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Abstract 

One of the outstanding problems in the numerical simulation of mechanical 
systems is the development of efficient methods for dealing with highly oscilla- 
tory systems. These types of systems arise for example in vehicle simulation in 
modeling the suspension system or tires, in models for contact and impact, in 
flexible body simulation from vibrations in the structural model, and in molec- 
ular dynamics. Simulations involving high frequency vibration can take a huge 
number of time steps, often as a consequence of oscillations which are not phys- 
ically important. The components causing the oscillations cannot usually be 
eliminated from the model because in some situations they are critical to the 
simulation. The equations of motion of a multibody mechanical system are de- 
scribed by a system of differential-algebraic equations (DAEs). In this paper, 
we will explore two types of methods. The first class of methods damps out the 
oscillation via highly stable implicit methods. Even in this relatively simple ap- 
proach, unforseen problems may arise for Newton iteration convergence, due to 
the nonlinearities. The second class of methods involves linearizing the system 
around the smooth solution. The linearized system can be solved rapidly via a 
number of different methods. 
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1    Introduction 

Much recent work has focused on the development of numerical methods and underly- 
ing theorv for the solution of multibody dynamic systems (MBS) consisting of fast and 
slow subsystems [17, 22]. These types of systems occur frequently as initial value prob- 
lems in the computer-aided design and modeling of constrained mechanical systems, 
molecular dynamics, and in many other applications [1, 31]. It is well-known that 
the characteristics of fast or slow solution are determined not only by the modeling 
aspects, e.g., the coefficients of stiffness and damping, but also by the initial conditions 
and events that may excite stiff components in the system during the simulation. As 
an example, the governing equations of motion of a mechanical system of stiff or highly 
oscillatorv force devices may be written as a system of differential-algebraic equations 

(DAE) [5J: 

M(q)q + GT(q)\-(fs + fn)   =   0 (la) 
g(q)    =   0 (lb) 

where q = [gi qn]T is the generalized coordinate, q = $ is the generalized velocity, 
q - ga is the acceleration and A = [Ai Am]T is the Lagrange multiplier. The stiff 
or oscillatory force is /' = E?' ft, and ft includes all the field forces and the external 
forces which are non-stiff compared to the stiff components, e.g., 

«fii>nfii. <» 
The kinematic constraints are g, and G = §*, and M is the mass-inertia matrix. For 

the stiff force components in (la), we assume that 

ft = -Bt(q)(KMq) + Ci^) (3) 

where r?, is smooth Vi € {l,...,n/} and B, = ^T, and Kt, d are the associated 
stiffness and damping factors. For some generalized coordinate sets, the function rj 
may be linear or even identities, e.g., for instance 77, = qit for some i € {1,.... n/} and 
i, € {1, ...,»}• When the components of the coefficient matrices K{ and C, become 
large, these force components may cause rapid decay or high frequency oscillation in 
the solution of (1). The purpose of this article is to study these systems and their 
numerical solution. In this notation, the stiff force term in (la) can be written as 

f = -B{q){Kri(q) + CB(q)v). (4) 

To demonstrate the problem of oscillation and the recent developments in this area, 
we present two examples: a stiff pendulum and a 2D bushing problem. The former 



is a very simple example of ä type of system often seen in modeling molecular dy- 
namic systems, and the latter is a general form of modeling force devices in multibody 

mechanical systems. 

Stiff pendulum 

In Cartesian coordinates, a simple stiff pendulum model, with unit mass and gravity, 
may be expressed as 

0   =   x-u (5a) 

0   =   y-v (5b) 
0   =   ü + xA (5c) 

0   =   v + yX-l.O (5d) 

f2A   =   vTO^l.O (5e) 

Vx2 + y* 

where the stiff spring of natural length 1.0 and stiffness £ is attached to the center 
of mass of the pendulum. Preloading the spring by using e = \/l0~3, the initial 
condition (x0,y0) = (0.9.0.1) and the zero initial velocity (u0, vQ) = (0,0), the results 
of the states (x,y,u,f) in the 0 to 10 second simulation are shown in Fig. 1. The 
corresponding eigenvalues of the underlying ODE of (5), i.e., substituting (5e) into 
(5c. 5d), are illustrated in Fig. 2, where the 3D figures contain all the eigenvalues on 
the complex plane drawn along the time-axis. The dominant pair of eigenvalues in the 
example are ±Ji, as shown in Fig. 2. As e -» 0, the pair of eigenvalues approaches 
±oc along the imaginary axis. The other pair of eigenvalues oscillates on the complex 
plane with the amplitude and frequency approaching ±oo. Decreasing e to VICR, the 
eigenvalues of the underlying ODE of (5) are times the magnitude of those in Fig. 2, 
and the oscillating pair increases its frequency proportional to the size of e. 

i^Mt^^Mmmf^^fmmm^ 
Vt       t       >       *       l       i       i       ••       « 

• • T » t » 

Figure 1: Stiff Pendulum in Cartesian Coordinates 

Lubich [17] shows that the numerical solution by a class of Runge-Kutta methods 
of stiff mechanical systems of a strong potential energy, e.g., stiff spring force such as 
the stiff pendulum (5), converges to the slowly varying part of the solution, with the 



Figure 2: Eigenvalues of Stiff Pendulum in Cartesian Coordinates, epsilon = 10e-l.o 

stepsize independent of the parameter e in (5). Reich [22] extends the principle of 
slow manifold [9, 15] to DAE of MBS with highly oscillatory force terms. Algebraic 
constraints corresponding to the slow motion were introduced with a relaxation pa- 
rameter to preserve the slow solution while adding flexibility to it in the slow manifold 

approach. 

It is not clear that a slow solution appears in the above example. In fact, we can 
only identify the slow solution of (5) using a proper nonlinear coordinate transforma- 
tion. In polar coordinates (r,0), we obtain the equations of motion of (5): 

(6a) 

(6b) 

(6c) 

(6d) 

0 

0 

0 

0 

r — z 

6-u 

=   z + ru>2 +-z{r - 1) - sinO 

-   jj (2zu)-cos6) 
r 

where (*,-;) is the velocity. In the 0 to 10 second simulation, using the same initial 

conditions as the previous examples, i.e., r0 = Jx% + yg, 60 = arctan * and (z0, w0) = 
(0.0), where (x0,yo) is the initial position of (5), we obtain the solution in Fig. 3. It 
is clear that the solutions of (r, z) represent the fast motion, and the solutions of 
(0,*O are the slow ones. The eigenvalues along the solution trajectory are presented 
inFig. 4. Note the dominate eigenvalues are of the same magnitude as those in (5), 
see Fig. 2. This is because the coordinate transformation, x = rcosfl, y = rsinfl, is 
linear with respect to the fast moving r. The eigenvalues of (6) with e = VUF5 are 
similar to the comparison in the Cartesian formulation, i.e., we obtain the eigenvalues 
of 10 times magnification. However, the eigenvalues corresponding to the slow motion 
have near zero imaginary parts, therefore, the oscillations along the imaginary axis of 
eigenvalues 3,4 in Fig. 4 remain insignificant. 

Although there are ongoing developments to extend the results of Lubich to multi- 
stage multistep methods [23], and impressive application of the slow manifold tech- 
nique in some molecular dynamic models, it is not clear that these results may apply 
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Figure 3: Stiff Pendulum in Polar Coordinates 

Figure 4: Eigenvalues of Stiff Pendulum in Polar Coordinates, epsilon = 10e-1.5 

directly to all the types of oscillatory components in MBS. As indicated in [17], the 
representation of stiff or oscillatory components in an appropriate coordinate system 
of MBS is not always possible, i.e., the constraints associated with the stiff or oscil- 
latory potential force can be difficult to obtain in general. Nevertheless, for (1), an 
approximation of the dynamics of such local coordinates can be obtained for the os- 
cillatory components in the form of (4). We are also concerned with the convergence 
of Newton's method for the numerical solution with large stepsize of (1), which may 
be an obstacle in obtaining efficient numerical solution of an oscillatory MBS in either 
of the above-mentioned approaches. 

Bushing force 

We have been studying more general MBS of nonlinear oscillatory components such as 
a bushing force, which is often used in modeling vehicle suspension systems. Different 
from the linear spring, this element is usually an anisotropic force, i.e., it has different 
spring coefficients along the principle axes of the bushing local coordinate frame. The 
bushing force between body-i and body-j may be defined using the relative displacement 
d, , its time derivative d\j. and the relative angle 0,; and its time derivative 0,-j of two 
body-fixed local coordinate frames at the bushing location on two bodies. Using the 
vectors s[ and s' representing the bushing location in the body-ts and body-j's centroid 



dij = Xi 

Vi 

Xj 

Vi J 

local coordinate systems, respectively, we have 

+ Ais'i - Ajs'j 

where the orientation transformation matrices A{ and Aj are 

Ai = A(9i) = 

(7) 

cos Oi   — sin Bi 
sin B{    cos Bi 

Aj = m) = 
cos Bj   — sin Bj 
sin Bj    cos Bj 

and [x,, y,, 0,-] and [x;-, yjy Bj] are Cartesian coordinates at body-fixed frames. The 
bushing force fb can then be written as 

h ft 
•y 
b [ft = Ai 

kx    0 
0    ky Afdij + At 0 

0 
cy Ajdn (8) 

(9) 
and the applied torque is 

Tb = k°6ij + ceUij 

where ^ = f§i, A:1, it», and it0 are the spring coefficients associated with the x, y, 
and 0 coordinates, and cx, cy, and ce are the corresponding damping coefficients. 

A simple example may be obtained from this model using unit mass-inertia and 
gravity, grounding the first body, and setting the bushing location on the second body 
to s' = [-5. 0]. A bushing element with no damping attached at the global position of 

[5, 0] yields 

,*,1 cosB. 
0   =   x-k*{--x + —) 

sinB. 
0   =   y + F(y-—) + l 

•• ' ,(,„     sinö.,.1 cosö.     cosö sinB 

(10a) 

(10b) 

(10c) 

It is easy to see from (10) that the local eigenstructure of the system may change 
rapidly, depending on the size of the stiffness coefficients. 

Using the initial values of(x,y,0) = (1.1,0.1,0.0) with (F,fc»,fce) = (104,104,103), 
the solution of (10) exhibits high frequency oscillation for all coordinates, as shown in 
Fig. 5. Solving the eigenvalue problem of (10) at each time step yields three pairs as 
illustrated in Fig. 6. 

Many methods for efficient solution of oscillatory dynamic systems are predicated 
on a nearly linear form of the equation. For example, the method of averaging [4] 
requires the linear part of the oscillation equations of motion to be dominant, and the 
mode-acceleration method for structural dynamics, which eliminates higher modes 
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Figure 5: Bushing Problem in Cartesian Coordinates 

Figure 6: Eigenvalues of Bushing Problem 

in the computation of the mode-displacement solution [29], is based on the time- 
invariant eigenvalues of the structural dynamic equations. Our aim is to treat the 
class of general nonlinear stiff and oscillatory forces represented in the MBS of (1). 
One approach is based on the study of a class of MBS DAE solvers [27] and the energy 
dissipative method, which may damp out the oscillation where the amplitude is small. 
The other approach is to approximate the system by a nearly linear system, whose 
solution approximates the solution to the original system. 

The main technical problem in either approach arises from the fact that for these 
nonlinear oscillating problems, the eigenstructure of the local Jacobian varies rapidly, 
on the scale of the high-frequency oscillation, in a neighborhood of the smooth solution. 
We will used the fact that the eigenstructure varies slowly along the smooth solution 
to construct efficient numerical methods and accurate approximate solutions. 

2    Damping the oscillation 

Given the possibility of a rapidly changing local eigenvalue structure, perhaps the 
simplest strategy is to consider damping the oscillation whenever it is not important via 
highly stable implicit numerical methods. Since the amount of damping is controlled 
by the time-step, and automatic stepsize selection increases the time-step whenever the 



solution is slowly-varving (i.e. if the amplitude of the oscillation is small in comparison 
with the local error tolerances), the stepsize is increased when the oscillation is no 

longer important. 

In recent work [27] we have considered the solution of mechanical systems with 
high frequency vibrations via this type of technique. In experiments with the bushing 
problem (10) solved directly by low-order BDF methods, we found that the methods 
experienced severe problems with Newton convergence. To overcome these problems, 
we proposed a coordinate-split (CS) formulation of the equations of motion, and a 
Newton-tvpe iteration for solving the coordinate-split equations at each time step. 
The coordinate-split formulation eliminates problems due to obtaining an accurate 
predictor for the Lagrange multiplier variables because these variables are no longer 
present in the computation. We found that the coordinate-split formulation worked 
well for several test problems involving mechanical systems with high frequency os- 
cillations. However, for problems with very high-frequency oscillations, there are still 

difficulties in Newton convergence with this method. 

The Jacobian matrix for solving the nonlinear equations of the coordinate-split 
formulation at each time step involves several terms which are complicated to com- 
pute and which are small at the solution of the nonlinear system. These are terms of 
second-order which correspond to the derivative of the projection operator onto the 
constraints Awav from the smooth solution, these terms are highly oscillatory. By 
neglecting these terms, we found that the resulting Newton-type method converged 
much faster for oscillating test problems like the bushing problem. We called the re- 
sulting method the modified coordinate-split, or CM method. In [28], convergence of 
the CM iteration is analvzed, and the improved convergence for oscillatory multibody 
svstems is explained. Intuitively, by neglecting these terms the CM-iteration approx- 
imates the Jacobian along the smooth solution, thus yielding more reliable Newton 

directions. 

The modified coordinate-split (CM) method performed extremely well in numer- 
ical experiments described in [27]. The constraints g(p) = [gu-,9s] of a two-body 

pendulum may be written as 

(Ha) 
(lib) 

BX (11C) 

(*i - X2? + (yi - V2? -1 (lld) 

fc (lle) 

9\   =   zi 

52   =   JA 

93 

9A 

55    =    W2 

where x, and yt-, i = 1,2 are Cartesian coordinates of the center of mass of body i, 
and 6, is "the orientation coordinate of the body centroid reference coordinate system, 
and the length of the pendulum is 1. Applying the bushing force (8) with [kx,k",k ] 
= [1000 1000 1000] and {c*,cy, cg] = [10,10,10] to the pendulum, small oscillations of 

8 



the numerical solution appear. Using the initial values , [0-0 0,9.9989e-l,1.4852e.^0] 
and v = [0 0 0 -6 75e-5,-4.5444e-3], numerical results from the BDF code DAbbL [21] 
are contained in Table 1, in which error test failures (etf - s) and convergence test 
failures (ctf - s) are listed. We denoted by CS the coordinate-splitting formulation. 
LG the stabilized index-2 formulation proposed by Gear [10], CM the coordinate- 
split form using a modified iteration matrix with the second-order derivative terms 
omitted, and LM the modified LG using the new predictor of the multipliers by the 
CS method. Using simplified Newton iterations and the corresponding modified local 
error estimate, CS. CM. LG and LM obtain consistent results. 

Method TOL step /-* 7-5 etf - s ctf - s 1 

CS 10"J 62 156 48 0 13 

CM IO'3 62 156 48 0 13 

LM io-3 62 154 48 0 13 

LG IO'3 59 141 46 0 12 

CS IO"4 77 193 65 1 16 

CM 10~4 77 193 65 1 16 

LG IO"4 61 136 27 1 0 

LM IO-4 77 193 65 1 16 

CS IO"5 87 215 54 0 13 

CM 10"° 87 215 54 0 13 

LG 10"° 108 259 77 1 21 

LM 10"° 87 215 54 0 13 

CS 10"6 138 343 97 1 25 
CM IO"6 138 343 97 1 25 

LG IO"6 131 308 65 0 16 

LM IO"6 138 343 97 1 25 

Table 1: Simple Pendulum with a Bushing Force. Spring Constant = 103 

To see the effect of more severe oscillation, we increased the spring constant of 
the bushing to IO5. Time steps of these methods selected by DASSL are shown in 
Figure 7. Clearlv, CM took much larger steps than the other methods. Moreover, if 
the spring constant is increased to IO6, we found severe convergence problems for LG 
CS and LM\ the results are contained in Table 2. Further details on the numerical 

experiments are given in [27]. 

3    Smooth Linearization 

Often in multibody systems the components exhibiting high frequency oscillation result 
from the potential forces induced by material deformations. In flexible multibody 
dynamic svstems, for example, there are usually nonlinear transformations applying 



Method TOL time step f-s J-s etf - s ctf - s 
10"4 0-0.1 2252 4901 3361 1 1120 

CMsn 10"4 0-0.1 20 40 7 0 0 
LGsn 10"4 0-0.1 5267 10536 7899 0 2633 
LM3n 10"4 0-0.1 2251 4900 3360 1 1120 

Table 2: Results of Bushing Problem, Spring Constant = 106, Damping = 10 

Spring • 10«5 Dvnpng » to, TOL » too 

T      !\ ' /'     /!   / ! /   • 
n 

3     öüii    öl     öii     ö!i     öS     öJ     ö!5s     ö*     ö!«     ÖT5 

— ins Figure 7: Time Steps Used in Solving the Bushing Problem, Spring Constant = 10 
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to the internal and inertia forces of the flexible structure to obtain equations of motion 
in the generalized coordinate space [29]. The resulting system of equations contains 
nonlinear high frequency oscillatory forces. 

One approach to solving the high frequency oscillation problem is to carry out 
modal analysis and then eliminate the higher modes, since lower modes may preserve 
the slowly varying part of the solution [8,13]. For example, the extreme high modes of a 
structure are often rejected in modeling flexible effects of mechanisms, since the details 
of the oscillating solution are not so important as the long-term solution behavior. A 
similar approach has been developed in recent work on molecular dynamics simulation 
[31]. However, due to nonlinear oscillatory forces in the multibody formulation, the 
modal analysis needs to be carried out at each time step to resolve the rapidly varying 
local eigenstructure of the system, resulting in very costly computations. 

Another approach is to resolve the oscillation efficiently via look-up tables. This 
idea is frequently used in a real-time simulation environment. One such example is the 
modeling of contact compliance in rigid body simulation, where the localized oscillation 
may be of interest. Applying linear constitutive laws to modeling the contact com- 
pliance, e.g., the elastic half space theory, Boussinesq's influence functions and Hertz' 
contact model leads to linear spring forces between contact bodies [26, 14, 18]. The 
spring coefficients may be very large since the contact deformations are small compared 
to the gross motion of the contacting bodies. The advantage of using table-look-up 
is efficiency, however it is not clear how the variable stepsize and order numerical 
integration should interact with the tables to maintain efficiency and accuracy. 

In a numerical method such as multistep or Runge-Kutta, which are based on ap- 
proximating the solution locally, the stepsize must be chosen very small to resolve the 
high-frequency oscillation in the system. Moreover, due to the nonlinear transforma- 
tion that places oscillating components in the space of the generalized coordinates, 
e.g., in the form of (1), the numerical method may become ineffective since the eigen- 
structure may change rapidly as shown in the previous examples. Our goal of treating 
large-scale MBS with highly oscillatory components (1) is to develop numerical meth- 
ods that approximate the high frequency components properly. 

Modal analysis in structural dynamics is well-developed and implemented in pro- 
duction software [8, 19]. As shown in [7], combining structural dynamic subsystems 
with the DAE of MBS, high frequency nonlinear oscillating solutions may occur. Based 
on the solution of this class of nonlinear oscillating problems, we propose a new ap- 
proach which is based on linearizing the oscillating components around the smooth 
solution. 

Under the assumption that the oscillatory forces are of the form (3), we can choose 
the local coordinates q = [ft,..., <7n/]

r and the velocity v = § such that 

q-rj{q)   =   0 (12a) 

11 



v-B(q)Tv   =   0 (12b) 

at each force component. Note that the corresponding potential energy becomes 

V° = qTKq    ' (13) 

where ||Ä"|| is the dominant term of the highly oscillatory forces. The oscillations in 
the solution of q are coupled with those of the local coordinate q. Since the potential 
(13) is quadratic in q, the dynamic equations of q contain a (nearly) linear term that 
characterize the local oscillations due to the forces. 

To derive the equations of motion for q, we can eliminate A in (1) using the 

acceleration equations, 

e(«)j-^^ (14) 

obtained from twice differentiating (lb). Let M{q) be nonsingular and fs = B{q)Kq, 
solving for q from (la) and (14) yields 

q- = M-^i _ GT(GM-1GT)-1GM'1)(r + /') + M-1Gr(GM"1GT)-17.      (15) 

Differentiating (12b) with respect to time yields 

'l-B(q)Tq-qT^q = 0. (16) 

Substituting (15) into (16) we obtain 

q + Kq = f(q,lt) (17) 

in which we denote M~XK = K such that 

M-l=B{q)TMq)B(q) . (18) 

where A(g) = -M~\I - GT{GM-lGT)-lGM~l). According to the assumption (2), 
the right-hand side of (17) 

f = 1
B-BTABfn (19) 

where ,RT 

7BsGr(GAf-1GT)-17 + «T^-?, 

satisfies 

ll|ll « ll^ll- (2°) 

Thus, the solution of (17) has an asymptotic expansion with a dominant first term 
for a fixed q [4], i.e., a smooth solution of q can be expressed as 

<? = iv?, (21) 
j=o 

12 



where q: are smooth functions and ||e#|| «1. 

As shown in the stiff pendulum and the bushing examples, the nonlinear oscillatory 
force in (1) can be written, using proper local coordinates, in a nearly linear form. In 
the stiff pendulum, the proper choice of the local coordinate is the polar system. In 
the bushing example, this is achieved using the local displacement and relative angle 
at the bushing reference frame. Using this approach, the general form of flexible MBS 
can be written as 

f(y',y,z,t)   =   0 (22a) 

z' + H(y)z + h(y,z,t)   =   0 (22b) 

where y = [q,q] and z = [q,q\, and (22a) is often a system of differential-algebraic 
equations. Note that (22) usually contains a large number of equations, i.e., there are 
many of the free vibration modes. 

Our objective is to develop a method that takes large time-steps relative to the 
high-frequency oscillations. Several methods are currently under investigation. One 
approach is to solve a linearization of (22) directly by damped numerical methods. The 
linearization is carried out around a smooth solution y such that y = [q, q] is near the 
equilibrium of the highly oscillatory forces, i.e., 77(g) ss 0 and BT(q)q « 0. To obtain 
the numerical solution, we apply the above-mentioned CM method to (22a), and the 
Lanczos types or Arnoldi algorithm to the resulting linear system. These methods 
for nonsymmetric linear systems with proper modifications, for example in [12], are 
used to acquire a stable reduced order model for the linearized form of (22). Another 
possibility is to apply modal analysis to (22b) along the smooth solutions, yielding a 
reduced system of (22b) that is described by the Ritz vectors or the Lanczos vectors 
[25. 16, 30, 24, 19]. The key idea is to obtain a smooth linearization by choosing the 
proper local coordinates and linearizing along the smooth solution. 
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