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RANGE SEARCHING 

Pankaj K. Agarwal 

INTRODUCTION 

Range searching is one of the central problems in computational geometry, 
because it arises in many applications and a wide variety of geometric problems can 
be formulated as a range-searching problem. A typical range-searching problem has 
the following form. Let 5 be a set of n points in Ed, and let 11 be a family of subsets; 
elements of U are called ranges. We wish to preprocess S into a data structure so 
that for a query range R, the points in SflR can be reported or counted efficiently. 
Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If 
we are only interested in answering a single query, it can be done in linear time, 
using linear space, by simply checking for each point p £ S whether p lies in the 
query range. However, most of the applications call for querying the same point 
set S several times (or sometimes we also insert or delete a point periodically), in 
which case we would like to answer a query faster by preprocessing S into a data 
structure. 

Range counting and range reporting are just two instances of range-searching 
queries. Other examples include emptiness queries, where one wants to determine 
whether S D R = 0, and extremal queries, where one wants to return a point with 
certain property (e.g., returning a point with the largest xi-coordinate). In order to 
encompass all different types of range-searching queries, a general range-searching 
problem can be defined as follows. Let (S,+) be a semigroup. For each point 
p £ S, we assign a weight w(p) £ S. For a query range R £ 11, we wish to 
compute Epesniiw(P)- For examPle> range-counting queries can be answered by 
setting w(pf= 1 for every p £ S and choosing the semigroup to be (Z, +), where 
+ denotes the integer addition; range-emptiness queries by setting w(p) = 1 and 
choosing the semigroup to be ({0,1}, V); and range-reporting queries by setting 

w(p) = {p} and choosing the semigroup to be (2s, U). 
Most of the range-searching data structures construct a family of 'canonical' 

subsets of S, and for each canonical subset C, they store the weight w{A) = 

Y, A 
W(P)- For a ^uery range r'the data structure searches for a sma11 subfamily 

of disjoint canonical subsets, Alt ... , Ak, so that U*=i Ai = r n S> and then com" 
putes Yli=i w{Ai). In order to expedite the search, the structure also stores some 
auxiliary information. Typically, the canonical subsets are organized in a tree-like 
data structure, each of whose node v is associated with a canonical subset A; v 
stores the weight w(A) and some auxiliary information. A query is answered by 
searching the tree in a top-down fashion, using the auxiliary information to guide 

the search. 
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MODEL OF COMPUTATION 

The performance of a data structure is measured by the time spent in answer- 
ing a query, called the query time and denoted by Q(n, d); by the size of the data 
structure, denoted by S(n,d); and by the time constructed in the data structure, 
called the preprocessing time and denoted by P(n,d). Since the data structure is 
constructed only once, its query time and size are more important than its prepro- 
cessing time. If a data structure supports insertion and deletion operations, the 
update time is also relevant. We should remark that the query time of a range- 
reporting query on any reasonable machine depends on the output size, so the 
query time for a range-reporting query consists of two parts — search time, which 
depends only on n and d, and reporting time, which depends on n, d, and the output 
size. Throughout this survey paper we will use k to denote the output size. 

We assume that d is a small fixed constant, and that the big-Oh notation hides 
constants depending on d. The dependence on d of the performance of all the data 
structures mentioned here is exponential, which makes them unsuitable for large 
values of d. We assume that each memory cell can store logn bits. The upper 
bounds will be given on pointer-machine or RAM models, which are described 
in [15, 107]. The main difference between the two models is that on the pointer 
machine a memory cell can be accessed only through a series of pointers while in 
the RAM model any memory cell can be accessed in constant time. Most of the 
lower bounds will be given in the so-called semigroup model, which was originally 
introduced by Fredman [61] and which is much weaker than the pointer machine 
or the RAM model. In the arithmetic model, a data structure is regarded as a set 
of precomputed sums in the underlying semigroup. The size of the data structure 
is the number of sums stored, and the query time is the number of semigroup 
operations performed (on the precomputed sums) to answer a query; the query 
time ignores the cost of various auxiliary operations, e.g., the cost of determining 
which of the precomputed sums should be added to answer a query. A weakness 
of the semigroup model is that it does not allow subtractions even if the weights 
of points belong to a group. Therefore,-we will also consider the group model, in 
which both additions and subtractions are allowed. 

The size of any range-searching data structure is at least linear, for it has to 
store each point (or its weight) at least once, and the query time on any reasonable 
model of computation (e.g., pointer machine, RAM) is fi(logn) even for d = 1. 
Therefore, one would like to develop a linear-size data structure with logarithmic 
query time. Although near-linear-size data structures are known for orthogonal 
range searching in any fixed dimension that can answer a query in polylogarithmic 
time, no similar bounds are known for range searching with more complex ranges 
(e.g., simplex, disks). In such cases, one seeks for a tradeoff between the query 
time and the size of the data structure — how fast can a query be answered using 
n log0'1' n space, how much space is required to answer a query in log ^' n time, 
or what kind of tradeoff between the size and the query time can be achieved? 

The chapter is organized as follows. In Section 32.1 we review the orthogo- 
nal range-searching data structures, and in Section 32.2 we review simplex range- 
searching data structures. Section 32.3 surveys other variants and extensions of 
range searching. We study intersection-searching problems in Section 32.4, which 
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can be regarded as a generalization of range searching. Finally, Section 32.5 deals 
with various optimization queries. 

ORTHOGONAL RANGE SEARCHING 

In the d-dimensional orthogonal range searching, the ranges are cf-rectangles, 
each of the form H^ifa, bi], where aiM £ K- This is an abstraction of the 'multi- 
key' searching; see [21, 115]. For example, the points of 5 may correspond to 
employees of a company, each coordinate corresponding to a key such as age, salary, 
experience, etc. The queries of the form — report all employees between the ages 
of 30 and 40 who earn more than $30,000 and who have worked for more than 5 
years — can be formulated as an orthogonal range-reporting query. Because of its 
numerous applications, orthogonal range searching has been studied extensively for 
the last 25 years. A survey of earlier results can be found in the books by Mehlhorn 
[88] and Preparata and Shamos [99]. In this section we review the more recent data 
structures and the lower bounds. 

GLOSSARY 
EPM   A pointer machine with + operation. 
APM   A pointer machine with basic arithmetic and shift operations. 
Faithful semigroup A semigroup (S, +) is called faithful if for each n > 0, for 

any Ti,T2 C {1, ... ,n} so that T\ # T2, and for every sequence of integers 
außj >0(JG Ti,j G T2), there are si,s2, ... ,s„ G S such that 

Y^ aisi ^ 5Z ßisr 

Notice that (K, +) is a faithful semigroup, but ({0,1}, 0) is not a faithful semi- 
group. 

UPPER BOUNDS 

Most of the recent orthogonal range-searching data structures are based on 
range trees, introduced by Bentley [20]. For d = 1, the range tree of S is an 
array storing 5 in a nondecreasing order. For d > 1, let Si be the sequence of 
^-coordinates of points in S sorted in a nondecreasing order. The range tree of 
S is a minimum-height binary tree with n leaves, whose i-th leftmost leaf stores 
the point of S with the i-th smallest ^-coordinate. For an interior node v of T, 
let S(v) denote the set of points stored at leaves in the subtree rooted at v, let av 

(resp. bv) be the smallest (resp. largest) xi-coordinate of points in S(v), and let 
S*(v) denote the projection of S(v) onto the hyperplane xx = 0. The interior node 
v stores av,bv, and a (d- l)-dimensional range tree constructed on S*(v). For any 
fixed dimension d, the size of T is 0(n logd_1 n), and it can be constructed in time 
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0(nlogd_1n). The range-reporting query for a rectangle q = rii=i[a*'kj] can be 
answered as follows. If d = 1, the query can be answered by a binary search. For 
d > 1, we traverse the range tree as follows. Suppose we are at a node v. If v is 
a leaf, then we report the point if it lies inside q. If v is an interior node and the 
interval [a„, bv] does not intersect [ai, bi], there is nothing to do. If [av, bv] C [ai, b{\, 
we recursively search in the (d — l)-dimensional range tree stored at v, with the 

rectangle Y[t=2 [a*> &*]• Otherwise, we recursively visit both children of v. The query 
time of this procedure is 0(logd n + k), which can be improved to 0(logd-1 n + k), 
using the fractional-cascading technique [40, 77]. A range tree can also answer a 
range- counting query in time 0(log -1 n). 

The best-known data structures for orthogonal range searching are by Chazelle 
[25, 27], who used compressed range trees and other techniques (such as filtering 
search) to improve the storage and query time. His results in the plane, under 
various models of computation, are summarized in Table 1; the preprocessing time 
of each data structure is 0(nlogn). 

TABLE   1        Summary of planar orthogonal range-searching 

results 

Problem Model S(n) Q{n) 

Counting 
RAM 
APM 
EPM 

n 
n 
n 

logn 
logn 
log2 n 

Reporting 

RAM 

n 

n log log n 
nloge n 

logn + fclog£(2n//c) 

log n + k log log(4n/fc) 
log n + k 

APM n Hog(2n//c) 

EPM n 
nlogn 

log log n 

&log2(2n//c) 

log n + k 

Semigroup 

Arithmetic 

RAM 

m 

n 
n log log n 
n log£ n 

nlogn 
log 2rn/n 
log2+£ n 

log2 n log log n 
log2 n 

APM 
EPM 

n 
n 

log3n 
log4n 

All the results mentioned in Table 1 can be extended to higher dimensions 
at a cost of logd~2 n factor in the preprocessing time, storage, and query-search 
time. Table 2 summarizes a few additional results on higher-dimensional orthogonal 
range-searching results. 

Overmars [96] showed that if S is a subset ofauxu grid U in the plane and the 
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TABLE   2 Higher-dimensional orthogonal range reporting 

S(n) Q(n) Source Notes 

n\oga-x+en 

m 

n log      n 
log log n 

nlogd_1 n 

log n 
log log n 

logn 
log 2m/n 
log 

+ k 

d-l , 

log log n 
+ k 

log"     n log* n + k 

[88] 

[30] 

[114] 

[101] 

Pointer machine 

Semigroup model 

Fusion trees 

P*-trees 

vertices of query rectangles are also a subset of U, then a range-reporting query can 
be answered in time 0(^\ogu + k), using O(nlogn) storage and preprocessing; or in 
0(loglogu + jfc) time, using O(nlogn) storage and 0(v? logu) preprocessing. The 
range-tree-based data structures for orthogonal range searching can be extended to 
handle c-oriented ranges. The performance of such a data structure is the same as 
that of a c-dimensional orthogonal range-searching structure. If the ranges are ho- 
mothets of a given triangle, or translates of a convex polygon with constant number 
of edges, a two-dimensional range-reporting query can be answered in 0(logn + k) 
time using linear space [35, 36]. If the ranges are octants in E3, a range-reporting 
query can be answered in either 0((k + 1) logn) or 0(log2 n + k) time using linear 
space [36]. 

LOWER BOUNDS 

Fredman [59, 60, 61] was the first to prove nontrivial lower bounds on orthogonal 
range searching, but he considered the framework in which the points were allowed 
to insert and delete dynamically. He showed that a mixed sequence of n insertions, 
deletions, and queries takes fi(nlogdn) time. These bounds were extended by 
Willard to a group model, under some fairly restrictive assumptions. 

Yao [117] proved a lower bound for the 2D static orthogonal range searching 
data structures. He showed that if only m units of storage is available, a query, 
under the semigroup model, takes fi(logn/log((m/n)logn)) in the worst case. See 
also [108]. Later Chazelle extended the lower bound to higher dimensions and 
improved it slightly [30]. In particular he showed that 

Theorem 1 (Chazelle [30]) Let (S, 9) be a faithful semigroup. Then for any fixed 
dimension d and parameters n,m, there exists a set S of n weighted points in W1, 
with weights from S, such that the worst-case query time, under the semigroup 
model, for an orthogonal range-searching data structure, using m units of storage, 
«sft((logn/log(2m/n))d-1). 

In fact, Chazelle's lower bound holds even for the average-case complexity. A 
rather surprising result of Chazelle [29] shows that the size of any data structure on a 
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pointer machine that answers a d-dimensional range-reporting query in 0(logc n+k) 
time, for any constant c, is fl(n(logn/loglogn)d_1); see also [16]. Notice that 
this lower bound is greater than the known upper bound on the RAM model (see 
Table 1). 

These lower bounds do not hold for off-line orthogonal range searching, where 
given a set of n weighted points in Rd and a set of n rectangles, one wants to 
compute the weight of points in each rectangle. Recently, Chazelle [34] proved that 
the off-line version takes fi(n(logn/loglogn)d~1) time in the semigroup model, and 
fi(nloglogn) time in the group model. 

RELATED PROBLEMS 

• Partial-sum problem: Preprocess a d-dimensional array A with n entries in an 
additive semigroup into a data structure so that for a d-dimensional rectangle 
q = [ai,bi] x ■•■ x [ad,bd], the sum a(A,q) = £(fcl kd)eq

Aiki> ••• >ki] can 

be computed efficiently. In the off-line version, given A and m rectangles 
<Zi> • • • iQm, we wish to compute a(A,qi) for every i < m. Yao [116] showed 
that, for d = 1, a partial-sum query can be answered in 0(a(n)) time using 
0(n) space. For d > 1, Chazelle and Rosenberg [42] gave a data structure of 
size 0{n\ogd~l n) that can answer a query in time 0(a(n) logd~2 n). They 
also showed that the off-line version takes Q(n + ma(m, n)) time for any fixed 
d > 1; here a(m,n) is the inverse Ackerman function. If points are allowed to 
insert into 5, the query time is fi(logn/loglogn) [117] for the one-dimensional 
case; the bounds were extended by Chazelle [30] to fi((logn/loglogn)d), for 
any fixed dimension d. 

• Rectangle-rectangle searching: Preprocess a set S of n rectangles in Rd so that 
for a query rectangle q, the rectangles of 5 that intersect q can be reported 
(or counted) efficiently. Chazelle [27] has shown that the bounds mentioned 
in Table 1 hold for this problem also. 

OPEN PROBLEMS 

1. No nontrivial lower bounds are known for answering emptiness queries. 

2. Chazelle's lower bound for range-reporting on the pointer-machine model does 
not hold if the query time is allowed to be of the form 0((k + 1) logcn). 

3. Better lower bounds under the group model. 

4. Better lower bounds on the partial-sum problem for d > 1. 

SIMPLEX RANGE SEARCHING 
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In the last few years, simplex range searching has received considerable atten- 
tion because, apart from its direct applications, the simplex range-searching data 
structures have provided fast algorithms for numerous other geometric problems. 
See the survey paper by Matousek [86] for an excellent review of the techniques 
developed for the simplex range searching. 

Unlike orthogonal range searching, no simplex range-searching data structure is 
known that can answer a query in poly logarithmic time using near-linear storage. 
In fact, the lower bounds stated below indicate that there is very little hope of 
obtaining such a data structure, for the query time of a linear-size data structure, 
under the semigroup model, is roughly at least n1_1/d (thus only saving a factor of 
n1ld over the naive approach). Since the size and query time of any data structure 
have to be at least linear and logarithmic, respectively, we consider these two ends 
of the spectrum: (i) How fast can a simplex range query be answered using a linear- 
size data structure, and (ii) how large should the size of a data structure be in order 
to answer a query in logarithmic time. By combining these two extreme cases, as 
mentioned below, one can obtain a space/query-time tradeoff. 

GLOSSARY 
Range space A range space is a set system S = (X,R) where X is a set of 

objects and R is a family of subsets of X. The elements of R are called ranges 
of S. S is called a finite range space if X is finite. 

E-net A subset N C X is called an e-net of a finite range space S if TV n r ^ 0 for 
every r £ R with \r\ > e\X\. 

VC-dimension The VC-dimension of a range space S = (X,R) is d if there is 
no subset ACIof size d+1 such that {A n r | r £ R) = 2A. 

Spanning tree A spanning tree of a point S in Rd is a tree T whose vertices 
are the points of S and the edges are line segments connecting their endpoints. 
The stabbing number of T is the maximum number of its edges crossed by a 
hyperplane. 

Arrangements The arrangement of a set H of hyperplanes in Ed is the subdi- 
vision of Rd into cells of dimensions k, for 0 < k < d, each cell being a maximal 
connected set contained in the intersection of a fixed subset of H and not inter- 
secting any other hyperplane of H. 

1 /r-cutting Let if be a set of n hyperplanes in Ed and let 1 < r < n be a 
parameter. A (l/r)-cutting of H is a set of (relatively open) disjoint simplices 
covering Rd so that each simplex intersects at most n/r hyperplanes of H. 

Duality The dual of a point (oi, ... ,ad) 6 Kd is the hyperplane xd = a±xi + 
• • • + üd-iXd-i + id, and the dual of a hyperplane Xd = hxi + ■ ■ ■ + bd is the 
point (&i, ... ,bd-\,-bd)- 

LOWER BOUNDS 

In a series of papers, Chazelle has proved nontrivial lower bounds on the simplex 
range searching, using various elegant mathematical techniques; see Table 3. The 
following theorem is perhaps the most interesting result on lower bounds. 
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TABLE   3        Lower bounds for simplex range searching. 

Range Model S(n) Q(n) Source 

Simplex 

Semigroup 
(d = 2) 

Semigroup 
(d>2) 

Group 

Pointer 
(Reporting) 

m 

m 

nlogn 

m 

n 

n 

[28] 

[28] 

[33] 

[43] 

ml/d logn 
logn 

n           , 
ml/d 

Halfspace Semigroup m 

d^ + l 
/   n   \7*TJ       i 

ylogn^            m}ld [23] 

Theorem 2 (Chazelle [28]) Let (S, ©) be a faithful semigroup. For any given pa- 
rameters n, rn, there exists a set Sofn weighted points in Rd, with weights from S, 
such that the worst-case query time of any simplex range-searching data structure, 
under the semigroup model, using m units of storage, is ü(n/^/rn) for d = 2, and 
ft(n/(mx/dlogn)) ford>3. 

It should be pointed out that this theorem holds even for the average-case 
complexity and even if the query ranges are wedges or strips. Theorem 2 gives 
a lower bound for the simplex range-counting queries because (Z,+) is a faithful 
group, but not for emptiness queries. As we will see below, faster data structures 
are known for the halfspace-emptiness queries. 

The lower bound under the pointer-machine model is by Chazelle and Rosen- 
berg [43], and it holds only for range-reporting queries. No nontrivial lower bound 
was known under the group model until Chazelle's recent result [33]. 

LINEAR-SIZE DATA STRUCTURES 

Most of the linear-size data structures for simplex range searching are based on 
the so-called partition trees, originally introduced by Willard [113]. His partition 
tree is a 4-way tree, constructed as follows. Let us assume that n is of the form 
4* for some integer k, and that the points of S are in general position. If k — 0, 
the tree consists of a single node that stores the coordinates of the only point in 
S. Otherwise, using the ham-sandwich theorem, we find two lines t\,l2 so that 
each quadrant Qi, for 1 < i < 4, induced by li,l?, contains exactly n/4 points. 
The root stores the equations of ^1,^2 and the value of n. For each quadrant, we 
recursively construct a partition tree for S n Qi and attach it as the ith subtree of 
the root. The total size of the data structure is linear, and it can be constructed 
in 0(nlogn) time. A halfplane range-counting query can be answered as follows. 
Let Hea query halfplane. We traverse T, starting from the root, and maintain a 
global count. At each node v storing nv nodes in its subtree, the algorithm performs 
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the following step: If the line dh intersects the quadrant Qv associated with v, we 
recursively visit the children of v. If Qvf)h = 0, we do nothing. Otherwise, we 
add nv to the global count. The quadrants associated with the four children of 
an interior node of T are induced by two lines, so dh intersects at most three of 
them, which implies that the query procedure does not explore the subtree of one 
of the children. Hence, the query time of this procedure is 0(n]o^3) - 0(n792). 
A similar procedure can answer a simplex range-counting query within the same 
time bound, and a simplex range-reporting query in time 0(n792 + k). 

After a few initial improvements and extensions on Willard's data structure 
[55, 56, 49], a major breakthrough in simplex range searching was made by Haussler 
and Welzl [68]. They formulated the range searching in an abstract setting and, 
using elegant probabilistic methods, gave a randomized algorithm to construct a 
linear-size partition tree with 0(na) query time, where a = 1 - d(d_1

1)+1 + e for 

any e > 0. The constant of proportionality hidden in the big-0 notation depends 
on the value of e. The major contribution of their paper is the abstract framework 
and the notion of e-nets. The following theorem gives a slightly stronger version of 
their main result. 

Theorem 3 (Haussler-Welzl [68], Komlös et al. [75]) For any finite range space (X,R) 
of VC-dimension d and for 0 < e, 6 < I, if N is a subset of X obtained by 

- f log - + 2 log log - + 3 
e \      e e 

random independent draws, then N is an e-net of {X, R) with probability at least 

l-e-d. 

Theorem 3 implies that any finite range space of VC-dimension d has an e-net 
of size (1 + o(l))(d/e)logl/e. The e-nets have turned out to be a powerful tool 
in developing divide-and-conquer algorithms for several geometric problems and in 
learning theory; see the books by Mulmuley [94] and Anthony and Biggs [17]. 

Building on the theory developed by Haussler and Welzl, Welzl [111] proved 
that one can construct a spanning path of S of 0(n1_1/dlogn) stabbing number; 
the bound was improved by Chazelle and Welzl [45] to Q(nl-1/d). Preprocessing 
the sequence of weights of points along the path, using Yao's data structure for 
the partial-sum problem, one can obtain a linear-size data structure for simplex 
range searching, with 0(n1-1/da(n)) query time, under the semigroup model. But 
this technique does not give a linear-size data structure with 0(n1-1/<i logn) query 
time, for d > 3, under any reasonable model of computation (e.g., pointer machine, 
RAM), See [1, 82, 112] for other applications of spanning trees with low stabbing 
number. 

Matousek and Welzl [81] gave an entirely different algorithm for the halfspace 
range-counting problem in the plane, using a combinatorial result of Erdös and 
Szekeres [57]. The query time of their data structure is 0{^/n\ogn), and it uses 
0{n) space and 0(nzl2) preprocessing time. If subtractions are allowed, their 
algorithm can be extended to the triangle range-counting problem. This technique 
has also been applied to solve a number of related problems, including ray shooting 
and intersection searching [19]. 

The best-known linear-size data structure for simplex range searching, which 
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almost matches the lower bounds mentioned above, is by Matousek [85]. He showed 
that a simplex range-counting (resp. range-reporting) query in Rd can be answered 
in time 0{nl~l/d) (resp. 0{nl~l/d + k)). His algorithm is based on the following 
theorem. 

Theorem 4 (Matousek [83]) Let S be a set ofn points in M.d, and letKr < n/2 
be a given parameter.  Then there exists a family of pairs 

n = {(51)A1))...J(5m)Am)} 

such that Si C S lies inside the simplex A*, n/r < \Si\ < 2n/r, Si D Sj = 0 for 
i ^ j, and every hyperplane crosses at most crl~l/d simplices of II; here c is a 
constant. For constant values ofr, H can be constructed in 0{n log r) time. 

Using this theorem, a partition tree T can be constructed as follows. Each 
interior node v of T is associated with a subset Sv C S and a simplex A„ containing 
Sv; the root of T is associated with S and Rd. Choose r to be a sufficiently large 
constant. If \S\ < 4r, T consists of a single node, and it stores all points of S. 
Otherwise, we construct a family of pairs n = {(Si,Ai), ... ,(5m,Am)} using 
Theorem 4. The root u stores the value of n. We recursively construct a partition 
tree Ti for each Si and attach T, as the i-th subtree of u. The root of T* also stores 
Aj. The total size of the data structure is linear, and it can be constructed in time 
O(nlogn). A simplex range-counting query can be answered in the same way as for 
Willard's partition tree. Since any hyperplane intersects at most cr1-1^ simplices 
of n, the query time is 0(nl~l/d x n'08--c); the logr c factor can be reduced to any 
arbitrarily small positive constant e by choosing r sufficiently large. Although the 
query time can be improved to 0(n1-1/dlogcn) by choosing r to be ne, a stronger 
version of Theorem 4, which was proved in [85], and some other sophisticated 
techniques are needed to obtain 0(n1-1/d) query time. 

If the points in S lie on a fc-dimensional algebraic surface of constant degree, a 
simplex range-counting query can be answered in time 0(n1~'y) using linear space, 

where7 = l/L(rf + fc)/2J t6]- 
Since the query time of a linear-size simplex range-searching data structure is 

only nxld factor faster than the naive method, researchers have developed practical 
data structures that work well most of the time. For example, Arya and Mount 
[18] have developed a linear-size data structure for answering approximate range- 
counting queries, in the sense that the points lying within distance S ■ diam(A) 
distance of the boundary of the query simplex A may or may not be counted. Its 
query time is 0(logn + l/5d~l). Overmars and van der Stappen [97] developed fast 
data structures for the special case in which the ranges are 'fat' and have bounded 
size. See [62, 70] for some other 'heuristic based' data structures. 

We conclude this subsection by noting that better bounds can be obtained 
for the halfspace range-reporting problem, using the so-called filtering search; see 
Table 4. 

DATA STRUCTURES WITH LOGARITHMIC QUERY TIME 

For the sake of simplicity, we first consider the halfspace range-counting prob- 
lem.   Using a standard duality transform, this problem can be reduced to the 
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TABLE   4        Halfspace range-searching. 

d S(n) Q(n) Source Notes 

d = 2 n log n + k [41] Reporting 

d = 3 nlogn log n + k [14] Reporting 

d = 3 n logn [52] Emptiness 

d>3 n log log n nl-l/ld/2jl0gcn [79] Reporting 

d>3 n nl-l/d2O(l0g*n) [79] Emptiness 

following problem: Given a set H of n hyperplanes, determine the number of hy- 
perplanes of H lying above a query point. Since the same subset of hyperplanes 
lies above all points in a single cell of A(H), the arrangement of H, we can answer 
a halfspace range-counting query by locating the cell of A(H) that contains the 
point dual to the hyperplane bounding the query halfspace. The following theorem 
by Chazelle [31] yields an 0((n/ log n)d) size data structure, with O(logn) query 
time, for halfspace range counting. 

Theorem 5 (Chazelle [31]) Given a set H of n hyperplanes and a parameter r < 
n, a (l/r)-cutting of H of size 0{rd) can be computed in 0(nrd~l) time. 

The above approach can be extended to the simplex range-counting problem 
as well. That is, store the solution of every combinatorially distinct simplex (two 
simplices are combinatorially distinct if they do not contain the same subset of 5). 
Since there are 6(nd(d+1)) combinatorially distinct simplices, such an approach will 
require ft(nd(d+1)) storage. Chazelle et al. [44] showed that the size can be reduced 
to 0(nd+£), for any e > 0, using a multi-level data structure. The space bound can 
be reduced to 0{nd) by increasing the query time to 0(logd+1 n) [85] . Halfspace 
range-reporting queries can be answered in 0(logn + k) time, using 0(nLrf/2J+e) 
space. 

A space/query-time tradeoff can be attained by combining the linear-size and 
logarithmic query-time data structures, as described in [44, 85]. The results are 
summarized in Table 5. 

OPEN PROBLEMS 

1. Bridge the gap between upper and lower bounds in the group model. 

2. Can the lower bound on the query time in Theorem 2 be improved to n/m1/d? 

3. Can a simplex range-counting query be answered in 0(log n) time using 0{nd) 
space? 

4. -Can a halfspace range-reporting query be answered in 0(nl~ll\-d/2\ + k) time 
using linear space? 
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TABLE   5        Space/query-time tradeoff. 

Range Mode Q(m,n) 
—71—;—d+i m T —T logd+1 - + k Simplex Reporting 

Counting 
,i/d 

log' d+l 

Halfspace 

Reporting 

Emptiness 

Counting 

^713727 los n + k 

n m 

VARIANTS AND EXTENSIONS 

In this section we review some extensions of range-searching data structures, 
including semialgebraic range searching, dynamization, and external memory data 
structures. 

GLOSSARY 

Semialgebraic set A subset of Rd is called a real semialgebraic if it is obtained 
as a finite Boolean combination of sets of the form {/ > 0}, where / is a d-variate 
polynomial. 

Tarski cells A real semialgebraic set is called a Tarski cell if it is defined by a 
constant number of polynomials, each of constant degree. 

SEMIALGEBRAIC RANGE SEARCHING 

So far we assumed that the ranges were bounded by hyperplanes, but in many 
applications one has to deal with ranges bounded by nonlinear functions. For 
example, a query of the form -— for a given point p and a real number r, find all 
points of S lying within distance r from p — is a range-searching problem in which 
ranges are balls. 

As shown below, the ball range searching in Rd can be formulated as an instance 
of the halfspace range searching in Rd+l. So a ball range-reporting (resp. range- 
counting) query in Ed can be answered in time 0{n/m1^d/2~\ logcn + A;) (resp. 
0(n/m1/'d+1'log(m/n))), using 0(m) space; a somewhat better performance can 
be obtained using a more direct approach; see Table 6. But relatively little is known 
about range-searching data structures for more general ranges. 

A natural class of more general ranges is the family of Tarski cells. It suffices to 
consider the ranges bounded by a single polynomial because the ranges bounded by 
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multiple polynomials can be handled using multi-level data structures. We assume 
that the ranges are of the form 

Tf(a) = {xeRd |/(x,a)>0}, 

where / is a (d+p)-variate polynomial specifying the type of ranges (disks, cylinders, 
cones, etc.), and a is a p-tuple specifying a specific range of the given type (e.g., a 
specific disk). We will refer to the range-searching problem in which the ranges are 
from the set Vf as the Ff-range searching. 

TABLE 6        Semialgebraic range counting 

d Range S(n) Q(n) Source Notes 

d = 2 Disk 
Tarski cell 

nlogn 
n 

\/n log n 
nl'2+s 

[45] 

[6] Partition tree 

d>3 Tarski cell 

Tarski cell 

n 

n 
[6] 

[6] 

Partition tree 

Linearization 

One approach to answer T/-range queries is to use linearization, originally 
proposed by Yao and Yao [118]. We represent the polynomial /(x, a) in the form 

f(x, a) = tpo (a) + Vi {a)<fi (x) + ■ • • + i>k {a)<fk (x) 

where ipx, ... r(pk,^o, ■ ■ ■ ,ipk are real functions. A point x e Krf is mapped to the 
point 

ip{x) = (iPl(x),<f2(x),...,<pk(x))£Rk. 

Then a range 7/(a) = {x £ Erf | f(x,a) > 0} is mapped to a halfspace 

(p*{a) :{yeM.k \ i>o(a) + <l>i(a)yi + ■ ■ ■ + i>k(a)yk > 0}; 

k is called the dimension of linearization. Agarwal and Matousek [6] have described 
an algorithm for computing a linearization of smallest dimension. A Tf-range 
query can now be answered using a fc-dimensional halfspace range-searching data 

structure. 
For example, a circle with center (ai,a2) and radius a3 in the plane can be 

regarded as a set of the form 7/(a), where a = (ai,a2,a3) and / is a 5-vanate 
polynomial that can be written as 

f{x1,x2,a1,a2,a3) = [a2
3 - a\ - a\] + [2alXl] + [2a2x2] - [x\ + x\]. 

Thus, setting 

V»o(a) = <4 - a\ - a\,    ij;l{a) = 2a1,    ijj2{a) = 2a2,    i/-3(a) =-1 
ip1(x)=xl,     ip2{x)=x2,      ipzix) =x\ +x2, 
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we get a linearization of dimension 3. In general, balls in Rd admit a linearization 
of dimension d+1; cylinders in E3 admit a linearization of dimension 9. One of the 
most widely used linearization in computational geometry is the so-called Plücker 
coordinates, which map a line in E3 to a point in E5; see [39, 105] for more details 
on Plücker coordinates. 

Agarwal and Matousek [6] have also proposed another approach to answer Tf- 
range queries by extending Theorem 4 to Tarski cells and by constructing partition 
trees using this extension. 

Table 6 summarizes the known results on Tf range-counting queries; here A is 
the dimension of linearization. 

DYNAMIZATION 

All the data structures discussed above assumed S to be fixed, but in many 
applications one needs to update S dynamically — insert a new point into S or 
delete a point from S. One cannot hope to perform insert/delete operations on 
a data structure in less than P(n)/n time, where P(n) is the preprocessing time 
of the data structure. If we allow only insertions (i.e., a point cannot be deleted 
from the structure), the static data structure can be modified, using the standard 
techniques [22, 95], so that a point can be inserted in time 0(P(n) logn/n) and 
a query can be answered in time 0(Q(n) log n), where Q(n) is the query time of 
the original static data structure; in some cases the logarithmic overheard in the 
query or update time can be avoided. Although these techniques do not extend to 
deletions, many range-searching data structures, such as orthogonal and simplex 
range-searching structures, can handle deletions at polylogarithmic or ns overhead 
in query and update time, by exploiting the fact that a point is stored at roughly 
S(n)/n nodes [8]. Table 7 summarizes the known results on dynamic 2D orthogonal 
range-searching data structures; these results can be extended to higher dimensions 
at a cost of logd_2 n factor in the storage, in the query time, and in the update 
time. Klein et al. [74] have described an optimal data structure for a special case 
of 2D range-reporting where the query ranges are translates of a polygon. 

TABLE   7 Dynamic 2D orthogonal range-searching 

Mode S(n) Q(n) U(n) Source 
Counting n log2 n log2n [27] 

Reporting 

n 
n 

nlogn 
nlogn 

log log n 

k\og2(2n/k) 
nc + k 

log n log log n + k 
log2+*n+k 

log log n 

log2 n 
log2 n 

log n log log n 
log2 n 

log log n 

[27] 
[104] 
[89] 

[104] 

Semigroup n log4 n log4n [27] 
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Since an arbitrary sequence of deletions is difficult to handle in general, re- 
searchers have examined whether a random sequence of insertions and deletions 
can be handled efficiently; see [92, 93, 102]. Mulmuley [92] has shown that there 
exists a dynamic halfspace range-reporting data structure that can process a ran- 
dom update sequence of length m in expected time 0{m\d/2^) and can answer 
a halfspace range-reporting query in time O(fclogn). Agarwal and Matousek [7] 
developed a dynamic data structure for halfspace range-reporting that can process 
an arbitrary update sequence efficiently; its update time is <9(nLrf/2J~1+E), and it 
can answer a query in time 0(logn + k). If we allow only 0(n log n) space, then the 
query and update time become 0(n1-1/Ld/2J+e + k) and O(logn), respectively. 

SECONDARY MEMORY STRUCTURES 

If the input point set is rather large and does not fit into the main memory, 
then the data structure is stored in the secondary memory, and portions of it are 
moved to the main memory, as required. In this case the bottleneck is the time 
spent in transferring the data between main and secondary memory. We assume 
that the data is stored in the secondary memory in blocks of size B, where B is 
a parameter. Each access to the secondary memory transfers one block (i.e., B 
words), and we count this as one I/O operation. The size of a data structure is 
the number of blocks required to store it, and the query (resp. preprocessing) time 
is defined as the number of I/O operations required to answer a query (resp. to 
construct the structure). I/O-efficient orthogonal range-searching structures have 
received much attention recently, but most of the results are known only for the 
planar case. 

Table 8 summarizes the known results on secondary-memory structures for 
orthogonal range searching; here ß(n) = logloglogB n. The data structure by Sub- 
ramanian and Ramaswamy [106] for 3-sided queries supports insertion/deletion of 
a point in time 0(logBn + (logB n)2/B). Extending the lower-bound proof by 
Chazelle [43], they also proved that any secondary-memory data structure that an- 
swers a range-reporting query in time 0(logc

B n+k/B) requires Cl((n/B) log(n/B)/ loglogB n) 

storage. 

TABLE   8 Secondary memory structures 

d Range Q(n) S(n) Source 

d = l Interval logB n + k/B n/B 

d = 2 
Quadrant 

3-sided rect. 
3-sided rect. 
Rectangle 

logB n + k/B 
logB n + k/B + log* B 

logB n + k/B 
logB n + k/B + log* B 

(n/B)\oglogB 
n/B 

(n/B) log B log log B 
(n/B)log{n/B)/ log logB n 

[100] 
[106] 
[100] 
[106] 

d = 3 Octant 
Rectangle 

ß(n, B) logB n + k/B 
ß(n, B) logB n + k/B 

(n/B)\og(n/B) 
(n/B) log4(n/B) 

[110] 
[110] 
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OPEN PROBLEMS 

1. Can a ball range-counting query be answered in O(logn) time using 0{n2) 
space? 

2. Can a Tf range-counting query be answered in time 0{nl~lld+e) using near- 
linear space? 

3. A solution to the following problem, which is interesting in its own right, will 
result in a better semialgebraic range-searching data structure: Given a set T 
of n algebraic surfaces in Rd, each of constant maximum degree, decompose 
the cells of the arrangement into 0(nd) Tarski cells. 

4. If the hyperplanes bounding the query halfspaces satisfy some property, e.g., 
all of them are tangent to a given sphere, can a halfspace range-counting 
query be answered more efficiently? 

5. Simple dynamic data structure for halfspace range reporting. 

6. Efficient secondary-memory structures for higher dimensional orthogonal range 
searching and for simplex range searching. 

INTERSECTION SEARCHING 

A general intersection-searching problem can be formulated as follows: given 
a set S of objects in Rd, a semigroup (S,+), and a weight function w : S -> S; 
we wish to preprocess S into a data structure so that for a query object 7, we can 
compute the weighted sum £tu(p), where the sum is taken over all objects of S 
that intersect 7. Range searching is a special case of intersection-searching in which 
5 is a set of points. 

An intersection-searching problem can be formulated as a semialgebraic range- 
searching problem by mapping each object p £ S to a point <p(p) in a parametric 
space Rk and every query range 7 to a semialgebraic set ^(7) so that p intersects 
7 if and only if ip{p) € VKT)- For example, let 5 be a set of segments in the plane 
and the query ranges be also segments in the plane. Each segment esS with left 
and right endpoints (px,Py) and (qx,Qy), respectively, can be mapped to a point 
y>(e) = (px,py,qx,qy)in. I4 and a query segment 7 can be mapped to a semialgebraic 
region tp(-y) so that 7 intersects e if and only if ^(7) S v(e)- A shortcoming of this 
approach is that k, the dimension of the parametric space, is typically much larger 
than d, and therefore, it does not leads to an efficient data structure. The efficiency 
can be significantly improved by expressing the intersection test as a conjunction 
of simple primitive tests (in low dimensions) and then using a multi-level data 
structure to perform these tests. For example, a segment 7 intersects another 
segment e if the endpoints of e lie on the opposite sides of the line containing 7 and 
vice-versa. We can construct a two-level data structure — the first level sifts the 
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subset Si C S of all the segments whose endpoints lie on the opposite side of the 
line supporting the query segment, and the second level reports those segments of 
Si whose supporting lines separate the endpoints of 7. Each level of this structure 
can be implemented using a two-dimensional simplex range-searching searching 
structure, and hence a reporting query can be answered in 0{n/^/rnlogcn + k) 
time using 0{m) space. 

It is beyond the scope of this survey paper to cover all intersection-searching 
problems. Instead, we discuss a few basic ones, which have been studied extensively. 
All intersection-counting data structures described here can answer intersection- 
reporting queries, at an additional cost that is proportional to the output size. 
In some cases, an intersection-reporting query can be answered faster. Moreover, 
using intersection-reporting data structures, intersection-detection queries can be 
answered in time proportional to their query-search time. Finally, all the data 
structures described in this section can be dynamized at an expense of 0{ne) factor 
in the storage and query time. 

POINT INTERSECTION SEARCHING 

Preprocess a set S of objects (e.g., balls, halfspaces, simplices, Tarski cells) in 
Rd into a data structure so that all the objects of S containing a query point can be 
reported (or counted) efficiently. This is the inverse of the range-searching problem. 
Moreover, it can also be viewed as locating a point in the subdivision induced by 
the objects in S. Table 9 gives some of the known results. 

TABLE   9 Point intersection searching 

d Objects S(n) Q(n) Source Notes 

d = 2 

Disks 
Disks 

Triangles 

Fat triangles 
Tarski cells 

m 
nlogn 

m 

n log2 n 
n2+e 

(n4/3/™2/3)k>g(m/n) 
log n + k 
n   ,    3 ^=log n 

log3 n + k 
logn 

[14] 

[8] 

[73] 
[37] 

Counting 
Reporting 

Counting 

Reporting 
Counting 

d = 3 Functions n1+£ log n + k [4] Reporting 

d> 3 

Simplices 

Balls 
Balls 

Tarski cells 

m 

nd+e 

m 
n2d-3+e 

logn 

mi/?d/2i logcn + fc 
logn 

[6] 
[79] 
[37] 

Counting 

Counting 
Reporting 
Counting 

Point location in arrangement of surfaces, especially determining whether a 
query point lies above a given set of regions of the form x^+i > /(xi, • ■ ■ , xd), has 
found many applications in computational geometry.  For example, the collision- 
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detection problem — given a set 0 of obstacles and a robot B, determine whether 
a placement p of B is free — can be formulated as a point intersection-detection 
query amid a set of regions. If B has k degrees of freedom, then a placement of B 
can be represented as a point in M.k, and the set of placements of B that intersect 
an obstacle 0; £ m is a region Ki CRk. KB and the obstacles are semialgebraic 
sets, then each Ki is also a semialgebraic set. A placement p of B is free if and 
only if p does not intersect any of Ki's. See [76] for a survey of known results on 
the collision-detection problem and [11, 37, 38] for a few other applications of point 
intersection-searching structures. 

SEGMENT INTERSECTION SEARCHING 

Preprocess a set of objects in Rd into a data structure so that all the objects of S 
intersected by a query segment can be reported (or counted) efficiently. See Table 10 
for some of the known results on segment intersection searching. For the sake of 
clarity, we have omitted polylogarithmic terms from the query-search time whenever 
it is of the form n/ma. 

TABLE   10        Segment intersection searching 

d Objects S(n) Q(n) Source Notes 

Simple polygon n (k + l)logn [69] Reporting 

d = 2 Segments m n/y/m [8, 47] Counting 
Circles n2+s logn [13] Counting 

Circular axes m n/m1'* [13] Counting 

Planes m n/ml/3 
[5] Counting 

d = 3 Triangles m n/ml/4 
[6] Counting 

- Spheres m n/m1/4 
[6] Counting 

Spheres ni+s (k + 1) log2 n [2] Reporting 

A special case of segment intersection searching, in which the objects are hor- 
izontal segments in the plane and query ranges are vertical segments, has been 
widely studied. In this case a query can be answered in time 0(logn + k) using 
O(nlogn) space and preprocessing [109]. If we also allow insertions and deletions, 
the query and update time are 0(lognloglogn + k) and O (logn log logn) [89], or 
0(log2 n + k) and O(logn) using only linear space [46]; if we allow only insertions, 
the query and update time become 0(logn + k) and O(logn) [71]. 

A problem related to segment intersection searching is the stabbing problem. 
Given a set S of objects in Rd, determine whether a query fc-flat (0 < k < d) 
intersects all objects of S. Such queries can also be answered efficiently using 
semialgebraic range-searching data structures. A line-stabbing query amid a set of 
triangles in E3 can be answered in O(logn) time using 0(n2+e) storage [98]. The 
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paper by Goodman et al. [63] is an excellent survey of this topic. 

COLORED INTERSECTION SEARCHING 

Preprocess a given set S of colored objects in Rd (i.e., each object in S is 
assigned a color) so that the we can report (or count) the colors of the objects 
that intersect the query range. This problem arises in many contexts where one 
wants to answer intersection-searching queries for nonconstant-size input objects. 
For example, given a set P = {Pi, ... , Pm} of m simple polygons, one may wish to 
report all the simple polygons that intersect a query segment; the goal is to return 
the index, and not the description, of these polygons. If we color the edges of P; 
by the color i, the problem reduces to colored segment intersection searching in a 
set of segments. 

If an intersection-detection query for S with respect to a range 7 can be an- 
swered in Q(n) time, then the colored intersection-reporting query with 7 can 
be answered in time 0((1 + k\og(n/k))Q(n)). Therefore logarithmic query-time 
intersection-searching data structures can easily be modified for colored intersection- 
reporting, but very little is known about linear-size colored intersection-searching 
data structures, except in some special cases [12, 65, 66, 67, 72]. 

Gupta et al. [65] have shown that the colored halfplane-reporting queries in 
the plane can be answered in 0(log2n + k) using 0(n logn) space. Agarwal and 
van Kreveld [12] presented a linear-size data structure with C^n1/2"1"* + k) query 
time for colored segment intersection-reporting queries amid a set of segments in 
the plane, assuming that the segments of the same color form a connected planar 
graph, or if they form the boundary of a simple polygon; these data structures 
can also handle insertions of new segments. Gupta et al. [65, 67] present segment 
intersection-reporting structures for many other special cases. 

OPEN PROBLEMS 

1. Faster algorithms for point intersection searching in Tarski cells. 

2. An 0(log n+k) query-time and linear-size segment intersection-reporting data 
structure for a simple polygon. 

3. Faster segment intersection-detection structures for (possibly intersecting) 
Jordan arcs in the plane, and for triangles and spheres in E3. 

4. Linear-size, 0(^/n\ogcn + k) query-time data structures for colored triangle 
range reporting. 

5       OPTIMIZATION QUERIES 

In the optimization queries, we want to return an object that satisfies certain 
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condition with respect to the query range. The most common example of opti- 
mization queries is, perhaps, the ray-shooting queries. Other examples include 
segment-dragging and linear-programming queries. 

RAY-SHOOTING QUERIES 

Preprocess a set S of objects in Rd into a data structure so that the first object 
intersected by a query ray (if there exists one) can be reported efficiently. This 
problem arises in ray tracing, hidden-surface removal, radiosity, and other graphics 
problems. Recently, efficient solutions to many other geometric problems have also 
been developed using ray-shooting data structures. 

A general approach to the ray-shooting problem, using segment intersection- 
detection structures and Megiddo's parametric searching technique [87], was pro- 
posed by Agarwal and Matousek [5]. The basic idea of their approach is as follows. 
Suppose we have a segment intersection-detection data structure for S, based on 
partition trees. Let p be a query ray. Their algorithm maintains a segment ab C p 
such that the first intersection point of ab with S is the same as that of p. If a lies 
on an object of S, it returns a. Otherwise, it picks a point c G ab and determines, 
using the segment intersection-detection data structure, whether the interior of the 
segment ac intersects any object of 5. If the answer is yes, it recursively finds the 
first intersection point of ac with S; otherwise, it recursively finds the first intersec- 
tion point of cb with S. Using the parametric searching, the points c at each stage 
can be chosen in such a way that the algorithm terminates after O(logn) steps. 

In some cases, the query time can be improved by a polylogarithmic factor, 
using a more direct approach. 

Table 11 gives a summary of known ray-shooting results. For the sake of clarity, 
we have ignored the polylogarithmic factors from the query time whenever it is of 
the form n/ma. The ray-shooting structures for d-dimensional convex polyhedra 
assume that the source point of the query ray lies inside the polytope. All the 
ray-shooting data structures mentioned in Table 11 can be dynamized at a cost of 
polylogarithmic or nE factor in the query time. Goodrich and Tamassia [64] have 
developed a dynamic ray-shooting data structure for connected planar subdivisions, 
with 0(log2 n) query and update time. 

Like simplex range searching, many practical data structures have been pro- 
posed that, despite having bad worst-case performance, work well in practice. One 
common approach is to construct a subdivision of Rd into constant-size cells so that 
the interior of each cell does not intersect any object of S. A ray-shooting query 
can be answered by traversing the query ray through the subdivision until we find 
an object that intersects the ray. The worst-case query time is proportional to 
the maximum number of cells intersected by a segment that does not intersect any 
object in S. Hershberger and Suri [69] showed that a triangulation with O(logn) 
query time can be constructed when S is the boundary of a simple polygon in the 
plane. See [3, 91, 54, 78] and the references therein for other ray-shooting results 
using this approach. Agarwal et al. [3] proved worst-case bounds for many cases 
on the number of cells in the subdivision that a line can intersect. 

The nearest-neighbor query problem is defined as follows: preprocess a set S of 
points in Rd into a data structure so that a point in S closest to a query point £ 
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TABLE   11        Ray shooting 

d = 3 

d>3 

Objects 
Simple polygon 

s disjoint simple 
polygons 

s convex polygons 
Segments 

Circlular axes 
Disjoint arcs 

convex polytope 

c-oriented 
polytopes 

s convex polytopes 
Halfplanes 

Terrain 
Triangles 
Spheres 

Hyperplanes 

Hyperplanes 

Convex polytope 

Convex polytope 

S(n) 

n 

n 
(s2 + n) log s 

sn log s 
m 
n 
n 

n 

„2„2+e s n 
m 
m 
m 

m 

m 
Ad/2\ 

log Ld/2J-= , 

Q(n) 
logn 

log s log n 
log s log n 

nj-Jm 
n/m1/3 

logn 

logn 

log2n 
n/s/m 

n/y/m 
n/mx/A 

log2 n 
n/m1/d 

logn 

n/m1/^/2! 

logn 

Source 

[69] 

[9, 69] 

[9] 
[8, 47] 

[13] 
[13] 

[53] 

[51] 

[10] 

[5] 
[5, 39] 

[6] 
[2] 
[5] 

[5] 

[5, 80] 

[80] 

can be reported quickly. This query can be formulated as an instance of the ray- 
shooting problem in a convex polyhedron in Ed+1, as follows. We map each point 
V = (Pi, • • • >Pd) in S to a hyperplane in Rd+1, which is the graph of the function 

fp(xu ... ,xn) = 2pixi + • • • + 2pdxd - (p? + • • ■ +pD- 

Then p is a closest neighbor of a point f = (£i, • • • , fd) if and only if 

fpiti, ■■■ ,$d) =max/9(fi, ... ,^d). 

That is, if and only if fp is the first hyperplane intersected by the vertical ray 
p(£) emanating from the point (^, ... , £d, 0) in the (-xd+i)-direction. If we define 
P = f]{xd+i > fp(xi, ... ,xd) | p € S}, then p is the nearest neighbor of f if 
and only if the intersection point of p(£) and dP lies on the graph of fp. Thus a 
nearest-neighbor query can be answered in time roughly n/m1/^/2] using 0(m) 
space. This approach can be extended to answer farthest-neighbor and fc-nearest- 

neighbor queries also. 
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LINEAR-PROGRAMMING QUERIES 

Let 5 be a set of n halfspaces in Rd. We wish to preprocess S into a data 
structure so that for a direction vector v, we can determine the first point of f]h€S h 
in the direction v. For d < 3, such a query can be answered in O(logn) time 
using 0(n) storage, by constructing the normal diagram of the convex polytope 
ClhGS ^ an^ preprocessing it for point-location queries. For higher dimensions, 
Matousek [84] showed that, using multidimensional parametric searching and the 
data structure for answering halfspace emptiness queries, a linear-programming 
query can be answered in 0((n/m1''L<V2J)logcn) with 0{m) storage. Recently 
Chan [24] has described a randomized procedure whose expected query time is 
slightly faster. 

SEGMENT DRAGGING QUERIES 

Preprocess a set S of objects in the plane so that for a query segment e and a ray 
p, the first position at which e intersects any object of S as it is translated (dragged) 
along p can be determined quickly. This query can be answered in 0((n/^/m) logc n) 
time, with 0(m) storage, using segment intersection-searching structures and the 
parametric-search technique. Chazelle [26] gave a linear-size, O(logn) query-time 
data structure for the special case in which S is a set of points, e is a horizontal 
segment, and p is the vertical direction. Instead of dragging a segment along a ray, 
one can ask the same question for dragging along a more complex trajectory (along 
a curve and allowing both translation and rotation). These problems arise quite 
often in motion planning and manufacturing. See [90, 101] for a few such examples. 

OPEN PROBLEMS 

1. Ray shooting amid a set of intersecting arcs in the plane. 

2. Ray shooting amid triangles in R3 in n/m1^. 

3. Can a ray-shooting query in a nonconvex polytope in E3 be answered any 
faster than a ray-shooting query amid triangles? 

4. No nontrivial lower bounds are known for the ray-shooting problem.   ; 

SOURCES AND RELATED MATERIAL 

BOOKS AND MONOGRAPHS 

• Mehlhorn [88]: A text book on computational geometry. The first part of the 
book covers multidimensional searching. 
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Mulmuley [94]: A text book on randomized techniques in computational ge- 
ometry. Chapters 6 and 8 cover range-searching, intersection-searching, and 
ray-shooting data structures. 

Preparata and Shamos [99]: A text book on basic topics in computational 
geometry. Chapters 2 includes earlier results on orthogonal range searching. 

Foley et al. [58]: A text book on graphics. Discusses practical data structures 
for ray tracing and intersection searching. 

de Berg [50]: A monograph on ray shooting and related problems. 

Schwarzkopf [103]: This PhD thesis includes many results on randomized 
dynamic data structures. 

SURVEY PAPERS 

• Bentley and Friedman [21]: A survey of earlier results on orthogonal range 
searching. 

• Chazelle [32]: A general survey of recent developments in computational ge- 
ometry. It contains most of the references on simplex and semialgebraic range 
searching. 

• Chiang and Tamassia [48]: A survey of dynamic data structures. 

• Goodman et al. [63]: A survey of stabbing problems and related topics. 

• Matousek [86]: A comprehensive survey of simplex range searching and re- 
lated topics. 
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