
lo  /  r/x r/x! r/x\ 
7lRo     +R'      +-Rn7 

To sum this series we observe that all its terms will be equal if (r/xQ) 10 log R0 = (r/xj 10 log Ri = (r/x2) 
10 log R2 = etc., a condition that occurs if 10 log R|< = m0|<. Furthermore, only rays taking an integral number of 
bounces will reach a given range (the eigenray condition), giving r/xn = r/x0 + n. These relationships lead to the 
final result: 

In r/xo 
"TOT=-f  (n+1)R 

r 

where n and x0 are readily found from the geometry of circular rays to be given by x0 = 4H/0O = 4H/(2AV/V)1/2 

and n = (r/x0)(2AV/V)1/2((H/h)1^t 1) where H is the water depth and h is the source depth. 

Comparison with Reality 
Unfortunately none of these approximation methods appear to do too well when compared with actual trans- 

mission runs on a rigorous, non-ad-hoc, basis (that is, when a "fit" to the data cannot be done by adjusting the 
parameters of the theory). This is shown by a comparison (27) of various models with random samples of about 60 
transmission runs taken from the literature. The errors of the models averaged 7 db in 50% of the samples and 10 db 
in 20% of the measurement samples at ranges of 2, 5 and 10 kyds. At ranges of 20 and 50 kyds, the average model 
error (between prediction and measurement) was 7db in 50% of the samples and 20 db in 20% of the samples. 

These errors of the existing transmission models, such as the two described above, are too great for them to be 
useful for prediction purposes in an area where no data is available, and where the prediction must be based on 
existing oceanographic knowledge in that area, such as the water depth, bottom type, and the velocity profile. The 
reason is not only the inherent over-simplications of the theory, but our current ignorance of the boundary losses 
and volume attenuation coefficient in natural shallow waters. A great deal needs to be done, not perhaps in further 
theoretical studies, but in measurements of parameters to insert into the theory that already exists. Until that is 
done, the best prediction technique is likely to be the use of a data bank containing the vast amount of transmission 
data already collected, wherein transmission data would be sought for conditions most like those for which a predic- 
tion is desired (28). 

Seasonal and Other Effects 
It has long been known that the transmission loss in shallow water tends to be higher in summer than in winter. 

In winter, isothermal water, well-mixed by the wind, is the rule in northern waters like the North Sea. In summer, 
a negative gradient, caused by solar heating, forces sound downward to the bottom where it is lost, and poorer 
transmission develops. A complication exists because of sea state, which tends to be higher in winter than in sum- 
mer, and can reverse matters at high frequencies. These effects are shown in Fig. 8, taken from Reference 29. There 
are many other sources of variability in shallow water, as we will see in a later chapter. 

German scientists have in recent years given persistent, sustained attention to shallow water problems and have 
made significant progress in them (30). In addition, a large number of broadband sound propagation trials have been 
conducted by the NATO SACLANT ASW Research Centre off the island of Elba in the Mediterranean. Murphy and 
Olesen (31) tried to fit the data by decay "laws" of various types, such as cylindrical spreading (r-1), spherical 
spreading (r~2), "three-halves" spreading (r_2/3), expected where only one propagation mode is significant , and 
cylindrical spreading plus attenuation (r_1 e_ar). On plots of frequency vs. range, the regions where one or the other 
best fitted the measured data were determined. Not much sense could be made of the results. Indeed, quoting from 
the last paragraph of the paper, it was said that "while the decay laws themselves may be simple representations for 
the data, it is most important to realize that the transition ranges for changeover from one law to another may be 
complicated functions of frequency, refraction conditions and location. Therefore, it may require as much effort 
and environmentalknowledge to predict them as would a complete ray or mode calculation". 

Fast Field Technique 
In order to obviate the prediction problem, a method for fast data collection in a remote area has been developed 

(32). It uses an aircraft, explosive sound signals, sonobuoys, and portable recording equipment. In this method, a 
sonobuoy is dropped by the aircraft at the center of the area of interest, and explosive sound signals are dropped 
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along flight radials in different directions from the sonobuoy. Recording is done aboard the aircraft. In a demonstra- 
tion of feasibility (32), the eight locations shown in Fig. 9 were measured during four flight days. At each location, 
the flight pattern of Fig. 10 was executed, and, after data analysis in the laboratory, transmission loss contour charts 
such as the one shown in Fig. 11 were drawn. Such charts graphically describe the transmission environment over a 
large area about a site in a given frequency band. Considerable differences were found among the various sites shown 
in Fig. 9, and even from season to season at one site, again confirming the irrationality of long-range shallow water 
transmission. One interesting characteristic, generally found at all the sites, is the non-circularity of the contours: 
there is better transmission in the directions of constant water depth than up or down the bottom slope. In the up- 
slope direction the poor transmission is likely to be the result of an increasing number of bottom encounters, while, 
in the downslope direction, the poor transmission is probably the effect of downward refraction in carrying sound 
away from a near-surface receiver. 
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Fig. 9.     Locations where measurements were made. Reference 32. 

8-15 



Fig. 10.  Flight pattern flown at each location of Fig. 9. A sonobuoy was dropped at the center and the radial legs 
were flown as indicated. Explosive sound signals were dropped at the points shown. 
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APPENDIX I 

SHALLOW WATER TRANSMISSION AT 24 KHZ. 

Ref. 2 

1. Transmission loss increases with: (a) increase of average negative thermal gradient between 
the surface and bottom; (b) decrease of grain size when the bottom is composed of sedi- 
ment; (c) decrease of bottom depth. 

2. Transmission loss over ROCK is greater than that over SAND, but less than over SAND- 
MUD. 

3. There is some evidence that transmission loss increases with increasing wind force and 
increasing hydrophone depth. In this connection, however, the effects were irregular, in- 
consistent, and considerably smaller in magnitude than those of Conclusion (1). They may 
not be real. 

4. Transmission loss is roughly linearly dependent on FT1 where R is the length of the arches 
formed by repeated reflections of the limiting ray calculated by assuming a linear tempera- 
ture gradient in the upper 150 feet. 

5. Effective bottom reflection losses calculated from this observed dependence were: 4 db 
for SAND, 11 db for ROCK, and 16 db for SAND-MUD. 
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APPENDIX II 

SHALLOW WATER TRANSMISSION AT 12 AND 24 KHZ. 

Ref. 3 

1. Transmission ranges at 12 kHz are on the average about 50% longer than those observed 
at 24 kHz. 

2. Over all types of bottoms, transmission is dependent on the thermal gradient in the water, 
but more particularly on the extent of the sound field described by the ray diagram. 

3. Transmission varies with bottom type and is best over SAND and worst over MUD. 
4. In depths from 60-600 ft., transmission improves with depth of water when there is down- 

ward refraction. 
5. In depths from 600-1200 ft., transmission is poorer than in depths from 60-600 ft. when 

there is downward refraction. 
6. When there is an isothermal surface layer, transmission in the layer improves with increasing 

thickness of the layer as long as the wind force is low. With high wind force values there is 
no significant change in transmission with increasing thickness of the isothermal layer. 

7. Near the surface the R40 range decreases with increasing wind force. (The R40 range was 
defined as the range at which the transmission loss, relative to 100 yds., was 40 db. Relative 
to 1 yd., the loss to R40 would be 80 db.) 
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APPENDIX III 

SHALLOW WATER TRANSMISSION CONTOURS 

Ref. 4 

The transmission plots such as those of Fig. 3, in directions parallel to and perpendicular to the bottom slope 
have the following noteworthy features: 

(a) Effect of Range. The transmission tends to be better than spherical (that is, the transmission anomaly is nega- 
tive) out to a range generally from 5 to 10 miles, followed by a rapid fall-off with range (when a logarithmic range 
scale is used). 

This characteristic is typical of all range runs in shallow water, and is due to trapping at short ranges and the 
dominant effect of boundary attenuation long ranges. 

(b) Effect of Frequency. The transmission tends to be best in the 100-200 Hz or 200-400 Hz octaves, and poorer 
in octaves below and above. At lower frequencies, the transmission is worse because of a lower ratio of water depth 
to wavelength and a lesser number of trapped modes and a greater attenuation; at higher frequencies, the trans- 
mission is worse because of a higher volume attenuation. The existence OT an optimum frequency for these reasons 
is characteristic of all sound channels, of whatever type, in the sea. 

(c) Effect of Hydrophone Depth. The transmission to the shallow (80 feet) hydrophone is better than to the 
deeper (180 feet) hydrophone at the higher frequencies, presumably because of trapping in the near-surface sound 
channel. At the lower frequencies, there is no great difference between the two hydrophone depths. 

(d) Effect of Direction. In any one octave band the transmission out to a distance of about 10 miles is unaffected 
by the depth of the hydrophone or by the direction of the run. The transmission may therefore be said to be essen- 
tially isotropic about the receiving vessel out to 10 miles, and independent of hydrophone depth. But at longer 
ranges, there are great differences in transmission in the different directions. For example, and most notably, the 
transmission to the North is poorer than to the South at low frequencies where the bottom acoustic characteristics 
must play a dominant role, but not appreciably different at high frequencies where trapping in the near surface layer 
determines the transmission. However, in the direction toward shore, the high frequencies are transmitted to the 
shallow hydrophone better than in other directions, possibly because of the enhancement of the mixed-layer trap 
by the shallow bottom at or just below its base in this direction. Contrarywise, in the direction toward deep water 
the transmission is the poorest of all at all frequencies, so much so that the run was aborted at 30 miles due to weak 
or absent shot signals in this direction. 
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CHAPTER 9 

REFLECTION AND SCATTERING 
BY THE SEA SURFACE 

Introduction 
The surface of the sea affects underwater sound in a number of ways. The sea surface 
1) produces a reflection loss for sound incident upon it. This loss, though small, is a major contributor to the 
total loss for RSR paths in the Deep Sound Channel at long ranges. 
2) produces back-scattering, causing sea surface reverberation. 
3) produces forward-scattering, the dominant loss process in propagation in the mixed layer. 
4) produces interference effects with the direct path in the sound field from a shallow source. 
5) produces a doppler shift in narrow-band reflected and scattered sound, due to its wind-driven motion. 
6) has a bubbly layer of air just beneath it when it is rough, that often acoustically hides the surface itself. 
7) casts a shadow in a negative gradient extending all the way up to the surface. 
8) is the source of ambient noise in the deep sea at kilohertz frequencies (0.5 to 50 kHz). 
9) reduces the power radiated by a sound source located a quarter-wavelength or less below it. 

Of these various effects, Numbers 1 to 7 are included in what follows, leaving others to remain as topics other than 
propagation. 

Reflection and Scattering 
When a plane sound wave in water strikes an infinite plane boundary (a perfectly smooth sea surface), nearly all 

of its energy is reflected at the boundary. At normal incidence, the ratio of the intensity of the sound crossing the 
boundary to the incident intensity is only 0.0002. Nearly all of the sound remains in the water, and goes into the 
specular direction as a plane wave (Fig 1a) that is perfectly coherent, i.e. with unity correlation coefficient, with 
the incident wave. 

When the surface begins to get rough, some sound goes into other directions, and each small surface area acquires 
a directional pattern (Fig lb). The correlation coefficient between the returned sound from the surface and the in- 
cident sound is less than unity, and the intensity in the vicinity of the specular direction is reduced. Finally, when 
the surface is very rough, the returned sound is entirely scattered sound having no trace of a maximum in the s'pecul- 
lar direction and with no coherence with the incident sound. 

A measure of the acoustic roughness of a surface is the Rayleigh parameter R defined by the relation 

R = 2kh sin </? 

where k is the acoustic wave number = 2n/X, h is the rms roughness height (2h is the rms "waveheight", crest- 
trough) and <p is the grazing angle. R may be considered to be the rms phase difference between a reflection from 
a crest or trough at a distance h from the mean surface and that from the mean surface, as illustrated heuristically 
in Fig 2. It is found empirically that when R < 1 the surface may be considered to be smooth; when R > 1, the 
surface is rough. 

The reflected field occurs in certain discrete directions at angles 0m to the vertical, given by the grating formula 

sin 6m = sin 0 + m^; m = 0, ±1, ±2 . . . 

mK 
= sin . 

k 

where K and k are the two wave numbers 2?r/A and 2nf\, respectively. The directions 0m are shown in Fig 3b. The 
total number mmax of directions ("modes" or "orders") is limited by the condition that 

|sin0m|<1 

The Rayleigh method has led to a certain amount of controversy. Rayleigh assumed that the sound field every- 
where is given by the sum of the direct wave and the various contributing modal waves in the directions 0m. The 
validity of this assumption at points close to the corrugated surface has been theoretically questioned by several 
theoreticians and has led to different alternative answers to the problem of reflection from a sinusoidal surface 
(4) (5) (6) (7). The different theoretical treatments result in differences in the amplitudes of the reflected modes. 
For example, in Eckart's theory (7), the amplitude coefficients are given by 
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Smooth Surface   a.) 

Rough Surface   b.! 

Figure 1. (a) Reflection from a smooth sea surface; nearly all the incident intensity is reflected at the 
specular angle at which y?r = \p- (b) Directional patterns of the return from a rough sea surface for three 
sea states or degrees of roughness. 
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h sin 6 

rms phase difference = 2TT 2 h sin 6 

-  2kh sin 9 

Fig. 2.    Conceptual view of the Rayleigh coefficient R. The reflection from the root-mean-square wave crest differs 
in phase by R radians from the reflection from the mean surface. The difference in path length is 2h sin ip. 

9-3 



K "  "Ä" 

T.  _   2TT 

a) 

m = -3 

m =0 

*; 

Fig. 3.    Reflection from a one dimensional sinusoidal surface. In (a) a plane wave of wavelength X is incident 
upon the surface of wavelength A. In (b) the reflection occurs in certain discrete directions m. 
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Am=^ym--Jm [(c+cm)hk] 

where Am is the amplitude coefficient of the mth mode, c = cos0,cm = cos 0m. In the specular direction, this 
reduces to 

Ao = Jo(2hkcos0) 

The Rayleigh method appears to be valid (1) for kh < 1. However, for many conditions of k, h, 0, the different 
theoretical results are not significantly different from one another. 

Experimental Verification 
No sea-going wo*rk has been done to relate these theories to a real quasi-sinusoidal sea surface, such as when a 

swell is running and a near-sinusoidal shape exists. However, two laboratory model experiments have been made. 
LaCasce and Tamarkin (8) used a sheet of corrugated cork floating on water to give the sinusoidal pressure release 
surface. Several surfaces were used, over a frequency range 80 to 300 kHz at 10 kHz intervals and at various angles 
of incidence. The data was compared with some 13 theoretical models (9). In this comparison, all of the models, 
including the Rayleigh model, were found to fit the data fairly well, with nothing to suggest that any one is better 
than the others. More recent measurements have been made by Barnard et al. (10) at a frequency of 100 kHz using 
pieces of styrofoam cut on a milling machine so as to have X = 4.5 cm and h = 1.5 cm. Satisfactory agreement was 
found with one (Uretsky's (5)) theoretical model. 

Surface Reflection Interference (Lloyd Mirror Effect) 
When the sea surface is smooth enough to be a reflector (R < 1), an interference pattern is produced between 

direct-path sound and sound reflected from the sea surface (Fig 4). This sound field may be divided into three parts, 
1) a near-field close to the source in which the image source is too far away, and the reflected sound is too weak, 
to produce appreciable interference, 2) an interference field in which there are strong loops and nulls in the signal 
received by a receiver moving outward in range, and 3) a far-field, in which there is an increasingly out-of-phase 
condition between source and image and the intensity falls off as the inverse fourth-power of the range (TL in- 
creases as 40 log r). Fig. 4 c) shows the transmission anomaly (transmission loss minus spherical spreading) drawn 
against a normalized range in these three parts of the sound field from a source and its surface image. 

The image interference or Lloyd Mirror effect was first worked out during World War II (11). Strange to say, 
it has not been systematically studied through at-sea measurements. 

The effect of surface scattering and of bandwidth is to fill up the crests and troughs in the interference region. 
Simple theory assumes straight-line propagation paths; refraction shifts the interference pattern in range -a subject 
investigated in one of the earliest papers (12) on underwater sound published in JASA. 

The Random Surface 
By "random" surface is meant an irregular stochastic surface describable only in statistical terms. Referring to 

Fig 5a, the two parameters required for this definition are (1) the roughness height h, or root mean square devia- 
tion of the surface from a plane, defined as: h2 = y2(x), where y(x) is the height of the surface at a point x rela- 
tive to the mean surface and the bar represents an average of y(x) over many points and (2) a correlation distance 
determined by 

y(x)y(x + f) 
h2 P(f) U2 

For theoretical tractibility, p(f) is commonly taken to be of the form p(f) = exp (-f2/T2), where T is a constant 
called the correlation length. Other functions like expK/T) appear in the literature, but the normal form just given 
occurs most often. Both T and h are, in general, functions of direction in the plane of the surface. 

For random surfaces, the scattering is quantitatively described by a scattering coefficient s; the quantity 
S=10 log s is called the scattering strength of the surface. If a plane wave of intensity lj is incident on a small area 
A of a rough surface at angle of incidence 0! (Fig 5b), the scattered intensity at distance r at angle 02 is 

's       r2 'l 
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Source 

Receiver 

£=(2d1d2)/ 

B = 
i 

THE ' 
NEAR FIELD | THE   INTERFERENCE   FIELD |      THE FAR FIELD 

\ 

TRANSMISSION 
ANOMALY, dB 

8/2, 

4d.,d2 

Figure 4. The Lloyd Mirror sound field. In (a), a receiver at depth d2 receives sound from the real wource 
at depth d1 and slant distance 1 plus sound from an out-of-phase image, (b) shows the resulting directional 
pattern in the interference region, (c) shows the transmission anomaly (TL-20 log r) plotted against 
normalized range in the three regions described in the text. 
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y (x) y (x + T) 

a. 

Figure 5.  (a) Cross-section in the x direction of a random surface, (b) a plane wave is incident on a 
small area of the surface. The scattering coefficient s and the scattering strength 10 log s relate I   to k 
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In terms of the angles 61 and 02, Beckmann and Spizzichino (1) derived a theoretical expression for x that was 
made more useful to sonar by Clay and Medwin (13) as 

F2cos20!cot2ß 
s{61,e2,ß)= ■  —    -exp 

77 (COS0 ! + COS02) 

(sinöi - sinö2)
2 

  cot2j3 
(COS0!  + COSÖ2)

2 (1) 

where 

1 +COSÖ1COSÖ2 -s'mdls\n62 
F 

cosöifcosöi +COSÖ2) 

and where ß is a slope angle of the surface such that the rms slope is 1/2tan2/3. Cox and Munk (14) made studies of 
the glitter pattern of the sun on the sea surface and found that the slope angle j3 is approximately related to the wind 
speed by 

1/2tan2ß = 0.003 + 5.12W x 10"3 

where W is the wind speed in meters per second. 
For back-scattering, 6 = IT- 9U and Equation (1) reduces to 

cot2j3 
s(ip) =   exp (-cotip/cot |3) 

47rsin4 ip 

where v> is the angle of the incident wave with the horizontal. We may note that there is no dependence on fre- 
quency; the formulas apply only for a very rough surface such that 

-T-(COSÖ! +cos62)> 1 

and so are restricted to high frequencies, high grazing angles and very rough surfaces. 
At the other extreme, for low frequencies, low angles, and slightly rough surfaces, a result given by Eckart (7) 

predicts a variation of s with the fourth power of frequency. 
The scattering of sound by rough surfaces is a vast and challenging subject to theoreticians. As long ago as 1954, 

a paper by Miles (15) on rough surface scattering was introduced by references to as many as 15 earlier papers; 
many more could have been added and many more have appeared in subsequent years. Existing summaries of the 
subject are references (9) and (16). 

Fig 6 gives tne back scattering strength s for three wind speeds at angles of 0° and 60°. Notice from the curves 
of Fig 7 that, as the wind speed increases, the amount of sound going into angles near the specular direction de- 
creases, while that going into other angles increases, as one would expect. This behavior is consistent with the 
view that, at angles near the specular direction, the sea surface behaves as if it consisted of numerous small mirrors 
or wave facets which become smaller and more inclined to the horizontal with increasing wind speed. 

Frequency Effects 
In addition to distributing an incident plan wave in space, the vertical motion of the rough sea surface modu- 

lates the amplif'de of the incident wave, and superposes its own spectrum as upper and lower sidebands on the spec- 
trum of the incident sound. This is shown in Fig 8. Any horizontal motion of the surface, such as would be caused 
by wind or currents, also will appear in the sound scattered from the surface and cause a Doppler-shifted and Dop- 
pler-smeared spectrum. Such spectra were observed in surface back-scattering at 60"kHz by Igarashi and Stern (17) 
and are illustrated in Fig 9 for the downwave and upwave directions. 

Another observation of real-sea back scattering at 85 kHz showed a frequency shift that indicated a surface veloc- 
ity of 0.6 knot in a 20 knot wind (18). A frequency spread was also observed, due to the fact that the surface scat- 
tered do not all have the same velocity. A frequency spread has also been measured for shallow water transmission 
(19) due probably to the same cause, as well as turbulent water motion of the whole water column; over 5-15 miles, 
the spreading amounted to ± 0.5Hz for signals in the range 350-2400 Hz. Frequency effects caused by surface 

9-8 



Fig. 6.    Sea-Surface Scattering Patterns at 3 Wind Speeds, computed from Beckman-Spiccichino Formula as quoted 
by Clay & Medwin (13). 
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Fig. 7.    Sea surface back-scattering strength at three wind speeds computed from the Clay-Medwin formula (13). 
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Fig. 8. In (a), a wave incident on a moving surface becomes amplitude-modulated by the surface motion. The 
narrow-band incident spectrum shown in (b) acquires sidebands as shown in (c), which have the same 
shape as the motional wave spectrum (d). With increasing sea state, the sidebands increase at the expense 
of the spectral peak at the center frequency f0. 
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Figure 9.  Backscattering spectra from the sea surface at 60 kHz at a grazing angle of 30   in the 
downwave and upwave directions of the incident 110 ms pulse. Ref. 17. 
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motion were predicted from theory and observed in a laboratory tank by Roderick and Cron (20). They have been 
repeatedly observed in at-sea experiments, such as by Brown and Fisk (21), Williams in shallow water (22), Urick 
(23) and Shooter and Williams (24). Three examples of motional spectra are shown in Fig 10. In short, the motion 
of the sea surface produces amplitude fluctuations of a steady signal, with upper and lower sidebands having the 
same spectrum as the motion of the surface. 

Surface Loss (Forward Scattering) 
The loss suffered by sound after encountering the sea surface and being reflected and/or scattered in the specular 

direction has been investigated at sea over the years by many different investigators using different methods. Un- 
fortunately, the results are made ambiguous in many cases bv a mixture of reflected (coherent) and scattered (in- 
coherent) sound in the surface return. Three methods have been used: 

I. Comparing the amplitude or energy of pulses returned from the surface with that of the direct arrival. 
II. Using the Lloyd-Mirror effect and observing the depth of the minima as the frequency is varied. 
III. Measuring the attenuation in the surface duct. 

Table I is a tabulation of surface loss measurements taken from the literature. From this compilation it appears 
that the surface loss is less than 1 db at frequencies less than 1 kHz and rises to about 3 db at 25 and 30 kHz. For 
long-range propagation over RSR paths at frequencies of a few hundred Hz and less, the surface loss in computer 
models is commonly taken to be zero. 

Scattering Strength (Back-Scattering) 
The other direction for which measurements have been made is back toward the source. The methods for deter- 

mining the scattering strength of the sea surface are: 
I. Using a directional source/receiver and short pulses, beamed up to the surface at different angles. 
II. Using explosive sound sources and a non-directional receiver. 

An example of Method I is the use by Urick and Hoover (25) of 60 kHz pulses sent and received by a tiltable 
narrow-beam transducer. Method II is the only method feasible for low-frequencies, and depends on the geometry 
to sort out the various grazing angles. A good example is the work of Chapman and Harris (26). 

The measured data tend to show a strong variation with frequency at low frequencies and low grazing angles 
(R < 1), and no variation with frequency at high frequencies and high grazing angles (R > 1). 

Several attempts to summarize existing data have been made. One, by Chapman and Scott (27), gave an expres- 
sion based on Eckart's theory: 

S= 10 log s = -10 log 87T/S2 - 2.17|3~2cot2<p 

which is said to fit their own data at grazing angles greater than 60°. Here ß is the mean square surface slope and 
$ is the grazing angle. 

Another summary by Schulkin and Shaffer (28), relates s to the Rayleigh parameter R according to 

s=(aR)b 

where a and b are empirical constants determined by the data. Individual series of measurements were fitted by 
values of b between 1.03 and 2.03. The data as a whole (several series by different workers) gave 

fh sin 9 
0.99 

3.65x104 

The data to which this relation applies extended from fh sin 0 = 0.5 to fh sin 0 = 200 kHz-ft., corresponding to R 
between 0.6 and 250. The expression for S was said to fit all the data of a series of four measurements with a stan- 
dard deviation of 5.4 db. 

A third expression, given by Chapman and Harris (26) is 

S = 3.3A log!Q3Q-4.24 log10A + 2.6 

A= 158(uf),/3 
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Fig. 10. Three examples of sea surface motion-induced spectra. 
a) range 19 mi., shallow water, frequency 1702 Hz, Ref. 30. 
b) range 45 kyd., bottom-reflected paths, 275 Hz, Ref. 32. 
c) range 50 mi., RSR paths, freq. 138 Hz, Ref. 33. 
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TABLE 1 

Compilation of 

Measurements of Loss 

At The Sea Surface 

Measured Loss 
db 

3 

3 

(interdecile range 
-10to+3db) 

3* 
1* 

1 
3 

0-1 

0-1 

Freq. 
kHz 

25 

30 

0.4-6.4 

5 
1 

3.5 

{.: 
53 
03 

Conditions 

Wave Height 
ft 

0.2-0.8 

Wind Speeds 
5-20 knots 

2 
5 

Sea State 2 

Grazing Angle 
degrees 

4-19 

8 

10-55 

1-5 

17 
35 

0-45± 

22-52 

Ref. 

30 

31 

32 

33 

34 

35 

36 

METHOD 

I 

II 

III 

Calculated from Loss = 0.1 (fh)3/2. Applies to surface duct propagation only. 
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where ip is the grazing angle in degrees, v is the wind speed in knots and f is the frequency in Hz. This empirical 
expression was based on octave band analyses of explosive shot returns from the sea surface (Method II) over the 
range 0.4 and 6.4 kHz and wind speeds zero to 30 knots. Fig 11 shows curves computed from this expression for 
several frequencies. 

The Bubbly Layer 
At wind speeds of 10 knots or so, a layer of scattering has been observed to exist (29) just below the surface. 

Oscilloscope photos of returns using a vertical transducer showed a return blob extending 25 feet below the sur- 
face that appeared suddenly at a wind speed of 9 knots. This return was likely to have been caused by air bubbles 
whipped into the sea by the waves and carried by wind mixing to a depth below the surface. 

Physical Processes of Back-Scattering 
The peculiar measured variation of s with angle at 60 kHz suggest three processes in different regions of angle 

to account for the return (Fig 12). At low grazing angles (Region I) the scattering is due to the bubbly layer just 
mentioned, causing the curves to be flat. At high angles (Region III), the reflection from small flat wave facets 
(R > 1) was said to be effective, while at intermediate angles roughness-caused scattering was postulated to occur. 
There is approximate quantitative agreement between the measurements in Region III and the Beckmann-Spicci- 
chino formula (Eq. 1). 
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CHAPTER 10 

REFLECTION AND SCATTERING BY THE SEA BOTTOM 

Introduction 
The sea bottom has many of the same effects on sound propagation as does the sea surface. It reflects and scatters 

sound, making bottom-bounce sonars possible, as well as producing bottom reverberation. It casts a shadow in the 
positive gradient water overlying it, when the water is deep. It produces an interference pattern in the radiation from 
a source; image-interference directivity patterns caused by bottom reflection have been computed by Mackenzie (1) 
for rock, sand and silt bottoms. 

But the return of sound from the sea bed is vastly more complex than from the sea surface for several reasons. 
First, the bottom is more variable in its acoustic properties, inasmuch as it may vary in composition from hard rock 
to a soft mud. Second, it is often layered, with a density and sound velocity that change gradually or abruptly with 
depth. Third, it is more likely to be laterally inhomogeneous, with different characteristics over relatively short 
distances. Fourth, sound can readily enter a sedimentary bottom and be reflected back into the sea by sub-bottom 
layers, or be refracted back by the steep velocity gradient in sediments. For these reasons, the loss of intensity 
suffered by sound encountering the sea bed is less easily predictable than the loss at the sea surface. 

Reflection versus Scattering from the Sea Bottom 
The ratio of the intensity of the returned sound from a rough bottom to the intensity of an incident plane wave 

is 

/ -47rhsinö\2 _R2 
M = Moexpl   I    =„oe « 

where ju0 is the reflection coefficient that would exist if the surface were smooth, and the exponential factor is the 
effect of the surface roughness, where R is the Rayleigh parameter. This expression is quoted by Clay (2) and 
appears in a paper by Lysanov (3). The reflection coefficient ju0 depends upon the density, compressibility, rigidity, 
absorption, and layering of the bottom materials, while the exponential term depends on its roughness character- 
istics, which, incidentally, for real world bottoms, are almost totally unknown. In other words, the exponential 
term expresses the reduction in the intensity of the reflected wave caused by scattering at the rough water bottom 
interface. 

The sound received at a point Q above the sea bottom consists of the following contributions, shown diagram- 
matically in Fig 1: 

1. a reflection from Pj spreading as if originating from the image O1 in the bottom of the real source O. 
2. scattered sound from the bottom in the vicinity of P. 
3. scattered sound from other portions of the bottom such as Ai and A2, each such small area radiating spherical 

waves to the receiver at Q. 
4. reflection and scattering'from sub-bottom layers. 
5. refracted sound, entering the bottom at R, turned upward back into the water by the velocity gradient in the 

bottom. 
The result is that, when a short pulse strikes a rough bottom, it becomes, after reflection and scattering, along 
drawn-out blob, often with a sharp high amplitude beginning followed by a decaying tail of scattering. 

The scattered and reflected components are affected differently by the distance of source and receiver above the 
bottom, as illustrated in Fig 2. When the bottom is a reflector, the component of the transmission loss due to 
spreading is 20 log(2r) in the absence of refraction; but, when it is a scatterer, each portion of the bottom radiates 
spherical waves, and the spreading loss becomes 20 log r2 = 40 log r. The difference between these two losses can 
be very great. 

The partition between reflection and scattering is important for bottom-bounce sonars. The partition 
a) determines the fall-off of the bottom return with distance from the bottom and 
b) determines the correlation loss of correlation sonars. 

Reflection Models 
Various theoretical models have been used to relate n0 to the physical properties of natural bottoms. The models 

range from the single two-fluid Rayleigh model (4) to models that include bottom absorption, rigidity (i.e. shear 
waves) and layering. The theory and the resulting expressions for ßQ will not be repeated here, but may be found 
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Fig. 1.    A receiver at Q receives reflected and scattered sound from a variety of sources on and in a sedimentary 
bottom. A square-topped incident pulse becomes a long-tailed blob at Q if the initial source O and the 
receiver at Q are non-directional. 
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Fig. 2.    In a) the bottom is a reflector and the spreading loss from the source O to Q via the bottom is 20 log 
(2r). In b) the bottom is a scatterer and the spreading loss is 20 log r2. 
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in Brekhovskikh's book (5), and are listed in Appendix I. The theoretical expressions have appeared in the U.S. 
literature in various forms and they are always computerized for computation. 

For two fluids separated by a plane boundary, the reflection loss depends on the density and sound velocity in 
the two media. Fig 3 shows diagrammatically how the loss varies with grazing angle for different combinations of 
density ratio, m=p2/pi and n=C!/c2, where pt and Ci are the density and sound velocity of the upper medium 
(water) and p2 and C2 are the density and sound velocity of the lower medium (bottom). Of the four combinations 
shown, a) and c) are most characteristic of sedimentary bottoms. In combination c) there exists a critical angle, 
while in a) and d) there is an angle of intromission where the loss reaches a maximum. When attenuation exists in 
the lower medium, as it always does for the real ocean bottom, these angles become smeared out and obscured, as 
shown by the dashed curves in the figure. 

Some specific examples showing the reflection loss 10 log p., in dB, computed using Brekhovskikh's equation 
3.25 (Appendix I), as a function of grazing angle for different values of the two ratios and a dimensionless atten- 
uation coefficient, are given in Fig 4. The parameter of the curves in this figure is the dimensionless 
quantity ot=a1\/2ir where a1 is the amplitude attenuation coefficient in units of reciprocal length and X is the 
wavelength. 

Acoustics of Sediments 
1) Density 

In a simple additive mixture of two components, such as a sediment, which is a suspension of mineral particles 
in water, any property of the mixture equals the sum of the properties of the two components separately, weighted 
by the proportion of each in the mixture. For example, in a mixture of medium 1 and medium 2, let medium 1 
have density px and let it occupy a faction ß of the volume of the mixture (ß is the volume concentration). Let 
medium 2 have density p2 with a volume concentration equal to (1 - ß). The additive "law" states that the density 
of the mixture is 

"mix^+t1-^ 

This "law" has been found to hold closely for sediments and sedimentary rocks by Nafe and Drake (35), who found 
from numerous measurements on sediments that pmjx = 2.68 - 1.65|3, where medium 1 is taken to be water (pi = 1) 
and medium 2, the sedimentary particles (p2 = 2.68). Here ß is the porosity of the sediment, equal to the volume 
concentration of water in the mixture. 

2) Compressional-Wave Velocity 
Hamilton, et al. (6), reported measurements on a variety of shallow-water sediments off San Diego using both 

an in-situ probe method and a laboratory resonant chamber method. Additional measurements were made by 
Shumway (7). Sutton, et al. (8) investigated the velocity in core samples of deep ocean sediments by placing a pair 
of transducers on the sides of the core and measuring the travel time of short pulses diametrically through the core. 
This same method was described later by Winokur (9). 

A compilation (10) of data has shown that the mixture formula, cited by Wood (11) and verified experi- 
mentally in the lab on kaolin-water mixtures by Urick (12), is not a bad approximation to the measured data. The 
mixture formula gives for the sound velocity 

/z 
{pm\x km\x]      = [(pw0 + Ps(1-ß))(kJ3 + ks(l-ß))} 

where pw_ kw and p$, k 
velocities are somewhat 

are the density and compressibility of the water and solid particles, respectively. Measured 
higher than those given by this formula for low-porosity partly-indurated sediments, where 

grain-to-grain contact of the sediment particles exists. 
The mixture formula predicts that the sound velocity in high porosity sediments should be slightly less than 

that of water. The reason for this is that as sediment is added to water, the increase of density of the mixture is 
more rapid than the decrease of compressibility, resulting in an initial decrease in sound velocity. The existence of 
low velocity bottoms, at least for the top few feet of the bottom material, have been repeatedly inferred (13) (14) 
from an observed phase reversal of the bottom reflection. Also, in stagnant in-shore waters, a low velocity condition 
in the bottom can be caused by gas (methane) in the bottom produced by organic decomposition (15). 

3) Compressional-Wave Attenuation 
A number of investigations have been made of the attenuation of compressional waves in natural (7) (16) 

(17) and artificial (18) sediments by methods involving (a), a resonant cylinder of the materials, and (b), a source 
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Fig. 3.    Curves of reflection loss vs. grazing angle for two fluids separated by a plane boundary. For most real 
bottoms only cases a) and c) apply. The dashed curves show the effect of attenuation in the bottom. 
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Fig. 4. Computed bottom loss vs. grazing angle for a smooth fluid bottom with attenuation, for different combina- 
tions of ratios M = p2/Pi and N = Cj^, where Pi, Ci andp2,C2 are the density and velocity of water 
and bottom, respectively. The parameter a is the dimensionless quantity a1 \!2-n, where a1 is the amplitude 
attenuation coefficient in units of (length)-1. Computed from Brekhovskikh's equation 3.25, Appendix I. 
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and receiver located in the material at different distances. A compilation made by Hamilton (19) over a wide fre- 
quency range shows that at frequency f kHz the attenuation coefficient in natural, saturated sediments, in db per 
meter, is approximately equal to 0.25 f. The measurements fell within the cross-hatched band in Fig 5, with a tend- 
ency in the data for the more dense sediments, such as compact sands, to have a higher attenuation than less dense 
higher porosity sediments, such as muds. In sediments the attenuation is several orders of magnitude higher than in 
pure water [ß = 1.0) at the same frequency, as shown by the dashed curve in Fig 5. 

4) Summary 
The most important single physical property that determines the acoustic characteristics of sediments is their 

porosity. The importance of porosity has been verified by all workers on the subject (20); indeed, a fair estimate of 
velocity, density, and attenuation of sediments can be made from a knowledge of porosity alone. While porosity is 
not the sole determinant of the acoustic behavior of sediments - (Sutton (8) found that grain size and carbonate 
content have a small effect on velocity) - porosity does serve as a rough estimator of reflectivity of many sediments 
that are smooth enough for rough surface scattering to be insignificant. For example, a rough correlation between 
reflection loss and porosity using Marine Geophysical Survey data has been found (21) at oblique as well as at 
normal incidence. Another study (22) resulted in an expression JU0 = 0.65 - 0.65(3 for the pressure reflection 
coefficient at normal incidence, with, it was claimed, a correlation coefficient of 0.97. 

A more complete summary of the acoustic properties of the sea bottom, with attention to shear waves and 
deep depths, is given in Appendix II. 

Measured Reflection Losses 
The standard method of measurement is to use pings or explosive pulses and to compare the amplitude, intensity, 

or energy density (integrated intensity) of the reflected pulse with that of the observed or computed pulse travelling 
via a non-reflected path. 

Most published papers describing field data include an attempt (always sucessful!) to match the measured 
reflection losses to a theoretical model. For example, Mackenzie (1) reported results at 1 kHz between grazing angles 
of 12° to 84° for three bottom types — sand, silt and clayey silt; the two-layer model with attenuation (Table I) was 
used for comparison. Bucker, et al., (23) got data in two areas off California and one in the Bering Sea; a layered 
model with attenuation and rigidity was employed. Menotti, et al., (24) used data from a bottomed vertical array 
at Bermuda and a 1 kHz CW source, and claimed agreement with a model having liquid layers resting on a semi- 
infinite solid. A similar model was invoked by Winokur and Bohn (25) for data in 2400 fm water off Yucatan. 
Barnard, et al. (26), did work in a laboratory tank and compared with theory for a single fluid layer on a semi- 
infinite solid. Cole (27) was able to fit 4.5 kHz data on the abyssal plain off Newfoundland with theory for an 
attenuating fluid bottom. 

Much of the data show a loss rising with angle at low angles, followed by a nearly constant loss extending over a 
wide range of higher angles. High porosity bottoms, having a sound velocity less than that of water, tend to have 
maximum loss at an angle of 10° to 20°, where an angle of intromission would be expected to occur in the absence 
of attenuation in the bottom. However, when narrow-band pulses are used, measured losses often are irregular and 
variable, and show peaks and troughs due to the interference effects of layering in the bottom. Measured data rarely 
show a sharp critical angle — as would be inferred from the Rayleigh reflection model, because of the existence of 
attenuation in the bottom. 

The Prediction Problem 
As a practical matter in making performance predictions of bottom-bounce sonars, the end-product of bottom 

loss research is to be able to predict the bottom loss for regions of the world for which no measured data exist. 
The prediction must be based on the available, often fragmentary knowledge (plus conjecture) of the geology and 
bathymetry of the bottom in the area where a prediction is required. 

When bottom cores exist, a prediction of loss can be made from measured core properties, using one of the 
theoretical models, for frequencies high enough to be acoustically governed by the upper few meters of the bottom. 
However, bottom cores obtained at sea reveal that the sea bottom is remarkably complex in its structure; it contains, 
typically, a large number of layers of varying properties and thicknesses. Numerous such cores have been obtained 
as part of the Marine Geophysical Survey of the U.S. Navy Oceanographic Office and measurements of sound 
velocity in many of the cores have been published (28). 

Many bottoms are penetrated by the low frequencies of many modern sonars to depths of tens or even perhaps 
hundreds of feet. Fortunately, the reflectivity of the deep ocean floor can be correlated to some extent with the 
physiographic "provinces" or "domains" recognized from depth sounding data. Physiographic charts showing these 
provinces have been published by Heezen and Tharp (29) and by Heezen and Menard (30). As examples, average 
bottom loss curves for two large physiographic provinces of the North Atlantic are given in Fig 6. Much of the 
difference between provinces may be due more to a difference in bottom roughness than to a difference in composi- 
tion or layering. For example, a bottom known to be rough, such as the Mid-Atlantic Ridge, where little or no 

10-7 



100 

Atten. 
Coef. 
<*, 
db/m 

0.01 - 

2.001 - 

0.001 1 10 

FREQUENCY'   RHZ 

100 1000 

Fig. 5. Attenuation of compressional waves in natural sediments and sedimentary strata. The measurements, as 
compiled by Hamilton (19) fall within the cross-hatched area. The straight line through this area repre- 
sent a = 0.25f, where a is in dB/m and f is the frequency in kHz. The dashed curve at the lower right shows 
the attenuation in pure sea water. 
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Fig. 6.    Average Bottom Loss in Two Physiographic Provinces of the North Atlantic Ocean in the Frequency Band 
0.5-8.0 kHz. Based on Marine Geophysical Survey data. 
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sedimentary cover exists, is likely to have a high loss. Generally speaking, low losses occur on the flat abyssal plains 
where cores show numerous sand layers (deposited by turbidity currents) that are good reflectors. All in all, a knowl- 
edge of the physiography, the depositional and erosional bottom processes and the subbottom geoloy is the key to 
the prediction problem in bottom-bounce echo-ranging. 

Practically speaking, bottoms can be divided as a matter of convenience into a number of classes according to the 
magnitude of their bottom loss. Examples of loss versus angle curves for nine bottom classes are given in Fig 7; 
their shape is based on measured data, theory and conjecture. Classified bottom-class charts exist that serve to tie 
these curves to different ocean areas. Thus, if the bottom-loss chart indicates a Class 3 bottom, the Class 3 curve 
would be used to find the loss at any grazing angle in a sonar prediction problem. 

At very low frequencies, such as the vicinity of 100 Hz, there is evidence that all bottoms tend to have the same 
loss within a standard deviation of 3 or 4 db. This is shown by Fig 8, taken from the work of R. E. Christensen of 
the Naval Oceanographic Office. The interesting negative losses at low angles are doubtless due to upward refraction 
within the bottom and a consequent enhancement of the sound in the water - an occurrence that has been demon- 
strated by field observations (32). A ray diagram showing upward bottom refraction is shown in Fig 9. 

Other Effects 
As mentioned above, scattering and layering produce pulse distortion (33), as does reflection at grazing angles 

less than the critical angle (34). This distortion is most evident for explosive pulses, which are extended into a long, 
drawn out blob, even at normal incidence. Layering alone distorts the shape of individual pulses and is a cause of 
pulse-to-pulse fluctuation in successive pings if the geometry is changing (35). 

Thompson, Flowers and Hurdle (36) used a sonobuoy and a distant ship pinging off the bottom at 19 kHz to 
obtain the scattering pattern of the deep ocean bottom. An example of one of their scattering patterns is given in 
Fig 10. There is only a suggestion of a greater return at the specular angle. 

Backscattering 
The scattering of sound by the bottom in the backward direction has been measured many times, over a wide 

frequency range and for many bottom types. The measurement literature is extensive, though the theoretical 
literature is scanty. A compilation of measured data has been made (37). Fig 11 shows smoothed, average curves 
of backscattering vs grazing angle drawn from the data in this compilation. 

All modern data are expressed in terms of back-scattering strength S, defined as 

S= 10logs= 10 log _!£!!• r
2 -A 

'inc 

where lscat is the intensity of the back-scattered sound at range r from a portion of bottom of area A and linr is 
the incident intensity at the bottom. 

Measurements have been made either with directional sinusoidal pulses or with explosives. The relation to angle 
is provided by the transducer directionality or by geometry in the two cases, respectively. An early example of the 
former (38) and a more recent example of the latter (39) may be mentioned. 

It was discovered, when the first measurements were made during World War II, that bottom reverberation was 
highest over coral rock bottoms, less over sand, and least over mud. In subsequent years, a correlation of back- 
scattering strength with the size of the sediment particles in a sedimentary bottom has been repeatedly observed; 
the "type" of bottom, using a terminology based on particle size, such as sand, clay, clayey-silt, silty-sand, etc,' 
has long been used as a correlative of back-scattering. Mud bottoms tend to be smooth and have a low impedance 
contrast to water; coarse sand and rocky bottoms tend to be rough, with a high impedance contrast. Thus, bottom 
types as so defined are acoustically reasonable classifiers of bottoms for backscattering. Yet there is a large spread 
in measured data for apparently the same bottom type, perhaps due, in part at least, to penetration of sound into 
the bottom below a superficial layer. 

A knowledge of S is particularly important in acoustic minehunting where a small object must be found when 
lying right on the sea bed. A more expanded treatment of bottom back-scattering and reverberation may be found 
in the author's book (40). 

Side-Scattering 
Only one study of scattering in other directions by the sea bottom appears to have been made (41). In this 

work, two directional transducers 1% miles apart in shallow water were trained in angle so that their beams inter- 
sected. The intensity of the sound scattered out of one beam and received on the other was measured. It was found 
that at 22 kHz, the scattering was isotropic over the angular range from the backward direction around to 150° in 
the forward direction. This finding of isotropy is a great convenience in handling bistatic sonar prediction problems 
where bottom reverberation is involved. 
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APPENDIX I 

REFLECTION FORMULAS given in L N. Brekhovskikh, 
Waves in Layered Media, Academic Press, New York, 1960, 

Single Fluid Layer, No Attenuation Eq. 3.14 

Single Fluid Layer, with Attenuation Eq. 3.25 

Single Solid Layer, No Attenuation 
Liquid to Solid bq. 4.30 
Liquid to Liquid Eq. 4.37 

Two Layers 
Without Attenuation Eq. 5.10 
With Attenuation Eq. 5.35 

Three Layers Eq. 5.45 

Any Number of Solid Layers Eq. 6.17 
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APPENDIX II 

ACOUSTIC PROPERTIES OF THE SEA FLOOR* 

We consider in this section in greater detail the salient features of bottom acoustics, as described in the literature. 
This literature is extensive; many measurements have been made and many papers have appeared on the velocity, 
attenuation and density of sound in sediments and rocks. Here we will present only a short summary of these 
subjects, with references to the existing literature. 

A number of summary papers on the subject have been published by E. L. Hamilton; particularly noteworthy is 
a review by Hamilton of the basic elastic and physical properties of marine sediments (1). An older summary paper 
that may be mentioned is one by Nafe and Drake (2). 

Compressional Waves 
Velocity. The speed of compressional waves in sediments has been measured at shallow depths below the bottom 

by acoustic probes in situ and by core measurements in the laboratory. At deeper depths, a variety of geophysical 
techniques involving travel time measurements have been employed, including even using conventional sonobuoys 
and explosive shots for work over deep water (3). 

The speed of sound in a sediment is closely related to its porosity and therefore to its density. At the sea bed, 
high porosity/low density sediments, such as muds, have compressional wave velocities only slightly less (up to 3%) 
than that of the overlying water; low porosity/high density sediments, such as hard sands, have a veiocity 10-20% 
greater than that of the overlying water. For example, by means of probes placed in the bottom by divers and by 
measurements on core samples, Hamilton (4) found a coarse sand with a porosity of 39% to have a velocity of 
1.836 km/sec, while a silty clay of porosity 76% had a velocity of 1.519 km/sec, compared to the water velocity 
of about 1.56 km/sec. Similarly, off San Diego, again using probes inserted into the sediments by divers, Hamilton 
(5) measured sediment velocities ranging from 1.463 km/sec for a "clayey fine silt" of porosity 65.6% to 1.750 
km/sec for a "coarse sand" of porosity 38.3%. The bottom water alone (porosity 100%) had a velocity of 1.478 
km/sec. 

The many measurements made during the Marine Geophysical Survey are summarized, in terms of porosity, in 
FigA-1. 

Since porosity and density are closely related, one would expect the velocity to be closely related to the density 
of the sediment; that such is indeed the case has been the subject of a paper by Hamilton (7). Other correlatives 
between velocity and the physical characteristics of sediments, such as grain size, have been established (8). 

In hard rocks, such as those of the basement beneath a sedimentary column, much higher sound speeds occur. 
In basalts, for example, the velocity ranges from 3.5 to 6.5 km/sec, again depending on the density of the material 
(7). In the early work of Worzel and Ewing (Ref. 1 Chap. 7) refraction shooting established velocities in the 
range 4.62-6.63 km/sec for the crystalline basement beneath the sediments at the locations where measurements 
were made. 

Below the sea bed, as the porosity is reduced by the increasing pressure of the overburden and as the sediment 
particles are forced into closer contact, the velocity increases. This increase with depth is extremely rapid compared 
to the velocity gradient in the overlying water; it is found (2) to lie in the range 0.5 to 2.0 sec-1 (meters per second 
per meter of depth), with a convenient average value of 1.0 sec-1. (In isothermal water, the corresponding value is 
.017 sec-1). 

This steep gradient cannot continue indefinitely, but exists only for the first kilometer or two of depth. At 
deeper depths, a smaller gradient must exist. Fig A-2 shows velocity versus depth as found by reflection shooting 
at two offshore East Coast locations. 

The near-surface value of 1 sec-1 means that sound rays for compressional waves in a sedimentary column are 
bent sharply upward; rays at shallow depths have a radius of curvature of only about 2 km. Fig. A-3 shows the 
circular rays corresponding to a 1 sec-1 gradient in a sedimentary column extending to a depth of 4 km. 

In deep water, this steep sedimentary gradient, together with the fact that the sound velocity and density of the 
sediments at the sediment-water interface are nearly the same, means that sound can readily penetrate into a sedi- 
mentary bottom and quickly come back out of it by refraction. This kind of refracted sound was indeed observed 
by Christensen, et al. (9), in shot tests in 2700 fathoms of water; bottom refraction can account for the apparent 
low, or even negative, bottom reflection loss observed at low frequencies and small grazing angles. 

Attenuation. The attenuation of compressional waves in sediments and rocks has been measured by a wide 
variety of methods, ranging from in-situ probes in sediments to resonance techniques in bars of solid rock. Such 

*From R. J. Urick and H. L. Piice, Seismic Sensing of Sounds in the Sea, Tracor, Inc., Contract N00173-77-C-0063,1977, Sec- 
tions 3.0 and 4.0, 1977. Also in Proc. Workshop on Seismic Propagation in Shallow Water, sponsored by Office of Naval Research, 
6-7 July 1978. 
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measurements extend over a wide frequency range. For sediments and sedimentary rocks, Hamilton (10) has com- 
piled data from many sources over a wide range of frequency; his plot of measured values is reproduced in Fig A-4, 
Evidently the attenuation coefficient tends to increase approximately as the first power of the frequency; accord- 
ingly, at a frequency of f kHz, the attenuation coefficient a in dB/meter can be written a(dB/m) = kf(kHz), where 
k is a constant, k is the attenuation coefficient in dB per kilometer per Hz. In Fig A-4, the dashed line is drawn for 
k = .25 dB/km/Hz, and is seen to give reasonable fit to the measured data. However, a recent paper by Stoll (11) 
casts doubt as to whether this linear variation extends downward to our very low frequency range, where another 
source of loss ("frame loss") may become dominant over the loss due to viscosity. Like velocity, attenuation is 
strongly related to porosity in sediments. 

Because of compaction, the attenuation of compressional waves decreases rapidly with depth in natural sedi- 
mentary materials. Fig A-5 shows the coefficient k as plotted against depth by Hamilton (12). While there is wide 
variability with sediment type (i.e., porosity /density) at shallow depths where most measurements exist, the rapid 
decrease of k with depth is evident. At a depth of 2 km, the attenuation in a sedimentary column is only about 
one-tenth of its value at the surface. 

Lower values of attenuation are found in hard rocks. Here too, the attenuation coefficient tends to vary as the 
first power of frequency; this is equivalent to a constant Q, independent of frequency, not only for rocks but for 
metals and other solids as well (13). Table A-1 gives some values of k, converted from data given in a book by 
White (14), for both compressional and shear waves. The compressional wave values average 0.34 dB/km and are 
lower by about an order of magnitude than those for sediments at the sea bed. This rate of attenuation is compa- 
rable with that for sediments at a depth of 2 km or so (Fig A-5). 

Shear Waves 
In sediments, shear waves have a vastly different velocity and attenuation than do compressional waves, since 

their propagation is governed by a vastly different elastic constant. 
Velocity. At the sea bed, sediments have an extremely low shear wave velocity. A review by Hamilton of this 

subject (15) shows that at a depth of one meter below the sea bed, marine sands and silt-clays have a shear velo- 
city in the range 50-150 m/sec. 

TABLE A-1. ATTENUATION COEFFICIENTS IN HARD ROCKS. 

VALUES OF k (dB/km/Hz) DERIVED FROM TABLE 3-1 
OF REFERENCE 14 

Compressional Waves Shear Waves 

Granite .019 _ 
.017 
.119 .146 
•062 .075 

Limestone .023 .025 
.013 .011 

Sandstone                                             .015 — 
Chalk .004 .005 
Shale .200 1.78 

However, the increase with depth or compaction is rapid, increasing to about 200 m/sec at 10 meters and to about 
400 m/sec at a depth of 100 meters. Surface shear waves, traveling along the bottom interface, have comparable ve- 
locities; two independent measurements of Stonely waves gave velocities of 89-123 m/sec in one experiment (16) 
and 83-110 m/sec in the other (17). In still another measurement, Bucker, et. al. (18), used vertical geophones 
on the bottom in 60 ft. of water and, with blasting caps as sources at ranges of 2, 15, 30 and 45 ft., measured the 
velocity of Stonely waves to be 170 m/sec, with an attenuation of .06 dB/ft at 25Hz, corresponding to a value 
of k of 7.9 dB/km at 1 Hz. Such waves travel, in theory, with a speed of 0.9 that of body shear waves (19). 

Shear waves are dispersive. For Rayleigh and Love waves observed in earthquakes, the average shear velocity 
was found to lie between 200 and 400 m/sec in the upper 0.5 km of sediments for waves of periods shorter than 
5-10 seconds (0.1-0.2 Hz); for longer periods, the velocity rapidly rises to about 4000 m/sec (15). 
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Fig. A-4. Attenuation versus frequency in natural, saturated sediments and sedimentary strata. The different 
symbols refer to different measurements. The long solid straight line shows a first-power variation with 
frequency. The dashed line is drawn for k = .25 dB/km/Hz. (10) 
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Attenuation. The subject of the attenuation of shear waves in marine sediments has, like many aspects of the 
subject, been reviewed by Hamilton (20). !n this summary the following values for a number of materials are listed: 

Material k (dB/km per Hz) 

Sand 13.2 
Sand and Clay 4.8 
Silt 13.4 
Mud (silt, clay) 17.3 
Water-saturated Clay 15.2 
Tertiary Mudstone 10.1 
Pierre Shale 3.4 

The average of these values is 11 dB/km/Hz; thus, at a frequency of 10 Hz, the shear wave attenuation coefficient 
would range from 34 to 173 dB/km. An attenuation of this same magnitude would apply for waves of the Rayleigh/ 
Stonely type which are surface shear waves traveling near the water-bottom interface. Deeper-going body shear 
waves would suffer a smaller attenuation, since the shear coefficient, like the compressional wave coefficient, must 
decrease with depth. However, it appears that the shear wave attenuation is larger by at least an order of magnitude 
than the attenuation of compressional waves and is so large at sonar frequencies (>5 Hz) as to prohibited long- 
distance propagation. Although strong Rayleigh waves that have traveled long distances are commonly observed in 
earthquakes, they are always of a low frequency (<1 Hz) and have a corresondingly low attenuation. 

On the other hand, in rocks such as those of a crystalline basement, the attenuation of shear waves is comparable 
with, or only slightly greater than, the attenuation of compressional waves.* This is indicated by the values listed 
in Table A-1. 

Types of Seismic Waves 
When a compressional sound wave in water strikes a sedimentary bottom at P (Fig A-6), a variety of waves is, in 

principle, generated. 
The most familiar is the bottom-reflected compressional wave (R, Fig A-6) that remains in the water medium and 

has been much studied in connection with bottom-bounce sonars. Within the bottom itself, there appears a com- 
pressional wave C starting at the water-bottom boundary at nearly the same angle as that of the incident wave (since 
the bottom velocity there is not greatly different from the water velocity) and propagating outward in range with 
upward refraction. Another generated wave is the body shear wave, S, originating at a smaller angle. It is similarly 
upward refracted by the gradient of shear velocity in the bottom and is more highly attenuated than the com- 
pressional wave C. The third wave is a surface shear wave ST propagating along the bottom with a still higher atten- 
uation, since the rate of attenuation in a sedimentary column is highest at its top. ST is a guided polarized surface 
wave; it is called the Stonely wave when the medium on top of the solid boundary is a fluid, or a Rayleigh wave 
when the upper medium is a vacuum or air. Its particle motion is in the vertical plane in the retrograde direction 
if the propagation is to the right. In the literature, this wave is variously called the SV wave, the modified-Rayleigh 
wave or the Schölte wave. 

When a shear wave impinges on a solid boundary, a Love wave or SH wave can be generated; like the Stonely 
wave, the Love wave is a polarized surface wave, but its particle motion is in the horizontal plane. Finally, when 
solid layers exist, flexural waves in the layer can be excited and propagated, and are termed Lamb waves. 

All of these waves in the bottom, with the exception of the compressional wave, have a shear component and 
in sediments suffer the high attenuation characteristic of shear waves. 

The partition of energy between these various waves is a classic problem in seismology. For two uniform solid 
media separated by a plane boundary, the problem was solved long ago in a classic paper by Knott (21), who derived 
the equations that satisfy the boundary conditions in this idealized case. For our simpler problem of an incident 
compressional wave, the solution was later given by Zoeppritz, and may be found in a seismology text by Macelwane 
and Sohon (22) as well as in a short readable book by Bullen (23). But for our real world conditions, this idealized 
model would seem to have little value; the energy partition for a realistic water-bottom model appears to be a yet- 
unsolved problem. 

*A recent paper (24) describes earthquake observations in the Pacific Ocean, made with a high frequency seismograph, of strong 
shear waves at frequencies up to 15 Hz, travelling over paths several thousand miles long, that apparently had an attenuation less 
by a factor of two or three than the accompaning compressional waves. 
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CHAPTER 11 

TEMPORAL COHERENCE (FLUCTUATION) 

Introduction 
A CW signal or a series of pulses from a steady source is always received by a distant hydrophone as a fluctuating 

signal or series of pulses. The reason for this is that the sea and its boundaries contain inhomogeneities of various 
kinds, and these inhomogeneities are constantly moving in an irregular manner relative to the source or receiver. The 
result is to produce scattering and multi-path transmission of constantly varying phase and amplitude, and the 
various contributions add up to give a fluctuating signal at a distant point. Fluctuation may be said to be caused by 
the moving inhomogeneities of the sea. Completely "frozen" inhomogeneities, as in a completely solid ocean, would 
not cause fluctuation between a fixed source and a fixed receiver. 

Fluctuation, or "temporal" coherence, refers to the changes in the signal received by a single hydrophone, relative 
to a steady source, over a period of time. The changes occurring between spatially separated hydrophones constitute 
"spatial" coherence and are the subject of the following chapter. 

Fluctuations have been a topic of continued interest in underwater sound ever since World War II, when they 
attracted interest because of their scientific implications as well as because of their importance in sonar detec- 
tion and maintenance of contact. An early — and still a most excellent - summary of the subject was written by 
C. Eckart and R. R. Carhart (1) in 1950, while an indication of its continued popularity over the years is a recent 
bibliography (2) that lists a total of 132 literature references devoted to fluctuations in underwater sound trans- 
mission. 

Causes of Fluctuation 
At the beginning of reference (1) it is said that "if sound of constant intensity and frequency is transmitted 

through the sea from one ship and received on another at some fixed distance, the intensity of the signal received 
from one second to the next will not be constant; it fluctuates, often by a factor of ten. Indeed, the presence of 
fluctuation is perhaps the most constant characteristic of sound in the sea!" 

A number of causes, or physical processes, producing fluctuation may be mentioned. An obvious source of 
change in a received signal is motion of the platform on which source or receiver is mounted, such as the roll, pitch 
and yaw of an unstabilized sonar transducer, causing a wandering-about of the sonar beam. A less obvious cause is 
the presence of thermal microstructure in the body of the sea, resulting in a twinkling of a distant source in basically 
the same way that the microstructure of the optical index of refraction in the atmosphere causes the twinkling of 
stars. The sea surface, through its motion when rough and its image interference when smooth, is a cause of fluctua- 
tion when sound travelling via surface paths is allowed to contribute to a received signal. Scatters in the body of the 
sea, such as fish, air bubbles and turbulence patches are contributors to fluctuation in received sound. Finally, 
internal waves are a form of oceanic inhomogeneity that are believed to produce fluctuations of long range transmis- 
sion where near-surface refracted (RSR) paths are involved in the transmission. 

Basic to all of the above is multipath propagation in the presence, of moving inhomogeneities which cause 
propagation multipaths, together with scattered contributions to a received signal, to interference with one another. 

In summary, the presence of inhomogeneities in the sea, of the kinds mentioned above, as well as others, together 
with the motion of the sea, the source and/or the receiver, are the underlying causes for the fluctuation of the signal 
from a distant, steady source of sound. 

Long-period fluctuations with time scales measured in hours, weeks and months, are associated with changes in 
the ocean medium itself. The tides, for example, produce changes in water depth and current flow, while diurnal and 
seasonal changes in the velocity profile produce marked changes in transmission. 

Measures of Fluctuation 
In the literature, amplitude fluctuation is described quantitatively by the coefficient of variation V equal to the 

standard deviation of a series of pressure amplitudes divided by the mean. In symbols, if P is the absolute magnitude 
of the acoustic pressure of a received pulse or of a time sample of a continuous received signal, then V is defined by 
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V: 

where the bars denote an average of a large number of pulses or signal samples. V thus expresses the normalized 
magnitude of the fluctuation. Fig 1 shows how V would be determined from a series of rectified short-pulse trans- 
missions. 

The other parameter describing fluctuation is its time scale. This is given by the auto-correlation function of the 
fluctuation, defined by 

P(T) 
p(t) • p(t + r) 

P2(t) 

where p(t) is the pressure amplitude of the fluctuating signal, r is a delay time and p2(t) is the mean square pressure 
amplitude. The normalization term in the denominator serves to make p(0) = 1. Thus, p(f) is the normalized time- 
displaced time-averaged product of the time function, or series of amplitudes, denoted by p(t). As a function of 
the time delay r, the result is an auto-correlogram, as illustrated in Fig 2. It can be characterized for practical pur- 
poses by a single, arbitrary number called the correlation time of the fluctuation. Different definitions of correlation 
time have been used by different workers as, for example, the time for the correlogram to fall to 0.5, to e"1, or to 
zero (A, B + D of Fig. 2c), or as the equal-area time C in Fig. 2c, given by 

C=/~p(T)df. 

More meaningful for an understanding of physical processes, but less useful for prediction purposes, is the spec- 
trum of the fluctuations, giving the fluctuation power per unit band-width as a function of fluctuation period or 
frequency. Since.the spectrum is the cosine-transform of the auto-correlation function, they are equivalent ways 
of describing the fluctuation time scale. The fluctuation spectrum is particularly useful for theoretical studies 
involving the causes of fluctuation, while the auto-correlation function, with its parameter the correlation time 
(however defined), is useful as in input quantity in operational and detection models. 

Phase changes of a received single-frequency signal may also be described by a correlation coefficient. Let the 
source signal be ps = sin COT and the received signal be pr = sin (cor + if) where ip is the fluctuating phase angle, and 
where amplitude fluctuations have been eliminated by, say, a clipper amplifier. Then the correlation coefficient 
of phase is 

P(f) 
sin cot • sin (cot + y) 

sin cot 

% cos [cot - (cot +1^)] - y2 cos [cot + (cot + I/))] 

COS(/> 

Thus, the correlation coefficient for phase in the absence of amplitude fluctuations is equal to the mean value 
of the cosine of the fluctuating phase angle. Such phase changes are equivalent to fluctuations in travel time over 
the existing propagation path or paths. 

Short-Range Ping-to-Ping Fluctuations 
These have been much studied. The initial work was done by Sheehy (3) in World War II, and interest has con- 

tinued up to the present time, principally in connection with their effects on acoustic homing torpedoes. In field 
studies, the rectified amplitudes of a succession of short pulses transmitted between a source and a receiver are 
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Figure 1. A series of rectified pulses as they might appear on a line or paper playout. The coefficient of 
variation V is the standard deviation a divided by the mean amplitude |p| of the series of pulses. 
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observed (Fig. 1). Fig. 3 shows the results of three different series of measurements giving V as a function of range 
for the direct transmission from source to receiver. In these studies, short pulses from 10 to 100 ms in length at 
kilohertz frequencies and ranges up to a few kiloyards were used. They agree in showing that, for the direct path, 
V increases as the square-root of the distance between source and receiver. 

The theory for this kind of fluctuation has been worked out in some detail. Bergmann (3) first used ray theory, 
and found an r3'2 variation of V. Mintzer, in a series of papers (5), reconciled the field data of Sheehy with wave 
theory, and correctly deduced an r1/2 variation of V. Later, Skudryzk (6) unified the theory so as to include both 
theoretical domains, and provided a physical insight into the processes producing the fluctuation. Chernov's book 
(7) is a fine exposition of this and other aspects of propagation in a random medium. 

The physical theory may be summed up by reference to Fig 4. The medium is assumed to consist of patches 
of thermal (more generally, index of refraction) inhomogeneity (Fig. 4a). These patches have a patch size "a" 
determined by the spatial coherence of changes in the index of refraction or sound velocity. Define a spatial vari- 
able 

c0 c_- c      Ac       Ac 

where n and c are the index of refraction and velocity at some point and c0 is the mean velocity in its vicinity. 
Then the auto correlation coefficient of the changes in sound velocity in the x direction is given by 

P/|(X) =^o>-^o + x)_ 

ß2 

where p(x0) and p(x0 + x) are the values of p at two points separated by distance x, and the bars represent a 
space average. In the theory, (x) is approximated by one of two convenient functions: p^(x) = exp (-x/a) or 
pJLt(x) = exp (-x2/a2). In either case, "a" may be called the patch size of the inhomogeneities and both functions 
reduce to unity at x = o, as they should. While 'V^denotes the spatial size of the inhomogeneities, the thermal 
or index-of-refraction size is given by the quantitiy p2. The two are related by the Kolmogorov Law of turbulent 
mixing, which says that ;u2 is proportional to a2/3. 

The fluctuation behavior of a patch depends upon the range from it. At short ranges (Fig. 4c), the patch acts 
like a lens, and produces focussing and defocussing as described by ray theory; at long ranges, it acts like a scat- 
terer of sound according to wave theory. The two regions correspond crudely to the Fresnel and Fraunhofer regions 
of optics. In the focussing region (7, p. 34), taking p^fx) = e~x2/a2

( the coefficient of variation is related theoret- 
ically to the range r by 

w2  _  8    1/2  f    3 
V 7T      r 

3 a3 

meaning that V increases as the 3/2 power of r, while in the scattering region (7, pp 75-77) 

V2=7r1/Vk2ar 

so that V varies as the square-root of the range (Fig. 3d). The two regions correspond, respectively, to small «I) 
and to large (>1) values of a "wave parameter" defined by 

4r 
D=  

ka2 

The "transition range" between the two regions occurs in the vicinity of D = 1, or at a range equal to 

J<a^ 
ro= 4 
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Concerning the two regions, Chernov (7, p. 82) says that "it is easy to give a qualitative explanation for the dif- 
ference in the distance dependence of the mean square amplitude fluctuations in the regions of small and large 
values of the wave parameter. In the first case, the dimensions of the first Fresnel zone are small compared to the 
scale of the inhomogeneities. The deviations of the refractive index from its mean value within the zone all have 
the same sign. Therefore, all the waves scattered by the different elements of the first zone arrive at the observa- 
tion point in phase, and the fluctuations increase rapidly with distance (like r3). In the second case, the dimensions 
of the first Fresnel zone are large compared to the scale of the inhomogeneities. The deviations of the refractive 
index ju from its mean value have different signs at different points of the zone. Therefore, all of the elementary 
waves do not arrive in phase at the observation point. They partially interfere, and, as a result, the fluctuations 
grow more slowly with distance (like r)." 

All of the above applies to spherical patches, which are likely to occur in a well-mixed surface layer. But below 
the layer in the thermocline the patches are known to be lenticular rather than spherical in shape. By means of 
sensitive thermal probes, the thermocline has been found to have a stepped structure consisting of a regular series 
of homogeneous layers. For example, in the Sargasso Sea off Bermuda, the layers have been found (9) to be a 
few meters thick and to have a horizontal extent of several hundred meters. For lenticular patches the fluctuation 
is said (16) to be increased by the factor 

V(lenticular)      1   /4        6 
 =—(— + — +6 
V(spherical)      16 \y2     y4 

where y is the ratio of vertical to horizontal patch size. 
Such structure has a significantly effect only on sound travelling horizontally, or more generally, on ray paths 

that vertex within the layers (10). For example, in one experiment (11), a rapid fluctuation of 10, 20 and 40 kHz 
pulses between a sinking source and a sinking receiver a few kiloyards away was attributed to differential refraction 
(focussing) produced by irregularities in the velocity profile between the two. 

In underwater sound the patch sizes in the sea and the wavelengths employed cause r0 to be relatively small. 
For example, if a = 1 meter, then even at 150 kHz, rQ is only 156 meters and is less at lower frequencies. Nearly 
always a sonar receiver lies in the scattering region of the microstructure where V varies as r1/2. On the other hand, 
in the transmission of light through the atmosphere, r0 is large, so that V varies as r3/2, as verified by observations 
of the twinkling of stars (7, p. 121). 

Within the scattering region, the sound field is given as the sum of a direct unscattered term plus a scattered 
term. But at long ranges, the unscattered contribution becomes small and eventually disappears altogether. The 
sound field then becomes completely scattered and broken up, and there is no further increase of V with range. 
The amplitudes then are Rayleigh-distributed and V becomes equal to 52%. However, this far-region appears never 
to have been reached in underwater experiments on transmission through microstructure, probably because of 
weak signals (relative to noise) at the long ranges required. 

The theory of wave propagation in a random medium has a vast literature. One recent review article (12), for 
example, has some 196 references, all on the theory and applications of radio and sound propagation in a variety 
of random media. 

Microtherma! Data 
Observations of temperature microstructure of the sea have been described a number of times in the literature. 

In 1944 Holter (13) put a thermopile on a submarine and carried it through the sea at a speed of 3 knots at a con- 
stant depth. Three scales of thermal structure were identified: 1) large scale changes occurring over distances of 
the order of 200 yards with temperature differences of the order of 0.5°F; 2) medium scale changes occurring over 
distances of the order of 50 yards with differences of 0.1°F; 3) "a microstructure" of the order of 10 yards with 
differences of .02°F. Finer structure could not be observed due to slow response of the thermopile. Later, Urick 
and Searfoss (14) repeated this experiment using a faster thermopile having a time constant 0.4 sec. This work 
revealed marked differences in the microstructure in the mixed layer and in the thermocline; within the layer the 
patch size was found to be about 6 yards with an rms temperature deviation of 0.05°C (£<2 « 10~8); below the 
layer the patch size was about 100 yards, with |AT| of 0.4°. Still later, Liebermann (15) used a thermocouple of 
time constant 0.02 sec, and found a = 60 cm and |AT| = 0.5°C at depths from 100-200 feat, without correlation 
with the bathythermogram. Whitemarsh, et al. (16), made simultaneous measurements of temperature along a 
horizontal bar 10 ft long, and found |AT| about .05°C and a 2.5 yds. More recently, and on a larger scale, Piip 
(17) reported variations in velocity profiles taken repeatedly over a period of time at the same spot; these show 
changes in velocity of several meters per second in a few hours time at the same depth near the axis of the Deep 
Sound Channel. 
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There is therefore a broad spectrum of inhomogeneity in the body of the sea requiring different instruments and 
methods for its measurement. An admirable way to determine the microstructure of the sea would be to measure 
the fluctuation of acoustic pulses, since a body of valid theory apparently exists. Two papers (16)(18) report fair 
agreement between observed acoustic fluctuations and those computed from simultaneous microthermal measure- 
ments. 

Some examples of recorded microstructure may be seen in Fig 5. 

Fluctuation of the Surface Reflection 
The irregular moving surface also causes fluctuation of sound reflected from it. An early study (19) of y2 ms 25 

kHz pulses emitted by a submarine-mounted source at 200 feet and received by a surface ship at 12 feet showed 
that surface-reflected pulses were highly and rapidly variable in amplitude, being sometimes larger and sometimes 
smaller than the direct pulse, with an average amplitude ratio of 0.8. Often the reflection was multiple and showed 
more than one reflected pulse. These pecularities were ascribed to reflection from curved portions of the sea sur- 
face in the region not far from the reflection point for a smooth surface. Interference between the direct arrival 
of a short-range sonar echo and the fluctuating surface reflection causes the apparent vertical direction of arrival 
in the echo to fluctuate and so to prevent a determination of target depth by a surface ship sonar. 

The coefficient of variation V for the surface reflection is greater than for the direct path, and decreases with 
range, so as to have eventually the same value as that of the direct path at long ranges (Fig. 2). The reason isthat 
the sea surface becomes sensibly smooth at long ranges, where Rayleigh parameter R = 2kh sinö becomes less than 
unity. When this occurs, the fluctuation caused by the moving sea surface become less than the fluctuation caused 
by the microstructure. This was also observed (20) for reflections of 168 Hz pulses from the surface between a 
deep (2880') source and a deep (3000') receiver separated by ranges from 1 to 5.5 kyd. In tank experiments with 
.short pulses, Russian scientists have found V to increase with the Rayleigh parameter R = 2kh sin 0 until R was 
about unity and to remain nearly constant between 0.25 and 0.40 for R greater than unity. Similarly, in a deep 
water experiment, Nichols and Senko (23) in 2400 fathoms of water at frequencies from 400 to 1500 Hz and at 
grazing angles of 18, 31 and 85°, found V for surface-reflected pulses to increase with R to a value of about 0.35 
near R = 1 and to rise only slowly with R thereafter. In an experiment in the Severn River off Annapolis (24), V 
for the surface reflection ranged from 0.40 to 0.51 while V for the direct path, 100 ft long, ranged from 0.03 to 
0.21; other differences were that the surface reflection had a Rayleigh amplitude distribution compared to a Gaus- 
sian distribution for the direct transmission, together with a more rapid rate of fluctation. In one final experiment 
that may be mentioned (25), done at 750 and 1500 Hz over a 24-mile path south of Bermuda and involving a sur- 
face reflection, V for a series of pulses over a period of 90 minutes had median values of 0.23 at 750 Hz and 0.32 
at 1500 Hz for wind speeds between 2.5 kts and 25 kts, with no dependence on wind speed; V was greater (.31 
and .46) at seasons when this path failed to reach the surface but became horizontal at a shallow depth. 

Fluctuation Time Scale 
The many forms of inhomogeneity in the sea, and the variety of propagation paths result in a wide range of 

fluctuation time scales. 
At the short period end of the scale are the high frequency fluctuations produced by the turbulent microstruc- 

ture and the motion of source and/or receiver through it. In World War II (26), the correlation coefficent of the 
amplitude of short 24 kHz pulses travelling via a direct path a distance of 965 yards fell to zero in about 2 seconds; 
inside a shadow zone, where the low-level sound is due to scattering, CW signals were observed to be uncorrelated 
over 0.05 seconds. Next higher on the time scale come fluctuations of sound reflected and scattered by the moving 
sea surface, which imposes its own motion on an impinging sound wave. Amplitude and phase fluctuations having 
the periodicity of ocean waves are regularly observed in CW and pulse propagation where the sea surface is involved. 
An example is given in Fig 6a, where the fluctuation spectrum* is seen to be essentially identical to the spectrum 
of ocean waves. Internal waves have been suspected of causing fluctuations with periodicities measured in minutes. 
They are observed in long-range propagation experiments where the available propagation paths are refracted paths 
that become horizontal at shallow depths. An example of a spectrum thought to be of this type may be seen in 
Fig 6b. This cause was originally postulated by Nichols and Young (27) to account for transmission fluctuations 
observed between a fixed source at Eleuthera and a fixed receiver at Bermuda 720 miles away, and has been subse- 
quently postulated for other data in this same area by Stanford (28) and Baxter and Yang (29). 

The tides cause fluctuations at the tidal periods in shallow water where a small change in water depth can pro- 
duce a large change in received signal level by causing interference between the normal modes of the propagation. 
Fig 7 shows the fluctuations of 10-15 db over a distance of 5000 ft in 60 ft of water that occurred simultaneously 
with a two-foot range of the tide. 

*obtained by narrow-band analysis of the envelope of the received signal. 

11-9 



1° I  c 

_JL 

T 
70  ft 

—|     (—40 yds 

l°c 

T 

a) 

J_ 0f3VaAj^WWV^V^ 
5  meters 

b) 
Fig. 5. Thermal microstructure as recorded by a thermopile moved horizontally through the sea. (a) thermal 

traces at three depths with a 100 ft. mixed layer; the temperature changes in the layer are less than below 
it. Reference 14. (b) a trace in the layer made with a fast-response thermopile, showing fine-grained micro- 
structure. Reference 15. 

11-10 



0        0.1 .5 0.05 .15 

FREQUENCY, cycles 
per sec. 

FREQUENCY, cycles 
per min. 

b) 

Figure 6. Two examples of fluctutation spectra of 270 Hz CW transmission between Eleutera and Bermuda, 
a distance of 700 miles, (a) spectrum of fast fluctuations ascribed to surface waves, (b) spectrum of slow 
fluctuations ascribed to internal waves. Vertical scale was not given. Reference 27. 
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Finally, at the long-period end of the overall time scale are the fluctuations caused by seasonal and metero- 
logical changes in the ocean medium between source and receiver. An example of phase changes in 420 Hz CW trans- 
mission between source and receiver over paths 41 miles long over a four-day period of time are shown in Fig 8. 
We note in this data the strong diurnal variability of phase and the effect of the passage of a cold front through 
the area. 

Effect of Source-Receiver Motion 
When the source or receiver or both are in motion, the fluctuation time scale depends on the rate at which the 

motion causes the multipaths to interfere. An example (30) of fluctuation that is likely to have been primarily 
caused by motion of the source is seen in Fig 8. This shows what was received by sonobuoys at two depths 
(90 and 300 feet) from a steady two-frequency (142 and 275 Hz) source as it was towed at a speed of 2.7 knots 
out to the first convergence zone. The propagation here is by bottom-surface multipaths. There is little evident 
correlation of the envelope of the received signal between the two depths at the same frequency or between the 
two frequencies at the same depth. Also, there is a wide range of fluctuation periods, from fast unresolved fluc- 
tuations to slow signal surges lasting about one hour; the effect of a faster towing speed would doubtless be to speed 
up the fluctuations. For the 142 Hz CW bottom-bounce data illustrated in Fig 9, the auto-correlation coefficient 
of signal samples integrated over 16 seconds was found (30) to fall to 1/e (.368) in times ranging from 0.25 minute 
(no correlation between successive samples) to 7.5 minutes, with a frequency of the correlation time to increase 
with range. In short, in this data, the many transmission multipaths interfered in a complex and constantly changing 
manner as the range between source and receiver increased. 

Shallow Water 
Shallow water is noted for its variability, both with time at a single location, and with location at a single time. 

Table I, from Weston (31), is a list of eight fluctuation mechanisms, in order of periodicity, that have been ob- 
served in shallow water. As an example of one shallow water fluctuation study, Mackenzie (32) has described quan- 
titatively the amplitude fluctuations and frequency spreading of 350 to 2400 Hz CW transmissions at distances 
of 10 to 30 miles over a 60-fathom deep sand bottom. The results of this experiment are in keeping with the view 
that the fluctuations were due to interferences between numerous surface-reflected multipaths. 

Fixed Source-Fixed Receiver Studies 
A number of papers have appeared by a number of authors on the fluctuations received at Bermuda from a CW 

source at Eleuthera in the Bahamas 720 miles away. Among these are papers by Nichols and Young (27), Nichols 
and Senko (23), Stanford (28) and Baxter and Yang (29). Another favorite transmission region has been between 
Miami and Bimini in the Bahamas 41 miles away (33-35), where phase changes in the received signal were found 
to be associated with changes in the characteristics of the Florida current between source and receiver. An example 
has been shown previously in Fig 8. Fluctuations in phase and amplitude have proven to be useful oceanographic 
tools in studies of large-scale time-varying water masses. 
Signal Fluctuation Statistics 

A model for the statistics of the amplitude of signal fluctuations can be derived (36) from some simple consid- 
erations. At the outset of this chapter, it was noted that the fluctuations of the signal from a steady distant source 
in the sea may be said to be caused by multipart propagation in an inhomogeneous moving medium. Some examples 
of the multipaths that come to mind are the refracted paths in ducts, the four paths involving one bottom encounter 
in bottom-bounce propagation, and the paths from scatterers in the body or on the boundaries of the sea. Some 
examples of inhomogeneities are the rough sea surface, the temperature and salinity microstructure, and the bio- 
logical matter existing in the body of the sea. These various inhomogeneities are always in motion relative to each 
other and to the source or receiver, or both, because of currents, turbulences, and source or receiver motion relative 
to the medium. 

The result is that a received signal is likely to consist, in whole or in part, of a number of contributions of random 
and time-varying phase and amplitude. These random multipath contributions will be negligible near the source but, 
with increasing distance, will tend to overwhelm the steady, direct path component and produce, at a long enough 
range, a resultant consisting only of components of varying phase and amplitude. As an example, the propagation 
through random microstructure may be viewed conceptually as consisting of a steady, direct path component that 
decreases with range, together with scattered or diffracted components that increase with range and eventually 
dominate the received signal. At any range, the resultant is the sum of a steady and a random component, with an 
amplitude distribution that depends only on the fraction of the total average power in the random component. 

In a classic paper published in 1945, S. O. Rice (37) derived the distribution function of the envelope of a sine 
wave plus narrow-band Gaussian random noise. This is the same as the distribution of the sum of a constant vector 
and a random vector whose x and y coordinates are Gaussian time-functions. In his honor, the function is called the 
Rician Distribution. 
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TABLE I 

Fluctuation Mechanisms in Shallow Water. 
From Weston, Reference 31. 

Mechanism 

Seasonal change in 
conditions — temperature 
structure, fish population etc. 

Predominant 
Period 

One Year 

Parameter 
Affected 

Mainly 
amplitude 

Comment 

Transmission is best in Winter 

Seasonal change 
in mean temperature 

One Year Mainly phase Phase delay is greatest in Winter 

Fish shoaling One day Amplitude The level changes occupy only 
about 10 minutes near dusk and 
dawn 

Changes in water depth Tidal Amplitude 
and phase 

The changing mode interference 
patterns cause fluctuations at the 
tidal period or its harmonics 

Depth-dependence of 
streaming velocity 

Tidal Amplitude The mode parameters can be 
greatly changed (especially above 
2 kc/s), causing fluctuations as 
just above. 

Changes in mean 
streaming velocity 

Tidal Phase The phase delay is a direct 
measure of the resolved velocity 
component 

Storms Order of 
several hours 

Mainly Transmission is reduced by the 
amplitude extra scattering loss, etc. 

Surface waves Many seconds Amplitude 
and phase 
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Let P be the magnitude of the constant vector, and let V be the magnitude of the sum of the constant vector 
and a random vector whose x and y coordinates have unit variance. Then Rice showed that the probability density 
of V is given by 

p(V) = Vexp ff) • l0(PV) 

where l0(PV) is the modified Bessel function of argument PV, for which tables are available (38). 
When the constant component vanishes, the result is the Rayleigh distribution 

,   -V2 

p(V) = Vexp( — 

The signal is now made up entirely of random components. At the other extreme, when the constant component 
is very large, or more accurately, when PV > 1, the distribution is essentially Gaussian with unit variance: 

P<V>=l^p-)/2exp 
-(V-P)2 

We define now a ratio T, which may be call the randomicity of the signal, defined as the fraction of the power of 
the received signal that is random, or 

Random Power        2 

Total Power        2 + P2 

where the mean power of the random vector is 1 and P2 is the power of the constant vector. The randomicity T 
is small close to the source, in a convergence zone, and generally when there is a single, strong, dominant propa- 
gation path; under these conditions the amplitude distribution tends to be Gaussian. T approaches unity when the 
signal is composed principally of scattered contributions, as in a shadow zone at high frequencies in deep water, 
or generally when many multipaths exist; now the distribution will approach the Rayleigh limit. 

Fig 10 gives cumulative distribution curves of the ratio 10 log l/l where I is the power, or amplitude squared, 
of a given sample of signal and I is the mean power, or mean squared amplitude, of an ensemble of samples. When 
T can be estimated from the existing propagation conditions, the corresponding cumulative distribution curves 
give the fraction of signal samples having an intensity equal to or less than the mean intensity of the sample pop- 
ulation. When T is greater than about 0.5, the distribution is insensitive to T. From a prediction standpoint, the 
fluctuation of a received signal about its mean intensity can often be predicted better than can be the mean intensity 
itself. 

The model has been validated empirically by comparison with field data observed under a wide variety of prop- 
agation conditions (36). Included in the comparison was transmission to a receiver in and below a surface duct, 
low frequency CW bottom-bounce transmission to ranges short of the first convergence zone, CW transmission 
from Eleuthera to Bermuda, and several other cases. The model applies only to fluctuations that are stochastic, 
rather than deterministic, in origin. 

Ambient Noise Fluctuation Statistics 
The ambient noise background of the sea, in the absence of wave crashes, biological noises, and ice cracking 

has been found (39) to have a Gaussian amplitude distribution. This is to be expected if the background received 
by a hydrophone is the sum of many individual noise contributions from the sea surface overhead or from ships 
at a distance. When Gaussian noise is fed into a conventional processor consisting of a bandpass filter of bandwidth 
w, a square-law detector, and a low-pass filter or integrator of integration time t, the output can be represented by 
2wt independent samples of the Gaussian input. In statistical theory it is shown (40) that the sum of the squares 
of n independent samples of Gaussian variate has a chi-square distribution with n degrees of freedom. Thus, in our 
case, samples of Gaussian ambient noise at the output of the processor should be distributed according to a chi- 
square distribution with 2wt degrees of freedom. 
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Fig. 10. Cumulative distribution curves of the level of a received sinusoidal signal. Vertical scale is the fraction of 
signal samples equal to or less than the number of decibels relative to the mean, as abscissa. T is the ran- 
domicity, or fraction of random power in the received signal. 
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Fig 11 gives curves of the cumulative chi-square distribution for values of 2wt between 2 and 128 and with 10 
log l/Tas abscissa. We may note how similar this family of curves is to the Rician curves of Fig. 10; mathematically, 
the chi-square distribution for 2wt = n = 2 is identical to the Rayleigh distribution (T = 1). At the other extreme, 
for large 2wt and small T, the distributions are nearly normal, with 2wt approximately equal to 1/T. 
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Fig. 11. Cumulative distribution curves of the level of Gaussian noise at the output of a processor of bandwidth 
w and the integration of time t. 
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CHAPTER 12 

SPATIAL COHERENCE (CORRELATION BETWEEN 
SEPARATED RECEIVERS) 

Introduction 
In the preceding chapter, we considered the fluctuations of amplitude of the signal from a steady source as 

received at a distant point in the sea. This subject was dignified by the term temporal coherence, since reference 
was made to the time variability of the envelope of a received signal relative to that of a source (assumed constant). 
In this chapter, we deal with the spatial coherence of signals, wherein the amplitude and/or phase of a signal received 
on one hydrophone is compared nearly simultaneously with the signal received on another, separated from the first 
by a certain distance in some direction relative to the propagation. The magnitude of the spatial coherence of the 
outputs of two hydrophones is their cross-correlation coefficient; as a function of a time delay inserted in one of 
them, the cross-correlation coefficient is expressed by a time-delay correlogram. 

Although the subject of signal fluctuations has a large literature, as we have noted in the last chapter, the subject 
of spatial coherence does not. Field observations are relatively scanty and the effects of propagation on coherence, 
except in the case of homogeneous microstructure, are not well understood. 

The subject is important for the design and performance prediction of hydrophone arrays. The array gain of an 
array is determined by the cross-correlation coefficient of signals and noise between all elements of the array; the 
coherence distance — defined as the hydrophone separation at which the coefficient for a received signal diminishes 
to some stated value — is the most important natural parameter involved in array design. The relationship between 
coherence and the gain over noise of an array is given in the author's book (1) and in a paper by Nielsen (2). 

Types of Coherence 
The similarity of the outputs of two hydrophones, or their coherence, can be measured in various ways, de- 

pending upon the particular characteristic of the output that is of interest. Let the output of one be the time func- 
tion Si (t), and that of the other be s2 (t). If Sj (t) is simply multiplied by s2 (t) and time-averaged, the correla- 
tion coefficient between them is defined by: 

•A) 

Si (t) • s2 (t) 

~i r "dt: 
Si (t) s2 (t) 

where the denominator is a factor inserted to make pT = 1 when S! (t) = s2 (t); it amounts to the product of the rms 
values of Si (t) and s2 (t); that is: 

[    ]   = 
1   P 

—       s?(t)d 
Vo     . 

= [s?(t)-s*(t)J 

1     ■ 
—        si(t)dt 

LTo 

Vz 

This may be called the "true" or "multiplier" correlation coefficient since it involves both the amplitude and the 
phase of the two signals and can be obtained electronically with a multiplier correlator. 

Another kind of correlation involving only phase (since aplitude changes are removed before multiplying) is 
called clipped or polarity-coincidence correlation and has a great deal of engineering usefulness. Here Si and s2 

are hard-clipped before multiplying, so as to have values proportional to either + 1 or- 1. The clipped correla- 
tion coefficient may be written 

-if sgn Si (t) • sgn s2 (t) sgn sx (t) sgn s2 (t) 
— dt = - 

[       ] [      ] 

where "sgn" refers to the sign of the two signals whether positive or negative, and [ ] has an analogous defini- 
tion as before. When the phase variation between the two signals is small and highly correlated, the clipped correla- 
tion coefficient is the same as the phase correlation coefficient, inasmuch as amplitude variations have been removed 
by clipping. 
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The opposite kind of correlation, wherein amplitude is preserved and carrier phase is eliminated, is envelope 
correlation, involving the smoothed magnitudes of the two signals, or 

1   /*Tenvs!(t) • 
PenV"Tjf0 f" 

env s2 (t) env Si (t) env s2 (t) 
 :  dt= - 

[       3 

where "env" is the envelope of the two signals equivalent to 

env s(t) = —/       |s(t)|dt 

where T' is the time constant of the envelope averager. 
Which kind of correlation is appropriate for particular sonar systems application, whether pT, pc or penv, de- 

pends upon the processor employed. Many sonars employ clipped processing in some form or another, and in such 
cases pc will be the one of greatest interest. 

Coherence of Single-Frequency and Band-Limited Signals 
If Si (t) and s2 (t) are sinusoidal functions of time having random phase and random amplitude, we can write 

sj (t) = ai (t) sin (cot + ^^t)) 

s2 (t) = a2 (t) sin (cot + v)2(t)) 

where ai, a2, <Pi, ip2. are random time variables. The true or multiplier cross correlation coefficient between Sj(t) 
and s2 (t) is 

ai • sin(wt + ¥>i ) • sin (cot + ip2) 
P.. =_ 

which becomes, after some trigonometric manipulation, 

ai a2 cos t ((£>i - i/?2) 
P12 = : :  

If the amplitude and phase fluctuations are uncorrelated — an assumption not always valid in the real ocean — we 
can separate the amplitude and phase terms and get 

aia2 
Pi 2  =- "   COS {ipi  - 1^2 ) 

The first term in the above product is the "envelope" correlation coefficient; the second is the "phase" correlation 
coefficient. The first can be ignored, or rather considered to be unity, when clipped, or DIM US, beam-forming is 
employed. This kind of processing is the rule rather than the exception in sonar, since it provides great hardware 
benefits at only a slight reduction in array gain. Hence, we can write 

pMi2 =cos (V>I - <4>i) 

In other words, the correlation coefficient for phase is equal to the mean value of the cosine of the phase difference 
of the signal at two receivers. The phase correlation coefficient can be measured by a phase meter or by travel time 
differences, and represents the magnitude of fluctuations of the phase of a signal between spatially separated re- 
ceivers. 
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For band-limited signals lying in a band of frequencies centered around frequency f, we have 

01 - 02 = 27Tf (Tj - T2 ) 

where (TX - T2) is the difference of travel times to the two receivers. By expanding the cosine, we obtain for small 
phase differences (i.e., highly correlated signals) the result 

,*2 

12 2 
pM     =1—^1- a2 (27Tf)2 

~12 

2 
where aj 2 is the variance of the travel time difference between the two receivers. 

Coherence of Isotropie Noise 
For isotropic noise, we can obtain the coherence function in a straight-forward way. We start with a single source 

of plane sinusoidal waves arriving at an angle 0 to the perpendicular to the line separating the two hydrophones, as 
shown in Fig. 1a. The correlation coefficient is 

sin cot • sin co(t + T) 

PT= =r 
sin art • sin co(t + r) 

sin cot (sin cot cos COT -t-cos cot sin cor) 

sin2 cot cos COT 
: cos COT 

: cos co (-5-sinö) 

Here T is the time delay between the two hydrophones, equal to (d sin 0)/c where d is their separation distance and c 
is the velocity of sound. 

For isotropic noise we integrate pT over 0 and obtain 

PT ('Sno£eIC) =/    2 cos (^ sinö> cos 0 d0 / "2 cos 0 d0 0 / ~2< 

J 1 
2 -2 

■n 

11 cod 2" 

2 

cod      sin kd 

= — — sin (—sin0)     _. 
2 cod c _ n 

sin 
 c_        kd 
cod 

c 
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dA 

Fig. 1. (a) A plane waveincident on two hydrophones spaced a distance d apart, (b) the function (sin kd)/kd, 
where k = 27r/X.The zeros occur multiples of half wavelength separation, or when dA= n/2, n/2, n = 1, 2, 
3... 
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where k = 27r/X. The function (sin kd)/kd is plotted against d in Fig. 1b. The correlation coefficient goes to zero, 
and the noise becomes incoherent, for separations of a half-wavelength and multiples thereof. When an electrical 
delay re is inserted into one hydrophone, the result is 

sin kd 
p   = cos COT 

T       kd e 

For a band of frequencies, a further integration is necessary over GO. A similar procedure can be gone through for 
noises of arbitrary (non-isotropic) directionality, such as for monopole or dipole noise sources lying on a single 
plane. Correlation functions for planar and volume distribution of noise sources radiating like cosm0, where 0 is 
the angle with the vertical, have been worked out (3). 

Relation between Clipped and True Correlation Coefficients 
If the two sine waves are hard-clipped before multiplying and time averaging, the clipped cross-correlation coef- 

ficient can be shown to be equal to the difference between the fraction of the time that they have like and unlike 
signs; that is, for sampling at equal time intervals, the clipped coefficient equals (m-n)/(m+n) where m is the number 
of agreements of sign in a given time and n is the number of disagreements. 

The relation between the true and the clipped correlation coefficients may be readily found for two sine waves 
of the same frequency differing by atime delay T. Let the two sine waves be written ft (t) = A sincot and f2 (t) = 
B sinco(t + T). The time delay T can be written <pT/2n where </> is the phase angle and T is the period of the two sine 
functions. They will have the opposite polarity during the interval 2T of each cycle, and the same polarity during 
the interval (T- 2r) of each cycle. The clipped correlation coefficient becomes, accordingly, 

m-n       T-2T     2T 4T T p  =  = =1 ; ip= 2n— 
c     m + n T T T T 

2        it -n 

But, since pT = cos <p, (n/2 - <p) = arc sin pT, and we get the result 

2 
p   = — arc sin pT 

c     7T ' 

This simple relation between the two coefficients was established long ago for random Gaussian functions by Faran 
and Hills (4). pc is always smaller than pT except at the extremes of unity and zero, when they are equal. A plot 
of the above relationship is given in Fig. 2. In sonar applications involving clipped signals, such as in DIMUS beam- 
forming, the clipped coefficient is pertinent for array design considerations; in other applications where amplitude 
information is preserved, the true coefficient is appropriate. 

The clipped correlation coefficient may be interpreted in terms of the crenulations of the wavefronts that pass 
by the two hydrophones. Imagine that at some instant of time a cross-section of the wavefronts in the vicinity of 
hydrophones A and B is as shown in Fig. 3a. Here the wiggly lines are wavefronts separating the positive and nega- 
tive pressure regions of a quasi-plane wave propagating to the right, normal to the line joining A and B. The crenula- 
tions may be assumed to be the result of multipath and/or scattered interferences with the primary plane wave. 
If now the successive wavefronts are allowed to propagate toward the right without change of shape (an unlikely 
assumption, but a useful one for our heuristic purpose), then the outputs of A and B will be the time functions 
shown in Fig. 3b. The two outputs may be found to have a correlation coefficient of 0.36 by comparing the length 
of record M having the same polarity, with the length of record N having opposite polarity according to the rela- 
tion pc = (m-n)/(m+n). This calculation is performed electronically in electronic correlators. Thus, the value 0.36 
may be taken to be a measure of the deviation from a plane wave or the wavefront crenulations, of the wave passing 
by the hydrophones. A perfectly plane wave would, of course, have the value 1.0. 

Spatial Coherence in a Random Medium 
The theory of coherence between separated receivers in a random, isotropic, inhomegeneous medium is developed 

in a book by Chernov (5). It is shown that for inhomogeneities described by an auto-correlation function of the 
form p(x) = exp (-x/a)2, where "a" is the correlation distance or "patch size" of the inhomegeneities, and for 
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Fig. 3. (a) a quasi-plane wave is incident from the left on hydrophones A and B. (b) clipped amplitude of the 
output of A and B as a function of time, (c) the two outputs have the came sign during the intervals M and 
opposite sign during the intervals N. The total time interval M was 3.4 arbitrary units and that of N, 1.6 
units. The clipped correlation coefficient over the entire time shown would be 0.36. 
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distances long compared to the Fresnel or "transition" range of the patches (Chapt. 11) given by a2 fk, the correla- 
tion coefficient for amplitude and the correlation coefficient for phase are both equal to unity for longitudinal 
separations d equal to or less than a, and equal to 

(■•&) 
for longitudinal separations much greater than a. For transverse separations, when 2irafh>\, the correlation coef- 
ficients are both equal approximately to exp(-d2/a2). Thus, we may say as a generality that, under the above condi- 
tions, the correlation distance of separated hydrophones is about the same as the correlation distance of the inhomo- 
geneities. At shorter separations the two receivers are in an essentially homogeneous medium; at longer separations, 
the two receivers become decorrelated by the scattering and diffraction of the inhomogeneities. 

This body of theory, while elegant, applies only to propagation through a random, isotropic microstructure. It 
does not apply to long-range propagation in the real ocean where multipath interferences, caused by refraction in 
the body of the sea and reflection from its boundaries, are often the prime reason for the decorrelation of separated 
receivers. The theoretical effect of microstructure on the directivity pattern and the array gain of a short line array 
(shorter than the coherence length or patch size of the medium) may be found in Reference 6. 

Field Observations by the Naval Ordnance Laboratory 
A variety of signals and noise have been observed in a series of coherence measurements under different condi- 

over a period of years at the Naval Ordnance Laboratory (now Naval Surface Weapons Center). In this series, the 
outputs of the hydrophones to be correlated were tape-recorded in the field; a string or line of separated hydro- 
phones was used. Later, in the laboratory, selected pairs of tape channels were fed into a Deltic correlator to pro- 
duce on an oscilloscope screen a time-delay correlogram that was photographed and subsequently measured. 

A number of reports were written. In Reference (7), the coherence of reverberation from the Deep Scattering 
Layer and from the bottom in deep water was measured; in References (8) and (9), ambient noise and transmitted 
single frequency sound was measured using a bottom-mounted vertical array at Bermuda (TRIDENT Vertical Array); 
in Reference (10) the coherence of transmitted sound within and in the neighborhood of the first convergence zone 
was observed; while in references (11) and (12), the vertical and horizontal coherence of explosive reverberation 
in shallow water was studied. 

For this variety of signals, noise, and reverberation, Figs.4 and 5 show a compilation of measured coherence 
data as a function of normalized hydrophone separation in the vertical in an octave band near 1—2 kHz. In all 
cases, the clipped correlation coefficient falls off with separation at a rate intermediate between that for 
uni-directional noise and isotropic noise. Of the various kinds of noise and reverberation, the return from the bottom 
is most coherent, while the coherence of volume reverberation from scatterers outside of the Deep Scattering Layer 
is essentially like that of isotropic ambient noise originating at the sea surface. 

Reverberation having a totally different spatial coherence occurs in shallow water. Observations (11) with a 
vertical string in shallow water show that the reverberation from an explosive source occurs within a small vertical 
angle about the horizontal. At 1 kHz at a time of 7 seconds after the detonation, this angle is approximately ± 5°, 
decreasing with increasing time and frequency. Shallow water reverberation thus becomes more vertically coherent, 
with a smaller vertical angle, with increasing range and frequency. With a horizontal string of hydrophones, it was 
found (12) that the horizontal spatial coherence of reverberation was less than in the vertical, in keeping with the 
fact that the reverberation from an explosive source received with a non-directional hydrophone arrives equally from 
all directions in the horizontal plane- Comparing horizontal and vertical in terms of array gain, this means that a 
horizontal array would be expected to have a far greater array gain against shallow water reverberation than would a 
vertical array of the same size. 

The coherence of the ambient noise background in deep water has been measured (13) at a number of inter- 
mediate depths between top and bottom off St. Croix, Virgin Islands. The correlograms observed at this location 
were essentially the same as those found earlier (8) with the TRIDENT Vertical Array. 

Examples of correlograms of the ambient background at St. Croix for hydrophones vertically separated by 
21 feet at a depth of 4000 feet are shown in Figure 6. Each correlogram here is a sum of 25 ms correlograms inte- 
grated over a 3-second period. They show most strikingly the difference between the coherence characteristics of 
the ambient background in a low frequency band (88 — 177 Hz), where distant shipping produces the major part 
of the noise, and a high frequency band (707 — 1414 Hz), where surface noise of local origin is the principal source 
of noise. Similar results were found at other depths throughout in the water column. 

Turning to transmitted sound, two field experiments may be mentioned. In one (10), a vertical hydrophone 
string was dangled from one ship (Fig 7), while a second ship towed a continuous 1120 Hz source outward in range. 
Coherence data were obtained in and out of the first pair of convergence half-zones at ranges of 33 and 41 mi. The 
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Fig. 6. Successive 3-second samples of corre log rams of the two types of ambient noise observed at a depth of 
4000 ft. The 3.5 millisecond delay of the high frequency correlogram peak corresponds to an apparent, or 
effective, arrival angle of 55°. The hydrophone separation was 21 ft. Reference 8. 
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spatial coherence of the received sound was found to be greater when the source was inside the zones, when only 
a single dominant propagation path effectively exists, than when outside the zones, where the only available paths 
are the four paths that involve one bottom bounce and have a nearly equal transmission loss. The other experiment 
(9) used the TRIDENT Vertical Array at Bermuda with transmission from a source 24 miles away. The time delay 
correlograms enabled the two paths, shown in Fig. 8, to be separated. The clipped correlation coefficient was found 
to fall off slowly with normalized separation dA and to remain appreciable (at about 0.2) for d/X as high as 100. 
Reflections from the surface at a grazing angle of 4 appeared to play no part in the degradation of coherence, since 
no effect of wind speed from 5 — 25 knots upon coherence could be detected. This is in keeping with the fact that, 
because of the small grazing angle at the surface, the Rayleigh parameter was never much larger than unity, so that 
the sea surface was always effectively smooth. 

In still another field test (14), the coherence between two hydrophones 500 feet apart at depths of 4000 and 
4500 feet was investigated as a ship passed overhead (Fig 9). In the three one-octave bands 44-88 Hz, 177-354 Hz, 
and 354-707 Hz, the clipped correlation coefficient fell off to 0.5 at horizontal ranges of the ship of about 1, VA 
and 2 miles, respectively. This rapid decorrelation of ship-noise with range can be ascribed to interference between 
the direct-path sound and surface-bottom multipaths, which become relatively weaker with increasing frequency 
because of a higher bottom loss. In other words, the various surface-bottom multipaths acted as noise to the co- 
herent direct path sound and so degraded its coherence. The effects of such interference on array gain are pro- 
found: a vertical array in a multipath environment steered in the direction of one multipath suffers a loss in array 
gain due to the interfering multipaths. It can be shown (14) that for a perfectly coherent signal in a background of 
incoherent interference, the array gain is 

nL + I: 
AG=10log      s      ' 

iS
+'i 

where ls is the intensity of the coherent signal to which the array is steered, lj is the intensity of the interfering 
multipaths, and n is the number of elements in the array. When n is large enough to make nlsNj, this becomes 

AG= 10 log 

[■ 
's 

's+li. 

where the term in parenthesis is the loss in array gain due to the interference. In the experiment described, ls/l| 
was the ratio of the intensity carried by surface-bottom multipaths to the intensity of the direct-path sound. 

Comparison with Theory 
When source and receiver are shallow and the range is not too great, the meager available data suggest the validity 

of the Chernov formulas for coherence in a randomly inhomogeneous medium. For example, the envelope cross- 
correlation coefficient between vertically separated hydrophones for 25 and 60 kHz pulses at ranges of several 
hundred yards was found (15) to fall to 1/e in a vertical separation of 8 feet, a distance to the patch size of the 
microstructure observed independently. In Russian work (16), the transverse correlation of two shallow receivers 
spaced horizontally from 20 meters to 3000 meters for 7.5 kHz over distances out to 12 km was said to agree with 
Chernov's theoretical work. In another Russian experiment on surface reflected sound (17), the horizontal ampli- 
tude coherence of 2.5 and 4 kHz CW sound was of the same order of magnitude as the horizontal coherence of the 
amplitude of the surface waves — again suggesting that the acoustic coherence is of the same scale as the inhomo- 
geneities of the medium. 

On the other hand, when the propagation paths are deep, the coherence is maintained over much greater dis- 
tances, and the correlation coefficient falls only slowly to zero with increasing separation. An example is the vertical 
coherence of transmission over 24 mi to a deep receiver, as already plotted in Fig. 6. Another (18) is the measure- 
ment of coherence with a distributed array on the sloping bottom near Bermuda. Using 400 Hz sound transmitted 
over several hundred miles in the Deep Sound Channel, individual ray arrivals (making 14 to 16 loops) were found 
to have a transverse phase correlation coefficient falling to 1/e at a longitudinal separation of 700 feet and a trans- 
verse separation of 1300 feet. Various other observations show good coherence between hydrophones separated by 
long distances in the Deep Sound Channel, suggesting the presence of much larger patch sizes - a "macrostruc- 
ture" - in the deep sea. The dominant scale of this deep macrostructure has not yet been determined, but is doubt- 
less larger by at least an order of magnitude than that already measured near the surface. 
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Fig. 8.    An experiment to measure coherence over a transmitted path. The two paths shown could be separated by 
the time delay between them and were reflected at the sea surface at a grazing angle of 4°. Reference 9. 
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Data Summary 
Table 2 is a summary of measurements of coherence length r0 for transmitted signals, as reported in the unclassi- 

fied literature, together with the experimental conditions under which they were obtained. The coherence length 
here is taken to be the length defined by r0 = J^ p(r)dr, where r is the separation of the receivers being correlated 
and p(r) is the phase, or clipped, correlation coefficient. r0 is, in effect, the area under the function p(r); if p de- 
creased linearly with r, then r0 is the separation for which p falls to 0.5; if p decreases exponentially with r, then 
r0 is the separation at which p = e-1 = .37. r0 gives a rough idea of the maximum useful length of an array for 
achieving array gain; arrays in incoherent noise longer than about 2r0 realize no further increase in array gain. Many 
of the entries in Table 2 are, because of brevity, not entirely meaningful; the references themselves should be con- 
sulted in cases of special interest. Most noticeable is the wide variety of conditions applying for the measured data. 

A study of these coherence results, augmented by an understanding of propagation of sound in the sea, indicates 
that the coherence of transmitted sounds, and therefore the gain of deep-water arrays in incoherent noise, should 
be greatest under conditions of (a) narrow frequency bands, (b) low frequencies, (c) short averaging times, (d) propa- 
gation such that a single dominant propagation path exists, and (e) horizontal rather than vertical separation. In the 
design of receiving arrays, these conditions can never be all achieved at the same time, while others will be incom- 
patible with system requirements, so that the usual trade-off procedure will be necessary in the search for the 
optimum array design. 
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CHAPTER 13 

MULTIPATHS IN THE SEA 

Introduction 
This chapter is intended to give a synoptic view of the paths by which sound reaches a distant point in the sea 

under different conditions of depth and distance. These paths, generally speaking, become more numerous, and 
acquire greater differences in travel time and transmission loss, as the range from source to receiver increases. Except 
very near the source, multipath transmission is the rule rather than the exception in sound transmission in the sea. 

Sound propagation in the sea has its above-water analog in electromagnetic propagation in the atmosphere, where 
many of the same propagation phenomena are found. 

Deep Water — Shallow Source and Receiver 
Fig 1 attempts to show in a diagrammatic way the transmission paths between a shallow source and a shallow 

receiver approximately in the order of increasing range from source to receiver. Starting at a short range at the 
upper left, the direct path A is a nearly straight-line path between source and receiver, over which spherical spread- 
ing, plus attenuation, determines the transmission loss. Even this path can be considered as multiple if we consider 
the effects of microstructure, which cause fluctuation of the transmitted sound and the decorrelation of separated 
receivers. When this path becomes equal in length to the geometric mean of the depths of source and receiver, the 
surface reflection B begins to be a significant contributor to the total sound field, and coherently interferes with the 
direct-path sound under conditions of calm seas, high frequencies and small grazing angles, such that the Rayleigh 
parameter is less than unity and the sea surface may therefore be said to be acoustically smooth. 

When a negative velocity gradient extends upward all the way to the surface, the direct and surface paths become 
bent downward into arcs of circles (for a linear gradient) and a shadow is then cast by the sea surface on the waters 
below (Paths C). A receiver within the shadow receives sound only by scattering (x), diffraction (y), and from the 
bottom (z); within the shadow in deep water, a short pulse is received as a weak, irregular elongated blob. During 
World War II, 24 kHz pulses received well within the shadow were found (1) to be some 40 db weaker than they 
would be if the shadow were absent, perhaps representing forward-scattered sound from the biological scatterers 
in the Deep Scattering Layer. 

Wind-mixing often creates isothermal water on top of the negative gradient, or thermocline, so as to form a 
surface duct D. At frequencies well above cutoff, and for a thick layer with a calm sea, the surface duct becomes 
an effective trap, preventing the loss of sound to the abyssal depths of the sea. Under other conditions, the duct 
is so lossy as to be useless as a sonar trap. There is an optimum frequency for duct transmission, such that poorer 
transmission occurs at frequencies much higher or much lower than the optimum. A point well below a duct receives 
duct-transmitted sound only by diffraction near the cutoff frequency of the duct and by surface scattering at higher 
frequencies. 

Path E is the bottom-bounce path. This is the only effective path from a shallow source to a shallow receiver, 
unless a strong surface duct is present. Sound travelling over this path suffers a loss at the sea bed, which may vary 
from near 0 db for smooth layered bottoms at low angles, to 20 db or more for rough bottoms at moderate angles. 
At short ranges, the high grazing angles and the longer path length make this a high-loss path. There are four paths 
(B, SB, BS, SBS) making one encounter with the bottom, and the loss is reduced by 10 log 4 = 6 db 
for non-directional sonars. 

At greater ranges, the bottom reflected paths became refracted, and a convergence zone (F) occurs if the water 
is deep enough. The two half-zones formed by down- and up-going rays merge together as the source of 
sound nears the surface, and result in a convergence gain of 10-15 db (typically) in a zone 3-5 miles wide. In addi- 
tion, a receiving array may be expected to have a higher array gain within a convergence zone than when outside 
it, due to the occurrence of only a single strong propagation path. Deep refracted paths, shown dashed, insonify 
ranges beyond the zone to a range depending on water depth. The zones are repeated at regular range intervals 
and have been observed out to 500 miles or so. 

Beyond the first zone, multiple bottom-bounce paths (G) occur that involve higher losses due to the multiple 
bottom encounters. Few sonars have figures-of-merit high enough to exploit these paths. 

Finally, if there is a depth-excess (water of higher velocity than at surface), FtSR paths may occur (Path H), 
which suffer only the loss at the surface, and for which the loss is only slightly greater than that for purely refracted 
paths. These paths reach the surface on the far side of convergence zones, and serve to extend the ranges of good 
transmission in the vicinity of the zones. 

Fig. 2 is a diagrammatic plot of loss vs. range for the various transmission paths just described. 
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Fig. 1.    Diagrammatic ray paths from a shallow source in deep water. 
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Deep Water — Deep Source and Receiver 
For a deep source, the distance over which direct path transmission is effective is much greater than for a shallow 

source. The reason is that a source in the body of the deep sea often lies well within the Deep Sound Channel. When 
it happens to lie on the axis of this channel, excellent transmission to an axial receiver takes place out to extremely 
long ranges. The horizontal ray from a source anywhere within the channel is itself a caustic and is accompanied by 
pairs of caustics that diverge from its vertices. When the source is off-axis the ray diagram is characterized by "holi- 
days", or shadow-zones, which are not penetrated by purely refracted paths. These shadow zones fill up or expand 
with changing source depth. In Fig. 3, the near-surface shadow zone A fills up with increasing source depth, while 
shadow zone B expands. In addition, there are shadows deep in the sea, such as A' and B', which behave in the 
opposite way. The locations and depths of such shadows, cast by the surface or bottom, have to be found from the 
ray diagram for a particular profile. All of the shadows are insonified by paths reflected from one or both of the 
ocean boundaries. 

The rays leaving a deep source in an upward direction and reaching the surface are called reliable acoustic 
paths; they are so called because they are unaffected by the near-surface vagaries of the velocity profile. After 
reaching the surface, these paths become surface-reflected. The limiting reliable acoustic path is the one which 
becomes horizontal at the sea surface so as to form the outer boundary of the direct sound field. Within the direct 
sound field, there is a convergence gain of a few db before the shadow is reached. The loss along the reliable acoustic 
paths is that for spherical spreading plus attenuation, minus a small amount of convergence gain, as determined by 
the particlar profile used, at ranges near the caustic where the rays approach the horizontal. 

From a deep source to a distant deep receiver there are normally several entirely refracted paths. These may be 
designated by a pair of digits (m, n) that denote the number of upper and lower loops in the ray path. For any 
ray, m and n are either equal, or differ by one. From a given source to a given receiver, the maximum number of 
loops (m, n) occur for the ray leaving the source horizontally; the minimum number of loops occurs for the ray 
skimming the top or bottom of the channel horizontally. In one experiment (2), ray paths designated by (11, 12), 
(12,12), 13,12), (12,13) up to (16,16) were identified in the signal from a shallow explosive source received on 
the channel axis 600 miles away (Fig. 4a). 

These various paths cause a signal received from a distant source to have a complex, irregular envelope. The 
different arrivals arrive at different times and at different angles from the horizontal. Arrivals via paths of small 
(m, n) come in first and are relatively weak; arrivals of high (m, n) come in later and are stronger. The result is to 
cause a short pulse, such as that created by an explosion, to be received as a long, irregular, bumpy signal having 
an envelope that increases with time, with a short tail of scattered and reflected sound. For axis-axis transmission 
the envelope is nearly continuous because of the multiplicity of arrivals and has a sharp cutoff after the axial ray 
has arrived (Fig 4b). 

Shallow Water 
In shallow water many of these same paths tend to occur, but they can seldom be isolated because of the small 

travel-time differences between them. Thus, even at short ranges, the direct path, surface-reflected path, and bottom 
path all interfere, and can be resolved only at short ranges by using very short pulses. At even moderate ranges 
the arrival structure is complex and undecipherable. The mixed-layer path is still an effective path in shallow water, 
and even more so than in deep water, because it tends to be reinforced by sound scattered from the bottom. Because 
shallow water involves multiple encounters with both boundaries, in most cases the ray diagram is useless to quanti- 
tatively describe the sound field. The reason is that the reflection loss at the shallow sea bed, as well as the redistri- 
bution of sound by scattering, in general are all but unknown. 

Figure 5 shows diagrammatic ray paths in shallow water. There are paths through the bottom as well as through 
the water. When the source is within the mixed layer, the mixed layer paths A are important for high frequency 
transmission to a shallow source. In addition, doubly-reflected paths B occur, suffering reflection losses at both 
surface and bottom. With the source below the layer, RBR paths C occur that are in the form of arches repeatedly 
reflected from the bottom. 

The bottom plays a dominant role in shallow water transmission at frequencies too low to be well trapped in the 
water layer. Various paths may exist in the bottom itself, as depicted in Fig. 5. Path A occurs as a surface wave 
traveling along the bottom interface. Reflections from sedimentary layers may exist (B). A refracted path (C) in 
the bottom may occur because of an increase of velocity with depth in a sedimentary bottom due to age and com- 
paction. Finally, a reflection from a crystalline basement (D), if one exists, may contribute to the sound at a distant 
receiver. These bottom paths are best known in connection with seismic prospecting for oil, but have not been much 
studied in connection with propagation in the thin overlying layer of water. 

Normal mode theory is sometimes useful to describe shallow water propagation, but only when the situation can 
be modelled in simple terms, such as a velocity profile that can be represented by one or two layers and a non- 
layered bottom of uniform depth. Even in these cases the theory is complex and requires elaborate computer pro- 
gramming. The simplest case is that of iso-velocity water overlying a flat fluid bottom; here intensity summation 
of modes yields general curves that may be useful for prediction when the simple model is valid. 
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Fig. 3. Limiting rays for a shallow and a deep source. The Regions A, A', B, B' are shadow zones into which no 
direct path rays penetrate, but which are insonified by reflected rays shown by the arrows. CZ and CZ' are 
the first two convergence half-zones formed by up- and down-going rays from the source. 
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Water Paths 

a) 

Bottom Paths 

WATER 

 SEDIMENTS 

BASEMENT 

Fig. 5. Paths in shallow water, (a) Paths within the water column for a source in and below a surface duct for 
the velocity profile at the right. Paths A and B repeatedly encounter one of the ocean boundaries, while C 
encounters both. In well-mixed shallow water the duct extends all the way to the bottom, (b) Paths within 
the ocean floor. A is a refracted path through a well-defined upper layer; B is a reflection from a layer in 
the sedimentary column; C is refracted by the velocity gradient in the sediments, while D is the reflection 
from a crystalline basement. All these paths may contribute to the sound received from the source. 

13-7 



All in all, the propagation paths in shallow water are many and complex, with nearly the same travel time, and 
are not well known quantitatively due to lack of knowledge of the losses at the boundaries. 

Multipath Effects 
The transmission paths just described do not occur isolated from one another, but paths of different kinds (A-H), 

often with comparable losses, generally exist between two points in the sea. An obvious example is the sound field at 
short ranges caused by coherent interference between the direct path A and the surface reflection B; another exam- 
ple occurs at longer ranges when the transmission loss via the surface duct E is comparable to that via the bottom 
reflection F. Such multipaths can often be sorted out by directionality of source and receiver. But even a path of a 
single kind is usually multiple, as in the case of microstructure along the direct path A, or the various paths with 
different numbers of surface bounces to a receiver in the surface duct D. Fig 6 illustrates the four paths be- 
tween a source and a receiver that are reflected once from the bottom and have nearly the same transmission loss, 
since loss on surface reflection tends to be small, and nearly the same travel time when the source and receiver 
are shallow. Finally, the refracted paths within the Deep Sound Channel occur in multiples, as we have noted, so as 
to produce the highly distorted shot signals of Figs. 4a and 4b. 

One result of multipath propagation is the fluctuation of transmitted signals. Signal fluctuations cause sonar 
targets to be detected during periods of signal surges at greater ranges than they would be in the absence of fluctua- 
tion, but cause targets to be lost during periods of signal fading. Thus, the probability of target detection becomes 
higher at long ranges and lower at short ranges, relative to what would be expected from the sonar equation if 
fluctuations were ignored. Signal distortion is another result of multipath propagation, where an initially short 
signal is stretched out in time and acquires an irregular envelope because of differences in travel time and trans- 
mission loss over the various multipaths. Signal distortion makes replica correlation and matched filtering useless 
for detection of a target at a long unknown range. Decorrelation of separated receivers is another effect of 
time-varying multipaths, causing the gain of an array to be less than it would be in the absence of multipaths. 
Finally, frequency shifting and broadening take place wherever the multipaths from a constant-frequency source 
encounter the moving sea surface, or when the motion of the source or receiver, or both, cause interferences among 
the transmission multipaths. Wider receiving filter bandwidths are necessary to accommodate the frequencies gen- 
erated in propagation. 

On balance it would appear that multipaths are generally deleterious to sonar operations since they degrade the 
predictability of sonar performance. They degrade to some extent the benefits of elaborate processing schemes 
and extended receiving arrays that would exist in an ideal, multipath-free ocean. 
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////////////////////////////////////// 

Fig. 6. The four paths between a source S and a receiver R making one bounce off the bottom. Four additional 
paths making two bounces occur, and four more making three bounces, etc. The four one-counce paths 
have nearly the same transmission loss, since the differences in path length, bottom grazing angle, and 
the loss on surface reflection are small. The rays connecting a particular source and receiver are some- 
times called "eigenrays" to distinguish them from all the other rays in a ray diagram. 
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