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Abstract 

In this paper we present a coordinate-split (CS) technique for the numerical 
solution of the equations of motion of constrained multibody dynamic systems. 
We show how the coordinate-split technique can be implemented within the 
context of commonly used solution methods, for increased efficiency and relia- 
bility. 

A particularly challenging problem for multibody dynamics is the numeri- 
cal solution of highly oscillatory nonlinear mechanical systems. Highly stable 
implicit integration methods with large stepsizes can be used to damp the os- 
cillation, if it is of small amplitude. However, the standard Newton iteration 
is known to experience severe convergence difficulties which force a restriction 
of the stepsize. We introduce a modified coordinate-split (CM) iteration which 
overcomes these problems. Convergence analysis explains the improved conver- 
gence for nonlinear oscillatory systems, and numerical experiments illustrate the 
effectiveness of the new method. 
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1    Introduction 

The equations of motion of a constrained multibody system can be written as [8] 

q-v   =   0    ' (1.1a) 

M(q)v + GT\-f(v,q,t)   =   0 (1.1b) 
g(q)   =   0 (1.1c) 

where q = [gi, <?2, •••, Qn] are the generalized coordinates, A = [Ai, A2, ..., Am] are the 
Lagrange multipliers, M(q) € RnXn is the mass-inertia matrix, / € 2Rn is the force 
applied to the system, q = ^ is the velocity and q = ^ is the acceleration vector. 
The constraints g = [g\, #2, ••■, 9m] are m smooth functions of q, whose Jacobian 

G(q) = 
dgi 

dqj 
eRmxn , m<n (1.2) 

is assumed of full row-rank. We assume that G{q)M(q)GT(q) is symmetric and posi- 
tive definite for every q € Rn to obtain a consistent physics represented by (1.1). The 
degrees of freedom for the system (1.1) is n - m. Equation (1.1) is a well-known 
index-3 DAE [3, 11]. 

Many methods have been proposed for modeling multibody systems. Direct nu- 
merical integration of the index-3 DAE (1.1) suffers from the well-known difficulties 
inherent in the solution of high-index DAEs [11]. One way to lower the index involves 
introducing derivatives of the constraint g(q), along with additional Lagrange mul- 
tipliers /i. This yields the stabilized index-2 or GGL formulation of the constrained 
equations of motion [6] 

q-v + GTn = 0 (1.3a) 

M(q)v + GT\-f(v,q,t) = 0 (1.3b) 

G(q)v = 0 (1.3c) 
g(q) = 0, (1.3d) 

which has been widely used in simulation. The Lagrange multiplier variables A and 
H fulfill the role of projecting the solution onto the position (1.3d) and the velocity 
(1.3c) constraints, respectively. Equations (1.3) and related systems have been solved 
by a variety of methods. Here we will consider solution by implicit numerical methods 
such as BDF or RADAU. A closely related approach is based on explicitly projecting 
the numerical solution onto the constraints [16, 18, 20, 21] and involves many of the 
same issues for the implementation that are considered here. 

Many of the numerical methods for multibody systems solve the system (1.3) 
directly. It is also possible to eliminate the Lagrange multipliers and reduce the size 



of the system to the number of degrees of freedom. One way to accomplish this 
begins with the stabilized index-2 system (1.3). Suppose that G(p) is full-rank on the 
constraint manifold M = {q € Rn \ g(q) = 0}. Then one can find an annihilation 
matrix P(q) € tf?("-™)*" such that P(q)GT{q) = 0, Vg € M. Premultiplying (1.3a) 
and (1.3b) by P(q) yields an index-1 DAE 

P(q)(q-v)   =   0 (1.4a) 

P(q)(M(q)v - f(v,q,t))   =   0 (1.4b) 

G{q)v   =   0 (1.4c) 

g(q) = o. (i.4d) 

There is a potential gain in efficiency for this formulation due to the size-reduction 
of the nonlinear system, compared to (1.3). An important practical consequence of 
(1-4) is that (//,A) have been eliminated from the DAE, via multiplication of (1.3a, 
1.3b) by the nonlinear P(q). Thus, the error test and Newton iteration convergence 
test in a numerical implementation of (1.4) no longer need to include (n,\). These 
higher-index variables can cause problems in the direct numerical solution of (1.3). 
One could in principle also consider removing (fi, A) from the test in the solution 
of (1.3), however it is not usually possible to justify this action, particularly in the 
case of the Newton convergence test. Elimination of these variables from the Newton 
convergence test in the solution of (1.3) can lead to a code which sometimes produces 
incorrect solutions. It is the fact that multiplying by the nonlinear P(q) eliminates 
(/i, A) from the nonlinear system, which allows these variables to be excluded from 
the tests in the solution of (1.4). 

Direct numerical solution of (1.4) presents some challenges. First we must have 
a means of generating P(q) which is reliable and cheap. Further, we note that the 
Jacobian matrix for the Newton iteration involves complicated terms which arise 
from the derivatives of P(q). We need a means of generating the Jacobian matrix. 
Finally, practical issues such as the error test and Newton convergence test must be 
considered. 

In the first part of this paper, we show how the numerical solution of (1.4) can 
be accomplished reliably and efficiently. In Section 2, we show how to obtain a 
cheap representation for P(q), and then how to compute the Jacobian matrix without 
directly computing the complicated derivatives of P. We show that the nonlinear 
iteration converges. The effectiveness of this method for mechanical systems will be 
demonstrated in numerical experiments in Section 5. 

Our approach for obtaining a cheap representation of P{q) is based on a coordinate- 
splitting of the variables. A widely-used method which is related in the sense of also 
making use of a splitting of the coordinates is the generalized coordinate partitioning 



method [20], which yields n-m differential equations 

M(x,h(x))x = f(x,—x,x,h(x),t) (1.5) 
ax 

where q = Xx + Yy such that X € lRnxp and Y £ RnXm, whose columns constitute 
the standard basis for JRn. The matrix Y is selected so that (G(q)Y)'1 exists in a 
neighborhood of q, and h(x) is the implicit function of y defined by the constraints. 
However, this differs substantially from the approach we outline here because P(q) 
associated with this method is not orthogonal to G^(q). Hence the index-reduction by 
differentiating the constraints and projecting to the invariant space must be carried out 
explicitly. In particular, this requires forming the derivative of the velocity constraints 
(i.e., the acceleration constraints) explicitly. Another method for (1.4) has been 
proposed by [7, 16, 17, 18], where V is chosen to be an orthonormal basis of the local 
tangent space of the constraint manifold. Choosing a smoothly varying V is required 
and may cause some practical difficulties. 

Direct numerical solution of (1.4) via our coordinate-split approach yields an effi- 
cient and reliable method for solving equations of motion for most multibody mechan- 
ical systems. However, there is a class of multibody systems which present additional 
computational challenges. These are the problems with high-frequency nonlinear os- 
cillations. Highly oscillatory components are often used to model devices with strong 
potential energy. Typical examples of such problems arise from modeling flexible 
multibody mechanical, and molecular dynamic systems. For many problems, oscil- 
lations of a sufficiently small amplitude are not important for the model, but they 
severely restrict the stepsize for numerical methods. For these types of problems, 
stiffly stable implicit numerical integration methods can be used to damp out the os- 
cillation [15]. However, the stepsize may still be severely restricted due to difficulties 
in converging the Newton iteration for larger stepsizes [15]. We have studied this 
class of oscillating problems in [22]. The solutions are composed of a low-amplitude 
high-frequency oscillation around a smooth solution [19]. Along the smooth solution, 
the eigenstructure of the local Jacobian matrix varies smoothly. However, along the 
solutions which are nearby to the smooth solution, the local eigenstructure oscillates 
with the high frequency, and is very badly behaved. The standard Newton iteration 
inside a damping numerical method starts from a predictor which is on a nearby so- 
lution, and attempts to find the smooth solution. It evaluates its Jacobian matrix 
on the nearby solution, which determines the direction it takes toward the smooth 
solution. Unfortunately, these Jacobian matrices do not yield good directions for 
nonlinear oscillating problems as described above, unless the predictor is already ex- 
tremely close to the smooth solution. Thus, the standard Newton method must be 
coupled with a severe reduction in the timestep to achieve an adequate predictor. 

In Section 3 we introduce a modification to the Newton iteration which we call 
the CM-iteration.  This iteration is easy to implement, effective for non-oscillatory 



problems, and particularly effective for nonlinear highly oscillatory problems. The 
basic idea of the CM-iteration is that there are terms in the Jacobian which involve 
derivatives of the projection onto the smooth solution. These terms are complicated 
to compute, large and oscillatory away from the smooth solution, and zero on the 
constraint manifold. The CM-iteration sets these terms to zero, yielding a reliable 
direction towards the smooth solution for the Newton-type iteration. In Section 3, 
we outline the CM-iteration, give details for its implementation, and prove its conver- 
gence. In Section 4 we describe in more detail the structure of nonlinear oscillatory 
mechanical systems, and derive estimates for the rates of convergence of the CS and 
CM-iterations applied to these oscillatory systems. The difference in convergence 
rate explains why the CM-iteration is highly effective for oscillatory systems, and 
shows that its rate of convergence for non-oscillatory systems is similar to that of 
the CS iteration. In Section 5, numerical experiments are given which demonstrate 
the effectiveness of these methods, particularly for oscillatory nonlinear mechanical 
svstems. 

2    The Coordinate-Split Technique 

In this section we present the coordinate-split (CS) technique. We show how to define 
the matrix P(q) via a coordinate splitting and how to compute this matrix cheaply. 
Although at first glance it would appear that implementation of this method would 
be difficult due to complications in computing the Jacobian of P{q), we show that the 
special form of the pseudo-inverse can be used to give a much simpler derivation of the 
Jacobian. We outline an efficient implementation for solving the nonlinear system, 
and observe that the CS technique leads to a natural and effective error estimator. 
Finally, we prove the convergence of the CS iteration. 

2.1     Construction of P(q) 

The construction of the annihilation matrix P(q) involves the solution of a class 
of pseudo-inverses of the constraint Jacobian G(q). An effective way to obtain the 
projected vector P(q)r is to use a splitting of the original coordinates. 

Definition 2.1 [Coordinate-Splitting Matrix] Let X and Y be the matrices whose 
columns constitute the standard basis of RnXn such that \\(G(q)Y)~1\\ is bounded in a 
neighborhood U0 ofq0. The px n coordinate-splitting matrix for (1.1) is defined by 

P(q) =XT- Q(q)TYT = XT(I - G(q)T(G(q)Y)-TYT) (2.1) 

where Q(q) = (G(q)Y)-lG(q)X. 



Remark 2.1 From the construction of the CS matrix P(q), one can easily see that 
P(q)GT{q) = 0 for all q € IRn, i.e., P(q) is orthogonal to range(GT). Furthermore, 
the row vectors of P(q) are orthonormal, i.e., P(q)TP(q) = Ip where Ip is the identity 
matrix in JRP. 

The computation of P(q) can be carried out using the LCZ-factorization of the 
constraint Jacobian matrix. Applying Gaussian elimination with row-pivoting to G7 

yields 
Em---E1G

T = Lm---L1U (2.2) 

where E{ is the elementary permutation and L, is a Gauss transformation, i € 
{1,2,..., m}. From the factorization, we have 

[Y,X] = E = Em---E1. (2.3) 

Using the standard solution technique by LJ7-decomposition, the projected vector 
P(q)r can computed in a straightforward and relatively cheap way. In addition, 
the derivative (2.9) can be computed using the same factorization of GT and the 
intermediate result s = -(GY)~1YTr from the computation of P(q)r. 

Remark 2.2 Alternatively, one can apply QR-factorization to GT for the computa- 
tion of P(q)r.  Using QR-factorization with partial column pivoting [10], we obtain 

GTE, ■■■Em = L1---LmÜ (2.4) 

where Ej is the elementary permutation, Li is the Householder matrix, i € {1,2, ...,m}, 
and U is upper triangular. The last (n — m) columns of the orthogonal matrix 
L = n^Li Li constitute a basis for the null-space of G. Thus we can write 

Y,X}=L = L1 ■■■im. (2.5) 

Note that X and Y are usually subsets of the standard basis in lRn. 

2.2     Computation of Jacobian and projected vector 

The derivative of (2.1) can be obtained from the formulas given in [9] (Theorem 4.3, 
pp. 420). Here, we give a much simpler derivation of the Jacobian of P(q), because 
of the special form of the pseudo-inverse in P(q). For G(q) a smooth function, we 
can in addition derive an approximation of the projected vector function P(q)r using 
a nearby point. 



Lemma 2.1 Suppose A(z) € ]RNxN is a nonsingular matrix-valued function of z G 
FLN, whose components are non-constant smooth functions of z. Then the derivative 
of A{z)~lr may be obtained as 

dA~l(?\r d 
 -¥L = -A-\z)4-{A(z)w], with w = A~lr (2.6) 

CtZ HZ 

where r,w € IRN. 

Proof. Let r(z) be a smooth vector-valued function. Then the derivative of A~l(z)r(z) 
with respect to z leads to 

±{A-\z)r{z)) = j-A-\z)r + A~\z)^ (2.7) 

according to the product rule. Choosing r(z) — A(z)w yields A~l(z)r{z) = w a 
constant vector, and (2.7) becomes 

^-<* = -A-'W^ (2.8) 

where w is A   r. D 

Lemma 2.2   The derivative of P(q)r is 

d „, ,        „, ,dGTs 
d -P{q)r = P(p)^l, with s = -(GY)~Tyrr (2.9) 

where P(q) is defined by (2.1) and r 6 2Rnxl. 

Proof. Differentiating P(q)r with respect to q yields 

j-qP{q)r = ±XT{I - QT(q)YT)r. (2.10) 

Since ^p vanishes, differentiating (2.10) by the product rule yields 

>r = *Ä+(OT)«p^ (,u) 

where 5 = ~(GY)~TYTr. According to (2.6) the second term on the right-hand side 
of (2.11) becomes 

{cx)Td{G(q)Y)-TYTr =    QTd{GYfs 
dq dq 

This may be substituted back into (2.10) to obtain (2.9). Ü 



2.3    Solving the nonlinear system 

Here we outline an efficient implementation of the coordinate-split iteration for solving 
the nonlinear system at each time step, and show how the coordinate splitting leads 
to a natural and reliable error estimator. In particular, the local error estimators 
based on differences, i.e., the increments of the nonlinear iterations for the discretized 
nonlinear equations, can be obtained from those on the independent variables only. 

Applying, for example, a BDF formula to (1.4) yields the nonlinear system 

P(qn)(phqn-vn) = 0 (2.12a) 

P(qn)(M(qn)Phvn-f(vn,qn,tn)) = 0 (2.12b) 

G(qn)vn = 0 (2.12c) 

g(qn) = 0 (2.12d) 

where ph is the discretization operator, and h the stepsize of the time discretiza- 
tion. Given an initial prediction {q{

n°\v^), applying Newton-type methods to (2.12) 
requires the solution of linear equations 

J(qn,vn){Aqn, Avn) = -r(qn,vn) 

such that Aqn and Avn are the increments of qn and vn, 

(2.13) 

J{qni Vn) — 

ldG(q„)TS2  _,_ dr2(qn,vn)-\     pf     \dr2(qn,vn) 

d(G(qn)vn) 
dqn 

G(qn) 0 

dqn 

P(qn)[^dqn 

G(qn) 
(2.14) 

and 
r(qn,vn) = [PnruPnr2,Gnvn,gn] 

where sx = -(GY)-TYTrus2 = -{GY)-TYTr2, n = phqn-vn, and r2 = M(qn)phvn- 
f{v„,qn,tn). The subscript n of a function represents its numerical value at tn, e.g., 

9n = g{qn)- 

To solve the Newton equations (2.13) efficiently, we apply a decoupling technique 
to the equations. To begin, we rewrite the first two equations of (2.13), i.e., corre- 
sponding to the derivatives of (2.12a) and (2.12b), 

P(qn) o 
o F(?„) (ji{qn,vn) Aun 

+ 
7*2 )- 

o 

where the 2n x In matrix J\ is 

Ji{qn,vn) = d(M(qn)Phvn) _ Öfn ",    d(GTs2)      ^dphvn   _ ö£, 
dqn dqn <tqn dvn 8vn 

(2.15) 

(2.16) 

8 



Since Ji is generally invertible under the assumption of M(qn) nonsingular, one so- 
lution of (2.15) can be computed by 

(XT - QT
nY

T)Aqn   =   0 

(XT - QT
nY

T)Avn   =   0 

where 

•MSn.Vn) Avn 

-n 
-r2 

(2.17a) 

(2.17b) 

(2.18) 

Note that the solution of (2.17a) is not the necessary but only a sufficient one to 
(2.15), i.e., there are other solutions to (2.15). Nevertheless, we will show in what 
follows that (2.17a) is consistent with the iterations for the constraints along the same 
direction. 

Observing that Aqn can be determined by (2.17a) and the last row of (2.13), 
i.e., GnAqn = -gn, the resulting increments can be used to compute 4£n(qn)Aqn, 
such that Avn is uniquely determined by (2.17b) and the third row of (2.13), e.g., 
GnAvn = -Gnvn - 4&.(qn)Aqn. Thus, (Aqn, Avn) can be obtained by solving two 
linear systems of the form 

u = (2.19) 

for u 6 Rn, a € M^n-m\ and b € JRm. It is important to note that (2.19) represents 
Gauss-Newton iteration along the column space of PT. Since the a-vector in the right- 
hand side of (2.19) has been computed, we can then compute u with b2 = PnAqn for 
Aqn and b2 = PnAvn for Avn. 

Denoting u = Xux + Yuy and p = n - m, the first p equations of (2.19) are in the 
form 

ux - QTuy = a (2.20) 

and the second m equations yield 

uy = (GY)-\b-(GX)ux). 

Substituting (2.21) into (2.20) and solving for ux yields 

(/„ + QTQ)ux = (a + QT(GY)-1b) 

(2.21) 

(2.22) 

where Ip is the p x p identity matrix. Using the consistent projection vectors PnAqn 

and PnAi)n, we obtain 

XTAqn = Axn   =   -{IP + QT
nQn)-l{PnAqn + QT

n{GnY)-lgn)       (2.23a) 
YTAqn = Ayn   =   -(^Y)"1^ + (GnX)Axn) (2.23b) 



and 

XTAvn = Awn   =   -(Ip + QlQnr'iPnAin + QKGnY)-1^)      (2.24a) 

YTAt,n = A*n   =   -(Gny)-1('7n + (GnX)Au;n) (2.24b) 

where r,n = ^^Aqn + Gnvn, and vn = Xwn + Yzn. The numerical solutions 
(2.23) and (2.24) illustrate that the dependent variables yn and zn are determined 
geometrically along the orthogonal complement of the column space of Pj. The 
system dynamics is described by the local independent generalized coordinates x 
and its velocity w. 

Implementation of simplified Newton method 

Simplified Newton iterations are commonly used for the iterative solutions of (2.12). 
The increments by Newton's method to (2.12) are (2.23) and (2.24). For simpli- 
fied Newton iteration that uses a fixed approximation j£0) of the Jacobian J{qn,vn) 
in (2.13), the numerical solutions of (2.23) and (2.24) are computed by some fixed 
matrices. For instance, (2.23a) becomes 

AXn = _(/p + QWTQM)-\PnAqn + QWT(&?Y)-lgn) 

where the superscript (0) indicates the function approximated at some (q^,^)- 
Since (Ip+Q$)T Q^) is symmetric positive-definite, the increments, under the weighted- 

norm induced by diag{Ip + Q^] Q^, Im), become 

Ax* EE PnAgf + Q^Gfy)-1*» (2.25a) 
Ays

n ^ -(G^Y)-\9n + (G^X)Axs
n) (2.25b) 

Aws
n = PnAvS + Q^iG^Y)-^ (2.25c) 

A4 = -(G^Y)-\r,n + (G^X)Aws
n). (2.25d) 

where Agf and Auf result from 

Aq\ zS 

Av: JitäW») "h = :; . (2.26) -r% 

Efficient implementation of a simplified Newton iteration for (2.12) is carried out 
using (2.2) as follows 

Algorithm 2.1 [CS iteration] 

Step 1. Apply (2.2) to GT(q^) and Ji{$\v™) as in (2.16). 

10 



Step 2. Solve for Agf and Auf in (2.26). 

Step 3. Apply (2.2) to GT(g„), then compute P„Agf and FnAf)f. 
rp 

Step 4. Compute (G^Y")-1^,,, uz/iere 62 = 0, tfien apply Q^ to the result to obtain 
(2.25a). 

Step 5.  Use (2.25a) to compute Ayf, where 62 = Azf. 

Step 6. Use (2.25a) and (2.25b) to compute 7jf, then repeat Step 4 - 5 for (2.25c) 
and (2.25d). 

For a straightforward implementation, the iterative solutions use (2.14) directly, which 
requires the solution of An projected vectors for the first 2(n — m) rows. For Algo- 
rithm 2.1, there is no need to compute the 4n vectors. Instead, two projected vectors 
and four solutions ofamxn linear system are required for each iteration in addition 
to the solution of a 2n x 2n linear system, e.g., (2.14) and (2.16) for the straightfor- 
ward and proposed implementations, respectively. Therefore, the above algorithm is 
preferred when n is large. Note that the computational cost of the iterative solution 
by Algorithm 2.1 is almost equal to that of the solution of a 2(n + m) x 2(n + m) 
linear system. Using Lt/-decomposition, the solution of a 2(n + m)x 2(n + m) linear 
system requires 0(4(n -I- m)2) flops, while the proposed iterative solution requires 
0(6(nm)2) -(- 0(4n2) flops with an additional factorization and two solutions of the 
matrix (GnY)~TYT in Step 3 in the above algorithm. 

Applying numerical integration, convergence of the iterative solutions by Algo- 
rithm 2.1 can be achieved if the initial guess q^ from the predictor is close enough 
to the numerical solution qn. In addition, the local error estimator based on the 
predictor-corrector difference can be modified for a more effective approximation. 
From (2.25b, 2.25d), the increments of yn and zn are bounded by 

iiAiai < iKGff^r^KiiGi^inixwii + u<ai) 
IIA^II < WiG^Yr'WiWG^XWWw^W + \\r£)\\) 

for all i. Ideally, the error estimator should be based on the dynamics of such systems, 
which is described by x and w. Under the assumption that the constraints are smooth, 
the local error can then be approximated using the alternative sequences of Ay$ and 
Az$ by setting g%) and 77W to zero in (2.25b) and (2.25d), respectively. Since (qn, vn) 
converges in N iterations, the difference can be estimated by 

ii(^n) - (?i°uo))ii=BiiA<ai+HAtai)«Knf:(iiAx«ii+UA^ID (2.2?) 

where nn = || (G^P^V)—JGrJP^A"||. Therefore, the local errors of numerical integration 
of (2.12) can be approximated using only the increments of x$ and w%\ e.g., the 
right-hand side of (2.27). 
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2.4    Convergence of the CS iteration 

For simplicity we now consider, instead of the second-order constrained equations of 
motion (1.1), a first-order system 

q-f{q,t) + GT\   =   0 (2.28a) 

g(q)   =   0 (2.28b) 

since the convergence of (2.28) can be trivially extended to (1.1). Applying stiffly 
stable numerical methods, the convergence result is well-known, see [11] pp. 494-498. 
Convergence of discretization methods for the index-1 system, 

P(q)(q - /(«,«)) = o (2-29a) 
g(q)   =   0 (2.29b) 

obtained by applying the coordinate-splitting matrix P(q) to (2.28a), is also well- 
developed. By the construction of P(q), it is easy to see that the solution of the 
CS iteration is equivalent to that of the local state-space ODE of the independent 
coordinate x. 

The convergence of the CS iteration can be carried out on a smooth constraint 
manifold M. Assume that for any q0 £ M, there exist X € Bpxn and Y € MmXn 

such that 
\\(G(q)Y)-1\\<C1 (2.30) 

IIG^if-GCfcn^Callft-ftH (2.31) 
for some C\ and C2, where g, q\, and q2 are in a neighborhood U(qo) of 50- Applying 
a linear discretization operator ph with stepsize h to (2.29) yields a nonlinear system 

P(q)r(q) 
g(q) 

(2.32) F(q) = 

where the residual function is 

r(q,t) = Ph(q) - f(q,t). (2.33) 

Let {qj} be the solution obtained by applying the simplified Newton method to (2.32), 
and {qj} be the solutions obtained by applying Algorithm 2.1. Convergence of the 
CS iteration can be shown under the conditions (2.30) and (2.31). Suppose that 
the iterative solutions {qj} from applying the simplified Newton method to (2.32) 
converge to q*. For 50 = 9o> {qj} generated by the CS iteration for (2.32) satisfies 

Axfc = (/ + Q(q0)
TQ(q0))Axk, 

where Axk is denned by the simplified Newton iteration. Consequently, {qj} converges 
to q" as {qj} did. 
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Convergence of the CS iteration can be assured for a sufficiently accurate ini- 
tial guess. Another sufficient condition for convergence requires that the numerical 
integration satisfies 

|,U+"^"j "-Co<1 (2-34) 

for some C0 and s = -(GY)~TYTr in a neighborhood of q*. This implies an upper 
bound on the stepsize h. For linear multistep integration, e.g., ^^ = f, the stepsize 
must satisfy 9 

»(MC-^))"'^1 <"5) 
where ß is the leading coefficient of the numerical integration formula. 

For highly oscillatory dynamic systems with a wide frequency band, the error 
tolerance TOL of the numerical solution often satisfies TOL < max,B |||*||. Apply- 
ing a stiffly stable numerical method to (2.29), such as BDF of order < 2, one may 
take a larger stepsize to follow the trajectory of the equilibrium, i.e., / - GTs = 0. 
However, convergence of the Newton iteration requires (2.35), a further restriction 
on the stepsize. Depending on how close the predictor is to the equilibrium of highly 
oscillatory components, the Newton direction imposed by the Jacobian can excite 
the high-frequency oscillations. When applying the Newton method directly to the 
discretization of (2.28), an even more severe problem in Newton convergence is ob- 
served, and illustrated by the numerical experiments in Section 5. The limitation on 
the stepsize due to the Newton convergence failures for highly oscillatory nonlinear 
multibody systems can be overcome via a modification of the CS iteration which we 
call the CM iteration. 

3    Highly Oscillatory Systems and the CM Itera- 
tion 

3.1    The CM iteration 

In large-scale multibody mechanical systems, most of the unwanted oscillations are 
due to the noise of high-frequency forces, where the amplitude is well below the 
solution tolerance. However, small perturbations in the position can cause drastic 
changes in the Newton direction. This results in difficulties for convergence of Newton- 
type methods. To remedy this problem in the CS iteration, we reduce the noise from 
the oscillations by setting ^r = 0 in the Newton iteration matrix, since it is the 
main source contributing to the rapidly changing Newton direction. The basic idea 
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of the CM iteration is to approximate the Newton direction of (2.29) via an oblique 
projection to the unconstrained ODE 

P(qo)(q-f(q,t)) = 0 (3.1) 

for a q0 close to the solution q, e.g., G(q0)G
T{q) invertible. Since P(q0) is no longer 

varying with q, *f-r = 0 is attained. When applying a stiffly stable numerical inte- 
grator to highly oscillatory problems, this modification, foi some q0 close enough to 
the smooth solution, overcomes the difficulties in the CS iteration. 

Applying a discretization method to (3.1) coupled with constraint (2.29b) leads 
to the nonlinear system 

Fo(q) = (3.2) P(qo)r{q) ' 
g(q)    . • 

The corresponding Lagrange multiplier form of (3.1) is 

q + GT(qo)\-f(q,t) = 0 (3.3) 

where 
A = (G(q0)Y)-TYT(f(q,t) - q). 

A convergence result for the modified CS iteration, denoted by CM, is given in the 
following. A detailed algorithm for applying the CM iteration to (1.1) is presented 
at the end of this section. 

We first give an upper bound for the difference between the derivative of the 
projected vector P{q)r(q) and the projected derivative P(q)^1- 

Lemma 3.1 Suppose conditions (2.30) and (2.31) hold. Then 

\\4-[P(q)r(q)} - P{q)^\\ < QoC,C2\\YTr(q)\\ (3.4) 
dq aq 

in D(q0, Qo) Q U{q0), where D(q0, g0) is the disc in Rn with center q0 and radius g0. 

Proof.  The inequality is a direct consequence of (2.9). Subtracting (2.9) from P{q) fq 

and taking the norm of the remainder yields 

Since the row vectors of P(q) are p orthonormal vectors in Rn, applying the Cauchy 
inequality gives 

\\mdGm^r'YTrW * 11*11 * fcCilKGVT'Wta)!! 

for all q G D{q0, go) C U(q0). Condition (2.30) implies the result in (3.4). D 
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3.2    Convergence of the CM iteration 

An estimation of the distance between the solutions of (2.32) and (3.2) is presented 
in the following. 

Theorem 3.1 Suppose conditions (2.30), (2.31), and 

-l 

|j ii^»<1 (3.5) 

hold in a neighborhood of q* such that {qj} generated by the CS iteration converges 
to q*. Choosing q0 = q0, the sequence {qk} generated by the CM iteration 

Qk+i = qk~ J(qo) 1-Po(9fc) (3-6) 

where J = ^Ea., converges to q".   Furthermore, the distance between q* and q* is 
bounded above by 

\\q' -q'\\ < C(\\YTr(q*)\\\\q- - q0\\ + \\q' - q0f + ||f - q0f) (3.7) 

for some moderate constant C. 

Proof.   Since J is nonsingular and its components are smooth functions, using (2.21) 
and (2.22) we can write 

J~l = Ip + QTQ    0 
-Q Im 

-l\Ip   Q
T(GY)-* 

. 0      {GY)-1 
dr l-i 

dq 

for the CM iteration, provided that J is invertible. By conditions (2.30) and (2.31), 
we have 

IP + QTQ    0 1_1 

-Q Im 
\\<c3 

and 
Ip   Q

T(GY)-^ 
0      (GY)-1 <C4 

for some constants C3 and C4. Thus, the contractive condition (3.5) implies conver- 
gence of the CM iteration. 

To show (3.7), we first observe from (3.3) that 

r(?) + Q(qo)r(T) = 0 

where 
ö(qo) = -GT(q0)(G(qo)Y)-TYT. 

(3.8) 
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(3.9) 

Also, q" is a solution of (3.3), i.e., 

Using (3.8) and (3.9), and adding and subtracting G{qo)r(q*) yields 

(I + G(go)){r(T) - K?*)) = (0(qo) - QittMf)- 

Applying the mean-value theorem to the differentiable functions r and Q, we have 

(I + (?(9b))^(ft)(r - ?*) = ^(&MO(*> - <f) 

for some g, i = 1,2. Premultiplying the above equation by XT yields 

P(qo)^(qi)(? ~ q") = XT^-{qMq'){q, - q')- dq 

Since g(q") - g(q*) — 0, we obtain 

(f - Q') = 

dq 

P(qo 
G(qo 

XTfq{h)r{q~){q* - <f) 
.f(qo)(q'-qo)2 + f(qo)(?-qo)2\> 

using the expansion of g(q") and g(cT) around q0.  From (2.21), (2.22) and the as- 

sumption of an invertible P(qo) 
[ G(qo) 

, we can write 

||f - q'\\ < C5||X
T^|r(OIIII<S> " «11 + C6(\\q* - qof + ||f - qof) 

for some C5 and C$. This implies (3.7). D 

Note that (3.5) for the CM method is analogous to (2.34) for the CS method. In- 
stead of (2.35) for multistep integration methods using the CS iteration, the stepsize 
condition for the CM iteration is given by 

'a_df 
h      dq. 

-1 

< 1 (3.10) 

in accordance with (3.5). 

It is easy to see that {qk} of the CS iteration and {qk} of the CM iteration are 
the same if the constraints g(q) are linear. In general, the rate of convergence of the 
CM iteration is superlinear, using the Dennis-More Characterization Theorem [5]. 
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3.3    Implementation of the CM iteration 

The CM iteration can be implemented via the same procedures as those in Algorithm 
2.1, but the computational cost is considerably lower. First, the Jacobian of (2.13) 
becomes 

J\{qn,vn) = dgn 1 

d(M(qn)phvn) _ dfn      Mdphvn   _ 8J^ 
dqn dqn dv„ dvn 

(3.11) 

since P(q) is held fixed in the nonlinear equations. Comparing (3.11) to the Jacobian 
(2.16), notice that the terms due to the derivatives of P{q)r have vanished. Second, 
the solutions of PnAq% and pn&$s at each iteratjon jn Algorithm 2.1 are replaced by 
P(Q)QU 

and P(q)v%, which reduces the cost since P{q) has been previously computed. 

Using the simplified Newton iteration for (2.12), the CM iteration is carried out 
as follows: 

Algorithm 3.1 [CM iteration] 

Step 1. Apply (2.2) to GT(q) and J^q, v) as in (3.11). 

Step 2. Solve for Agf and Auf in (2.26). 

Step 3. Compute P(q)Aq% and P(q)Av%. 

Step 4.-6. same as Algorithm 2.1. 

Remark 3.1   When applying the CM method to (1.1), the residual function 

r2(v, q, t) = M(q)phv - f{v, q, t) 

should be replaced by 

r2(v, q, t) = phv - M{q)-lf{v, q, t) 

for a nonsingular M(q). 

4    Rate of convergence for highly oscillatory multi- 
body systems 

High frequency oscillatory forces often appear in the modeling of vehicle suspension 
systems, modal analysis in structural dynamics, or modeling oscillations in computer- 
aided engineering etc. For simplicity, we consider the constrained dynamic system of 
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(1.1) with a dominant oscillatory force 

M(q)v + GTX + -eV(q) - f(v,q,t) 

M = 
o 
0 

(4.1a) 

(4.1b) 

where - may be, for example, the coefficients of stiff springs; i.e., 0 < £ « 1. In 
practice, r](q) is usually oblique towards KerP(q), i.e., the oscillatory force(s) acts on 
both the independent and the dependent coordinates. For the purpose of obtaining a 
smooth solution with large stepsizes solving those types of problems [15], we will show 
that the CM iteration can be very effective for many classes of nonlinear oscillatory 
forces. 

In the modeling of deformable multibody systems, the nonlinear oscillatory forces 
in (4.1) are usually derived from the theory of linear elasticity, i.e., for some functions 
q such that the oscillatory forces may be written as \q. We can use these functions 
q to write the nonlinear force, e.g. 

-»7(g) = -?> 

and then append 
q - r)(q) = 0 

to the constraint equations. The oscillatory forces then become linear with respect 
to the variables q. In fact, if the oscillatory forces are produced by a finite element 
approximation of the deformation of bodies, components of q are associated with 
some body-fixed local coordinates via the orientation transformation matrix, whose 
entries often are slowly varying in time. 

Deformation forces are the most common potential forces that can produce small 
amplitude high-frequency oscillations, and they are usually linear with respect to the 
local coordinates [4, 23]. For these reasons, we consider the class of oscillatory forces 
in the form 

n(q) = B(t)(q - b0(t)) (4.2) 

where the components of B and b0 are slowly varying. In particular, B and &o may 
be functions of some constraint-driven generalized coordinates. For example, B(9) in 
the 2D bushing problem in [22] has the form 

B(6) = 
cos 6 sin0   0 1 r    kx         o o 1 cos 6 

— sin 6 cos0   0 o         k» 0 — sin 9 
0 0      1 -fcs'sinfl   fc*cos0 k° 0 

sin0   0 
cos0   0 

0      1 

iT 

(4.3) 
where kx, ky and ke are positive constants.   When 6(t) is smooth or constrained, 
assumption (4.2) is valid. 
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systenfc^ 

M(q)v + l-B(q - b0) + GT\ - /(«, J)t)Bfl {4A) 

^sume^L"^11' Fr0m aSSUmpti0n <2-31) on the co^traint manifold, we can also 

for all q. 

1 
- S>     max 
€ ||tii||,||iia||=l 

I dG(q)ui 
1     dq M (4.5) 

it J^the C°KeXt °! the C5 iterati0n' the Problem of convergence of the Newton 

AT^T"* ^ analyZing the "^""M ^-ion. The Ä 
Vr(q) = 9(q)T(GY)-TYTr (4.6) 

where r = f-Mq- \B{q - 60). The reduced potential force generated by (4.6) is 

VV'(q) = ^ = Gr(C?y)-^r. (4.7) 

At each iteration, the reduced potential force acts along the normal direction of thP 

constramt manifold. The gradient of the correction term yields 

W(g) = (/ - GT{GY)-TYT)dGT(q)s 

where 5 = (Gy)^y^r. Applying YT to (4.8), gives 

dq (4.8) 

and applying XT to (4.8) yields 

YTV2Vr(q) = YT(I - nT{nYyTYT)dGT(q)s = Q 

dq 

XTV2V'(q) = P(q) dGT(q)i 
dq 

When high-frequency oscillations appear in the system e e e _> n tfc* r~i ^ 
potential force also becomes oscillatory if Y*r is nonzero Thi ^ LrafcSe 
when the soluüon 1S not at an equilibrium position. Nevertheless, co^^f to 
CS iteration can be achieved by using a small enough stepsize, e.g., h ~}e 

Theorem 4.1 Let (q,v) be the solution of the nonlinear system which results from 
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t +v,<, r <? itpratinn we need to show that (2.34) is valid, Proof. For the convergence of the Lb iteration, we ueeu w v 

where r(q) is defined in (4.4). For (2.34), we have 

where ß > 0 is the leading coefficient of „,,, and ||M|| is not zero. Consequently, for 

e < 1, (2.34) is valid provided that h fis \/e. D 

Under the conditions of the above theorem, a convergence result for the CM itera- 
in canle obtained provided the assumptions of Theorem 3.1 are valid   In many 
^licSionsfollowing'the oscillations is not of interest. ^^"ft*^ 
large time step to damp out the oscillations of small amplitude but high ^«f <* 
For this reason, we now consider only the multistep numerical mtegrat.on method 
that a e strict y stable at infinity and A-stable, such as the lower order (. _e.   < 2) 
BDF methoTs 111 The convergence of I-stable implicit Runge-Kutta methods to the 
!moo"   olut on of the highly oscillatory ODE of multibody mechanical systems can 
Cfound11 5]   Here we focus on the convergence of the CM iterat.on for constrained 
mubiliod^ystems with oscillatory forces when applying the above-mentioned linear 

multistep methods. 

Numerical solutions on the slow mam fold can be evaluated using the equilibrium 

of (4.1), i.e., the slow solution [2, 13] satisfies 

17(g) - e(/(t>, q) - VVr(<?) - M{q)v) = 0, 

and the smooth solution is its asymptotic expansion to some ^«J°™£ ^ 
manifold \a I v(q) = 0}.   In the linear form, the smooth solution of (4.1) is no 
maniioia \q \ VKH)        J df  .. ,    ctrnnalv damned numerical 
far from B{q - b0) = 0 since \ > 
solution qn, B{qn - b0) -► 0(e) as tn 

I d{q,v) I 

00. 

For the strongly damped numerical 
During the iterative solution onto the 

rJ'ZT/oTtfieXstrai^ may" not be satisfied, which causes a large reaction 
force in the form of (4.7). This may cause oscillations in the CS iteration wmie 
he CM itelrn annihilates these nonlinear oscillations generated by the reduced 

p'otentfal This yields a superior performance; ofthe CMj^^™^ 
the CS iteration for computing the smooth solution of (4.1). The result is explained 

in the following. 

Lemma 4.1 Let «,*) oe tke smooth solution of ».1),«,) «"ear and fi AesUp- 
size of the multistep integration method. Suppose the starting values (,„, »o) for (? , v ) 
In the smooth saiafen of (H), «., «all = 0(e) and rtf.«r) = 0(h), saUsfy (2.30), 

(tst)mi *(»)*<*)-/(*,»)-<W (4'9) 

20 



where ph is the corresponding discretization operator. Applying the CS and CM 
iterations to (4-1), the approximate Jacobian matrix for the CS iteration satisfies 

||Jfo,,«b) - J(q\v')\\ = -0(h) + 0(h) (4.10) 

where 6 = \\Bqo — Bq*\\, and J(q,v) is the Jacobian of (4-1)- For the CM iteration, 
we have 

\\J(qo,v0)-J(q',v')\\ = 0(h) (4.11) 

where J is the approximate Jacobian in the CM iteration. 

Proof. The difference between the Jacobian at (qo,vo) and (q*,v*) can be written as 

\\Jo ~ J"\\ < \\P(qo)yg(qo) ~ P(q')yq(q')\\ + \\^(qo)r(qo) - ^(?W)|| + 0(h) 

since the initial values satisfy (4.9). Under the conditions (2.30) and (2.31), we may 
choose common X and Y for P(qo) and P(q") such that the first term on the right- 
hand side of the above inequality can be rewritten as 

\\P(q)(^q(qo) - ^(<f ))ll = O(h) 

for some q € [qo,q~], since |^ = \B + 0(h) allowing the cancellation of \B. The 
second term yields 

dP dP 1 
\\-^(qo)r(q0) - rf-foXOII < IK*.) - rtf)\\0{h) = -jBqo - Bq*\\0(h) 

according to Lemma 3.1. Thus, (4.10) is proved. Recalling J(qo,Vo) from (3.11), we 
have 

l|Jo-Jl<||P||||0|| = O(/O, 
using again Lemma 3.1. □ 

Theorem 4.2 For the initial values (qo,vo), suppose the conditions in Lemma J^.l 
hold. Suppose that the CS and the CM iterations are carried out by applying a 
simplified Newton method, where the iteration matrix is computed at the starting 
values (qo,vo). If both iterations converge, then the rate of convergence of the CS 
iteration a^cs^ compared to that of the CM iteration a^CM^ is given by 

a&s) = i0(h) + 0(/l) 

where 6 — \\B(q0 — q*)\\, and 
a^CM^ = 0(h). 
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Proof. Since we apply the simplified Newton iteration, the solution of the CS itera- 
tion can be written as 

Qk+\ 
Vk+l 

= H(qk,vk) 

where 
H(q,v) =    I    -J£lF{q,v) 

Similarly, the CM iteration can be written as the fixed-point iteration of the function 

ö(q,v) = -tfFfav). 

Applying the Contractive Mapping Theorem, see [5] pp. 93-94, we obtain the rates 
of convergence of the CS and CM iterations 

ocs = \\I-JZ1J(q',V)\\ = \\JZ1(Jo-Jm)\\ 

and 
a^ = ||/-J0-1J(9*,^)|| = ||J0-1(Jo-J*) 

where J(q",v~) = J* is the Jacobian at the solution of the discretized system, and 
the superscripts denote the respective iterations. For Jj"1, we have 

Jo = 
2 + 0{h) -I 

IB + 0(h)   aM + 0(h) _ ' 

When e —► 0, the dominant components of J0 
a are of 0(1).  From Lemma 4.1, the 

rates are 
acs = -0(h) + 0(h) 

and 
rcs 0(h), 

since J0 
J has no component of 0(f). ü 

5    Numerical Experiments 

5.1    Point-mass with oscillatory force 

The first example is a simple constrained multibody system under the influence of 
a highly oscillatory force.   Consider a unit point-mass constrained to the 2D unit 
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circle, using q = [x,y]T, the velocity v = ^ = [w,z]T, and the constraint equation 
g(q) = l(x2 + y2 - 1). The equations of motion are 

w + xX- fx   =   0 
z + y\-fy   =   0 

where / = [fx,fy]T is the applied force. Differentiating the constraint g(q) = \{x2 + 
y2 - 1) twice with respect to time, an explicit form of the multiplier A is obtained by 

xL + yL 

For a highly oscillatory force f(q), one can see that X(t) is oscillating with the fre- 
quency of /(§), and with amplitude proportional to the magnitude of 

The numerical experiments are carried out using BDF of order < 2 in DASSL [3], 
where the local error estimation has been modified. For the stabilized index-2 DAE 
(1.3) denoted by GGL, the local error is estimated using only the position, i.e., q. 
Moreover, we have also included some experiments where the Newton convergence test 
of GGL has been modified to exclude the multipliers. The corresponding numerical 
solution is denoted by GGL*. For the coordinate-split and modified coordinate-split 
iterations, denoted by CS and CM, respectively, the local error is estimated using 
the independent variable XTq, as recommended in Section 2.3. The CM iteration 
updates the matrix P(q) when a new Jacobian is required. 

Linear oscillation 

Let a unit gravitational force act along the negative y-direction, and apply a linear 
oscillatorv force 

/ = 
\x 

4(y + l)-l.O 

There is a stable equilibrium at q = [0,-1] and v = [0,0]. The natural frequency of 
the system is u = i, and no dissipative force is present. 

The numerical solution has been carried out with a moderate solution tolerance 
ATOL = RTOL = TOL = 10~3. For a 0 to 0.25 second simulation, the results of 
several combinations of the stiffness coefficient e are presented in Table 5.1, where 
the initial values are q = [0.0, —1.0] and v = [1.0,0]. The CM iterations show better 
efficiency than those of CS, GGL and GGL* in all cases, i.e., comparing the numbers 
of function and Jacobian evaluations in Table 5.1. In the Table, etfs and ctfs denote 
the number of failures of the error test and Newton convergence test, respectively, in 
DASSL. Comparing the results of GGL* with those of GGL, we observe an improved 
Newton convergence. As e —* 0, i.e., for higher frequencies of the oscillation, the 
CM iteration becomes even more efficient. In Figure 5.1, we plot the total energy of 

23 



Method TOL e no. steps no. fevals. no. jevals. no. etfs. no. ctfs. 
GGL lO"-1 lO"4 446 1713 263 47 0 
GGL' 10-3 lO"4 478 1304 127 45 0 
CS lO"3 lO"4 381 1036 106 46 0 
CM 10-3 lO"4 373 963 96 38 0 
GGL 10"3 io-° 431 1726 261 34 2 
GGL' lO"3 lO"5 500 1324 139 52 2 
CS 10"3 lO"5 447 1281 116 56 2 
CM 10"3 10"5 456 1180 115 58 1 
GGL 10"* 10"° 427 1693 275 41 8 
GGL' lO"3 10"6 478 1247 123 44 4 
CS lO"3 10-6 414 1139 119 38 5 
CM 10~3 10-6 325 844 81 34 1 

Table 5.1: Results of the Constrained Point-Mass with a Linear Oscillatory Force 

Total Energy (EPSILON=1.e-6, TOt-=1.e-3, order=1,2) 

2 4 
Time 

Figure 5.1: Total Energy Comparison of Linear Oscillatory Force Example; e = 10 6 

and TOL = 10"3 
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Method TÜL 6 no. steps no. fevals. no. jevals. no. etfs. no. ctfs. 
GGL 10"b lO"4 109 383 56 13 0 
GGL* lO-3 10-4 109 337 45 13 0 
CS IO-3 10-4 150 474 58 20 0 
CM lO"3 10-4 72 208 31 7 0 
GGL lO"3 10"5 105 416 68 11 0 
GGL* lO"3 10-5 105 387 47 12 0 
CS lO"3 10-5 135 455 56 18 0 
CM lO"3 10-5 66 205 32 4 0 
GGL lO"4 10-4 822 2534 337 78 0 
GGL* lO"4 10-4 818 2572 242 82 0 
CS lO"4 10-4 943 2727 217 66 0 
CM lO"4 10-4 193 577 56 14 0 

Table 5.2: Results of the Constrained Point-Mass with an Oscillatory Linear Spring 
Force 

each numerical solution. The CM iteration achieves the strongest damping because 
DASSL is able to increase the stepsize faster with the CM iteration. 

Linear spring force 

In the next test, we replace the linear oscillatory force in the previous constrained 
system by a spring force 

e2    I 
X — XQ 

2/-2/0 

where / = yj(x - x0)
2 + (y - t/0)2 for (xo, yo) the attachment point of the spring, l0 the 

natural length, and ^ the stiffness coefficient, as shown schematically in Figure 5.2. 
For unit mass and unit gravitational force, we set the spring attached to (xo, j/o) = 
(0, -0.5) and the natural length l0 = 0.4, such that the equilibrium is at (0, -1,0,0). 

Using the initial conditions [0.04471, -0.999,0,0], the results of the 0-0.05 second 
simulation by the GGL, GGL*, CS, and CM iterations are shown in Table 5.2. 
Because DASSL is able to increase the stepsize, and hence damp the solution faster 
with the CM iteration, the CM method is quite effective in these tests. In Figure 
5.3, we plot the total energy of each solution. The numerical solutions of x, w, and A 
are presented in Figure 5.4. 
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Figure 5.2: Constrained Point-Mass with a Linear Spring 

Total Enarfjy v.a. Time 

0        0.005     0.01     0.015     0.02     0.025     0.03     0.03S     0.04     0.045     0.05 
Tim« 

Figure 5.3: Total Energy Comparison of Oscillatory Spring Example; e 
TOL = 10"4 

= 1CT4 and 
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0.05 
Position (CM = dash-dot, CS = dash, GGL = dot, GGL* = solid) 

200 

0       0.005     0.01     0.015     0.02     0.025     0.03     0.035     0.04     0.045     0.05 

Velocity 

"0        0.005     0.01      0.015     0.02     0.025     0.03     0.035     0.04     0.045     0.05 

x io7 Multiplier 

0        0.005     0.01      0.015     0.02     0.025     0.03     0.035     0.04     0.045     0.05 
Time 

Figure 5.4: Results of Oscillatory Spring Example; e = 10~4 and TOL = 10-4 
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5.2    Two-body pendulum with bushing 

The second example is a two-body pendulum in 2D Cartesian coordinates. Six gen- 
eralized coordinates, q = [xi,yi,öi,X2,y2,ö2]T, locate the centers of mass and the 
orientation of the bodies. The first body is grounded, and the second body is con- 
strained such that the distance between a point A of the first body and another point 
B of the second body is fixed, and its orientation is held constant. This leads to five 
constraint equations 

(5.1a) 
(5.1b) 

(5.1c) 

lAB (5.1d) 

(5.1e) 

9\ =    Xi 

92 =   Vi 

93 = 0i 

9A =   dABTdAB 

9h =    02-Ö 

where lAB and 0 are constant, and 

dAB = 
X\ + a\ cos 0i — ü2 sin 0] 
yi + a\ sin 6\ + a2 cos 6\ 

(x2 + bi cos 02 - b2 sin 02) 
(j/2 + h sin02 + b2 cos02) 

such that A = [oj, o2] and B = [&i, 62] in the local reference coordinate systems of 
body 1 and body 2, respectively. In this example, we use A = [0,0], B = [0,0], 
lAB = 1, and 0 = 0 for the constraint equations (5.1). 

We apply a nonlinear oscillatory force formulated using nonlinear beam theory [4]. 
This type of force arises commonly in flexible multibody dynamics [23]. As described 
in (4.2), the deformation force between the ith and }th components is a function of 
the relative displacement of the reference frames X\-Y[-Z[ and X'j-Yj-Z'j, as shown 
schematically in Figure 5.5. Typically, the relative displacement is measured by 

d{j = rj + Ajs'j - r,- - Ais'i (5.2) 

where s' and s'j are constant vectors to the origins of the force reference frames in 
their respective local coordinate systems, i.e., Xi-Yi-Zi and Xj-Yj-Zj, where r*, r,- 
are the corresponding origins in a global coordinate system and Aj and Aj are the 
transformation matrices from the global to the local coordinate system [8]. The 
relative angles, 0,-j = [^tj,0,j,0ij]T, are calculated as 

An = {AiBifAjBj 

Vü = -A-j(2,3) 

0o- = Ay(l,3) 

(pij = arctan 
%j(2,l)' 
A-;(2,2), 
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where Aij(k,l) is the component of the kth row and Ith column of A{j. The matrix 
Aij is the relative orientation matrix of two force reference frames, i.e., B{ and Bj 
are constant. The relative velocity is the time derivative of the relative displacement 
d'j = A^«j' anc^tne relative angular velocity is u{j = Uj - Ui, where a;,- and Uj are the 
angular velocities of bodies i and jf respectively. 

Daformation fore« 
r«f«r»nc« ZruMS 

Figure 5.5: Deformation Force of a Flexible Body 

Using the above defined notation, the force acting between the ith and jth com- 
ponents due to the deformation can be written as 

fa = AiB^K^AiBifdij + C^AiBifdij) 

where Kf is a 3 x 3 structural stiffness matrix and Cf is the 3 x 3 damping coefficient 
matrix. Similarly, the torque acting between the components is 

T{j = AtBiiK^ij + C^AiBifuij) 

where KT and CT are analogous to Kf and Cf. Note that the force and torque in 
this form are linear functions of the relative displacement (dy, ©,-_,•) and the relative 
velocity (d,j,£2y-). 

Here, the 2D bushing force has stiffness matrix 

i r kx   0    0 
0 
0 

ky 

o 
o 

k6 
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where kx, ky, and ke are 0(1), and damping matrix 

0' = 
(f 0 0 
0 cy 0 
0    0c ,e 

where cx, c", and cö are 0(1). For this 2D bushing example, (4.3) becomes 

B{8) = - 
1 0 o 1 
0 1 0 
0 0 k9\ 

+ \kx - ky\ 
cos2 8      cos 8 sin 6   0 

cos 0 sin 8      sin2 8      0 
0 0 0 

The attachment points of the force device are s[ = [0.5,0] and s'2 = [—0.5,0] in the 
body-fixed reference frames of bodies 1 and 2, respectively. The bushing force intro- 
duces oscillatory applied forces, causing small oscillations of the numerical solution, 
and yielding highly oscillatory multipliers in the index-2 DAE (1.3). The multipliers 
associated with the highly oscillatory components exhibit high-frequency oscillations 
with large amplitude. The standard convergence test of the Newton iteration depends 
heavily on these multipliers. Therefore, we modified the convergence test in DASSL 
to exclude the test for the multipliers. In addition, the multipliers are computed 
in the GGL" by applying the pseudo-inverse (GY)~TYT to n = i>(0) - phqW and to 
r2 = f(q(0\v(°\t)-Mphv(°\ where (q(°\ v<°>) is the predictor in DASSL, and ph is the 
discretization operator of BDF. The local error is estimated by the predictor-corrector 
difference of {XTq,XTv) for C5, CM, and GGL", and of (q, v) for GGL. 

Using the initial values q = [0,0,0,9.9989e-l,-1.4852e-2,0] and v = [0,0,0,-6.75e- 
5,-4.5444e-3,0], numerical results with ATOL = RTOL = TOL are shown in Table 
5.3, where e = 10~3, kx = fc» = ke = 1, and cx = cy = c9 = 10. For this moderate 
stiffness e = 10-3, all the methods perform well. Note that the constraint violation 
with these initial values is O(10-3). This implies that the difference of the constraint 
reaction force at the initial value §o and that of a q* on the constraint manifold is 
<5 ~ \\QO - 9*11 = O(10-2), e.g., 6 = 0(VlO~3). According to Theorem 4.2, the rate of 
convergence of the CS iteration is proportional to 10(h). Increasing numbers of the 
convergence test failures in DASSL are expected as c —* 0. In this example, frequent 
convergence test failures occured when e < 10-5 and TOL < 10-3. We observe the 
same difficulties in the Newton convergence of the GGL and GGL* iterations. On 
the other hand, the CM iteration with its better Newton convergence, as explained 
by Theorem 4.2, is able to take much larger time steps and the nonlinear oscillation 
is damped effectively. In Table 5.4, the results of e = 10~6 , kx = ky = ke = 1, and 
(f = cy = c9 = 10 are shown. In Figure 5.6, we plot the stepsize taken by DASSL for 
GGL, GGL", CS, and CM using the stiffness coefficient e = 10-5. 
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Method TOL no. steps no. fevals. no. jevals. no. etfs. no. ctfs. 
GGL 10"d 59 141 46 0 12 
GGL' io~3 62 154 • 48 0 13 

CS 10"3 62 156 48 0 13 
CM 10"3 62 156 48 0 13 
GGL lO"4 61 136 27 5 
GGL' lO"4 77 193 65 16 

CS lO"4 77 193 65 16 
CM lO"4 77 193 65 16 
GGL 10~ö 108 259 77 21 
GGL' lO"5 87 215 54 0 13 
CS lO"5 87 215 54 0 13 
CM lO"5 87 215 54 0 13 

Table 5.3: Results of Two-Body Pendulum with a Bushing Force, e = 10-3, cx = cy = 
ce = 10 

Method TOL no. steps no. fevals. no. jevals. no. etfs. no. ctfs. 
GGL lO-4 5267 10536 7899 0 2633 
GGL' lO"4 2251 4900 3360 1 1120 

CS 10"4 2252 4901 3361 1 1120 
CM lO"4 20 40 7 0 0 

Table 5.4: Results of Bushing Problem, e = 10-6, cx = cy = ce = 10 
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0.025 

Spring = 10e5 Damping = 10, TOL = 10e-4 

*—*—*—*—*—*—x—*—*- 

n 
X '   / 

/,'■• ' ' < 

'[■'■    X     /j        X     jt     X   ¥X>XX   |     XX       :  XX 

"' 'i M J  '  '       ' / f.1'1 

i I 

i -ti 

* 
i      w ' I I I I 1 1 L. 

"Ö        0.05       0.1       0.15       0.2       0.25       0.3       0.35       0.4       0.45       0.5 
time 

Figure 5.6: Time Steps Used in Solving the Bushing Problem, e = 10-5, c1 

ce = 10 
= cy = 
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