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High Dimensional Clustering Using Parallel 
Coordinates and the Grand Tour 

Edward J. Wegman, Qiang Luo 

Center for Computational Statistics 
George Mason University 
Fairfax, VA 22030 USA 

Abstract 
In this paper, wc present some graphical techniques for cluster 

analysis of high-dimensional data. Parallel coordinate plots and par- 
allel coordinate density plots arc graphical techniques which map 
multivariatc data into a two-dimensional display. The method has 
some elegant duality properties with ordinary Cartesian plots so that 
higher-dimensional mathematical structures can be analyzed. Our 
high interaction software allows for rapid editing of data to remove 
outliers and isolate clusters by brushing. Our brushing techniques al- 
low not only for hue adjustment, but also for saturation adjustment. 
Saturation adjustment allows for the handling of comparatively mas- 
sive data sets by using the a-channcl of the Silicon Graphics work- 
station to compensate for heavy ovcrplotting. 

The grand tour is a generalized rotation of coordinate axes in a 
high-dimensional space. Coupled with the full-dimensional plots al- 
lowed by the parallel coordinate display, these techniques allow the 
data analyst to explore data which is both high-dimensional and mas- 
sive in size. In this paper wc give a description of both techniques 
and illustrate their use to do inverse regression and clustering. Wc 
have used these techniques to analyze data on the order of 250,000 
observations in 8 dimensions. Because the analysis requires the use 
of color graphics, in the present paper wc illustrate the methods with 
a more modest data set of 3848 observations. Other illustrations arc 
available on our web page. 

1. Introduction 

Visualization of high-dimensional, multivariate data has enjoyed a consider- 
able development with the introduction of the grand tour by Asimov (1985) 
and Buja and Asimov (1985) and the parallel coordinate display by Inselberg 
(1985) and Wegman (1990). The former technique is an animation method- 
ology for viewing two-dimensional projections of general cf-dimensional data 
where the animation is determined by a space-filling curve through all possi- 
ble orientations of a two-dimensional coordinate system in d-space. Viewed 
as a function of time, the grand-tour animation reveals interesting projec- 
tions of the data, projections that reveal underlying structure. This in turn 
allows for the construction of models of data's underlying structure. 

The parallel coordinate display is in many senses a generalization of a two- 
dimensional Cartesian plot. The idea is to sacrifice orthogonal axes by draw- 
ing the axes parallel to each other in order to obtain a planar diagram in 



which each d-dimensional point has a unique representation. Because of ele- 
gant duality properties, parallel coordinate displays allow interpretations of 
statistical data in a manner quite analogous to two-dimensional Cartesian 
scatter plots. Wegman (1991) formulated a general d-dimensional form of 
the grand tour and suggested using the parallel coordinate plot as a visu- 
alization tool for the general rf-dimensional animation. We have found this 
combination of multivariate visualization tools to be extraordinarily effec- 
tive in the exploration of multivariate data. In Section 2, we briefly describe 
parallel coordinate displays including interpretation of parallel coordinate 
displays for detecting clusters. In Section 3, we describe the generalized 
d-dimensional grand tour and a partial sub-dimensional grand tour. In Sec- 
tion 4, we discuss brushing with hue and saturation including a discussion of 
perceptual considerations for visual presentation. Finally we close in Section 
5 with a sequence of illustrations of the use of these techniques to remove 
noise and isolate clusters in a five-dimensional data set. 

2. Parallel Coordinate and Parallel Coordinate Den- 
sity Plots 

The parallel coordinate plot is a geometric device for displaying points in 
high- dimensional spaces, in particular, for dimensions above three. As such, 
it is a graphical alternative to the conventional scatterplot. The parallel co- 
ordinate density plot is closely related and addresses the situation in which 
there would be heavy overplotting. In this circumstance, the parallel coor- 
dinate plot is replaced with its density and so is much more appropriate for 
very large, high-dimensional data sets. In place of the conventional scatter 
plot which tries to preserve orthogonality of the d-dimensional coordinate 
axes, draw the axes as parallel. A vector (xhx2,.. .,xd) is plotted by plot- 
ting 'xi on axis 1, x2 on axis 2 and so on through xd on axis d. The points 
plotted in this manner are joined by a broken line. The principal advantage 
of this plotting device is that each vector (xi,x2,.. .,xd) is represented in 
a planar diagram in which each vector component has essentially the same 
representation. 
The parallel coordinate representation enjoys some elegant duality properties 
with the usual Cartesian orthogonal coordinate representation. Consider a 
line C in the Cartesian coordinate plane given by C: y = mx+b and consider 
two points lying on that line, say (a,ma + b) and (c, mc + b). Superimpose a 
Cartesian coordinate axes t,«on the xy parallel axes so that the y parallel 
axis has the equation « = 1. The point (a, ma + b) in the xy Cartesian 
system maps into the line joining (a, 0) to (ma + b, 1) in the tu coordinate 
axes. Similarly, (c,mc + b) maps into the line joining (c,0) to (mc + b, 1). A 
straightforward computation shows that these two lines intersect at a point 
(in the tu plane) given by X : (6(1 - m)"\ (1 - m)"1). This point in the 
parallel coordinate plot depends only on m and b, the parameters of the 
original line in the Cartesian plot. Thus C is the dual of C and one has 
the interesting duality result that points in Cartesian coordinates map into 



lines in parallel coordinates while lines in Cartesian coordinates map into 
points in parallel coordinates. This duality is discussed in further detail in 
Wegman (1990). 

The point-line, line-point duality seen in the transformation from Cartesian 
to parallel coordinates extends to conic sections. The most significant of 
these dualities from a statistical point of view is that an ellipse in Cartesian 
coordinates maps into a hyperbola in parallel coordinates. A distribution 
which has ellipsoidal level sets would have hyperbolic level sets in the paral- 
lel coordinate presentation. It should be noted that the quadratic form does 
not describe a locus of points, but a locus of lines, a line conic. The notion 
of a line conic is, perhaps, a strange notion. By this is meant a locus of lines 
whose coordinates satisfy the equation for a conic. These may be more easily 
related to the usual notion of a conic when it is realized that the envelope 
of this line conic is a point conic. As mentioned there is a duality between 
points and lines and between conies and conies. It is worthwhile to point 
out two other nice dualities. Rotations in Cartesian coordinates become 
translations in parallel coordinates and vice versa. Perhaps more interest- 
ing from a statistical point of view is that points of inflection in Cartesian 
space become cusps in parallel coordinate space and vice versa. Thus the 
relatively hard-to-detect inflection point property of a function becomes the 
notably more easy to detect cusp in the parallel coordinate representation. 
Inselberg (1985) discusses these properties in detail. 

Since ellipses map into hyperbolas, one has an easy template for diagnosing 
uncorrelated data pairs. With a completely uncorrelated data set, one would 
expect the 2-dimensional scatter diagram to fill substantially a circumscrib- 
ing circle. The parallel coordinate plot would approximate a figure with a 
hyperbolic envelope. As the correlation approaches negative one, the hyper- 
bolic envelope would deepen so that in the limit one would have a pencil of 
lines, what is called by Wegman (1990) the cross-over effect. 

Most importantly for the present paper, it should be noted that clustering is 
easily diagnosed using the parallel coordinate representation. The individual 
parallel coordinate axes represent one-dimensional projections of the data. 
Thus, separation between or among sets of data on any one axis or between 
any pair of axes represents a view of the data which isolates clusters. An 
elementary view of this idea is seen in Figure 1, where we illustrate the ap- 
pearance of three distinct clusters in a four dimensional space. Because of 
the connectedness of the multidimensional parallel coordinate diagram, it is 
usually easy to see whether or not this clustering propagates through other 
dimensions. 

Some of the data analysis features of the parallel coordinate representation 
include the ability to diagnose one-dimensional features such as marginal 
densities, two-dimensional features such as correlations and nonlinear 
structures, and multi-dimensional features such as clustering, hyper- 
planes, and the modes. These interpretations are discussed in more detail 
in Wegman (1990) while parallel coordinate density plots are discussed in 



Miller and Wegman (1991). 

3. The Grand Tour Algorithm in   d-space 

Let ey = (0, 0, ..., 0, 1,0,..., 0) be the canonical basis vector of length d. 
The 1 is in the jih position. The ey are the unit vectors for each coordinate 
axis in the initial position. We want to do a general rigid rotation of these 
axes to a new position with basis vectors ay(i) = (aj(t), a£(i), ..., a3

d(t)), 
where, of course, t is a time index. The strategy then is to take the inner 
product of each data point, say x{, i = 1,... ,n with the basis vectors, ay(i). 
The j subscript on ay(t) means that ay(i) is the image under the generalized 
rotation of the canonical basis vector ey.     Thus the data vector Xi is (x\, 
4, ..., xd), so that the representation of x{ in the ay coordinate system is 

yi{t) = (y\(t),yi(t),...Mt)), i = h---,n 
where 

#) = £*!«£(*). 
j = i d and i = 1,..., n. The vector y,-(i) is then the linear combination 
of basis vectors representing the ilh data point in the rotated coordinate 
system at time t. 
The goal thus is to find a generalized rotation, Q, such that Q(ey) = ay. We 
can think of Q as either a function or as a matrix Q where ey X Q = ay. We 
implement this by choosing Q as an element of the special orthogonal group 
denoted by SO(d) of orthogonal dx d matrices having determinant of +1. 
In order to find a continuous, space-filling path through the Grassmannian 
manifold of rf-flats, we must find a continuous, space-filling path through the 
SO(rf). 
In general d-dimensional space, there are d - 2 axes orthogonal to each two- 
flat. Thus rather than rotating around an axis as we are used to in ordinary 
three-dimensional space, we must rotate in a plane in d-dimensional space. 
The generalized rotation matrix, Q, is built up from a series of rotations 
in individual two-flats.    In rf-space, there are   d   canonical basis vectors 

and, thus, (f) = J(d2 - d) distinct two-flats formed by the canonical basis 

vectors. We let ily(0) be the element of SO(d) which rotates in the em- 
plane through an angle of 6.    We define Q by 

Q(0i,2,0i,3, • • • > öd_i,d) = -R12(0i,2) x • • • x Ra-iAed-u)- 

There are p = ^(d2 - d) factors.   The restrictions on 0,y are 0 < % < 2ir, 
1 < i < j < d.   The vector (0i,2, 6u3y .. ,6d-Ld) can thus be thought of as 
a point on a p-dimensional torus.    This is the origin of the description of 



this method as the torus method.   The individual factors Rij(6) are d x d 
matrices given by 

0 0 0 

cos{6) 

sin(6) 

-sin(6)   •••   0 

cos(9)     •••   0 

0 0 0 

where the cosine and sine entries are in the ilh and jUl columns and rows. 

The final step in the algorithm is to describe a space filling path on the 
p-dimensional torus, Tp. This can be done by a mapping a: R -> Tp given 
by 

a(t) = (Ait, X2t,..., Apt) 

where Ai, ..., Xp is a sequence of mutually irrational real numbers and the 
A,t are interpreted modulo 2TT. The composition of a with Q will describe 
a space filling path in SO(rf).   Thus our final algorithm is given by 

a,j(t) = ej x Q(Ai*,..., Apt) 

The canonical unit vector for each coordinate axis at time t described by the 
grand tour algorithm is an orthogonal linear combination, a.j (t) = ejXQ (t), 
of the original unit vectors. This has several important implications for the 
utility of this methodology. First, it should be immediately clear that one 
can do a grand tour on any subset of the original coordinate axes simply 
by fixing the appropriate two-planes in the rotation matrix given above by 
Q. That is, if we wish the jlli variable to not be included in the grand 
tour rotation, we simply put a 1 in the Qjj(t) entry with 0 in the remaining 
positions in the jlU row and the jlh column. Thus it is straightforward to 
do a partial grand tour. The interest in doing a partial grand tour will be 
discussed in the next section. 

The second important implication relates to the connection with the paral- 
lel coordinate display. An immediate concern with the parallel coordinate 
display is the preferential ordering of the axes. In our discussion above we 
indicated that the axis for variable one is adjacent to the axis for variable 
two, but not for variable three. In general the axis for variable,; is adjacent 
to the axes for variables j — 1 and j + 1 but for no other axes. It is easy 
to see pair wise relationships for adjacent variables, but less easy for non- 
adjacent variables. Wegman (1990) has a substantial discussion on methods 
for considering all possible permutations. This concern is immaterial when 
one does the grand tour since eventually a,j(t) = ej x Q(t) = et-, for every 
i. Thus eventually every possible permutation of the axes will appear in the 



grand tour. 

4. Some Additional Visualization Devices 

4.1 Brushing with Hue and Saturation 

A powerful method in high interaction graphics is the brushing technique. 
The idea is to isolate clusters or other interesting subsets of a data set by, 
in effect, painting that subset with a color. This is usually done in two set- 
tings: lj with co-plots and 2) with animations. The brushed color becomes 
an attribute of the data point and is maintained in all representations. The 
idea of co-plots is that a particular data set may be presented in more that 
one way, for example in a scatter plot matrix or say with a scatter plot, a 
histogram and a dot plot. Points colored the same way in all presentations 
allow the data analyst the ability to track coherent clusters or subsets of the 
data through different representations. Of course, with an animation, the 
coloring allows the data analyst to follows clusters or subsets of the data 
through the time evolution of the animation. 

In general, colors may assume of range of saturations depending on the rel- 
ative proportion of gray to chroma. We implement the following device. 
We de-saturate the hue with black so that the brushing color is nearly black 
when desaturated. This by itself would not be fully useful. However, 
when points are overplotted, we add the hue components. Say, for example, 
we use an approximate one and one half percent hue component of blue. 
This would mean (on an eight bit scale) approximately 2 bits of blue and 
0 bits each of red and green. Thus if approximately 67 observations were 
overplotted at a given pixel, that pixel would be fully saturated with blue. 
Fewer observations mean a less saturated color. The level of saturation 
of the brushing color is controllable by the user. Larger data sets suggest 
lower saturation levels. The level of saturation thus reflects the degree of 
overplotting. This device is in essence a way of creating a parallel coordi- 
nate (or any other kind of) density plot. (See Miller and Wegman, 1991). 
The advantage of this technique for creating a density plot is that it does 
not depend on smoothing algorithms so that individual data points are still 
resolvable. 
The addition of saturations is implementable in hardware on Silicon Graph- 
ics workstations by means of the «-channel. The «-channel is a hardware 
device for blending pixel intensities and has its primary use for transparency 
algorithms. However, by blending pixels intensities of the same color, we 
can in effect add the pixel intensities and achieve brushing with hue and 
saturation with no speed penalty whatsoever. This technique is incredibly 
powerful in resolving structure in large data sets with heavy overplotting as 
we hope to illustrate in the next section. 



4.2 Some Perceptual Issues. 

Brushing with hue and saturation leads to an interesting question concerning 
perception of the resulting plots. When viewed against a black background, 
the low saturation observations, i.e. those that are not heavily overplotted, 
blend with that background. This is quite useful when trying to under- 
stand the internal structure of the high density regions of the plot. Our 
usual technique is to brush with a white (actually a very dark gray) color. 
Then the internal structure appears as white in the highest density regions 
as illustrated in Figure 4. The resulting plot looks rather like an x-ray of 
the internal structure of the data set. 

When viewed against a white background, the low saturation level obser- 
vations are nearly black and so are quite visible. This is extremely useful 
when looking for outliers, which would tend to be invisible against the black 
background. The white background is also extremely useful for data edit- 
ing. Our implementation on the Silicon Graphics workstations supports a 
scissors feature so that we can prune away low density regions. This feature 
allows for rapid visual data editing which may be useful for eliminating out- 
liers, transcription errors, and data with missing values that could impair 
the ability to reach sensible conclusions. Obviously, when using a white 
background, it is important to brush with some hue, since when brushed 
with a gray the result would be that highest density regions would be white 
again blending with the background. Because the apparent brightness of 
normal hues (red, blue, green, etc.) is lower than the apparent brightness 
of white, the internal structure of the data set is less apparent with a white 
background than with a black background. Thus it is clear that both back- 
grounds have their utility depending on the task at hand. 

4.3 Visual Regression and Clustering Decision Rules. 

The combination of hue and saturation brushing and the partial grand tour 
creates a device for visual regression and clustering decision rules. Consider 
a response variable of interest, let us say, for example, profit in a financial 
setting. Let us suppose we wish to answer the following question, "What 
combination of customer demographics variables is likely to cause the corpo- 
ration to lose money?" We brush the profit variable as follows: for negative 
profits, we brush the observations red, for positive profits we brush them 
green. Where the variables overlap, the combination of red and green sum 
to yellow. Where there are observations primarily leading to losses, the 
result will be generally red and where profits, primarily green. Since we are 
interested in the covariates leading to profit, we fix the profit variable so that 
it does not enter into the partial grand tour rotation. We may rotate on 
any combination of explanatory covariates we wish. For example, we may 
have data on customer's average account balance, sex, race, age and annual 
income.   While all of these may affect the profitability of the corporation, 



the prohibitions against discrimination on the basis of race and sex would 
lead us to generate decision rules which do not consider these factors. Sim- 
ilarly, some data may be extremely difficult or expensive to collect. Thus 
while it may be an extremely helpful covariate, it may be missing so often 
that its value is substantially diminished in forming decision rules. 

The partial grand tour is done on the explanatory covariates of interest while 
keeping the response variable and any other explanatory covariates that we 
wish to exclude fixed. Because the grand tour automatically forms orthog- 
onal linear combinations of desired explanatory covariates, the color coding 
allows us in effect to see the response variable in terms of the orthogonal 
linear combinations of the explanatory variables. Thus when we see a linear 
combination of explanatory variables that is intensely red in our example, 
we know that this is a combination of variables which leads to a negative 
profit. We can thus isolate the range of the linear combination of covariates 
that is colored red and this will be a component of the decision tree in terms 
of demographic variables that causes the organization to lose money. We 
can then edit that particular cluster of observations from our data set and 
resume the partial grand tour. Repeating this process recursively allows 
us to determine a sequence of decision rules that isolate customers likely to 
cause financial loss to the organization. Because this methodology is so 
intensively dependent on color, it is not possible to easily illustrate these 
techniques in this paper. However, we have included an example based on 
this idea as well as other examples in our web server at URL 

http : //www.galaxy.gmu.edu/images/gallery/research-arcade.html. 

This method thus leads to a high interaction techniques for rapidly identi- 
fying a decision rule based on visual display. The rules are sophisticated in 
the sense that they need not be simple binary decision rules and they need 
not be based on simply the original covariates. 

5. An Example 

In this example we would like to consider a synthetic dataset about the 
geometric features of pollen grains. There are 3848 observations on 5 vari- 
ables. This data is the 1986 ASA Data Exposition dataset, made up by 
David Coleman of RCA Labs. The data set is available from STALIB at 
URL=http://www.stat.cmu.edu/datasets/. Figure 2 is the scatterplot ma- 
trix for this five-dimensional data. Note that in all presentations the data 
appear to have elliptical contours. This is true even when all five variables 
are rotated through the grand tour. This is suggestive of the fact that 
the point cloud is sampled from a five-dimensional multivariate distribution 
with ellipsoidal level sets, perhaps a multivariate normal. Figure 3 is the 
corresponding parallel coordinate display with pure black on a white back- 
ground. In this display each of the five variables have been rescaled so as to 
fill the parallel coordinate axes.  Note that in the parallel coordinate display, 



the variables exhibit hyperbolic envelopes, the dual of elliptical contours in 
Cartesian plots.   This confirms our observation of the ellipsoidal level sets. 

Figure 4 represents a highly desaturated version of the same parallel coor- 
dinate plot, this time white on a black background. With this desaturated 
view, it is clear that there is an interesting internal structure buried in the 
noise. Figure 5 represents a partially pruned view with much of the noise 
removed. Figure 6 is the result of a second pruning edit in which the in- 
ternal structure is fully revealed. In both Figures 5 and 6 the data have 
been rescaled to fill the axes. Figure 7 represents the results of grand tour 
in which it is clear from the gaps seen in axes two, three and four that this 
data forms six clusters separable in at least three dimensions of the five. 
Our software permits this edit to be accomplished in less than three min- 
utes. Figure 8 displays the edited data in a scatter plot display. The 99 
remaining points from the original 3848 points are perfectly isolated from 
the noise and spell the word EUREKA. The six letters are of course the 
six clusters isolated in Figure 7. The 99 points are only about 2.7% of the 
data set and yet we were able to isolate these points in six clusters using the 
techniques described in this paper. 
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Legends for Figures 

Figure 1. a. Scatterplot matrix of three clusters in four dimensions, b. Par- 
allel coordinate plot corresponding to the scatterplot matrix in l.a. Note 
that a separation along any axis or in between axes is indicative of a cluster. 
Note also that distinctive slopes of the line segments between pairs of axes 
also separate clusters. 

Figure 2. The scatterplot matrix of 3848 observations on 5 variables from 
a synthetic dataset about the geometric features of pollen grains. The level 
sets appear to be elliptical in all five dimensions suggesting a five-dimensional 
ellipsoidal shape.   One might be tempted to guess multivariate Gaussianity. 

Figure 3. The fully saturated parallel coordinate plot of the same 3848 
observations in five space. The hyperbolic envelope tends to confirm the 
conclusions about a five dimensional ellipsoidal level set. However, little 
can be seen from either Figure 2 or Figure 3 about the internal structure of 
this data. 

Figure 4. The desaturated parallel coordinate plot of the 3848 observations 
this time plotted on a black background. Notice the internal structure and 
the x-ray like appearance of this density plot. 

Figure 5. An intermediate parallel coordinate plot pruned to remove ob- 
servations away from the internal structure. The plot is rescaled to fill the 
same scale as in Figure 4. 

Figure 6. The final pruned parallel coordinate plot with all observations 
removed except those corresponding to the internal structure. The plot is 
again rescaled. The five gaps on axes two and three are suggestive of six 
clusters. 

Figure 7. The result of a grand tour rotation of the data in Figure 6. The 
rotation confirms that these are six clusters completely separable in at least 
three of the five dimensions. 

Figure 8. The result of plotting the data isolated in the parallel coordinate 
display back into the scatterplot matrix. It is now apparent that the six 
clusters for the letters EUREK A. The six letters are made up of 99 points 
of the 3848 in the original data set, less than 2.7% of the total observations. 
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