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ABSTRACT 

This report addresses the analysis of stresses in a thin walled elliptical cylinder using both 

classical membrane theory, bending theory, and Finite Element Analysis. Numerous 

analytical solutions from six authors are presented and examined to determine the hoop 

stresses, bending stresses, and total stresses that arise when elliptical cargo tanks are 

subjected to uniform internal pressure. Two Finite Element Models were created and 

evaluated using quadratic beam and shell elements. All resulting stresses are analyzed and 

compared for accuracy. The final product is an analytical solution procedure that can be 

used by practicing engineers for elliptical cargo tank design. 
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1. Introduction 

1.1 General 
Highway cargo tankers are an essential part of the economic infrastructure of the 

United States, and many other countries throughout the world. They serve as a means of 

transportation for both hazardous and benign liquids and gases. The products carried in 

these tankers range from toxic waste and gases to milk and water. Without their use 

consumers would not have access to many of the goods that are part of every day living. 

Finding safer and more economical ways to transport materials is a chief concern 

of both the Federal Highway Administration (FHWA) and the cargo tanker manufacturing 

industry. One way to make a tanker safer is to lower the center of gravity. The method 

most commonly used is to construct the tanks with an elliptical profile instead of a circular 

profile as shown in Figure 1. This allows the same ground clearance while having a lower 

center of gravity, and the same or greater cargo capacity. While the elliptical profile does 

create a safer tanker with regard to over-turning, it creates forces in the shell wall that are 

not present in simple circular sections. The contents of the tank may also be pressurized 

which compounds the forces created by weight of the cargo alone. 



äsg&SK 

FIG. 1. Typical Truck Mounted Elliptical Cargo Tank 

1.2 Objectives of the Study 

The primary objective of this study is to find closed form solutions that accurately 

predict the bending moments, hoop forces, and bending stresses in pressurized elliptical 

cargo tanks subjected to uniform internal pressure. The cargo tank evaluated in this 

report has a major axis of 78.8 in., a minor axis of 47.5 in., is constructed of steel 0.25 in. 

thick, and has a uniform internal pressure of 10 psi. An attempt to validate the closed 

form solutions will be done by comparing the results of various solution techniques. The 

inputs needed to find the bending stresses are the hoop forces and the bending moments 

that are generated in the shell. The equation that will be used to determine the total stress 

when small deflections occur is: 

°* = t J 
+ (1) 

where Nis the hoop force, Mis the bending moment, and / is the shell thickness. 



There are three major phases in the construction of this study. First, development 

of formulae using pure membrane theory. Second, construction of formulae using bending 

theory. Finally, comparison of the various closed form solutions with one another and 

against the results of a finite element model analysis. 



2. FLÜGGE MEMBRANE THEORY 

2.1 General 

A cylinder is created by moving a straight line perpendicularly along a simple 

closed curve. Thus, through every point on the surface of the cylinder there is a line that 

lies on the surface. These lines are called generators. When a plane that is normal the 

generators intersects the cylinder, a profile is formed. The profiles are identical for all 

generators. Cylinders are titled after the shape of the profile. In this case, the profile 

considered is an ellipse, thus, this is a study of elliptical cylinders. 

2.2 Coordinate Relations 

The length of the cylinder is /, and an arbitrary profile is chosen as a reference 

point from which to measure the distance between two selected profiles. The distance x is 

measured along the generators and is the first of the primary coordinates. The second 

primary coordinate is phi (<j>) which is the angle between a surface tangent and the 

horizontal. The dimensions of the semi-major and semi-minor axes will define the 

geometry of the profile, and the x-y coordinates defined any point on the cylinder surface 

by using the angle phi. The radial direction is orthogonal to the tangent at any point on 

the surface of the cylinder. 



FIG. 2. Coordinates of a Cylinder 

To analyze the cylinder it is necessary to consider an infinitesimally small element 

on the surface of the shell. The element is bounded in the x direction by x and x+ dx, and 

in the <j> direction by tj> and <f> + dfi Membrane forces which act on the element's edges 

are tangent to the middle surface. The stresses per unit length of the section are the 

normal and shear stresses. Normal stresses are expressed by the components Nx and N^, 

and shear stresses are Nx^ = N^xr. The loads per unit area are comprised of the elements 

p* and p^ in the directions of increasing x and ^ with a radial element pr positive in the 

outward direction (Fig. 3). 



Nx + (9Nx/9x)dx 

(<3Nx<j>/<3x)d 

N4> xß4> )$ 

FIG. 3. Membrane Forces and Stresses on a Surface Element 

2.3 Equation Development 
Equilibrium of the shell element in figure 2 results in the following differential equations 

for the membrane stresses: 

Equilibrium in the x-direction gives: 

dN ON* 
■~dx ■ rd<p + —rrd<f> -dx +px-dx-rd$ = 0 
3c oq> 

Summation of forces parrallel to the tangent yields: 

—rrd<j> ■ dx + ——Z-dx ■ rd$ + p4-dx- rd$ = 0 
dtp ck 

(2) 

(3) 

Equilibrium of forces normal to the surface is: 

Njdx -dfi- prdx- rd<j> = 0 (4) 



Division by the two differentials gives the differential equations for the membrane forces 

experienced by the shell. 

~dT=z~p'~7~W (5) 

ac      Px   r d<f> (6) 

N<=/V (7) 

It becomes evident from equation 4 that the hoop force (N, ) is entirely a function 

of the internal pressure and the radius of curvature. 

The boundary conditions of primary concern for this problem are those at the end 

supports. Support is supplied in the radial direction by a ring, truss, or thin solid wall 

normally in the form of a baffle or head. For an elliptical cylinder tank the support will 

most likely be a stiffener ring or a thin plate head depending on the manufacturer. The end 

support will be defined as a diaphragm in this report. 

The simplest and most important boundary conditions of membrane theory for 

cylinders coincides with the conditions of this study. The cylinder is of length / supported 

by diaphragms at both ends. The distribution, along the length, of the shearing force Nx$* 

is the same as that of a simply supported beam which carries a uniformly distributed load. 

The Nx forces are distributed in the x-direction similar to the bending moments of a beam. 

Thus, a cylindrical shell behaves like a simply supported beam and transfers all the 

shearing forces Nx^ to the diaphragms at the ends of the span.   However, due to the 

geometry of the cross section of a cylinder the distribution of the forces Nx and Nx^ 

cannot be derived from the simple beam application. 



for phi = consta 

FIG. 4. Cylindrical Shell Supported By Diaphragms at Ends 

When the coordinate x is considered at the mid-point of the longitudinal span, the 

following boundary conditions are found: 

Nx = 0      at     JC = ±//2 (8) 

Using Nx from equation 4b, fi and ß are defined as: 

m...*m.-Lm (9) 

Thus, the following two general equations for the membrane stresses in cylinders are 

found. When equation 7 is added to this pair the generalized set of equations is complete. 

N^-xFty) (10) 

N. 
8rv ' d<t> 

N,= flr 

(11) 

(7) 



2.4 Circular Cylinder 

A brief study of the circular cylinder will be beneficial prior to progressing the 

more complex elliptical cylinder. 

-4J2- 

Longitudinal View End View 

FIG. 5. Circular Cylinder 

This serves as the simplest case of a cylinder with r = a is a constant. If the cylinder is 

filled with a fluid with specific gravity (gamma) and an internal pressure po the external 

forces encountered are ps = p^ = 0 pr = po -ya cos 0. Applying the boundary conditions 

of Fig. 4 to equations 10, 11, and 7 the specific stress resultants for the circular cylinder 

are 

N# = p0a - ya2 cos^ 

N^= -poccsin^ 

Nx = -^r(/2-4x2)cos^ 

(12) 

(13) 

(14) 

The internal pressure produces only hoop stresses while the weight of the fluid 

carried internally causes a bending in the x-direction of the cylinder between the 

diaphragms. As described previously the shear and normal forces have the same 

distribution as that of a simply supported beam. The distribution of Nx along the profile is 

shown in Fig. 5. 



2.5 Elliptical Cylinder 

The elliptical cylinder studied in this report is shown in figure 6.   The cylinder is 

filled with a liquid and is subject to an internal gas pressure of 10 psi. 

X -» 

i3- -Ü2- 
3- 

Longitudinal View End View 
FIG. 6. Elliptical Cylinder 

The following equations are geometry specific to the elliptical cylinder and were derived 

by Wilhelm Flügge (1960) by substituting the more complex conditions of the ellipse into 

equations 8, 9, and 10. Using the equation of the ellipse the following relations for z and y 

are derived which relates z and v to the phi coordinate: 

_ b2 cos^ 
(a'sin^+Äcos2^)172 

 g2sin^  
y~(a2sin2^ + £cos2$1/2 

The radius of curvature r is also derived using the geometry of the ellipse. 

a b 

(15) 

(16) 

(a2sin2^ + £2cos2^) 
(17) 

By substituting the above equations into equations 5, and 7 the following equations are 

arrived at for the hoop force: 

p0a
2b2 ya2b4 cos <f> 

N. 
(a2 sin2 <j> + bcos2 <f>y2    (a2 sin2 ^ + b2 cos2 </>) 

(18) 

10 



Shear force: 

vr   _■,„   ,2 ,2V cos^sin^ 2       3(a2-b2)cosS+a2 

N^-3p0(a  -b  )x      . y -rfo     2 . 2J    L2     , fN3/2sin^ (19) 
a sin 0 + bzcos 0 (a2 sm2 0+b2 cos2 0f'2 ' 

Normal force in the x direction: 

8        a £ (a2 sm2 ^5+b2 cos2 ^)1/2 

lr,2    , 2,8a4sin2^-a2*2(4 + 5sinV) + 3*4cosV      , 
8 a a2s\n2<f>+b2cos2</> 

(20) 

2.6 Flügge Results 

These equations are applied to an elliptical cylinder with the following characteristics: 

• length span, 1 = 240 in. 

• longitudinal distance, x = 0.1 in. 

• horizontal radius, a = 39.4 in. 

• vertical radius, b = 23.75 in. 

• internal pressure, po= 10 psi 

• gamma of water = 62.4 pcf or 0.03611 pci 

The graphs using these properties are shown in figures 7, and 8. As discussed 

previously the distribution of NJC and Nx<f> are the same as the bending moment and 

shearing force of a simply supported beam, and N^ does not depend on location along the 

span. The constant pressure produces additional forces in NJC and Nx^. These are the 

forces that enable the shell to withstand the applied load without bending stresses 

according to membrane theory. The diaphragms are needed to take the shearing forces 

Nx</> that result from this system. The graphs in figure 6 show the results of the cylinder 

11 



filled to the top without any additional internal pressure.  These results were obtained by 

setting the pressure po equal to zero in equations 18- 20. 

Hydrostatic Pressure 
Hoop Force 

.a 

a a 

a. 
o 
o 

200 

150 

100 

-100 

degrees (0 is top of ellipse) 

Hydrostatic Pressure 
Nx-phi 

-0.2 

degrees (0 is top of ellipse) 

Hydrostatic Pressure 
Nx 

_         U5        Cl 
«5 «O Cl 

degrees (0 is top of ellipse) 

FIG. 7. Flügge Fluid pressure only 
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Figure 8 displays the results obtained when only internal pressure is considered by setting 

liquid weight equal to zero in equations 18-20. 

Internal Gas Pressure 
Hoop Force 

700 
-_ 600 
£   500 

100 
0 I I i i i i i M I I I I I I I I I I I I I I I i I i i i i i i i i i i 
oinoißoiflowoifiowo 

t-roTr<oh~o)0(Mcoin<ooo 

degrees (0 Is top of ellipse) 

Internal Gas Pressure 
Nx-phi 

degrees (0 is top of ellipse) 

Internal Gas Pressure 
Nx 

10000 

degrees (0 is top of ellipse) 

FIG. 8. Flügge Internal Gas Pressure 
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3. BENDING THEORIES 

3.1 KOZIK BENDING THEORY 

3.1.1 Equation Development 
The equations used in this section were developed by Dr. Thomas J. Kozik, 

Professor of Mechanical Engineering, at Texas A&M University. The following equations 

are geometry specific to the elliptical cylinder, just as the previous equations were, which 

were developed by Flügge. The critical difference is that these equations derived by Kozik 

account for the bending stresses that were ignored by membrane theory. 

3.1.2 Coordinate Relations 
Figures 9 through 12 are the coordinate relations used in the development of the equations 

for bending theory. 

FIG. 9. Profile Coordinate Relations 

FIG. 10. Elliptical Cylinder Coordinate Relations 
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FIG. 11. Stress Block 

Mxo 

M0x T<t>0 

FIG. 12. Stress Resultant Convention 

3.1.3 Equations 

The strain-displacement, constitutive, compatibility, and equilibrium equations presented 

below are the culmination of the derivations by Dr. Kozik. As stated previously, they are 

all geometry specific to the elliptical cylinder. 

Strain - Displacement Equations 

**°    R d<j>       R 
(21) 

15 



•--% (22) 

e. =^ + l^ (23) 
x*°     etc      R d<{> V   ' 

1   den     I ckn ,nA. 
co= - - (24) 

°    2R d</>     2  3c K   ' 

*   R2 af1    R? a/> a/>    R aj> R .     ' 

*.-% <*> 

r = l^^ + l^ (27) 

R = 77— r^TT (28) 
(a sin </>+b cos ^J 

Constitutive Equations 

Eh 

l-v2 (e* + «ej (29) 

T* = 5ö^) (e-*> (30) 

T. - ^ (•- ♦ -*)+Ti(iSR(K< +üK<> (31) 

T    _     Eh Eh3r (   . 

*< "  2(lTü)    (e^}     24(l + ü)/? (    } 

M# =^T^) (*,+«*.) (33) 

Eh3r 

24(1+ y) 
M* =   rTTT-T (34) 

16 



Fh3                                         Fh3 

M„ = „ (Kx +uK, ) + — ^  (e_ + ve^o) 
12(1-y 2) 12(1 -vl)R 

(35) 

M^ = —- r + — — (e^) 
**     24(1 + u)     24(1 + v)R 

(36) 

Compatibility Equations 

0 = R 
dx " 2 ^" AR   d6      2R   36 ~ 2R2   d6 

o)„ - 
'<fxo 

2; 
(37) 

Q_R3r   I am + 3 de^ + 1 dco0 

2 dxR   d6       4   dx       2   dx 
(38) 

0 = — K  + 
1   d f 1 em    1 ä>J\     \   8 (Re^    1 ^0' 

R   x     R 36VR 86    2 dx ) R dx \    dx     2 36 ) 
(39) 

Equilibrium Equations 

0_ i <%*>,<%;, i ^, i ***, i a/„ 
i?^     dx    R2   36     R    dx     R    dx 

■+P. (40) 

^r    l <ai 

R  3x36    R  3x36    R2    362        dx2      R 
+Pr 

(41) 

(42) 

3.1.3 Solution Process For The Bending Problem 
The closed form solution can be obtained by substituting the equations into the 

equilibrium equations.  The process of substitution into the equilibrium and compatibility 

equations is as follows: 

17 



1. Substitute only for Mfyfy, M<j>x, Mxx, and Mx<j) from the constitutive relations into the 

equilibrium equations. The equations will then be in terms of the membrane stress 

resultants X<(>4>, T(j)x, Txx, and Tx<j) and displacements uo, Vo, and wa 

2. Repeat step 1 for the compatibility equations. The compatibility equations will also be 

in terms of the membrane stress resultants T<j)<J), T<j>x, Txx, and Tx<j) and displacements 

uo, vo, and Wo. 

3. Substitute for all stress resultants in terms of the strain-displacement functions. The 

result will be coupled partial differential equations in terms the displacements uo, vo, 

and Wo. The compatibility equations should be identically satisfied. 

4. Solve the equilibrium equations in terms of the displacements. 

5. The displacements can then be used to determine all the stresses in the elliptical 

cylinder. 

At this time steps #1 through #3 have been completed. The problem lies in step 

#4. A method of solving the difficult equilibrium equation has not been established yet. If 

the equations are uncoupled a system of eighth order differential equations will be the 

result. The uncoupling yields fourth order partial differential equations for wo, and second 

order partial differential equations for uo, and vo. As a result of the difficulty in solving 

higher order partial differential equations, Kozik recommends seeking a solution that does 

not involve uncoupling the equations. 

18 



3.2 BRESSE APPROACH 

Pearson and Todhunter present M. Bresse's approach for solving the bending 

moment in an elliptical cylinder under internal pressure from his Cours de Mecanique 

Appliquee, Premiere Partie 1880. The case is entitled Resistance d'une Chaudiere a 

Profil Failbliment Elliptique, p. 326. Bresse treats the shell as a rod. He takes the 

product of the flexural rigidity and the change in curvature as equal to the bending 

moment. Bresse's formulation of the bending moment is as follows: 

,c2 Ay/ 
M = Ecl- 

12 ds (43) 

variables: 

c = shell thickness 

1 = length of the cylinder 

Ay/ _ 
—= change due to strain in the angle between two tangents to the central line of the 

elliptical cross-section 

Bresse's final formulation for the bending moment per unit length at any point on the 

elliptical profile includes the internal pressure and the location along the semi-major axis 

from the centroid of the ellipse. 

M = \P*(&-*) (44) 

in which: 

p = internal pressure 

a = length of the semi-major axis 

19 



b = length of the semi-minor axis 

x = the horizontal distance of any point on the profile measured from the center of the 

ellipse, 

e = eccentricity of the ellipse 

e = Jl (45) 

3.2.1 Bresse Bending Stress 
When the geometry of the elliptical profile and internal pressure examined in this 

report are used in Bresse's equations the following plot of bending stress in one quadrant 

of the ellipse results. It is interesting to note that the positive and negative extreme values 

are equal in magnitude when Bresse's equations are used. 

Bresse Bending Stress 

250000- 

200000- 

150000- 

100000 

■ja      50000 

£    -50000c 
i I          o 

1             CO 
o         o         o         o         o\     o         o        c r^         <o         in         ■*         co N.   CM         «- 

m   -100000- 

-150000- 

-200000 
"T'TTWYI 

phi (degrees) 90 at horizontal 

FIG. 13. Bresse Bending Stress 
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3.3 BROWN APPROACH 

W. S. Brown's solution to the tension, shearing force and the bending moment of 

an elliptical cylinder under internal pressure were presented in The Engineer, September 

23, 1904. His paper presented solutions to the bending moment in the form of graphs for 

ellipses having eccentricities which range between 0 and 1, and equations for ellipses of 

any eccentricity. Brown focused on the maximum values of tension, shearing and bending 

forces and their locations on the elliptical profile. With these values it is possible to locate 

longitudinal seams of cargo tanks at the location of zero bending moment. 

Brown solves the bending problem using equilibrium of a section of the ellipse 

shown in Figure 15. A hoop of unit length is defined by points ABCD, Figure 14, where a 

and b represent the semi-major and semi-minor axes respectively. The section of the 

ellipse is AP with a uniform internal pressure of p. 

FIG. 14. Brown Elliptical Profile 
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Fig. 15. Free Body Diagram of the Elliptical Profile 

At   P(x,y)   there exists a bending moment Mp, and forces due to tension and 

shearing.   By summation of vertical forces on the upper hemisphere of the ellipse it can be 

proved that Ta- pa. Summation of the moments about P for Fig. 15 equals: 

MP = MA + f pPNds-pa(a-x). 
JO 

(47) 

PN is perpendicular from P to the force which is normal the the surface and acts on point 

Q. Using this argument, pPNds is the moment due to the internal pressure on the 

element ds at point Q about P. The integration performed with respect to s is the value o 

of s at A to the value of s at P. After completing the integration the following equation 

results: 

MP=MA-£(a2-x2-y2). (48) 

The preceding equation allows the bending moment to be found at any point on the profile 

of the ellipse. It can also be shown that: 

M,=EA±-± (49) 
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where — and — are the curvatures of the ellipse before and after deformation.   These values 

may also be written as: 

(50) 

1     dy 

where y/0 and y/ are the inclinations of the tangent at point P before and after strain, 

respectively. Due to the fact that the ellipse is a symmetrical shape y/ and y/0 are equal 

at points A and C, and B and D before and after strain. Because of this, substitution for 

Mp into equation 21 and integrating between the limits yields the following equation: 

o = M~s-£\{a2-x2-y2)ds. (52) 

In this equation x and y are the coordinates of point P, and s is the arc length of AB. 

Upon integration using the complete normal elliptic integrals of the first and second kind, 

K and E respectively, Ma can be obtained. 

MA=^2a2-b2-b2^) (53) 

The moment at the semi-major axis will always give the largest bending moment. By 

substituting the moment at A into equation 48 the bending moment at any point on the 

elliptical profile can be determined. The moment at B will be the largest moment of the 

opposite sign of the moment at A. When solving for the moment at B equation 48 can be 

more compactly written as: 

23 



MB = MA-£(a2-b2). (54) 

3.3.1 Brown Bending Stress 
The graphical form the solution to the conditions of the elliptical profile and pressure 

examined in this report follow. 
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FIG. 16. Brown Bending Stress 

As stated previously, the point of zero bending moment is of great concern in the design 

of elliptical cargo tanks. These points are were the seams must be placed to avoid the 

introduction of bending stresses. The zero bending points can be obtained by setting 

equation 48 to zero and rearranging to solve for the x and y coordinates. 

JC = fl. 
-M, 

]MA-MB 
(55) 

y = b 
MA 

MA-MB 

(56) 
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3.3.2 Brown Shear 

The shearing force is also of concern in cargo tank design. Brown determined that 

it will have a maximum value of: 

VtDax=^(2a-2b). (57) 

The shear will go to zero as the coordinates approach the axes of the ellipse.   The 

maximum shear will occur at: 

<a + b 

>=&■■ (59) 
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3.4 TIMOSHENKO: ELLIPTIC RING 

A simple approach for finding the bending moments in an elliptical ring is 

presented by S. Timoshenko in Strength of Materials, 1930. This simplification is thought 

to be a good approximation of an elliptical cylinder profile far removed from boundary 

conditions. Timoshenko provides coefficients which make it is possible to quickly 

evaluate the bending moments at the major and minor axis. These values prove to be very 

useful, due to the fact that these points will represent the maximum positive and negative 

bending moments on the shell. Timoshenko solves the problem using an elliptical quadrant 

shown in Fig. 17. 

pb <e 

FIG. 17. Timoshenko Elliptical Quadrant 

Since MB represents the statically indeterminate bending moment at B, the 

bending moment at any arbitrary point on the quadrant can be found by the following 

equilibrium equation. 

Mc=MB-pb(b-y)+^- + ^ (60) 
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Pb    py    P
X 

MC-MB- -— + ^— + i—- (61) 

Timoshenko makes the problem very simple by computing coefficients that allow 

the bending moments to be found with simple equations and the chart of coefficients for 

beta, and gamma. The bending moments at the major and minor axes can be quickly 

calculated with only the internal pressure, the ratio of the minor to major axes, and 

Timoshenko's table of coefficients. 

Bending moment at the major axis: 

MA = pb2r . 

Bending moment at the minor axis: 

MB=-pb2ß. 

(62) 

(63) 

Using the geometry of the ellipse and the table below to obtain beta and gamma the 

bending moments is easily solved. 

b/a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

3 0 0.057 0.133 0.237 0.391 0.629 1.049 1.927 

r 0 0.06 0.148 0.283 0.498 0.87 1.576 3.128 

Table 1. Timoshenko Constants for Elliptic Ring Bending Moments 

Timoshenko's method is expedient and gives the maximum and minimum bending 

moments without in-depth calculations. The solution for the parameters in this report are 

as follows: 

0.602 « 0.6 
a 

From Table 1, ß = 0.391 and y = 0.498. Now by applying equations 62 and 63 the 

extreme positive and negative bending moments are obtained. 
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MA = 10/7« • (23.75m)2 • 0.498 = 2,809/fa 

MB = -lQpsi ■ (23.75m)2 ■ 0391 = -2,205/fa 

With the moment at B and the x-y coordinates, the bending moment at any point 

on the ellipse can be found by solving equation 61. The equations for the x and y 

coordinates are given below, where <J) is the angle which relates the tangent to point C and 

the horizontal to the minor axis. These are the same equations derived by Flügge from 

section 2.5. 

x = 
ö2sin^ 

2 Xvl/2 (a sin <j> + b cos <j>) 
(64) 

b2cos</> 
2 Xv 1/2 (dTshr^ + Zrcos2^) 

(65) 

3.4.1 Timoshenko Bending Stress 

The resulting bending stress in an elliptical ring using Timoshenko's derivation is 

shown in Fig. 15. 
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FIG. 18. Timoshenko Bending Stress 
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3.5 Holland, Lalor, and Walsh Elliptical Cylinder 

In their paper titled, "Principal Displacements in a Pressurized Elliptical Cylinder: 

Theoretical Predictions with Experimental Verification By Laser Interferometry", 

Holland, Lalor and Walsh develop equations to ultimately predict displacements. As a 

necessity to finding the displacements, they had to developed equations for bending 

moments (M) and hoop force (T). These two values are both required to find the total 

stresses in the cylinder wall. 

The authors make extensive use of complete elliptic integrals of the first kind (F) 

and complete elliptic integrals of the second kind (K). Five-place tables of complete 

elliptic integrals were used to find the values for F and K. Phi is a function of the 

geometry of the elliptical profile. 

t = Cos-1(?j (66) 

The value of phi, which differs from the phi used in the previous sections, is used to find F 

and K from LeGengre's elliptic integral tables. The constants A and B are used to 

calculate the bending moment (M). Figure 19 shows the geometry and variables used by 

Holland, Lalor, and Walsh to develop their equations. An element of the shell having a 

length of ds is located at A and related to the eccentric angle e. The inscribed circle within 

the ellipse has a radius equal to the semi-minor axis b. The infinitesimal element ds is 

subjected to the forces of tension T and bending moment M.   The element increases in 

T 
length from the tensile force by the amount —, where / is the shell thickness and E 

Young's Modulus. The element also rotates due to the bending moment by an amount of 
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f-äs. The «ah«, ,ate EI as the flexura, rigidity of a p,ate, no. as a rod as was done 

previously by Bresse and Brown. 

"ä ~A 

FIG. 19. Holland, Lalor & Walsh Cylinder Loading 

A 
pb' 

6 
-n + 2Tan2§- 

B = .Pb2 

2 
Tan2§ 

M = A- 5 sin2 s 

T = 
pb 

yll-Sin24>Cos2s 

(67) 

(68) 

(69) 

(70) 

The identical conditions and geometry's are used in this section as in the previous 

sections of this report. They are: 

p = 10 psi. 

a = 39.4 in. 

b = 23.75 in. 
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3.5.1 Holland, Lalor, and Walsh Bending Stress 
Using these parameters, the graphical representation of the bending moments are 

shown below in figure 20. 
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FIG. 20. Holland, Lalor, and Walsh Bending Stresses 

3.5.2 Holland, Lalor, and Walsh Hoop Stress 
Unlike the previous authors Holland, Lalor, and Walsh provide the means to 

determine the hoop forces throughout the elliptical profile. A graph of the hoop forces is 

provided in Fig. 21. These hoop forces when combined with the bending moments give 

the ability to determine the total stresses which result in the shell. 
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FIG. 21. Holland, Lalor, and Walsh Hoop Stresses 

3.5.3 Holland, Lalor, and Walsh Total Stress 
Once T and M are found using equations 69 and 70, it is possible to find the total 

stress at any point on the shell of the elliptical cylinder using equation 1. 

< t )   w2 )' 
(1) 
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FIG. 22. Holland, Lalor, and Walsh Total Stresses 
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3.6 KOZIK: EQUILIBRIUM SOLUTION TO THE ELLIPTICAL CYLINDER 
Dr. Thomas J. Kozik of Texas A&M University developed a solution for the 

shearing, hoop, and bending forces that are known to be present in a non-circular cylinder. 

The equations presented in section were derived using the principles of equilibrium 

specifically for use with elliptical cylinders under internal pressure. The derivation is quite 

lengthy, however only the most critical steps are presented for brevity. The basis for the 

solution is the infinitesimal surface element shown in Fig. 23. 

*♦£> 

FIG. 23. Kozik Surface Element 

The derivation begins with the summation of forces in the radial direction or the direction 

normal to the surface of the shell, the (^-direction, and by summation of moments. The 

results follow: 

Summing forces in the radial direction provides the following equilibrium equation: 
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-0» +[ß» + fr^J + />***!>-[#♦ +^.^J^ = o (71) 

Which reduced to 

+ pp-N0 = O (72) 

Next the forces are summed on the «(»-direction. 

XT (»7 dNlL ̂
   r      aß»   ^ +l^+^r=0 (73) 

This equation is reduced to 

cN. 

aj> 
r + ß, = o. (74) 

Finally, the summation of moments yields: 

-MA + 
M*+f^-(^+^4^=o 

(75) 

Which after elimination becomes: 

cM. 

af> r-PQ*=Q (76) 

where. 

2L2 alb 

[a2 sin2 <f> + b2 cos2 ^] £ 
(77) 

The equations for the hoop force can be written as 

(78) 
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ap ~ ap2 + p ap (79) 

Applying equation (79) to equation (74) yields: 

—rr + Q*= -p—± df ap (80) 

With these relationships established it is necessary to seek further relationships using Fig. 

24. The following figure is a free body diagram of an elliptical cylinder which has been cut 

between the major and minor axes. 

FIG. 24. Kozik Equilibrium Profile 

Using summation offerees in the z-direction the following equation was constructed: 

NfSint - Q+Cos<p = py. (81) 

The distance from the centroid of the ellipse along the major-axis to the cut in the shell is 

y, and the equation is: 

y = 
a2Sin<f> a2Tan0 

TJa2Sin2<f> + b2Cos<l>    Jb2+ a2Tan2<P 
(82) 

Combining equations (81) and (82) gives: 

35 



N,Sm*-Q*Cos*=   ,pa2T^ (83) 
' ^ Jb2 + a2Tan2<t> 

By combining the equations established to this point the succeeding two equations arise. 

N _32= E°W  (84) 
*    ^    [a2sin2^ + £2cos2^f 

pa2Sin<j> 

[a2 sin2 <j> + b2 cos2 ^]' 
*W - ß,Ow* = ^-^ -pr (85) 

The result of combining equations 74 and 84 is: 

^+^2  =(a2Sin2<ß + b2Cos2ty/2 *   ' 

Likewise, equations 46 and 57 may be combined to form: 

^* n^x - pa2Sin<f> 
(a2Sin2<f> + b2Cos2<t>y 

N,Sint + ^Cost = -, Pa"m*     W2 (87) 

In order to solve these equations it is necessary to find the homogeneous and 

particular solutions, uncouple the equations, and finally integrate to get the final answer. 

The solution is detailed and lengthy, therefore the intermediate steps have been left out 

and the solution for N^ is: 

N4 = p^a2Sin2(l> + b2Cos2(j>, (88) 

and the solution for the shearing force is: 

p(a2 - b2)CosWnt> 

^      4a2Sin2b + b2Cos% 
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Much of the work previously accomplished can be applied to finding the solution 

to the bending moment. The steps to solving the bending moment are given below. 

a-i? (90) 

*=-£ (91) 

™<=-p^ (92) 

cNf     p(a2 - b2)Cos<i>Sin<t> 

~W~\la2Sin24> + b2Cos2<f> 

M4    pa2b2(a2 - b2)Cos<pSin<p 

(93) 

(94) 
^       (a2Sin2<l> + b2Cos2$) 

Using trigonometric identities to simplify equation 94 followed by integration the 

expression for the bending moment is obtained. 

2L2 

M4 = —r, r-^- r T + C (95) 
{(a2+b2)-(a2-b2)Cos2<l>} 

The constant of integration was initially thought to be zero. After further study it 

was discovered that the constant was critical in determining the bending moment using this 

solution technique. For Kozik's method to work properly a bending moment that is 

known to be correct at either the major or minor axis must first be calculated from one of 

the other techniques previously presented in this report. For ease of calculation, it is 

suggested to use the method derived by Timoshenko for the elliptic ring for the initial 

bending moment at the major axis. 
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C=M/ + 
T , Pb2 

(96) 

where, MA
T is the Timoshenko bending moment at the major axis. 

3.6.1 Kozik Hoop, Bending, and Total Stress 

The graphical solutions to hoop force, shearing force, and bending moment are 

given in Figs. 25 - 28. 

Hoop Stress 

2000 

_^ 1500 
in a. 
in 1000 
in a 
tn 500 

-i—I—I—I—I—I—I—h H 1 1 1 1 1 1 h- 
oooooooooo 

phl (degrees) 90 at horizontal 

FIG. 25. Kozik Hoop Stress 

Shear Stress 
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FIG. 26 Kozik Shear Stress 
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Bending Stresses 
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FIG. 27. Kozik Bending Stress 

Now that both the hoop force and the bending moment have been calculated it is 

possible to find the bending stresses created in the shell according to the Kozik derivation. 
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FIG. 28. Kozik Total Stress 
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4. FINITE ELEMENT ANALYSIS 

4.1 General 
All Finite Element Models (FEM's) for use in this report were constructed using 

the principle of symmetry. Since all four quarters of the ellipse are identical, only one 

quarter of the ellipse was modeled. Figure 29 shows a typical model and the constraints. 

The upper right hand quadrant was used in all applications. In order to achieve a realistic 

model of the complete profile, the nodes at the minor and major axes were only allowed to 

translate vertically and horizontally respectively. These nodes were also fixed in rotation 

to simulate their connection to the other quadrants of the ellipse. All other nodes are 

constrained to prevent longitudinal translation and in-plane rotations. The rotation 

constraint prevented bowing of the elements in the longitudinal direction of the shell 

between the nodes. 

FIG 29. FEM Model and Constraints 

4.2 Software 

4.2.1 Microsoft WORD and EXCEL 
EXCEL was used to create the nodes used to generate the circular and elliptical 

profiles.  The equations for the distances in the x and y directions were generated using 
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the angle phi (<|)) which progresses from zero degrees at the minor axis to 90 degrees at 

the right side major axis. Equations 64 and 65 from section 3.4 were used to generate the 

x-y coordinates. WORD was used to edit the values imported from EXCEL and edit the 

input files for ABAQUS. 

4.2.2 ABAQUS and ABAQUS POST 

After the files were finalized, ABAQUS was used to analyze the input. The output 

from ABAQUS that is of primary use in this study are deflections, section forces, and 

section moments. ABAQUS POST was used to graphically view the results generated by 

ABAQUS. ABAQUS POST allowed the deflected shape and color plots of the forces to 

be viewed in color. Black and white, as well as, color outputs used in analysis were 

created using ABAQUS POST. 

4.3 Models 

All loads were applied to simulate a uniform internal pressure acting on the inner 

surface of the elements. Loading was applied such that it always remains normal to the 

surface of the element. A "P2" loading was used with beam elements and "P" loading was 

used with all shell elements. Both loading conditions meet the critical criteria of remaining 

normal with respect to the inner surface of the elements during displacement. 

In all cases a circular section was modeled first to gain confidence that the FEM 

was functioning properly. The circle was chosen because there is great confidence in the 

closed form solutions for the hoop stress and the radial deflection. Only after confidence 
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in the circular FEM had been established, were the more complex elliptical models 

analyzed. 

Both beam and shell elements were used in the finite element models. Beam 

elements used were three-nodded quadratic B22 elements. Eight-nodded S8R5 elements 

were used in the shell models. These elements were chosen primarily because they are 

quadratic, like the geometry of an ellipse. This allows the true geometric profile to be 

closely modeled. 

4.4 Finite Element Analysis 

The models were originally analyzed using an internal pressure of 10 psi.   This 

caused problems when the data was compared to the expected results from the analytical 

solutions previously presented in this report.   Very large displacements occurred in the 

FEM at the major and minor axes.  This made the results of the FEM and the analytical 

solutions incompatible. It is clear from the results presented earlier that the authors of the 

closed form solutions were utilizing small deflection theory.    This can be seen by 

examining the calculations for the hoop force at the major and minor axes. Regardless of 

the load applied to the shell, the hoop force at these points is simply the internal pressure 

multiplied by the length of the axis. Clearly, the authors were only considering very small 

deflections.   In order to compare the results of the FEM to the analytical solutions, it was 

necessary to apply loads to the FEM that provided deflections that were less than or equal 

to one-half the thickness of the shell.   The load was reduced to 0.01 psi, which is a 

decrease of three orders of magnitude, and the results were recalculated. The deflections 

obtained using this load were well within the limits of small deflection theory.   The 
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following graphs shows the results of the FEM using the reduced load compared to the 

results using the equations developed by Kozik. 
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FIG. 30. FEM's vs. Kozik Hoop Stress 
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FIG. 31. FEM's vs. Kozik Bending Stress 

The graphical representation of the data closely resembles that obtained from 

analytical solutions. This gives confidence that these FEM's can be used to determine the 

hoop stress and bending stress at any point in an elliptical cargo tank cross section as long 
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as small deflection theory is applied.  The ABAQUS input files used for the beam and the 

shell FEMs are shown Appendix A and Appendix B, respectively. 
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5. COMPARISON OF ANALYTICAL METHODS 

5.1 Hoop Stresses 

Out of the six methods studied in this report only three provided a solution to the 

hoop forces that occur in elliptical cylinders. Flügge, Kozik and Holland, Lalor and Walsh 

give equations to calculate the hoop stress. 

Hoop Stress 
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FIG. 32. Comparison of Hoop Stresses 

Figure 32 shows that the formulations of Kozik and Holland, Lalor, and Walsh yield 

nearly identical results. The angle used by Holland, Lalor and Walsh is not the same as 

that utilized by Kozik. Holland, Lalor and Walsh relate the angle to an inscribed circle 

with a radius equal to the semi-minor axis (see section 3.5, Fig. 19). Kozik uses the angle 

formed by the tangent to a point on the shell profile with the horizontal (see section 3.6, 

Fig. 24).   In order to achieve the results shown in the graph the angles had to be 
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manipulated.   This was accomplished by relating the y-coordinates of the two methods. 

Recall equation 38 which gives the y-coordinate for any angle phi for an ellipse. 

_ b2cos2<ß 
(a sin2 <f> + b cos <f>) 2 XV1/2  * 

(65) 

Holland, Lalor and Walsh use an inscribed circle and the angle epsilon from Fig. 16. The 

inscribed circle has the radius of the semi minor axis b. With these three values the age 

epsilon can be related to the angle phi by the following equation. 

s^-(|) (97) 

The hoop force results provided when the equations derived by Flügge give 

entirely different values than the previous two authors. Upon closer examination, it is 

clear that Flügge's results are fundamentally incorrect. This can be proved by cutting the 

shell at the major and minor axes as shown is Fig. 33. 

IK    7[\     /[\     /j\     7F-     7K    7J\     7K     7K~ 

V 
Hft 2a 

FIG. 33. Vertically and Horizontally Cut Elliptic Shell 

By summing the forces vertically and horizontally the resulting equations are: 

ZFy=Nh.=pa (98) 

lFx=N^=pb (99) 
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When these values are computed, the Kozik and Holland, Lalor, and Walsh answers are 

obtained identically. The result of the Flügge's formulation differs significantly. Flügge 

relates the hoop force to the radius of curvature multiplied by the pressure. This is why 

his values are so erroneous. With this simple proof using summation of forces it becomes 

clear that the equations developed by Flügge will not be useful in determining both the 

membrane stresses in cargo tank of elliptical cross sections. 

5.2 Bending Stresses 
Five of the six authors studied within this report, the only exception being Flügge, 

provide methods to determine bending moments. Four of the Five methods provide nearly 

identical results. Bresse's approach is very simple and has a curve that has the same shape 

as the others, but it is shifted down. His method should be questioned not only because it 

is the only one that is different, but also because the bending moments at both axes are 

equal. The comparison of all bending stresses is graphically shown in Fig. 34. 
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FIG. 34. Comparison of Bending Stresses 

5.3 Total Stresses 

When ultimately determining the total stresses, only two authors provide a 

complete set of equations that give the ability to find the total stress in the shell. The total 

stresses given by Kozik and Holland, Lalor and Walsh are unique because they are the 

only authors who provide solutions to the hoop forces. The two methods provide nearly 

identical results. This should be expected since the hoop and bending stresses previously 

shown are virtually the same. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The solution provided by membrane theory is of little use when applied to any 

shape other than a circular cylinder or a sphere. Pure membrane theory neglects any 

transverse shearing forces, and bending moments which are known to occur when 

pressure is applied to an elliptical profile. The membrane theory based method presented 

by W. Flügge obviously provided no means by which to calculated bending moments since 

they are neglected. However, he provided a solution to the hoop force. As was shown in 

the previous comparison section, Flügge' s procedure fails to provide accurate results for 

the hoop stress. This failure of pure membrane theory was proven by a comparison 

against simple static equilibrium. 

The geometry specific equations developed for the elliptical cylinder using bending 

theory provide a way to determine the bending stresses experienced in the shell. The 

solution will involve solving a complex system of coupled partial differential equations. A 

technique for solving the equilibrium equations in terms of the strain-displacements 

functions uo, vo, and wo has not been accomplished to this date. 

The methods which account for bending in an elliptical shell presented by Brown, 

Timoshenko, Kozik, and Holland, Lalor, and Walsh all produce results that are nearly 

identical. This similarity of answers is not only present among the analytic solutions, but 

also in the Finite Element Models. The reliability of these results gives confidence in their 

accuracy. The analytic techniques used varying approaches and all yielded the same 

answer. 
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6.2 Recommended Solution Procedure 
Since the methods previous described all give the same results, the recommended 

solution procedure consists of the methods which are the easiest to apply.  The following 

outline provides the equations which provide the best methods to find the total stress in an 

internally pressurized elliptical cargo tank. 

1. Hoop Force: Kozik 

Nt = p^a2Sin2<j> + b2Cos2(j) 

Kozik's equation needs only the values for internal pressure, the ellipse geometry, and the 

angle phi. 

2. Bending Moment:   Timoshenko 

b/a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

P 0 0.057 0.133 0.237 0.391 0.629 1.049 1.927 

Y 0 0.06 0.148 0.283 0.498 0.87 1.576 3.128 

Bending moment at the major axis: 

MA = pb2/ . 

Bending moment at the minor axis: 

MB=-pb2ß. 

Bending moment at any point: 

„L2 „,,2 _,_2 

MC=MB„P!L+EL+EL 
c       B      2        2        2 

Timoshenko's coefficient table and set of equations allows the moments to be 

calculated at the major and minor-axes with only the ellipse geometry and internal 

pressure.   To calculate the bending moment at any point between the axes, the only 

51 



additional values needed are the x-y coordinate of the point. The angle phi may be related 

to the x-y coordinate by the following two equations. 

_ <22sin^ 
X~ (ö2sin2^ + fccos2^),/2 

_ b2 cos<j> 
Y~ (a2sm2<p+bcos2<t>)V2' 

3. X-Y Coordinate of Zero Bending Moment: Brown 

*=«' ~M- 
'MA-MB 

, = *.'   M< MA-MB 

The moments at the major and minor axes found using Timoshenko's ethod can be applied 

to Brown's equations to find the location of zero bending moment.   This location is 

critical to joint placement in cargo tanks. 

4. Total Stress: 

'<-$ym 
The total stress in the shell can be found by utilizing Kozik's hoop force, Timoshenko's 

bending moment, and the thickness of the shell. 

This sequence of equations provides a complete solution for determining the hoop 

force, bending moment, and total stress in any elliptical cargo tank subjected to internal 

pressure. Section 5 of this report proved that results of Brown, Timoshenko, Kozik, and 
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Holland, Lalor, and Walsh are very close to being equal and may be utilized in various 

combinations due to the similitude of their results. 
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APPENDIX A 



»HEADING 
TERM PROJECT MEMA 647, QUELBM6 
♦RESTART, WRITE,FREQ=1 
*NODE 
1,0,23.75 
2,2.846332967,23.6879444 
3,5.659184353,23.503732 
4,8.406967055,23.2030474 
5,11.06163755,22.7947817 
6,13.59990966,22.29028237 
7,16.0039349,21.70246717 
8,18.26145093,21.04494342 
9,20.36547987,20.3312258 
10,22.31370485,19.57411582 
11,24.10766438,18.78526704 
12,27.25306646,17.15184277 
13,29.85956153,15.49499457 
14,31.99902504,13.85664212 
15,33.74358791,12.26100425 
16,35.15845145,10.71958699 
17,36.29908998,9.235433885 
18,37.21091059,7.80628593 
19,37.93006325,6.426742495 
20,38.48464482,5.08965254 
21,38.89590954,3.786963927 
22,39.27651512,1.878870441 
23,39.4,0 
♦ELEMENT, TYPE= B22, ELSET=BEAM 
1,1.2,3 
2,3,4,5 
3.5,6,7 
4,7,8,9 
5,9,10,11 
6,11,12,13 
7,13,14,15 
8,15,16,17 
9,17,18,19 
10,19,20,21 
11,21,22,23 
*BEAM SECTION, ELSET=BEAM,SECTION=RECT, MATERIAL=STEEL 
1,0.25 
1,0,0 
♦MATERIAL, NAME=STEEL 
♦ELASTIC, TYPE=ISO 
29000000.0,0.3 
♦BOUNDARY 
1.1 
1.3,6 
2.3,4 
3,3,4 
4,3,4 
5,3,4 
6,3,4 
7.3,4 
8,3.4 
9,3,4 
10,3,4 
11,3,4 
12,3,4 
13,3,4 
14,3,4 
15,3,4 
16,3,4 
17.3,4 
18.3,4 
19,3,4 
20,3,4 
21,3,4 
22,3,4 
23,2,6 
♦STEP,NLGEOM,INC=50 



♦STATIC 
*DLOAD 
1,P2#0.01 
2.P2.0.01 
3,P2, 0.01 
4,P2, 0.01 
5,P2, 0.01 
6,P2, 0.01 
7,P2, 0.01 
8,P2, 0.01 
9.P2, 0.01 
10.P2, 0.01 
11,P2, 0.01 
*EL FILE, POSITION=AVERAGEO AT NODES 
S,E 
SF 
*EL PRINT, POSITION=AVERAGED AT NODES 
S,E 
SF 
*NODE FILE 
U 
RF 
CF 
*FILE FORMAT, ASCII 
*END STEP 



APPENDIX B 



♦HEADING 
TERM PROJECT MEMA 647 
♦RESTART, WRITE,FREQ=1 
*NOOE 
1,0,0,23.75 
2,0,2.846332967,23.6879444 
3,0,5.659184353,23.503732 
4,0,8.406967055,23.2030474 
5,0,11.06163755,22.7947817 
6,0,13.59990966,22.29028237 
7,0,16.0039349,21.70246717 
8,0,18.26145093,21.04494342 
9,0,20.36547987,20.3312258 
10,0,22.31370485,19.57411582 
11,0,24.10766438,18.78526704 
12,0,27.25306646,17.15184277 
13,0,29.85956153,15.49499457 
14,0,31.99902504,13.85664212 
15,0,33.74358791,12.26100425 
16,0,35.15845145,10.71958699 
17,0,36.29908998,9.235433885 
18,0,37.21091059,7.80628593 
19,0,37.93006325,6.426742495 
20,0,38.48464482,5.08965254 
21,0,38.89590954,3.786963927 
22,0,39.27651512,1.878870441 
23,0,39.4,0 
24,2,0,23.75 
25,2,2.846332967,23.68794449 
26,2,5.659184353,23.50373293 
27,2,8.406967055,23.2030474 
28,2,11.06163755,22.7947817 
29,2,13.59990966,22.29028237 
30,2,16.0039349,21.70246717 
31,2,18.26145093,21.04494342 
32,2,20.36547987,20.33122581 
33,2,22.31370485,19.57411582 
34,2,24.10766438,18.78526704 
35,2,27.25306646,17.15184277 
36,2,29.85956153,15.49499457 
37,2,31.99902504,13.85664212 
38,2,33.74358791,12.26100425 
39,2,35.15845145,10.71958699 
40,2,36.29908998,9.235433885 
41,2,37.21091059,7.80628593 
42,2,37.93006325,6.426742495 
43,2,38.48464482,5.089652543 
44,2,38.89590954,3.786963927 
45,2,39.27651512,1.878870441 
46,2,39.4,0 
47,4,0,23.75 
48,4,2.846332967,23.68794449 
49,4,5.659184353,23.50373293 
50,4,8.406967055,23.2030474 
51,4,11.06163755,22.7947817 
52,4,13.59990966,22.29028237 
53,4,16.0039349,21.70246717 
54,4,18.26145093,21.04494342 
55,4,20.36547987,20.33122581 
56,4,22.31370485,19.57411582 
57,4,24.10766438,18.78526704 
58,4,27.25306646,17.15184277 
59,4,29.85956153,15.49499457 
60,4,31.99902504,13.85664212 
61,4,33.74358791,12.261004 
62,4,35.15845145,10.71958699 
63,4,36.29908998,9.235433885 
64,4,37.21091059,7.80628593 
65,4,37.93006325,6.426742495 
66,4,38.48464482,5.089652543 
67,4,38.89590954,3.786963927 



68,4,39.27651512,1.878870441 
69,4,39.4,0 
♦ELEMENT, TYPE= S8R5,ELSET=SHELLS 
1,1,3,49,47,2,26,48,24 
2,3,5,51,49,4,28,50,26 
3,5,7,53,51,6,30,52,28 
4,7,9,55,53,8,32,54,30 
5,9,11,57,55,10,34,56,32 
6,11,13,59,57,12,36,58,34 
7,13,15,61,59,14,38,60,36 
8,15,17,63,61,16,40,62,38 
9,17,19,65,63,18,42,64,40 
10,19,21,67,65,20,44,66,42 
11,21,23,69,67,22,46,68,44 
»SHELL SECTION,ELSET=SHELLS,MATERIAL=STEEL 
0.25 
♦MATERIAL,NAME=STEEL 
*ELASTIC,TYPE=ISO 
29000000.0, 0.3 
♦BOUNDARY 
1,1.2 
1,4,5 
2.1 
2,5 
3,1 
3,5 
4.1 
4,5 
5.1 
5,5 
6,1 
6,5 

7,1 
7,5 

8.1 
8,5 
9.1 
9.5 
10,1 
10,5 
11,1 
11.5 
12.1 
12.5 
13.1 
13,5 
14,1 
K.5 
15.1 
15,5 
16,1 
16.5 
17.1 
17,5 
18,1 
18.5 
19,1 
19,5 
20,1 
20,5 
21,1 
21,5 
22,1 
22,5 
23.1 
23,3,5 
24.1,2 
24.4,5 
26,1 
26,5 
28,1 



28,5 
30,1 
30,5 
32,1 
32,5 
34,1 
34,5 
36,1 
36,5 
38,1 
38,5 
40,1 
40,5 
42,1 
42,5 
44,1 
44,5 
46,1 
46,3,5 
47,1,2 
47,4,5 
48,1 
48,5 
49,1 
49,5 
50,1 
50.5 
51,1 
51,5 
52,1 
52,5 
53,1 
54,5 
55,1 
55,5 
56,1 
56,5 
57.1 
57,5 
58,1 
58.5 
59,1 
59.5 
60,1 
60,5 
61,1 
61,5 
62,1 
62,5 
63,1 
63,5 
64,1 
64,5 
65.1 
65,5 
66,1 
66,5 
67,1 
67.5 
68,1 
68,5 
69,1 
69,3,5 
•STEP 
•STATIC 
*DLOAD 
SHELLS,P,-.010 
*EL FILE, POSITION=AVERAGED AT NOOES 
S.E 
SF 
*EL PRINT, POSITION=AVERAGED AT NOOES 



S,E 
SF 
*NO0E FILE 
U 
RF 
CF 
*FILE FORMAT, ASCII 
*END STEP 


