
Aft-oos-ias
Dsro-m-oisri

A Fiber Distributed Data Interface
(FDDI) Network Analyser

Alan Allwright, Reg Driver and
Alan Wood

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

[Z /^\

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

UNCLASSIFIED

A Fiber Distributed Data Interface (FDDI) Network
Analyser

Alan Allwright, Reg Driver, Alan Wood

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0151

ABSTRACT

The trend towards distributed Command and Control systems in Naval platforms
necessitates the provision of Local Area Network performance measurement tools
and techniques. A special purpose network analyser has been developed within ITD
to measure the performance of a Fiber Distributed Data Interface (FDDI) network.
This paper describes the architecture and operation of the network analyser.

This work has been conducted to support the Directorate of Naval Combat Systems
Engineering in their Local Area Network and distributed systems analysis.

APPROVED FOR PUBLIC RELEASE

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

UNCLASSIFIED

UNCLASSIFIED

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury. South Australia, Australia, 5108

Telephone: (08) 259 7085
Fax: (08)259 5980

© Commonwealth of Australia 1995
AR-008-138
February 1995

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

A Fiber Distributed Data Interface (FDDI) Network
Analyser

EXECUTIVE SUMMARY

To support the selection, design, development, maintenance and upgrade of local
area networks in current and planned distributed Command and Control systems
detailed knowledge of the behaviour of candidate local area networks needs to be
known. The development of the analyser described in this report was conducted to
support the Directorate of Naval Combat Systems Engineering in their network
performance analysis activities.

The network analyser described in this report supports the process of performance
data collection and real time monitoring of a Fiber Distributed Data Interface local area
network.

This report provides technical details of the operation and implementation of the
network analyser. The description covers the design and set up of the hardware and
software necessary to operate the analyser and collect performance data in real time.

A second report "Test-Bed Performance Analysis of the Fiber Distributed Data
Interface" (Report No. DSTO-TR-0150) provides a description of validation and trial
experiments conducted with the network analyser.

in

IV

Authors

Alan M. Allwright
Information Technology Division

Alan Allwright graduated in Mathematics and Computing from
the South Australian Institute of Technology in 1988. Between
1990 and 1994 Alan worked on a Masters degree in Computing.
His thesis titled "Performance Analysis of Distributed Databases
for Combat Systems" was submitted in 1995. Alan now works on
computer simulation and System Engineering related tasks within
the C3ISE group oflTD.

Reg. Driver
Information Technology Division

Reg retired as a SITO in 1993.

Alan Wood
Information Technology Division

Alan is an ITO in C3ISE group. He is studying an Associate
Diploma in Information Systems at the Torrens Valley Institute of
TAFE. Alan is responsible for network management, computer
support, and Systems Engineering related tasks within C3ISE.

VI

UNCLASSIFIED DSTO-TR-0151

CONTENTS
Page No.

1 Introduction 1

2 Network Analyser Architecture 1

3 Transmitter Nodes 3
3.1 Transmit Parameters 3
3.2 Buffer Memory 4
3.3 RAM Buffer Controller (RBC) 5
3.4 Data Path Controller (DPC) 6
3.5 Media Access Controller 6

4 Transmitter Operation 6

5 Delay Units 7
5.1 Delay Unit Operation 7

5.1.1 Ring interface 8
5.1.2 Delay FD70 8

6 Data Logger . 9
6.1 Data Logger Operation 10

7 Generator and Analysis Software 11
7.1 Request Generators 11
7.2 Analysis Program 11

8 Limitations 13

9 Operation 14

10 Analysis of Results 14

11 Conclusion 16

12 Acknowledgments 17

13 References 19

UNCLASSIFIED vii

DSTO-TR-0151 UNCLASSIFIED

Figures

1 Network Architecture 2
2 Program Structure 4
3 Delay Unit 9

4 Data Logger 10

Tables

1 Buffer Memory Pointer Assignment 5
2 RBC and Buffer Memory Assignment 5
3 Experimental Results 15

H.1 FORMAC Commands 26
IL2 DPC Commands 26
HJ RBC Commands 27

II.4 Incidental Commands 27

Appendices

I Detailed Validation 20
II FAST Card Register Addresses 26

Vlll
UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

ABBREVIATIONS

AMD Advanced Micro Devices
ANSI American National Standards Institute
CMT Connection Management
CS Completion Of Service
DMA Direct Memory Access
DOC Digital Optical Converter
DPC Data Path Controller
DPTBS Distributed Processing Test-Bed System
EAR End of Receive FIFO
EDS ENDEC Data Separator
ENDEC Encoder Decoder
FDDI Fiber Distributed Data Interface
FIFO First In, First Out
IAT Inter-Arrival Times
ISO International Standards Organisation
ITD Information Technology Division
LAN Local Area Network
MAC Media Access Controller
Mbps Megabits per second
ODC Optical Digital Converter
PC Personal Computer
RAM Random Access Memory
RBC RAM Buffer Controller
RPR Read Pointer for Receive FIFO
RPXA Read Pointer Asynchronous frames
RPXS Read Pointer Synchronous frames
RT Request Time
SAR Start Address Receive FIFO
SAS Single Attachment Station
ST Start Time
T_OPR Operative TTRT
TRT Token Rotation Time
TTRT Target Token Rotation Time
WPR Write Pointer Receive FIFO
WPXA Write Pointer Asynchronous frames
WPXS Write Pointer Synchronous frames
kb Kilobyte
km Kilometer
ms milliseconds
ns nanoseconds
us microseconds

UNCLASSIFIED IX

DSTO-TR-0151 UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

1 Introduction

The Distributed Processing task (NAV87/226.3) has conducted an investigation into the
operation and performance of the FDDI protocol. This has prompted the development
of a Personal Computer (PC) based network analyser. A number of technologies
suitable for the distributed management of data on naval platforms (Ref.l) were
assessed. The Fiber Distributed Data Interface (FDDI) Local Area Network (LAN)
protocol is a standardised (ANSI, ISO) high speed fault tolerant token ring protocol.
Fault tolerance and high bandwidth make FDDI and its derivative FDDI-II excellent
candidates for the LANs on future naval platforms.

The study involved the use of a simulation model (Ref. 2) which allows the user to
specify the network configuration and traffic demands typical of a combat system. The
analyser was developed to collect data to validate this simulation model. It is also
useful for other applications where the frame transmission delays through the FDDI
Media Access Controller (MAC) are required. The analyser has been designed to give
the operator considerable flexibility in specifying frame arrival rates, frame types, and
frame priorities at each node. It is also possible to set network parameters such as the
operational timer (T_OPR)(Ref. 4) and the ring latency.

An overview of the network analyser's architecture is provided in Section 2. The
components and operation of each of the transmit nodes is presented in Sections 3
and 4. Sections 5 and 6 detail the construction and operation of the delay units and
data logger. Section 7 discusses the general purpose software used for pre- and post-
processing of network analyser data. The limitations and the operation of the network
analyser are reviewed in Sections 8 and 9. Section 10 provides some typical results.

2 Network Analyser Architecture

Information Technology Division (ITD) has produced a Distributed Processing Test-Bed
System (DPTBS (Ref. 3)). The DPTBS has the following objectives :

• To develop distributed processing applications.

• To implement distributed database management protocols for evaluation and
demonstration.

To investigate and evaluate the FDDI LAN protocol.

• To provide a platform for validating distributed database simulation models.

The test-bed comprises several IBM-compatible 80386, 20 Mhz Personal Computers
(PCs). Each PC is connected as a node to an FDDI network using an Advanced Micro
Devices (AMD) FDDI "Fast Card" (Ref. 8). The FDDI cards provide a Media Access
Controller (MAC), a Data Path Controller (DPC), a RAM Buffer Controller (RBC) and
128 Kb of buffer memory; each of these components is discussed in Section 3. A
software package, PDEMO, supplied with the FDDI cards (Ref. 10), is used to initialise
the FDDI hardware and to perform the network connect for each node.

UNCLASSIFIED

DSTO-TR-0151 UNCLASSIFIED

The DPTBS forms the basis for the network analyser. Each network analyser node is
formed by the addition of a timer / interrupt card, a delay unit (see Section 5) and an
application software package (see Section 3), for generating transmit requests from each
DPTBS node. The timer/interrupt card on each node synchronises the clocks on each
transmitting node with a master clock in the data logger. A data logger (IBM
compatible AT PC, see Section 6) is connected to the nodes via the data bus (Ref. 8)
on one of the FDDI cards. Figure 1 depicts a 3 node DPTBS configuration interfaced
to the data logger.

— ^
^

Delay Unit Delay Unit Delay Unit

> < t t

1 >

Rec Xmit

•^.

Rec Xmit

">

Rec Xmit

FDDI Card FDDI Card FDDI Card

Timer/Interrupt Card Timer/Interrupt Card Timer/Interrupt Card >

Node Processor

Key = 'A'

Node Processor

Key = 'B1

Node Processor

Key = 'C

I

Nodel Node 2 Node 3

AT-Personal computer

Data Logger

Timer

Data Buffer/DMA Control

IBM comp. AT PC

V
Figure 1 Network Architecture

A typical FDDI network uses a Connection Management (CMT) protocol (Ref. 5) to
form a dual attachment ring or tree topology. In this case the network configuration
used bypasses CMT and forms a (non CMT compliant) ring of Single Attachment
Stations (SAS). This was done due to limited resources and does not affect the
performance measurements being made.

The objective of the network analyser is to determine the frame transmission delays
through Media Access Controller (MAC) at each node. In order to achieve this
objective, the transmit software on the three transmitter nodes (see Section 3) generate
requests independently at pre-specified times. The requests are assigned a node key^
which is unique to the node originating the request. Node keys (Key = 'A', 'B', 'C')
are loaded into the 'frames' data fields to allow the data logger to determine the source
of the frames being logged. These keys are used during the analysis of the data to
match data logger times with the frame transmit times. As each frame is transferred
through node 1, it is logged via the data bus on the FDDI Cards. The data logger saves
the time the frame is logged and its key for later processing; the data in the frames are
discarded. Frames logged in this manner also experience delays in their transmission
and propagation on the network.

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

These delays are attributable to processing at the Physical Media Dependent (PMD)
(Ref. 6) and PHYsical (Ref. 7) levels in the FDDI protocol suite. These delays are
generally small in comparison to the MAC delays. Consequently the delays
experienced after the MAC processing will not significantly bias the results.

3 Transmitter Nodes

The transmit program transmits frames from the transmitter node processor onto the
network. The main difficulty with the transmitter is its inability to load the network to
100 Mbps with a single node. With PCs, the maximum continuous data transfer rate
between the PC main memory and the FAST Card buffer memory, is less than 30
Mbps (Ref. 9).

Since the experiments are not concerned with the data content of the frames, it is
possible to pre-load the frames to be transmitted into the FDDI card buffer memory and
loop back the memory pointers. In this way, the same frames are used over and over
again without the necessity of loading new frames into the buffer between transmit
requests. Memory pointers are used by the node processor, Data Path Controller (DPC)
and Ram Buffer Controller (RBC) to monitor and control the locations in buffer
memory where data is to be read and written. The pointer types are presented in
Table 1. By removing the necessity for the node processor to manage any frame data,
all memory pointer and data transfer operations can be handled automatically by the
FDDI Cards, and a single transmit enable command can be used to transmit up to
720,000 bits (20 frames of 4500 bytes). Since transmit enable requests can be made
every 256 microseconds, each transmitter node is now capable of handling requests at
2,812 Mbps, which is well in excess of the required 100 Mbps.

3.1 Transmit Parameters

The main processes in the transmit program are indicated in Figure 2. The
addresses used in the transmit program for calls to the FDDI card registers are
listed in Appendix II. The experimental parameters, are entered at the start of
each run.

The user is prompted for each of the relevant experimental parameters in the
following order :

Batch Length; The batch length is the number of frames to be transmitted
with a single transmit request, with a limit of 20 frames.

• Frame Length; The frame length is the length of the frame to be
transmitted, minus the frame source and destination addresses, frame control
and end delimeter (20 Bytes). The frame length may be up to 4480 bytes.

Message Type (Synchronous or Asynchronous); If the message type is
asynchronous the user is prompted for the asynchronous priority. The
asynchronous priority is set between 2560 ns (high priority) and
T_OPR (low priority).

UNCLASSIFIED

DSTO-TR-0151 UNCLASSIFIED

Main

Enter
Parameters

Load RBC
Load Buffer

Memory
Restore DPC

if (TIME == Request _Time)>

Transmit

Request

Transmit

Read next

Request_Time

Figure 2 Program Structure

The transmit program uses the batch length and frame length to initialise the
frames in buffer memory. The frame type can then be selected as either
synchronous or asynchronous.

3.2 Buffer Memory

FDDI Cards are equipped with 128 Kb of buffer memory organised as
32 Kb X 32 bits. Once the RBC is initialised the frame data is loaded into
Buffer Memory. Two batches of frames are loaded into buffer memory as
indicated in Table 1. The start address for the data is set during initialisation at
0x100. The data for the batches is loaded into the buffer memory and the frame
start address pointer for the last frame in the second batch is set to point back to
the start of the first batch (0x100).

The load buffer memory procedure (Figure 2) requires the following parameters -
Source Address, Destination Address, Frame Data. The Source Address is read
from the FDDI card on the transmitting node. The Destination Address and
Frame Data were determined in advance and are written automatically by the
transmit software. This data is then loaded into the buffer memory at the
addresses indicated by the write pointer (WPR).

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

Table 1 Buffer Memory Pointer Assignment

Receive FIFO 0x0

Asynchronous Transmit FIFO 0x100 Start of Batch 1

Batch 1 Frames

0x2cfe Start of Batch 2

Batch 2 Frames

Ox58fa Loop back to 0x100

Synchronous Transmit FIFO 0x7000 - 0x7fff

3.3 RAM Buffer Controller (RBC)

The RBC is supplied by AMD as part of the FDDI chip set. It manages buffer
addresses for the receive and transmit requests. A table of pointers (see Table 2)
stored in memory in the transmit node processor is used by the node processor
transmit software, the RBC and the DPC to manage data received and to be
transmitted. The node processor uses the pointer RPR for reading data from the
buffer memory and WPR for writing to the buffer memory. The DPC uses the
RBC to move data between the fibre media and the buffer memory. The RBC is
initialised by writing the calculated start and end addresses for the receive,
synchronous, and asynchronous transmit buffers. Table 2 shows the initial RBC
and RAM buffer address assignments.

Table 2 RBC and Buffer Memory Address Assignments

Pointer Asynch Synch Description

RPR 0x0 0x0 Read pointer for Receive FIFO

WPR 0x0 0x0 Write pointer for Receive FIFO

SAR 0x0 0x0 Start address for receive FIFO

EAR 0x0 0x0 End address for receive FIFO

WPXA 0x100 0x50 Write pointer for Asynchronous frames

RPXA 0x100 0x50 Read pointer for asynchronous frames

WPXS 0x7000 0x100 Write pointer for synchronous frames

RPXS 0x7000 0x100 Read pointer for synchronous frames

UNCLASSIFIED

DSTO-TR-0151 UNCLASSIFIED

3.4 Data Path Controller (DPC)

The DPC is responsible for transferring data received from the fibre media to
buffer memory and for transferring data to be transmitted from buffer memory to
the fibre media. The DPC utilises the address pointers managed by the RBC to
determine the location to transfer data either into or out of buffer memory.

The DPC must be reset after the RBC registers have been set. This involves
restoring the pointers (WPXS, WPXA) in the RBC, and resetting the transmit
enable locks in the DPC.

3.5 Media Access Controller

The Fiber Optic Ring Media Access Controller (FORMAC) controls access to the
ring by performing the FDDI MAC protocol (Ref. 4). Media access to the ring is
governed by a timed token rotation protocol. A transmitting node can only
transmit synchronous frames onto the network when it captures the token. A
transmitting node can only transmit asynchronous frames when it has captured the
token and there is sufficient unutilised bandwidth on the current token rotation.
The amount of unutilised bandwidth on each token rotation is calculated using the
Token Rotation Timer (TRT) and Target Token Rotation Time (TTRT) at each
transmitting node.

The FORMAC determines the type of frame to send (synchronous or
asynchronous), reads the data from the buffer memory, constructs the frame and
sends it to the transmit hardware (Ref. 10). The FORMAC is also responsible for
the maintenance of the token.

The transmit program only interacts with the FORMAC by setting the
asynchronous priority level (Appendix II) which the FORMAC uses to determine
whether the frame can be transmitted on the current token capture
(Ref. 4).

4 Transmitter Operation

Once all the components discussed in Section 3 have been initialised, the FDDI cards
are ready to transmit the frames loaded in buffer memory. The transmit procedure
initially reads the request times as text from the request file (Section 6) and writes them
to an array as long (4 bytes) words. Storing the request times in advance in a main
memory array, rather than calculating them on the fly, or retrieving them from hard
disk, significantly decreases the processing overhead required in making transmit
requests.

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

The following pseudo code shows how the transmit procedure maintains the current
time and schedules transmit requests;

Read_Count = Number_of_Requests;
Get Request_Time;

While (Request_Count < Read_Count)
{

Wait for Interrupt;

Increment Current_Time;

If (Current_Time >= Request_Time)
{
Enable_Transmit;
Get next Request_Time;
}

}

The Number_of_Requests is set equal to the number of request times read into the
array. The first Request_Time is read from the request time array. The main loop of
the code then waits for the timer interrupt before testing whether or not it is time to
request a transmit. If it is time to request a transmit, the enable transmit command is
issued to the DPC (Appendix II), the next request time is read from the request time
array, and the loop then returns to wait on the timer interrupt. If it is not yet time to
make the transmit request the program loops back to wait on the timer interrupt.

After all the transmit requests have been processed the program waits for the operator
to terminate the program.

5 Delay Units

The delay units were developed to control the ring latency. By introducing the delay
units it is possible to emulate the effects of networks with more nodes and longer fibre
optic cable lengths than that available with the DPTBS.

The delay unit (Figure 3), consists of commercial FDDI ring interface circuits and a
variable length First-In-First-Out (FIFO) memory (developed in ITD) to produce the
required delay. The delay is achieved by varying the length of the FIFO buffer.

The unit provides switch selectable delays from 980 ns to over 2 ms in incremental
steps of 320 ns. This delay, based on 5085 ns/km (Ref. 4), represents between
0.19 km and 392 km of fibre optic cable.

5.1 Delay Unit Operation

The delay units are connected to the fibre optic cable (refer Figure 1). Data
received by the delay units is placed in a FIFO queue (5.1.2) where it is delayed
for a predefined period of time. Once the data has been delayed it is
re-transmitted on the network.

UNCLASSIFIED

DSTO-TR-0151 UNCLASSIFIED

FDDI Ring

V

Delay Unit Detail

Delay
Unit

"V Node 0
0
0

Rinfl Interface FDDI Delay Unit

>>

/ / EOS >
m
z
o
m
0

> Latch \ r v

z
0 a

Delay
Unit

Addres»
Generator > FIFO

<- Latch 4 v

t v
o
0
0 Delay

Unit <- Node S V TT7
Y

Figure 3 Delay Unit

5.1.1 Ring interface

The serial optical information from the ring is converted to serial digital data by
the optical-to-digital converter (ODC). This information is then passed to the
FDDI ENcoder DECoder (ENDEC) data separator (EDS), where the clock and
data are recovered from the FDDI data stream.

The (clock and data) information is passed to the ENDEC for conversion into
parallel words (8 bits per word). The information is then transferred to the delay
circuitry for storage.

5.1.2 Delay FIFO

Since the information rate from the ENDEC is too fast for the FIFO memory
delay circuits, the 8 bit data are fed into a 16-bit latch before being passed to the
memory, thereby halving the memory data rate.

When data are read from the memory the reverse process takes place. The 16
data bits are read from the memory into a latch as 4 symbols of 4 bits. The latch
passes the symbols (in pairs) to the ENDEC for conversion into serial data. The
data is then sent to the digital-to-optical converter (DOC) for return to the FDDI
ring.

A binary down counter is used to generate memory addresses. This counter is
preset to the required starting address (count) by switches and clocked until
address zero is reached. At this point the counter is automatically set back to the
starting address and the process is repeated. When the address generator selects a
FIFO memory location, the contents of that location are written to the output
latch for passing to the ring (via ENDEC and DOC).

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

New data from the ring are then accepted from the input latches and written into
the same memory location. The address generator then selects the next memory
location and the process is repeated. The required delay is achieved by
controlling the number of memory locations in use.

The minimum delay is selected by setting the switches to zero. With this setting
only one memory location is used and the data are written into that memory
location and immediately read out again.

There is a minimum delay introduced by the integrated circuits and the clocking
of data. The insertion of the delay unit in the ring introduces a minimum delay
of 980 ns which must be added to the preset switch delay.

The incremental delay (320 ns) is determined by the address generator clock rate.
Thus a setting of two on the switches would produce a delay of ;

Delay = 980 ns + (2 * 320 ns) = 1.62 \is.

6 Data Logger

The data logger was developed to capture and log events on the FDDI network. The
events are the reception of frames by the transmitter node connected to the data logger.
When an event occurs, the key (see Section 2) and the time the event occurred are
saved by the data logger.

The data logger consists of the following main elements (Figure 4) :

FDDI-PC interface: The FDDI-PC interface extracts the keys from the
FDDI card and sends this information to the event latches in the data
logger.

• Event latch: The event latches record the events for later reading.

• FIFO buffer: The FIFO stores the information so the PC can retrieve it.

PC interface: The PC interface allows the PC to read information from the
FIFO.

DMA Software: The software sets up the PC for DMA transfer and handles
the transfer of data from buffer memory in the data logger to the main
memory in the data logging node.

Each of the transmitter nodes on the network is fitted with a circuit that generates an
interrupt to the data logger when signalled from the master timer. The timer ticks are
distributed by the master timer, located on node 1, to synchronise the ticks on the three
nodes. When a preset number of ticks has occurred, a request for transmission is made
to the FDDI card.

UNCLASSIFIED

DSTO-TR-0151 UNCLASSIFIED

RDDI NODE

FDDI Card

F»C-1 Tick
IReceiver

To Other
F»Cs

FDDI-PC
Interface Card

Tick:
■ e n e rato r

FDDI-PC
Interface

Data Logger
Card

Timer
(28 bit)

Event
Latch x -4-

FIFO

F»C Interface / DMA Circuitry

Figure 4 Data Logger

A circuit in the FDDI-PC interface card detects the transmitting PC's station key and
sends that information to the data logger which then logs that event and the time that it
occurred. Up to four events can be logged simultaneously.

A 28 bit counter in the logger is used to keep track of the elapsed time. The timer has
a resolution of 500 ns. Another 4 bits are used to record the events. The time and
events are combined into a 32 bit word. This word is then stored in a data file for later
analysis (see Section 7.2).

6.1 Data Logger Operation

When the first event occurs, the timer is reset to zero and the rest of the system
is enabled. All times logged are relative to this point.

The latches act as temporary event stores. When the data are read from the
latches, the latches are cleared. The elapsed time and the events that triggered
the action are moved to the FIFO. Since the FIFO is only 8 bits wide and we
want to store a 32 bit word, this has to be done in 4 by 8 bit transfers.

10 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

When there is data in the FIFO, a signal to the PC is raised. The signal initiates
a DMA transfer. The transfer continues until all the data is moved from the
FIFO into a RAM disk in the data logging PC. Transfers from the FIFO to the
data logger can be made while events are being logged.

If the FIFO fills up, there is no mechanism to halt the experiment and data will
be lost. The operator is informed when buffers are lost and the experiment can
be restarted.

Data transferred to the RAM disk is stored in 4 bytes - the first 4 bits hold the
station key and the remaining 28 bits hold time-stamp information.

7 Generator and Analysis Software

The generator and analysis software was designed for the pre- and post-processing of
network analyser data. Two packages were developed. These are request generators
(Section 7.1) which produce files containing the inter-arrival times for transmit
requests, and the analysis program (Section 7.2) which processes the data produced by
the network analyser to calculate the average MAC delays and message loss
probabilities (see Section 10). Both of these packages are used separately from the
network analyser.

7.1 Request Generators

The request generators are used before an experimental run to produce the request
files for each of the transmitting nodes. There are two request programs. The
first generates request times for fixed Inter-Arrival Times (IAT). The user is
prompted for the run length of the experiment and the IAT for arrivals. The
program then generates a sequence of request times with the given IAT for the
period of the run. The IAT's generated by this program are usually used for
synchronous requests.

The second random arrival generator creates a file of arrivals with uniformly
distributed arrival times. The user enters the number of arrivals, the expected
IAT of arrivals and a seed to initialise the random number generator. The
program uses the Turbo C++ internal random number generator and produces IAT
in the interval between one and two times the expected IAT (less 0.5 micro
seconds). The IAT's generated by this program are usually used for
asynchronous requests.

7.2 Analysis Program

The analysis program is used after an experimental run to analyse the data stored
by the data logger. It uses the files produced by the arrival generators and the
data logger to couple the request events to the service events. The user is
prompted for the input data file names, batch size, the frame length and the end
time for the experiment. The end time for the experiment is taken as the point
when all synchronous requests have been serviced.

UNCLASSIFIED n

DSTO-TR-0151 UNCLASSIFIED

The number of synchronous and asynchronous requests are calculated in advance
so that synchronous requests will complete before asynchronous requests. This
allows asynchronous requests to completely fill the buffer in the data logger.
When synchronous requests are being analysed the end time is set to zero to
indicate all synchronous requests are to be processed.
When the synchronous requests have been processed the time of service of the
last request is displayed. This last synchronous service time is then used for the
end time for the processing asynchronous requests. The user may select an
option to display a detailed listing of the matching between the arrival and results
file, or display a summary of the results. The detailed listing shows each request,
and its request time, matched to its corresponding service and the service time. A
discussion of the detailed listings is given in Appendix I. The summary results
for a typical run are discussed in Section 10.

The following pseudo-code shows how the algorithm matches request times to
service times.

Read First_Request_Time;
First_Service_Time = First_Request_Time;

Read Second_Request_Time;
Second_Service_Time = Second_Request_Time;

Read Next_Request_Time;

While (not end of service times file)
{
If (time of completion of service for the

First_Service_Time is later than the
Next_Request_Time and the buffer is full)
{
disregard the request;
Read Next_Request_Time;
}

else
{
First_Service_Time = Next_Request_Time;

Read Next_Request_Time;
Read Next_Service_Time;

Second_Service_Time = First_Service_Time;
Next_Service_Time = Second_Service_Time;
}

}

12

The program reads the request and service files in order and matches requests to
services. Given that the FDDI cards have a buffer capacity of two requests
(Ref. 9) the first and second request times are automatically assigned to the first
and second service times. The program then simulates the operation of the FIFO
buffer to couple the request and service times. The first service time relates to
the service time at the head of the buffer, the second service time relates to the
second element in the buffer. Request and service times are read sequentially,
and the program must determine if the request was serviced. A count is
maintained of the number of requests currently in the FIFO.

UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

If the buffer is full and the current request time is earlier than the service time for
the service at the head of the FIFO, the request is lost If the request was
serviced, the request time is matched to the service time, the second service time
is moved to the head of the FIFO and the next service time is read and saved as
the second element in the FIFO.

This program combines the arrival and service files in the way shown in
Appendix I. It also calculates a number of statistics.

There are a number of ways to analyse this data and as such the statistical
calculations would generally be left to an analyst. To provide an indication of the
available summaries, Section 10 discusses some typical results.

8 Limitations

The network analyser has a number of limitations imposed by the hardware and
software. These are discussed below:

Each PC has the capacity to buffer up to 10,000 transmit requests.

Each request is stored in an array of unsigned long integers. The
combination of the size of an unsigned long integer (232-l) and the transmit
clock granularity (256 jxs) limits the maximum run length of any
experiment. The maximum run length of any experiment is then;

Run length = Maximum Time * Clock granularity
= (232-l) * 256 us = 1099511 seconds

Each FDDI Card has a buffer capacity of 256 kb. The experiments require
only two batches of 20 frames with 4480 bytes per frame. The maximum
buffer requirement is:

Buffer Requirement = batch count * batch size * frame length
= 2 * 20 * 4480 = 179,200 bytes.

FDDI Cards allow for a maximum of two synchronous and two
asynchronous transmit requests to be buffered at any one time (Ref. 10).

Each transmitting node uses a 256 jxs clock. The timer/interrupt card
allows other clock resolutions to be selected. The 256 (i.s resolution allows
transmitting nodes to generate traffic up to the full bandwidth of the FDDI
(100 Mbps) for frames 3200 bytes or longer. This resolution also provides
for long experimental run times with a maximum of 11718 events occurring
each second.

The data logger can differentiate events with a resolution of 500ns. With bit
lengths in FDDI being 10 ns, this resolution allows the data logger to
differentiate between the smallest allowable FDDI frames (20 bytes).

UNCLASSIFIED 13

DSTO-TR-0151 UNCLASSIFIED

Logged data is stored in a RAM Disk for latter analysis. The size of the
RAM Disk is limited only by available memory in the data logger. In our
case 384 Kb was sufficient.

• Each Delay unit introduces a minimum delay of 980 \LS. Delays up to 2 ms
are switch selectable in steps of 320 ns.

9 Operation

The network is made operational by using the AMD PDEMO program (Ref. 8). By
running the PDEMO program the operator is given the option to set a number of
system parameters including network configuration and the TTRT.

The network is currently set up to run only the FDDI 'Class C configuration, which
allows the network to run with one transmitter and one receiver per node (Option 15).
The "Class C" option bypasses connection management but has no effect on the
performance of the operational network. The operative TTRT (T_OPR) is set to 4.0 ms
as one of the MAC parameters according to the AMD "FAST Card" manual
(Option 10) (Ref. 10). After the operational parameters for each node have been set,
the operator exits the PDEMO program leaving the network operational (Option 199).

The transmit program on each node is then run and given its operational parameters
(batch length, frame length, synchronous or asynchronous request type and priorities).
For the example run described in this paper (Section 10), node 1 makes synchronous
requests, node 2 makes asynchronous high priority requests and node 3 makes
asynchronous low priority requests. The asynchronous priorities are set to high
priority = 2560 ns and low priority = 3372000 ns. Synchronous requests are made in
batches of 10 frames of 2688 bytes. Asynchronous requests are made for single frames
of 4480 Bytes. Once the operational parameters have been entered on each node the
program waits for a signal from the data logger to start the experiment.

The distribution of IATs for frames, at each node, is left up to the operator (currently
fixed and random inter-arrival times are used). The IATs are stored in an ASCII text
file (REQUEST.TXT) that is read into memory in each of the transmitting nodes. The
transmit program reads the REQUEST file into an array which is accessed sequentially
during the running of the transmit program. For the example run, node 1 uses fixed
IATs of 3072 (xs and nodes 2 and 3 use random IATs with a mean of 512 p.s.

The data logger is initialised by using the data logger program (Section 5) on the data
logger PC AT, which resets the data logger clock and DMA software. When all the
transmitters and the data logger are ready the operator can start the experiment by
enabling the master clock tick generator on node 1.

10 Analysis of Results

This section discusses the results for a single run of the network analyser. These
results were produced using the analysis program described in Section 7.2. A detailed
listing of the results for this run are discussed in Appendix I.

14 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

During the run, one node is generating synchronous requests at a rate of 70 Mbps. The
other nodes are generating asynchronous requests at a rate of 70 Mbps. The net request
rate is 210 Mbps.
The analysis program (Section 7.2) is used to analyse the results of the experimental
run. The following parameters are entered when the program is initialised;

• Enter the data file : 70keyA.dat
Enter the batch size : 1
Enter the frame length : 2688

• Enter the last service time : 0

The data file name is the text file in to which all the results are written, in this case
70keyA.dat for "70" Mbps, synchronous (Key="A"). The batch size and frame length
are discussed in Section 3. The last service time is entered as the time for the program
to stop processing results. In this case all the requests are to be processed and this
parameter is set to zero. For asynchronous requests the last service time is set to the
value produced in the analysis of the synchronous file. Because the synchronous
requests are designed to finish before the asynchronous requests, it is necessary to
specify the last service time of synchronous requests to stop the asynchronous statistics
becoming biased by the end conditions of the experiment. The following results were
produced by the analysis program (Table 3). All times are in nanoseconds. In this case
the data were provided by a trial run of the network analyser where the required
synchronous throughput was 70 Mbps.

Table 3 Experimental Results

Last service time == 12292232

Total requests = 20000, Accepted requests = 20000

Delay max = 7182.000000, Delay min = 0.000000

Delay sum = 2360026.000000, Delay ssq = 4388019200.000000

Mean = 118.001297, Var = 205486.937500

95% Confidence Interval = 6.282510

99% Confidence Interval = 8.269834

buffer 0 prob = 0.816000

buffer 1 prob = 0.184000

buffer overflow prob = 0.000000

UNCLASSIFIED 15

DSTO-TR-0151 UNCLASSIFIED

The last service time (12292232) is the time (number of 500 ns clock ticks) the last
synchronous request was serviced. This value is used for the last service time
parameter in the analysis of the asynchronous requests.

The total requests (20000) is the number of synchronous requests made during the run.
The accepted requests (20000) is the number of requests that were serviced by the
MAC, the number of rejected requests is the number of requests that were lost due to
buffer overflow.

The maximum (7182.0) and minimum (0.0) delays are the maximum and minimum
times the requests for synchronous transmission spent in the buffer before being
processed by the MAC. The delay sum (2360026.0) and delay sum of squares
(4388019200.0) are counts used to calculate the mean, variance and confidence interval
statistics for the MAC delays. The mean is the mean delay (118.001297) for a requests
waiting in the buffer, and the variance (205486.9375) is given for the mean. The
confidence intervals are calculated assuming Students 't' distribution (Ref. 12) :

*(") * '»-l,l-ay2 ^
^(n)

n

Where n is the sample size, X(n) is the sample mean, fB_u_B/2 is the t-test statistic,

^(n) is the sample variance and lOOxa is the confidence level expressed as a

percentage.

The buffer statistics are calculated for requests before entering the buffer. Given the
two element buffer, results are given for buffer empty, one request in the buffer and
buffer overflow. For synchronous requests the arrival request rate and T_OPR are
determined to guarantee that no synchronous requests are lost.

11 Conclusion

An inexpensive PC based FDDI network analyser based upon the DPTBS has been
presented. The purpose of the network analyser was to provide a tool suitable for
validating a theoretical and simulation models of the FDDI MAC protocol. The
network analyser had to be capable of loading an FDDI network to in excess of 100
Mbps with synchronous and asynchronous traffic. It was also necessary to provide the
user with a means of specifying the distribution of IATs for requests, the asynchronous
priorities, and the ring delay (eg T_OPR).

The example run in Section 10 shows that it is possible to load the network to in
excess of 100 Mbps. The traffic generators can produce either synchronous or
asynchronous frames. The user has a variety of options in setting the request patterns
of data and the operational parameters of the network.

The data logger can process and store all relevant network events in real time up to,
and in excess of 100 Mbps. The analysis software can be used to generate traffic
summaries and detailed lists of network events.

16 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

The use of the delay units provide extra flexibility in examining larger rings and
determining the effect of increased ring latency on network performance.

This work has overcome the major problem with using PCs to generate network traffic
which is to maintain a continuous load of network traffic at high request rates (greater
than 30 Mbps). Unfortunately buffer limitations do limit the overall application of the
analyser.

A more detailed set of experiments to test the general utilisation of the analyser and for
the validation of the FDDI model will be the subject of further papers.

12 Acknowledgments

The authors wish to acknowledge with gratitude the assistance provided by Mr J.G.
Schapel (ERL) and Mr ML. Scholz (ERL) in the conception and development of this
project. The authors are also grateful for the assistance with the DPTBS provided by
Mr Stan Miller (ERL).

UNCLASSIFIED 17

DSTO-TR-0151 UNCLASSIFIED

18 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

13 References

No.

1

10

11

12

Author

Schapel, J.G.

Scholz, MX.

Miller, S.J.

ANSI

ANSI

ANSI

ANSI

AMD

AMD

AMD

Nolan, T.

Johnson, R.
Bhattacharyya, G.

Title

"A Review of Data Communications in
Combat Systems", ERL-0659-RN, 1986

"Simulation of the FDDI Network: A
Progress Report"
CSI Working Paper 90/01, 1990

"Distributed Processing Test-Bed System:
First Interim Report for the DPTBS"
WSRL-TM-26/90, 1990

"FDDI Token Ring Media Access
Controller", X3.139-1987, 1986

"FDDI Station Management"
X3T9.5/84-49, Rev 5.1, 1989

"FDDI Physical Media Dependent"
X3T9.5/84-48, Rev 6, 1986

"FDDI Physical Layer Protocol"
X3T9.5/83-15, Rev 15, 1989

"THE SUPERNET Family for FDDI"
Technical Manual
Advanced Micro Devices, 1989

"THE SUPERNET Family for FDDI"
1989 Data Book
Advanced Micro Devices, 1989

"SUPERNET Hardware and Software
Support", Advanced Micro Devices, 1989

"Real Time Data Acquisition Using
DMA", Dr Dobbs Journal, pp 28
January 1990

"Statistics Principles and Methods"
John Wiley & Sons, 1985

UNCLASSIFIED 19

DSTO-TR-0151 UNCLASSIFIED

APPENDIX I

Detailed Validation

This appendix discusses the validation of the network analyser. Hardware was
debugged using a Phillips PM3570 digital analyser. The programs PDEMO and
FDDIMON (Ref. 10) supplied with the AMD "Fast Cards were also used to check the
FDDI cards and their operation.

The analysis program, developed in ITD, produces detailed listings and summary results
from the ARRIVAL and SERVICE files. The summary results are discussed in
Section 10. The detailed listings are used mainly for validation. The operation of the
analyser during an experimental run can be determined from the detailed listings. The
detailed listings are therefore useful to validate the overall operation of the network
analyser.

The following discussion is based upon the results of the experimental run discussed in
Section 10. The results are for a single run with three nodes, each generating 70 Mbps.
The following sections discuss firstly the detailed listing (Section 1.1) and secondly the
service history (Section 1.2) explaining how requests were serviced at each node. The
request and service times in this section are discussed in terms of clock ticks. The
clock ticks are the time base used by the data logger and represent 500 ns of elapsed
time. For example if an event occurred at 12292232 ticks the elapsed time is 6.1465 s
(viz 12292232 ticks * 500 ns).

1.1 Detailed Listing

The results from the run are printed to the nominated data file, in this case
70KeyA.dat, "70" is the data rate (70 Mbps) and the frame key is "A" (node 1
transmitting synchronous requests). The batch size is 10 frames and the frame
length is 2688 bytes. Node 2 transmits asynchronous high priority (2560 ns) and
node 3 transmits asynchronous low priority (372000 ns). The last service time
for synchronous requests is set to zero. Asynchronous requests use the last
service time produced during the analysis of the synchronous requests to
determine the end time of the analysis (see Section 9). In this case the last
service time for synchronous request is set to zero to specify that all synchronous
requests should be analysed. The last service time for the asynchronous requests
is set to 12292232, specifying that all asynchronous requests after 12292232 (500
ns clock ticks) should be ignored.

In the following lists, the first column represents the frame key, "A", "B", "C" for
nodes one, two and three respectively. The field "B = ", is the buffer contents
when the request was made, and is either B = 0 or B = 1. The RT is the Request
Time for the frames, the ST is the Start Time for the service of the frames, and
the CS is for the Completion of Service for each of the frames. The access delay
is calculated as Delay = ST - RT. All times are given in 500 ns clock ticks. The
completion of service time is used to determine, in conjunction with the current
buffer contents, whether a request should be serviced or queued.

20 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

Because a batch size of 10 was specified, the RT's for all frames in the batch are
the same, that is the IAT for a batch is the inter-batch arrival time. The IAT for
these requests can be seen to be constant, and are calculated from the batch size,
frame size and required throughput for example ;

Throughput = Batch Size * Frame Size (Bytes) * Bits per Byte
IAT (seconds)

IAT = Batch Size * Frame Size (Bvtes) * Bits per Byte
Throughput

= 10 * 2688 * 8
70* 106

= 0.003072 seconds

= 6144 (500 ns clock ticks)

(i) Node Key = A

Enter the data file : a:70keyA.dat
Enter the batch size : 10
Enter the frame length : 2688
Enter the last service time : 0
Do you want a listing (Y/N) : y

A B = 0, RT = 6144, ST = 7637, CS = 8067, Delay = 1493.0
A B = 0, RT = 6144, ST = 8069, CS = 8499, Delay = 1925.0
A B = 0, RT = 6144, ST = 8500, CS = 8930, Delay = 2356.0
A B = 0, RT = 6144, ST = 8932, CS = 9362, Delay = 2788.0
A B = 0, RT = 6144, ST = 9363, CS = 9793, Delay = 3219.0
A B = 0, RT = 6144, ST = 9794, CS = 10224, Delay = 3650.0
A B = 0, RT = 6144, ST = 10226, CS = 10656, Delay = 4082.0
A B = 0, RT = 6144, ST = 10657, CS = 11087, Delay = 4513.0
A B = 0, RT = 6144, ST = 11088, CS = 11518, Delay = 4944.0
A B = 0, RT = 6144, ST = 11520, CS = 11950, Delay = 5376.0

A B = 0, RT = 12288, ST = 13403, CS = 13833, Delay = 1115.0
A B = 0, RT = 12288, ST = 13834, CS = 14264, Delay = 1546.0
A B = 0, RT = 12288, ST = 14266, CS = 14696, Delay = 1978.0
A B = 0, RT = 12288, ST = 14697, CS = 15127, Delay = 2409.0
A B = 0, RT = 12288, ST = 15129, CS = 15559, Delay = 2841.0
A B = 0, RT = 12288, ST = 15560, CS = 15990, Delay = 3272.0
A B = 0, RT = 12288, ST = 15991, CS = 16421, Delay = 3703.0
A B = 0, RT = 12288, ST = 16423, CS = 16853, Delay = 4135.0
A B = 0, RT = 12288, ST = 16854, CS = 17284, Delay = 4566.0
A B = 0, RT = 12288, ST = 17285, CS = 17715, Delay = 4997.0

UNCLASSIFIED 21

DSTO-TR-0151 UNCLASSIFIED

(ii) Node Key = B

Asynchronous high priority (2560 ns). The fields in this case are the same as
those in the synchronous case above. Except in this case the batch size is 1 and
the frame length is 4480 bytes, resulting in the required request rate of 70 Mbps
(see above calculation).

Enter the data file : a:70keyB.dat
Enter the batch size : 1
Enter the frame length : 4480
Enter the last service time : 12292232
Do you want a listing (Y/N) : y

B B = 0, RT = 2560, ST = 2566, CS = 3282, Delay = 6.0
B B = 0, RT = 3584, ST = 4018, CS = 4734, Delay = 434.0
B B = 1, RT = 4096, ST = 4736, CS = 5452, Delay = 640.0
B B = 0, RT = 5632, ST = 6199, CS = 6915, Delay = 567.0
B B = 1, RT = 6144, ST = 6917, CS = 7633, Delay = 773.0
B B = 0, RT = 7680, ST = 11964, CS = 12680, Delay = 4284.0
B B = 1, RT = 9728, ST = 12682, CS = 13398, Delay = 2954.0
B B = 0, RT = 13824, ST = 17730, CS = 18446, Delay = 3906.0
B B = 1, RT = 15360, ST = 18448, CS = 19164, Delay = 3088.0
B B = 0, RT = 19968, ST = 23495, CS = 24211, Delay = 3527.0

(iii) Node Key = C

Asynchronous low priority (3372000 ns). The fields in this case are the same as
those in the synchronous case above. Except in this case the batch size is 1 and
the frame length is 4480 bytes, resulting in the required request rate of 70 Mbps
(see above calculation).

Enter the data file : ar70keyC.dat
Enter the batch size : 1
Enter the frame length : 4480
Enter the last service time : 12292232
Do you want a listing (Y/N) : y

C B = 0, RT = 3072, ST = 3297, CS = 4013, Delay = 225.0
C B = 0, RT = 5120, ST = 5478, CS = 6194, Delay = 358.0
C B = 0, RT = 7168, ST = 30720, CS = 31436, Delay = 23552.0
C B = 1, RT = 8704, ST = 31438, CS = 32154, Delay = 22734.0
C B = 0, RT = 33280, ST = 42992, CS = 43708, Delay = 9712.0
C B = 1, RT = 33792, ST = 43710, CS = 44426, Delay = 9918.0
C B = 0, RT = 44544, ST = 92003, CS = 92719, Delay = 47459.0
C B = 1, RT = 45568, ST = 92721, CS = 93437, Delay = 47153.0
C B = 1, RT = 93184, ST = 159748, CS = 160464, Delay = 66564.0
C B = 1, RT = 93696, ST = 160466, CS = 161182, Delay = 66770.0

22 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

1.2 Service History

This section uses the detailed output discussed above to provide a service history
of the requests on the network. At each step the request and service events are
combined in chronological order.

1. At time ST=2566, the first request Node 2 (asynchronous Key=B,
RT=2560) is serviced. This request completes service at time CS=3282, the delay
is calculated as 2566 - 2560. As no other requests are at this node, the token is
passed to node 3 (Key=C).

B B = 0, RT = 2560, ST = 2566, CS = 3282, Delay = 6.0

2. Node 3 (Key=C) has a request waiting (RT=3072), which starts service at
ST=3297, and completes service at time 4013. No other requests are waiting the
token is passed to node 1 (Key=A).

C B = 0, RT = 3072, ST = 3297, CS = 4013, Delay = 225.0

3. Node 1 has no requests waiting and the token is immediately passed to
node 2. Node 2 has a request waiting (RT=3584) and service starts at time
ST=4018, service is completed at time CS=4734.

B B = 0, RT = 3584, ST = 4018, CS = 4734, Delay = 434.0

4. Before the completion of service at node 2 a new request arrives and is
buffered (B=l). Node 2 starts serving this request at time RT=4736 and
completes service at time CS=5452. At time 5452 node 2 has no further requests
waiting and the token is passed to node 3.

B B = 1, RT = 4096, ST = 4736, CS = 5452, Delay = 640.0

5. Node 3 begins service at time ST=5478 and completes service at time 6194
and passes the token to node 1.

C B = 0, RT = 5120, ST = 5478, CS = 6194, Delay = 358.0

6. Node 1 has no requests and passes the token directly to node 2. Node 2
has a request waiting (RT=5632) and starts serving ST=6199, completes service
by CS=6915.

B B = 0, RT = 5632, ST = 6199, CS = 6915, Delay = 567.0

7. Before the completion of service at node 2 a new request arrives and is
buffered (B=l). Node 2 starts serving this request at time ST=6917 and
completes service at time CS=7633. At time 7633 node 2 has no further requests
waiting and the token is passed to node 3.

UNCLASSIFIED 23

DSTO-TR-0151 UNCLASSIFIED

B B = 1, RT = 6144, ST = 6917, CS = 7633, Delay = 773.0

During this rotation node 3 has run out of time and cannot send any requests.
Node 3 has a T_PRI of 3372000 ns against the T_OPR of 4000000 ns, which
means that on any given token rotation node 3 can only transmit if the token has
been utilised for less than 628 us (4000000 ns - 3372000 ns). The service time
for node 2 frames is 358 |is (4480 bytes), therefore node 3 can only be able to
transmit on those token rotations where node 2 transmits one or less frames. The
token is passed directly to node 1.

8. Node 1 receives the token and starts servicing its first batch. The first
frame in the batch is serviced at time ST=7637 and completes service at time
CS=8067. All frames in the batch are serviced in order, and the batch completes
service at time CS=11950. The token is passed to node 2.

A B = 0, RT = 6144, ST = 7637, CS = 8067, Delay = 1493.0
A B = 0, RT = 6144, ST = 8069, CS = 8499, Delay = 1925.0
A B = 0, RT = 6144, ST = 8500, CS = 8930, Delay = 2356.0
A B = 0, RT = 6144, ST = 8932, CS = 9362, Delay = 2788.0
A B = 0, RT = 6144, ST = 9363, CS = 9793, Delay = 3219.0
A B = 0, RT = 6144, ST = 9794, CS = 10224, Delay = 3650.0
A B = 0, RT = 6144, ST = 10226, CS = 10656, Delay = 4082.0
A B = 0, RT = 6144, ST = 10657, CS = 11087, Delay = 4513.0
A B = 0, RT = 6144, ST = 11088, CS = 11518, Delay = 4944.0
A B = 0, RT = 6144, ST = 11520, CS = 11950, Delay = 5376.0

9. Node 2 receives the token and starts service at time ST= 11964, completes
service at time CS=12680.

B B = 0, RT = 7680, ST = 11964, CS = 12680, Delay = 4284.0

10. Before the completion of service at node 2 a new request arrives and is
buffered (B=l). Node 2 starts serving this request at time RT=9728 and
completes service at time CS=7633. At time 13398 node 2 has no further
requests waiting and the token is passed to node 3.

B B = 1, RT = 9728, ST = 12682, CS = 13398, Delay = 2954.0

11. Node 3 misses out again.

12. Node 1 starts servicing at time ST=13403 and services until CS=17715 and
passes the token onto node 2.

24 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

A B = 0, RT = 12288, ST = 13403, CS = 13833, Delay = 1115.0
A B = 0, RT = 12288, ST = 13834, CS = 14264, Delay = 1546.0
A B = 0, RT = 12288, ST = 14266, CS = 14696, Delay = 1978.0
A B = 0, RT = 12288, ST = 14697, CS = 15127, Delay = 2409.0
A B = 0, RT = 12288, ST = 15129, CS = 15559, Delay = 2841.0
A B = 0, RT = 12288, ST = 15560, CS = 15990, Delay = 3272.0
A B = 0, RT = 12288, ST = 15991, CS = 16421, Delay = 3703.0
A B = 0, RT = 12288, ST = 16423, CS = 16853, Delay = 4135.0
A B = 0, RT = 12288, ST = 16854, CS = 17284, Delay = 4566.0
A B = 0, RT = 12288, ST = 17285, CS = 17715, Delay = 4997.0

13. This pattern of node 1 and node 2 services continues until the end of the
run. The lack of service for node three is entirely due to its lack of TRT (time-
outs). Services for node 3 become rare events (the next service time is
ST=30720) resulting in significant delays and high buffer overflow probabilities.

C B = 0, RT = 7168, ST = 30720, CS = 31436, Delay = 23552.0

It is important to note that there is an inter-frame delay on batch requests which
is caused by the FDDI card hardware (Ref. 8). This delay influences the
maximum throughput for batch requests and if not taken into account results in a
synchronous buffer overflow at high loadings. The delay is approximately 250 ns
per frame in this case.

UNCLASSIFIED 25

DSTO-TR-0151 UNCLASSIFIED

APPENDIX II

Fast Card Register Addresses

The tables in this appendix provide the addresses for the register calls required to
program the FDDI card to transmit requests. Function calls are listed as they would be
made in the Turbo C program.

Table II.1 FORMAC Commands

Command

FORMAC T_PRI register

Function Call

outport(0x431e)

Table II.2 DPC Commands

Command

Request synchronous send message

Request asynchronous send message

Reset all DPC locks

Load DPC data memory register (mdru)
with upper word

Load DPC memory data register (mdrl)
with lower word

Read upper word DPC mdru

Read Lower word DPC mdrl

Function Call

outport(0x5312, 0)

outport(0x5314, 0)

outport(0x5316, 3)

outport(0x530e, wordu)

outport(0x530c, wordl)

outport(0x530e, wordu)

outport(0x530c, wordl)

26 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

Table II.3 RBC Commands

Command Function Call

Load RBC rpxs register outport(0x6302, rpxs)

Load RBC rpxa register outport(0x6304, rpxa)

Load RBC rpr register outport(0x6306, rpr)

Load RBC mar register outport(0x6308, addr)

Load RBC wpx register outport(0x630a, wpx)

Load RBC wpr register outport(0x630c, wpr)

Load RBC start of receive fifo outport(0x6310, sar)

Load RBC end of receive fifo outport(0x6314, ear)

Enable node processor write with increment outport(0x631a, 0)

Enable node processor read with increment outport(0x631c, 0)

Table II.4 Incidental Commands

Command Function Call

Write 16 bits to buffer memory outport(0xl300, int)

Fast command register used MUX outport(0x0300, command)

Initialise Timer Interrupt outport(0x3a0, 0x0)

UNCLASSIFIED 27

DSTO-TR-0151 UNCLASSIFIED

28 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

A Fiber Distributed Data Interface (FDDI) Network Analyser

Alan Allwright, Reg Driver, Alan Wood

(DSTO-TR-0151)

DISTRIBUTION LIST

Number of Copies

AUSTRALIA

DEFENCE ORGANISATION

S&T Program
Chief Defence Scientist
FAS Science Policy
AS Science Industry External Relations
AS Science Corporate Management
Counsellor, Defence Science, London
Counsellor, Defence Science, Washington
Senior Defence Scientific Adviser
Scientific Adviser - Policy and Command
Navy Scientific Adviser
Scientific Adviser - Army

)
1 shared copy

Doc Control sheet
1

1 shared copy

Doc Control sheet
and 1 distribution list

Air Force Scientific Adviser
Director Trials
Director, Aeronautical & Maritime Research Laboratory

Chief Air Operations Division
Chief Maritime Operations Division
Chief Weapon Systems Division

Electronics and Surveillance Research Laboratory
Chief Information Technology Division
Chief Electronic Warfare Division
Chief Communications Division
Chief Land, Space and Optoelectronics Division
Chief High Frequency Radar Division
Chief Microwave Radar Division

1
1
1

Doc Control sheet
Doc Control sheet
Doc Control sheet

Doc
Doc
Doc
Doc
Doc

Research Leader Command & Control and Intelligence Systems
Research Leader Military Computing Systems
Research Leader Command, Control and Communications
Executive Officer, Information Technology Division Doc
Head, Information Architectures Group Doc
Head, Information Warfare Studies Group Doc
Head, Software Engineering Group Doc
Head, Trusted Computer Systems Group Doc
Head, Advanced Computer Capabilities Group Doc

Control
Control
Control
Control
Control

1
1
1

Control
Control
Control
Control
Control
Control

sheet
sheet
sheet
sheet
sheet

sheet
sheet
sheet
sheet
sheet
sheet

UNCLASSIFIED 29

DSTO-TR-0151 UNCLASSIFIED

Head, Computer Systems Architecture Group
Head, Systems Simulation and Assessment Group
Head, Intelligence Systems Group
Head Command Support Systems Group
Head, Exercise Analysis Group
Head Information Management and Fusion Group
Manager, Human Systems Integration Group
Head, C3I Systems Engineering Group
Mr J. Schapel, Information Management & Fusion Group
Mr A. Allwright, C3I Systems Engineering Group
Mr D. O'Dea, Information Managment & Fusion Group
Mr A. Wood, C3I Systems Engineering Group
Publications and Publicity Officer, ITD

Doc Control
Doc Control
Doc Control

1
Doc Control
Doc Control
Doc Control

1
1
1
1
1
1

sheet
sheet
sheet

sheet
sheet
sheet

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library DSTOS
Library, MOD, Pyrmont

Forces Executive
Director General Force Development (Sea),
Director General Force Development (Land),
Director General Force Development (Air),

1
1
2

Doc Control sheet

Doc Control sheet
Doc Control sheet
Doc Control sheet

Navy
SO (Science), Director of Naval Warfare, Maritime Headquarters

Annex, Garden Island, NSW 2000
Director, Naval Combat Systems Engineering

Army
ABCA Office, G-l-34, Russell Offices, Canberra

S&I Program
Defence Intelligence Organisation
Library, Defence Signals Directorate

B&M Program (libraries)
OIC TRS, Defence Central Library
Officer in Charge, Document Exchange Centre (DEC),
US Defence Technical Information Center,
UK Defence Research Information Centre,
Canada Defence Scientific Information Service,
NZ Defence Information Centre,
National Library of Australia,

Universities and Colleges
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering
Deakin University, Serials Section (M list)), Deakin University

Library, Geelong, 3217, (Research and Technical Reports only)
Senior Librarian, Hargrave Library, Monash University

Doc Control sheet

30 UNCLASSIFIED

UNCLASSIFIED DSTO-TR-0151

Librarian, Flinders University 1

Other Organisations
NASA (Canberra) 1
AGPS 1
State Library of South Australia 1
Parliamentary Library, South Australia 1

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers 1
Library, Chemical Abstracts Reference Service 1
Engineering Societies Library, US
American Society for Metals 1
Documents Librarian, The Center for Research Libraries, US 1

1

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and

Technology, US

SPARES 10 copies

Total number of copies: 64

UNCLASSIFIED 31

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION

DOCUMENT CONTROL DATA

2. TITLE

A Fiber Distributed Data Interface (FDDI)
Network Analyser

4. AUTHOR(S)

Alan Allwright, Reg Driver, Alan Wood

6a. DSTO NUMBER
DSTO-TR-0151

8. FILE NUMBER
N/A

6b. AR NUMBER
AR-008-138

9. TASK NUMBER
87/226.3

1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)

N/A
3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED
REPORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO
DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108

6c. TYPE OF REPORT
Technical Report

10. TASK SPONSOR
Navy

13. DOWNGRADING/DELIMITING INSTRUCTIONS

7. DOCUMENT DATE
February 1995

11. NO. OF PAGES
42

12. NO. OF
REFERENCES

12
14. RELEASE AUTHORITY

Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

APPROVED FOR PUBLIC RELEASE

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK
OFFICE, DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT

No limitation

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS
Fiber Distributed
Network analysers
Data Interface

The trend towards distributed Command and Control systems in Naval platforms necessitates the
provision of Local Area Network performance measurement tools and techniques. A special purpose
network analyser has been developed within ITD to measure the performance of a Fiber Distributed
Data Interface (FDDI) network. This paper describes the architecture and operation of the network
analyser.

This work has been conducted to support the Directorate of Naval Combat Systems Engineering in
their Local Area Network and distributed systems analysis.

Page classification: UNCLASSIFIED

