
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE ACTIVATION AND TESTING OF THE NETWORK

CODASYL-DML INTERFACE OF THE M2DBMS
USING THE EWIR DATABASE

by

Timothy J. Werre
and

Barry A. Diehl

June 1996

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

19960805 017
Dili AÜ %i L,t ,£;. , , s. } ■ ■,; ,; !i£Dl

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1996

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE
THE ACTIVATION AND TESTING OF THE NETWORK CODASYL-DML
INTERFACE OF THE M2DBMS USING THE EWIR DATABASE

6. AUTHOR(S)
Timothy J. Werre and Barry A. Diehl

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Electronic Warfare Integrated Reprogramming Database (EWIRDB) is the primary Department of Defense
source for technical parametric performance data on non-communications emitters. A problem of the EWIRDB is that the
data are represented in disjoint parametric tree models that are implementation oriented. The parametric tree with its
deceptive hierarchical structure, provides a poor modeling construct that obscures the intended semantics and
representation of the data, thus making the database difficult to use and understand from a users perspective. The problem
addressed by this thesis is to determine if the network model and the network interface of the Multi-Lingual, Multi-Model
Database Management System (M2DBMS) in the Laboratory for Database Systems Research at the Naval Postgraduate
School is capable of supporting a representative subset of the EWIRDB.

The primary goal of this thesis is to implement a representative portion of the EWIR database on the network
interface of the M2DBMS. In order to accomplish this goal, the following issues must be addressed: First, the network
interface must be activated and returned to its original operational state; second, the network interface must be tested to
determine its capabilities and limitations; and lastly, the design and specification of a network EWIR data model must be
completed prior to its implementation.

We successfully reactivated the network interface to its original operational state. However, testing revealed
significant limitations of the network interface. Due to these limitations, only the data definition portion of our proposed
design was fully implemented.

14. SUBJECT TERMS

Multi-Lingual and Multi-Model Database (M2DBMS)
Network CODASYL-DML Interface;
Electronic Warfare Integrated Reprogramming Database (EWIRDB);

17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY
CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Approved for public release; distribution is unlimited

THE ACTIVATION AND TESTING OF THE
NETWORK CODASYL-DML INTERFACE

OF THE M2DBMS USING THE EWIR DATABASE

Timothy J. Werre
Lieutenant Commander, United States Navy

B.S., University of Wisconsin, Madison, 1983

Barry A. Diehl
Captain, United States Army

B.S., The Pennsylvania State University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCD2NCE

Authors:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL
June 1996

, Thesis Advisor

&swM/e- (4k?u/r>
David K. Hsiao, Second Reader

^m^Lu£
Ted Lewis, Chairman

Department of Computer Science

in

IV

ABSTRACT

The Electronic Warfare Integrated Reprogramming Database (EWIRDB) is the

primary Department of Defense source for technical parametric performance data on non-

communications emitters. A problem of the EWIRDB is that the data are represented in

disjoint parametric tree models that are implementation oriented. The parametric tree with

its deceptive hierarchical structure, provides a poor modeling construct that obscures the

intended semantics and representation of the data, thus making the database difficult to

use and understand from a users perspective. The problem addressed by this thesis is to

determine if the network model and the network interface of the Multi-Lingual, Multi-

Model Database Management System (M2DBMS) in the Laboratory for Database Systems

Research at the Naval Postgraduate School is capable of supporting a representative

subset of the EWIRDB.

The primary goal of this thesis is to implement a representative portion of the

EWIR database on the network interface of the M2DBMS. In order to accomplish this

goal, the following issues must be addressed: First, the network interface must be

activated and returned to its original operational state; second, the network interface must

be tested to determine its capabilities and limitations; and lastly, the design and

specification of a network EWIR data model must be completed prior to its

implementation.

We successfully reactivated the network interface to its original operational state.

However, testing revealed significant limitations of the network interface. Due to these

limitations, only the data definition portion of our proposed design was fully implemented.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OVERVIEW 1

B. MOTIVATION 4

C. THESIS OBJECTIVES 6

D. ORGANIZATION OF THE THESIS 7

H. BACKGROUND 9

A AN OVERVIEW OF THE M2DBMS 9
1. A Multi-Back-end Database Computer 9
2. A Multi-Lingual, Mult-Model Database System 12
3. The Kernel Data Model and Kernel Data Language 15

B. THE NETWORK DATA MODEL AND ITS LANGUAGE 16
1. Basic Concepts and Structure 17
2. Data Definition in the Network Interface 23
3. Data Manipulation in the Network Interface 27

C. AN OVERVIEW OF THE EWIR DATABASE 36

HI. ACTIVATION OF THE NETWORK INTERFACE 41

A INITIAL STATE OF THE NETWORK INTERFACE 41

B. MODIFICATIONS AND CORRECTIONS 42
1. System Configuration and Directory Structure 42
2. Interface and Program Code Modifications 44

C. MASS LOAD FUNCTION 48

D. TESTING THE NETWORK INTERFACE 53
1. The Original PARTS Database 55
2. The PARTS2 Database 62
3. The PARTS3 Database 67
4. The PARTS4 Database 71
5. The PARTS5 Database 78
6. Summary 87

Vll

IV. IMPLEMENTATION OF THE EWIR DATABASE 89

A. EWIR DATABASE SPECIFICATION 90
1. The "Old" EWIR Data Model 90
2. The Conceptual EWIR Network Data Model 96
3. The Antenna Data 100
4. Transforming the Object-Oriented Model to the Network Model 103

B. DATA DEFINITION OF THE EWIR DATABASE 106
1. The Schema Listing 106
2. The Template File 109
3. The Descriptor File 109

C. LOADING THE EWIR RECORD DATA 112

V. CONCLUSION 117

APPENDK. NJMASS _LOAD() FUNCTION SOURCE CODE 121

LIST OF REFERENCES 125

INITIAL DISTRIBUTION LIST 129

vui

LIST OF FIGURES

1. M2DBMS Cross-Model Accessing Capability 3

2. The Multi-Back-end Database Computer 11

3. The Multi-Lingual and Multi-Model Database System 13

4. Multi-Lingual and Multi-Model Interface Design for M2DBMS 15

5. The Record Type PARTS 18

6. The PARTS Database 19

7. A Set Occurrence (S-SP) in the PARTS Database 20

8. Conversion of M:N Relationship to 1 :N Relationship 22

9. The Schema File: PARTSdmldb 24

10. The LEX and YACC Parsing Process 26

11. The Merging of Data into the EWIRDB 38

12. Current Configuration of the M2DBMS Network 43

13. Modification to the add_path() Function Call 45

14. The Original Query File: dmlreql 47

15. The Parameter "Loading_Data_Flag" 50

16. Terminating Character Added to the "dbid" Array 50

17. Record File (.r) Format 51

18. Original PARTS Database 54

19. PARTS Schema File: PARTSdmldb '. 56

20. PARTS Record Data File: PARTS.r 56

21. PARTS Template File: PARTS.t :., 57

22. PARTS Descriptor File: PARTS.d 57

23. PARTS Query File: PARTS_QUERIES 58

24. PARTS Query Access and Navigation 61

25. PARTS2 Database 62

IX

26. PARTS2 Schema File: PARTS2dmldb 63

27. PARTS2 Record Data File: PARTS2.r 63

28. PARTS2 Template File: PARTS2.t 64

29. PARTS2 Descriptor File: PARTS2.d 64

30. PARTS2 Query File: PARTS2_QUERIES 65

31. PARTS2 Query Access and Navigation 66

32. PARTS3 Database 67

33. PARTS3 Schema File: PARTS3dmldb 68

34. PARTS3 Record Data File: PARTS3.r 68

35. PARTS3 Template File: PARTS3.t 69

36. PARTS3 Descriptor File: PARTS3.d 69

37. PARTS3 Query File: PARTS3_QUERIES 70

38. PARTS3 Query Access and Navigation 70

39. PARTS4 Database 71

40. PARTS4 Schema File: PARTS4dmldb 72

41. PARTS4 Record Data File: PARTS4.r 72

42. PARTS4 Template File: PARTS4.t 73

43. PARTS4 Descriptor File: PARTS4.d 73

44. PARTS4 Query File: PARTS4_QUERIES 74

45. PARTS4 Query Access and Navigation 77

46. PARTS5 Database 78

47. PARTS5 Schema File: PARTS5dmldb 79

48. PARTS5 Record Data File: PARTS5.r 80

49. PARTS5 Template File: PARTS5.t 81

50. PARTS5 Descriptor File: PARTS5.d 81

51.PARTS5 Query File: PARTS5_QUERIES 82

52. PARTS5 Query Access and Navigation 86

53. Parametric Tree Structure [5] 92

54. The Pulsed/Continuous Wave (P/CW) Parametric Tree [3] 93

55. An Exploded View of the P/CW Tree [3] 94

56. Global View of the Conceptual Schema for the EWIRDB 97

57. Conceptual Schema of the S&TI Emitter [3] 99

58. Expanded View of the Antenna Data [3] 101

59. Enhanced View of the Antenna Data 102

60. Network Conceptual Schema 105

61. The EWIR Schema 107

62. The EWIR Schema (continued) 108

63. The EWIR Template File: TEWIR.t 110

64. The EWIR Template File: TEWIR.t (continued) 111

65. The EWIR Descriptor File: TEWIR.d 112

66. The EWIR Record Data File: TEWIR.r 114

XI

Xll

LIST OF TABLES

1. Basic CODASYL-DML Commands 29

2. Sample FIND Commands 30

3. Insertion and Retention Constraints 33

Xlll

XIV

ACKNOWLEDGMENTS

We would like to thank Dr. C. Thomas Wu and Dr. David K. Hsiao for their time

and guidance in the development of this thesis. Additionally, we would like to thank Tom

McKenna and Kevin Coyne for their technical assistance.

We also feel it is important to recognize the support of the staff at the Naval

Postgraduate School, particularly Mike Williams and Susan Whalen.

xv

XVI

I. INTRODUCTION

This thesis describes our completed efforts to activate and test the network

CODASYL-DML interface for the Multi-lingual, Multi-model Database Management

System (M2DBMS). Also, documented within this thesis is the implementation of a

representative portion of the Electronic Warfare Integrated Reprogramming Database

(EWIRDB). This introductory chapter provides an overview of the M2DBMS to include

the original motivation for the design and implementation of this system. Also discussed

in this chapter are the specific objectives and organization of this thesis.

A. OVERVIEW

Over the past thirty years, the design and implementation of database systems

from a software perspective has been virtually unchanged. The typical approach to the

design and implementation of a database system has been to define a data model and a

corresponding data language. The data model provides for the structure and the form of

the data to be stored in the database, as well as a collection of the types of generic

operations that are used to access the database. The part of the data model that allows

the specification of the database is referred to as the data definition capability of the data

model and the data manipulation strategy provides a means to specify database

operations that are used to access the stored data.

This approach to database system development supports databases that are

created using the single data model and supports applications that are written in the

single, corresponding, model-based data language. The result to this approach is a

proliferation of homogeneous, mono-lingual database systems that restrict the user to a

specific data model and its corresponding model-based data language.

In the Naval Postgraduate School's Laboratory for Database Systems Research, a

multi-database system prototype called M2DBMS (Multi-lingual, Multi-model DBMS)

has been researched and developed to overcome this restriction as mentioned above. The

M2DBMS system supports heterogeneous databases, each of which is based on a

different data model. The system executes transactions of the data language

corresponding to each data model supported. This system provides the user with the

ability to access and manage a large collection of databases, using several data models

with their associated data languages.

The databases currently implemented on the M2DBMS system include: Object-

oriented, relational, network, hierarchical, and functional. Accordingly, the system is

capable of executing transactions written in OO-DML, SQL, CODASYL-DML, DL/I

and DAPLEX. This system supports multiple databases not as a collection of separate

systems, but rather with a single kernel data model and language called the attribute-

based DBMS. All of the aforementioned heterogeneous databases are organized

internally on the basis of the kernel data model. Additionally, all of the heterogeneous

transactions are translated or "mapped" into their equivalent transactions in the kernel

data language. This non-traditional type of an approach leads to a better data sharing and

resource consolidation of heterogeneous databases. Furthermore, the multi-lingual,

multi-model approach provides for an effective cross-model accessing capability. This

capability enables a user, using a familiar data model and language, to access a database

created according to an unfamiliar model and language by further transformations and

translations between the models. These transformations and translations are transparent

to the user. For example, a relational database user can access a non-relational database

(i.e., object-oriented, network, etc.) using the inherit relational data transaction language,

SQL. This cross-model accessing capability is unique to the M2DBMS prototype and it

is this idea that captures the essence of integrating stand-alone databases into a unified,

enterprise database. Figure 1 illustrates the cross-model accessing capability.

An Attribute-Based Database User A Hierarchical Database User An O-O Database User

THE ATTRIBUTE-RASED
DATA MODEL A
LANCUAGE INTERFACE

THE HIERARCHICAL
DATA MODEL & DM
INTERFACE

(

AN ATTRIBUTE-
BASED DATABASE
SCHEMA ■> (

THE O-O DATA MODEL
& O-O DATA LANGUAGE
INTERFACE

A HIERARCHICAL
DATABASE
SCHEMA

»s&feasa

x y ANo-o v
1 [DATABASE 1

S \ SCHEMA /

iäasiri!ffifc£SGä:

A RELA TIONAL bA tABASB
SCHEMA FOR THE
HIERARCHICAL DA TABASE

A NETWORK
DATABASE
SCHEMA

THE NETWORK DATA
MODEL & CODASYL-DML
INTERFACE

)

) (

A RELA TIONAL DA TABASE
SCHEMA FOR THE O-O
DATABASE

A RELATIONAL
DATABASE
SCHEMA

)

THE RELATIONAL DATA
MODEL* SQL
INTERFACE

A Network Database User A Relational Database User

Figure 1. M2DBMS Cross-Model Accessing Capability.

B. MOTIVATION

Before the specific objectives of this thesis are addressed, we consider the

significance and motivation of the M2DBMS or the multi-lingual, multi-model database

system. Specifically, what are the benefits of a multi-lingual, multi-model database

system?

This is especially evident when considering large, corporate and government

institutions which often use a myriad of diverse database applications. Often, these types

of institutions use a variety of different types of applications using a multitude of database

models and languages. For example, four likely databases of one such organization may

include a personnel database (supported by a relational database), an inventory database

consisting of suppliers, parts and shipments (modeled by a network database), a

manufacturing process database (manipulating a functional database) and a product

assembly database consisting of assemblies, sub-assemblies and parts (maintained by a

hierarchical database). In this example, it is obvious that a single data model and data

language is not adequate; one data model and language may be appropriate for one

application but not for another one. Thus, a conventional database system supporting a

single data model and language is not ubiquitous enough to support the data management

requirements of institutions requiring large, diverse database applications.

An alternative to a conventional database system supporting a single data model

and language and the M2DBMS ideology is to implement several separate mono-lingual

database systems; however, there are some significant problems with maintaining and

using several separate mono-lingual databases. These problems include data sharing, data

duplication, resource consolidation and training of personnel. Data sharing becomes a

problem since the heterogeneous databases cannot communicate between each other,

therefore, all information must be maintained by each system (even though the same data

may already exist in another database system). Thus, storage capacity is squandered by

maintaining the same data in these separate databases. Data duplication is just this

problem described - the same data stored in different model-based databases. Data

duplication leads to data inconsistency problems that are created when one database is

updated and another database with the same data is not updated. Resource consolidation

is violated since hardware and software must exist for each separate system. This also

incurs unnecessary maintenance responsibilities and costs. Finally, personnel that are

proficient with one data model must be retrained to utilize another model effectively.

This makes it more difficult to move personnel between jobs and results in increased

training costs when moving personnel is necessary.

Obviously, if it were possible to establish a single data model and language as a

universal database standard, then the problems previously addressed would not exist.

However, the possibility of this occurring in the near future appears not likely. Although,

the relational model has become rather popular over the years, many of the older models

continue to persist. This is in a large part due to costs (personnel, training, software,

hardware etc.) associated with converting to a new system but also for reasons illustrated

by the example presented earlier, demonstrating the need for different models for

different applications. Also, with the recent development of the object model, current

trends seem to indicate that new data models will continue to emerge to meet the

demands of new applications.

In light of this discussion, one can conclude that the M2DBMS system, a multi-

lingual, multi-model database system offers a viable benefit over existing and alternative

database systems. It provides attainable solutions to the problems previously discussed.

First, data sharing and data duplication is essentially eliminated. This is contributed to

the fact that all associated data model and data language interfaces (i.e., object-oriented,

relational, network etc.) are based on a single kernel data model (using a kernel data

language - the Attribute Based Data Language - ABDL) that requires each database

language interface to store its data using the kernel data language. Likewise, resource

consolidation is optimized since there is only one physical system with a portion of the

software common to all interfaces, data models and languages. The cross-model

accessing capability eliminates any personnel retraining problems since it is this capability

that enables a user, using a familiar data model and language, to access a database

created according to an unfamiliar model and language.

By adding the necessary interface software, the M2DBMS system with cross-

model accessing capability accommodates for any number and type of data models and

languages while offering a database user access to a heterogeneous database as if it were

a homogeneous database system.

C. THESIS OBJECTIVES

There are three objectives to this thesis. The first objective is to activate and test

the network CODASYL-DML interface for the M2DBMS system. Although, the

network model interface was originally implemented in 1985, over the years, this

interface has become non-operational due to changes in hardware configurations,

software modifications, interface updates and lack of overall system maintenance.

Therefore, it is necessary to activate and test this interface thoroughly. Completion of

this objective is necessary prior to executing the next (second) objective of this thesis.

The second objective is to design and implement a data model for a subset of the

Electronic Warfare Integrated Reprogramming Database (EWIRDB) for the network

interface. This database is the primary Department of Defense (DoD) approved source of

electronic warfare (EW) data. Recently, a subset of the EWIRDB was implemented on

the object-oriented interface. To continue research in cross-model accessing capability, it

is necessary to first implement the EWIRDB in the various other data model interfaces.

The third and final objective of this thesis is to design, write and execute several

transactions (queries) in the CODASYL-DML format for the EWIRDB.

Research is ongoing to implement the EWIRDB in the network and relational

interfaces of the M2DBMS. Once completed, three operational interfaces (object-

oriented, network and relational) will exist that implement a subset of the EWIRDB.

Hence, fulfillment of this requirement will provide a solid foundation to gain further

progress in future cross-model accessing capabilities.

D. ORGANIZATION OF THE THESIS

In Chapter II of this thesis, background information is provided on the M2DBMS

(structure, design, layout and functionality); the network data model (basic concepts and

structure, data definition language and data manipulation language); and the EWIRDB

(overview and description). Chapter III describes the initial state of the network

CODASYL-DML interface coupled with program code modifications and corrections

associated with returning the interface to an operational state. Also discussed therein is

the results of testing the network interface. Chapter IV elaborates on the database

specification of the EWIRDB to include the theoretical network EWIR data model. Also

highlighted in this chapter is the data definition and record data of the EWIRDB.

Chapter V concludes the thesis by summarizing the findings and results of this thesis.

II. BACKGROUND

This chapter provides background information on three areas of interest. First, a

general overview of the M2DBMS is provided. This discussion briefly explains how the

M2DBMS is configured from both a hardware and software perspective. Second, an

overview of the network data model and the CODASYL-DML (query) language is

described. Third, this chapter introduces the Electronic Warfare Integrated

Reprogramming Database (EWIRDB), specifically its role, format and recent

implementation of this database in the object-oriented interface of the M2DBMS.

A. AN OVERVIEW OF THE M2DBMS

There are essentially three integral components of the M2DBMS that highlight its

design: A multi-back-end based database computer, a multi-lingual, multi-model

database system and the kernel data model and kernel data language. The remainder of

this section will examine each of these aspects separately but within the context of the

overall system.

1. A Multi-Back-end Database Computer

The M2DBMS was originally designed for optimal performance, resource

consolidation and a data sharing capability. The essence of the design was to overcome

some of the problems and upgrade issues typical of a more traditional database system

design. Nonetheless, it was designed to run on standard, off-the-shelf hardware

networked on UNIX work stations. From a hardware and architectural point of view, the

cornerstone of the system involved the use of multiple back-ends connected in a parallel

configuration.

The purpose of the back-ends is to provide the storage and processing functions

of the system. Each back-end consists of a single general-purpose workstation that

contains three data drives. One disk drive, a smaller Winchester-type, supports paging;

another small disk accommodates for the meta-data (schema); and a larger hard disk

supports the base data.

The base data of any particular database is clustered on the system back-ends.

Clustering divides the base data across the back-ends in mutually exclusive sets. This

kind of a distribution utilizes an efficient clustering algorithm that facilitates parallel

access to the data and the execution of database transactions.

The parallel connection between each back-end is via an ethernet LAN using a

point-to-point communication protocol for one-to-one communication between separate

back-ends and a broadcast communication protocol for one-to-many back-ends [10].

The user interface as well as communication with the back-ends is supported by a

controller (front-end). The controller is a also a single general-purpose workstation like

that used by the back-ends. The controller is connected to the back-ends via a

communication bus and to the computer science department's LAN via a "gateway."

The controller receives database transactions from the users and broadcasts these

transactions to the back-ends (communication is executed through the communication

bus via sockets). The back-ends in turn, return the results to the controller for post

processing and routing to the users. Figure 2 illustrates a simple depiction of this

architecture.

The M2DBMS architecture based upon the use of multiple parallel back-ends

provides for increases in performance and capacity. The advantages offered to gain

performance by increasing the number of back-ends are known as response-time

reduction and response-time invariance [18]. Response-time reduction conveys that if

additional parallel back-ends are added to the system, a reduction in response time will

occur that is directly proportional to the number of back-ends added. Likewise, the

response-time invariance refers to the idea that if the size of the database is increased and

if a proportional number of back-ends is added then the response time is invariant. [19]

10

Controller

(front-end)

Back-end

Back-end

Meta data disk

Meta data disk

Back-end □ Meta data disk

Base data disk

Base data disk

Base data disk

Figure 2. The Multi-Back-end Database Computer.

11

Through this ability to add any number of back-ends to the M2DBMS, greater

performance gains and storage capacity are acquired. This capability can be implemented

with minor modifications to the software. Thus, unlike some of the more traditional

database systems; M2DBMS supports a scalable architecture without costly modifications

or replacements to gain overall system performance and efficiency.

2. A Multi-Lingual, Multi-Model Database System

The architecture of the multi-back-end database computer establishes a solid basis

for the M2DBMS software. The base operating system underlying the software layer is

UNIX Berkeley Software Distribution (BSD).

There are five language interfaces (not including the attribute-based data model

and language) implemented on the system, however, only three are currently operational

(object-oriented, network and relational). The language interface software for each

language interface transforms its respective data model and data language into the

attribute-base data model and language. This capability allows the users to create,

maintain and manipulate databases of different data models and languages on one system,

thus implies the multi-lingual, multi-model designation.

For each language interface, there are four program modules. Figure 3 (the

shaded area) displays the four modules of a given language interface. These modules are

the Language Interface Layer (LIL), the Kernel Mapping System (KMS), the Kernel

Formatting System (KMS) and the Kernel Controller (KC). Each of the modules on the

M2DBMS has been coded using the C programming language. A description of the

general interaction among these modules with the subsequent system is provided in the

following four paragraphs.

Figure 3 shows a diagrammatic representation of the interaction between the User

Data Model (UDM) and the User Data Language (UDL) and the four modules of the

language interface as well as the interaction between the Kernel Database System (KDS)

and the four modules. The KDS is comprised of the Kernel Data Model (KDM) and the

12

(JUDM) I

o
o

Pixxpram
Module

Data.
Model

Data.
Language

UDM User Data Model
UDL User Data Language
LIL Language Interface Layer
KMS Kernel Mapping System
KC Kernel Controller
KFS Kernel Formatting System
KDS Kernel Database System
KEM Kernel Data Model
KDL Kernel Data Language

TI Test Interface

Figure 3. The Multi-Lingual and Multi-Model Database System.

Kernel Data Language (KDL). The Test Interface (TI) within the KDS provides the

means in which the four modules of a language interface can interact with the KDS. To

begin, the user first interacts with the system through the LIL, using a chosen UDM to

issue transactions written in a corresponding model-based UDL. The LIL then forwards

these transactions to the KMS. The KMS is a compiler that transforms the UDM and the

UDL into a form that can be mapped to the KDS. This implies that the KMS can serve

one of two purposes. It either transforms a UDM based database definition (database

schema) to an equivalent database definition based on the KDM, or when the user

13

specifies the execution of a transaction, the KMS translates the UDL to an equivalent

transaction in the KDL.

The first purpose is referred to as data definition transformation. This occurs

when a new database is created. Upon successful transformation of a UDM database

definition, the KMS forwards the resulting KDM database definition to the KC. The KC

then passes the KDM database definition to the KDS where the new database is defined

on the system. Once, the KC finishes processing the KDM database definition, it, in turn

notifies the user through the LIL that the database definition has been processed and

loaded.

The second purpose of the KMS is referred to as data-language translation.

This process occurs when the KMS translates transactions written in a specific UDL into

equivalent KDL transactions. This is performed in a manner similar to that described

with the first purpose of the KMS. The KMS forwards the transactions to the KC which

in turn passes the transactions to the KDS for execution, once this execution is complete,

KDS sends the results to the KC in KDM format. The KC then forwards the results from

the KDS to the KFS. The KFS reformats the KDM results into the appropriate UDM

format. The KFS then displays the results through the LIL in the correct UDM form.

Figure 4 shows a depiction of the various model-language interfaces as

implemented on the M2DBMS. From this figure one can ascertain the commonality in

the software design inherent with each language interfaces. One of the main goals when

originally implementing M2DBMS was to achieve a high degree of uniformity and

consistency across the various language interfaces. Therefore, as each language interface

was designed, uniformity and consistency was maintained throughout the specification of

the program structure for each language interface (in terms of the program modules), the

communication paths of a language interface (between program modules), the data

structures for each language interface and the global variables of a language interface [7].

Hence, to construct and implement a new user data model and language does not require

14

OBJECT-ORIENTED

HIERARCHICAL

RELATIONAL

f —.r «-,

s\—ux

L ^ IMS V yn—u\^

X KFS >^

Figure 4. Multi-Lingual and Multi-Model Interface Design for M2DBMS.

a redesign of the entire database system. This concept proved quite effective with the

recent implementation of the object-oriented interface.

3. The Kernel Data Model and Kernel Data Language

The attribute-based data model (ABDM) and the attribute-based data language

(ABDL) are the kernel data model (KDM) and kernel data language (KDL) of the

M DBMS. The first question one may ask concerns which data model and language

should be selected as the KDM and KDL for the M2DBMS. Selecting the proper data

model and language for the KDM and KDL was a key decision in the development of the

M2DBMS. Before addressing those factors that contributed to the selection of ABDM

and ABDL as the KDM and KDL, it is important to review the original requirements of

the M2DBMS.

15

The original requirements for the M2DBMS design included optimal performance

as well as resource consolidation and a capability for data sharing. In essence, a system

to support many data models and their languages on a single system (i.e., a multi-lingual,

multi-model system) without a significant degradation in performance (as compared to

the more traditional single model systems). The underlying premise to meet these

requirements was to store all data in a single kernel (i.e., the kernel database system). To

accomplish this, the M2DBMS uses various mapping functions and algorithms to map the

different data models and languages into a single data model and language. Thus schema

definitions and transaction requests developed for the traditional data models and their

respective languages are either transformed or translated into equivalent Schemas of the

kernel data model or equivalent transactions in the kernel data language for processing in

the kernel database system.

In light of the previous discussion, the following factors established the basis for

choosing the AB DM as the kernel data model for the M2DBMS:

• The capability to transform and translate (using mapping) the other traditional

languages such as SQL, CODASYL-DML, and DL/I for processing.

• The separate modeling of base data and meta data.

• The clustering of base data into mutually exclusive sets for storage on the

back-ends.

• The ability for parallel access to the clustered data.

B. THE NETWORK DATA MODEL AND ITS LANGUAGE

Historically, the network model's structures and language constructs were defined

by the CODASYL (Conference on Data Systems Languages) committee, so it is often

referred to as the CODASYL network model. Originally, the network model and

language were presented in the CODASYL Data Base Task Group's (DBTG) 1971

16

report; this is sometimes referred to as the DBTG model [6]. This report placed the

network model in the public domain, and commercial implementation began shortly

thereafter. Development and standardization efforts by ANSI (American National

Standards Institute) continued throughout the late 1970's and early 1980's. Any

references made to the concepts, structures and characterizations of the CODASYL

network model herein are based on the Data Description Language Committee's (DDLC)

1981 Journal of Development. The term used in the remainder of this thesis is network

model or network data model rather than COD ASYL model or DBTG model.

1. Basic Concepts and Structure

Networks can generally be represented by a mathematical structure called a

directed graph. Directed graphs are constructed from points or nodes connected by

arrows or edges. In the context of the network data model, the nodes can be thought of

as data record types, and the edges can be thought of as representing relationships (one-

to-one and one-to-many). Thus, the network data model represents data in network

structures of record types connected in one-to-one (1:1) or one-to-many (1:N)

relationships. This type of structure serves useful in the representation of many

hierarchical type relationships.

As previously mentioned, there are two basic structures in the network model,

records and sets. Data is stored in records and each record consists of a group of related

data values. Records are classified into record types, where each record type describes

the structure of a group of records that store the same type of information. Each record

type is given a name and format (data type) for each attribute (data item) in the record

type. Figure 5 shows the record type PARTS for the PARTS database. Note the

PARTS database is used throughout this thesis. This was the original database

implemented on the network interface. References [1] and [2] refer to this simple

database, thus to provide consistency our research and examples also incorporate the

PARTS database.

17

PARTS

PNO PNAME COLOR WEIGHT | CITY

Attributes Format

PNO CHARACTER6

PNAME.... CHARACTER20

COLOR... CHAJIACTER6

WEIGHT... FIXED4

CITY CHARACTER 15

Figure 5. The Record Type PARTS.

A typical database application has numerous record types, from a few to a few

hundred. Representing the various relationships between the records are set types. [6]

A set type expresses a 1 :N relationship between two record types (note that the

reference to set does not imply the usual mathematical definition of a set). A set type

consists of the following:

• A set type name

• An owner record type

• A member record type

These conventions are illustrated in the PARTS database in Figure 6. This figure

shows the general form of the data structure. This type of a diagram is called a

18

SUPPLIERS (SA)

SNO SNAME STATUS CITY

PNAME

PARTS (PA)

COLOR WEIGHT CITY

SHIPMENTS (SP)

SNO PNO QTY

Figure 6. The PARTS Database.

"Bachman diagram" in honor of Charles Bachman, who proposed the idea of data

structure diagrams to capture the structure of set types among record types.

The symbols used in this diagram (Figure 6) are as follows: First, sets are

denoted by the arrow between record types, with the arrow pointing to the member

record type (the "many" or N in the 1 :N relationship). Second, each set type name is

enclosed in the oval. This convention will be used during the specification of the EWIR

database.

The PARTS database has two sets: The suppliers-shipments (S-SP) and the

parts-shipments (P-SP). For the set, S-SP, the suppliers record type is the owner record

and shipments record type is the member record. Accordingly, the parts record type is

19

the owner record and the shipments record type is the member record for the P-SP set.

In this example, the 1 :N relationship incorporates the possibility that zero, one or many

(zero or more) shipment records may be related to a given supplier record; or zero or

more shipment records may be related to a given parts record. For the S-SP relationship,

this implies that at any given time, a supplier may have, say, 15, one or zero shipments in

progress. So, in the database itself, there will be many set occurrences (or set instances)

corresponding to a set type. At this juncture, its important to emphasize an important

restriction when defining network databases, namely, a set cannot be defined with the

same record type (i.e., a record type cannot be both the owner and member record types

in a set). Furthermore, no two set occurrences of a set may have records in common.

This qualification highlights the pairwise disjointness of set occurrences of a given set

type. Figure 7 illustrates a set occurrence for the set type, S-SP of the PARTS database.

S2 JONES 10 PARIS

S2 PI 300

S2 P2 400

Figure 7. A Set Occurrence (S-SP) in the PARTS Database.

20

There are several representations to illustrate a set occurrence but the one depicted in

Figure 7, where the records of the set occurrence are shown linked together by pointers,

is a generally accepted convention that closely resembles the structure in the

implementation.

Additionally, there are situations where a relationship is strictly 1:1, such as with a

truck and driver (for each truck there is only one driver). This implies that a record of

the member record type can appear in only one set occurrence. Thus we must restrict

each set occurrence to having a single member record. The network model does not

provide for automatically enforcing this constraint, so it should be monitored that this

constraint is not violated when a member record is inserted into a set occurrence.

Also note that the PARTS database provides an example that demonstrates the

difference between the network data model and the hierarchical data model. Notice that

the shipments record type is a member record type of two sets: S-SP and P-SP. In the

hierarchical data model, a record type cannot be a member of two different sets.

However, this is permitted in the network model, thus providing an additional

representational capability. Essentially the hierarchical data model is a subset of the

network model.

Thus far, 1 :N and 1:1 relationships have been discussed. However, the question

still remains how many-to-many (M:N) relationships are represented in the network

model. An M:N relationship cannot be directly represented in the network model. Some

M:N relationships can be converted to two 1:N relationships. Consider the M:N

relationship between STUDENT and CLASS on the left side of Figure 8 (note the M:N

relationship is "diagrammatically" denoted as a line with an arrowhead on each end).

When two record types, such as STUDENT and CLASS are connected in a M:N

relationship, a dummy record (also called a linking record type) can be used. This linking

record type uses at least the keys from STUDENT and CLASS records. Other attributes

may be added at the discretion of the designer. Figure 8 (right side) also shows the

conversion of the M:N relationship to a 1:N relationship in the network model.

21

STUDENT STUDENT CLASS

CLASS

LINK

S-ID C-ID

M:N Relationship Converted to 1:N Relationship

Figure 8. Conversion of M:N Relationship to 1:N Relationship.

Other M:N relationships in an initial design may represent design errors often

resulting in the loss of information. Therefore, careful examination is required to ensure

the proper relationships exists or that unnecessary relationships are eliminated between

record types. Creating artificial records such as linking (dummy) record types inherently

requires additional storage and processing requirements, but the network model is now in

a more simple form that satisfies the original network model standards [20].

The next two sections of this thesis describe the languages by which the network

model is implemented. These languages describe how the data structures are specified,

how the data is stored, and how data is manipulated. The Data Definition Language

(DDL) is used to define the schema and the Data Manipulation Language (DML) is used

to manipulate the data or perform operations on the data.

22

2. Data Definition in the Network Interface

The network DDL provides the constructs to define a schema for a database. The

schema may be defined as the description of a database. The schema declares all the

record types, set types, attribute definitions and various constraints (when operations are

performed) to the network database. The schema does not produce a database, but

describes what one should look like. Figure 9 shows the schema for the PARTS

database. The file name for this schema on the M2DBMS is PARTSdmldb. The line

numbers are not part of the original file but will be used for illustration purposes below.

The schema in Figure 9 is described as follows:

• Line 1. assigns the schema a name (supplied by the user).

• Lines 2.-15. are defined as the record section which provides specifications of

each record structure, its data items (attributes), and its location. Each record

type (Lines 2., 7., and 12.) is identified by name (i.e., SA, PA, SP). For each

record type, the component data items or attributes are defined. The record

type SA has SNO, SNAME and CITY as its data items. Each data item has a

specific format that indicates the data type and length (i.e., CHARACTER

10).

• Lines 16.-27. are defined as the set section. Once all the records have been

defined, then the sets may be defined. Definition of a set includes naming the

set type and identifying the owner and member record types of the set. For

example, the set type SSP (line 16.) has SA as its owner and SP as its member

record type.

• Lines 3., 8., 19.-21., and 25.-27. Are related to specifying various constraints

on the system. These constraints are applicable when operations are

performed on the sets. These operations include insertion, deletion and

update operations on sets. Since these operations are performed using the

23

data manipulation language, they will be discussed in context of the network

CODASYL-DML in the next section of this thesis (section 2).

Line 28., the dollar symbol identifies the end of file.

1. SCHEMA NAME IS PARTS;
2. RECORD NAME IS SA;
3. DUPLICATES ARE NOT ALLOWED FOR SNO;
4. SNO ; CHARACTER 10.
5. SNAME ; CHARACTER 10.
6. CITY ; CHARACTER 10.
7. RECORD NAME IS PA;
8. DUPLICATES ARE NOT ALLOWED FOR PNO;
9. PNO ; CHARACTER 10.

10. PNAME ; CHARACTER 10.
11. CITY ; CHARACTER 10.
12. RECORD NAME IS SP;
13. SNO ; CHARACTER 10.
14. PNO ; CHARACTER 10.
15. QTY ; FIXED 4.
16. SET NAME IS SSP;
17. OWNER IS SA;
18. MEMBER IS SP;
19. INSERTION IS AUTOMATIC
20. RETENTION IS FIXED;
21. SET SELECTION IS BY VALUE OF SNO IN SA;
22. SET NAME IS PSP;
23. OWNER IS PA;
24. MEMBER IS SP;
25. INSERTION IS AUTOMATIC
26. RETENTION IS FIXED;
27. SET SELECTION IS BY VALUE OF PNO IN PA;
28. $

Figured The Schema File: PARTSdmldb.

*2T The overall concept for the network data definition process on the M DBMS is as

follows. First, since all physical data resides in the kernel; the network data model must

be mapped (mapping implies translating from one data model to another data model) to

24

its corresponding Attribute-based Data Model (ABDM). This mapping process is

somewhat complicated, since the correspondence between network data constructs (i.e.,

owner records, member records, sets and set occurrences) and attribute-based data

constructs becomes intricate when we encode the bi-directional aspects of the network

data into the attribute-based data [7]. The key aspect of the mapping process is the

retention of the COD ASYL notions of records and sets. The COD ASYL notion of

records and sets is not the same as the attribute-based model's notion of records and sets.

As a result of this problem, it was necessary in the original design to introduce an

additional facility to individually identify every record in the database. Thus, the attribute

"DBKEY' was added to uniquely identify each record. Furthermore, for each network

record type, every set for which that record type is a member must be represented. This

is accomplished by using a special keyword. The keyword "MEM" which proceeds the

set names (i.e., MEMSSP for the SSP set in the PARTS database), catalogs the set name

and the set occurrence of which a particular record is a member. This keyword is also

used to refer to the owner record of a particular set occurrence. References [2] and [7]

describe the various transformations required to map the network data model to the

attribute-based data model in detail. The mapping from the network data definition

language to the ABDM occurs through the Kernel Mapping System (KMS) via a parser-

translator. The KMS parser-translator was programmed using two compiler generation

tools provided by UNIX, the LEX and YACC. The LEX (Lexical analyzer generator) is

a program generator designed for lexical processing of character input streams. Given a

regular-expression description of the input strings, LEX generates a program that

partitions the input stream into tokens and provides these tokens on demand to the

parser. YACC (yet-another-compiler compiler) is a program generator designed for the

syntactic processing (using a finite-state automaton) of a tokenized input stream. [7]

Figure 10 illustrates the LEX and YACC parsing process.

25

Lexical specifications in regular expressions

Input stream LEX

Parsed tokens

J
Acceptable states
with valid tokenized
stream of data

YACC J
Syntactical
specification
inBNF

Grammar and/or syntax errors

Figure 10. The LEX and YACC Parsing Process.

When the user specifies the filename of a schema (i.e., PARTSdmldb) to create a

new database, the transaction list of network data definition statements is sent to the

KMS via a program loop. This loop in essence traverses the transaction list, calling KMS

for each data definition statement in the list. Once the LEX receives a data definition

statement, the tokenized version of the definition is passed to the compiler generated by

YACC. This compiler takes the tokenized version and verifies it against the set of

CODASYL-DML grammar rules which describe the network model's grammar (i.e., a

Backus-Naur Form (BNF) representation of CODASYL-DML). As the compiler

generated by YACC parses the tokenized database definition, it creates a database

schema in the network model form for future conversion into the kernel data model

language, ABDL. [7] Other than entering the schema file name, the process just

described is transparent to the user. The schema file that the user specifies (i.e.,

PARTSdmldb) is a "source" schema. The source schema is prepared by the user or a

programmer. It is this schema that must be converted into a computer readable form

26

(i.e., an "object" schema) [22]. The object schema is the one created by the compiler

generated by YACC.

3. Data Manipulation in the Network Interface

Once the database is designed, created and defined using the DDL, the data

manipulation language (DML) enables the user to manipulate the data or perform

operations on the data.

The DML used for the M2DBMS network interface is the CODASYL-DML.

The CODASYL-DML is a procedural language that is embedded in a host language. The

CODASYL-DML is rather extensive, but the M2DBMS incorporates only a small subset

of the language commands. Reference [22] provides an in-depth review and description

of the CODASYL-DML. The syntax for the COD ASYL statements represented on the

M2DBMS was derived from reference [22] and the original CODASYL and DBTG

literature referenced earlier.

The CODASYL-DML operators process records one at a time, unlike the

relational DMLs where operators process entire relations at one time. The operations in

a CODASYL database are performed by "navigating" through a tree, network or set

occurrences.

Before the actual command statements of the DML are described, it is important

to first review the concept of currency. The concept of currency is analogous to the

notion of "current position." It is a generalization of the familiar notion of current

position within a file. Currency determines the access point for the "navigation" through

the network. The starting point for the navigation usually begins with the current record

of the run unit. The run unit is the current transaction being executed.

The basic idea is that for each application being run on the system (i.e., for each

run unit), a table of currency indicators is maintained. A currency indicator is an object

whose value at any given time is either null (meaning that it currently identifies no record)

or the address of a record in the database, commonly called a database key. A currency

27

indicator is actually a pointer which points to the record or set most recently accessed by

that run unit. The database keys are values generated by the DBMS that uniquely

identify each individual record in the database. [23]

Essentially currency indicators function as place markers. When a command is

issued and a specific record is found, its "place" is marked by a currency indicator. When

a second command is issued, the DBMS refers to the currency indicator to determine

which record is to be acted upon. The type and function of the currency pointers are as

follows:

• Current of the run unit: As stated previously, run unit refers to the user's

program (transaction) currently being executed. Current of the run unit

contains the address of the record, or set instance most recently accessed by

the application program.

• Current of the record type: There is a currency indicator for each record type,

the address of the record of that type most recently accessed by the program

is maintained.

• Current of the set type: A currency pointer that contains the address of the

most recently accessed record of a given set type. A separate currency

pointer is maintained for each set type. The pointer may point to a record of

either the owner or member type depending on which was mostly recently

accessed.

These pointers just discussed are updated automatically as accesses in the

database take place. A good way to vision currency indicators is as variables in a table.

The basic commands used by the CODASYL-DML support the primary database

operations. This thesis will briefly discuss the basic commands implemented on the

M2DBMS. These commands are classified as navigational, retrieval and update (for

28

records and sets) commands. Table 1 illustrates how the commands are grouped by type

for purposes of discussion in this thesis.

TYPE COMMAND
Navigation FIND
Retrieval GET
Record Update STORE

ERASE
MODIFY

Set Update CONNECT
DISCONNECT

Table 1. Basic CODASYL-DML Commands.

The FIND command is the key command of the CODASYL-DML. This

command establishes the currency of the run unit, and may also be used to establish the

currency of the record type and set type. FIND commands select and locate a desired

record or instance of a set, thus the reason it is referred to as a "navigational" type

command. A GET command must then be used to actually retrieve the data (the current

occurrence) and return the results to the user. There is a wide variety of FIND

commands. Table 2 illustrates the various types of FIND commands. This is only a

sample of the more common FIND commands.

The general syntax or format of the FIND command is as follows:

=> FIND ANY <record name> [USING <field list>]

The optional parts of the command are denoted by the brackets ([...]) and the names

supplied by the user are indicated by the angle brackets (<.. .>).

29

TYPE USE REMARKS

FIND ANY Identifies the first record
occurrence of any record
type in the network
database.

Can be used without
regard to currency. Often
used to set a new currency
for the database.

FIND FIRST (LAST) Identifies the first (last)
member record of a set
occurrence.

Currency is set to the
newly found record.

FIND NEXT (PRIOR) Used after the FIND FIRST
(LAST) command to step
through the member records
of the set occurrence.

Resets the currency after
each instance-at-a time
operation.

FIND OWNER Identifies the owner record
occurrence of the current
record occurrence of a
particular set type.

Sets the current run unit.

Table 2. Sample FIND Commands.

The CODASYL-DML also provides two commands which are not typical

database commands. These commands are the GET and MOVE commands. As

previously mentioned, the GET command retrieves the current occurrence and returns

the result to the user. The GET command compliments the FIND commands and is

issued following the FIND command to retrieve the record occurrence as set by the

FIND command. The GET command can obtain access to an entire record or it can

obtain access to only specific data items (attributes) in the record type (i.e., GET items

IN <record type>). The MOVE command is not in the original CODASYL-DML but

has been added to the implementation. It is used to initialize the values (i.e., assignment

statements) of data item names for record types. The MOVE command precedes various

other commands in the CODASYL-DML.

The record update commands (see Table 1) include the STORE, ERASE and

MODIFY commands. The STORE command is an insert operation used to place a new

record occurrence into the database (the STORE command is not currently operational in

30

the network interface). This is executed by first constructing a sequence of MOVE

commands to create the "record image." Once the record image has been created, then

the proper set occurrence for the record must be selected by the DBMS. This is specified

by an insertion constraint specified in the schema definition. This constraint is the

"INSERTION IS AUTOMATIC" clause (see Figure 9, lines 19. & 25.). This clause tells

the DBMS that the new member record must be automatically connected to an

appropriate set occurrence when the record is inserted.

The set occurrence in which the new record is stored is determined by the SET

SELECTION clause specified in the schema definition (file) for the database (see Figure

9, lines 21. & 27.). There are three options available for specifying SET SELECTION:

• SET SELECTION BY APPLICATION: The application program

(transaction) is responsible for selecting the correct occurrence; therefore, the

new member record is automatically connected to the current set occurrence.

• SET SELECTION BY VALUE: The system selects the proper occurrence

based on data item values specific to the owner of the set occurrence desired.

In other words, specify an attribute of the owner record type whose value is

used to specify a set occurrence by identifying the owner record of the set.

• SET SELECTION BY STRUCTURAL: The system selects an occurrence

by locating the owner record with a specific item value equal to the value of

that same item in the record (member record) being stored.

The last two options stated above (SET SELECTION BY VALUE and SET

SELECTION BY STRUCTURAL) must have the constraint DUPLICATES ARE NOT

ALLOWED for the specified field in the owner record (see Figure 9, lines 3. & 8.). This

is to ensure a unique owner record is identified and thus a unique set occurrence.

The ERASE command is a deletion operation used to remove records from the

network database. There are essentially two forms of this command. The ERASE and

31

ERASE ALL commands. The ERASE command removes a single record from the

current record type of the run unit. The ERASE ALL command removes each member

record of the set. It is important to note that for the ERASE command, the current

occurrence is removed only if the record is not an owner record occurrence in an non-

empty set. However, for the ERASE ALL command, this restriction does not hold,

therefore it is possible to destroy all connections between records.

The MODIFY command is used to modify values of data items (attributes) in a

record occurrence. This includes modifying all data items or any subset of the data items

in the record type. This command may also be used to change the membership of a

record occurrence from one set occurrence to another, as long as they are of the same set

type.

The set update commands (see Table 1) are the CONNECT and DISCONNECT

commands. The CONNECT command is used when the user wants to manually insert a

record occurrence into the database. When the CONNECT command is used, an

insertion constraint (option) must be specified in the schema definition. This constraint is

the "INSERTION IS MANUAL" clause. The record to be inserted is the current record

of the run unit. The set occurrence in which the record is inserted is determined in the

same manner as the STORE command.

The DISCONNECT command is used when the user wants to manually remove a

record occurrence from a set. This command disconnects the current record of the run

unit from the occurrence of the specified set that contains the record. The record

occurrence still remains in the database but it is not a member of any specified set. In

order for this to occur, a retention constraint must be specified in the schema definition.

This constraint is the "RETENTION IS OPTIONAL" clause which specifies that a

member record can exist on its own without being a member in any occurrence of a set.

In Figure 9 (lines 20. & 26.), the constraint "RETENTION IS FIXED" is used. This

constraint specifies that a member record cannot exist on its own. Table 3 provides a

summary of the insertion and retention constraints and their allowable combinations.

32

-Retention Constraints

Insertion Constraints -l OPTIONAL MANDATORY FIXED

MANUAL

Application program
handles inserting
member record into set
occurrence.

USE: CONNECT &
DISCONNECT

NOT VERY

USEFUL

NOT VERY

USEFUL

AUTOMATIC

DBMS inserts a new
member record into a
set occurrence
automatically.

USE: CONNECT &
DISCONNECT

DBMS inserts a new
member record into
a set occurrence
automatically.

DBMS inserts a
new member record
into a set
occurrence
automatically.

Table 3. Insertion and Retention Constraints.

The overall concept for the network CODASYL-DML process on the M2DBMS

is essentially the same as the DDL process. As with the DDL, the CODASYL-DML

statements (commands) must be mapped to ABDL requests (this translation process

exceeds the scope of this thesis, but reference [2] provides a complete data language

translation from CODASYL-DML to ABDL). This mapping process occurs through the

KMS via the same parser-translator used for the processing of DDL statements.

However, rather than transforming DDL operations, the KMS, in this case, translates

DML operations to equivalent ABDL requests. Furthermore, the input strings to the

LEX are for transaction specifications rather than DDL specifications. Once the

transactions have been specified, the tokenized transaction is passed to the compiler

generated by YACC and verified against the network grammar. As the compiler parses

the tokenized transactions, the mapping of the CODASYL-DML transactions to ABDL

occurs. During the parsing and verifying of the transaction against the grammar, the

KMS also does a great deal of semantic checking of the transaction. This includes

33

checking to see if all of the different identifiers referenced by the transaction are defined.

These identifiers include, but are not limited to, the record type names and the data item

(attribute) names in the network language interface. Another semantic check determines

if type consistency is maintained. For example, if "QTY = 'Monterey'" is part of a

transaction for the PARTS database, obviously there is a type conflict between the

identifier, QTY and the string 'Monterey'. To accomplish the semantic checks, the KMS

utilizes the network database definition that was stored during the database loading. At

the completion of this phase, the compiler generated by YACC outputs a list of one or

more ABDL transactions that are equivalent to the input CODAS YL-DML transaction.

This list of ABDL transactions is then passed back to the LIL, which forwards the list to

the KC for execution. [7] Ultimately, the transaction ends in the kernel formatting

system (KFS) where the output of the transaction is displayed to the user.

Since the M2DBMS is a research project, it does not contain all the functionality,

characteristics, and operations expected in a full-scale commercial product. Only the

essential operations for retrieval, deletion, modification and insertion of records and sets

are implemented in the network interface. Some of the high-level characteristics that are

not supported in the network interface include:

• The ability to define subschemas (views)

• The ability to specify security constraints

• The conditional operational type

• Various operations that support concurrency control

A comprehensive review of the network data model, the DDL and the DML is

beyond the scope of this thesis. The intent of this section was to provide a brief

introduction to the network data model and illustrate the basic concept and appearance of

the DDL and DML. Having familiarity with the network DDL and DML will facilitate

34

fiature discussion of the development of the EWIR database subset described in Chapter

IV.

To formally evaluate the network model is not an objective of this thesis.

However, a few observations that may indicate the strengths and weaknesses of the

network data model may prove advantageous, especially when considering the design of

the EWIR database. It will be left to the reader to formally evaluate the network data

model or to conduct a comparative assessment with the various other data models. As

with most design ventures, picking the proper tool (i.e., data model) for the right job is an

important consideration. Therefore, depending on the design requirements and analysis,

the network model may prove to be the most applicable data model. Summarized below

are some general observations of the characteristics of the network model.

• Networks can be very complicated (complex structure).

• 1:N relationships between two record types are established by explicit

definition of set type. Records in each set type are connected by physical

pointers, thus records are physically connected when they participate in the

same set occurrence.

• Essentially two modeling constructs: The record type and the set type.

• Data manipulation tends to be "navigational" in the sense that a user must

access a database by explicit traversal through a tree or network, rather than

stating the properties of the data of interest.

• Transactions are very tightly constrained by the structure of the record links,

and inter-record links tend to be expressed at a very low level, thus an

experienced programmer is sometimes required to specify new transactions.

• Data is arranged in a fairly "fixed" structure.

• Inter-connections among data items are not easily molded into a variety of

semantic interpretations.

35

• Provides for a strong capability for protecting the integrity of sets (i.e.,

insertion and retention constraints).

• Data duplication is sometimes necessary to model multiple networks and to

support M:N relationships.

• Concept of currency can be complex and the user (or programmer) should

have an understanding of currency indicator tables to avoid errors.

• May yield good performance on a comparative scale.

• Network data model appears to be suited for database systems characterized

by large size, well-defined repetitive queries, well-defined transactions and

well-defined applications. If this is true, then extensibility may be a problem

(i.e., difficult to extend with an unanticipated future application, thus possibly

requiring an entire database system reorganization).

Despite whatever conclusions can be drawn from the aforementioned

observations, it is interesting to note that because of a large number of DBMSs that were

implemented using the network data model, a very high percentage of the databases

currently used for day-to-day production in industry and government subscribe to the

network model [24].

C. AN OVERVIEW OF THE EWIR DATABASE

As stated in Chapter I, the implementation of a representative portion of the

Electronic Warfare Reprogramming Database (EWIRDB) using the network interface is

one of the objectives of this thesis. However, before the actual data model and overall

implementation of the EWIRDB using the network interface are discussed in Chapter IV

of this thesis, it is necessary to first provide a brief introduction and overview of the

EWIRDB.

36

To date, a representative portion of the EWIRDB has been implemented using the

object-oriented interface of the M2DBMS [4]. Reference [3] provides an in-depth study

of the design (conceptual and logical) and analysis of the EWIRDB for the object-

oriented implementation. Likewise, reference [4] details the implementation of the

EWIRDB on the M2DBMS. Currently, work is continuing to implement a portion of the

EWIRDB in the network (this thesis) and relational (research group Edwards/Scrivener)

interfaces of the M2DBMS.

"The EWIRDB is the primary Department of Defense (DoD) approved source for

technical parametric and performance data on noncommunications emitters and

associated systems [5]." Its primary purpose is to provide the most current and accurate

source of information for reprogramming US electronic Warfare (EW) combat systems

such as radar warning receivers, combat identification systems, electronic jammers, anti-

radiation missiles and various other target sensing systems.

Originally, the EWIRDB was conceived to support software reprogramming of

EW systems employed by US combat forces. The EW (combat) systems as mentioned in

the preceding paragraph, serve to enhance wartime survivability and effectiveness. Now,

the EWIRDB not only supports reprogramming, but serves the additional purposes of

supporting EW systems research, development, test, and evaluation; modeling and

simulation; acquisition; and training. [5]

The analysis required to populate the EWIRDB and support reprogramming

includes specific, in-depth parametric data on radars, jammers, navigational aids,

identification friend or foe (IFF) equipment, and a variety of other noncommunications

electronic emitters. Also required to support reprogramming includes an emphasis on the

assessments of wartime reserve modes and electronic protection capabilities of "foreign"

emitters that may degrade EW system performance and thus, the overall survivability and

effectiveness of combat forces. In order for EW to be successful, it requires an efficient

system and database to collect, store, analyze, maintain and update data. Data may be

obtained either directly from measurement or indirectly via electronic intelligence. The

37

National Air Intelligence Center (NAIC) maintains the latest data, in-depth and specific,

on EW systems of the United States, friendly forces, and non-friendly forces. It is this

data that is stored in the EWIRDB.

The EWIRDB was developed initially by the US Air Force in the 1970's but has

evolved into a joint product. The EWIRDB is now the product of merged data modules

from three separate organizational components: The National Security Agency (NSA);

the Scientific and Technical Intelligence (S&TI) community, under the jurisdiction of the

Defense Intelligence Agency (DIA); and the United States Noncommunications Systems

Database (USNCSDB), supported by the Air Force Information Warfare Center

(AFIWC).

The NSA provides observed data (from their "kilting" database) that results from

the direct measurement and analysis of an emitters electromagnetic signature following

the signal intercept. This data assists in describing an emitter's performance. The S&TI

community contributes parametric data assessments to the EWIRDB. Systems analysts

of this community consider all available sources of information and then estimate or

derive the total operational capability of an emitter (derived parametric data in the

EWIRDB are referred to as assessed data). The USNCSDB maintains data on US

owned and operated noncommunications emitters. Analysts of this agency provide inputs

based on evaluation of system specifications (also assessed data). Figure 11 depicts the

merging of data from the three sources into the EWIRDB. [3]

38

Sources of the Data

I
Kilting Database

(NSA)
Maa&MmaiEaamssHSSgEBgg&P

S&TI CENTERS

(DIA)

USNCSDB

(AFIWC)
' .^HciibjaiUtikthmiJtmHMUmMi!

SYSTEMS

ANALYST

ASSESSED DATA

OBSERVED DATA

EWIRDB

(NAIC)
ASSESSED DATA

Figure 11. The Merging of Data into the EWIRDB.

Although the EWIRDB can prove to be effective in its implementation, users of

the present database system mutually agree that there are difficulties in reading and

querying the EWIRDB. These difficulties are related to:

• A problematic data model. Data is represented in a hierarchical tree structure

that obscures the users view and meaning of the data.

• A complex format where assessed and observed codes are not standard for all

record types.

• A database described in terms of the physical data structure.

This discussion provided a general overview of the EWIRDB. In Chapter IV of

this thesis, a more detailed analysis of the EWIRDB will be provided.

39

40

III. ACTIVATION OF THE NETWORK INTERFACE

One of the main objectives of this thesis was to determine the current operational

state of the network CODASYL-DML interface. If the interface was found to be non-

operational, then the goal was to troubleshoot, diagnose, debug and isolate the errors to

return the system to its original state. Once the interface was returned to its original

state, the next objective was to test the limitations of the interface. This chapter details

our findings in accomplishing the above stated goals. The contents of this chapter

include: The initial state of the M2DBMS and the network interface; the modifications

and corrections implemented to reinstate the network interface; the implementation of a

mass load function; and the test findings, resulting in the limitations of the system.

A. INITIAL STATE OF THE NETWORK INTERFACE

When our research began, the network interface was not operational. The only

operational interface was the object-oriented interface. The object-oriented interface was

recently implemented with research ongoing when the research began for this thesis [4].

The failure of the network interface to operate was apparently discovered when the

M2DBMS was modified for operation on the SUN system in June 1993, and was

annotated in the "main" function of the ti.c file (outer shell that runs the main menu) [16].

No documentation was included as to why the interface did not work, who had

discovered that it was not working or how it was tested to determine it was not working.

This proved to be an ongoing theme for the network interface. A general lack of

documentation (i.e., who, what, when, where, why and how) made for a slow and

cumbersome process to return the network interface to an operational status.

The original design and implementation of the Network interface was conducted

by Emdi, B. [1], and Wortherly, C. [2]. Their work provided the basis for the design,

implementation and a general overview of the "implementational" program code at the

41

time of their implementation. Reference [1] clearly stated that the Kernel Controller

(KC) module was never tested due to an upcoming hardware change to the M2DBMS.

In lieu of testing the KC with the Test Interface (TI), software stubs were created to

perform the same function as the actual TI procedure. No further documentation could

be found that indicated if or how the network interface was tested, and to what extent the

interface was operational. Furthermore, upon comparing the original code included in

reference [1] with the current code implemented on the system, it became increasingly

more obvious that modifications were made to the original code with little or no

documentation. The entire M2DBMS has been ported to different configurations several

times since the network interface was originally implemented in 1985 [1]. Research

conducted by Watkins, S. [16] describes one such porting (Watkins' research proved

valuable in understanding the system configuration and communication). However, since

the writing of reference [16], additional hardware modifications have been implemented

making this reference somewhat obsolete.

B. MODIFICATIONS AND CORRECTIONS

This section begins with a description of the current M2DBMS configuration in

conjunction with an overview of the initial directory structure. Also documented within

this section are the various interface and program code modifications implemented to

return the network interface to an operational state.

1. System Configuration and Directory Structure

The current configuration for the M2DBMS is with the front-end code residing on

the front-end (controller), dbl 1, and the back-end code on dbl3 (back-end). Currently,

there is only one back-end that is operational. The terminal dbl2 is configured as the

server for the M2DBMS but also has the potential to be configured as another back-end.

Due to a security issue with the Naval Postgraduate School's LAN (December 1995), the

42

M2DBMS network was isolated from the Computer Science Department's LAN. In

February 1996, the terminal dblO was added as a "gateway" to allow remote access (via

ftp and rlogin) to the M2DBMS network from the Computer Science Department's LAN.

Figure 12 illustrates the current network configuration for the M DBMS.

Gateway to LAN >. Computer Science
Department's LAN

Controller (front-end) >-

Server Back-end

Figure 12. Current Configuration of the M2DBMS Network.

The code in the "greg" directory (the top directory in tree structure containing all

the files and directories for the system) on the front-end (db 11) is considered to be the

master copy for all the system files and directories of the M2DBMS. To prevent

"contamination" of the "original" front-end code on dbll and to support our research

43

efforts coupled with the research conducted by Edwards & Scrivener, two new complete

directories were created ("werre" & "edwards") containing all the "original" files and

directories supported in the "greg" directory. Additionally, the back-end (dbl3) required

the creation of two new directories to support the back-end executable files and trace

files. These directories are named "be.werre" and "be.edwards" This ensured

interference would not occur between research groups during troubleshooting and

testing. The UserFiles directory is the only common directory used by each language

interface. A complete system tape back-up was also completed prior to any

modifications being made on the system. Upon completion of our research and that of

Edwards & Scrivener, the modified files and directories will be ported back to the master

copy and tested. This master copy will remain in the "greg" directory.

2. Interface and Program Code Modifications

The initial attempt to run the M2DBMS network interface was unsuccessful.

Reference [8] proved invaluable in providing information to assist in debugging,

compiling, reconfiguring front and back-ends, changing versions and file organization. It

should be noted, however, that hardware and configuration changes have occurred since

the writing of reference [8] making it somewhat inaccurate. Figure 12 illustrates the

current configuration vice those of reference [8].

The first problem encountered in operating the network interface was a

modification made to the add_path() function described in [16]. The add_path()

function is used to add the correct directory path to the file the user wishes to access

(i.e., all schema, descriptor, template and data files are located in the UserFiles directory

vice the current run directory). This function was changed in 1993 but not modified in

every data model and language interface. This change required the passing of an

additional parameter in the add_path() function call and is illustrated in Figure 13.

44

Add_path(FileName) char location[40]

add_path(location, FileName)

(Original version) (Modified version)

Figure 13. Modification to the add_path() Function Call.

This change was made to every instance of the add_path() fUnction in the Dml

directory. Additionally, the DATAAREA variable in the licommon.h file was modified

to reflect the correct path to the UserFiles directory.

The function call create_net_db_list() was found inactive (i.e., commented out)

in the main function of the ti.c file. This comment was removed to activate this function

call. This enabled the network interface to initialize and allowed troubleshooting of the

Iil.c file.

When tested, numerous run time errors were detected in the lil.c file which is the

main language interface shell for the network interface. A run time error in the function

call n_process_old() contained within the lil.c file was created by the following lines of

code:

=> DBL_S$Use(dml_info_ptr->dmi_curr_db.cdi_dbname);

=> TI_S$AssignDB(cuser_net_ptr-^ui_uid.dml_info_ptrdmi_curr_db.dci_dbna

me);

These lines of code were made inactive to enable the network interface to run. No

apparent negative effects were detected.

45

Also, a run time error in the function call dml_show_schema() was corrected by

making the second part of the while loop inactive (delimited by the comment symbols /*,

*/), as shown below:

=> while (rec_ptr)/*&&(strcmp (rec_ptr->nrn_name,BLANKSPACE)!=0)) */

Several other minor modifications in the lil.c file corrected the remaining run time

errors. The menu instructions for the M2DBMS network interface could now be

followed without run time errors to the extent of executing transactions (queries). This

included the loading of the PARTS database schema which is further discussed in the

final section ("Testing the Network Interface") of this chapter. Note, however, that data

has not yet been loaded. The files for the PARTS database were found in the UserFiles

directory. The schema was defined in the PARTSdmldb file. This schema loaded

correctly and created the corresponding descriptor and template files (PARTS.t &

PARTS.d) for the PARTS database. Because of certain system limitations all descriptor

and template files must be "manually" copied (or moved) to the back-end, and placed in

the UserFiles directory on dbl3. Further discussion of the schema, template, descriptor

and record files will be provided in the final section of this chapter.

In all prior research work conducted on the network interface, the issue of

loading the data was never discussed. The object-oriented and relational interfaces

employ a mass load utility (i.e., mass_load() function) that allows for the direct loading

of data onto the back-end into the Kernel Database System (KDS) in ABDL format.

However, the network interface lacked this utility. From our research, it appears that the

data was originally intended to be loaded by executing various STORE (one of the

commands of the network CODASYL data manipulation language) transactions. The

first five network CODASYL-DML queries of the original query file (see Figure 14) for

the PARTS database appear to indicate that the STORE command was an attempt to

store the necessary data on the back-end prior to executing further transactions.

46

1. MOVE BUY1 TO SNO IN SA

MOVE DEC TO SNAME IN SA

MOVE MONTEREY TO CITY IN SA

STORE SA

8

2. MOVE BUY2 TO SNO IN SA

MOVE IBM TO SNAME IN SA

MOVE SANJOSE TO CITY IN SA

STORE SA

e
3. MOVE BUY3 TO SNO IN SA

MOVE NCR TO SNAME IN SA

MOVE ATLANTA TO CITY IN SA

STORE SA

e
4. MOVE PP1 TO PNO IN PA

MOVE MMU TO PNAME IN PA

MOVE MONTEREY TO CITY IN PA

STORE PA

6

5. MOVE PP2 TO PNO IN PA

MOVE DATABUS TO PNAME IN PA

MOVE SANJOSE TO CITY IN PA

STORE PA

e

11. MOVE BUY1 TO SNO IN SP

FIND ANY SP USING SNO IN SP

GET SP

e
12. MOVE BUY1 TO SNO IN SP

MOVE PP1 TO PNO IN SP

MOVE 300 TO QTY IN SP

FIND ANY SP USING SNO IN SP

MODIFY SP

$

Figure 14. The Original Query File: dmlreql.

47

Numerous attempts and modifications were implemented to execute these transactions

but these attempts proved unsuccessful, often resulting in run time errors. Thus the need

for a "data load" utility still remained. Although implementing a mass load function or

some form of a "data-load utility" was not originally considered an objective of this

thesis, it was obvious that this functionality was needed, especially to complete further

testing of this interface and to implement the EWIRDB.

C. MASS LOAD FUNCTION

Since loading data could not be accomplished by using transactions that

attempted to STORE data, a mass load function was implemented to accomplish this

task. The mass load functionality already existed for the object-oriented and relational

interfaces. Upon reviewing the program code for the mass load function underlying these

interfaces, it was decided to model the mass_load() function for the network interface

after the object-oriented interface.

The new mass load function for the network interface was designated as

n_mass_load(). It is found in the file mass_Id.c in the Lil directory. Detailed code for

this function can be obtained in Appendix A of this thesis. In addition to adding the

mass_ld.c file, the following significant modifications were made to the code:

• Relocated the commdata.def file to the Lil directory. This file contained the

struct definitions used in the n_mass_load() function.

• Added the mass load option to the user interface menu in the

n_process_old() function contained within the lil.c file.

• Added an additional parameter to the dml_check_rcquests_left() function.

Since the n_mas$_load() function calls the dml_check_requests_left()

function located in the chreq_left.c file in the KC directory, it was necessary

to add another parameter to the dml_check_requests_left() function call.

48

This modification was necessary to differentiate between calling this function

for loading data versus retrieving data. Figure 15 depicts the parameter

LoadingDataFlag which is passed as TRUE when calling the

dml_check_requests_left() function from the n_mass_load() function. This

prevents the dml_check_requests_left() function from calling the

n_fde_results function, thus alleviating any run time errors when loading the

data. The LoadingJData_Flag is set to FALSE when called from the

dml_execute() function to allow filing the results of the FIND request.

Until now, all of the modifications in implementing the n_mass_load() function

were local to the DmI directory. Therefore, none of the other interfaces were affected by

these modifications. However, when trying to run the mass load function a problem was

encountered in the open_db_fde() function contained in the utilities.c file found in the

version/COMMON directory (this file is used by all the interfaces). This function takes

a database file name (stored in a character array called dbid); determines the type of file

extension (i.e., -.r, -.t, or -.d); removes the extension and passes the database filename

minus the extension back to the calling function. The problem existed in the dbid array

after the file extension was removed. The array would be "contaminated" with an

unwanted carriage return at the end of the array. This was remedied by forcing a

terminating character to the end of the array once the file extension was removed (see

Figure 16). This correction must be made to the master "version" in the "greg"

directory. This change has been tested with the other interfaces with no adverse affects.

49

dml_check_requests_left (file_ptr, owner_key_flag, Loading_Data_Flag)
struct net_file_info *file_ptr;
int *owner_key_flag;
int Loading_Data_Flag;

{ ...

msgjype = TI_R$Type ();
switch (msg_type) {

case CHReqRes:
TI_R$ReqRes (&rid, response);
done = last_response_chk ();
if (response[l] = CSignal) /* no response from backend */

results_are_not_returned = TRUE;

/* if request is a Find and no response received, the record doesn't exist */

if((dml_info_ptr->dmi_operation==FindReq)&&
(results_are_not_returned==TRUE))

printf("\n Error-THIS RECORD DOES NOT EXIST IN THE DBASE
\n\n");

else if (Loading_Data_Flag == TRUE) /* if just loading data */
printf("Loading Data \n");

else{ /* if retrieving data, need to file results */
t= n_file_results(file_ptr, owner_key_flag);
if(t> file_ptr->nfi_max_chars)

file_ptr->nfi_max_chars = t;

}
break;

Figure 15. The Parameter "Loading_Data_FIag".

Strncpy(dbid, fptr->base, len-2) /* removes last 2 characters from file name */

dbid[len-2]='\0'; /* adds terminating character to end of filename */

Figure 16. Terminating Character Added to the "dbid" Array.

50

To use the mass load function the user must first generate a template file and

descriptor file (.d & .t) using the DDL (data definition language) compiler. These files

are necessary because they provide the environment that will maintain the relationships

between the attribute value pairs. The user must then manually create a record file (.r

extension) that contains the record data in the proper sequence as determined by the

template file created by the DDL compiler when loading the schema file. The format for

the record file can be seen in Figure 17.

PARTS3

@
Pa
1 Ppl Mmu Monterey
2 Pp2 Databus Sanjose
3 Pp3 Harddrive Salinas
@
Sp
4Buyl Ppl 100 1
5 Buy2 Pp2 50 2
6 Buy3 Pp3 75 3
7Buy3Ppl 50 1
8 Buy2 Ppl 100 1
$

Figure 17. Record File (.r) Format.

The mass_load() function is a process consisting of four steps. First, the

function will open the "record" file (.r file) and check for a match between the database

name in the file and the name of the current executing database. The function will then

check to see if the database name in the file is in agreement with the database name

currently executing. These must agree or the function will abort. If the names match,

then the data read is recognized as the template name. The function will then open the

51

template already on the back-ends using the "other pointer process" embedded within the

function.

Next, the mass_load() function will read the data from the record file one by

one. With each read, the function will read an attribute name from the template file. The

matching of a data element and an attribute name will create the attribute value pair. As

pairs are created, the function creates an INSERT statement in the attribute data

language for each individual item read. This processing continues until the ampersand

(@) is encountered. The ampersand symbol acts as the demarcation between templates.

When encountered, the function will stop processing and read the next template.

Processing continues until the dollar ($) symbol is encountered. The dollar symbol marks

the end of the file.

Once the end of file is encountered, the mass_load() function passes the

INSERT request statements to REQP in the Kernel System. The REQP receives these

INSERT statements throughout the TI and checks each statement for proper format and

syntax. If all of the statements pass the error checking, the INSERTS are executed and

completed. [9]

During our testing, it was discovered that all data must be entered with the first

letter capitalized and all additional letters in lower case. The reason for this is because of

the function fix_up_ABDL_req() found in the Kc directory. For example, the following

transaction is used to find any SA record that has a SNO of BUY 1:

MOVE BUY1 TO SNO IN SA

FIND ANY SA USING SNO IN SA

GET SA.

52

This transaction produces the following request message:

[RETRIEVE ((TEMP-SA) and (SNO - BUY1)) (SNO, SNAME, CITY, DBKEY) BY

DBKEY]

Before being sent to the back-end to retrieve the requested data, the message is

modified by the function fix_up_ABDL_req() to produce the following message:

[RETRIEVE ((TEMP - Sa) and (SNO - Buyl)) (SNO, SNAME, CITY, DBKEY) BY

DBKEY]

The reason for this modification is not really known. We can only assume that

this was done to ensure consistent format of the data in the transactions. Additionally, if

the data were able to be loaded via STORE transactions vice the mass_load() function,

the data stored in the back-end would be in this format and therefore consistent

throughout.

It was also found that only alphabetical characters are permitted as both data

values and attribute names (no dashes or underscores). This made readability of

attributes and data somewhat confusing since you could not separate words.

D. TESTING THE NETWORK INTERFACE

Now that the interface is operational and data can be loaded, the capabilities of

the interface were investigated. It should be noted that our goal in the testing phase was

to determine operational limitations, not necessarily to follow on and identify and correct

the code that caused these limitations. Therefore our discussion is from the users

viewpoint by way of determining what "types" of Schemas can be realistically used and

53

the limitations of these Schemas. Correcting, modifying or expanding the capabilities is

left for follow-on research.

We discovered that the only database developed for the interface was the PARTS

database referenced in [1] and [2] and illustrated in Figure 18. How or if this interface

was tested remains unknown. Our testing strategy was to determine if several basic

transactions (queries) could be performed on several variations of the PARTS database.

The commands used for the queries were the "Find Any" command for an individual

record, the "Find Member Record" command to find the member record within the

current set, and the "Find Owner" command to find the owner record in the current set.

These basic queries allow us to: Verify accessing a record at a given "level" (level refers

to the nesting level of a specific record type within a diagrammatic network schema); to

navigate "downward" in the record structure hierarchy to access a record in a set; and to

navigate "upward" to find the owner of a record in a set.

Figure 18. Original PARTS Database.

54

The next five subsections describe our test findings as a result of testing the

aforementioned queries on different variations of the PARTS database. First, the original

PARTS database was tested and subsequently four different versions of this database

were evaluated. Each subsection illustrates a diagrammatic representation of the

database (schema) in conjunction with its associated schema file, record data file,

template file, descriptor file, query file, and a query access and navigation diagram.

1. The Original PARTS Database

We began our testing with the original PARTS database as depicted in Figure 18.

The schema file, record data file, template file, descriptor file, and query file associated

with the PARTS database are shown in Figures 19, 20, 21, 22, and 23 respectively. The

schema file, PARTSdmldb already existed in the UserFiles directory. The template file

and the descriptor file were also available in the UserFiles directory and are recreated

every time the "PARTSdmldb" schema is loaded. Unless the schema file is modified,

the template and descriptor files are only moved to the back-end UserFiles directory

once. The template file is necessary in assisting the user in developing the properly

formatted record file that contains the data for the database. The record file for the

original PARTS database is the PARTS.r file. The queries used for testing the PARTS

database are located in the query file named PARTS_QUERIES. Note that the numbers

identifying each query in the query file are for illustration purposes and are not part of the

actual query file (PARTS_QUERIES). This remains true for all subsequent query files.

Queries 1, 2 and 3 were executed properly indicating that each record could be

accessed directly. Queries 4 and 5 were used to test navigating from owner records in

SA and PA to set member records in SP (navigating downward). Both of these queries

were successful. Queries 6 and 7 were used to determine if the owner could be found for

a record in SP that belonged to the set(s) SSP and/or PSP. Query 6 ran successfully but

query 7 failed.

55

SCHEMA NAME IS PARTS;
RECORD NAME IS SA;

DUPLICATES ARE NOT ALLOWED FOR SNO;
SNO ; CHARACTER 10.
SNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS PA;
DUPLICATES ARE NOT ALLOWED FOR PNO;

PNO ; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SP;
SNO ; CHARACTER 10.
PNO ; CHARACTER 10.
QTY ; FIXED 4.

SET NAME IS SSP;
OWNER IS SA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SNO IN SA;

SET NAME IS PSP;
OWNER IS PA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF PNO IN PA;

Figure 19. PARTS Schema File: PARTSdmldb.

PARTS
e
Sa
1 Buyl Dec Monterey
2 Buy5 Jan Sanjose
3 Buy2 Oct Sanjose
4 Buy4 MAR Sanjose
5 Buy3 Mar Salinas
@
PE i

6 Ppl Mmu Monterey
7 Pp2 Databus Sanjose
8 Pp3 Harddrive Salinas
e
Sp
9 Buyl Ppl 100 1 6
10 Buy2 Pp2 50 3 7
11 Buy3 5 Pp3 75 5 8
12 Buy2 Ppl 50 3 6
13 Buy2 . Ppl 100 3 6
$

Figure 20. PARTS Record Data File: PARTS.r.

56

PARTS
3
5
Sa
TEMP s
DBKEY i
SNO s
SNAME s
CITY s
5
Pa
TEMP s
DBKEY i
PNO s
PNAME s
CITY s
7
Sp
TEMP s
DBKEY i
SNO s
PNO s
QTY i
MEMSSP
MEMPSP

Figure 21. PARTS Template File: PARTS.t.

Figure 22. PARTS Descriptor File: PARTS.d.

57

MOVE BUY2 TO SNO IN SA
FIND ANY SA USING SNO IN SA
MOVE 50 TO QTY IN SP
FIND SP WITHIN SSP CURRENT USING QTY IN SP
GET SNO IN SA
@
MOVE PP1 TO PNO IN PA
FIND ANY PA USING PNO IN PA
MOVE 100 TO QTY IN SP
FIND SP WITHIN PSP CURRENT USING QTY IN SP
e
MOVE BUY3 TO SNO IN SP
FIND ANY SP USING SNO IN SP
FIND OWNER WITHIN SSP
@
MOVE BUY3 TO SNO IN SP
MOVE PP3 TO PNO IN SP
MOVE 150 TO QTY IN SP
MOVE BUY3 TO SNO IN SA
MOVE PP3 TO PNO IN PA
STORE SP
@
MOVE BUY6 TO SNO IN SA
MOVE JUL TO SNAME IN SA
MOVE MADISON TO CITY IN SA
STORE SA
@
MOVE BUY1 TO SNO IN SA
MOVE MADISON TO CITY IN SA
FIND ANY SA USING SNO IN SA
MODIFY CITY IN SA
@
MOVE BUY1 TO SNO IN SA
FIND ANY SA USING SNO IN SA
GET CITY IN SA
@
MOVE 100 TO QTY IN SP
FIND ANY SP USING QTY IN SP
GET SNO, QTY IN SP
@
MOVE PP1 TO PNO IN SP
FIND ANY SP USING PNO IN SP
FIND OWNER WITHIN PSP
$

Figure 23. PARTS Query File: PARTS_QUERIES.

58

To determine the cause of failure a script file of the debugging output was

examined. To explain the failure, it is necessary to review the format of the data stored in

the SP record. The SP record consists of the following attributes as determined by the

schema and template files:

DBKEY

SNO

PNO

QTY

MEMSSP

MEMPSP

its own unique dbkey

character attribute

character attribute

fixed attribute (integer)

dbkey for the owner record in the SSP set

dbkey for the owner record in the PSP set

The MEM attributes are the key attributes when conducting a query searching for

the owner record of the SP record being evaluated. They tell you the unique DBKEY of

the owner record of the SP record being evaluated.

Query 6 searches for the record in SP which has a SNO of Buy3. As a result the

following record is found:

DBKEY 11

SNO Buy3

PNO Pp3

QTY 75

MEMSSP 5

MEMPSP 8

Once this record is retrieved the system determines the DBKEY for the owner record in

the SSP set. The system correctly generates the following two retrieve messages:

59

[RETRIEVE ((TEMP = Sp) and (SNO = Buy3)) (SNO, PNO, QTY, MEMSSP,

MEMPSP, DBKEY) BY DBKEY]

[RETRIEVE ((TEMP = SA) and (DBKEY = 5)) (SNO, SNAME, CITY)]

The first message finds the SP record with SNO of Buy3 and the second message

uses the MEMSSP value found from that retrieve message to generate the second

retrieve message which finds the SA record with a DBKEY = 5. This correctly retrieves

the following results:

[SNO Buy3 SNAME Mar CITY Salinas ?]

Query 7 finds the first record in SP which has a PNO of Ppl. As a result, the

following record is found:

DBKEY 9

SNO Buyl

PNO Ppl

QTY . 100

MEMSSP : 1

MEMPSP : 6

Once this record is retrieved the system should find the DBKEY for the MEMPSP set.

However, the system generates the following two retrieve requests:

[RETRIEVE ((TEMP = Sp) and (PNO = Ppl)) (SNO, PNO, QTY, MEMSSP,

MEMPSP, DBKEY) BY DBKEY]

60

[RETRIEVE ((TEMP = PA) and (DBKEY = 1)) (PNO, PNAME, CITY)]

As you can observe, the first retrieve message is correct and it finds the record as shown

above, however, the second retrieve message is incorrect. Instead of using the MEMPSP

DBKEY value of 6, it incorrectly uses the MEMSSP DBKEY value of 1. Figure 24

summarizes where successful data access could be made in the PARTS database and

where navigation was possible.

PA

SP

► Access

Find owner record of V

current record in set \

A
i

\ ▼
\ Find member

*---- of set

Figure 24. PARTS Query Access and Navigation.

61

2. The PARTS2 Database

Further testing was conducted by reversing the position of the records PA and SA

as shown in Figure 25. This was accomplished by reversing their positions in the schema

file illustrated in Figure 26. This also reverses the order in which the attributes MEMSSP

and MEMPSP are located in the SP record. This new database was named PARTS2.

The schema file, record data file, template file, descriptor file, and query file associated

with the PARTS database are shown in Figures 26, 27, 28, 29, and 30 respectively.

Queries equivalent to those used in the original PARTS database yielded identical results.

The MEM DBKEY attribute value that is located first in the SP record is the only one

used when an "owner" query is executed. This verifies that when more than one MEM

attribute belongs to a record, the system always reads the first value even if it is not the

correct attribute value (DBKEY) for the MEM set that the query is searching for. Figure

31 illustrates where successful data access could be made in the PARTS2 database and

where navigation was possible. This is consistent with Figure 24.

Figure 25. PARTS2 Database.

62

SCHEMA NAME IS PARTS2;
RECORD NAME IS PA;

DUPLICATES ARE NOT ALLOWED FOR PNO;
PNO ; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SA;
DUPLICATES ARE NOT ALLOWED FOR SNO;

SNO ; CHARACTER 10.
SNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SP;
SNO ; CHARACTER 10.
PNO ; CHARACTER 10.
QTY ; FIXED 4.

SET NAME IS PSP;
OWNER IS PA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF PNO IN PA;

SET NAME IS SSP;
OWNER IS SA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SNO IN SA;

$

Figure 26. PARTS2 Schema File: PARTS2dmIdb.

PARTS2
@
Pa
1 Ppl Mmu Monterey
2 Pp2 D atab us Sanjose
3 Pp3 H ardd rive Salinas
@
Sa
4 Buyl Dec Monterey
5 Buy2 Jan Sanj ose
6 BUY3 Oct Sanjose
7 Buy4 MAR Sanjose
8 Buy5 Mar Salinas
@
SF >
9 Buyl Ppl 100 1 4
1C Buy2 Pp2 50 2 5
11 Buy3 Pp3 75 3 6
12 Buy3 Ppl 50 1 6
i; Buy2 Ppl 100 1 5
$

Figure 27. PARTS2 Record Data File: PARTS2.r.

63

PARTS2
3
5
Pa
TEMP s
DBKEY i
PNO s
PNAME s
CITY s
5
Sa
TEMP s
DBKEY i
SNO s
SNAME s
CITY s
7
Sp
TEMP s
DBKEY i
SNO s
PNO s
QTY i
MEMPSP
MEMSSP

Figure 28. PARTS2 Template File: PARTS2.t.

Figure 29. PARTS2 Descriptor File: PARTS2.d.

64

1. MOVE BUY2 TO SNO IN SA
FIND ANY SA USING SNO IN SA
MOVE 50 TO QTY IN SP
FIND SP WITHIN SSP CURRENT USING QTY IN SP
GET SNO IN SA
@
MOVE PP1 TO PNO IN PA 2.
FIND ANY PA USING PNO IN PA
MOVE 100 TO QTY IN SP
FIND SP WITHIN PSP CURRENT USING QTY IN SP
@
MOVE BUY3 TO SNO IN SP 3.
FIND ANY SP USING SNO IN SP
FIND OWNER WITHIN SSP
e
MOVE BUY3 TO SNO IN SP 4.
MOVE PP3 TO PNO IN SP
MOVE 150 TO QTY IN SP
MOVE BUY3 TO SNO IN SA
MOVE PP3 TO PNO IN PA
STORE SP
@

5. MOVE BUY6 TO SNO IN SA
MOVE JUL TO SNAME IN SA
MOVE MADISON TO CITY IN SA
STORE SA
@
MOVE BUY1 TO SNO IN SA 6.
MOVE MADISON TO CITY IN SA
FIND ANY SA USING SNO IN SA
MODIFY CITY IN SA
@
MOVE BUY1 TO SNO IN SA 7.
FIND ANY SA USING SNO IN SA
GET CITY IN SA
@
MOVE 100 TO QTY IN SP 8.
FIND ANY SP USING QTY IN SP
GET SNO, QTY IN SP
e
MOVE PP1 TO PNO IN SP 9.
FIND ANY SP USING PNO IN SP
FIND OWNER WITHIN PSP
$

Figure 30. PARTS2 Query File: PARTS2 QUERIES.

65

PA 1 w. SA w w

A \
i

\ ("PSF" "v ', r"ssF
*

** ^^
4 t 0 /

-- SP <••

-►

Find owner record of

current record in set \

A
▼

\

"•--- of set

Figure 31. PARTS2 Query Access and Navigation.

66

3. The PARTS3 Database

A reduced version of the PARTS database named PARTS3 (see Figure 32) which

removed the second owner record was tested to verify correct operation with only one

set and one owner record type. The schema file, record data file, template file, descriptor

file, and query file associated with the PARTS database are shown in Figures 33, 34, 35,

36, and 37 respectively. All The queries in Figure 37 executed successfully using the data

from the PARTS3.r record file. Queries 1 and 2 demonstrate direct record access, query

3 shows downward navigation by finding a record belonging to the PSP set, and query 4

demonstrates upward navigation by finding the owner of a SP record. Figure 38 shows

the navigation and access paths for the PARTS3 database.

Figure 32. PARTS3 Database.

67

SCHEMA NAME IS PARTS3;
RECORD NAME IS PA;

DUPLICATES ARE NOT ALLOWED FOR PNO;
PNO ; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SP;
SNO ; CHARACTER 10.
PNO ; CHARACTER 10.
QTY ; FIXED 4.

SET NAME IS PSP;
OWNER IS PA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF PNO IN PA;

Figure 33. PARTS3 Schema File: PARTS3dmIdb.

PARTS3
@
Pa
1 Ppl Mmu Monterey
2 Pp2 Databus Sanjose
3 Pp3 Harddrive Salinas
@
Sp
4 Buyl Ppl 100 1
5 Buy2 Pp2 50 2
6 Buy3 Pp3 75 3
7 Buy3 Ppl 50 1
8 Buy2 Ppl 100 1
$

Figure 34. PARTS3 Record Data File: PARTS3.r.

68

PART S3
2
5
Pa
TEMP s
DBKEY i
PNO s
PNAME s
CITY s
6
Sp
TEMP s
DBKEY i
SNO s
PNO s
QTY i
MEMPSP i

Figure 35. PARTS3 Template File: PARTS3.t.

PARTS3
TEMP b s

! Pa
! Sp
@
$

Figure 36. PARTS3 Descriptor File: PARTS3.d.

69

1. MOVE PP1 TO PNO IN PA
FIND ANY PA USING PNO IN PA
MOVE 100 TO QTY IN SP
FIND
@
MOVE

SP WITHIN PSP CURRENT USING QTY IN SP

2. BUY2 TO SNO IN SP
FIND ANY SP USING SNO IN SP
FIND
$

OWNER WITHIN PSP

Figure 37. PARTS3 Query File: PARTS3_QUERIES.

PA

SP

Find owner record of

current record in set

Access Find member

of set

Figure 38. PARTS3 Query Access and Navigation.

70

4. The PARTS4 Database

The PARTS4 database added a third level to the hierarchy (network) of the

PARTS database as shown in Figure 39. Testing this configuration assisted in

determining: What level or depth could be accessed by a query starting at the top level; if

an interior record can act as both a record belonging to a set and as an owner of its own

set; and if a bottom level record can navigate upward to find its owner(s). The schema

file, record data file, template file, descriptor file, and query file associated with the

PARTS4 database are shown in Figures 40, 41, 42, 43, and 44 respectively.

Figure 39. PARTS4 Database.

71

SCHEMA NAME IS PARTS4;
RECORD NAME IS SA;

DUPLICATES ARE NOT ALLOWED FOR SNO;
SNO ; CHARACTER 10.
SNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS PA;
DUPLICATES ARE NOT ALLOWED FOR PNO;

PNO ; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SP;
DUPLICATES ARE NOT ALLOWED FOR SPNO;
SNO ; CHARACTER 10.
SPNO ; CHARACTER 10.
QTY ; FIXED 4.

SET NAME IS SSP;
OWNER IS SA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SNO IN SA;

SET NAME IS SPPA;
OWNER IS SP;
MEMBER IS PA;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SPNO IN

SP;
$

Figure 40. PARTS4 Schema File: PARTS4dmldb.

PARTS4
@
Sa
1 Buyl Dec Monterey . .
2 Buy2 Jan Sanjose
3 Buy3 Oct Sanjose
4 Buy4 Mar Sanjose
5 Buy5 Mar Salinas
@
Pa
6 Ppl Mmu Monterey 9
7 Pp2 Databus Sanjose 10
8 Pp3 Harddrive Salinas 11
@
Sp
9 Buyl Spl 100 1
10 Buy2 Sp2 50 2
11 Buy3 Sp3 75 3
$

Figure 4L PARTS4 Record Data File: PARTS4.r.

72

PARTS 4
3
5
Sa
TEMP s
DBKEY i
SNO s
SNAME s
CITY s
6
Pa
TEMP s
DBKEY i
PNO s
PNAME s
CITY s
MEMSPPA
6
Sp
TEMP s
DBKEY i
SNO s
SPNO s
QTY i
MEMSSP i

Figure 42. PARTS4 Template File: PARTS4.t.

PARTS4
TEMP b s
! Sa
! Pa
! Sp
e
$

Figure 43. PARTS4 Descriptor File: PARTS4.d.

73

1. MOVE PP1 TO PNO IN PA
FIND ANY PA USING PNO IN PA
GET PNO IN PA
@
MOVE SP1 TO SPNO IN SP
FIND ANY SP USING SPNO IN SP
GET QTY IN SP
@
MOVE BUY3 TO SNO IN SA
FIND ANY SA USING SNO IN SA
GET SA
@
MOVE BUY1 TO SNO IN SA
FIND ANY SA USING SNO IN SA
MOVE 100 TO QTY IN SP
FIND SP WITHIN SSP CURRENT USING QTY IN SP
GET SPNO IN SP
e
MOVE SP3 TO SPNO IN SP
FIND ANY SP USING SPNO IN SP
FIND OWNER WITHIN SSP
@
MOVE SP3 TO SPNO IN SP
FIND ANY SP USING SPNO IN SP
MOVE HARDDRIVE TO PNAME IN PA
FIND PA WITHIN SPPA CURRENT USING PNAME IN PA
GET PA
@
MOVE PP1 TO PNO IN PA
FIND ANY PA USING PNO IN PA
FIND OWNER WITHIN SPPA

2.

3.

4.

5.

6.

7.

$

Figure 44. PARTS4 Query File: PARTS4 QUERIES.

Queries 1 through 3 executed successfully and demonstrated that records could

be directly accessed on every level of the hierarchy. Query 4 executed successfully

proving that navigation was possible from the top level record to a member record, one

level below. Query 5 also executed successfully showing that navigation was possible

from a mid-level member record to an upper owner record. The goal of query 6 was to

navigate from a mid-level owner record to a bottom level member record. This query

74

failed and further investigation demonstrates why. Query 6 initially accessed SP to find

any record SP with a SPNO of Sp3. This query should return the following SP record:

DBKEY 11

SNO Buyl

SPNO Sp3

QTY 75

MEMSSP 3

Following the retrieval of this record reveals that a system generated retrieve request

should be constructed to find a record PA that has a PNAME of Harddrive and has a

MEMSPPA value of 11 which corresponds to the DBKEY value of the SP owner record.

The following describes what actually occurs. Request 1 is formed to retrieve the proper

SP record.

[RETRIEVE ((TEMP - Sp) and (SPNO = Sp3)) (SNO, SPNO, QTY, MEMSSP,

DBKEY) BY DBKEY]

The above retrieve statement is correct and it returns the following record:

[SNO Buy3 SPNO Sp3 QTY 75 MEMSSP 3 DBKEY 11]

This is the correct SP record. Now a retrieve request should be made to retrieve the PA

record with a MEMSPPA of 11. However, the following retrieve statement is generated:

[RETRIEVE ((TEMP = Pa) and (MEMSPPA = 3) and (PNAME = Harddrive)) (PNO,

PNAME, CITY, DBKEY) BY DBKEY]

75

Note that the MEMSPPA value requested is 3 rather than 11. Instead of using the

DBKEY of the owning SP record to find a PA record belonging to the set SPPA, it

acquires the MEMSSP value instead and attempts to link the PA record to the DBKEY

of the SA record to which the owning SP record belongs. The query failed to return any

record because no PA record existed that had a MEMSPPA of 3. This query illustrates

that a mid-level owner record in not able to navigate downward to access a member

record belonging to the set which it owns.

Query 7 also failed. This query was used to determine if a record more than two

levels deep in the schema could find its set owner record existing at the mid-level of the

schema. The query causes the system to generate two retrieve statements. The first

retrieve is as follows:

[RETRIEVE ((TEMP = Pa) and (PNO = Ppl)) (PNO, PNAME, CITY, MEMSPPA,

DBKEY]

This retrieve statement is correct and it returns the following PA record:

[PNO Ppl PNAME Mmu CITY Monterey MEMSPPA 9 DBKEY 6]

Then the system generated the following retrieve in response to the find owner request of

query 7:

[RETRIEVE ((TEMP = SP) and (DBKEY = 0)) (SNO, SPNO, QTY)]

Note that the actual owning record of the PA record returned from the first retrieve

shown above has a DBKEY of 9 (the MEMSPPA value). The system is unable to locate

the correct DBKEY and arbitrarily assigns DBKEY = 0. This causes the query to fail

because its looking for a SP record with a DBKEY equal to zero.

76

The access and navigation paths for the PARTS4 database are annotated in Figure

45. For a three level database, direct access to records at any level is possible. However,

navigation is only possible from the top level to the mid-level (i.e., SA owner for SP

member) or from the mid-level to the top level (i.e., SP member to SA owner).

PA

SP

PA

Find owner record of

current record in set

Access Find member

of set

Figure 45. PARTS4 Query Access and Navigation.

77

5. The PARTS5 Database

The PARTS5 database (see Figure 46) utilized the same schema as the PARTS4

database with the addition of a new top level owner record which has a set relationship

with the bottom level record in the PARTS4 database (see Figure 39). This schema

design was tested to determine if adding an extra top level record would change the

access and navigation characteristics of the PARTS4 schema. The schema file, record

data file, template file, descriptor file, and query file associated with the PARTS5

database are shown in Figures 47, 48, 49, 50, and 51 respectively.

Figure 46. PARTS5 Database.

78

SCHEMA NAME IS PARTS5;
RECORD NAME IS MA;

DUPLICATES ARE NOT ALLOWED FOR MNO;
MNO ; CHARACTER 10.
MNAME ; CHARACTER 10.

RECORD NAME IS SA;
DUPLICATES ARE NOT ALLOWED FOR SNO;

SNO ; CHARACTER 10.
SNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS PA;
DUPLICATES ARE NOT ALLOWED FOR PNO;

PNO ; CHARACTER 10.
PNAME ; CHARACTER 10.
CITY ; CHARACTER 10.

RECORD NAME IS SP;
SNO ; CHARACTER 10.
PNO ; CHARACTER 10.
QTY ; FIXED 4.

SET NAME IS MSA;
OWNER IS MA;
MEMBER IS SA;
INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF MNO IN MA;

SET NAME IS SSP;
OWNER IS SA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF SNO IN SA;

SET NAME IS PSP;
OWNER IS PA;
MEMBER IS SP;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF PNO IN PA;

Figure 47. PARTS5 Schema File: PARTS5dmIdb.

79

PARTS5
@
Ma
14 Mal Packers
15 Ma2 Vikings
16 Ma3 Bears
@
Sa
1 Buyl Dec Monterey 14
2 Buy5 Jan Sanjose 15
3 Buy2 Oct Sanjose 16
4 Buy4 MAR Sanjose 14
5 Buy3 Mar Salinas 15
@
Pa
6 Ppl Mmu Monterey
7 Pp2 Databus Sanjose
8 Pp3 Harddrive Salinas
e
Sp
9 Buyl Ppl 100 1 6
10 Buy2 Pp2 50 3 7
11 Buy3 Pp3 75 5 8
12 Buy2 Ppl 50 3 6
13 Buy2 Ppl 100 3 6
$

Figure 48. PARTS5 Record Data File: PARTS5.r.

80

PARTS5
4
4
Ma
TEMP s
DBKEY i
MNO s
MNAME s
6
Sa
TEMP s
DBKEY i
SNO S
SNAME s
CITY s
MEMMSA i
5
Pa
TEMP s
DBKEY i
PNO s
PNAME s
CITY s
7
SP
TEMP s
DBKEY i
SNO s
PNO s
QTY i
MEMSSP i
MEMPSP i

Figure 49. PARTS5 Template File: PARTS5.t.

PARTS5
TEMP b s
! Ma
! Sa
! Pa
! Sp
@
$

Figure 50. PARTS5 Descriptor File: PARTS5.d.

81

1. MOVE MAI TO MNO IN MA
FIND ANY MA USING MNO IN MA
GET MA
@
MOVE BUY4 TO SNO IN SAA 2.
FIND ANY SA USING SNO IN SA
GET SNO IN SA
@
MOVE PP2 TO PNO IN PA 3.
FIND ANY PA USING PNO IN PA
GET PNO IN PA
@
MOVE PP1 TO PNO IN SP 4.
MOVE 50 TO QTY IN SP
FIND ANY SP USING PNO, QTY IN SP
GET SNO, PNO, QTY IN SP
@
MOVE MA2 TO MNO IN MA 5.
FIND ANY MA USING MNO IN MA
MOVE JAN TO SNAME IN SA
FIND SA WITHIN MSA CURRENT USING SNAME IN SA
GET SA
@
MOVE BUY2 TO SNO IN SA 6.
FIND ANY SA USING SNO IN SA
MOVE PP2 TO PNO IN SP
FIND SP WITHIN SSP CURRENT USING PNO IN SP
GET SNO, PNO IN SP
e
MOVE BUY1 TO SNO IN SP 7.
FIND ANY SP USING SNO IN SP
FIND OWNER WITHIN SSP
GET SNO IN SA
@
MOVE BUY3 TO SNO IN SA 8.
FIND ANY SA USING SNO IN SA
FIND OWNER WITHIN MSA
GET MNO IN MA
@
MOVE PP1 TO PNO IN PA 9.
FIND ANY PA USING PNO IN PA
MOVE 100 TO QTY IN SP
FIND SP WITHIN PSP CURRENT USING QTY IN SP
GET PNO, QTY IN SP
@
MOVE BUY1 TO SNO IN SP 10.
FIND ANY SP USING SNO IN SP
FIND OWNER WITHIN PSP
GET PNO IN PA
$

Figure 51. PARTS5 Query File: PARTS5_QUERIES.

82

Once again, we verified that each record could be accessed directly. Queries 1

through 4 accomplished this and executed correctly. Query 5 tested the ability to

navigate from the top level record, MA, down one level to find a set member record in

SA. This executed properly and thus remains consistent with the results found from

query 4 for the PARTS4 database.

Query 6 was identical to query 6 in the PARTS4 database. The goal was to

access a mid-level owner record, SA, and navigate downward to access a member record

in SP belonging to the set SSP. As expected, the query failed for the same reason. The

first "find" generates the following retrieve statement:

[RETRIEVE ((TEMP = Sa) and (SNO - Buy2)) (SNO, SNAME, CITY, MEMMSA,

DBKEY) BY DBKEY]

This request returns the following SA record data:

[SNO Buy2 SNAME Oct CITY Sanjose MEMMSA 16 DBKEY 3]

The next retrieve statement is generated from the find SP within SSP of the current line

of the query illustrated below:

[RETRIEVE ((TEMP = SP) and (MEMSSP = 16) and (PNO = PP2)) (SNO, PNO,

QTY, DBKEY) BY DBKEY]

Note that once again instead of assigning MEMSSP equal to the DBKEY of the owner

record (in this case 3), it takes the value of the set it belongs to (MEMMSA) which is 16.

Figure 33 shows that this record does not exist.

Query 7 was identical to query 7 in the PARTS4 database. This query was used

to determine if a record more than two levels deep in the schema could find its set owner

83

record existing at the mid-level of the schema. This query also failed for the same reason

as it did in the PARTS4 database. The first FIND from line 2 of query 7 generates the

following retrieve statement for a SP record:

[RETRIEVE ((TEMP = Sp) and (SNO = Buyl)) (SNO, PNO, QTY, MEMSSP,

MEMPSP, DBKEY]

This retrieve request returns the following record:

[SNO Buyl PNO Ppl QTY 100 MEMSSP 1 MEMPSP 6 DBKEY 9 ?]

The FIND OWNER request from line 3 generates the following retrieve request:

[RETRIEVE ((TEMP = SA) and (DBKEY = 0)) (SNO, SNAME, CITY)]

Note that once again instead of using the MEMSSP value of "6" which corresponds to

the owning record in SA it assigns DBKEY = 0. From Figure 33 you can see that no

record with a DBKEY = 0 exists.

Query 8 is identical to query 5 from the PARTS4 database. Query 8 ran

successfully, again showing that navigation from a mid-level member record upward to

its top level owner record is possible.

Query 9 is similar to query 5 from the PARTS database. This again showed the

ability to navigate from a top level record (PA) to a member record (SP). The only

difference was that the member record also existed as a third level record (see Figure 32,

the schema). This query ran correctly so the level of the member record makes no

difference as long as the owning record is itself a top level record.

Query 10 attempted to navigate from a bottom level record (SP) to the second

owner record (PA) and is identical to query 7 in the PARTS database. This query also

84

failed but for a different (although similar) reason. The FIND from line 2 of query 7 (see

Figure 35) generates the following retrieve statement:

[RETRIEVE ((TEMP = Sp) and (SNO = Buyl)) (SNO, PNO, QTY, MEMSSP,

MEMPSP, DBKEY) BY DBKEY]

This returns the following SP record:

[SNO Buyl PNO Ppl QTY 100 MEMSSP 1 MEMPSP 6 DBKEY 9 ?]

The FIND OWNER request from line 3 of query 7 generates the following retrieve

statement:

[RETRIEVE ((TEMP = PA) and (DBKEY = 0)) (PNO, PNAME, CITY)]

This time the system cannot identify the proper DBKEY and uses a default value

of zero. Once again, (see Figure 33) you can see that a record with a DBKEY = 0 does

not exist as a PA record.

The access and navigation paths are annotated in Figure 52 for the PARTS5

database. For a three level database, direct access to records at any level is possible.

Navigation is only possible from the top level to the mid-level (i.e., MA owner to SA

member), from the top level to the bottom level record (PA owner to SP member) or

mid-level to top level (SA member to MA owner).

85

MA

SA PA

Find owner record of

current record in set

A

Access Find member

of set

Figure 52. PARTS5 Query Access and Navigation.

86

6. Summary

As evident from the testing conducted, any record can be directly accessed.

When navigation is required for finding ownership or finding member records, you must

only navigate one level down from a top level owner record. To navigate upward, you

must start at a second level record and only access the first owner record that the member

record belongs to. If the record belongs to more than one owner, the first owner is the

only one that may be accessed.

These limitations restrict the usefulness of the system tremendously. Therefore,

the theoretical EWIR database schema developed for this thesis is not "implementable."

With the exception of a very basic schema (i.e., the PARTS database), the network

interface is very limited. Further evaluation of the program code to investigate and

correct these limitations is not an objective of this thesis but is recommended for future

research.

87

88

IV. IMPLEMENTATION OF THE EWIR DATABASE

This chapter addresses the second objective of this thesis: To design and

implement a network data model for a representative portion of the EWIR database. It is

important to note at this time, our global strategy for the design and implementation of

the network EWIR database. The strategy involved three steps:

1. Develop the conceptual design of the network EWIR model.

2. Test the network interface to determine the system's capabilities and

limitations (i.e., Chapter III, section D of this thesis).

3. Based on the findings from step 2, either implement the design from step 1 or

modify the design so that it can be implemented on the M2DBMS; therefore,

actually demonstrating the current system's capabilities and limitations.

In actuality, since the research work for this thesis was conducted by a two

member research team, it was favorable to execute steps 1 and 2 concurrently thus saving

time. This strategy provided for an efficient, systematic research process resulting in

conclusive evidence that describes the capabilities and limitations of the network

interface.

Section A of this chapter provides the EWIR database specification, to include

the format, structure and limitations of the "old" EWIR database, and the design of the

"new" network EWIR database. Using the network EWIR database specification of

Section A, Section B discusses the translation of this specification into a database schema

using the network Data Definition Language (DDL). The schema is illustrated in this

section as well as the resulting DDL compiler files, the template and descriptor files.

89

Finally, Section C of this chapter addresses the loading of the EWIR database record data

into the network interface.

Once the EWIR specification is translated into the network schema, and the

network interface processes the schema (and associated template and descriptor files), the

network interface is ready to accept the record data. After the record data has been

loaded successfully, the process of creating a "new" network EWIR database is

complete. Thus the database is ready to accept the commands for manipulating the

database and executing transactions.

A. EWIR DATABASE SPECIFICATION

The specification described herein is for a small sampling of the EWIRDB;

specifically for the antenna data of a given emitter. As stated earlier in the overview of

the EWIRDB, reference [3] provides a detailed study of the design and analysis of the

EWIRDB for the object-oriented implementation. Therefore, to gain more of a global

perspective of the EWIRDB, it may be first advantageous to review reference [3] prior to

reviewing this section and chapter. This section is written assuming the reader already

has a basic understanding of the EWIRDB's structure and format. The object-oriented

conceptual design as described in [3] will also serve as the basic conceptual design for

our network model implementation. Furthermore, this thesis does not advocate which

data model is "optimal" for implementing the EWIRDB, but rather it proposes how one

might implement the EWIRDB in a network model representation.

1. The "Old" EWIR Data Model

As mentioned previously (Chapter II, section C), the existing format of the

EWIRDB is relatively complex. Data is represented in a hierarchical tree where various

reference codes and alike are used to link related data items together throughout the

hierarchy. This type of data model is difficult to understand and to interpret the

90

semantics of the data, thus hindering the users ability to gain a meaningful view of the

Electronic Warfare (EW) data. Essentially, the complex format of the database obscures

the meaning and semantics of the EW data.

The EWIRDB is a noncommunications electronic emitter database. It is

comprised of data on individual emitters. An emitter is described by paramentric

information as well as administrative, commentary and reference data. Each emitter has

different types of information, stored as different types of data records. The parametric

tree is the structure used to maintain the detailed parametric characteristics of an emitter.

There are essentially three hierarchical structures or trees that are used to

maintain the EWIR data. First, the P/CW (Pulsed/Continuous Wave) tree is used for

evaluating and identifying electromagnetic energy radiated by emitters; second, the RPA

(Receiver Parametric Performance) tree contains receiver design and performance

information on the receiver portion of emitter systems; and finally the ECM (Electronic

Countermeasures) tree describes jamming systems and are referenced in the development

of ECCM (Electronic Counter-Countermeasures) to overcome the jammer threat. The

P/CW tree coupled with the RPA tree provide a comprehensive report on an emitter's

performance.

The EWIRDB uses the combined KILTING/EWIRDB parametric tree as a

formatted structure to describe and catalog the parameters associated with

noncommunications emitters. The tree is a management tool that orders a long list

logically and hierarchically in a way that proceeds from broad characteristics through

levels of successively finer ones. Figure 53 illustrates a sample layout of a parametric

tree. The numbering system shows how the tree forms branches at each level. Each

parametric tree is subordinate to only one other level. [5]

91

FIRST
LEVEL

SECOND
LEVEL

THIRD
LEVEL

111

FOURTH
LEVEL

11
112

113

12

1141

114
1

121
1142

122

123

t
BRANCHES

Figure 53. Parametric Tree Structure [5].

The P/CW tree is illustrated in Figure 54. For illustration purposes, we will focus

on the second and third level of this tree (i.e., the antenna related data). Note that each

branch contains a heading or label. For example, in the second level, the heading

"ANTENNA" of the 12 B ANTENNA branch is a branch name. Furthermore, the

branch number (i.e., 12) provides a means to navigate through the tree. If we start with

the 12 B ANTENNA branch and follow on to one of the next branches in the next level,

we observe one of two numbers, 121 or 122. If we continue with 121 through to the

next level and branch, the next numbers are 1211, 1212, and 1213. This numbering

system is used throughout the depth of the parametric tree and provides a means of

identifying a unique path from the root of the tree to the desired branch.

92

10 B (A) GENERAL INFORMATION

121 B ANTENNA POLARIZATION

1 B P/CWTREE

11 B (B) SIGNAL POWER

1211 B (C) TX ANTENNA POLARIZATION

1212 B (D) RX ANTENNA POLARIZATION

12 B ANTENNA

122 B ANT CHARACTERISTICS

1213 B (E)TX/RX ANTENNA POLARIZATION

1221 B (F) TRANSMIT ONLY ANTENNA

1222B (G) RECEIVE ONLY ANTENNA

I223B(H) ANTENNA POLARIZATION

1311 B(I) PULSED SIGNAL SHAPE (AM)

1312 B (J) PR1/PGRI 13123 B (K) MULTIPLE PULSE GROUPS

13 B FREQUENCY AND

132 B CW

13131 B (L) RF LINE STRUCTURE

13132 B (M) PULSED RF

MODULATION CHAR

1321 B (P) CW FREQUENCY

1322 B (Q) CW MODULATION

14 B (R) ASSOCIATED SIGNALS/SYSTEMS

Figure 54. The Pulsed/Continuous Wave (P/CW) Parametric Tree [3].

Also represented in the P/CW tree are subfile codes. The subfile codes are

captured by parentheses (i.e., the (B) in "11 B (B) SIGNAL POWER" in Figure 54).

Subfile codes were intended to convey the semantics of high-level emitter and signal

characteristics [3]. The subfiles actually contain the parametric data. They are major

groupings (i.e., subtrees) within the parametric tree which contains the logically related

data.

Usage codes are also represented in the P/CW tree. Usage codes distinguish

which branches and parameters are applicable to which users. These codes are necessary

since all the branches and parameters in the EWIRDB are not applicable to all users. [3]

For example, one branch may provide useful data for a kilting analyst but not for an

S&TI analyst. Therefore, the B in 121 B ANTENNA in Figure 54 indicates that the

ANTENNA branch is applicable to all users of the database; whereas other codes such as

K, E, and N are used for the various other agencies.

93

Figure 55 introduces yet another notation used in the parametric tree. Here, a

parameter is shown with a two digit decimal number that differentiates between two

parameters in a given branch. The branch number combined with the two-digit decimal

number is referred to as the parametric number. Thus, locating a parameter within the

tree is a matter of indexing into the data via the parametric number. For example,

parametric number 121X3.10 indexes to the parameter .10 B 3 PATTERN PEAK

OFFSET under the 121X3 B 2 CROSS POLARIZATION CHAR branch in Figure 55

(The X in the branch number is a variable that specifies the type of antenna being

considered, i.e., transmit, receive, or transmit and receive. The variable takes on the

value 1, 2, or 3, accordingly). [3]

121X11 B2 LINEAR POLARIZATION

121X1 B2 FIXED POLARIZATION

1211 B TX ANTENNA POLARIZATION

121 B ANTENNA POLARIZATION 1212 B RX ANTENNA POLARIZATION

1213 B TX/RX ANTENNA POLARIZATION

10 B 4 TIME TO SWITCH MILUSEC

20 B 4 AUTO OR MANUAL SWITCHING (TEXT)

10B1 MAJOR AXIS TUT ANGLE

20 B 6 AXIAL RATIO

121X12 B2 CIRCULAR OR ELLIPTICAL

.I0B2 SENSE(LH-RH) (TEXT)

.20 B 5 AXIAL RATIO DB

.30 B 2 MAJOR AXIS TILT ANGLE (ELLIPSE)

121X21 B2 ADAPTIVE POLARIZATION

121X2 B2 VARIABLE POLARIZATION

.01 B2 CHANGE PATTERN (TEXT)

.10 B 2 RATE OF CHANGE HERTZ

.20 B 2 REASON FOR CHANGE (TEXT)

121X22 B2 MANUAL POLARIZATION CHANGE

.10 B 2 KATE OF CHANGE

.20 B 2 REASON FOR CHANGE

HERTZ

(TEXT)

121X23 B2 PERIODIC PROGRAMMED POLARIZATION

.10B3 RATE OF CHANGE

.20 B 4 CHANGE PATTERN

121X24 B3 POLARIZATION MODULATION

HERTZ

(TEXT)

JOB5 CONTINUOUS^)lSCR£TEPOLARIZATION(TEXT)

.20 B 4 MODULATING WAVEFORM OR CODE (TEXT)

.30 B 4 MODULATING RATE MHZ

.40 B 4 NBR OF DISCRETE POLARIZATIONS INTEGER

.50 B i BIT LENGTH M1CROSEC

.60 B 5 NBR OF BITS INTEGER

121X3 B2 CROSS POLARIZATION CHAR

.10 B 3 PATTERN PEAK OFFSET DEGREES

.20 B 5 PATTERN PEAK RESPONSE DB

Figure 55. An Exploded View of the P/CW Tree [3].

94

Thus far we have examined one small portion of the hierarchical structure used

within the EWIRDB parametric trees. This hierarchical structure uses branch headings,

subfile codes, usage codes and a decimal notation to identify various EW parameters

within branches of the parametric tree. This method of modeling the EWIR data clearly

demonstrates some of the complexity of the structure.

In addition to the complex structure of the "hierarchical type" model, this format

lacks the more expressive concepts with which to associate more meaning or semantics

to the data. Therefore, this modeling construct is also misleading in its representation of

parametric data. It is this inability to accurately represent the data semantics that reduces

the EWIRDB's effectiveness as a database. Furthermore, the user must work much

harder to process, decipher and interpret the data.

An example of a poor data relationship is provided in Figure 55. Specifically, the

branches labeled 121X1 B 2 FIXED POLARIZATION, 121X2 B 2 VARIABLE

POLARIZATION, and 121X3 B 2 CROSS POLARIZATION CHAR This type of

hierarchical structure appears to indicate that antenna polarization is either fixed, variable,

or cross. However, this is not true. Actually, antenna polarization can be either fixed or

variable, and cross polarization is a characteristic that may be exhibited by all antennas.

This is one example in which the model does not adequately portray the true data

semantics.

Another example of poor data representation is the relationship between FIXED

POLARIZATION and LINEAR POLARIZATION. According to the model (Figure 55),

it appears that linear polarization is part of fixed polarization. However, linear

polarization is actually a potential characteristic of all antenna polarization types [4].

Again, the EWIR tree structure lacks to capture the actual meaning of the data.

A further problem of the EWIRDB involves the "global" representation or layout

of the data. To gain a complete assessment of an emitter's performance, one must

consider both the P/CW tree and the RPA tree. Therefore, parametric data is dispersed

over two large disjoint structures. This implies that the user must search both trees for

95

their associated parameters to ensure all performance criteria is considered for any given

emitter. [3]

To further compound matters, the P/CW and RPA trees are designed to

characterize only the parametric data. However, various other important information is

contained within the EWIRDB. This information includes administrative, commentary,

and reference data. This data is associated with the parametric data and provides

additional information in describing any given emitter's performance.

The organization of the administrative, commentary, and reference data is

contained within a file structure format. This file structure is not a data model but rather

an output format file structure. This format known as TERF (Technical Electronic

intelligence Reference File Format) is also a complex and rather cryptic format and

structure. Reference [3] provides a more detailed description of this format.

In summary, the EWIRDB presents. several problems associated with data

representation and data modeling which affect the users ability to access, interpret, and

understand the data. It is these problems that lead us to pursue the possibility of using

some of the more classical data models (i.e., network model) to implement a small

representative portion of the EWIRDB on the M2DBMS.

2. The Conceptual EWIR Network Data Model

To reiterate, the EWIRDB is a very large and intricate database, therefore,

reference [3] is based on a portion of the EWIRDB. Likewise, reference [4] implements

a subset of the specification proposed by reference [3], To examine either of the

specifications of reference [3] and [4] would exceed the scope of this thesis, thus our

goal was to extract a small "sample" of the specification of the above references and

model this "sample" in terms of a network representation.

The models and specifications represented by references [3] and [4] were

designed for an object-oriented implementation on the M2DBMS. However, the

conceptual design suggested by [3] will also serve as the conceptual design for our

96

network representation. The purpose of the conceptual design is to illustrate the

specifictions and requirements of the database in some conceptual schema of the

database. This schema is a high-level description of the structure of the database. This

phase (i.e., conceptual design) is conducted totally independent of a particular DBMS

that will be used to implement the database. Therefore, since the conceptual design

proposed by [3] has been accepted, our network model representation will be based on

the object-oriented conceptual design.

Figure 56 depicts a global view of the conceptual schema proposed by [3]. As

described earlier (Chapter II), the EWIRDB is the result of the merging of data from

three contributory sources. Figure 56 shows this merging using the concept of

aggregation. The symbols used in all of the conceptual diagrams is consistent with

reference [3].

EMITTER

KILTING

EMITTER

o

S&TI

EMITTER

KILTING

ADMIN

DATA

USNCSDB

EMITTER

USNCSDB

ADMIN

DATA

EWIR ADMIN DATA

Figure 56. Global View of the Conceptual Schema for the EWIRDB.

97

Our specification represents a portion of the parametric data (i.e., antenna data)

contained within one of the emitter type objects. Figure 57 shows a conceptual schema

of the S&TI emitter data. The S&TI agency searches all available information and

generates performance assessments. These assessments are then used to assist in the

development of receiver capabilities. Likewise, USNCSDB data, which is derived from

equipment specifications, also includes receiver performance data. Essentially the S&TI

and the USNCSDB conceptual designs are the same.

The kilting emitter, however, is different than the S&TI and USNCSDB emitters.

The kilting emitter conceptual schema does not contain receiver data. Kilting data are

obtained from the direct analysis and measurement of emitter signals following signal

intercept. Therefore, kilting data reveals nothing about receiver performance. [3]

98

Figure 57. Conceptual Schema of the S&TI Emitter [3].

99

3. The Antenna Data

Common to all of the emitter types (S&TI, USNCSDB, and Kilting) is the

antenna data. Our portion of the EWIR implementation is based on this data. Figure 57

shows the antenna data grouping within the composite of the S&TI emitter and the other

related data groupings (i.e., Receiver data, Signal data, and WARM data). Figure 58

depicts an expanded view of the antenna data grouping. The objects that are shaded gray

in Figure 58 represent the objects that will be transformed to our network model

representation of the antenna data (individual attributes are not show here but will be

illustrated in the network conceptual schema). Figure 59 shows yet another (clearer)

view with some of simbling branches omitted (from Figure 58). Again, the symbols used

in these figures are consistent with reference [3].

The antenna data grouping is one of the integral components of the emitter. The

1:N relationship between emitter and antenna signifies that any one emitter may have

many different antenna components. The 1:1 relationship between antenna and radiation

pattern and the 1:1 relationship between antenna and polarization indicates that any

specific antenna has a radiation pattern and a polarization. Polarization contains a

specialization with two disjoint constraints. This signifies that polarization has four

possible combinations: Linear-fixed, linear-variable, circular_or_elliptical-fixed, and

circular_or_elliptical-variable. In addition, cross polarization is modeled correctly by the

1:1 relationship with polarization.

An antenna may radiate either directionally or omni-directionally as indicated by

the specialization and the disjoint hierarchy. If the antenna radiates directionally then it is

associated with one or more scanning techniques and/or one or more tracking functions.

The specializations of scan and track are associated with an overlapping constraint that

indicates a directional antenna having the possibility of simultaneous scanning techniques

(i.e., mechanical, manual and electrical) or tracking functions (i.e., mechanical and

electrical).

100

Figure 58. Expanded View of the Antenna Data [3].

101

/'RADIATION PATTERN

OMNIDIRECTIONAL!

f RASTER

(CONICAL 'fc (LOBING "k

Figure 59. Enhanced View of the Antenna Data.

102

In comparing Figure 59 (or Figure 58) with the antenna data parametric tree

representation discussed earlier, it is clearly evident that the new conceptual design

proposed by [3] is a significant improvement over the parametric tree hierarchy.

4. Transforming the Object-Oriented Model to the Network Model

Since our conceptual our conceptual view of the antenna data is an object-

oriented "semantic" representation, it is necessary to examine the relationship between

the network data model and the object-oriented model (i.e., how to transform the object-

oriented model to the network model.

In a limited context, the object-oriented model (Figure 59) can be mapped to the

network model. However, all the relationships of the object-oriented model are limited

to binary (two-object) sets and 1:1 and 1:N relationships in the network model.

Recollect from Chapter II, section B., of this thesis, that in a network schema we can

explicitly represent a relationship type if it is 1:N. If the relationship type is 1:1, a set

type may be used, however, a constraint must be enforced to ensure that each set instance

has at most one member record. For M:N relationship types, the standard representation

is to use the two set types and linking record. It is also worth mentioning that the

network model allows for vector fields and repeating groups. This allows us to directly

represent composite and multivalued attributes. However, this modeling capability is not

necessary with our representation.

For the diagrammatic network representation of data structures, we have logical

records, which are connected with other logical records through physical links consisting

of the records' addresses on disk. Each link represents a relationship between exactly

two records. The relationship between two record types connected by the binary link is

referred to as a set. [20]

To map a 1:1 or a 1 :N relationship to the network model, first, it is necessary to

create a set type that relates the two record types. For a 1:1 relationship type, the owner

and member record type are arbitrarily chosen; however, it is preferable to choose the

103

record that represents total participation in the relationship type as the member record.

Another possibility for mapping 1:1 relationships is to merge the objects, their attributes,

and the relationship into one record. This is useful if both objects in the relationship

participate totally (i.e., total participation).

For 1 :N relationships, the record type that represents the object on the "one" side

of the relationship becomes the owner record type, and the record type that represents

the other object on the "many" side becomes the member record type. [6]

The result of mapping Figure 59 (only the shaded objects) to the network

conceptual model is illustrated in Figure 60. This represents our conceptual schema for

the antenna data in the network model representation.

104

ANTRADPAT

CORELPOLAR _

DIRRADPAT T
SENSE AXRATIO

DIRTRACK

PLANETRACK

SCANMECH MECHTARGTRK

T
MAXRA MAXRE

SECTMECHSCAN

T

Figure 60. Network Conceptual Schema.

105

B. DATA DEFINITION OF THE EWIR DATABASE

Now that the specification and the conceptual schema for our network model has

been completed, the next issue is to translate the conceptual schema (Figure 60) to a

database schema that the network interface can process. Once the schema is processed,

the network interface generates the corresponding template and descriptor files described

later in this section.

1. The Schema Listing

Chapter II, section B., of this thesis addresses how the DDL is used to implement

the schema. This is a relatively simple process once the specification and conceptual

schema (Figure 60) has been developed. The actual database schema for our

specification is depicted in Figure 61 and continued in Figure 62. The filename is

TEWIRdmldb

One of the problems, however, in translating from the specification to the actual

database schema involves some formatting restrictions inherent to the network interface.

Specifically, naming conventions and syntax within the schema file itself. Record names,

attribute names and set names are limited to fifteen characters. Furthermore, dashes and

underscores are not permitted for any of the names. Our specification (Figure 60)

reflects names that are accepted by the network interface. Therefore, these exact names

are used in the actual database schema reflected in Figure 61. However, it is not

common practice to make these names difficult to read or understand. Usually it is

desirable to have semantically meaningful record, attribute and set type names that are the

same for both the specification and the actual database schema. We chose to use names

in the specification that we knew were implementable in the network interface database

schema to provide for a direct mapping from the conceptual schema to the actual

database schema. Also, for continuity, we attempted to use similar names as those used

in the object-oriented specification and implementation (i.e., reference [4]).

106

SCHEMA NAME IS TEWIR /
RECORD NAME IS EMITTER;
DUPLICATES ARE NOT ALLOWED FOR UNIQUEID;

UNIQUEID ; CHARACTER 15.
ERFECCM ; CHARACTER 15.
WEAPSYSTEM ; CHARACTER 15.
EMITFUNCTION ; CHARACTER 15.
EMITPTFGEN ; CHARACTER 15.

RECORD NAME IS ANTENNA;
DUPLICATES ARE NOT ALLOWED FOR ANTID;
ANTID ; CHARACTER 15.
ANTTYPE ; CHARACTER 15.
ANTFUNCTION ; CHARACTER 15.
HORDIMENSION ; CHARACTER 15.
VERTDIMENSION ; CHARACTER 15.
ACELPLOL ; CHARACTER 15.
ANTDIREC ; CHARACTER 15.

RECORD NAME IS POLARIZ;
POLARDATA ; CHARACTER 15.

RECORD NAME IS CELPO ;
SENSE ; CHARACTER 15.
AXRATIO ; CHARACTER 15.

RECORD NAME IS RADPAT;
ANTGAIN ; CHARACTER 15.

RECORD NAME IS DIRECTI;
DIRECTIID ; CHARACTER 15.
BWDTHAZ CHARACTER 15.
BWDTHEL CHARACTER 15.
FIRSTAZ CHARACTER 15.
FIRSTEL CHARACTER 15.
SECCHAR CHARACTER 15.

RECORD NAME IS SCAN;
SCANID ; CHARACTER 15.
SMPAVGTIME ; CHARACTER 15.
THRESHOLDMEAS ; CHARACTER 15.
PLANESCAN ; CHARACTER 15.

RECORD NAME IS MECHSC;
STPCGABILITY ; CHARACTER 15.
SCFUNCTION ; CHARACTER 15.

RECORD NAME IS SECTOR;
SECTYPE ; CHARACTER 15.
UPPERLIMITS ; CHARACTER 15.
LOWERLIMITS ; CHARACTER 15.
SECWAZ ; CHARACTER 15.
SECWEL ; CHARACTER 15.
SMTRACK ; CHARACTER 15.

RECORD NAME IS TRACK ;
PLANETRACK ; CHARACTER 15.

RECORD NAME IS MECHTR;
MAXRA ; CHARACTER 15.
MAXRE ; CHARACTER 15.

SET NAME IS EMITANT;
OWNER IS EMITTER /
MEMBER IS ANTENNA;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE OF UNIQUEID IN EMITTER;

Figure 61. The EWIR Schema.

107

SET NAME IS ANTPOLAR;
OWNER IS ANTENNA;
MEMBER IS POLARIZ;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS CORELPOLAR;
OWNER IS POLARIZ;
MEMBER IS CELPO;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS ANTRADPAT;
OWNER IS ANTENNA;
MEMBER IS RADPAT;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS DIRRADPAT;
OWNER IS RADPAT;
MEMBER IS DIRECTI;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS DIRSCAN;
OWNER IS DIRECTI;
MEMBER IS SCAN;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS SCANMECH;
OWNER IS SCAN;
MEMBER IS MECHSC;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS SECTMECHSCAN;
OWNER IS MECHSC;
MEMBER IS SECTOR;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS DIRTRACK;
OWNER IS DIRECTI;
MEMBER IS TRACK;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

SET NAME IS MECHTARGTRK;
OWNER IS TRACK;
MEMBER IS MECHTR;

INSERTION IS AUTOMATIC
RETENTION IS FIXED;
SET SELECTION IS BY VALUE

OF ANTID IN ANTENNA;

OF POLARDATA IN POLARIZ;

OF ANTID IN ANTENNA;

OF ANTGAIN IN RADPAT;

OF DIRECTIID IN DIRECTI;

OF SCANID IN SCAN;

OF SCFUNCTION IN MECHSC;

OF DIRECTIID IN DIRECTI;

OF PLANETRACK IN TRACK;

Figure 62. The EWIR Schema (continued).

108

2. The Template File

As a result of successfully loading the EWIR schema on the network interface of

the M2DBMS, a template file is generated. The filename for the template file for our

network EWER, database is TEWIR.t. This template file is shown in Figure 63 and

continued in Figure 64. The purpose of the template file is to describe the structure or

specification of the network database in an equivalent attribute-based (kernel) database.

The first line of the template file corresponds to the template file name (or name

of the database). The next line indicates the number of templates within the database.

The next line shows the number of attributes in that particular template. The following

line depicts the template name (corresponds to the record type). After the template name

the attributes for that template are listed with their respective type (i.e., string, integer,

etc.). After all the attributes for that template have been listed, then the next number

listed represents the number of attributes for the next template. This process continues

until all of the templates and attributes in the database have been identified.

3. The Descriptor File

Also derived from the successful loading of the schema file, is the descriptor file.

The filename for the descriptor file for our network EWIR database is TEWIR.d. The

descriptor file also contributes to specifying the transformation of the network database

to the attribute-based database. The descriptor file provides a listing of all the record

types in the network database to the kernel system. Figure 65 illustrates the descriptor

file for our implementation.

Furthermore, the descriptor file contains information concerning the "constraints"

placed upon the attributes within the template. There are three descriptor types that may

be imposed on an attribute. For example, the type "a" descriptor type specifies that an

attribute exhibits a disjointed range of values (i.e., 0<= attribute value <= 50). The type

"b" descriptor type indicates an attribute with a specific value (i.e., Emitter Function =

109

phased array). The type "c" descriptor type indicates an attribute that possesses a

dynamic range that is initialized at run time. [9]

TEWIR /* template file name */
11 /* number of templates */
7 /* number of attributes in the Emitter template */
Emitter /* template name: Emitter */
TEMP s /* "Emitter" is an attribute template of type string */
DBKEY I /* DBKEY is an attribute of type integer */
UNIQUEID s
ERFECCM s
WEAPSYSTEM s
EMITFUNCTION s
EMITPTFGEN s
10
Antenna
TEMP s
DBKEY i
ANTID s
ANTTYPE s
ANTFUNCTION s
HORDIMENSION s
VERTDIMENSION s
ACELPLOL s
ANTDIREC s
MEMEMITANT i
4
Polariz
TEMP s
DBKEY i
POLARDATA s
MEMANTPOLAR i
5
Celpo
TEMP s
DBKEY i
SENSE s
AXRATIO s
MEMCORELPOLAR i
4
Radpat
TEMP s
DBKEY i
ANTGAIN s
MEMANTRADPAT i

Figure 63. The EWIR Template File: TEWIR.t.

110

9
Directi
TEMP s
DBKEY i
DIRECTIID s
BWDTHAZ s
BWDTHEL s
FIRSTAZ s
FIRSTEL s
SECCHAR s
MEMDIRRADPAT i
7
Scan
TEMP s
DBKEY i
SCANID s
SMPAVGTIME s
THRESHOLDMEAS s
PLANESCAN s
MEMDIRSCAN i
5
Mechsc
TEMP s
DBKEY i
STPCGABILITY s
SCFUNCTION s
MEMSCANMECH i
9
Sector
TEMP s
DBKEY i
SECTYPE s
UPPERLIMITS s
LOWERLIMITS s
SECWAZ s
SECWEL s
SMTRACK s
MEMSECTMECHSCAN i
A
Track
TEMP s
DBKEY i
PLANETRACK s
MEMDIRTRACK i
5
Mechtr
TEMP s
DBKEY i
MAXRA s
MAXRE s
MEMMECHTARGTRK i

Figure 64. The EWIR Template File: TEWIR.t (continued).

11

TEWIR
TEMP b s

Emitter
Antenna
Polariz
Celpo
Radpat
Directi
Scan
Mechsc
Sector
Track
Mechtr

@
$

Figure 65. The EWIR Descriptor File: TEWIRd.

C. LOADING THE EWIR RECORD DATA

As we mentioned earlier in this thesis (Chapter III, section B.), the issue of

loading the record data using the network interface was never addressed in prior

research. Evident from our research, it appears that the data was intended to loaded via

the CODASYL-DML "STORE" command. This command allows for a record-by-

record insertion of data, but this command is not functional as we described in Chapter

III.

The issue of loading data in the network interface was overcome by implementing

a mass load function that was structured after the mass load function for the object-

oriented interface (relational interface also employs the mass load function). The mass

load function "reads" the record data file (".r" file) to load and populate the database. It

is important to note that prior to loading the database, the template, descriptor, and

record files must be created. Loading the database depends on information contained

within all of these files. Also, the template and descriptor files must be present on the

back-end system, for it these files that help manage the data between the various back-

112

ends. These files are not automatically placed on the back-end system, therefore, the user

must manually copy the template and descriptor files to the back-end. Chapter III,

section C, of this thesis describes the mass load function and the loading of data in

greater detail.

The record file contains all the record data the user intends to store in the

database. When the user wishes to add more data to the database, this data must be

added to the record data file, and then processed through the mass load function again.

Since the STORE command is not functional, it is not possible for the user to load data

one record at a time.

In commercial database systems, loading the data is usually not an issue. The user

typically manipulates and easy-to-use interface that allows for the quick insertion of data.

The user is not concerned with the physical storage structures of the data or how the data

is stored. However, to load data in a network database on the M2DBMS, the user must

create the record data file to successfully load the data. Figure 66 shows the record data

file (TEWIR.r) for the EWIR database.

The record data names and values indicated in this file are not the actual real-

world EWIR database names and values. Since this thesis is an unclassified research

project, real-world names and data values were not used. Our intent was to employ the

same names and values used by the object-oriented implementation to preserve

continuity. However, the formatting restrictions discussed earlier precluded us from

doing so in most cases.

To construct the record data file (TEWIRr), the user must use the template file

(TEWIR.t) as a template or guide to place the appropriate data with its corresponding

record types and attributes. The record types in the record data file are placed in the

same order as they are found in the template file (or schema since the template is derived

from the schema). The attribute values are placed in the record data file according to

their order in the template file. The "@" symbol in the record data file is used to separate

the various record types (see Figure 66).

113

/* name of the database */

/* delimiter symbol
/* next record type

Pdatal Radl 1
Pdata2 Rad2 2

3

TEWIR
@
Emitter /
1 Eel Wwl AalO Parabolic Modpulsewave /
2 Ee2 Ww2 Aa6 Phasedarray Modpulsewave
3 Ee3 Ww3 Sa21 Phasedarray Parabolic
@ /
Antenna /
4 Aal Phasedarray Longrngaa 3ft 4ft
5 Aa2 Square_sail Longrngaa 3ft 4ft
6 Aa3 Parabolic Lngrngaa 325ms 300kw Pdata3 Rad2
@
Polariz
7 Pdatal 4
8 Pdata2 5
9 Pdata3 6
@
Celpo
10 Left I20db 7
11 Parabolic I300kw 8
12 Parabolic I20db 9
@
Radpat
13 lOdb 4
14 lOdb 5
15 4ft 6
@
Directi
16 Dirl 325ms 300kw 4ft 325ms Seal 13
17 Dir2 300kw '4ft 325ms 300kw Sca2 14
18 Dir2 300kw 4ft 325ms 300kw Sca2 15
@
Scan
19 SCA1 325ms 4ft Phasedarray 16
20 SCA2 300ms 325kw Parabolic 17
21 SCA2 300ms 325kw Parabolic 18
@
Mechsc
22 Phasedarray Parabolic 19
23 Parabolic Modpulsew 20
24 Parabolic Modpulsew 21
@
Sector
25 Unidirectional 128ms 100ms 325ms 300kw Trl 22
26 Parabolic Upperlevel2 Lowerlevel2 300kw 4ft Trl 23
27 Parabolic Upperlevel2 Lowerlevel2 300kw 4ft Tr2 24
@
Track
28 Horiz45 16
29 Parabolic 17
30 Parabolic 18
@
Mechtr
31 128ms Upperlevell2 28
32 Upperlevell2 128hz 29
33 Upperlevell2 128hz 30

_$

record type name */
a record in the record type */

Figure 66. The EWIR Record Data File: TEWIR.r.

114

With the successful loading of the EWIR record data file by way of the mass

load function, this completes the data definition and creation of our network EWIR

database. The next chapter summarizes our findings and results of this thesis and

provides recommendations for future research involving the network interface of the

M2DBMS.

115

116

V. CONCLUSION

In this thesis, we have demonstrated the use of the M2DBMS as a test-bed for

implementing a portion of a real-world database, specifically the Electronic Warfare

Integrated Reprogramming Database (EWIRDB). The EWIRDB is an important tool

used in electronic warfare (EW) research, development and battlefield analysis. It

contains mission-critical data on the EW systems of friendly and hostile forces.

However, in its current format, structure and "model", the EWIRDB is very

complex and difficult to understand from a users point of view. The parametric tree with

its deceptive hierarchical structure, provides a poor modeling construct that obscures the

intended semantics and representation of the EW data.

This thesis is the result of continuing research to examine the possibility of

representing the EWIRDB using various other data models (i.e., network, relational, and

object-oriented) on the M2DBMS to enhance the data representation, semantics and

query processing of the EWIRDB. With the accomplishment of producing various other

data model representations of the EWIRDB, the objective of providing cross-model

access capabilities among these different models can then be pursued.

Currently research has been completed in modeling and implementing a portion of

the EWIRDB on the object-oriented interface. With the completion of this thesis and

that of research group, Edwards/Scrivener, a portion of the EWIRDB will be modeled

and implemented on the network and relational interfaces of the M2DBMS.

To reiterate, our primary goal was to implement a representative portion of the

EWIRDB on the network interface. However, in order to attain this goal, it was

necessary to first address and accomplish the following:

• Activate the network interface

• Test the interface to determine its capabilities and limitations

117

• Design a network EWIR model

The remainder of this chapter describes the contributions of our research and

potential future research areas.

We have successfully returned the network interface to its original operational

state. We have documented the changes made to the code and have implemented these

changes to reinstate the network interface. Correction and modifications to the program

code were made throughout the program modules of the language interface layer. Upon

discovering problems with the "STORE" command of the CODASYL-DML, we

implemented a mass load function that processes a record data file to quickly load and

populate the database.

Once the network interface was operational and data was loaded, we investigated

the capabilities and limitations of the interface by thoroughly testing a variety of different

Schemas and queries. Our testing strategy comprised of several basic queries performed

on a sample "PARTS" database. The basic queries used in the testing assisted in

determining record access points and possible navigation traversals within the network

hierarchy and structure.

The results of testing revealed significant limitations. Records could be accessed

directly; however, navigation was essentially constrained to a two level hierarchy. These

limitations imposed significant restrictions on the query processing of the network

interface, thus making the network interface virtually useless in its utility. Based on these

findings, it was not feasible to design, write and execute queries for our proposed

EWIRDB design. Therefore, only the data definition portion of our proposed network

EWIR model was successfully implemented.

As we just alluded to, a subset (i.e., the antenna data group) of the EWIRDB was

represented in the network model form. The object-oriented conceptual design served as

the basis for our network model. This thesis presented the network schema listing, the

template file, the descriptor file and the record data file for our EWIR network model.

118

The schema was processed on the network interface and the template and

descriptor files were properly generated. In addition, the record data file was loaded

successfully. Therefore, the entire data definition process of our proposed network

EWIR model design was fully implemented.

There are many potential areas for future research concerning the M2DBMS.

Many of these possibilities have already been expressed in prior work conducted on the

M2DBMS. Therefore, we will only mention the following.

We have proven that the network interface is extremely limited in its ability to

execute transactions and queries. Therefore, if it is desired to conduct a full and detailed

implementation using the network interface, serious inquiry to redesign the network

interface should be considered.

119

120

APPENDIX. N_MASS_LOAD() FUNCTION SOURCE CODE

This appendix contains the source code for the mass load function for the

network interface. The function is named n_mass_load() which is located in the

massjd.c file in the Lil directory. The following source code is from the massjd.c file.

/* n_mss_load.c */

#include <stdio.h>
#include <ctype.h>
#include <strings.h>
#include <licommdata.h>
#include <dml_lildcl.h>
#include <dml.h>
#include "coraradata.def"
«include "flags.def"

n_mass_load(fptrl,db_name, cnt)
FILE *fptrl;
char db_name[] ;
int cnt;

{
/* Load the database records */
int c, i, z, owner_flag, Record_cnt = 0;
struct net_file_info *file_ptr;
struct rtemp_definition *tmpl_ptr, *head_tmpl_list, *read_tmpl();
char hold[2],

record[REQLength+1],
tmpl_name[AVLength+1] ,
value_string[ANLength+l];

holdfl] = '\0';
#ifdef EnExFlag

printf("Enter n_mass_load\n");
fflush(stdout);

#endif

/* load a records file */

/* Inform user about what is happening : added 930915 */
printf ("\n\n «CLoading Records, Please Stand By>

\n\n");

/* read past the database id */
while (getc(fptrl) != '\n');

/* read template definition into memory */
if (!(head_tmpl_list = read_tmpl(db_name)))

return (FALSE);

121

#ifndef prrec_flag
printf(" ");

#endif

#ifdef TimeFlag
system("date > Time_data") ;

#endif

while (TRUE) {

while ((c = getc(fptrl)) == ' \n');
#ifdef pr_flag

printf("c = >%c<\n",c);
#endif

/* new template */
if (c == '@')
{

read_string_file(fptrl, tmpl_name, AVLength);
#ifdef pr_flag

printf("tmpl_name = >%s<\n",tmpl_name);
#endif

/* find template structure */
tmpl_ptr = head_tmpl_list;
while (strcmp(tmpl_ptr->rt_name, tmpl_name))

if (tmpl_ptr->rt_next_templ)
tmpl_ptr = tmpl_ptr->rt_next_templ;

else
{

UserError(19);
free_tmpl_list(head_tmpl_list);
return (FALSE);

} /* end if(tmpl_ptr->rt_next_templ) */

} else if (c == '$'|I c == EOF) /* end of file */
break;

/* construct and transmit a record */
else
{

strcpy(record, "[INSERT(");
for (i = 0; i < tmpl_ptr->no_entries; i++) {

strcat (record, "<");
strcat(record, tmpl_ptr->rt_entry[i].attr_name);

#ifdef pr_flag
printf("%s,", tmpl_ptr->rt_entry[i].attr_name);

#endif
strcat(record, ",");
if (!i)

strcat(record, tmpl_name);
else
t

if (i == 1) {
ungetc(c,fptrl);

122

read_string_file(fptrl, value_string, ANLength);
#ifdef pr_flag

printf("%s\n",value_string);
#endif

strcat(record, value_string);
} /* end else (!i) */
strcat(record, ">");
if (i < tmpl_ptr->no_entries-l)

strcat(record, ",");
} /* end for loop.*/
strcat(record, ")]");

#ifdef prrec_flag
printf("%d ",++Record_cnt);
printf("-> %s",record);
printf("\nlength of record is %d\n\n",strlen(record));

#endif

/* send the request to Request Preparation */
for(z =0; z < cnt; z++)

TI S$TrafUnit(db name, record);

ttifndef prrec_flag
Record cnt+=cnt;
if(!(Record_cnt%5))

{
printf("%6d",Record_cnt);
if (!(Record_cnt%100))
printf("\n ");

)
fflush(stdout);

#endif

owner_flag = FALSE;
dml_check_requests_left(file_ptr, owner_flag, TRUE);

} /* end else (c== x@') */

) /* end while(TRUE) */

ttifdef TimeFlag
system("date >> Time_data");

ttendif

/* free memory used by rtemp_definition's */
free_tmpl_list(head_tmpl_list);
printf("\n\n");

#ifdef EnExFlag
printf("Exit n_mass_load \n");
fflush(stdout);

#endif
} /* end n mass load */

123

124

LIST OF REFERENCES

[1] Emdi, B., The Implementation of a Network CODASYL-DML Interface for the
Multi-Lingual Database System, Master's Thesis, Naval Postgraduate School,
Montery, California, December 1985.

[2] Wortherly, C, The Design and Analysis of a Network Interface for the Multi-
Lingual Database System, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1985.

[3] Coyne, K., The Design and Analysis of an Object-Oriented Database of
Electronic Warfare Data, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1996.

[4] McKenna, T., Lee, J., The Object-Oriented Database and Processing of
Electronic Warfare Data, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1996.

[5] National Air Intelligence Center, Electronic Warfare IntegratedReprogramming
Database (EWIRDB) Guide, Volume 1, April 1994.

[6] Elmasri, R., and Navathe, S., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1994.

[7] Demurjian, S., The Multi-Lingual Database System - A Paradigm and Test-Bed
for the Investigation of Data-Model Transformation, Data Language
Translations and Data-Model Semantics, Doctoral Thesis, Ohio State University,
January 1987.

[8] Meeks, A., The Instrumentation of the Mu hi Backend Database System, Master's
Thesis, Naval Postgraduate School, Monterey, California, June 1993.

[9] Kellet, D., Tae Wook, K., Supporting the Object-Oriented Database on the
Kernel Database System, Master's Thesis, Naval Postgraduate School, Monterey,
California, September 1995.

[10] Bourgeois, P., The Instrumentation of the Multimodel and Multilingual User
Interface, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1993.

125

[11] Coker Jr., H., Accessing a Functional Database via CODASYL-DML
Transactions, Master's Thesis, Naval Postgraduate School, Monterey, California,
June 1987.

[12] Sheehan, W., The Design of a DL/I-to-Network Interface for the Multi-Model,
Multi-Lingual, Multi-Backend Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1989.

[13] Walpole, D., Woods, A., Accessing Network Databases via SQL Transactions in
a Multi-Model Database System, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1989.

[14] Rodeck, B., Accessing and Updating Functional Databases Using CODASYL-
DML, Master's Thesis, Naval Postgraduate School, Monterey, California, June
1996.

[15] Hsiao, D. K., "Interoperable and Mullidatabase Solutions for Heterogeneous
Databases and Transactions,''' a speech delivered at ACM CSC 1995, Nashville,
Tennessee, March 1995.

[16] Watkins, S., A Porting Methodology for Parallel Database Systems, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1993.

[17] Barnes, G., A Conceptual Approach to Object-Oriented Data Modeling, Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1994.

[18] Hsiao, D. K., "A Parallel, Scalable, Microprocessor-Based Database Computer
for Performance Gains and Capacity Growth," IEEE Micro, December 1991.

[19] Hall, J. E., Performance Evaluations of a Parallel and Expandable Database
Computer - The Multi-Backend Database Computer, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1989.

[20] Hansen, G., and Hansen, J., Database Management and Design, Prentice-Hall,
Inc., 1992.

[21] Yao, S. Bing, Principles of Database Design - Volume I Logical Organizations,
Prentice-Hall, Inc., 1985.

[22] Olle, William T., The Codasyl Approach to Data Base Management, John Wiley
& Sons, Ltd., 1978.

126

[23] Date, C. J., An Introduction to Database Systems, Fourth Edition, Addison-
Wesley Publishing Company, Inc., 1986.

[24] Navathe, S. B., Evolution of Data Modeling for Databases, Communications of
the ACM, Vol. 35, No. 9, September 1992.

127

128

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

4. Dr. C. Thomas Wu, Code CS/KA
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

5. Dr. David K. Hsiao, Code CS/HS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. LCDR Timothy J. Werre
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. CPT Barry A. Diehl
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

129

8. Sharon Cain
NAIC/SCDD
4115HebbleCreekRd
Wright-Patterson AFB, Ohio 45433-5622

9. Doris Mleczko, Code p22305
Weapons Division
Naval Air Warfare Center
Pt. Mugu, CA 93042

130

