Army Research Laboratory

Wind Drift of Projectiles: A Ballistics Tutorial

Herbert A. Leupold

19961105076

DIIC QUALITIY INSPECTEED 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

CONTENTS

Page
Derivation of Wind Drift Formula 1
Effect of Projectile Shape 3
Effect of Muzzle Velocity on Wind Drift 4
Effect of Bullet Shape and Mass on Wind Drift 5
FIGURESPage

1. (a) Wind velocity, V_{w}, and projectile velocity, V_{m}, in ground reference frame, (b) Projectile velocity in air reference frame 1
2. Projectile path and its components form triangles similar to those of the initial and all subsequent components of velocity 2
3. The angles, θ, have been exaggerated for clarity. In actual cases V_{m} is always much larger than V_{w} and hence θ is small. (A) high wind velocity, (B) medium wind velocity, (C) zero wind velocity 3
4. (A) high wind velocity, (B) intermediate wind velocity, (C) zero wind velocity 4

WIND DRIFT OF PROJECTILES: A BALLISTICS TUTORIAL

Herbert A. Leupold

Derivation of Wind Drift Formula

The lateral displacement of x_{d} of a projectile by a wind blowing at right angles to the direction of aim is given by the well known formula:

$$
\begin{equation*}
x_{d}=V_{w}\left(t_{a}-t_{v}\right) \tag{1}
\end{equation*}
$$

where V_{w} is the wind velocity, t_{a} is the projectile's time of flight from the launcher to the target and t_{v} its time of flight if fired in a vacuum.

At first glance, this formula is disturbing to many because of the suggestion of mysticism it seemingly presents, viz: How does the projectile "know" what its time of flight should be in a vacuum and why should it affect the projectile?

(a)

(b)

Figure 1: (a) Wind velocity, V_{w}, and projectile velocity, V_{m}, in ground reference frame, (b) Projectile velocity in air reference frame.

Fortunately the appearance of t_{v} in (1) is only an accident of geometry and does not imply any causal link between x_{d} and t_{v}.

Figure 2: Projectile path and its components form triangles similar to those of the initial and all subsequent components of velocity.

The best way to illustrate this is to consider the motion of the projectile in the reference system in which the air is stationary. In that frame the force the air exerts upon the projectile is opposite to its direction of motion. Initially the components of projectile velocity V_{a} with respect to the air are the muzzle velocity, V_{m} and minus the wind velocity, $-V_{w}$. See Fig. 1.

The direction of flight in the air system does not change with time since the air exerts no force normal to the projectile's path in that reference frame. Therefore the projectile path and its components form triangles similar to those of the initial and all subsequent components of velocity as in Fig. 2. Here P is the path taken by the projectile in the air reference frame, P_{l} is the lateral displacement at the target of the projectile and P_{t} the distance of the launch site to the target. From Fig. 2 we form the proportion:

$$
\begin{align*}
& \frac{P_{l}}{P_{t}}=\frac{V_{w}}{V_{m}} \tag{2}\\
& P_{l}=\frac{V_{w}}{V_{m}} P_{t}
\end{align*}
$$

In the time the projectile has traversed path P in the air system, the air has moved a distance $V_{w} t_{a}$ to the right. From this we must subtract the lateral displacement, P_{l} of the projectile with respect to air to obtain the lateral drift, x_{d}, with respect to the ground. Doing this we obtain:

$$
\begin{equation*}
x_{d}=V_{w} t_{a}-P_{l}=V_{w} t_{a}-\frac{V_{w} P_{t}}{V_{m}}=V_{w}\left(t_{a}-\frac{P_{t}}{V_{m}}\right) \tag{3}
\end{equation*}
$$

But P_{t} / V_{m} is just the range P_{t} divided by the muzzle velocity V_{m}, which is the time of flight t_{v} in a vacuum since in a vacuum projectile velocity remains constant with the value V_{m}. Finally we obtain (1):

$$
\begin{equation*}
x_{d}=V_{w}\left(t_{a}-t_{v}\right) \tag{4}
\end{equation*}
$$

Thus we see that the appearance of t_{v} in (4) is a geometrical artifact that arises because the range P_{t} can be written as $V_{m} t_{v}$.

Effect of Projectile Shape

If the projectile is a sphere it will always present the same cross section normal to its path in the air frame of reference, i.e., a circular one (Fig. 3).

Figure 3: The angles, θ, have been exaggerated for clarity. In actual cases V_{m} is always much larger than V_{w} and hence θ is small. (A) high wind velocity, (B) medium wind velocity, (C) zero wind velocity.

If, however, the projectile is of the usual pointed cylinder form it would seem that the cross section impacted by the air's relative motion varies with wind velocity as in Fig. 4.

Figure 4: (A) high wind velocity, (B) intermediate wind velocity, (C) zero wind velocity.
This means that the time of flight would be affected by wind velocity since the three relative airspeed orientations, Fig. 4(A), (B), (C), result in different air resistance and, hence, in different times of flight. The cases (A) to (C) result in decreasing times of flight because the crosssectional areas, L, presented to the oncoming air decrease in that sequence.

This complication does not occur in practice because a spinning projectile such as that from a rifle will always precess about the direction of air-resistance, i.e., in the direction opposite to the projectile's air speed thus automatically orienting itself point onward. The vanes of nonspinning dart-like projectiles produce the same effect.

Effect of Muzzle Velocity on Wind Drift

If the muzzle velocity is increased, both t_{a} and t_{v} decrease. At most muzzle velocities and ranges actually used this results in a decrease in $\left(t_{a}-t_{v}\right)$ itself, indicating less wind drift. But at low velocities and for some ballistic shapes it is actually possible for the decrease in t_{v} to exceed the drop in t_{a} with increased muzzle velocity so that the wind drift becomes greater. This is a problem for projectiles from 22 calibre rim fire target rifles wherein target ammunition is actually loaded to velocities below the standard to minimize wind effects.

Effect of Bullet Shape and Mass on Wind Drift

A sharply pointed bullet that is aerodynamically shaped loses velocity much more slowly than a flat or round nosed bullet because it encounters less air resistance and so has a higher average velocity over a given range. This means that at equal muzzle velocity t_{a} will be shorter than for a less well shaped bullet, and since t_{v} is the same for both projectiles, Δt, and hence the wind drift, x_{d}, will also be less.

The deceleration of a of the bullet due to air resistance f is given by Newton's law:

$$
\begin{equation*}
a=f / m \tag{5}
\end{equation*}
$$

where m is the bullet mass. The force f is proportional to A, the cross-sectional area of the bullet presented to the air. So from (5) we have:

$$
\begin{equation*}
a=k A / m \tag{6}
\end{equation*}
$$

where k is a constant of proportionality equal to an average pressure on the projectile. The quantity m / A is called the sectional density and since the bullet velocity loss is inversely proportional to it, it should be as large as possible to minimize wind drift. Finally, equation (6) takes on a particularly simple form if expressed in terms of the average density of the bullet, σ. Then bullet mass is bullet volume, V, multiplied by σ or:

$$
\begin{equation*}
m=\sigma V=\sigma A l \tag{7}
\end{equation*}
$$

where l is the average length of the bullet and the sectional density, s, becomes:

$$
\begin{equation*}
s=m / A=\sigma A l / a=\sigma l \tag{8}
\end{equation*}
$$

So the sectional density is the average length of a bullet times its density, and if all bullets are made of the same material, lead, a bullet's efficiency in cutting through air can be measured by its mean length.

In summary, we note that to minimize wind drift one should:
(1) Use a bullet of the best possible aerodynamic shape or form factor.
(2) Maximize sectional density consistent with bullet stability and attainable velocity.
(3) Use the highest possible muzzle velocity for a bullet best satisfying (1) and (2) at the longer ranges with high velocity centerfire rifles.

This is because the time of flight t_{a} is a complex function of these bullet quantities and of the initial velocity. In practice t_{a} is usually obtained from ballistic tables where it is tabulated for various form factors, sectional densities and muzzle velocities.

Defense Technical Information Center*
ATTN: DTIC-OCC
8725 John J. Kingman Rd STE 0944
Fort Belvoir, VA 22060-6218
(*Note: Two DTIC copies will be sent from STINFO office, Ft. Monmouth, NJ)

Director
US Army Material Systems Analysis Actv ATTN: DRXSY-MP
(1) Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMCDE-SC
5001 Eisenhower Ave.
(1) Alexandria, VA 22333-0001

Director
Army Research Laboratory
ATTN: AMSRL-D (John W. Lyons)
2800 Powder Mill Road
(1) Adelphi, MD 20783-1197

Director
Army Research Laboratory
ATTN: AMSRL-DD (COL Thomas A. Dunn) 2800 Powder Mill Road
(1) Adelphi, MD 20783-1197

Director
Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783-1197
(1) AMSRL-OP-SD-TA (ARL Records Mgt)
(1) AMSRL-OP-SD-TL (ARL Tech Library)
(1) AMSRL-OP-SD-TP (ARL Tech Publ Br)

Directorate Executive
Army Research Laboratory
Physical Sciences Directorate
Fort Monmouth, NJ 07703-5601
(1) AMSRL-SE
(1) AMSRL-SE-C (V. Rosati)
(1) AMSRL-SE-C (M. Hayes)
(1) AMSRL-OP-FM-RM
(22) Originating Office

Advisory Group on Electron Devices
ATTN: Documents
Crystal Square 4
1745 Jefferson Davis Highway, Suite 500
(2) Arlington, VA 22202

Commander, CECOM
R\&D Technical Library
Fort Monmouth, NJ 07703-5703
(1) AMSEL-IM-BM-I-L-R (Tech Library)
(3) AMSEL-IM-BM-I-L-R (STINFO Ofc)
(1) Washington, DC 20310

HQDA (SARDA-TR)
Dr. Richard Chait
(1) Washington, DC 20310

Director

Naval Research Laboratory
ATTN: Code 2627
(1) Washington, DC 20375-5000

USAF Rome Laboratory
Technical Library, FL2810
ATTN: Documents Library
Corridor W, STE 262, RL/SUL
26 Electronics Parkway, Bldg. 106
Griffiss Air Force Base
(1) NY 13441-4514

Dir, ARL Battlefield
Environment Directorate
ATTN: AMSRL-BE
White Sands Missile Range
(1) $\mathrm{NM} 88002-5501$

Dir, ARL Sensors, Signatures,
Signal \& Information Processing
Directorate (S3I)
ATTN: AMSRL-SS
2800 Powder Mill Road
(1) Adelphi, MD 20783-1197

Dir, CECOM Night Vision/
Electronic Sensors Directorate
ATTN: AMSEL-RD-NV-D
(1) Fort Belvoir, VA 22060-5806

Dir, CECOM Intelligence and Electronic Warfare Directorate
ATTN: AMSEL-RD-IEW-D
Vint Hill Farms Station
(1) Warrenton, VA 22186-5100

Cdr. Marine Corps Liaison Office

 ATTN: AMSEL-LN-MC(1) Fort Monmouth, NJ 07703-5033

