
NPS-CS-96-009 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

CAPS AND REAL-TIME SYSTEMS 

by 

George S. Whitbeck 
Man-Tak Shing 

September 1996 

Approvedior public release; distribution is unlimited. 

Prepared for: Naval Postgraduate School 
Monterey, CA 93943-5000 

"T  

CVI 

WTC QtrALHT INSPECTED 1 



NAVAL POSTGRADUATE SCHOOL 

Monterey, California 

REAR ADMIRAL M. J. EVANS 
Superintendent 

This report was prepared for the Naval Postgraduate School. 

Reproduction of all or part of this report is authorized. 

This report was prepared by: 

RICHARD S. ELSTER 
Provost 

George S. Whitbeck 
Major, USMC 

i-Tak Shinj 
»^Associate Professor 
of Computer Science 

Reviewed by: 

Ted Lewis 
Chairman 

Released by: 

Dave Netzer 
Dean of Research 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and mamtaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202^1302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 
September 1996 

3. REPORT TYPE AND DATES COVERED 
Technical Report 

4. TITLE AND SUBTTTLE 
CAPS AND REAL-TIME SYSTEMS 

6.  AUTHOR(S) 
Whitbeck, George S. and Shing, Man-Tak 

5. FUNDING NUMBERS 
n/a 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey CA 93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NPSCS-96-009 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 
Professor Luqi and the CAPS group 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 

12a. DISTPJBUnON/AVAILABILrrY STATEMENT Approved for public release; 
distribution unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words) 

We recognize the need for computer science students to understand real-time systems. Many universities are only 
now introducing courses in this area. Frequently, the first step in mastering a concept is learning the jargon ofthat 
particular community of professionals; the real-time community is no exception. 

The Naval Postgraduate School's computer-aided prototyping system (CAPS) is an integrated set of software tools 
made for the rapid construction of real-time software prototypes. Students who learn this system must first have a basic 
understanding of the real-time world. This paper introduces students to that world and then ties it in with CAPS. 

14. SUBJECT TERMS 
CAPS, computer-aided prototyping system, real-time systems, teaching, students 

15. NUMBER OF PAGES 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CIASSfflCATIONOF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 



CAPS AND REAL-TIME SYSTEMS 

Major George S. Whitbeck, USMC 
whitbeck@cs.nps.navy.mil 

and 

Dr. Man-talc Shing 
Code CS/SH 

Naval Postgraduate School 
Monterey, CA 93943 

mantak@cs.nps.navy.mil 

ABSTRACT 

We recognize the need for computer science students to understand real-time 

systems. Many universities are only now introducing courses in this area. Frequently, the 

first step in mastering a concept is learning the jargon ofthat particular community of 

professionals; the real-time community is no exception. 

The Naval Postgraduate School's computer-aided prototyping system (CAPS) is an 

integrated set of software tools made for the rapid construction of real-time software 

prototypes. Students who learn this system must first have a basic understanding of the 

real-time world. This paper introduces students to that world and then ties it in with CAPS. 



CAPS AND REAL-TIME SYSTEMS 

A. INTRODUCTION 

This paper is designed as a primer to the Computer-Aided Prototyping System 

(CAPS) student who is ready to dive into the real-time aspects of a CAPS prototype. We 

start with a discussion of classical real-time systems and then move to how the CAPS 

environment creates a real-time prototype. No previous knowledge of real-time systems is 

needed but we do assume the reader has a some exposure to CAPS. 

B. REAL-TIME SYSTEMS DEFINED 

There are as many definitions of real-time systems as there are authors of real-time 

articles.   Stankovic's definition is as close to the norm as we've seen: 

"In real-time computing the correctness of the system depends not only on 
the logical result of the computation but also on the time at which the 
results are produced" (St88). 

If these timing constraints are not met, then you have a failure. Hence, it is 

essential that the timing constraints of the system are guaranteed. Guaranteeing timing 

behavior requires that the system be predictable and reliable. Gillies (Gi95) gives an 

example of a robot that has to pick up something from a conveyor belt. The piece is 

moving, and the robot has a small window in which to pick up the object. If the robot is 

late, the piece won't be there anymore, and thus the job will have been done incorrectly, 

even though the robot went to the right place. In a military system, imagine a fighter jet 

with an enemy aircraft crossing the pilot's cross hairs for a fleeting moment. The system 

designers specified a tolerance for how fast the gun should fire once pressure has been 

applied to the trigger. If the plane ran on a distributed operating system that was too busy 

sampling airspeed to handle the trigger squeeze in a timely manner, then the fleeting target 



would be gone and we'd declare system failure even though the gun fired just a few 

seconds late. Needless to say, testing these reactions to input and measuring how well the 

system responds is a critical part of the testing phase. 

Now you may be thinking that all computer systems must respond in some 

reasonable amount of time and that even if the system doesn't meet a time constraint that 

the consequences won't always be disastrous. You're right and to handle those not so time 

critical missions, real-time systems are further categorized as follows: 

A system where "performance is degraded but not destroyed by failure to 
meet a response time constraint is referred to as a soft real-time system." 
Systems where "failure to meet a response time constraint leads to system 

failure is a hard real-time system" (La93). 

Although we'll stick with the categories above, the definitions of "hard" and "soft" 

are not without controversy.   Some computing professionals differentiate "hard" and 

"soft" by the degree of time constraints. For instance, a real-time process attempting to 

recognize images may have only a few hundred microseconds to resolve each image, but a 

process that attempts to position a servo-motor may have tens of milliseconds to process 

its data (Gi95). 

Lest you think that hard real-time systems are "perfect" or "bug free" systems, 

understand that that's not the meaning albeit a goal. Although real-time systems are said 

to run precisely within bounds, almost any nontrivial software program that takes external 

inputs can be overwhelmed. Therefore, the goal is that the software will operate without 

failure for a specified period of time.  Laplante (La93) gives a example where NASA has 

suggested that computers used in civilian fly-by-wire aircraft have a failure probability of 

no more than 10"9 per hour. 

David Ripps explains that "a fundamental property of real-time systems is that 

some or all of its input arrives from the outside world asynchronously with respect to any 



work that the program is already doing" (Ri89). Our "Murphy's Law" version of this is 

that interrupts will hit the system randomly or at the most inopportune time, and the 

system must handle them in stride. The program must be able to block its current activity 

and then execute some other task such as capturing a fleeting signal. When done, it must 

return gracefully to what it was previously doing . Executing several tasks in what 

appears to be in parallel is called "multitasking" and is a key characteristic of all real-time 

systems. We say "appears to be in parallel" because parallelism depends on the number of 

CPUs working and to which processes they've been assigned. 

C    COMMON MISCONCEPTIONS 

Now that we've established what a real-time system is, let's look at 

misconceptions. Even among computer professionals, it's common to have 

misconceptions about real-time systems. For instance, some have speculated that advances 

in supercomputer hardware will take care of real-time requirements. According to (St88), 

this is the same flawed argument that has been around for years. The history of computing 

shows that as machines get faster and memory gets bigger, software fills the void and, in 

fact, gets hungrier eventually requiring faster CPUs and more memory. 

Others have said that these problems are no different from other aspects of 

computer science. However, problems in analyzing real-time systems are unique.  For 

example, typical performance engineering in software has been concerned mostly with 

analyzing the average values of performance parameters. An example here is when a data 

base marketing team tells the design team that customers lose their patience if they have to 

wait more that a three seconds for a "save" function. The designers and testers will put 

the application through several strenuous tests that ensures that on the average a save 

function takes under 3 seconds. Whereas, according to (St88), an important consideration 

in real-time system design is whether or not some stringent deadlines can be met in all 

cases, not just in the average case . 



One will occasionally see references to "real-time" systems when what is meant is 

"on-line", or "an interactive system with better response time than we used to have." 

Often, this is just marketing hype. For instance, although some have queried whether 

running "rn" (read news) is real-time, it is not, as it is interacting with a human who can 

tolerate hundreds of milliseconds of delays without a problem (Gi95). The bottom line is 

that information retrieval systems are usually not real-time. 

One may also see references to real-time systems when what is meant is just fast. 

Remember, that "real-time" is not necessarily synonymous with "fast". It isn't the latency 

of the response per se that is at issue (it could be on the order of seconds), but "the fact 

that a bounded latency sufficient to solve the problem at hand is guaranteed by the system. 

In particular, it's frequently so that algorithms that guarantee bounded latency responses 

are less efficient," and thus slower, than algorithms that don't (Gi95). 

D.    PARTS OF A REAL-TIME SYSTEM 

To take apart a real-time system, the most obvious dissection is into hardware and 

software. Although real-time hardware is beyond the scope of this discussion, understand 

that many military real-time systems designed from the bottom up use special hardware to 

assist in making them real-time. Additionally, add on hardware can be used to test timing 

constraints as discussed later. 

Until now, when we've said "real-time system," we've included all the software 

involved. At this point, let's make it clear that real-time software generally comes in two 

flavors. The first is the complete real-time software written from scratch where there is 

little to no distinction between the application and the operating system. A control system 

on a one-of-a-kind satellite is one example. These, of course, are expensive and generally 

don't follow the principle of software reuse. The other is one where a real-time 

application is written for an established operating system; in practice, that operating 

system would be a real-time operating system (RTOS).   At this point, let's further 



examine a RTOS. 

The economics and reliability of a reusable operating system offer a tremendous 

incentive into the research and development of robust and flexible RTOSs. Application 

designers can then choose one of these off-the-shelf RTOSs upon which they can add their 

real-time application. Then, the RTOS "is tuned and sculpted by the application, much as 

an athlete is trained for a specific event" (St92). The idea of an application "tuning" an 

operating system is unusual unless one is discussing real-time applications running on a 

RTOS. In fact, most operating systems protect themselves from the users but the RTOS 

specifically allows itself to be user controlled to a degree. Kevin Morgan, writing in 

(Mo92), says that this idea of user control, along with the following four other general 

attribute areas, are what distinguish a RTOS from a normal operating system. His second 

characteristic, determinism, is "the tendency of a system to perform an operation in a 

well-defined, or "determined" time period." An operating system that is fully deterministic 

will perform every operation in the same amount of time regardless of what else is going 

on in the system. No operating system is fully deterministic but RTOSs are much more 

deterministic than conventional ones. Responsiveness is the third area. This is the ability 

of an operating system to respond quickly to an event such as an interrupt. A fighter pilot 

has only moments to react to the warning of an incoming missile. If the sensor that picked 

up the missile can't interrupt the operating system in a timely manner (as set forth in the 

system specifications), then the pilot will have less time to react and the results could be 

disastrous. A fourth area mentioned by Morgan is reliability or what we call crash 

resistance. The standard here must be far stronger than for a normal operating system, 

and ideally, a RTOS is able to preallocate required resources. The final distinguishing 

characteristic is fail-soft operation. When UNIX detects a corruption of data in the 

kernel, it performs a panic operations and shuts down fast. If a RTOS sees a crash coming 

(and it should), it must gracefully degrade - sort of a soft landing - and perform a 

predictable behavior like sounding an alarm, starting up a backup system, or better yet, 

just notify the specific process of the problem and then operate in a degraded mode 

(Mo92). 



A RTOS that appears to meet these criteria is "Real-Time UNIX." There are 

several versions of it with specific enhancements for real-time operations, most notably, 

kernel preemption. Philip Laplante explains the following: 

"In standard UNIX, a process which makes system calls is not preemptable. 

Even if the calling process is of low priority, it continues execution until it 

is stopped or completed. In real-time UNIX, preemption points have been 

built into the kernel so that system calls can be preempted without running 

to completion.   This radically reduces response times (La93). 

Moving from a RTOS to a distributed RTOS is a significant step forward. 

Stankovic says that much "research is currently being done on developing 

time-constrained communication protocols to serve as a platform for supporting 

user-level end-to-end timing requirements" (St92). He and others have active research 

projects such as the Mars approach and the Spring kernel. Concerning the structure of the 

network needed, Zhoa and colleagues writing in (Rt94) suggest that the fiber distributed 

data interface (FDDI) is "a fine candidate for mission critical real-time applications, due 

not only to its high bandwidth, but also to its property of bounded token rotation time and 

its dual ring architecture." The bottom line today, however, is that since a virtual 

uniprocessor is still in research, it seems accurate to say that a true distributed RTOS is a 

ways off. 

What the reader should take away concerning a distributed real-time system is that 

there is a change in who's driving the requirements train. In a single computer real-time 

system, there will usually be studies from subject matter experts that tell the designers 

what timing constraints are on each operation. For instance, there may be a study that 

says that if a fighter pilot hopes to hit a crossing enemy aircraft with his 20mm guns, then 

the firing pin on the gun must strike the primer no later than 200 ms after the pilot pulls 



the trigger. This is fairly straightforward and can easily be put into the requirements 

document. 

However, if that same airplane is run on a distributed operating system, like a 

token ring, then the designers must examine that system and ensure the both the trigger's 

and gun's computers will get the token quickly enough to meet the 200ms deadline. This 

can, of course, be engineered into the problem but the complexity of the systems is 

obviously increased. 

E.    HOW CAPS BUILDS A REAL-TIME SYSTEM 

1.    The Real-time Ship Captain 

To build our knowledge of how CAPS schedules time critical tasks, we'll create an 

imaginary ship's Combat Information Center (CIC). The Captain sits in the middle of this 

room and has sailors at four consoles to his front: damage control, air, surface, and 

subsurface. He's very concerned about these operations so he rotates his time through 

each of them once every 12 minutes. However, he also has people who need to 

occasionally give him messages, so those people can press a doorbell button from outside 

the CIC that turns on a red light on the captain's armrest. From the moment the light 

comes on, the captain has guaranteed that he will let them in and read the message within 

8 minutes. His plan is to check the light at least every 6 minutes and then dedicate no 

more than 2 minutes to reading the message. Given the above requirements, he's 

developed the following routine: 

♦ get a damage control report, 
♦ then an air report, 
♦ then he checks the red light, and, if it is on, he gets and reads a message, 
♦ then a surface report, 
♦ then a subsurface report, and finally, 
♦ he again checks the red light and reads a waiting message, if one exists. 



Figure 1 

Once complete, he repeats the cycle. The length of this cycle is the schedule 

length. (This scenario uses CAPS terms {italicized) as found in (Lu92) and (Lu96).) 

As shown in figure 1, when the captain gets a console report from a sailor, he 

wants to finish within 2 minutes. That amount of time is the finish within for each of the 

console operations. However, for our requirements he doesn't want the sailor to talk for 

the entire 2 minutes; the captain needs time to check the console himself and to ask 

questions. Therefore, he gives each sailor no more than 90 seconds for a formal report 

during the 2 minutes. The 90 seconds is the sailor's maximum execution time (MET). 

Note that the sailor may not be ready to speak the moment he's called on. The 

sailor will satisfy the captain's schedule as long as he begins the 90 second maximum 

length report no later than 30 seconds after the sailor is called on. For simplicity, these 

numbers are the same for each operator in our scenario. Additionally, we don't address 

what the captain does with his spare time if, for instance, the report is shorter than 90 

seconds. But suffice it to say, he uses free time to do non-time critical tasks. 

His attention to each of the console operators is referred to as aperiodic 

operation. The name comes from the fact that they are triggered by a time event. 

However, when we shift the discussion from the console operators and begin to talk about 

the captain's armrest light, then the names change. In this new paradigm, the tasks are 

called sporadic operations and they are operations triggered by an external event (an 



event external to the current Ada procedure). The chief concern here is ensuring the 

captain gets to the interruption fast enough to read the report in the time he's allotted. 

The worst case condition occurs if the captain checks the light and it's off; it will then be 

just under 6 minutes before he checks it again and then no more than 2 minutes to read the 

message. We calculate this as follows: 

1. Check the light —near instantaneous event — and suppose it's off. 
2. But, just after he turns his head away from the light, it comes on. 
3. Now he does some thinking for the remainder of the 2 minutes allotted to handling 

the interruption. 
4. He then spend 4 minutes getting briefed on two of the consoles. 
5. Next, he checks the light again and this time it's on. 
6. Finally, he lets the messenger in and reads the message. 

This (almost) 8 minutes is the maximum response time (MRT) and is the upper 

limit (worst case) on the time between the light coming on and the captain completing his 

reading of the message. The MRT is like of a window of action to notice the light and 

read the message. The captain's reading of the message (no more than 2 minutes in our 

scenario) is his MET and is the action portion of the window. A new term, the minimum 

calling period (MCP), is the shortest time allowed between two successive pressings of 

the doorbell. If unspecified, the MCP equals MRT-MET (i.e., 6 = 8 - 2). (Lu96) We 

will explain its usage later. 

2.    CAPS Tasks 

Atomic operators in a CAPS data flow diagram become Ada procedures in the 

CAPS implementation. Prioritizing these operations into time critical (high priority) and 

non-time critical (low priority) is fundamental to a real-time prototype specification. So 

how does one know from looking at a CAPS data flow diagram if an operator is time 

critical or non-time critical? Figure 2 below shows a segment of the augmented data flow 

diagram that models the CIC scenario. Note that operator "READDAMAGE REPORT" 

has a MET of 90 seconds assigned to it. The MET is the longest time between the instant 

10 



the operator begins execution and instant it completes execution. (Lu92) The presence of 

this MET means that the operator will be treated as a time critical operation. The absence 

of a MET, such as in operator "MAKENOTES" below, means that CAPS will treat the 

operator as a non-time critical operation. (Lu96) 

90 SEC 

Figure 2 

3.    Time Constraint Options 

Notice in the Venn diagram below, Figure 3, that the domain of tasks are broken 

down into the two categories: Time Critical and Non-Time Critical. Expanding upon that 

further, notice also that there are asterisks on three of the labels. These are the only three 

time constraint options the CAPS user has for operators: Periodic, Sporadic, and 

Non-time Critical. 

11 



Domain of Tasks 

Time Critical Tasks 

^Periodic Tasks 

*Non-Time 
Critical Tasks 

"^ 

Figure 3 

a.  Periodic and Sporadic Tasks 

A time critical task (periodic or sporadic) is one that has a timing constraint 

associated with it. In CAPS, an operator having a MET is considered time critical and will 

be scheduled in the static schedule loop of the "<prototype>. a" rile. These tasks are 

considered HIGH priority. 

Now let's address triggering. There are only two ways to trigger time critical 

tasks. The first is using a time event and these tasks are called periodic. An example is an 

airborne phased array radar like on the JSTARS aircraft that scans the battlefield once 

every two seconds. (Two seconds is just an example; the actual number is classified.) 

The second way to trigger a task is with a physical event and these tasks are called 

aperiodic. An example is using a mouse to press a Quit button on a GUI. A subset of 

aperiodic tasks are sporadic tasks. The distinction is subtle and will be discussed shortly. 

12 



Periodic tasks are fairly intuitive. The requirements analysis will normally drive 

the size of the period. In a hard real-time system, failure to meet this timing constraint 

will, by definition, lead to system failure. The CAPS scheduler starts with periodic tasks 

when it builds the prototype's static schedule. 

Aperiodic tasks are essentially random tasks triggered by some external event 

such as pressing a mouse button or detecting a hardware interrupt. (Co95) The program 

just looks for that event every so often, say every half second, and then executes the 

associated task in the required MET if such an event is found. This rate is the "trigger 

period" of the aperiodic event. Aperiodic task are not run at a set period but they are 

looked for at a set period. If found, they are then executed. However, it should also be 

clear that where a normal computer may just ignore an event if it happened over and over 

again at a rate faster than the computer could keep up with, a hard real-time system should 

be built to handle a defined worst case situation. So how does CAPS schedule this worst 

case situation of repetitive inputs without overflow? It does it with a special kind of 

aperiodic task called a sporadic task. Sporadic tasks are aperiodic tasks in which a 

minimum calling period between any two aperiodic events is required. (Co95)  In CAPS, 

sporadic tasks are triggered by the arrival of data on data streams. Put another way, the 

only method a hard real-time system has of guaranteeing no overflow for aperiodic events 

is by restricting the rate in which the events are generated. (The minimum calling period is 

usually derived from the application domain and it indicates the maximum load the 

real-time system has to handle.) In our ship's captain example, the captain will impose a 

MCP of at least 6 minutes in order to guarantee no external event overflow based on his 

schedule in figure 1. So in other words, the system could break down if he gets two 

external messages within 6 minutes of each other. However, that shouldn't happen if he 

evaluated his requirements properly. 

b.   Non-time Critical Tasks 

A non-time critical task is one that does not have a timing constraint associated 

13 



with it. In CAPS, an operator without a MET is considered non-time critical and will be 

scheduled in the dynamic schedule loop of the "<prototype>.a" file. These tasks are 

considered LOW priority and are run in the gaps in the static schedule. In essence, the 

static schedule loop turns over control to the dynamic schedule loop when there are no 

high priority tasks to run. The dynamic schedule loop now runs any and all non-time 

critical tasks if and when their triggering conditions are satisfied. The static schedule loop 

will preempt the dynamic schedule loop whenever a high priority task is ready to run. 

F.    HOW CAPS PROTOTYPES RUN IN REAL-TIME 

1.    CAPS Prototypes in the Real-time Spectrum 

It's important to note the spectrum of real-time systems. From most commercially 

specialized to least, we propose this as a simple ordering: 

1. embedded systems — real-time code embedded onto chip 
2. The real-time application and operating system functionality coded together as a 

system running on a workstation 
3. real-time program running on top of a RTOS on a workstation 
4. real-time prototype running on top of a RTOS on a workstation 
5. real-time prototype running on top of UNIX on a workstation 

The differences between numbers (1) through (3) should be understandable after 

having read paragraphs A through F. However, the distinction between the remaining 

systems needs explanation. The separation between a real-time program (3) and a 

real-time prototype (4) is meaningful only for "throw away" prototypes. In such cases, the 

prototype constructed in (4) is solely for the purpose of firming up requirements. The 

real-time system has to go through another phase of software architectural design and 

implementation to evolve to the production quality program of (3). 

As an academic research project, CAPS produces prototypes at (5). This allows 

tremendous portability to networks around the country for teaching purposes. Computer 

14 



Science graduate students in most academic institutions work on and are familiar with 

UNIX workstations. They are pleased since they don't need to learn the intricacies on a 

new operating system; they can focus their attention on learning CAPS. 

2„     Moving Up from (5) to (4) 

Another issue is "What makes a CAPS prototype run in real-time if it is run on 

UNIX instead of a RTOS?" The answer is the Ada Runtime Executive. It was designed 

with real-time in mind and controls the static and dynamic schedules. Although we've 

made a case for having CAPS prototypes run on normal UNIX, there is at least one strong 

incentive for moving up to running on a RTOS. And that is to accurately test timing 

constraints. While the CAPS prototype tries to accurately measure timing and report 

violations, the approach in our view is less than optimal if run on a normal UNIX 

operating system As just mentioned, the Ada runtime executive controls all the real-time 

tasks in a CAPS prototype, and it also measures time usage and reports timing violations. 

But, if UNIX blocks the prototype to let some other process run, the Ada runtime 

executive never knows that it was put to sleep. When it compares start and stop time 

stamps for an operator (Ada procedure), it assumes there was no unforeseen break and the 

prototype thus produces a timing error message. Hence, on a day when the workstation is 

under a heavy load, the prototype may have several timing violations, but on a light day, it 

may run without any. This is important only if the designer is looking to CAPS to validate 

timing constraints. When running a prototype, a lack of timing errors implies that the 

constraints are valid. However, the presence of timing errors does not necessarily mean 

that the programmed timing constraints are in error. It could be that UNTX preempted the 

prototype as mentioned above. 

A simple solution would be to run the prototype on Real-time UNTX or some 

other RTOS as mentioned previously (i.e., move up our list from 5 to 4). This solution is 

simple in theory but not necessarily easy to implement. The first and most formidable 

challenge is to find a RTOS with a matching Ada compiler and ensuring that both are 

15 



compatible with your workstations. We recommend this as future thesis work for the 

CAPS group at the Naval Postgraduate School. 

G.    CONCLUSION 

Like software engineering in general, real-time system engineering is still in its 

infancy. Many universities are only now introducing it into their curriculum. Likewise, 

government and industry training departments are recognizing the need for professionals 

versed in real-time systems. As these schools and departments look for low cost and 

innovative ways to teach this challenging subject, they'll want a hands on tool to augment 

classroom lectures. Their students must be able to apply at their workstations what 

they've learned in the classroom if they hope to understand the real-time domain. CAPS is 

an excellent tool for both teaching and prototyping hard real-time systems. 

ACKNOWLEDGMENTS. 

This research was supported in part by the National Science Foundation under 

grant number CCR-9058543, the Army Research Office under grant number ARO 111-95, 

and by the Naval Postgraduate School via the Direct Funding Research Program. 

Additionally, we would like to thanks Dr. Luqi of the Naval Postgraduate School 

for her tremendous leadership in the field of real-time systems. 

16 



End notes 

(Co95) M. Cordeiro, Distributed Hard Real-time Scheduling for a Software Prototyping 
Environment, Ph.D. Dissertation, Naval Postgraduate School, March 1995. 

(Gi95) Gillies, D. FAQ page for the Real-Time Usenet group, 
http://wwwxis.oMo-state.edii/hypertext/faq/useneiyrealtime-computmg/faq/faq-doc-4.htnu 

(La93) Laplante, P. A. Real-Time Systems Design and Analysis. Piscataway, New 
Jersey: IEEE Press, 1993 

(Lu92), "Computer-Aided Prototyping for a Command-and-Control System Using 
CAPS", IEEE Software, Jan 92. 

(Lu96) Luqi, Class Notes for CS4920 ~ Rapid Prototyping, Naval Postgraduate School, 
April 1996. 

(Mo92) Morgan, K. D. The RTOS Difference. Byte, Aug. 92. 

(Rt94) Rtoss. Real-Time Operating Systems and Software. Los Alamitos, California: 
JEEE Computer Society Press, 1994. 

(St88) Stankovic, J. A. Misconceptions about Real-Time Computing. A Serious Problem 
for Next-Generation Systems. Computer, Oct. 88. 

(St92) Stankovic, J. A. Real-Time Computing. Byte, Aug 92. 

17 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 2 
8725 John J Kingman Road, Suite 0944 
Fort Belvoir, Virginia 22060 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Road 
Monterey, California 93943 

3. Director, Training and Education 1 
MCCDC, Code C46 
1019 Elliot Rd 
Quantico, Virginia 22134-5027 

4. Dr. Luqi, Code CS/Lq 1 
Computer Science Department 
Naval Postgraduate School 
Monterey, California 93943-5002 

5. Dr. Shing, Code CS/Sh 50 
Computer Science Department 
Naval Postgraduate School 
Monterey, California 93943-5002 

6. Currilicular Officer, Code 32 1 
Naval Postgraduate School 
Monterey, California 93943-5002 

7. Margaret Gates 1 
2266 Sequoia Drive 
Clearwater, Florida 34623 

8. Maj. George Whitbeck 2 
107 Coopers Ln 
Stafford, Virginia 22554 


