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Abstract

In this paper we present a coordinate-split (CS) technique for the numerical
solution of the equations of motion of constrained multibody dynamic systems.
We show how the coordinate-split technique can be implemented within the
context of commonly used solution methods, for increased efficiency and relia-
bility.

A particularly challenging problem for multibody dynamics is the numeri-
cal solution of highly oscillatory nonlinear mechanical systems. Highly stable
implicit integration methods with large stepsizes can be used to damp the os-
cillation, if it is of small amplitude. However, the standard Newton iteration
is known to experience severe convergence difficulties which force a restriction
of the stepsize. We introduce a modified coordinate-split (CM) iteration which
overcomes these problems. Convergence analysis explains the improved conver-
gence for nonlinear oscillatory systems, and numerical experiments illustrate the
effectiveness of the new method.
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1 Introduction

The equations of motion of a constrained multibody system can be written as (8]

Gg—v = 0 (1.1a)
M(q)v+GTX - f(v,q,t) = 0 (1.1b)
gl = 0 (1.1c)

where ¢ = [g1, §2, ..., n] aTe the generalized coordinates, A= [M, A2, ..oy A are the
Lagrange multipliers, M(q) € R™*" is the mass-inertia matrix, f € IR" is the force
applied to the system, ¢ = %‘tl is the velocity and ¢ = % is the acceleration vector.
The constraints g = [g1, g2, -, gm) are m smooth functions of g, whose Jacobian

G(q) = [Z—Z’} e R™", m<n (1.2)
j

is assumed of full row-rank. We assume that G(g)M(q)G7 (¢) is symmetric and posi-
tive definite for every g € IR" to obtain a consistent physics represented by (1.1). The
degrees of freedom for the system (1.1) is n — m. Equation (1.1) is a well-known
index-3 DAE [3, 11).

Many methods have been proposed for modeling multibody systems. Direct nu-
merical integration of the index-3 DAE (1.1) suffers from the well-known difficulties
inherent in the solution of high-index DAEs [11]. One way to lower the index involves
introducing derivatives of the constraint g(g), along with additional Lagrange mul-
tipliers . This yields the stabilized indez-2 or GGL formulation of the constrained
equations of motion [6]

G—v+GTp = 0 (1.3a)
M(q)o+ G"A - f(v,q,t) = 0 (1.3b)
G(gv = 0 (1.3¢)

9(g) = 0, (1.3d)

which has been widely used in simulation. The Lagrange multiplier variables A and

p fulfill the role of projecting the solution onto the position (1.3d) and the wvelocity
(1.3c) constraints, respectively. Equations (1.3) and related systems have been solved
by a variety of methods. Here we will consider solution by implicit numerical methods
such as BDF or RADAU. A closely related approach is based on explicitly projecting
the numerical solution onto the constraints [16, 18, 20, 21] and involves many of the
same issues for the implementation that are considered here.

Many of the numerical methods for multibody systems solve the system (1.3)
directly. It is also possible to eliminate the Lagrange multipliers and reduce the size
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of the system to the number of degrees of freedom. One way to accomplish this
begins with the stabilized index-2 system (1.3). Suppose that G(p) is full-rank on the
constraint manifold M = {g € R™ | g(g) = 0}. Then one can find an annihilation
matrix P(g) € R™ ™*" such that P(q)G7(q) = 0, Vg € M. Premultiplying (1.3a)
and (1.3b) by P(q) yields an index-1 DAE

P(g)(g —v) 0 (1.4a)
P(q)(M(q)v - f(v,q,%)) = 0 (1.4b)
G(gv = 0 (1.4¢)

glg) = 0. (1.4d)

There is a potential gain in efficiency for this formulation due to the size-reduction

of the nonlinear system, compared to (1.3). An important practical consequence of
(1.4) is that (1, ) have been eliminated from the DAE, via multiplication of (1.3,
1.8b) by the nonlinear P(q). Thus, the error test and Newton iteration convergence
test in a numerical implementation of (1.4) no longer need to include (i, A). These
higher-index variables can cause problems in the direct numerical solution of (1.3).
One could in principle also consider removing (g, A) from the test in the solution
of (1.3), however it is not usually possible to justify this action, particularly in the
case of the Newton convergence test. Elimination of these variables from the Newton
convergence test in the solution of (1.3) can lead to a code which sometimes produces
incorrect solutions. It is the fact that multiplying by the nonlinear P(q) eliminates
(p, A) from the nonlinear system, which allows these variables to be excluded from
the tests in the solution of (1.4).

Direct numerical solution of (1.4) presents some challenges. First we must have
a means of generating P(q) which is reliable and cheap. Further, we note that the
Jacobian matrix for the Newton iteration involves complicated terms which arise
from the derivatives of P(g). We need a means of generating the Jacobian matrix.

Finally, practical issues such as the error test and Newton convergence test must be
considered.

In the first part of this paper, we show how the numerical solution of (1.4) can
be accomplished reliably and efficiently. In Section 2, we show how to obtain a
cheap representation for P(g), and then how to compute the Jacobian matrix without
directly computing the complicated derivatives of P. We show that the nonlinear
iteration converges. The effectiveness of this method for mechanical systems will be
demonstrated in numerical experiments in Section 5.

Our approach for obtaining a cheap representation of P(q) is based on a coordinate-
splitting of the variables. A widely-used method which is related in the sense of also
making use of a splitting of the coordinates is the generalized coordinate partitioning




method [20], which yields n-m differential equations

¥i(z, h(@))k = f(a, 54,2, h(z),1) (1.5)
where ¢ = Xz + Yy such that X € R"*? and Y € IR"*™, whose columns constitute
the standard basis for JR”. The matrix Y is selected so that (G(g)Y)~! exists in a
neighborhood of g, and h(z) is the implicit function of y defined by the constraints.
However, this differs substantially from the approach we outline here because P(q)
associated with this method is not orthogonal to G7(q). Hence the indez-reduction by
differentiating the constraints and projecting to the invariant space must be carried out
ezplicitly. In particular, this requires forming the derivative of the velocity constraints
(i.e., the acceleration constraints) explicitly. Another method for (1.4) has been
proposed by [7, 16, 17, 18], where P is chosen to be an orthonormal basis of the local
tangent space of the constraint manifold. Choosing a smoothly varying P is required
and may cause some practical difficulties.

Direct numerical solution of (1.4) via our coordinate-split approach yields an effi-
cient and reliable method for solving equations of motion for most multibody mechan-
ical systems. However, there is a class of multibody systems which present additional
computational challenges. These are the problems with high-frequency nonlinear os-
cillations. Highly oscillatory components are often used to model devices with strong
potential energy. Typical examples of such problems arise from modeling flexible
multibody mechanical, and molecular dynamic systems. For many problems, oscil-
lations of a sufficiently small amplitude are not important for the model, but they
severely restrict the stepsize for numerical methods. For these types of problems,
stiffly stable implicit numerical integration methods can be used to damp out the os-
cillation [15]. However, the stepsize may still be severely restricted due to difficulties
in converging the Newton iteration for larger stepsizes [15]. We have studied this
class of oscillating problems in [22]. The solutions are composed of a low-amplitude
high-frequency oscillation around a smooth solution [19]. Along the smooth solution,
the eigenstructure of the local Jacobian matrix varies smoothly. However, along the
solutions which are nearby to the smooth solution, the local eigenstructure oscillates
with the high frequency, and is very badly behaved. The standard Newton iteration
inside a damping numerical method starts from a predictor which is on a nearby so-
lution, and attempts to find the smooth solution. It evaluates its Jacobian matrix
on the nearby solution, which determines the direction it takes toward the smooth
solution. Unfortunately, these Jacobian matrices do not yield good directions for
nonlinear oscillating problems as described above, unless the predictor is already ex-
tremely close to the smooth solution. Thus, the standard Newton method must be
coupled with a severe reduction in the timestep to achieve an adequate predictor.

In Section 3 we introduce a modification to the Newton iteration which we call
the CM-iteration. This iteration is easy to implement, effective for non-oscillatory
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problems, and particularly effective for nonlinear highly oscillatory problems. The
basic idea of the CM-iteration is that there are terms in the Jacobian which involve
derivatives of the projection onto the smooth solution. These terms are complicated
to compute, large and oscillatory away from the smooth solution, and zero on the
constraint manifold. The CM-iteration sets these terms to zero, yielding a reliable
direction towards the smooth solution for the Newton-type iteration. In Section 3,
we outline the CM-iteration, give details for its implementation, and prove its conver-
gence. In Section 4 we describe in more detail the structure of nonlinear oscillatory
mechanical systems, and derive estimates for the rates of convergence of the CS and
CM-iterations applied to these oscillatory systems. The difference in convergence
rate explains why the CM-iteration is highly effective for oscillatory systems, and
shows that its rate of convergence for non-oscillatory systems is similar to that of
the CS iteration. In Section 5, numerical experiments are given which demonstrate

the effectiveness of these methods, particularly for oscillatory nonlinear mechanical
systems.

2 The Coordinate-Split Technique

In this section we present the coordinate-split (CS) technique. We show how to define
the matrix P(g) via a coordinate splitting and how to compute this matrix cheaply.
Although at first glance it would appear that implementation of this method would
be difficult due to complications in computing the Jacobian of P(q), we show that the
special form of the pseudo-inverse can be used to give a much simpler derivation of the
Jacobian. We outline an efficient implementation for solving the nonlinear system,
and observe that the CS technique leads to a natural and effective error estimator.
Finally, we prove the convergence of the CS iteration.

2.1 Construction of P(q)

The construction of the annihilation matrix P(g) involves the solution of a class
of pseudo-inverses of the constraint Jacobian G(g). An effective way to obtain the
projected vector P(g)r is to use a splitting of the original coordinates.

Definition 2.1 [Coordinate-Splitting Matriz] Let X and Y be the matrices whose
columns constitute the standard basis of R™*" such that ||(G(q)Y)™!|| is bounded in a
neighborhood Uy of qo. The p X n coordinate-splitting matrix for (1.1) is defined by

P(q) =XT - Q(g)"YT = XT(I - G(¢)T(G(q)Y)"TYT) (2.1)
where Q(q) = (G(q)Y)™'G(g)X.



Remark 2.1 From the construction of the CS matriz P(q), one can easily see that
P(q)GT(q) = 0 for all ¢ € R", i.e., P(q) is orthogonal to range(GT). Furthermore,
the row vectors of P(q) are orthonormal, i.e., P(q)T P(q) = I, where I, is the identity
matriz in IRP.

The computation of P(g) can be carried out using the LU-factorization of the
constraint Jacobian matrix. Applying Gaussian elimination with row-pivoting to GT
yields

En - E\GT=Lp---LiU (2.2)

where E; is the elementary permutation and L; is a Gauss transformation, ¢ €
{1,2,...,m}. From the factorization, we have

 ¥,X|=E=E, - E. (2.3)

Using the standard solution technique by LU-decomposition, the projected vector
P(q)r can computed in a straightforward and relatively cheap way. In addition,
the derivative (2.9) can be computed using the same factorization of GT and the
intermediate result s = —(GY)™'YTr from the computation of P(g)r.

Remark 2.2 Alternatively, one can apply QR-factorization to GT for the computa-
tion of P(q)r. Using QR-factorization with partial column pivoting [10], we obtain

GTEy-  Em=1Li-- LU (2.4)

wheref?i 1s the elementary permutation, L; is the Householder matriz, i € {1,2,...,m},
and U is _upper triangular. The last (n — m) columns of the orthogonal matriz
L =TI7, L; constitute a basis for the null-space of G. Thus we can write

[V, X|=L=1L - Ln (2.5)

Note that X and Y are usually subsets of the standard basis in IR™.

2.2 Computation of Jacobian and projected vector

The derivative of (2.1) can be obtained from the formulas given in [9] (Theorem 4.3,
pp. 420). Here, we give a much simpler derivation of the Jacobian of P(g), because
of the special form of the pseudo-inverse in P(q). For G(g) a smooth function, we
can in addition derive an approximation of the projected vector function P(g)r using
a nearby point.




Lemma 2.1 Suppose A(z) € RN*N is a nonsingular matriz-valued function of z €
RN | whose components are non-constant smooth functions of z. Then the derivative
of A(z)"1r may be obtained as

i@_}z(_z_)_r_ = —A"l(z)&%[A(z)w], with w= A™'r (2.6)

where r,w € RY.

Proof. Let r(z) be a smooth vector-valued function. Then the derivative of A~!(2)r(z)
with respect to 2 leads to

d, _ d  _, -1 dr(2)

dz(A (2)r(2)) = dzA (2)r+ A (2)72— (2.7)
according to the product rule. Choosing r(2) = A(z)w yields A7} (2)r(z) = w a
constant vector, and (2.7) becomes

d dA(2)w

e — _ -1 .
dzA (2)r A (2) 5 (2.8)
where w is A~™!r. O
Lemma 2.2 The derivative of P(q)r is
d dGTs ror
d—qP(q)r = P(p) . with s = —(GY)'Y'r (2.9)
where P(q) is defined by (2.1) and r € R™*!.
Proof. Differentiating P(q)r with respect to g yields
d _dor T T
qu(Q)T = qu (I-Q (Y )r. (2.10)
Since d’fiqT’ vanishes, differentiating (2.10) by the product rule yields
d rdG”(g)s rd(G(9)Y) TYTr
-(-i—qP(q)r =X T + (GX) aq (2.11)

where s = —=(GY)~TYTr. According to (2.6) the second term on the right-hand side
of (2.11) becomes

d(G(g)Y)TYTr _

T
(GX)T 7 _QT&}:_)_S_

dg
This may be substituted back into (2.10) to obtain (2.9). O
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2.3 Solving the nonlinear system

Here we outline an efficient implementation of the coordinate-split iteration for solving
the nonlinear system at each time step, and show how the coordinate splitting leads
to a natural and reliable error estimator. In particular, the local error estimators
based on differences, i.e., the increments of the nonlinear iterations for the discretized
nonlinear equations, can be obtained from those on the independent variables only.

Applying, for example, a BDF formula to (1.4) yields the nonlinear system

P(g:)(pngn —vn) = 0 (2.12a)
P(g,)(M(gn)pnvn = f(vn, @n,tn)) = 0 (2.12b)
G(gn)v, = 0 (2.12c)

9(g.) = 0 (2.12d)

where p, is the discretization operator, and h the stepsize of the time discretiza-
tion. Given an initial prediction (g%, v{?)), applying Newton-type methods to (2.12)
requires the solution of linear equations

J(Gn, vn)(Agn, Avs) = =7(gn, Vn) (2.13)
such that Ag, and Av, are the increments of ¢, and v,
)[aG(Qﬂ) 381 + athn] __P(q )
Gn n
goitn) = P | lay Pl |
G(gn) 0

and
T(Qna vn) = [PnTIaPnT% Gnvmgn]

where s, = —(GY) TYTry, 80 = =(GY) 7Y ro, 1y = ppgn—vn, and ro = M(gn)pnvn—
f(¥n,@nstn). The subscript n of a function represents its numerical value at t,, e.g.,
gn = g(qn)'

To solve the Newton equations (2.13) efficiently, we apply a decoupling technique
to the equations. To begin, we rewrite the first two equations of (2.13), i.e., corre-
sponding to the derivatives of (2.12a) and (2.12b),

[7) B | (e [ 38 ]+ [ ]) =0 215)

where the 2n x 2n matrix J; is

_Bh.q_ + _ﬁg.zjz.;’ll -]
Jl(Qn,vn) = [ dgMEZ"] h‘Un] _j_ o d(G 52) Mdph‘vn 8 } (216)
gn Oy,




Since J; is generally invertible under the assumption of M(g,) nonsingular, one so-
lution of (2.15) can be computed by

(XT-QTy")Ag, = 0 (2.17a)
(XT-QIy"As, = 0 (2.17b)
where Ad
n -r
Jl(qn,vn)[Agn ] = [ ~n ] (2.18)

Note that the solution of (2.17a) is not the necessary but only a sufficient one to
(2.15), i.e., there are other solutions to (2.15). Nevertheless, we will show in what

follows that (2.17a) is consistent with the iterations for the constraints along the same
direction.

Observing that Ag, can be determined by (2.17a) and the last row of (2.13),

ie., G,Ag, = —g,, the resulting increments can be used to compute %z—”(qn)Aqn,
such that Av, is uniquely determined by (2.17b) and the third row of (2.13), e.g.,

G, Av, = =G,v,, — %(%)Aqn. Thus, (Ag,,Av,) can be obtained by solving two

linear systems of the form
[£]u=[g] (2.19)

foru € R*, a € R™ ™, and b € R™. It is important to note that (2.19) represents
Gauss-Newton iteration along the column space of PT. Since the a-vector in the right-
hand side of (2.19) has been computed, we can then compute u with by = P,Ag, for
Ag, and by = PnAvn for Av,.

Denoting u = Xu, +Yu, and p = n — m, the first p equations of (2.19) are in the
form

u, — QTu, = a (2.20)
and the second m equations yield
uy, = (GY) b — (GX)uy,). (2.21)
Substituting (2.21) into (2.20) and solving for u, yields
(I, +Q"Q)u. = (a+ QT(GY)'b) (2.22)

where I is the p X p identity matrix. Using the consistent projection vectors P,Ad,
and P,A%,, we obtain

XA =0z, = —(I+Q1Q.) " (P.Ady + QT(G.Y) 1g,) (2.23a)
YTAG = Ayn = —(GoY) Ngn + (GoX)Az,) (2.23b)
9




and

XTAv = Awy, = —(I,+ QTQn)  (Paltn + QL(GY) ') (2.24a)
YTAv, = Azy = —(GoY) (1 + (G X)Aw,) (2.24b)

where 1, = ﬂ%lAqn + G,v,, and v, = Xw, + Yz,. The numerical solutions

(2.23) and (2.24) illustrate that the dependent variables y, and z, are determined
geometrically along the orthogonal complement of the column space of PT. The
system dynamics is described by the local independent generalized coordinates x
and its velocity w.

Implementation of simplified Newton method

Simplified Newton iterations are commonly used for the iterative solutions of (2.12).
The increments by Newton’s method to (2.12) are (2.23) and (2.24). For simpli-
fied Newton iteration that uses a fixed approximation J(®) of the Jacobian J(gn,vs)
in (2.13), the numerical solutions of (2.23) and (2.24) are computed by some fixed
matrices. For instance, (2.23a) becomes

T _ R T _
Az, = "(Ip + Q%O) Q%O)) 1(PnAQn + QS.LO) (GSIO)Y) lgn)

where the superscript (0) indicates the function approximated at some (g, (0.
Since (I p+Q$,°)TQ£,°)) is symmetric positive-definite, the increments, under the weighted-
norm induced by diag{I, + QOTQW, I..}, become

P.AGS + QU (GOY) g,

Ay = —(GPY) N (g. + (GPX)AZ]) (2.25b)
Auf = PAsS+ QO (GOY) S (2.25¢)
AzS = —(GOY) (i + (GOX)AWS). (2.25d)
where AgS and A%S result from
»S' _
n@® [ 2% =] Zn ] (2:26)

Efficient implementation of a simplified Newton iteration for (2.12) is carried out
using (2.2) as follows

Algorithm 2.1 | [CS iteration]

Step 1. Apply (2.2) to GT(¢¥) and Ji (¢, v{?) as in (2.16).

10
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Step 2. Solve for AGS and ADS in (2.26).
Step 3. Apply (2.2) to G7(q,), then compute P,A§S and P,A%S.

Step 4. Compute (GO)Y)~1g,, where by = 0, then apply QEIO)T to the result to obtain
(2.25a).

Step 5. Use (2.25a) to compute AyS, where by = Ax5.

Step 6. Use (2.25a) and (2.25b) to compute 13, then repeat Step 4 - 5 for (2.25¢)
and (2.25d).

For a straightforward implementation, the iterative solutions use (2.14) directly, which
requires the solution of 4n projected vectors for the first 2(n — m) rows. For Algo-
rithm 2.1, there is no need to compute the 4n vectors. Instead, two projected vectors
and four solutions of a m X n linear system are required for each iteration in addition
to the solution of a 2n x 2n linear system, e.g., (2.14) and (2.16) for the straightfor- |
ward and proposed implementations, respectively. Therefore, the above algorithm is !
preferred when n is large. Note that the computational cost of the iterative solution
by Algorithm 2.1 is almost equal to that of the solution of a 2(n + m) X 2(n + m)
linear system. Using LU-decomposition, the solution of a 2(n + m) x 2(n + m) linear
system requires O(4(n + m)?) flops, while the proposed iterative solution requires
O(6(nm)?) + O(4n?) flops with an additional factorization and two solutions of the
matrix (G,Y)~TY7 in Step 3 in the above algorithm.

Applying numerical integration, convergence of the iterative solutions by Algo-
rithm 2.1 can be achieved if the initial guess ¢!® from the predictor is close enough
to the numerical solution g,. In addition, the local error estimator based on the
predictor-corrector difference can be modified for a more effective approximation.
From (2.25b, 2.25d), the increments of y, and z, are bounded by

Ay < IGEQY)TIAGD X DN + 1lgS)

Az01 < WEQY)HAGD X MwPH + 111
for all 7. Ideally, the error estimator should be based on the dynamics of such systems,
which is described by z and w. Under the assumption that the constraints are smooth,
the local error can then be approximated using the alternative sequences of A" and
A by setting g{f) and () to zero in (2.25b) and (2.25d), respectively. Since (gy, v,)
converges in N iterations, the difference can be estimated by

N N

1(gn, va) = (&2, v = 2_(IAGPN + 1AvP) = i Do(I Az + |Aw]]) (2.27)

i=] i=]

where k, = ||(GOY)1GOX]|. Therefore, the local errors of numerical integration
of (2.12) can be approximated using only the increments of (") and w(’), e.g., the
right-hand side of (2.27).
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2.4 Convergence of the CS iteration

For simplicity we now consider, instead of the second-order constrained equations of
motion (1.1), a first-order system

¢—flg,t)+G™X = 0 (2.28a)
9(g) = 0 (2.28b)

since the convergence of (2.28) can be trivially extended to (1.1). Applying stiffly
stable numerical methods, the convergence result is well-known, see [11] pp. 494-498.
Convergence of discretization methods for the index-1 system,

P(g)(¢— flg,t)) = 0 (2.29a)
g(g) = 0 (2.29b)

obtained by applying the coordinate-splitting matrix P(q) to (2.28a), is also well-

developed. By the construction of P(q), it is easy to see that the solution of the
C'S iteration is equivalent to that of the local state-space ODE of the independent
coordinate z.

The convergence of the C'S iteration can be carried out on a smooth constraint
manifold M. Assume that for any ¢y € M, there exist X € RP*" and Y € R™*"
such that

IG(@Y) 'l < G (2.30)

1G(0)" = G(@)"|| < Callgr — el (2.31)

for some Cy and C,, where ¢, ¢, and g, are in a neighborhood U(qq) of go. Applying
a linear discretization operator p, with stepsize h to (2.29) yields a nonlinear system

ro=[ 7357 | 282

where the residual function is

r(g,t) = pr(q) — f(g,1). (2.33)

Let {g;} be the solution obtained by applying the simplified Newton method to (2.32),
and {q;} be the solutions obtained by applying Algorithm 2.1. Convergence of the
CS iteration can be shown under the conditions (2.30) and (2.31). Suppose that
the iterative solutions {g;} from applying the simplified Newton method to (2.32)
converge to ¢~. For §o = go, {;} generated by the CS iteration for (2.32) satisfies

Az = (I + Q(90)" Q(go)) Ay,

where Az is defined by the simplified Newton iteration. Consequently, {;} converges
to ¢~ as {g;} did.
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Convergence of the CS iteration can be assured for a sufficiently accurate ini-
tial guess. Another sufficient condition for convergence requires that the numerical
integration satisfies

dr  dGTs\™!

— < 1 2.34
1(G+ %) i<as 239
for some Cp and s = —(GY)~TY7r in a neighborhood of ¢*. This implies an upper
bound on the stepsize h. For linear multistep integration, e.g., Q%]@ = g, the stepsize
must satisfy

g0 r ) -
- —=—(f- < 2.
1(£-2ir-6m) 1 (235)
where § is the leading coefficient of the numerical integration formula.

For highly oscillatory dynamic systems with a wide frequency band, the error
tolerance TOL of the numerical solution often satisfies TOL < maxg, |l§-§“. Apply-
ing a stiffly stable numerical method to (2.29), such as BDF of order < 2, one may
take a larger stepsize to follow the trajectory of the equilibrium, i.e., f — GTs = 0.
However, convergence of the Newton iteration requires (2.35), a further restriction
on the stepsize. Depending on how close the predictor is to the equilibrium of highly
oscillatory components, the Newton direction imposed by the Jacobian can excite
the high-frequency oscillations. When applying the Newton method directly to the
discretization of (2.28), an even more severe problem in Newton convergence is ob-
served, and illustrated by the numerical experiments in Section 5. The limitation on
the stepsize due to the Newton convergence failures for highly oscillatory nonlinear
multibody systems can be overcome via a modification of the CS iteration which we
call the CM iteration.

3 Highly Oscillatory Systems and the CM Itera-
tion

3.1 The CM iteration

In large-scale multibody mechanical systems, most of the unwanted oscillations are
due to the noise of high-frequency forces, where the amplitude is well below the
solution tolerance. However, small perturbations in the position can cause drastic
changes in the Newton direction. This results in difficulties for convergence of Newton-
type methods. To remedy this problem in the C'S iteration, we reduce the noise from
the oscillations by setting %ﬂr = 0 in the Newton iteration matrix, since it is the
main source contributing to the rapidly changing Newton direction. The basic idea
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of the C M iteration is to approximate the Newton direction of (2.29) via an oblique
projection to the unconstrained ODE '

P(g)(¢ — f(g,t)) =0 (3.1)

for a go close to the solution g, e.g., G(go)G” (g) invertible. Since P(qo) is no longer
varying with g, %r = 0 is attained. When applying a stiffly stable numerical inte-
grator to highly oscillatory problems, this modification, for some gq close enough to

the smooth solution, overcomes the difficulties in the C'S iteration.

Applying a discretization method to (3.1) coupled with constraint (2.29b) leads
to the nonlinear system

[ Par@] )
Fo(g) = [ a(q) : (3.2)

The corresponding Lagrange multiplier form of (3.1) is
§+G"(@)A - flg.t) =0 (3.3)

where R
A= (G(@)Y) 7Y (f(g,t) — 9)-
A convergence result for the modified CS iteration, denoted by CM, is given in the

following. A detailed algorithm for applying the C'M iteration to (1.1) is presented
at the end of this section.

We first give an upper bound for the difference between the derivative of the
projected vector P(g)r(g) and the projected derivative P(q)‘—i%qil.

Lemma 3.1 Suppose conditions (2.30) and (2.31) hold. Then
d dr
|4 1P@r(@)] - P<q>—;qq> | < CiClY (@)l (3.4)

in D(qo, 00) € U(go), where D(qo, 00) is the disc in R" with center qo and radius Q.

Proof. The inequality is a direct consequence of (2.9). Subtracting (2.9) from P (q)g—g
and taking the norm of the remainder yields

r T -1yT
1L 1p(ar(a) - P22y = 1p( STy

Since the row vectors of P(q) are p orthonormal vectors in IR", applying the Cauchy
inequality gives

T —-1vT T
|P(g) i) (fj;”) Y < n-‘%qq)—fn < aCall(GY)TYTr(g)|

for all ¢ € D(qo, 00) € U(go). Condition (2.30) implies the result in (3.4). O
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3.2 Convergence of the CM iteration

An estimation of the distance between the solutions of (2.32) and (3.2) is presented
in the following.

Theorem 3.1 Suppose conditions (2.30), (2.31), and

dr\ ™!
| i [<Co<1 (3.5)

hold in a neighborhood of ¢* such that {g;} generated by the CS iteration converges
to ¢". Choosing @o = qo, the sequence {gx} generated by the CM iteration

Ger1 = Gk — J (%) Fo(dk) (3.6)

where J = %‘l, converges to ¢~ . Furthermore, the distance between §* and g* is
bounded above by

7" = a"ll < CUYTr (@)™ = goll + llg” = ol® + 17" — oll?) (3.7)
for some moderate constant C.

Proof. Since J is nonsingular and its components are smooth functions, using (2.21)
and (2.22) we can write

- -1
= by O]IV;Qme*]@
-Q m 0 (GY) dg
for the CM iteration, provided that & ; is invertible. By conditions (2.30) and (2.31),

we have .
15189 2] i<a

and _
1% 4P Jise

for some constants C3 and Cy. Thus, the contractive condition (3.5) implies conver-
gence of the CM iteration.

To show (3.7), we first observe from (3.3) that

r(§") + 9(a)r(7°) =0 (3.8)

where

G(g0) = =G (90)(G(a0)Y ) TYT.
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Also, ¢~ is a solution of (3.3), i.e.,
r(¢") +G(g")r(¢") = 0. (3.9)
Using (3.8) and (3.9), and adding and subtracting G(go)r(g*) yields
(I +G(q))(r(q") = r(g")) = (6(q0) — G(a"))7(q").
Applying the mean-value theorem to the differentiable functions r and G, we have

(I+ g<qo>>{j—;<ql><q-* _q)= ff;i—(qz)r(q*)(qo — )

for some §; ¢ = 1,2. Premultiplying the above equation by X T yields

Pla) (@) 7 - ¢) = XT%%@»r(q*)(qO —).

Since g(q") — g(g*) = 0, we obtain

P(go) | (an _ =\ — XT8(@2)r(q") (g0 — q7)
[ Géqgg ] (@-a)= [ %%(qo)(q*d— 90)* + £ (00)(T - 0)* |’

using the expansion of g(q¢*) and g(7") around go. From (2.21), (2.22) and the as-
sumption of an invertible [ P (qog ], we can write
G(go
— - ng * * ™ 2 —x 2
lg" = ¢"|l £ CslIX '@T(q Migo — a1l + Cs(llg™ = goll* + 117" — qoll*)

for some Cs and Cg. This implies (3.7). O

Note that (3.5) for the CM method is analogous to (2.34) for the C'S method. In-
stead of (2.35) for multistep integration methods using the C'S iteration, the stepsize
condition for the C'M iteration is given by

6 -1
II (% - 5—;1) <1 (3.10)

in accordance with (3.5).

It is easy to see that {gi} of the CS iteration and {gix} of the CM iteration are
the same if the constraints g(g) are linear. In general, the rate of convergence of the
CM iteration is superlinear, using the Dennis-Moré Characterization Theorem [5].
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3.3 Implementation of the CM iteration

The C'M iteration can be implemented via the same procedures as those in Algorithm
2.1, but the computational cost is considerably lower. First, the Jacobian of (2.13)
becomes

_ eutn -1
J1(GnsVn) = | dM(gu)onre) _ 870 Mz _ 8 (3.11)
dq,; aqn dvn

since P(g) is held fixed in the nonlinear equations. Comparing (3. (3.11) to the Jacobian
(2.16), notice that the terms due to the derivatives of P(g)r have vanished. Second,
the solutions of P, Aqn and P,A%S at each iteration in Algorithm 2.1 are replaced by
P(§)¢5 and P(§)dS, which reduces the cost since P(§) has been previously computed.

Using the simplified Newton iteration for (2.12), the CM iteration is carried out
as follows:
Algorithm 3.1 [CM iteration]
Step 1. Apply (2.2) to GT(§) and Ji(§,?) as in (3.11).
Step 2. Solve for AGS and ADS in (2.26).
Step 3. Compute P(§)AGS and P(§)AdS.

Step 4.-6. same as Algorithm 2.1.

Remark 3.1 When applying the CM method to (1.1 ), the residual function

ro(v,q,t) = M(q)pnv — f(v,q,t)

should be replaced by

72(v,q,t) = prv — M(q) "' f(v,q,1)

for a nonsingular M(q).

4 Rate of convergence for highly oscillatory multi-
body systems

High frequency oscillatory forces often appear in the modeling of vehicle suspension
systems, modal analysis in structural dynamics, or modeling oscillations in computer-
aided engineering etc. For simplicity, we consider the constrained dynamic system of
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(1.1) with a dominant oscillatory force

M(g)i+G™N+ Znfa) = f(v,0,8) = 0 (4.12)
gg) = 0 (4.1b)

where % may be, for example, the coefficients of stiff springs; i.e., 0 < € < 1. In
practice, 7(q) is usually oblique towards KerP(g), i.e., the oscillatory force(s) acts on
both the independent and the dependent coordinates. For the purpose of obtaining a
smooth solution with large stepsizes solving those types of problems [15], we will show
that the CM iteration can be very effective for many classes of nonlinear oscillatory
forces.

In the modeling of deformable multibody systems, the nonlinear oscillatory forces
in (4.1) are usually derived from the theory of linear elasticity, i.e., for some functions
g such that the oscillatory forces may be written as %q. We can use these functions
d to write the nonlinear force, e.g.

1 1.

-n(a) = 24,
and then append

g—n(g)=0

to the constraint equations. The oscillatory forces then become linear with respect
to the variables . In fact, if the oscillatory forces are produced by a finite element
approximation of the deformation of bodies, components of § are associated with
some body-fixed local coordinates via the orientation transformation matrix, whose
entries often are slowly varying in time.

Deformation forces are the most common potential forces that can produce small
amplitude high-frequency oscillations, and they are usually linear with respect to the
local coordinates [4, 23]. For these reasons, we consider the class of oscillatory forces
in the form

n(g) = B(t)(g — bo(t)) (4.2)

where the components of B and by are slowly varying. In particular, B and by may
be functions of some constraint-driven generalized coordinates. For example, B(6) in
the 2D bushing problem in [22] has the form

cosf sinf 0 k® 0 0 cosf sing 0177
B(#) = [—sinﬁ cos 6 0} [ 0 kv 0 ] [—sin& cosf 0
0 0 1 —k¥sinf k®cosf k° 0 0 1
(4.3)
where k%, k¥ and k% are positive constants. When 6(t) is smooth or constrained,
assumption (4.2) is valid.
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Using a linear oscillatory force, the Lagrange equations of motion of the multibody
system can be written as

M@)o+ 2B(g = b) + G™A f(v,0,1) = 0 (44

where 1 > “a_(%j”' From assumption (2.31) on the constraint manifold, we can also
: assume that ) G
u
‘ > max 20,

€7 Jullui=1  dg

(4.5)
for all q.

In the context of the C'S iteration, the problem of convergence of the Newton
iteration can be explained by analyzing the reduced potential function. The redyced
potential of (4.1) is

Vi(g) = 9(a)"(GY) YTy (4.6)
where r = f — Mg~ %B(q —bo). The reduced potential force generated by (4.6) is
VV'(q) = % =GT(GY) Ty T, (4.7)

At each iteration, the reduced potential force acts along the normal direction of the
constraint manifold. The gradient of the correction term yields

YV = (1~ 676y )Ty Lo (4.8)

where s = (GY)~TY7r. Applying Y7 to (4.8), gives
YIVRVT(g) = YT(I - GT(GY)‘TYT)—-——dGEéQ)S =0

and applying X7 to (4.8) yields

dG7(g)s
dg

When high-frequency oscillations appear in the system, e.g., ¢ — 0, the reduced
potential force also becomes oscillatory if Y77 is nonzero. This is the general case
when the solution is not at an equilibrium position. Nevertheless, convergence of the
CS iteration can be achieved by using a small enough stepsize, e.g., h ~ VE.

XTV?V"(g) = P(q)

Theorem 4.1 Let (g,v) be the solution of the nonlinear system which results from
numerical integration of (4.1 ) using py, with a stepsize h. Suppose the starting value
(g0, v0) satisfies ||go]| = O(h?) and ||vy|| = O(h), and J(q) is nonsingular. Then the
CS iteration converges if h? < ce for some moderate c.
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Proof. For the convergence of the CS iteration, we need to show that (2.34) is valid,
where r(g) is defined in (4.4). For (2.34), we have

or dGTs

H'@(QO) + aq

(ol = 122y o)

where 8 > 0 is the leading coefficient of ps, and ||M|| is not zero. Consequently, for
¢ < 1, (2.34) is valid provided that h = Ve O

Under the conditions of the above theorem, a convergence result for the CM itera-
tion can be obtained provided the assumptions of Theorem 3.1 are valid. In many
applications, following the oscillations is not of interest. Instead, one wants to use a
large time step to damp out the oscillations of small amplitude but high frequency.
For this reason, we now consider only the multistep numerical integration methods
that are strictly stable at infinity and A-stable, such as the lower order (ie., <2)
BDF methods [11]. The convergence of L-stable implicit Runge-Kutta methods to the
smooth solution of the highly oscillatory ODE of multibody mechanical systems can
be found in [15]. Here we focus on the convergence of the CM iteration for constrained
multibody systems with oscillatory forces when applying the above-mentioned linear
multistep methods.

Numerical solutions on the slow mant fold can be evaluated using the equilibrium
of (4.1), i.e., the slow solution [2, 13] satisfies

n(q) — e(f(v,q) — VV"(g) — M(g)0) = 0,

and the smooth solution is its asymptotic expansion to some order of € around the
manifold {g | n(g) = 0}. In the linear form, the smooth solution of (4.1) is not
far from B(q — bg) = 0 since 1> \]5(%%”\ For the strongly damped numerical
solution gy, B(gn — bo) — O(€) as tn — o0 During the iterative solution onto the
slow manifold, the constraints may not be satisfied, which causes a large reaction
force in the form of (4.7). This may cause oscillations in the CS iteration, while
the C'M iteration annihilates these nonlinear oscillations generated by the reduced
potential. This yields a superior performance of the CM iteration as compared to
the CS iteration for computing the smooth solution of (4.1). The result is explained
in the following.

Lemma 4.1 Let (g*,v*) be the smooth solution of (4.1), n(g) linear, and h the step-
size of the multistep integration method. Suppose the starting values (go,vo) for (¢, v")
on the smooth solution of (4.1), i€, llg7|l = O(e) and r(g=,v*) = O(h), satisfy (2.30),
(2.31) and

M(Qo)ﬂh(vo) - f(vO’QO) = O(h) (4-9)

20




where py is the corresponding discretization operator. Applying the CS and CM
iterations to (4.1), the approzimate Jacobian matriz for the CS iteration satisfies
. w0
17(g0, v0) = J(q",v")|| = ~O(h) + O(h) (4.10)

where 6 = ||Bgo — Bq~||, and J(g,v) is the Jacobian of (4.1). For the CM iteration,
we have

17(g0, v0) = (g7, v")|| = O(h) (4.11)

where J is the approzimate Jacobian in the CM iteration.

Proof. The difference between the Jacobian at (go,v) and (g*,v*) can be written as

1o - 77| < nP(qo)Z—;(qo) - P<q~>g§-g<q*>|| + ||%§(qo>r<qo> - %{;(q’*)r(q*)u +0(h)

since the initial values satisfy (4.9). Under the conditions (2.30) and (2.31), we may
choose common X and Y for P(go) and P(g*) such that the first term on the right-
hand side of the above inequality can be rewritten as

||P(Q)(aq<QO) (@)l = O(R)

’I'

for some ¢ € [go, "], since §; = lB + O(h) allowing the cancellation of %B. The
second term yields

15 as)r(an) - ‘fi—’;'(q*)r(q*)n < llrtao) = r(@)IO(h) = 1| Bgo  Ba"|O(h)

according to Lemma 3.1. Thus, (4.10) is proved. Recalling J(qo,vo) from (3.11), we
have

IIJo—J|l<IIPIIII H— O(h),

using again Lemma 3.1. O

Theorem 4.2 For the initial values (go,vo), suppose the conditions in Lemma 4.1
hold. Suppose that the CS and the CM iterations are carried out by applying a
simplified Newton method, where the iteration matriz is computed at the starting
values (qgo,v). If both iterations converge, then the rate of convergence of the CS
iteration 0(©5) compared to that of the CM iteration 0(C™) is given by

#(C8) = 20(}1) +0(h)

where 6 = ||B(g, — ¢*)||, and
oM = O(h).
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Proof. Since we apply the simplified Newton iteration, the solution of the CS itera-
tion can be written as

[ &1 ] = Blguwo

where o
H(Q3 U) = g - J(;-IF(QaU)‘

Similarly, the C M iteration can be written as the fixed-point iteration of the function

E[(q’ ’U) = 71— j()_lF(q’ ’U).

Applying the Contractive Mapping Theorem, see [5] pp. 93-94, we obtain the rates
of convergence of the C'S and CM iterations

0% = [T = I J(g" )| = 105 (Jo = T

and i o
O'CM = ”I - Jo—lj(q*’v*)” - l'Jé—l(JO _ J*)”

where J(g",v") = J* is the Jacobian at the solution of the discretized system, and
the superscripts denote the respective iterations. For J; !, we have

84 0(h) —I

D=1 Byom Em+om) |

When ¢ — 0, the dominant components of J;! are of O(1). From Lemma 4.1, the
rates are

oCS = §O(h) +O(h)

and

0% = 0(h),
since J; ! has no component of O(¢). O
5 Numerical Experiments

5.1 Point-mass with oscillatory force

The first example is a simple constrained multibody system under the influence of
a highly oscillatory force. Consider a unit point-mass constrained to the 2D unit
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circle, using ¢ = [z,y]7, the velocity v = %‘tl = [w, 2]T, and the constraint equation
g(q) = %(132 +y? - 1). The equations of motion are

WHzA—f7 = 0
ityr—F = 0

where f = [f*, f¥]” is the applied force. Differentiating the constraint g(g) = 1(22 +
y? — 1) twice with respect to time, an explicit form of the multiplier A is obtained by

1 2,2
/\= m(.’l}fz-!-yfy-l-w + 2 )

For a highly oscillatory force f(g), one can see that A(t) is oscillating with the fre-

quency of f(g), and with amplitude proportional to the magnitude of || f||.

The numerical experiments are carried out using BDF of order < 2 in DASSL [3],
where the local error estimation has been modified. For the stabilized index-2 DAE
(1.3) denoted by GGL, the local error is estimated using only the position, i.e., g.
Moreover, we have also included some experiments where the Newton convergence test
of GGL has been modified to exclude the multipliers. The corresponding numerical
solution is denoted by GGL*. For the coordinate-split and modified coordinate-split
iterations, denoted by C'S and CM, respectively, the local error is estimated using
the independent variable X7q, as recommended in Section 2.3. The CM iteration
updates the matrix P(§) when a new Jacobian is required.

Linear oscillation

Let a unit gravitational force act along the negative y-direction, and apply a linear
oscillatory force

1
f= ) :
[ Ly+1)-1.0 l
There is a stable equilibrium at ¢ = [0, —1] and v = [0,0]. The natural frequency of
the system is w = %, and no dissipative force is present.

The numerical solution has been carried out with a moderate solution tolerance
ATOL = RTOL = TOL = 1073. For a 0 to 0.25 second simulation, the results of
several combinations of the stiffness coefficient ¢ are presented in Table 5.1, where
the initial values are ¢ = [0.0,—1.0] and v = [1.0,0]. The CM iterations show better
- efficiency than those of CS, GGL and GGL* in all cases, i.e., comparing the numbers
of function and Jacobian evaluations in Table 5.1. In the Table, etfs and ctfs denote
the number of failures of the error test and Newton convergence test, respectively, in
DASSL. Comparing the results of GGL* with those of GGL, we observe an improved
Newton convergence. As ¢ — 0, i.e., for higher frequencies of the oscillation, the
CM iteration becomes even more efficient. In Figure 5.1, we plot the total energy of
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[ Method [ TOL | € [ no. steps | no. fevals. | no. jevals. | no. etfs. [ no. ctfs. |
GGL [10°107¢ 446 1713 263 47 0|
GGL* | 1073 |10 478 1304 127 45 0

cs 1073 | 10~ 381 1036 106 46 0
CM |107% |10 373 963 96 38 0
GGL 1073 [107° 431 1726 261 34 2
GGL* | 1073 [ 10°° 500 1324 139 52 2
CS 103 | 10-° 447 1281 116 56 2
CM | 1073 |10°° 456 1180 115 58 1
GGL | 10°°|10°°® 427 1693 275 41 8
GGL~ | 103 | 1078 478 1247 123 44 4
CS 10~% [ 1076 414 1139 119 38 5
CM |10°%]10°¢ 325 844 81 34 1

Table 5.1: Results of the Constrained Point-Mass with a Linear Oscillatory Force

Total Energy (EPSILON=1.0-6, TOL=1.e-3, order=1,2)

TE (Logartthmic Scale)

Time -

Figure 5.1: Total Energy Comparison of Linear Oscillatory Force Example; e = 1076
and TOL = 1073
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[ Method [ TOL | € | no. steps [ no. fevals. | no. jevals. [ no. etfs. [ no. ctfs. |

GGL 10731077 109 383 56 13 0
GGL* | 1073 |10~ 109 337 45 13 0
CS 1073 | 104 150 474 58 20 0
CM |10°% |10 72 208 31 7 0
GGL [10°%[10°° 105 416 68 11 0
GGL* | 1073 | 107°° 105 387 47 12 0
CS 1073 [ 10°° 135 455 56 18 0
CM | 1073|1078 66 205 32 4 0
GGL 1077 1107¢F 822 2534 337 78 0
GGL* | 10~% |10 818 2572 242 82 0
CS 107% | 10~¢ 943 2727 217 66 0
CM |10~* |10 193 577 56 14 0

Table 5.2: Results of the Constrained Point-Mass with an Oscillatory Linear Spring
Force

each numerical solution. The CM iteration achieves the strongest damping because
DASSL is able to increase the stepsize faster with the C M iteration.

Linear spring force

In the next test, we replace the linear oscillatory force in the previous constrained
svstem by a spring force

1l=1 [ T -2 ]
e ] ¥Y— Y

where ! = \/(x — 20)% + (y — yo)? for (zo, yo) the attachment point of the spring, Iy the

natural length, and ;12— the stiffness coefficient, as shown schematically in Figure 5.2.

For unit mass and unit gravitational force, we set the spring attached to (zo,yo) =
(0,—0.5) and the natural length Iy = 0.4, such that the equilibrium is at (0, -1,0,0).

Using the initial conditions [0.04471, —0.999, 0, 0], the results of the 0-0.05 second
simulation by the GGL, GGL*, CS, and CM iterations are shown in Table 5.2.
Because DASSL is able to increase the stepsize, and hence damp the solution faster
with the CM iteration, the CM method is quite effective in these tests. In Figure
5.3, we plot the total energy of each solution. The numerical solutions of z, w, and A
are presented in Figure 5.4.
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Figure 5.2: Constrained Point-Mass with a Linear Spring
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Figure 5.3: Total Energy Comparison of Oscillatory Spring Example; € = 10~ and
TOL =104
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Figure 5.4: Results of Oscillatory Spring Example; € = 10~ and TOL = 10~
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5.2 Two-body pendulum with bushing

The second example is a two-body pendulum in 2D Cartesian coordinates. Six gen-
eralized coordinates, ¢ = [xl,yl,el,zg,y2,02]T, locate the centers of mass and the
orientation of the bodies. The first body is grounded, and the second body is con-
strained such that the distance between a point A of the first body and another point
B of the second body is fixed, and its orientation is held constant. This leads to five
constraint equations

g = 71 (5.1a)
go = W (5.1b)
g3 = 6 . (5.1¢)
gs = dABTJAB _1AB (5.1d)
g5 = 6,0 (5.1e)
where 48 and 6 are constant, and
4B = [Tt a cosfy — azsinfy — (x2 + by cosfp — by sin 6)
T | y; + arsinb; + agcosfy — (yo + by sinfy + bacosby)

such that A = [a;,as] and B = [by,by] in the local reference coordinate systems of
body 1 and body 2, respectively. In this example, we use A = [0,0], B = [0,0],
4B = 1, and 6 = 0 for the constraint equations (5.1).

We apply a nonlinear oscillatory force formulated using nonlinear bearn theory [4].
This type of force arises commonly in flexible multibody dynamics [23]. As described
in (4.2), the deformation force between the ith and jth components is a function of
the relative displacement of the reference frames X|-Y/-Z| and X}-Y;-Z;, as shown
schematically in Figure 5.5. Typically, the relative displacement is measured by

dij = Tj + A]‘S; -T; = A,'Si‘ (52)

where s; and s are constant vectors to the origins of the force reference frames in
their respective local coordinate systems, i.e., X;-Y;-Z; and X;-Y;-Z;, where 7;, 7
are the corresponding origins in a global coordinate system and A; and A; are the
transformation matrices from the global to the local coordinate system [8]. The
relative angles, ©;; = [¢;, i, ¢:j]7, are calculated as

Aij = (A,‘B,')TAJ‘BJ'
Yij = —Ai(2,3)
6;; = Ai;(1,3)

¢;; = arctan (A.'j(2,2)
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where A;;(k,l) is the component of the kth row and lth column of A;;. The matrix
A;; is the relative orientation matrix of two force reference frames, i.e., B; and B;
are constant. The relative velocity is the time derivative of the relative displacement
dij = %dij, and the relative angular velocity is w;; = w; — w;, where w; and w; are the
angular velocities of bodies i and j respectively.

Deformation force
reference frames

Figure 5.5: Deformation Force of a Flexible Body

Using the above defined notation, the force acting between the ith and jth com-
ponents due to the deformation can be written as

fi; = AiB{(K'(A;B;) dij + CT(A:B;)dy)

where K7 is a 3 x 3 structura) stiffness matrix and C is the 3 x 3 damping coefficient
matrix. Similarly, the torque acting between the components is

Tij = AiBi(KT@,'j + CT(A,'B,')TLJ,'J')
where K7 and C7 are analogous to K/ and C/. Note that the force and torque in

this form are linear functions of the relative displacement (dij,©;;) and the relative
velocity (djj, ;).

Here, the 2D bushing force has stiffness matrix

1 [k 0 0
Kf==]10 kv 0
€10 0 k°

29




where k%, kY, and k° are O(1), and damping matrix

¢ 0 0
Cf = 0 ¢ 0
0 0 ¢

where ¢%, ¢¥, and ¢ are O(1). For this 2D bushing example, (4.3) becomes

1100 cos?f cosfsind 0
B()==-101 0 | +|k* —k¥|| cosfsinf sin’4 0 |.
€100 k° 0 0 0

The attachment points of the force device are s§ = [0.5,0] and s, = [—0.5,0] in the
body-fixed reference frames of bodies 1 and 2, respectively. The bushing force intro-
duces oscillatory applied forces, causing small oscillations of the numerical solution,
and yielding highly oscillatory multipliers in the index-2 DAE (1.3). The multipliers
associated with the highly oscillatory components exhibit high-frequency oscillations
with large amplitude. The standard convergence test of the Newton iteration depends
heavily on these multipliers. Therefore, we modified the convergence test in DASSL
to exclude the test for the multipliers. In addition, the multipliers are computed
in the GGL" by applying the pseudo-inverse (GY)~TY7 to r; = v(® — p,¢® and to
ro = f(q@, v, t)—Mp,v®, where (¢@, v(?) is the predictor in DASSL, and pj, is the
discretization operator of BDF. The local error is estimated by the predictor-corrector
difference of (X7Tq, XTv) for CS, CM, and GGL", and of (g, v) for GGL.

Using the initial values ¢ = [0,0,0,9.9989¢-1,-1.4852¢-2,0] and v = [0,0,0,-6.75e-
5,-4.5444e-3,0], numerical results with ATOL = RTOL = TOL are shown in Table
5.3, where e = 1073, k* = k¥ = k% = 1, and ¢® = ¢ = ¢ = 10. For this moderate
stiffness e = 1073, all the methods perform well. Note that the constraint violation
with these initial values is O(10~%). This implies that the difference of the constraint
reaction force at the initial value go and that of a ¢* on the constraint manifold is
6~ |lgo — ¢*|| = 0(1072), e.g., 6§ = O(/10-3). According to Theorem 4.2, the rate of
convergence of the CS iteration is proportional to f—O(h). Increasing numbers of the
convergence test failures in DASSL are expected as € — 0. In this example, frequent
convergence test failures occured when € < 107° and TOL < 1073, We observe the
same difficulties in the Newton convergence of the GGL and GGL* iterations. On
the other hand, the CM iteration with its better Newton convergence, as explained
by Theorem 4.2, is able to take much larger time steps and the nonlinear oscillation
is damped effectively. In Table 5.4, the results of e = 107% , k* = k¥ = k% = 1, and
¢ = ¢¥ = ¢ = 10 are shown. In Figure 5.6, we plot the stepsize taken by DASSL for
GGL, GGL*, CS, and CM using the stiffness coefficient € = 1073.
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Method [ TOL | no. steps | no. fevals. [ no. jevals. [ no. etfs. | no. ctfs.
GGL |107° 99 141 46 0 12
GGL* | 1073 62 154 48 0 13

cS |1073 62 156 48 0 13
CM | 1073 62 156 48 0 13
GGL | 107* 61 136 27 1 5
GGL* |10 77 193 65 1 16
cS |10 77 193 65 1 16
CM 10— 77 193 65 1 16
GGL |10 108 259 77 1 21
GGL" | 1073 87 215 54 0 13
CS 107° 87 215 54 0 13
CM | 107° 87 215 54 0 13
Table 5.3: Results of Two-Body Pendulum with a Bushing Force, e = 1073, ¢* = ¢V =
=10

Method [ TOL [ no. steps [ no. fevals. | no. jevals. | no. etfs. | no. cifs.
GGL |107° 5267 10536 7899 0 2633
GGL* | 107 2251 4900 3360 1 1120

CcS 10~ 2252 4901 3361 1 1120
CM |10 20 40 7 0 0

Table 5.4: Results of Bushing Problem, e = 1078, ¢* = ¢¥ = ¢/ = 10
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Spring = 10e5 Damping = 10, TOL = 10e-4

CM -*-
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Figure 5.6: Time Steps Used in Solving the Bushing Problem, e = 1075, ¢ = ¢ =

=10
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