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ABSTRACT

The extensive cost to thoroughly compare new radar sensor systems is a problem in
today’s military. Due to the shrinking defense budget, the opportunity to replace dated
sensor systems, with technologically advanced systems, seldom arises. Current funding
levels no longer support long vtenn evaluations of semsor system performance. The
development of new methods to measure system performance is crucial in determining the
best sensor system among many alternatives. Computer simulation is one method of
conducting additional trials to characterize sensor system  performance. AComputer
simulation can aid decision makers in selecting the sensor system that best meets the needs
of the current military force structure. The cost of simulation modeling is considerably less
than repeated testing of the real sensor system. This research investigates the feasibility of
developing a computer simulation of a radar sensor system. The scope of the research
includes computer modeling of the detection process and an evaluation Qf model output.

This simulation model is an initial step to emphasize the power of computer simulation.







THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While evei‘y effort has been made, within the
time available, to ensure that the programs are free of computational and logic errors, they
cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.
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EXECUTIVE SUMMARY

Faster and more complex radar sensor systems are being proposed and developed.
Determining the suitability of these new radar sensor systems as replacements for current
systems requires extensive testing of the new system’s performance. Thorough evaluation of
new radar sensor systems incurs high cost and an excessive amount of time. The declining
defense budget has an impact on the quality of testing performed on a given system while
force reduction affects the number of resourcés available to conduct complete system
evaluation.

The quality of a sensor system directly influences decisions made by tactical
commanders. Sensor systérris that provide timely and accurate information clarify a tactical
commander's appraisal of events occurring in his operating environment. Proper assessment
of the operating environment reduces the chance of committing crucial errors that lead to
incidents such as fratricide. A sensor system that undergoes rigorous examination before
entering opgraﬁonal service will ;educe the chance of an error in judgment by a tactical
commander using the sensor system.

Since limited funds reduce the extent of testing new systems, new ways of augmenting
the traditional testing methods need exploration. This thesis focuses on computer simulation
modeling as an affordable and practicable procedure for augmenting testing and evaluation
of new radar systems. Simulation modeling of a radar system allows for unlimited mns and
instant playback of test scenarios. The design of every scenario emulates the actual test

environmental conditions and interactions between the radar system and its targets.
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This research led to the development of a computer program that simulates a radar
sensor system attempting to detect a target. Using the operating characteristics of a given
radar system as the inputs, the program determines how quickly the simulated radar is able to
acquire an incoming target. The program outputs the amount of time required for the
simulated radar to detect the target. To compare multiple radar sensor systems, the various
operating characteristics are successively fed into the program. The radar system that detects
the target the earliest is the preferred radar system. The effect on radar system performance
due to varying its operating characteristics is quickly and easily visualized. A graphical
display of every scenario illustrates the orientation and progress of the engagement as it
evolves.

This research demonstrates one possible method of augmenting traditional radar
system testing. As evidenced by the results, computer simulation is capable of providing
meaningful results to the user. By accurately describing the functioning of a radar system by
use of computer simulation, strengths and weaknesses of the radar system are highlighted
before conducting actual radar system tests. Correcting known deficiencies, as identified by

computer simulation, is a more appropriate use of limited funds and resources.
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I. INTRODUCTION

Faster and more complex radar sensor systems are being proposed and developed.
These new radar sensor systems are candidates for replacing the current inventory of
aging radar sensor systems. There are two main questions to address before replacing an
aging radar system. First, which new radar sensor system best meets the minimum
performance criterion? Second, is the potential replacement radar sensor system actually
better than the existing radar sensor system?

For the tactical commander embarked in a Naval ship, a radar sensor system is the
main asset for building situational awareness aﬁd making the state of the environment
visible. The radar sensor system lets the tactical commander quickly locate and identify
formations of friendly, enemy, and neutral shipping. Locations of friendly aircraft are
discernible as well as threat aircraft locations and maneuvers. In both the surface and air
environments, the tactical commander can assign friendly forces to investigate
unidentified radar targets to further clarify the state of the environment. Earlier and more
accurate visualization of the tactical commander’s operating environment will direétly
affect the safe operation of friendly forces in a hostile environment.

The fundamental method of comparing alterative radar sensor systems involves
conducting trials to ascertain radar sensor system performance. Attaining reliable test
results requires strict adherence to conditions in the test environment. For example, to
reduce variability an acceptable test environment requires the same location and weather

conditions. The sea state at the time of testing is another variable that will affect test




results. The cost of holding these three variables constant during testing is prohibitively
high. Cost is not only incurred from installing the competing radar sensor systems on
board a test vessel, but in attaining the necessary assets to act as “targets” for the radar
sensor systems to detect and track.

Another disadvantage of the fundamental test method is the extensive amount of
time it takes to evaluate the multiple radar sensor systems. To test an air search radar for
a ship requires the test platform to transit from the pier to the designated operating area.
Aircraft fly out from their home base, which’can be minutes to hours away from the
ship’s operating area. After coordination of both units for the test scenarios, and
assuming no failures of either platform or the radér sensor system that is béjng tested, up
to an hour of time may have elapsed. If the aircraft has enough fuel to run trials for an
additional hour, perhaps four good runs are achievable before returning to base for fuel
and maintenance. Therefore, only a small amount of time is truly available to test a radar
sensor system, and achieving a full range a performance testing is virtually impossible.
Due to the high cost and limited test time available, the fundamental test method
provides only a rough estimate of the true performance of the radar sensor system.

An enhancement to the fundamental method of testing is computer simulation
trials of the competing systems. Computer simulation provides the following advantages:

o Experiment control through the use of set environmental standards.

o The variation of test criteria in the evaluation of radar system performance.

o Comparison of multiple alternative radar sensor systems.



Cost and time savings make computer simulation an attractive alternative to the
fundamental method of radar system testing. [Ref. 1, p. 115]

The focus of this thesis is to develop a computerized simulation of a radar’s
detection process as a means to compare different radar systems’ performance in a
tactical environment. Of primary interest are:

o The degree of sophistication of the model

o Structure of the model

o Required inputs to the model
This work is thus a first step towards the use of computer simulation to evaluate different
radar systems’ performance under the same test and operational conditions.

This thesis starts off with a discussion of sensor systems. Next, is a discussion of
thé simulation development in Chapter II, followed by a mock test scenario in Chapter
IV.  Results of the mock test are presented in Chapter V. Conclusions and

recommendations conclude this study in Chapter V1.







II. SENSOR SYSTEMS

A. BASIC SENSOR SYSTEMS

A sensor is a device that responds to actions occurring within its vicinity. A
sensor system consists of a response processor that is connected to a sensor. The sensor
sends signals to the response processor which will accumulate data to interpret what is

happening in the vicinity of the sensor. There are many different types of sensor systems

that may be applied in a variety of ways in the commercial and military world. They

range from simple systems, such as photosensitive cells that will turn on a light when
darkness arrives, to a complex fire control radar that will track an inbound target. This
thesis will focus on complex radar sensor systems.

Electromagnetic.sensors may be divided into three main types: electro-optical,
laser, and radar. All sensor systems are designed to perform the same task, albeit by
different methods. Their purpose is to aid the user in determining the state of the
environment by detecting, classifying and tracking targets. A target is a friendly,
unknown or enemy unit. Targets take the appearance of personnel for an electro-optical
sensor system, armored vehicles for a laser sensor system or aircraft for a radar system.
[Ref 2,p. 1]

Regardless of the method for evaluating the state of the environment, the same
basic process will be followed for all sensor systems from iﬁitial search for targets to
target destruction. The first event in this process is the detection of targets.

Accomplishing target detection involves searching the environment using the sensor




system under manual or automatic control. Surveillance effort during the detection phase
focuses on all target types in the environment.

Following the detection event comes the proper identification of targets in the
environment. The objective is to correctly identify and classify the target as a friendly,
unknown or enemy. Accurate identification of targets reduces the risk of fratricide.
Once a target has been identified it then is placed into a specific class of weapon system.
Classification of the weapon system allows the tactical commander to prepare a course of
action in the event that the target turns hostile.

If the target is one of interest, the next event for the sensor system is acquisition.
Difficulties in acquisition of an elusive target may arise due to target maneuvering to
avoid detection or target employment of deception techniques. In this case, flexibility in
changing sensor system operating parameters will increase the chance of acquiring the
target of interest.

The process concludes with the target tracking event. After successful acquisition
the sensor system will track the target using a recursive routine. Information related to
the target such as its speed and location receives continuous updates. An accurate
tracking routine predicts with precision the future location of the target from the targets
past dynamics. Figure 2.1 depicts a simple flow diagram of events that every sensor

system will follow.

Detection Event Identification Event L »Acquisition Event Tracking Event —-———v Destroy Target

Figure 2.1 Event processing of the sensor system



B. DEFINITION OF TERMS

Common terminology describes most elements of sensor system functionality.
Although the focus of this thesis is radar systems, with minor changes the terminology is
applicable to other sensor systems. Figure 2.2 shows a block diagram of a simple radar
system. The block diagram illustrates the basic path a received signal will follow within

the radar system.

Antenna Receiver IF Amplifier Square Law Detector “';—» Integrator Signal Processing

Figure 2.2 Radar sensor system block diagram. After [Ref. 3] [Ref. 2, p. 82].

During radar system operation the system transmits and receives energy pulses.

The pulse duration 7 is the length of time that power is transmitted during a single pulse.
The peak transmitted power level P, pulse repetition frequency PRF of the system and 7

determine the average power transmitted, given by Equation 2.1.
P, =PIPRF 2.1)
Figure 2.3 depicts the calculation of the range from the sensor to the target. Time r
represents the amount of time it takes for the emission and return of the transmitted
energy pulse. Since the pulse propagates through the atmosphere at the speed of light c, a
simplistic calculation of range is given by Equation 2.2. [Ref. 2, p. 93] [Ref. 2, p. 56]
The presence of noise in the radar receiver degrades the chance of the transmitted

energy pulse, or signal, being classified as a detection. Noise comes mainly from three




sources: thermal noise associated with the electronic circuits in the radar’s receiver, noise
from the first stage in the radar receiver, and atmospheric noise detected by the radar’s

Transmitted Pulse Returned Pulse

b, —

T
timet

Figure 2.3 Transmitted and returned pulses.
From [Ref. 2, p. 57}

R=— ~ (2.2)
receiving antenna. Additional sources of noise come from weather conditions, terrain,
and other radio frequency emitters. Upon entering the receiver, the received signal is
routed to an intermediate frequency amplifier to increase the chance of a weak received
signal being classified as a detection. The amplification of the return signal also causes
the amplification of the noise signal. Although strengthening of the return signal through
amplification is helpful for signal processing, amplification does not ensure that the
minimum detectable return signal will be separable from the noise inside the radar sensor
system. [Ref. 4, p. 3]

When the receiver output signal exceeds a predetermined threshold, a detection
has occurred. The threshold or bias level can be exceeded by a signal consisting of noise
alone. The higher the bias level setting, the less likely noise alone will exceed the bias
level and trigger a detection within the radar system. If noise alone causes a detection

then the false detection is referred to as a false alarm. [Ref. 4, p. 21] [Ref. 5, p. 71]



Gain is a significant parameter indicative of radar sensor system performance.
Gain is an effectiveness measure regarding the ability of the radar antenna to focus its
transmitted energy in a specified direction. Antenna gain G as a function of the radar

systems wavelength A and aperture area 4 is shown in Equation 2.3 . [Ref. 2, p. 3]

_4n4
2
The aperture area is the area of the radar that receives the returned power density that has

G 2.3)

been reflected from the target [Ref. 6, p. 7]. Equation 2.4 gives the aperture as a function

of the antenna gain and wavelength.

_GR
4r

A4

2.9

Pulse integration involves summing the voltages registered by incoming signals to
determine the occurrence of target detection. The detector does not discriminate
between signal plus noise voltages and noise-only voltages. Therefore, it is possible to
sum only noise pulses to compare against a threshold for determination of a target
detection. A signal-to-fluctuating noise ratio, known as standard deviation of noise or
root mean square (RMS) noise, is compared to a threshold value. If the signal-to-
fluctuating noise ratio exceeds the threshold value then a target has been detected. The
advantage to pulse integration is that the summed pulses provide a better indication of
the presence of a target since noise oscillates around a mean value.

If noise maintained a constant value over all returned signals, then target
detection would consist simply of subtracting the noise level from the returned signal and

determining if this new signal is greater than the threshold. If the signal minus constant




noise is greater than the threshold, then a detection is registered. Therefore, on any given
pulse an accurate assessment of the presence of a target is possible and pulse integration
is not necessary.

In the case of fluctuating noise, the noise cannot be as easily extracted from the
total signal since the magnitude of noise varies on each pulse. Accepting a signal-to-
noise ratio greater than the threshold in this situation constitutes a false detection.
Possibly, a large portion of the total signal consists of noise since noise can add enough
strength to a signal to exceed the threshold setﬁng. By integrating pulses, the true signal
could be averaged over n pulses to attain a positive target detection. As a consequence,
increasing the number of pulses integrated increases the chance of positively detecting a
target at the expense of a lengthening time until detection. [Ref. 3, p. 25] [Ref. 5, p. 73]

Transmitted energy from a radar sensor system experiences many types of signal
attenuation, or loss, from the time it leaves the antenna, travels through the atmosphere,
and ultimately returns to the receiver. Some examples are scan distribution loss, target
fluctuation loss, integration loss and atmospheric loss. System loss is an aggregate of
loss due to radar system hardware. Atmospheric loss results from absorption of signal4
energy by the atmosphere during signal propagation. The effect of loss on radar
performance is the reduction in signal-to-noise ratio. Reducing the signal to noise ratio

decreases the chance of detecting a target. [Ref. 4, pp. 15-16]

C. RADAR EQUATION

The radar equation forms the basis for determination of target range. The

maximum range of a radar sensor system is a function of three fundamental parameters:

10



transmitted power, antenna gain, and receiver sensitivity. Equation 2.5 defines the
functional form of the radar equation with the signal-to-noise ratio as a function of radar
system and environmental parameters. From Equation 2.5 it is obvious that the signal-to-

noise ratio is inversely proportional to target range raised to the fourth power.

S _ P . .GAC p-sEn .
W i [h + 0% ][] +

sysatm

where
Pa. = average transmitted power
A = antenna aperture
G = antenna gain
O res = target’s radar cross section
£ = integration efficiency
n = number of pulses integrated
R = range to target

02, =Toot mean squared thermal noise power

02er = TOOt mean squared clutter power

Ly, = system losses

L = atmospheric losses
Antenna aperture is the area of the antenna that receives the focused returned energy
pulse. Integration efficiency measures how well the pulse integrator operates, where a
flawless integrator has an efficiency of one. Clutter causes distortion of the reflected

signal due to excess scattering of the signal energy or absorption by some other medium.

11




Equation 2.6 demonstrates that the signal-to-noise ratio at time of detection determines

target range. [Ref. 2, pp. 89, 95] [Ref. 4, p. 28]

e

P GAC g E

167 2 l:‘]%:l[o- im‘se + o-ilutler] [LsysLatm]

R= (2.6)

D. PARAMETERS

The radar equation in Equation 2.6 illustmtes that average power, gain and
“aperture define the basis of radar sensor system operation. Although these parameters
are not the only parameters that describe the functioning of a radar sensor system, they
provide sufficient information to evaluate the performance characteristics of the radar
sensor system. - The list of sufficient parameters that determine radar range are provided

in Table 1.

Calculations based on range are a function of the target that the radar sensor
system attempts to detect, the performance characteristics of the radar sensor system and
atmospheric conditions. The radar cross section refers to the area of the target that
reflects energy back to the radar sensor system receiver. The radar cross section of a
target varies dependent on the aspect angle of the target in relation to the beam of the
radar. As the target moves through the atmosphere its radar cross section fluctuates in
intensity. Fluctuation of the radar cross section occurs betyveen radar sensor system
interrogations of the target. Target interrogation happens on a pulse-to-pulse or scan-to-

scan basis. [Ref. 4, pp. 37-38, 60]

12




| PARAMETER SYMBOI., | UNITS
Radar Cross Section | gprc meters?
Gain ‘ G dB
Wavelength A meters
Power P.. Watts
Aperture A4 meters®

Table 2.1 Defining parameters for radar sensor system.
After [Ref. 2, p. 25]

A target’s radar cross section is generally modeled as a composite of a finite
number of points that reflect transmitted radar energy back to the radar sensor system
receiver. The composite radar cross section, equal to the sum of the individual cross
sections, approximately follows the Rayleigh distribution [Ref. 4, p.61]. Another case of
fluctuating radar cross section combines a dominate reflecting point and many lesser
reflecting points. This one-dominant scatterer case of target reflectivity results in the Chi
Square distribution with four degrees of freedom. The multiple scatterer and one
dominant scatterer form the two main categories of fluctuating radar cross sections. [Ref.

2,p. 117] [Ref. 4, pp. 59-61]
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III. SIMULATION DEVELOPMENT

A. DETERMINISTIC VS. STOCHASTIC

The cookie cutter is the basic detection model for a radar sensor system as shown
in Figure 3.1. The cookie cutter model easily integrates into any radar sensor system
scenario. The sensor has a detection range of radius R that covers the radar sensor
system for 360 degrees. In the cookie cutter model the rédar sensor system’s location is
at the center of the circle. A detection occurs when the distance between the sensor and
the target is less than or equal to the radius R In its simplest form, cookie cutter
detection guarantees a 100 percent chance of target detection. Since the signal-to-noise

ratio fluctuates from scan to scan, the chance of detection at every point within the

Detection range R

Sensor Location

Figure 3.1 Cookie cutter detection model.

detection radius of the radar sensor system cannot be 100 percent. A comparison of radar
sensor system performance using this simple detection model will not be sufficient to
adequately evaluate the performance of radar sensor systems. If the range of detection is
the performance measure, then the sensor with the farthest detection range will always

detect the target first. Therefore, the simple cookie cutter model does not describe radar

15




sensor system performance at the level of detail needed for the comparison of
alternatives. If the simple cookie cutter model is expanded to incorporate other events
that affect the detection process, it is possible to develop a model for comparing
alternative sensor systems.

A stochastic detection model more accurately reflects changes that occur in the
physical operating environment of the radar sensor system between successive scans.
These changes include, but are not limited to, fluctuation of the target’s radar cross
section, noise levels in the radar sensor system receiver and noise generating atmospheric
conditions. The consequence of changes in the physical environment, between radar
scans, is the oscillation of the strength of the signal and noise at the receiver output.
Random events in the environment affect the probability that the radar sensor system
detects a target at some range r < R.

Evaluation of the stochastic detection model requires use the proper analytical
tool. When combined, the radar sensor system events described in Chapter 2 may be
viewed as a process, and the detection event as a sub-process, in the operation of the
radar sensor system. Simulation modeling is a valuable tool for process analysis. For a
radar sensor system, simulation modeling allows

e Time based analysis of the detection process.

o The ability to replay detection scenarios.

e The capability to explicitly model randomness

e Analysis of factors that directly and indirectly influence the detection process

16



B. PROBABILITY OF DETECTION

When pulse integration occurs after the square law detector it is called post

detection integration and is depicted in Fi gure 3.2. Noncoherent pulse integration

.

IF Fitter Square Law Datector -

Post Detection 8 ’
integrator

I IF Amplifier

Threshold Bias i

Figure 3.2 Signal processing. After [Ref. 7, p. 138]
happens when the phase relationship of the received signal as compared to the originally

transmitted signal is destroyed in the intermediate frequency filter. The efficiency £ of
noncoherent pulse integration is a positive value less than one. Summation of the pulses
during noncoherent integration provides input to the threshold bias decision circuits. A
detection takes place if the input exceeds the threshold bias. [Ref. 2, pp. 81-85] [Ref. 7,
pp. 137-139]

Single-hit probability of detection is the chance of detecting a target. An energy
signal transmitted by a radar sensor system contains at least one pulse. This pulse or
group of pulses has a finite amount of time 7 to reach the target and return to the
receiver while the radar sensor system scans the environment. For 7, the time available
for detection, the relationship holds that 7,; >> 1/(Pulse Repetition Frequency). The
radar sensor system receives a fixed number of pulses during the time interval 7; and
pulse integration then takes place. Equation 3.1 defines the relationship between the

number of pulses available for integration N, PRF, width of the radar beam Oz and
radar scan rate ¥, [Ref. 7, p. 144-145] [Ref. 4, p. 40]

8, PRF
14

N= G.1)

17




Single-hit probability of detection is a function of false alarm time. The false
alarm time is the amount of time that elapses between instances of noise alone exceeding
the threshold bias level. Stated another way, it is the time required for noise alone to
exceed the bias level with probability of 0.5. The probability of false alarm is given in
Equation 3.2 as a function of threshold bias level ¥, and N , the number of pulses
integrated. 7, in Equation 3.2, is the incomplete gamma function.

—1-1 L (n-
P, =1 I[NO_S (N 1)] (3:2)

Equation 3.2 1s closely approximated by Equation 3.3 below.

P o~ NYY exp(-1,)
TN, - N +1)

(3.3)

Knowing the probability of false alarm and the number of pulses integrated, a 'threshold
bias level can be found. [Ref. 5, pp. 71,77] [Ref. 4, pp. 21-23]

The Swerling models are the most commonly used models to describe the single-
hit probability of detection for objects with fluctuating radar cross sections. Swerling
Cases 1 and 2 describe targets whose radar cross section is a composite of a finite
number of scattering points. Case 1 specifically addresses radar cross sections that
fluctuate from scan-to-scan. During 7; the radar cross section fluctuations among
individual pulses are highly correlated. Little to no correlation of radar cross section
fluctuations is evident during the time between radar sensor system scans. This leads to
independent radar cross section fluctuations for the Swerling Case 1 model. Equation 3.4
gives the probability density function for the signal-to-noise ratio for a target with a

fluctuating radar cross section.
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where

x = observed signal-to-noise ratio

X = mean signal-to-noise ratio

The Swerling Case 2 model adheres to the same concept of multiple independent
scattering points, but considers pulse-to-pulse fluctuations of the target’s radar cross
section. The Swerling Cases 3 and 4 models address target radar cross sections with one-
dominate scattering area. [Ref. 4, pp. 59-63] [Ref. 8, pp. 122-126]

The maximum detectable range R, of a target defined by its radar cross section
Ogcs is found from Equation 2.6 by setting the signal equal to noise, resulting in a signal-
to-noise ratio of 0dB. R, is assumed to be the farthest range at which the radar sensor
system could detect the target. Equation 3.5 defines the relationship of some range R <

R, and the detection signal-to-noise ratio x. [Ref. 7, p. 137]

x=(%) 3.5)

To express the single-hit probability of detection P, as a function of the threshold
bias Y;, the mean signal-to-noise ratio ¥, and the number of pﬁlses integrated N for a
Swerling Case 1 target, the exact formulas are given in Equations 3.6 and 3.7 for N = 1
and N > 1 respectively. Due to the computational complexity of the exact single hit
probability of detection in Equation 3.7, an approximation is provided in Equation 3.8

[Ref 8, p. 127].
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When N¥> 1, Equation 3.8 is simplified to Equation 3.9where P, is a function of ¥, N

and Yb.

P = exp[——————(yb )y ] (3.9)

N

Also, Equation 3.5 and 3.9 yield Equation 3.10 as a useable formula to find the single-hit

probability of detection. [Ref. 8, pp. 124-129]
P=c (3.10)

where

1
u__[R)(Yb—-NH)Z
R N

4]

C. SIMULATION DESCRIPTION

The simulation takes radar sensor system parameters as inputs and determines a
random range of detection based on radar performance parameters and target radar cross
section. The basis for building the simulation model is the Naval Postgraduate School
Platform Foundation. The NPS Platform Foundation provides off-the-shelf building

blocks for simulation experiments and includes a graphical display of the simulation
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experiment scenario. MODSIM II is the object oriented language used to program the
modules of the NPS Platform Foundation. The structure of the NPS Platform Foundation
consists of an imaginary line that divides the generic modules common to all simulations
(below the line) and scenario specific modules designed by the user (above the line).
Above-the-line modules utilize the basic functions of below-the-line modules. Appendix
A includes a further discussion of the NPS Platform Foundation. [Ref. 9, pp. 3-5]

The simulation model focuses on the detection process of the radar sensor system,
although a complete scenario from detection to.target destruction can be run. The model
provides statistics concerning the time until target of detection and about the target’s
radar cross section. An example of a scenario consists of a ship with a radar sensor
system which is detecting an inbound aircraft flying through the radar sensor system’s
area of coverage as illustrated in Figure 3.3. The farthest range ring from the ship in
Figure 3.3 is the theoretical maximum range of the radar sensor system. The next range
ring indicates the maximum detectable range of the target R, based on the target’s radar
cross section and the radar’s parameters. The range ring closest to the ship is the random
detection range of the target. This example shows the case of one target and one radar
sensor system. The simulation model can evaluate multiple radar sensor systems and

multiple targets.

1. Model Assumptions
The level of detail chosen for the simulation model was designed to reflect the

minimum number of parameters needed to describe the basic functioning of the radar
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sensor system in a generic environment. Conditions that might readily be observed in the

physical environment need not be explicitly developed in the simulation model.

aximum radar
ange.

aximum detectable |
ange of the target.

IRange at target,
detection.

nbound target.

Figure 3.3 Typical engagement scenario.
As stated previously, the single hit probability of detection is a function of the

returned signal. The returned signal fluctuates between successive radar sensor system
scans. Signal correlation exists at the output of the receiver, but only for a shoﬁ time
duration that is approximately equal to the inverse of the filter bandwidth [Ref. 4, p. 391.
This time corresponds to the amount of time the target is illuminated during a single
scan. Decorrelation of retwrned signals, from conseéutive scans of the radar, arise
because the elapsed time between scans is much greater than the amount of time the
signals remain correlated. The resulting decorrelation allows each scan to be considered
a discrete independent look at a target. Since this model focuses on the initial detection

of the target, not repeated detections, signal independence simplifies and expedites

22



mathematical calculations. The penalties for assuming signal correlation between scans
are a need for excessive computer memory and longer simulation run time.

The distance from the target’s initial location to the sensor is set at some value
greater than R, and the target always proceeds towards the sensor. The occurrence of the
initial detection is crucial for modeling the detection phase of the radar since it is the
mechanism that determines the response of the radar sensor system and influences the

decisions made by the tactical commander. The probability of not detecting a target, P,

.on a single discrete scan is given by Equation 3.11. Since the radar sensor system will

scan a target more than one time, the expression in Equation 3.12 shows that the
probability of not detecting a target by scan i is the product of the probability of not
detecting the target on all previous scans. Equation 3.13 shows the probability of

detecting the target by scan 7. [Ref. 4, p. 39] [Ref. 7, pp. 58-60, 159]

P,=1-P, (3.11)

P ()= f](l - P(k)) (3.12)
k=1

P(y=1-T](1- B(k)) (3.13)

The initial location of a target is assumed to be outside of the range R,, assuming
that the coverage area of the radar sensor system is in the shape of a hemisphere. A
target approaching a radar sensor system originates from some point A, normally a
considerable distance from B, as it proceeds to point B. In this tactical engagement
simulation model, point B will always correspond to a specific radar sensor system’s

location.




2. Model Inputs

Model inputs depend on the type of analysis to be performed. The NPS Platform
Foundation has its own set of requisite model inputs. Table 3.1 summarizes the
additional inputs for running this radar sensor system detection model. To characterize
the platform that the radar sensor system desires to detect requires an input of the radar
cross section of the potential target. Describing the radar sensor system requires ten
additional inputs. These attributes are: average power P,,, aperture size 4, integration

efficiency E, number of pulses integrated , wavelength A, false alarm number 7, filter

bandwidth B, and receiver temperature X°, system loss L, and the time delay between
successive scans of the same point in space 7s. The clutter power 62, and atmospheric
Ioss Ly, explain the state of the operating environment of the radar sensor system.

Of the attributes listed in Table 3.1, the scan time is the only parameter not
represented in the radar equation given in Equation 2.5. The scan time sets the proper
time interval for the independent scans of the target. The parameters B and X relate to
the thermal noise power in the receiver and is shown in Equation 3.14 [Ref. 6, p. 133].
As evidenced in Equation 2.5, thermal noise plays an important role in the radar
equation.

D. IMPLEMENTATION

The modules developed for this thesis were specifically designed to evaluate a
radar sensor system’s detection phase. The additions to the NPS Platform Foundation
include both above-the-line and below-the-line modifications. Below-the-line changes

consisted of ensuring the correct parameters were passed to the new modules such that
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the integrity of the NPS Platform Foundation remained intact. Other changes were made
to add the additional parameters needed to model the radar sensor system as shown in
Table 3.1. Appendix B provides the source code of the below-the-line changes. The
above the line changes were made to develope the essence of the radar sensor system
operating in a tactical environment. The structure is built around an environmental
object as shown in Figure 3.4. The environment transfers information between the target
and the sensor. The sensor is an independent entity, but is linked to its host platform
through a virtual sensor. Therefore, referencing the sensor or the host platform leads to

the same effect.

where

Name Symbol | Units
Radar Cross Section Orcs Meters
Average Power P,. Watts
Integration Efficiency {E =~ | —eeer
Pulses Integrated /2 -
Wavelength A Meters
False Alarm Number n —
Filter Bandwidth B Hz
Receiver Temperature | 7 K
Scan Time Ts Seconds
Clutter Power o Watts
System Loss Lgys ———
Atmospheric Loss Lotm ——

o2 =kTB

noise

k=138 x 107 rapse
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Table 3.1 Radar attribute inputs for the simulation model.




Sensor Environment ' Threat

Figure 3.4 Two-way information flow between environment, sensor, and threat.

1. Environment

The physical atmosphere through which the signal travels is simulated by a
variable called the environment as found in Appendix B. The environment is the source

_for determining when and where a detection té.kes place. The environment knows the

performance characteristics of the radar sensor system, speed and three dimensional
location coordinates of the platform and target, and the target’s radar cross section. The
role of the environment is to randomly select a detection time from the cumulative
distribution function (éDF) for the probability of detecting the target. Construction of
the CDF is based on Equation 3.13, where each scan / is determined by the radar sensor
system scan time 7s. Every 7 seconds the radar will have a discrete and probabilistically
independent look at the target with a corresponding probability of detection.

The process for building the CDF requires determining the location coordinates of
R, based on the movements of the platform and the target. Next the environment finds
the ranges and location coordinates of the target for each discrete radar sensor system
scan. Since this thesis focuses on radar detection, the ranges and location coordinates are
found only while the target travels inbound to the sensor. Th'e cumulative probability of
detection is computed by an iterative process of summing the probability of detection for

all prior radar sensor system scans. At this point, for each radar scan, the environment
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has computed a range where the scan transpires, the probability of detection on the scan,
and the cumulative probability of detection on the scan.

The accumulated probabilities form a discrete step function from which a random
scan representing the detection is drawn. The method for drawing the random scan
comes from the inverse transform method of generating discrete random variates [Ref. 1,
pp. 469-474]. The time associated with the scan represents the additional time until
detection of the target after reaching the range R,. To clarify, R, represents the farthest
range that a radar sensor system, based on its operating characteristics, can detect a target

with a radar cross section of size Ozcs. Calculating the time for the target to proceed

form its initial location until intercepting a hemisphere around the sensor of radius R, is
always a fixed time of travel. Therefore, since the target cannot be detected at any range
greater than R,, the only randomness comes in to play after the target reaches its
maximum detectable range. The random drawn time is added to the time the target
intercepts R, as determined by the NPS Platform Foundation. When the simulation time
equals the sum of the two times a detection is registered. If the graphics screen is utilized
to view the scenario, the user wili notice the range ring of the sensor changes from green
to red and the status ring of the target changes from yellow to blue at the instant the

target 1s detected.

2. Radar and Threat

The first step for initializing the radar sensor system detection process is
determining the range R, from the radar equation. This range is where the signal to noise
ratio equals one. From Equation 3.5 the relationship between range and signal to noise

ratio has been established. The radar object then determines Y, the threshold setting.
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The threshold is automatically set by a recursive routine which can be found in Appendix
B [Ref. 4, p. 486]. At the time of detection the radar object gathers statistics related to
the signal to noise ratio that are used for analysis. The threat object is merely an
interface to provide information to the radar via the environment with out divulging

hidden information concerning the target’s location, speed, and radar cross section.
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IV. PROOF OF CONCEPT

The best method of demonstrating the concept of using simulation as an aid to
radar sensor system analysis is through a scenario emulating actual events. The scenario
compares the performance of two competing radar sensor systems. The expected time
until detection is the measure of effectiveness for the scenario. After determining the
expected time of detection of each system against a target of a given radar cross section,
the combined signal and noise distribution is examined. The examination focuses on the
observed combined signal at the time of target detection. From this analysis conclusions

are drawn to describe the functionality and compatibility of the radar sensor system.

A. MOCK SCENARIO

The scenario involves the evaluation of the SPS-30 and SPS-49 air surveillance
radars. The SPS-30 and SPS-49 are in competition to become the replacement for the
current air surveillance radar system, which has reached the end of its service life. The
manufacturers view the chance to produce the follow-on to the current air surveillance
radar sensor system as an extremely profitable government contract. Although the
manufacturers both claim to meet the military specification for the air surveillance radar
sensor system design, only one will be chosen as the follow on to the current air
surveillance radar sensor system.

The high cost of installing the competing radar sensor systems onboard a naval
vessel for evaluation and limited availability of test assets has led to the use of simulation

modeling for initial exploratory analysis of the radar sensor systems performance. After
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gaining knowledge of the capabilities and weaknesses of the radar sensor system through
simulation output analysis, resources can then be allocated to mnvestigate and test specific
areas of air surveillance system performance to acquire more precise data for comparing
the two systems.

The scenario has the SPS-30 and SPS-49 test being conducted in an controlled
ocean environment. The test involves the detection of a target with a radar cross section
size of 5 square meters. The target flight profile involves a constant altitude of 500 feet
and constant airspeed of 500 knots, commencing from a distance of 100 nautical miles
from the ship. The metric for the test is the expected time of detection, calculated from
the time the target has commenced its inbound run. The smaller the expected time of
detection, the better the performance of the air surveillance system under this
measurement criteria. Operational characteristics of the two radar sensor systems is
fictitiously provided by the radar sensor system manufacturers. Table 4.1 lists the input

parameters to the simulation model that specify the radar sensor system’s operating

characteristics.

| Parameter | SPS-30 | SPS-49
P, 9000 13000
A 8.82 6.24
E 0.98 0.95
n 5 7

0.15 0.319

n’ 100000 | 100000
T 6.0 5.0
T 1200 800
B 2000000 | 2000000

Table 4.1 Scenario inputs. After [Ref. 10, pp. 222, 224]
The actual events in a scenario are illustrated in Figure 4.1 through Figure 4.7.

When viewing the scenario on a computer monitor specific colors describe significant
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events. Figure 4.1 displays the initial setup of the ship and the target. The small status
ring around each platform indicates there has not been a detection. Visually on a
computer monitor the initial color of the status ring is yellow. In Figure 4.2, the radar’s
range ring representing the maximum detectable range of the target is added to the ship.
When viewing the scenario on a computer monitor the initial color of the radar range ring
is green. After the addition of the radar range ring the simulation begins. The target
proceeds inbound to the ship in Figure 4.3, as the ship proceeds on its course. Although
the target has crossed the maximum detectable range, Figure 4.4, its status ring shows
that it has not been detected by the radar sensor system. The status ring, when
graphically displayed on a monitor, retains its yellow color. Figure 4.5 depicts the
detection event. Viewed on a monitor, both the status ring of the target and the radar
sensor range ring simultaneously change color. Maroon identifies the target in a detected
status and the ship’s range ring changes to red indicating the presence of a target. As tﬁe
target continues inbound, Figure 4.6, its status ring continues to display a detected status.

The simulation concludes when the target overflies the ship as pictured in Figure 4.7.

B. SCENARIO ASSUMPTIONS

The modeling assumptions for this scenario, and the simulation model in general,
are devised to follow common reason and decrease computer programming complexity.
The first assumption for any scenario involving this simulation model is that the initial
location of the incoming target is greater than R,. Also, target’s mission is to attack the
ship platform. Therefore, the target will proceed to the last known coordinate position of
the ship. The target’s radar cross section fluctuates in accordance with the Swerling Case

1 target model. Provisions have been made to easily add other Swerling models to
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Figure 4.1 Initial setup of the ship and the target.
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Figure 4.2 Sensor range ring established.
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Figure 4.3 Ship steady on course and target inbound.
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Figure 4.4 Target crossing maximum detectable range.
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Figure 4.5 Radar detects target.

36



Figure 4.6 Detected target proceeding inbound.
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Figure 4.7 Simulated engagement complete.
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the current computer code. The last general assumption stipulates that all range
calculation are given in slant range to the target.

Assumptions in this scenario assert that the received signal does not experience
the corrupting effect of background clutter. The parameters integration efficiency, pulses
integrated, false alarm number, receiver temperature, and filter bandwidth are not true
operating values of the two radar senéor systems. These values merely portray possible
actual values. The simulation run is complete when the target passes overhead the ship.
Because this scenario evaluates air surveillance radar sensor systems in a tactical

environment, the speed of the incoming target greater than the speed of the ship.
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V. RESULTS

The expected time until target detection was measured for the SPS-30 and the
SPS-40 radar sensor systems based on the input parameters from Table 4.3 The
procedure for collecting the data involved taking data samples of the elapsed time
derived from the time the target commenced its inbound run until it was detected. The

samples from repeated runs of the scenario were then combined to calculate an estimate

of the mean time until detection. The point estimate is then bounded by confidence

intervals to further clarify the accuracy of the estimate.
The simulation experiment is replicated until a reasonable estimate of the mean
time until detection is found. The stopping rule for the simulation model is the relative

error of the mean time to detection. The relative error ¥ specifies the percent error in the
estimate of the mean X from the true value of the mean M. Equation 5.1 shows the

relationship between the mean values and the relative error [Ref. 1, p. 537]. Based on the

-4
luf

magnitude of the relative error, the number of replicates the simulation performs is

(5.1)

related to the half-width & of the confidence interval for the estimate of the mean. The

confidence interval changes as a function of the number of replicates ». Each replicate
checks the size of the confidence interval half-width and compares the half-width to the

relative error as given in Equation 5.2. [Ref. 1, pp. 538-539]

8n) _ vy |
MO <L (5.2)

41




For the mock scenario the relative error was chosen to be 1 percent. Each radar
sensor system replicate took less than one second to run. The run time for a particular
radar sensor system was less than four minutes. Based on the mean time of detection and
the given scenario, the SPS-30 performed better than the SPS-49. Table 5.1 summarizes

the output results.

| Measure

SPS-30

SPS-49

Mean Time (minutes)

49192

6.4556

Confidence Interval

(CD

(4.8735.4.9649)

(6.4121.6.4992)

C1 Precision

0.01

0.01

CI Width 0.0913 0.0871
Sample Variance 0.2882 0.1317
Runs 531 267

Table 5.1 Time until detection summary statistics.
The flexibility of simulation modeling is further demonstrated by extending the

ana_tlysis to exploring the returned signal and noise. Noise is modeled by assuming that it
comes from the Rayleigh distribution shown in Equation 5.3. The signal comes from an
unknown distribution, but is a function of the fluctuating radar cross section of the target
and the range of the target at the time of detection. The distribution of signal plus noise
theoretically comes from the Rice distribution given in Equation 5.4. Noise signals are

generated by the inverse transform method for the Weibull distribution since the

Weibull(2, B) is equivalent to the Rayleigh(f), where B equals the square root of two

times the total noise power o2 [Ref. 1, pp. 333-334, 490]. [Ref. 3]

P(r)= -(—)_12— exp2° (5.3)
where

2 2 2
0‘r = Gc]utter +O_naise
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(Aodt
A= e 5 2] 5.4)

where

1y = Bessel function of order 0

A = half wave of the sinusoidal signal

The accumulation of signal plus noise data follows the same method and stopping
rule as used in collecting detection time data. The received signal and fluctuating noise
are computed then summed to form the composite signal. Once the composite signal
data points are gathered, the observations are compared to the theoretical distribution to
appraise how closely they reflect the theoretical distribution of signal plus noise. Table
5.2 consolidates the results from the two runs while Figure 5.1 plots a hisfogram of the
observed data against the theoretical distribution. All observed data values have been

rescaled by a factor of 1077,

| Measure SPS-30 SPS-49
Mean Value 8.8383 5.4060
Confidence Interval (CI) | (8.8529.9.1472) | (5.1899.5.6220)
CI Precision 0.035 0.04
C1 Width 0.6179 0.4321
Sample Variance 42.5358 18.6033
Runs 1712 1531

Table 5.2 Signal plus noise summary statistics.
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Figure 5.1 Comparison of the observed data to the theoretical distribution.
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VI. CONCLUSIONS AND RECOMMENDATIONS

This thesis demonstrates the potential of simulation modeling as a tool to assist in
the testing of radar sensor system. The results clearly state the benefit of the ability to
replay a given detection scenario, as evidenced through the pregision of the mean value
estimates for the time until detection and the signal plus noise value. Additionally, the
simulation shows that many replications of a scenario are needed to determine a good
point estimate of the true mean of the variable under consideration. The fundamental
method of comparing alternatives does not allow a vast number of trials due to the high
cost of repeating the trials. Fundamental testing exercises very limited control over the
environment, thereby increasing variability in the observed results.

Simulation modeling allows for exploratory analysis of sensor system processes
which can lead to the discovery of new measures of sensor system perfomance. For
example, assume that noise follows a logistic distribution rather then a Rayleigh
distribution. The effect on the signal plus noise or signal to noise ratio may then be
examined. Converse to studying sensor systems, one might desire to understand how a
new weapon system performs against a particular enemy sensor system. By entering the
basic parameters of the enemy sensor system, knowledge of the detectability of a
proposed friendly weapon systems is gained.

This research evaluated a single scenario to demonstrate the feasibility of
modeling radar sensor system. The ability exist to run a multitude of scenarios to

investigate possible weaknesses in radar sensor system performance. Furthering of

45




research in the area of sensor systems can be done by more accurately defining the
effects of the atmosphere on the propagating signal, such as ducting and multipath.
Power intensity of a reflected signal could be adapted to reflect the aspect angle of the
target relative to the direction of the transmitted signal. After the desired level of detail
1s reached, as defined by the user, the other processes of the sensor system should be

modeled.
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APPENDIX A. NPS PLATFORM FOUNDATION

This appendix provides a brief overview of the NPS Platform Foundation. The
Platform consists of modules designed to provide an off the shelf generic simulation
package to run graphical military engagement scenarios with an empbhasis towards sensor
systems. The Platform Foundation is written in the object oriented language MODSIM II
and the graphics are programmed in SIMGRAPH II. Scenarios are built using data input
files to specify the types of systems employed, locations of the systems, and 'system
performance characteristics and movements. The graphical map display depicts the
systems and their movements on a 100x100 nautical mile grid.

The basic compoﬁénts of any scenario are the platforms and the sensbrs. The
platforms can be of a specified type such as a destroyer, frigate, attack jet, or fighter jet.
The platform is then assigned an identification name that relates it to a specific type of
platform, for example, a platform type “frigate’ is created and a platform is given the
identification name of OHPerry. The identification name OHPerry relates the platform to
a platform type ‘frigate’. This building convention allows for multiple forces of the same
type to be present during an engagement, which is comparable to real military battle
force structure. Sensors are an attribute of platform types. There is no direct link
between a sensor and a platform except through the graphical movements of the
platform. Whereas onboard a real naval vessel a fire control radar is physically part of

the ship, in the virtual world the only connection between the fire control radar and the
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ship is a graphic image of the ship and a range ring representing the fire control radar
scan range.

Sensor are linked to targets by a virtual sensor. Virtual sensing is the medium
through which information is transferred between target and sensor. The virtual sensor
maintains a queue of all targets it is tracking and calculates the time of detection based
upon movements of the sensor/platform and the target. Virtual sensing keeps a platforms

movements and attributes concealed from other platforms. Virtual sensing is the main

force driving any scenario involving sensing.
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APPENDIX B. SIMULATION CODE

The following code is a combination of new modules and critical additions to
existing NPS Platform Modules that needed changes for running the simulation model.
All programming codes is done in MODSIM I while the program is run on a UNIX
workstation [Ref. 11]. The first changes to existing code was done to the modules
DetRng and PList. These changes added the additional parameters needed to model the
radar sensor system and target attributes. The change to PList.mod was a single line
adding the radar cross section as an attribute.

Definition module DDetRng.mod:

FROM GM IMPORT RealmType;
FROM ListMod IMPORT QueueList;
FROM ReclO IMPORT RecIOHandleObj;

TYPE

AttributesRecType = RECORD
AveragePower :REAL;

Aperture :REAL;
Efficiency :REAL;
PulseInt - INTEGER;
WaveLength " REAL;
FalseAlarmNumber : REAL;
ScanTime :REAL;
ReceiverTemp :REAL;
FilterBW :REAL;
END RECORD;

SensorInfoRecType = RECORD
SensorTypeName : STRING,;

Realm : RealmType;
DefaultRange :REAL;
TypeSensor : STRING; {i.e. RADAR, OPTICAL, etc.}
Attributes - AttributesRecType;
END RECORD;

SensorIOHandleObj = OBJECT(RecIOHandIeObj[ANYREC: SensorinfoRecType])
END OBJECT;
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SensorMasterListObj = OBJECT(QueueListf ANYREC: SensorInfoRecType])
ASK METHOD GiveSensor(IN Name : STRING): SensorInfoRecType;
END OBJECT,

CoupledRangeRecType = RECORD
TgtType : STRING;
SensorType : STRING;
Range :REAL;

END RECORD;

DetectionRangePairObj = OBJECT(QueueListf ANYREC: CoupledRangeRecType])
ASK METHOD ReadRangeRecs;
ASK METHOD CoupledRange(IN TgtType : STRING;
IN SensorTypeName : STRING): REAL,;

END OBJECT,
VAR
MasterSensorList : SensorMasterListObj;
DetectionRangeOracle : DetectionRangePairObj;
END MODULE.

Implementation module DDetRng mod: (Changes only)

ASK METHOD CoupledRange(IN TgtTypeID : STRING;
IN SensorTypeName : STRING): REAL;
VAR
CurrentSensor : SensorinfoRecType;
BEGIN
CurrentSensor := ASK MasterSensorList TO GiveSensor(SensorTypeName),
IF CurrentSensor. TypeSensor = "RADAR”"
RETURN(ASK Radar TO FindRo(TgtTypelD, SensorTypeName));
ELSE
RETURN(-1.0);
END IF;
END METHOD;

ASK METHOD ReadRangeRecs;
VAR
SHRec : SHRecType;
SHArray : SHArrayType;
i,j : INTEGER;
SensorRec : SensorInfoRecType;
CharArray : ARRAY INTEGER OF CHAR;
Rec : CoupledRangeRecType;
MasterRangeIOHandler : SensorlOHandleOby;
BEGIN
NEW(MasterSensorList);
NEW(MasterRangelOHandler);
ASK MasterRangeIOHandler TO ReadRecs("sensor.dat");
ASK MasterRangeIlOHandler TO FindSHRec("SensorTypes", SHRec);
FOR i := 1 TO HIGH(SHRec.OwnedString) BY 13
NEW(SensorRec);
SensorRec.SensorTypeName = SHRec.OwnedString[i};
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SensorRec.Realm = ConvertToRealmType(SHRec.0wnedString[i+1]);
SensorRec.DefaultRange = STRTOREAL(SHRec.OwnedString[i+2]);
SensorRec. TypeSensor := SHRec.OwnedStringfi+3];

NEW(SensorRec. Attributes);

SensorRec. Attributes. AveragePower := STRTOREAL(SHRec.OwnedString{i+4]);
SensorRec. Attributes. Aperture := STRTOREAL(SHRec.OwnedString[i+5]);
SensorRec. Attributes. Efficiency = STRTOREAL(SHRec.OwnedString[i+6]);
SensorRec. Attributes Pulselnt := STRTOINT(SHRec.OwnedString[i+7]);

SensorRec. Attributes. WaveLength := STRTOREAL(SHReQOwnedStﬁng[i+8]);
SensorRec. Attributes. FalseAlarmNumber = STRTOREAL(SHRec.OwnedString[i+9]);
SensorRec. Attributes ScanTime := STRTOREAL(SHRec.OwnedStringi+10])/60.0;
SensorRec. Attributes. ReceiverTemp := STRTOREAL(SHRec.OwnedString[i+1 1
SensorRec. Attributes FilterBW = STRTOREAL(SHRec.OwnedString[i+12]);

WriteLine(" *);

WriteLine("Sensor " + SensorRec.SensorTypeName + " has realm " +
RealmToStr(SensorRec Realm) + " and default range " +
REALTOSTR(SensorRec.DefaultRange)+ " This sensor is a "+SensorRec.TypeSensor);
WriteLine("Attributes are Avg Power: " + REALTOSTR(SensorRec.Attributes.AveragePower));

WriteLine(" Apeture: " + REALTOSTR(SensorRec. Attributes. Aperture));
WriteLine(" Efficiency: " + REALTOSTR(SensorRec. Attributes.Efficiency));
WriteLine("  Pulses Integrated: " + INTTOSTR(SensorRec. Attributes. Pulselnt));
WriteLine(" Wavelength: " + REALTOSTR(SensorRec.Attributes.WaveLength));

WriteLine("  False Alarm Number: "

+ REALTOSTR(SensorRec.Attributes.FaIseAlarmNumber));
WriteLine(" Radar Scan Time; " + REALTOSTR(SensorRec.Attributes.ScanTime));
WriteLine(" Radar ReceiverTemp: "

+ REALTOSTR(SensorRec.Attributes.ReceiverTemp));

WriteLine(" Radar FilterBW: " + REALTOSTR(SensorRec. Attributes. FilterBW));
ASK MasterSensorList TO Add(SensorRec);

END FOR;
END METHOD;

The modules DAARONI.mod and IAARONI.mod comprise the environment,

radar, and threat objects. The radar determines its threshold setting in this module and the .

environment makes the link to create the cumulative distribution function in

14ARONCDF.mod.

Definition module DAARON1.mod:

DEFINITION MODULE AARON];
FROM GM IMPORT LocationRecType;
FROM Plat DMPORT PiatformObj;

FROM DetRng IMPORT SensorInfoRecType;
FROM RandMod  IMPORT RandomObj;
FROM MathMod IMPORT POWER;

FROM SimpleStats IMPORT StatObj;

FROM RandMod  IMPORT RandomObj;
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TYPE
ThreatObj = OBJECT
ASK METHOD Objlnit;
ASK METHOD CalculateRCS;
ASK METHOD GiveMeanRCS(IN ThisThreat : STRING): REAL;
END OBJECT,

EnvironmentObj = OBJECT
RandTime :REAL;
ClutterVar : REAL;
SystemLoss,
AtmosLoss : REAL;
ActiveThreat,
ActivePlat  : PlatformObj;
FutureLocale : LocationRecType;
MyRand : RandomObj;

ASK METHOD Objlnit;
ASK METHOD GiveRCS(IN NewThreat : STRING): REAL;
ASK METHOD Clutter() : REAL; :
ASK METHOD SysLoss() : REAL;
ASK METHOD AtmLoss() : REAL;
ASK METHOD SetCurrentPlats(IN P : PlatformObj; IN T : PlatformObj);
ASK METHOD SetEntryLocation(IN Locale : LocationRecType);
ASK METHOD FindDetectTime(IN Pulselnt : INT EGER;IN ThisPlat : STRING;
IN ThisSensor : STRING;
IN ThisTarget : PlatformObj; IN Ro : REAL),
ASK METHOD PassDetectionRCS(IN ThisThreat - PlatformObj) : REAL;
END OBIJECT;

RadarObj = OBJECT
Yb :REAL;
ReceiverTemp :REAL;
Rmax : ARRAY INTEGER OF REAL; {MAX RANGE FOR EACH PLATEORM TYPE}
SNRatio - ARRAY INTEGER OF REAL;
RCSStatKeeper : StatObj;
RandVarl : RandomObyj;

ASK METHOD ObjInit;

ASK METHOD Gain(IN ThisSensor : SensorInfoRecType) : REAL;

ASK METHOD FindRo(IN TgtType : STRING;IN SensorTypeName : STRING) : REAL;

ASK METHOD ThermalVar(IN Csensor : SensorInfoRecType) : REAL;

ASK METHOD Interference(IN CSensor : SensorinfoRecType) : REAL;

ASK METHOD FindBiasLevel(IN b : INTEGER; IN NPrime : REAL) : REAL;

ASK METHOD IntegrateYb(IN fofYb : REAL; INN : INTEGER) : REAL;

ASK METHOD ForElevationAngle() : REAL;

ASK METHOD GetNoise(IN noise : REAL) : REAL;

ASK METHOD FindTheSNRatio(IN TP : LocationRecType; IN PP : LocationRecType;
IN SensParam : SensorInfoRecType;
IN TgTOb; : PlatformObj);

END OBJECT,

VAR
Environment : EnvironmentObj; { Need to be newed somewhere}
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Radar  : RadarObj; { Need to be newed somewhere}
Threat  : ThreatObj; { Need to be newed somewhere}
Threshold : REAL;
k :REAL;

END MODULE.

Implementation module IAARON1.mod:

IMPLEMENTATION MODULE AARONI,

FROM GM IMPORT LocationRecType;

FROM Plat IMPORT PlatformObj;

FROM MathMod IMPORT LOG10, POWER, EXP, LN, pi, COS, SQRT;
{ use this to get info from the platform records}

FROM PList IMPORT MasterPlatformInfoList, PlatformInfoL istObj,
PlatformInfoRecType;
FROM DetRng IMPORT AttributesRecType, MasterSensorList, SensorMasterListObj,

SensorInfoRecType, DetectionRangePairObj;
FROM MathFunc IMPORT MyMath;
FROM Write IMPORT WriteLine, WriteData;
FROM AARONCDF IMPORT BlackBox;
FROM AARONTIME IMPORT MasterEntryTime;

FROM TypelLis IMPORT MasterPlatformTypeList, PlatformTypeRecType;
FROM Space IMPORT Sensor;

FROM RandMod IMPORT RandomObj;

FROM Manuv IMPORT NamedManeuverObj, ManeuverListObj, NamedPathObj,

ManeuveringPlatformObj;
FROM SimpleStats ~ IMPORT StatObj;
FROM SimExp IMPORT ExperimentManager;

OBJECT ThreatObj;
ASK METHOD Objlnit;
BEGIN
END METHOD;

ASK METHOD GiveMeanRCS(IN ThisThreat - STRING): REAL;
VAR
Rec : PlatformInfoRecType;
BEGIN
Rec := ASK MasterPlatformInfoList TO GivePlatform(ThisThreat);
RETURN(Rec.RCS);
END METHOD;
END OBJECT;

OBJECT EnvironmentObj;
ASK METHOD Objlnit;
BEGIN
ClutterVar := 0.0;
SystemLoss := 1.26;{Says system losses, 1dB}
AtmosLoss := 3.16;{Says atmos losses, 5dB}
NEW(MyRand); {Used for the RCS}
RandTime := 0.0; {Initialized to zero}
END METHOD;
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ASK METHOD GiveRCS(IN NewThreat : STRING): REAL;
BEGIN
RETURN(ASK Threat GiveMeanRCS(NewThreat));
END METHOD;

ASK METHOD Clutter() : REAL;
BEGIN
RETURN(ClutterVar);
END METHOD;

ASK METHOD SysLoss() : REAL;
BEGIN
RETURN(SystemLoss);
END METHOD;

ASK METHOD AtmLoss() : REAL;
BEGIN
RETURN(AtmosLoss);
END METHOD;

ASK METHOD SetCurrentPlats(IN P : PlatformObj; IN T : PlatformObj);
{This method sets the active participants platform objects}
BEGIN
ActiveThreat .= T;
ActivePlat ;= P;
END METHOD;

ASK METHOD SetEntryLocation(IN Locale : LocationRecType);
BEGIN
Futurel.ocale := Locale;
END METHOD;

ASK METHOD FindDetect Time(IN PulseInt : INTEGER;IN ThisPlatID : STRING;
IN ThisSensor : STRING;IN ThisTarget : PlatformObj;

INRo : REAL);

VAR :

Time, SlantRangeTime,

speed :REAL;

temprec : PlatformTypeRecType;

IDRec : PlatforminfoRecType;

TrueRange,

RadianAngle : REAL;

Xnot, Znot, a,b,c,VSI : REAL;

MyPosit,

ThreatPosit, ThreatVel : LocationRecType;

VelocityZ, VX :REAL;

ThisPath : NamedPathObj;

TheseManeuvers : ManeuverListObj;

NumberOfMan : INTEGER;

SensorParameters : SensorInfoRecType;

BEGIN

SensorParameters := ASK MasterSensorList GiveSensor(ThisSensor);

ASK BlackBox TO SetLookTimes(SensorParameters, { TheseManeuvers, } Ro);
SlantRangeTime := ASK BlackBox TO FindARange(Pulselnt); {Returns random range of detection}
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IDRec ;= ASK MasterPlatformInfol ist GivePlatform(ThisPlatID),

{Pass Time to IDetect. mod}

RandTime = SlantRangeTime;

{Store times here}

ASK MasterEntryTime TO AddRecord(IDRec. PlatformName, ThisSensor,

ASK ThisTarget ID, SlantRangeTime),

END METHOD;

ASK METHOD PassDetectionRCS(IN ThisThreat : PlatformObj) : REAL;
VAR
muRCS, R : REAL;
RCSatDetection : REAL;
BEGIN
muRCS = ASK SELF GiveRCS(ASK ThisThreat ID);
R = ASK MyRand UniformReal(0.0,1.0);
RCSatDetection := -muRCS * LN(R);
RETURN(RCSatDetection);
END METHOD;
END OBJECT;

OBJECT RadarObj;
ASK METHOD Objlnit;
BEGIN
k == 1.38/POWER(10.0,23.0);
NEW(RCSStatKeeper),
NEW(RandVarl),
ASK RandVarl TO SetSeed(2116429);
END METHOD;

ASK METHOD ThermalVar(IN Csensor : SensorInfoRecType) : REAL;
VAR
value : REAL;
BEGIN
value = k*Csensor. Attributes ReceiverTemp*Csensor. Attributes FilterBW ;
RETURN(value);
END METHOD;

ASK METHOD Interference(IN CSensor : SensorInfoRecType) : REAL:
VAR
IntVar : REAL;
BEGIN
IntVar := ASK SELF ThermalVar(CSensor) + ASK Environment TO Clutter();
RETURN(IntVar);
END METHOD;

ASK METHOD FindRo(IN TgtType : STRING;
IN SensorTypeName : STRING): REAL;

VAR
sigma, term], term2, term3,A : REAL;
i - INTEGER;

CurrentSensor  : SensorInfoRecType;
Noise, Clutter :REAL;
B : INTEGER,;
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BEGIN
CurrentSensor := ASK MasterSensorList TO GiveSensor(SensorTypeName);
sigma := ASK Environment TO GiveRCS(TgtType);
term! := CurrentSensor. Attributes. AveragePower * CurrentSensor. Attributes. Aperture *
ASK SELF Gain(CurrentSensor)*sigma * CurrentSensor. Attributes.Efficiency * 0.5 *
FLOAT(CurrentSensor.Attributes. PulseInt);
term2 = (16.0*POWER(pi,FLOAT(2))) * Interference(CurrentSensor) ;
term3 := ASK Environment SysLoss() * ASK Environment AtmLoss();
B := CurrentSensor. Attributes. Pulselnt;
A = CurrentSensor. Attributes. False AlarmNumber;
Yb := ASK SELF FindBiasLevel(B, A); {Sets the Threshold}
{Returns the Max det range based on RCS and radar parameters}
RETURN(POWER(term1/(term2 * term3),0.25) / 1852.0); {Convert from meters}
END METHOD;

ASK METHOD Gain(IN ThisSensor : SensorInfoRecType): REAL;
{Need to pass the actual record}
VAR
ap :REAL;
lambda : REAL;
BEGIN
ap = ThisSensor. Attributes. Aperture;
lambda := ThisSensor. Attributes. WaveLength;
RETURN((4.0 * pi * ap)/POWER(lambda, FLOAT(2)));
END METHOD;

ASK METHOD FindBiasLevel(IN b : INTEGER; IN NPrime : REAL) : REAL;
{ NPrime= FALSE ALARM NUMBER, b= PULSES TO INTEGRATE}
VAR
numerator, denomi, denom2 : REAL;
a, C: REAL;
BEGIN
a = POWER(0.5, (1.0/NPrime)); {This is the value to check against}
{ais FofYb}
C := ASK SELF TO IntegrateYb(a, b);{Pass FofYb and Pulses to Integrate}
RETURN(C),
END METHOD;

ASK METHOD IntegrateYb(IN fofYb : REAL; IN N : INTEGER) : REAL;
{Integrate For the purpose of finding the Threshold}
VAR
numerator, denoml, denom?2 :REAL;
a, b, h, temp, sum, X, dumy :REAL;
answernew, y, deita :REAL;
FoundSolution : BOOLEAN;
httlen, i INTEGER;
BEGIN
littlen := 800;
FoundSolution := FALSE;
a=0.0;
b:=0.1;
h:= (b-a)/FLOATlittlen);
temp := (EXP(-1.0*b)) * (POWER(b, FLOAT(N - 1))); {sum of f{a) and fb)}
sum := ASK MyMath TO ComputeFactorial(N - 1, temp); {this is the last term}
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FOR i=1 TO (littlen - 1)
X:=h * FLOAT(),
dumy:= (EXP(-1.0 * X)) * (POWER(X, FLOAT(N-1))) ;{2 times y}
y = ASK MyMath TO ComputeFactorial(N - 1,dumy);
sum:= sum + (2.0 * y);
END FOR,;
answernew = (h/2.0) * sum;
delta :=0.1; { This is the increase in Yb until the right value is found }
REPEAT
b:=b + delta; .
h:= (b-a)/FLOAT(littlen); _
temp := (EXP(-1.0*b)) * (POWER(b,FLOAT(N-1))); {sum of f(a) and f{b)}
sum := ASK MyMath TO ComputeFactorial(N - 1, temp);
FOR i:= 1 TO (littlen - 1)
X:=h* FLOAT(),
dumy:= (EXP(-1.0*X)) * (POWER(X,FLOAT(N-1))) ;{2 times v}
y = ASK MyMath TO ComputeFactorial(N - 1,dumy);
sum:= sum + (2.0 * y),
END FOR;
answernew = (h/2.0) * sum;
IF fofYb < answernew
Threshold = b;
FoundSolution := TRUE;
RETURN(b); {This b is the thresholded value}
END IF;
UNTIL FoundSolution;
END METHOD;

ASK METHOD ForElevationAngle() : REAL;
VAR
Angle : REAL;
BEGIN
NEW(Sensor);
Angle := ASK Sensor TO GiveElevationAngle();
DISPOSE(Sensor);
RETURN(Angle);
END METHOD;

ASK METHOD GetNoise(IN noise : REAL) : REAL;
{Uses the invers transform of the Weibull}
VAR
U, Beta,
RandWeibull : REAL,

BEGIN
U = ASK RandVarl UniformReal(0.0,1.0);
Beta := SQRT(2.0*noise);
RandWeibull := Beta*POWER(-LN(U),0.5);
RETURN(RandWeibull);

END METHOD;

ASK METHOD FindTheSNRatio(IN TP : LocationRecType; IN PP : LocationRecType;

IN SensParam : SensorInfoRecType; ’
IN TgTObj : PlatformObj);
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{For analysis purposes find the S/N Ratio}
VAR
terml, term2,
term3, term4,
SNRatio :REAL;
TheRange :REAL;
DetRCS :REAL;
TheNoise,
TheSignal,SplusN  : REAL;
BEGIN
TheRange := SQRT(POWER(TP x-PP x,2.0) + POWER(TP.y-PP.y,2.0) +
POWER(TP.z-PP.z,2.0)) * 1852.0; {Convert units to meter}
DetRCS := ASK Environment TO PassDetectionRCS(TgTObj); {Here use rand RCS}
term] := SensParam. Attributes. AveragePower*Gain(SensParam)*DetRCS*
SensParam. Attributes. Aperture*SensParam. Attributes. Efficiency*
FLOAT(SensParam.Attributes. Pulselnt);
term2 := POWER((4.0*pi*POWER(TheRange,2.0)),2.0);
term3 := Interference(SensParam);
term4 := ASK Environment SysLoss() * ASK Environment AtmLoss();
SNRatio := term1/(term2 * term3 * term4);
TheNoise := GetNoise(term3);
TheSignal := term1/(term2 * term4);
SplusN := (TheSignal + TheNoise)* POWER(10.0,14.0);
WriteData(TheSignal*POWER(10.0,14.0));
ASK RCSStatKeeper TO GetSample(TheSignal*POWER(10.0,14.0)); {Grab Stats}
IF ((ASK RCSStatKeeper HW() / ASK RCSStatKeeper Mean()) <=
ASK ExperimentManager DesiredPrecision) AND (ASK RCSStatKeeper N > 1)
ASK RCSStatKeeper TO Output;
ASK ExperimentManager TO SetBoolean;
END IF;
END METHOD;
END OBJECT;
END MODULE.

IAARONCDF.mod builds the cumulative distribution function from which the
inverse transform method determines the random time of detection.

Definition module DAARONCDF.mod:

DEFINITION MODULE AARONCDF;

FROM RandMod IMPORT RandomObj;

FROM Manuv IMPORT ManeuverListObj;

FROM DetRng IMPORT AttributesRecType,SensorInfoRecType;
FROMGM IMPORT LocationRecType;

{ THE PURPOSE OF THIS MODULE IS TO GENERATE THE RV Time}

TYPE
CDFRec = RECORD
Range :REAL;
NoDetect : REAL;
CumPd : REAL;
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PDF :REAL;

END RECORD;
CDFObj = OBJECT
Pd  : ARRAY INTEGER OF REAL;

Ufour  : ARRAY INTEGER OF REAL;
CumProb : ARRAY INTEGER OF CDFRec;
Ro :REAL;

RandVar : RandomObj;

Ratio  : ARRAY INTEGER OF REAL;
LookRanges : ARRAY INTEGER OF REAL;
TimeToRange : ARRAY INTEGER OF REAL;
K : INTEGER;

ASK METHOD Objlnit;
ASK METHOD FindPosTime(IN CSpeed : LocationRecType;
IN TPos : LocationRecType;
IN PPos : LocationRecType;
INRng :REAL):REAL;
ASK METHOD SetLookTimes(IN sensorrec SensorInfoRecType;
IN NewRo : REAL);
ASK METHOD FindARange(IN N : INTEGER) : REAL;
ASK METHOD FindSingleHitPd(IN N : INTEGER) : REAL;
ASK METHOD BuildCDF(IN N : INTEGER) : REAL;
ASK METHOD FindRandRange : REAL;
END OBJECT;
CONST Partitions = 900; {Set intervals for max number of looks}
VAR
BlackBox : CDFObj;
END MODULE.

Implementation module IAARONCDF.mod:

IMPLEMENTATION MODULE AARONCDF;

FROM MathMod IMPORT POWER, FLOOR, EXP, SQRT, SIN, COS, pi, ¢;

FROM AARON! IMPORT Environment, Threshold;

FROM RandMod IMPORT RandomObj;

FROM Manuv ~ IMPORT ManeuverListObj, NamedManeuverObj;

FROM DetRng  IMPORT AttributesRecType,SensorInfoRecType;

FROM GM IMPORT LocationRecType;

FROM AngleU  IMPORT RadToDeg, RadEastToDegNorth, BearingToLocation;

FROM MathFunc IMPORT MyMath;

FROM PList IMPORT MasterPlatformInfoList, PlatformInfoListObj,
PlatformInfoRecType;

OBJECT CDFOb;;
ASK METHOD Objlnit;
VAR
i: INTEGER;
BEGIN
NEW(RandVar),
ASK RandVar TO SetSeed(2116429302);
END METHOD;,
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ASK METHOD FindPosTime( IN RSpeed : LocationRecType; {Relative Speed}
INTPos :LocationRecType;
IN PPos : LocationRecType;
INRng :REAL):REAL;
VAR
a, b, c, time : REAL;
BEGIN
a = POWER(RSpeed x,2.0) + POWER(RSpeed.y,2.0) + POWER(RSpeed.z,2.0);
b :=2.0%((TPos.x*RSpeed.x) + (TPos.y*RSpeed.y) + (TPos.z*RSpeed.z) +
(-PPos.x*RSpeed.x) + (-PPos.y*RSpeed.y) + (-PPos.z*RSpeed.z));
¢ := POWER(TPos x,2.0) + POWER(TPos.y,2.0) + POWER(TPos.z,2.0) +
POWER((PPos.x,2.0) + POWER(PPos.y,2.0) + POWER(PP0s.2,2.0) -
2.0*((TPos.x*PPos.x) + (TPos.y*PPos.y) + (TPos.z*PPos.z)) - POWER(Rng,2.0);
time := ASK MyMath Quad(a,b,c);
RETURN(time);
END METHOD;

ASK METHOD SetLookTimes(IN sensorrec SensorInfoRecType;
IN NewRo : REAL );

VAR

ij : INTEGER,;

curRo, nextRange,

ElaspedTime, TgtCourse,

PCourse, RangeCheck,

XY, 2tV :REAL;

velocity, curBigXY,

curBigZ, DestBigXY,

DestBigZ, Bearing,

NextBearing, speedZ,

speedXY, Timelnt :REAL;

curmanuv,

nextmanuv, pnmanuv  : NamedManeuverQbj;

PlatCenter,

curTgtPosit,

DestTgtPosit, TDestTgtPosit,

IPTgt, IPPlat,

MaxTgtPosit,

PlatSpeed, future,

SpeedVec, TgtSpeed,

RoPosit , PDest : LocationRecType;
ProperInterval,

Inbound : BOOLEAN;

counter : INTEGER;
TheseAttributes : AttributesRecType;
TgtManuv, Pmanuv : ManeuverListObj;
Ttemprec,Ptemprec : PlatformInfoRecType;
BEGIN

TgtManuv := ASK Environment. ActiveThreat. CurrentPath ManeuverList;
Ttemprec := ASK MasterPlatformInfoList GivePlatform(ASK Environment. ActiveThreat ID);

NEW(IPTgt);

IPTgt.x .= Ttemprec.Initiallocation.x;
IPTgt.y = Ttemprec.InitialLocation.y;
IPTgt.z .= Ttemprec.Initiallocation.z;

counter = 0;
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Ro :=NewRo;
Timelnt = sensorrec. Attributes.ScanTime;{ Time allowed for movement between scans}
curmanuv := ASK TgtManuv First(); { Always at least 1 maneuver}
curTgtPosit = IPTgt;
nextmanuv := ASK TgtManuv Next(curmanuv),
{ *** Plat is not moving so find its first speed}
NEW(PlatSpeed);
Ptemprec := ASK MasterPlatformInfoList GivePlatform(ASK Environment. ActivePlat D),
PlatCenter := Ptemprec. InitialLocation;
Pmanuv := ASK Environment. ActivePlat. CurrentPath ManeuverList;
pnmamuy := ASK Pmanuv First();
PDest := ASK pnmanuv DestinationForStraightShot;
PCourse := BearingToLocation(PlatCenter, PDest);
PlatSpeed.z := (ASK pnmanuv ClimbDiveRate)/6000.0;
velocity == ASK pnmanuv NewSpeed;
speedXY = SQRT(POWER(velocity,2.0) - POWER(speedZ,2.0));
PlatSpeed x := speedXY * SIN(PCourse * pi/180.0);
PlatSpeed.y := speedXY * COS(PCourse * pi/180.0);
Inbound := TRUE;
Bearing := BearingToLocation(PlatCenter, IPTgt); { Assumes Straight Shot}
Properinterval ;= FALSE;
NEW(future);
NEW(SpeedVec),
NEW(TgtSpeed),
NEW(RoPosit);
NEW(DestTgtPosit),
NEW(LookRanges, 1. Partitions);
NEW(TimeToRange, 1. Partitions);

{ *** Find the correct starting interval}
WHILE (curmanuv <> NILOBJ) AND (Inbound)
{Sets the climb/descent speed and converts to Mile per min, ML in man.dat doesn't work }
curBigXY := SQRT(POWER((curTgtPosit.x - PlatCenter.x),2.0) +
POWER((curTgtPosit.y - PlatCenter.y),2.0)),
curBigZ = curTgtPosit.z - PlatCenter.z ;

{ **** This is for true destination }
TDestTgtPosit := ASK curmanuv DestinationForStraightShot;

{ ***Sets the inbound speed Vector of the target}

TgtCourse := BearingToLocation(curTgtPosit, TDestTgtPosit);
TgtSpeed.z := (ASK curmanuv ClimbDiveRate)/6000.0;
velocity := ASK curmanuv NewSpeed;

speedXY = SQRT(POWER(velocity,2.0) - POWER(speedZ, 2.0));
TgtSpeed x = speedXY * SIN(TgtCourse * pi/180.0);

TgtSpeed.y = speedXY * COS(TgtCourse * pi/180.0);

{ *** Sets the Rate of Closure Vector }

SpeedVec.x = TgtSpeed.x - PlatSpeed x;
SpeedVec.y := TgtSpeed.y - PlatSpeed.y;
SpeedVec.z := TgtSpeed.z - PlatSpeed.z;

{ Rework and solve for relative destination and check, v is the time to get to
true target destination from current TgtPosit}
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v = SQRT(POWER(TDestTgtPosit.x - curTgtPosit x,2.0) +
POWER(TDestTgtPosit.y - curTgtPosit.y,2.0) +
POWER(TDestTgtPosit.y - curTgtPosit.y,2.0)) / velocity;

IF nextmanuv <> NILOBJ

DestTgtPosit.x := curTgtPosit.x + (SpeedVec.x*v);

DestTgtPosit.y := curTgtPosit.y + (SpeedVec.y*v);

DestTgtPosit.z := curTgtPosit.z + (SpeedVec.z*v);

DestBigXY = SQRT(POWER((DestTgtPosit.x - PlatCenter.x),2.0) +

POWER((DestTgtPosit.y - PlatCenter.y),2.0));

DestBigZ = DestTgtPosit.z - PlatCenter.z;

ELSE

DestTgtPosit.x := TDestTgtPosit x;
DestTgtPosit.y == TDestTgtPosit.y ;
DestTgtPosit.z := TDestTgtPosit. z;
DestBigXY := SQRT(POWER((DestTgtPosit.x - PlatCenter x),2.0) +
POWER((DestTgtPosit.y - PlatCenter.y),2.0));
DestBigZ := DestTgtPosit.z - PlatCenter.z;
END IF, ,
IF (SQRT(POWER(curBigXY,2.0) + POWER(curBigZ 2.0)) <=
SQRT(POWER(DestBigXY,2.0) + POWER(DestBigZ,2.0))) AND (Inbound)
MaxTgtPosit := curTgtPosit;
{ *** tis the time to get to Ro from MaxTgtPosit}
t := FindPosTime(SpeedVec, MaxTgtPosit, PlatCenter, Ro);
{ *** Find the coordinates of Ro }
RoPosit.x := MaxTgtPosit.x + (SpeedVec.x*t);
RoPosit'y == MaxTgtPosit.y + (SpeedVec.y*t);
RoPosit.z ;= MaxTgtPosit.z + (SpeedVec.z*t);
RangeCheck := SQRT(POWER (curBigXY,2.0) + POWER(curBigZ,2.0));
Properinterval .= TRUE;
REPEAT
future x = curTgtPosit.x + (Speed Vec.x*Timelnt);{New x posit}
future.y := curTgtPosit.y + (Speed Vec.y*Timelnt); {New y posit}
future.z := curTgtPosit.z + (Speed Vec.z*Timelnt); {New z posit}
nextRange = SQRT(POWER(future x - PlatCenter.x,2.0) +
POWER(future.y - PlatCenter.y,2.0) +
POWER(future z - PlatCenter.z,2.0));
curTgtPosit = future;
{ Check if the range is decreasing, if so, add to array if R < Ro}
IF nextRange <= RangeCheck
curBigXY := SQRT(POWER((curTgtPosit.x - PlatCenter.x),2.0) +
POWER((curTgtPosit.y - PlatCenter.y),2.0));
curBigZ = curTgtPosit.z - PlatCenter z;
RangeCheck := nextRange;
IF nextRange <= Ro
counter ;= counter + 1;
LookRanges[counter] := nextRange;
{ *** Time to go from Ro to all other accepted positions }
IF counter <> 1
TimeToRange[counter] := (SQRT(POWER(future x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0) +
POWER(future.z - RoPosit.z,2.0))
/" (SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)))) +
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TimeToRange[counter - 1] ;
RoPosit.x = future x;
RoPosit.y = future.y,
RoPosit.z = future.z;
ELSE
{ *** Time to go from Ro to first accepted position}
TimeToRange[counter] := SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+ POWER(future.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)),
RoPosit.x = future x;
RoPosit.y == future.y,
RoPosit.z = future.z;
END IF;
END IF;
ELSE
Inbound := FALSE;{Tgt passed ovhd}
curmanuv ;= nextmanuv;
END TF,
UNTIL NOT(Inbound),
{Force the target outbound after min range}
Inbound := FALSE;{Tgt passed ovhd}
{ Removed while loop because since in this manuever the target will pass
ovhd you do not want to consider a next manuever}
{for when Max is less than Min, the normal configuration execute the following}
ELSIF (Ro > SQRT(POWER(DestBigXY,2.0) + POWER(DestBigZ,2.0))) AND (Inbound)
MaxTgtPosit := curTgtPosit;

{ *** t is the time to get to Ro from MaxTgtPosit}
t := FindPosTime(SpeedVec, MaxTgtPosit, PlatCenter, Ro);

{ *** Find the coordinates of Ro }
RoPosit.x := MaxTgtPosit.x + (SpeedVec.x*t);
RoPosit.y := MaxTgtPosit.y + (SpeedVec.y*t),
RoPosit.z := MaxTgtPosit.z + (SpeedVec.z*t);
RangeCheck = SQRT(POWER(curBigXY,2.0) + POWER(curBigZ,2.0));
Properinterval := TRUE;
REPEAT
future.x := curTgtPosit.x + (SpeedVec x*Timelnt); {New x posit}
future.y := curTgtPosit.y + (SpeedVec.y*Timelnt), {New y posit}
future.z := curTgtPosit.z + (Speed Vec.z* Timelnt); { New z posit}
nextRange := SQRT(POWER(future x - PlatCenter.x,2.0) +
POWER(future.y - PlatCenter.y,2.0) +
POWER(future.z - PlatCenter.z,2.0));
curTgtPosit = future;

{ *** Check if the range is decreasing, if so, add to array if R <Ro}
IF nextRange <= RangeCheck
curBigXY := SQRT(POWER({(curTgtPosit.x - PlatCenter.x),2.0) +
POWER((curTgtPosit.y - PlatCenter.y),2.0));
curBigZ = curTgtPosit.z - PlatCenter.z;
RangeCheck := nextRange;
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IF nextRange <= Ro
counter := counter + 1;
LookRanges[counter] := nextRange;

{ *** Time to go from Ro to all other accepted positions }
IF counter <> 1
TimeToRange[counter] := (SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+ POWER(future.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)))
_ + TimeToRange[counter - 1] ;
RoPosit.x = future x;
RoPosit.y = future.y;
RoPosit.z = future.z;
ELSE _
{ *** Time to go from Ro to first accepted position}
TimeToRange[counter] := SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+ POWER(future.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0));
RoPosit.x = future x;
RoPosit.y = future.y;
RoPosit.z = future.z;
ENDIF,
ENDIF,;
ELSE
Inbound := FALSE;{Tgt passed ovhd}
curmanuy ;= nextimanuv,
END IF;
UNTIL (nextRange < SQRT(POWER(DestBigXY,2.0) + POWER(DestBigZ,2.0))) OR (NOT(Inbound));
WHILE nextmanuv <> NILOBJ {Move to next Maneuver}
MaxTgtPosit == curTgtPosit;
curmanuy = nextmanuv;
nextmanuv = ASK TgtManuv Next(curmanuv),
{ **** This is for true destination }
TDestTgtPosit := ASK curmanuv DestinationForStraightShot;
TgtCourse := BearingToLocation(curTgtPosit, TDestTgtPosit);
TgtSpeed.z := (ASK curmanuv ClimbDiveRate)/6000.0;
velocity = ASK curmanuv NewSpeed;
speedXY := SQRT(POWER(velocity,2.0) - POWER(speedZ,2.0));
TgtSpeed x := speedXY * SIN(TgtCourse * pi/180.0);
TgtSpeed.y := speedXY * COS(TgtCourse * pi/180.0);
SpeedVec.x = TgtSpeed.x - PlatSpeed.x;
SpeedVec.y := TgtSpeed.y - PlatSpeed.y;
SpeedVec.z := TgtSpeed.z - PlatSpeed z;
v := SQRT(POWER(TDestTgtPosit.x - curTgtPosit.x,2.0) +
POWER(TDestTgtPosit.y - curTgtPosit.y,2.0) +
POWER(TDestTgtPosit.y - curTgtPosit.y,2.0)) / velocity;
IF nextmanuv <> NILOBJ .
DestTgtPosit.x := curTgtPosit.x + (SpeedVec.x*v);
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DestTgtPosit.y := curTgtPosit.y + (SpeedVec.y*v);
DestTgtPosit.z := curTgtPosit.z + (Speed Vec.z*v);
DestBigXY := SQRT(POWER((DestTgtPosit.x - PlatCenter.x),2.0) +
POWER((DestTgtPosit.y - PlatCenter.y),2.0));
DestBigZ := DestTgtPosit.z - PlatCenter.z;
ELSE
DestTgtPosit.x = TDestTgtPosit.x;
DestTgtPosit.y := TDestTgtPosit.y ;
DestTgtPosit.z ;= TDestTgtPosit.z;
DestBigXY := SQRT(POWER((DestTgtPosit.x - PlatCenter.x),2.0) +
POWER((DestTgtPosit.y - PlatCenter.y),2.0));
DestBigZ = DestTgtPosit.z - PlatCenter.z;
END IF;
RangeCheck = SQRT(POWER (curBigXY,2.0) + POWER(curBigZ,2.0));
REPEAT
future.x == curTgtPosit.x + (SpeedVec.x*Timelnt); {New x pos}
future.y := curTgtPosit.y + (SpeedVec.y*Timelnt); {New y pos}
future.z := curTgtPosit.z + (SpeedVec.z*Timelnt); {New z pos}
nextRange := SQRT(POWER (future.x - PlatCenter.x,2.0) +
POWER(future.y - PlatCenter.y,2.0) +
POWER(future.z - PlatCenter.z,2.0));
curTgtPosit = future;
{ *** Check if the range is decreasing, if so, add to array if R < Ro}
IF nextRange <= RangeCheck
curBigXY := SQRT(POWER((curTgtPosit.x - PlatCenter.x),2.0) +
POWER((curTgtPosit.y - PlatCenter.y),2.0));
curBigZ := curTgtPosit.z - PlatCenter.z;
RangeCheck := nextRange;
IF nextRange <=Ro
counter := counter + 1; .
LookRanges[counter] := nextRange;
IF counter < 1
TimeToRange[counter] := (SQRT(POWER(future x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+POWER(fiture.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)))
+ TimeToRange[counter - 1] ;
RoPosit.x = future.x;
RoPosit.y = future.y;
RoPosit.z := future.z;
ELSE
{ *** Time to go from Ro to first accepted position}
TimeToRange[counter] := SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+ POWER(future.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0));
RoPosit x = future x;
RoPosit.y = future.y;,
RoPosit.z = future.z;
END IF;
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END IF;
ELSE
Inbound := FALSE;{Tgt passed ovhd}
curmanuv ;= nextmanuv;
END IF;
UNTIL (nextRange < SQRT(POWER(DestBigXY,2.0) + POWER(DestBigZ,2.0))) OR (NOT(Inbound));
END WHILE;
{Backup Plan for a fly through situation}
IF Inbound
RangeCheck := SQRT(POWER(curBigXY,2.0) + POWER(curBigZ,2.0));
REPEAT
future x := curTgtPosit.x + (SpeedVec x*Timelnt); {New x posit}
future.y = curTgtPosit.y + (SpeedVec.y*Timelnt);{New y posit}
future.z == curTgtPosit.z + (SpeedVec.z*Timelnt), {New z posit}
nextRange := SQRT(POWER(future.x - PlatCenter.x,2.0) +
POWER(future.y - PlatCenter.y,2.0) +
POWER(future.z - PlatCenter.z,2.0));
curTgtPosit ;= future;
{ Check if the range is decreasing, if so, add to array if R <Ro}
IF nextRange <= RangeCheck
curBigXY := SQRT(POWER((curTgtPosit.x - PlatCenter.x),2.0) +
POWER((curTgtPosit.y - PlatCenter.y),2.0));
curBigZ := curTgtPosit.z - PlatCenter.z;
RangeCheck = nextRange;
IF nextRange <= Ro
counter := counter + 1;
LookRanges[counter] := nextRange,;
{ *** Time to go from Ro to all other accepted positions }
IF counter < 1
TimeToRange[counter] := (SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0) +
POWER(future.z - RoPosit.z,2.0))
!/ (SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)))) +
TimeToRange[counter - 1] ;
RoPosit.x = future.x;
RoPosit.y = future.y;
RoPosit.z = future.z;
ELSE
{ *** Time to go from Ro to first accepted position}
TimeToRange{counter] := SQRT(POWER(future.x - RoPosit.x,2.0)
+ POWER(future.y - RoPosit.y,2.0)
+ POWER(future.z - RoPosit.z,2.0))
/ SQRT(POWER(SpeedVec.x ,2.0) +
POWER(SpeedVec.y,2.0) +
POWER(SpeedVec.z,2.0)),
RoPosit.x ;= future x;
RoPosit.y = future.y;
RoPosit.z == future.z;
END IF;
END IF;
ELSE
Inbound = FALSE;{Tgt passed ovhd}
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curmanuv = nextmanuv;
END IF,
UNTIL NOT(Inbound);
END IF;
ELSE { *** Check the next set of points (main if loop)}
curmanuv ;= nextmanuv;
curTgtPosit.x := DestTgtPosit.x;
curTgtPosit.y := DestTgtPosit.y;
curTgtPosit.z := DestTgtPosit z;
IF curmanuv <> NILOBJ
nextmanuv = ASK TgtManuv Next(curmanuv);
END IF;
END IF; {main if loop}
IF NOT(Inbound)
{ *** The array is stored in reverse order here}
K = counter; {Lets me know the size of the array}
EXIT;
-END IF;
END WHILE;
DISPOSE(future);
DISPOSE(SpeedVec);
DISPOSE(TgtSpeed);
DISPOSE(RoPosit);
DISPOSE(DestTgtPosit);
DISPOSE(PlatSpeed),
DISPOSE(IPTgt);
END METHOD;

ASK METHOD FindARange(IN N : INTEGER) : REAL;
VAR

a, b, answer : REAL;

i : INTEGER;

BEGIN
NEW(Ufour, 1. K);
a = (Threshold - FLOAT(N) + 1.0)/FLOAT(N);

{ *** LookRanges goes from [1] = furthest out range from platform{k] = closest range to platform.
The ratio of R/Ro, K intervals. This is an array of Ur4th power}
FORi:=1TOK
Ufour[i] := a * POWER((LookRanges]i] / Ro), 4.0);

END FOR;
answer = ASK SELF TO FindSingleHitPd(N);
DISPOSE(Ufour),
DISPOSE(Pd);
DISPOSE(CumProb);
DISPOSE(Ratio);
DISPOSE(LookRanges);
DISPOSE(TimeToRange);
RETURN(answer);

END METHOD;

ASK METHOD FindSingleHitPd(IN N : INTEGER) : REAL:
VAR

i : INTEGER;

answer : REAL;
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BEGIN

NEW(Pd, 1.K);
{Array of The Single Hit Probability of Detection}
FORi:=1TOK
Pd[i] .= EXP(-Ufour[i]);
END FOR;
answer = ASK SELF TO BuildCDF(N);
RETURN(answer);

END METHOD;

ASK METHOD BuildCDF(IN N : INTEGER) : REAL;

VAR

Check, CumValue,
a, b, CumSum, ¢,

hl

,sum :REAL;

answer : REAL;
cdfrec : CDFRec;

i]

: INTEGER;

BEGIN

NEW(Ratio, 1..K);
{ *** Find the R/Ro ratio and store it}
FORi=1TOK
Ratiofi] := LookRanges[i] / Ro;
END FOR,;
{ *** Now Find 1 - SHPD and load to matrix }
NEW(CumProb, 1..K);
FORi=1TOK
NEW(CumProbl[i]);
CumProb{i].Range := LookRangesl[i];
{ *** Find the Appropriate Single Hit Pd and find prob no detect at look i}
CumProb[i].NoDetect := 1.0 - Pd[i}; {Probability of no detection}
END FOR;
{ *** Finally compute the cumulative Pd}
{ *** Initialize}
CumProb[1].CumPd := Pd[1];
CumSum := CumProb[1].CumPd;
OUTPUT("CDF Range Time Index");
OUTPUT(CumSum,” ",CumProb[1].Range," " TimeToRange[l1]," 1"); }
FORi=2TOK
CumValue := 1.0;
FORj=1TOi
IFj=i
CumValue := CumValue * Pd[j];
ELSE
CumValue := CumValue * CumProb[j]. NoDetect;
END IF,;
END FOR;
CumSum = CumSum + CumValue;
CumProb[i].CumPd := CumSum; {Cummulative Cdf IS BUILT}
OUTPUT(CumProb[i].CumPd," ",CumProbfi] Range," ", TimeToRangefi],
END FOR;
{ *** In case CDF does not go to 1, then rescale such that it will be a CDF}
IF (CumProb[K].CumPd < 1.0 + ¢) AND (CumProb[K].CumPd > 1.0 - €)
FORi=1TOK
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CumProbfi]. CumPd = CumProb[i].CumPd / CumProb[K].CumPd;
END FOR,;
END IF;
answer = ASK SELF TO FindRandRange;
RETURN(answer);
END METHOD;

ASK METHOD FindRandRange : REAL;
{Inverse transform method pg. 470 for discrete emperical distribution}

VAR
SetU, P :REAL;
Lij : INTEGER;
SelectedRange : REAL;
Foundl :BOOLEAN;
BEGIN
Found! := FALSE;

1=1;
SetU := ASK RandVar UniformReal(0.0,1 .0y;
REPEAT
IF (= 1) AND (SetU <= CumProb[i]. CumPd)
SelectedRange = TimeToRangefi];
FoundI = TRUE,;
ELSIF (SetU > CumProbfi]. CumPd) AND (SetU <= CumProb[i+1].CumPd)
SelectedRange = TimeToRangefi+1];
Found! .= TRUE,;
ELSE
i=it+1;
END IF,;
UNTIL FoundI = TRUE;
RETURN(SelectedRange);
END METHOD;
END OBJECT;
END MODULE.

The module JA4RONTIME.mod stores the random time of detection, the platform
and target combination, and the radar sensor system that is detecting the target.

Definition module DAARONTIME. mod:

DEFINITION MODULE AARONTIME;

FROM RandMod IMPORT RandomObj;
FROM ListMod IMPORT QueueList;
{ THE PURPOSE OF THIS MODULE IS TO HOLD ALL ENTRY DETECTION TIMES}
TYPE
TimeRec = RECORD
Plat : STRING;
Sensor : STRING;
Threat : STRING;
Time :REAL;
END RECORD;
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TimeObj = OBJECT(QueueList)
temp : TimeRec;

ASK METHOD Objlnit;
ASK METHOD AddRecord(IN P : STRING;IN S : STRING;
IN T : STRING;IN Time : REAL),
ASK METHOD EmptyMe;
END OBJECT,;
VAR
MasterEntryTime : TimeObj;
END MODULE.

Implementation module IAARONTIME.mod:

IMPLEMENTATION MODULE AARONTIME;
FROM RandMod IMPORT RandomObj;

OBJECT TimeOby;;
ASK METHOD Objlnit;
BEGIN
END METHOD;

ASK METHOD AddRecord(IN P : STRING;IN S : STRING;IN T : STRING;IN Time : REAL);
BEGIN
NEW(temp);
temp.Plat =P,
temp.Sensor = §;
temp.Threat .= T;
temp.Time = Time;
ASK SELF TO Add(temp);
END METHOD;

ASK METHOD EmptyMe;
VAR
ThisRec, NextRec : TimeRec;
L] : INTEGER;
BEGIN
J = ASK SELF numberln;
ThisRec := ASK SELF First;
NextRec := ASK SELF Next(ThisRec);
FORI=1TO}
IFiI<]J
ASK SELF TO RemoveThis(ThisRec);
ThisRec = NextRec;
NextRec := ASK SELF Next(ThisRec);
ELSE
ASK SELF TO RemoveThis(ThisRec);
END IF;
END FOR,;
END METHOD;
END OBIJECT;
END MODULE.
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The module /Detect.mod is the engine for all detections that take place in a given
scenario. It uses the cookie cutter model to determine the time of detection. Changes
were made to the module so that if a sensor of type ‘RADAR’ is being evaluated then
apply the random method of determining a detection time. If not, use the standard cookie
cutter model. The listed code is an example of how the switching between random and
deterministic routines is accomplished. Similar changes were also made in the method

SolveCurvedProblem of IDetect. mod.

Example from IDetect. mod ASK METHOD Strai ghtLinelntercept

{**** Below While loop by ASE 15FEBS6 it performs a search to see if the
detection time is already in the MasterEntryTime array. Ifit is, then you do
not want to recalculate the detection time if not needed due to changes in
the scenario. ****} i

ThisRec := ASK MasterEntryTime First;
WHILE (ThisRec <> NILREC)
IF (ThisRec Plat = ASK Platform ID) AND (ThisRec. Threat = ASK Target ID)
{ Means we have a match }
IF ThisRec.Sensor = Sensorname
RandTime = ThisRec.Time;
PrevAdded := TRUE,;
OUTPUT("Have a match");
END IF;
ThisRec := ASK MasterEntryTime Next(ThisRec);
ELSE
OUTPUT(" *** Checking MasterEntryTime Array No match");
ThisRec := ASK MasterEntryTime Next(ThisRec);

ENDIF;
END WHILE;
CASE Solutions
WHEN 0: t1 := -1000.0;
t2 :=-1000.0;

EntryExit Entry. Time := -1000.0;
EntryExit Exit. Time := -1000.0;

WHEN 1: t1 := ABS((TgtLWPoint.Location.x - Soll) / DeltaVel) + SimTime;
{2 =t1;
ASK Environment TO SetEntryLocation(ASK Target PredictedPosition(t1));
sensorrec := ASK MasterSensorList TO GiveSensor{Sensorname);
IF (sensorrec. TypeSensor) = "RADAR"
OUTPUT("Detected a RADAR and executing random routine");
ASK Environment TO SetCurrentPlats(Platform, Target);
IF PrevAdded = FALSE {Don't want another rand time}
ASK Environment TO FindDetectTime(sensorrec. Attributes Pulselnt, ASK Platform ID,

71




sensorrec. SensorTypeName,
Target, DetectionRadius),

END IF,;

DoRandom := TRUE;
ENDIF;
{If random routine is executed do this}
IF DoRandom

IF PrevAdded = FALSE
EntryExit Entry. Time := t1 + Environment RandTime;
DISPOSE(EntryExit. Entry. Location);
OUTPUT("NEG T1 found in Detect-straightline motion");
EntryExit Entry Location := ASK Target PredictedPosition(t1 +Environment.RandTime);
EntryExit. Exit. Time =12 ;
DISPOSE(EntryExit.Exit. Location);
EntryExit Exit.Location := ASK Target PredictedPosition(t1 +Environment. RandTime);
OUTPUT(" Random additional time to intercept in IDetect: " Environment. RandTime);
ELSE '

EntryExit Entry. Time := t1 + RandTime;
DISPOSE(EntryExit. Entry Location);
OUTPUT("NEG T1 found in Detect-straightline motion");
EntryExit.Entry Location := ASK Target PredictedPosition(t]+ RandTime);
EntryExit. Exit. Time := 12 ;
DISPOSE(EntryExit.Exit. Location);
EntryExit.Exit.Location := ASK Target PredictedPosition(t1 +RandTime);
OUTPUT(" Random time ALREADY IN ARRAY in IDetect: " RandTime}),

END IF;

ELSE

EntryExit. Entry. Time :=t1;

DISPOSE(EntryExit. Entry. Location);

OUTPUT("NEG T1 found in Detect-straightline motion");

EntryExit.Entry Location := ASK Target PredictedPosition(t1);

EntryExit. Exit. Time =12 ;

DISPOSE(EntryExit. Exit. Location);

EntryExit Exit.Location := ASK Target PredictedPosition(t1);

END [F, ‘

WHEN 2:
IF (ABS(Distance(TgtLWPoint Location, P WPoint Location)) -
DetectionRadius < 0.0 )
t1 = SimTime(),
IF DeltaVel > 0.0 :
12 == ABS((TgtLWPoint. Location.x - MAXOF(Sol1,S0l2)) /DeltaVel) + SimTime();
ELSE
12 := ABS{(TgtL WPoint.Location.x - MINOF(Sol1,S012)) /DeltaVel) + SimTime();
END IF;
ELSE
IF DeltaVel > 0.0
t1 == ABS((TgtLWPoint Location.x -MINOF(Sol1,Sol2))/DeltaVel) + SimTime();
2 := ABS((TgtLWPoint Location.x -MAXOF(Sol1,Sol2))/DeltaVel) + SimTime();
ELSE
t1 := ABS((TgtLWPoint Location.x -MAXOF(Sol1,Sol2))/DeltaVel) + SimTime();
12 == ABS((TgtLWPoint. Location.x -MINOF(Sol1,Sol2))/DeltaVel) + SimTime();
END IF;
IFt2 <tl
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12 :=tl;

END IF;
END IF;
ASK Environment TO SetEntryLocation(ASK Target PredictedPosition(t1));
sensorrec := ASK MasterSensorList TO GiveSensor(Sensorname);
IF (sensorrec. TypeSensor) = "RADAR"

OUTPUT("Detected a *, sensorrec. TypeSensor, * which should match RADAR and

executing random routine");

>

ASK Environment TO SetCurrentPlats(Platform Target);
IF PrevAdded = FALSE {Don't want another rand time}
ASK Environment TO FindDetectTkne(sensorrec.Attributes.PulseInt, ASK Platform ID,
sensorrec. SensorTypeName,
Target, DetectionRadius);

ENDIF;

DoRandom := TRUE;
ENDIF;
{If random routine is executed do this}
IF DoRandom

IF PrevAdded = FALSE
EntryExit. Entry Time := t1 + Environment. RandTime;
DISPOSE(EntryExit. Entry Location); _
EntryExit. Entry.Location := ASK Target PredictedPosition(t1 +Environment. RandTime);
DISPOSE(EntryExit. Exit. Location); )
EntryExit.Exit. Time = t2;
EntryExit. Exit. Location := ASK Target PredictedPosition(t2);
OUTPUT(" Random additional time to intercept in IDetect: " Environment RandTime);
ELSE
EntryExit Entry Time = t1 + RandTime;
DISPOSE(EntryExit Entry Location);
OUTPUT("NEG T1 found in Detect-straightline motion"); )
EntryExit Entry Location := ASK Target PredictedPosition(t1+ RandTime);
EntryExit. Exit. Time := {2 ;
DISPOSE(EntryExit. Exit. Location);
EntryExit Exit Location := ASK Target PredictedPosition(t1 +RandTime),
OUTPUT(" Random time ALREADY IN ARRAY in IDetect: ".RandTime);
END IF;
ELSE
EntryExit Entry. Time = t1;
DISPOSE(EntryExit.Entry. Location);
EntryExit Entry.Location := ASK Target PredictedPosition(t1);
DISPOSE(EntryExit. Exit Location);
EntryExit Exit. Time := t2;
EntryExit Exit. Location ;= ASK Target PredictedPosition(t2);
END IF;
OTHERWISE
WriteLine("Funny return from Quadratic");
END CASE;
OUTPUT(" T1 intercept: " t1);
OUTPUT(" The time ", ASK Platform ID," will detect ", ASK Target ID, " = " EntryExit. Entry. Time);
{Want to take a data point of the random time until detection. This
stat could also be gathered on only the random times generated earlier.
’ Gathering stat here combines any changes in the initial time Ro is
reached ...}
l StatTime := EntryExit. Entry. Time;
|
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ASK StatKeeper TO GetSample(StatTime);
OUTPUT("Gathered a Stat");
END METHOD;

Many other changes were made to the NPS Platform Foundation that will not be
discussed in this appendix. The changes insured the flow of the correct information to
the proper modules. This information exchange, although initially done only for this
thesis, allows for many other uses of the NPS Platform Foundation. All new and
modified modules for this thesis are listed below. An asterisk denotes new modules.

o D/IAARONI.mod *

o D/IAARONCDF.mod *

o  D/IAARONTIME.mod *

o D/ICPA.mod

e D/IDetect.mod

e D/IDetRng.mod

e D/IMathFunc.mod *

e D/IPList.mod

e D/IReact.mod

e D/ISpace.mod

o D/IVS.mod

e D/IVSMan.mod

e D/IWrite. mod

e D/IGP.mod

e [GPMast.mod
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o [GSimExc.mod
o Manuv.mod

e [Rep.mod
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