WATER CONTROL MANUAL FLOOD CONTROL MINNESOTA RIVER, MINNESOTA ### LAC QUI PARLE RESERVOIR LAC QUI PARLE RESERVOIR AND MARCH LAKE RESERVOIR, INCLUDING MARCH LAKE DAM, LAC QUI PARLE DAM CHIPPEWA RIVER DIVERSION DAM, AND WATSON SAG WEIR **WATSON, MINNESOTA** 19960708 082 ### **REVISED AUGUST 1995** DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited | SECTIBITY CL | ASSIEICATION OF THIS | PAGE | |--------------|----------------------|------| | REPORT I | OCUMENTATION | PAGE | | | Form Approved
OMB No. 0704-0188
Exp. Date: Jun 30, 1986 | |--|--------------------------------------|---|--------------------|---------------|---| | 1a. REPORT SECURITY CLASSIFICATION | | 1b. RESTRICTIVE MARKINGS | | | | | UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY | | | AVAILABILITY OF | | · | | 2b. DECLASSIFICATION/DOWNGRADING SCHEDU | LE | | tion unlimit | | , , , , , , , , , , , , , , , , , , , | | 4. PERFORMING ORGANIZATION REPORT NUMBER | ER(S) | 5. MONITORING O | ORGANIZATION RE | PORT NU | JMBER(S) | | 6a. NAME OF PERFORMING ORGANIZATION U.S. Army Engineer District PE-H | | 7a. NAME OF MONITORING ORGANIZATION | | | | | 6c. ADDRESS (City, State, and ZIP Code) 190 5th St. E. St. Paul, MN 55101-1638 | 111 | 7b. ADDRESS (City, State, and ZIP Code) | | | | | 8a. NAME OF FUNDING/SPONSORING
ORGANIZATION | 8b. OFFICE SYMBOL
(If applicable) | 9. PROCUREMENT | T INSTRUMENT IDE | NTIFICAT | ION NUMBER | | 8c. ADDRESS (City, State, and ZIP Code) | | 10. SOURCE OF F | UNDING NUMBERS | | | | | | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO. | WORK UNIT
ACCESSION NO | | 11. TITLE (Include Security Classification) WATER CONTROL MANUAL FLOOD CONTROL MINNESOTA RIVER, MINNESOTA: LAC QUI PARLE RESERVOIR AND MARCH LAKE RESERVOIR, INCLUDING MARCH LAKE DAM, LAC QUI PARLE DAM, CHIPPEWA RIVER 12. PERSONAL AUTHOR(S) DIVERSION DAN, AND Watson Sag weir, Watson, Minnesota | | | | | RLE RESERVOIR
PPEWA RIVER | | 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 9508 | | | | | | | 16. SUPPLEMENTARY NOTATION Revised August 1995. | | | | | | | 17. COSATI CODES | 18. SUBJECT TERMS (C | ontinue on revers | e if necessary and | identify | by block number) | | FIELD GROUP SUB-GROUP RESERVOIRS FLOOD CONTROL | | L MINNESOTA | | | | | 10 ABSTRACT (Continue on reverse if pagestan | and identify by block D | umber) | | | | | The purpose of this maual is to provide guidance and instruction for project personnel and as a reference source for others who may be involved with or affected by project regulation. The scope of this manual covers all water control management activities as they related to the hydraulic and hydrologic aspects of the project. Lac qui Parle Reservoir is located on the Minnesota River in western Minnesota near the South Dakota state line. The reservoir is immediately downstream of the headwaters on the Minnesota River at Big Stone Lake. | | | | | | | 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT | | Unclass | | | | | 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL | | | | OFFICE SYMBOL | | **DD FORM 1473,** 84 MAR 83 APR edition may be used until exhausted. All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED # DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE. # DISCLAIMER NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. # AUGUST 1995 LAC QUI PARLE RESERVOIR FLOOD CONTROL MINNESOTA RIVER, MINNESOTA WATER CONTROL MANUAL #### **REVISION RECORD SHEET** | REVISION
No. Date | PAGE NO. | SUBJECT | |----------------------|----------|---------| #### DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ARMY CORPS OF ENGINEERS CENTRE 190 FIFTH STREET EAST ST. PAUL. MN 55101-1638 **REPLY TO** ATTENTION OF CENCS-PE-M 5 October 1995 MEMORANDUM FOR: Commander, North Central Division, ATTN: CENCD- PE-ED-WH, 111 North Canal Street, Chicago, Illinois 60606-7205 SUBJECT: Lac qui Parle Reservoir, Flood Control, Minnesota River, Minnesota, Water Control Manual - The Lac qui Parle Reservoir Water Control Manual is enclosed for your reference. This manual has been updated in accordance with ER 1110-2-240. - Please note that the "Standing Instructions to the Dam Tender" found in Appendix A of the manual dated July 1966 and in the draft of this report has been deleted. The information is incorporated into Chapters 5 and 7 of this report. - The process for developing this water control manual included a public meeting for problem appraisal prior to the formulation of alternatives. After the alternatives were evaluated and a proposed alternative was selected, a second public meeting was held to present the study findings and elicit public comments. The draft environmental assessment and finding of no significant impact (FONSI) were distributed for public and agency review and comment. The water control manual was revised in response to comments, and the FONSI was signed by the District Engineer. manual was submitted by CENCS-PE-M letter dated 22 March 1995 (copy included with this water control manual) and was approved by North Central Division. The enclosed document is the final product from this process. - 4. Point of contact for this water control manual is Ed Eaton, Chief of Water Control, CENCS-PE-H, (612) 290-5617. FOR THE COMMANDER: Encl (2 cys) ROBERT F. POST, P.E. Chief, Engineering and Planning Division ### Distribution of Lac qui Parle Water Control Manual | Organization | Number of
Copies | Copy
Numbers | |--|---------------------|-----------------| | Master, Water Control (CENCS-PE-H) | 1 | 1 | | North Central Division (CENCD-PE-ED-WH) | 2 | 2-3 | | Water Control (CENCS-PE-H) | 12 | 4-15 | | Lac qui Parle Project Office (CENCS-CO-WF) | 2 | 16-17 | | Western Flood Control Project Office (CENCS-CO-WF) | 1 | 18 | | Environmental Resources (CENCS-PE-M) | 1 | 19 | | Mr. Rodney W. Sando | 1 | 20 | | Commissioner
Minnesota Department of Natural Resources
500 Lafayette Road
St. Paul, Minnesota 55155-4037 | | | | Mr. Kerry Christopherson
Minnesota Department of Natural Resources
Lac qui Parle State Park
Route 5, Box 74A
Montevideo, Minnesota 56265 | 1 | 21 | | Honorable Wayne Gustafson
Mayor of Watson
City Hall
P.O. Box 7
Watson, Minnesota 56295 | 1 | 22 | | Honorable Joyce Hagberg Mayor of Montevideo City Hall P.O. Box 676 Montevideo, Minnesota 56265-0676 | 1 | 23 | | Honorable Roy Lenzen
Mayor of Granite Falls
City Hall
885 Prentice Street
Granite Falls, Minnesota 56241-1598 | 1 | 24 | | Honorable Bert Schapekahm
Mayor of New Ulm
City Hall
100 North Broadway
New Ulm, Minnesota 56073-1785 | 1 | 25 | CENCS-PE-M 5 October 1995 MEMORANDUM FOR See Distribution SUBJECT: Lac qui Parle Reservoir, Flood Control, Minnesota River, Minnesota, Water Control Manual - 1. The Lac qui Parle Reservoir Water Control Manual is enclosed for your reference. This manual has been updated in accordance with ER 1110-2-240. - 2. Please note that the "Standing Instructions to the Dam Tender" found in Appendix A of the manual dated July 1966 and in the draft of this report has been deleted. The information is incorporated into Chapters 5 and 7 of this report. - 3. The process for developing this water control manual included a public meeting for problem appraisal prior to the formulation of alternatives. After the alternatives were evaluated and a proposed alternative was selected, a second public meeting was held to present the study findings and elicit public comments. The draft environmental assessment and finding of no significant impact (FONSI) were distributed for public and agency review and comment. The water control manual was revised in response to comments, and the FONSI was signed by the District Engineer. The manual was submitted by CENCS-PE-M letter dated 22 March 1995 (copy included with this water control manual) and was approved by the Corps of Engineers, North Central Division in Chicago. The enclosed document is the final product from this process. 4. Point of contact for this water control manual is Ed Eaton, Chief of Water Control, CENCS-PE-H, (612) 290-5617. Encl ROBERT F. POST, P.E. Chief, Engineering and Planning Division Distribution: CENCS-PE-H/Water Control (12 cys) CENCS-CO-WF/Lac qui Parle Project Office (2 cys) CENCS-CO-WF/Western Flood Control Project Office (1 cy) CENCS-PE-M/Environmental Resources (1 cy) # REPLY TO ATTENTION OF #### DEPARTMENT OF THE ARMY ST. PAUL DISTRICT, CORPS OF ENGINEERS ARMY CORPS OF ENGINEERS CENTRE 190 FIFTH STREET EAST ST. PAUL, MN 55101-1638 CENCS-PE-M MEMORANDUM FOR Commander, North Central Division, ATTN: CENCD-PE-ED-WH/Joseph Raoul, River Center Building, 14th Floor, 111 North Canal Street, Chicago, Illinois 60606-7205
SUBJECT: Lac qui Parle Reservoir, Flood Control, Minnesota River, Minnesota, Water Control Manual - 1. The subject draft manual is submitted for your review in accordance with ER 1110-2-240. Comments have been received from agency and public review of the Environmental Assessment for the Lac qui Parle Flood Control Project. The Finding of No Significant Impact has been signed by the District Commander. Two copies of the final water control manual will be provided after approval. - 2. The POC for this matter is John Blackstone, (612) 290-5429. FOR THE COMMANDER: Encl ROBERT F. POST, P.E. Chief, Engineering and Planning Division CENCD-PE-ED-WH (CENCS-PE-M/22 Mar 95) (1110) 1st End Mr. Patel/pz/(312) 353-2579 SUBJECT: Lac qui Parle Reservoir, Flood Control, Minnesota River, Minnesota, Water Control Manual Commander, North Central Division, U.S. Army Corps of Engineers, 111 North Canal Street, Chicago, IL 60606-7205 1 2 JUN 1995 FOR Commander, St. Paul District, ATTN: CENCS-PE-M, (Mr. Post) - 1. The report is approved subject to the enclosed comments. - 2. The HQ, NCD, POC is Mr. Ojas Patel, CENCD-PE-ED-WL, (312)353-2579. FOR THE COMMANDER: Encl wd Added 1 encl DONALD J. LEONARD, P.E. Director, Engineering and Planning Directorate The following comments need to be addressed for the Water Control Manual for the Lac qui Parle Reservoir: - a. Need NCS-RE review of the subject manual. - b. Paragraph 3-03. The accuracy of project events and respective dates of occurrence that are provided under the construction of Lac Qui Parle Reservoir section needs to be verified. - c. Paragraph 3-06. Needs to be reviewed. Shoreline erosion which is occurring should be within the federal flowage easement so as to not constitute a taking. - d. Pg. 2-14. 2nd Para. The sentence which states that the stage-discharge curve for gage #05292000 is shown on Plate 2-24 is incorrect. The Plate should be 2-25. Every plate referenced in section 2 from that point on until page 2-17 is incorrect and should be revised. - e. Pg. 5-9. Para 5-08. Last sentence. "...officials listed in Table 5-3..." should be Table 5-4. - f. Pg. 7-4. Chippewa Diversion Paragraph. Misspellings on second line. #### August 1995 The CENCS-PE-M responses to the CENCD comments for the CENCD-PE-ED-WH 1st endorsement to the CENCS-PE-M/22 Mar 95 memo are provided below. These responses were not submitted to CENCD but are provided here for future reference. - a. CENCS-RE has reviewed the Water Control Manual. There are unresolved issues regarding ownership of land downstream of the Lac qui Parle Dam. Efforts are being taken to resolve these issues. The manual will be revised when this issue has been resolved. - b. The accuracy of the project events have been verified. The dates listed in the manual are correct. - c. This paragraph has been edited to delete references to rights-of-way and easements in the Lac qui Parle Reservoir. - d. The plate number references have been checked and corrected. - e. The reference to Table 5-4 has been corrected. - f. The misspellings have been corrected. ### WATER CONTROL MANUAL ### LAC QUI PARLE PROJECT Lac Qui Parle Reservoir and Marsh Lake Reservoir, Including Marsh Lake Dam, Lac Qui Parle Dam Chippewa River Diversion Dam, and Watson Sag Weir > U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA > > August 1995 MARSH LAKE DAM LOOKING UPSTREAM LAC QUI PARLE DAM LOOKING UPSTREAM LAC QUI PARLE DAM LOOKING DOWNSTREAM CHIPPEWA DIVERSION DAM LOOKING UPSTREAM ## CHIPPEWA DIVERSION CHANNEL WATSON SAG WEIR LOOKING UPSTREAM HIGHWAY 75 DAM LOOKING UPSTREAM #### NOTICE TO USERS OF THIS MANUAL Corps of Engineers regulations specify that this Water Control Manual be published in loose-leaf form to facilitate modifications. In the future, only those sections, or parts thereof, requiring changes will be revised and replaced. #### EMERGENCY REGULATION ASSISTANCE PROCEDURES In the event that unusual conditions arise during normal business (duty) hours, contact can be made by telephone to Water Control (612.290.5620) or the District Communication Center's VHF-FM radio (call signal WUD6, Hastings, MN). Water Control's radio call signal is WUD613 (St. Paul, MN). During nonduty hours assistance can be achieved by contacting, in the order listed, one of the following persons. Their duty hour (work) phone numbers are also listed. | Name | | | Number | |--------------------|---|-----|------------------------------| | Gordon Heitzman, | Lac qui Parle Project
Regulator | _ | 612.290.5620
612.772.3150 | | Fax Number, | Hydraulic and Hydrologic
Branch | Fax | 612.290.5841 | | Edward Eaton, | Chief, Water Control
Section | _ | 612.290.5617
612.754.2640 | | Bonnie Montgomery, | Hydraulic Engineer | | 612.290.5618
612.450.0905 | | Kenton Spading, | Hydraulic Engineer | | 612.290.5623
612.488.8893 | | Helmer Johnson, | Chief, Hydraulic and
Hydrologic Branch | | 612.290.5602
612.633.7791 | | Robert Post, | Chief, Planning and
Engineering Division | | 612.290.5303
612.437.1316 | #### Lac Qui Parle Project Minnesota River #### U. S. Army Corps of Engineers St. Paul District Revised August 1995 #### TABLE OF CONTENTS 1-01 1-02 1-03 1-04 1-05 1-06 Authorization Project Owner Purpose and Scope Operating Agency Regulating Agency Related Manuals and Reports | Item | Page | |--|------| | TITLE PAGE | i | | PHOTOGRAPHS | ii | | NOTICE TO USERS OF THIS MANUAL | viii | | EMERGENCY REGULATION ASSISTANCE PROCEDURES | viii | | TABLE OF CONTENTS | ix | | MEAN SEA LEVEL REFERENCE DATUM | xxi | | METRIC EQUIVALENTS AND CONVERSIONS | xxi | | PERTINENT DATA | xxii | | TEXT OF MANUAL | 1-1 | | | | | TABLE OF CONTENTS | | | Paragraph Title | Page | | I - INTRODUCTION | | 1-1 1-1 1-2 1-7 1-7 1-8 | 2-02 Purpose 2-03 Physical Components a. General b. Marsh Lake Dam c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | | |---|------------| | 2-02 Purpose 2-03 Physical Components a. General b. Marsh Lake Dam c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | | | 2-03 Physical Components a. General b. Marsh Lake Dam c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -1 | | a. General b. Marsh Lake Dam c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -1 | | b. Marsh Lake Dam c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -2 | | c. Marsh Lake Dam Service Spillway d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -2 | | d. Marsh Lake Dam Stilling Basin e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -3 | | e. Marsh Lake Dam Emergency Spillway f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -4 | | f. Marsh Lake Dam Low Flow Outlet g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle
Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -4 | | g. Marsh Lake Dam Outflow Channel h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -4 | | h. Lac Qui Parle Dam i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | -5 | | i. Lac Qui Parle Dam Control Structure j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | | | j. Lac Qui Parle Dam Stilling Basin k. Lac Qui Parle Dam Emergency Spillway l. Lac Qui Parle Dam Outflow Channel m. Reservoirs n. Chippewa River Diversion Dam | | | k. Lac Qui Parle Dam Emergency Spillway 1. Lac Qui Parle Dam Outflow Channel m. Reservoirs 1. Chippewa River Diversion Dam 2. Chippewa River Diversion Dam 2. Chippewa River Diversion Dam | | | 1. Lac Qui Parle Dam Outflow Channel 2. m. Reservoirs 2. n. Chippewa River Diversion Dam 2. | | | m. Reservoirs 2. n. Chippewa River Diversion Dam 2. | | | n. Chippewa River Diversion Dam 2- | | | ii. Oiizleboug iiz.or zz.orzazaii za | | | o. Chippewa River Diversion Dam Control Structure 2- | | | | | | p. Watson Sag Weir, Chippewa River Diversion Channel 2-2-04 Related Control Facilities 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 12 | | a. General 2-1 | | | b. Big Stone Lake Dam Outlet Structure 2-1 | | | c. Highway 75 Dam Outlet Structure 2-1 | | | 2-05 Real Estate Acquisition 2-1 | | | 2-06 Public Facilities 2-1 | | | a. General 2- | | | b. Area A, Marsh Lake Dam 2- | | | c. Area B, Lac Qui Parle Dam 2- | | | d. Area C, Chippewa River Diversion Dam 2- | | | e. Other | 17 | | III - HISTORY OF PROJECT | | | 3-01 Authorization 3- | -1 | | 0 01 114011011110111 | -1 | | · · · · · · · · · · · · · · · · · · · | -2 | | , | -2 | | 0 0 1 110 110 110 110 110 110 110 110 1 | -3 | | 0 00 1100111101111111111111111111111111 | -4 | | 5 00 IIIIOIPAI ROGAIACION IION-O- | -4 | | 4. 16561.011 01101.01111 | - 5 | | D. Dumayo do Lao gal ran e de la | -5 | | | -5 | | Paragr | raph Title | Page | |--------|--------------------------------------|--------------| | | IV - WATERSHED CHARACTERISTICS | | | 4-01 | General Characteristics | 4-1 | | 4-02 | Topography | 4-3 | | 4-03 | Geology and Soils | 4-3 | | 4-04 | Sediment | 4-6 | | 4-05 | Climate | 4-8 | | | a. Temperature | 4-8 | | | b. Precipitation | 4-8 | | | c. Evaporation | 4-9 | | 4 00 | d. Wind | 4-9 | | 4-06 | Storms and Floods | 4-12 | | | a. April 1881 | 4-13 | | | b. April 1897 | 4-13 | | | c. April 1916 | 4-13 | | | d. April 1917 | 4-14 | | | e. June 1919
f. May-June 1942 | 4-14 | | | <u> </u> | 4-15
4-16 | | | g. April 1943
h. March 1946 | 4-16 | | | i. April, July 1947 | 4-17 | | | j. April 1951 | 4-17 | | | k. April 1952 | 4-18 | | | 1. June 1953 | 4-19 | | | m. June 1957 | 4-20 | | | n. April 1965 | 4-20 | | | o. Spring 1969 | 4-21 | | | p. 1979 | 4-21 | | | q. 1985 | 4-21 | | | r. 1986 | 4-22 | | | s. 1993 | 4-22 | | 4-07 | Runoff Characteristics | 4-24 | | 4-08 | Water Quality | 4-30 | | 4-09 | Channel and Floodway Characteristics | 4-30 | | | a. Main Stem and Tributaries | 4-30 | | | b. Environmental Conditions | 4-32 | | 4-10 | Upstream Structures | 4-34 | | 4-11 | Downstream Structures | 4-35 | | | a. Granite Falls Dam | 4-36 | | | b. Minnesota Falls Dam | 4-36 | | 4-12 | Economic Data | 4-36 | | | a. Population | 4-36 | | | b. Income | 4-37 | | | c. Employment | 4-37 | | | d Flood Damages | 4-39 | | raragi | apii Title | Page | |--------------|---|--------------------| | | V - DATA COLLECTION AND COMMUNICATION NETWORK | | | 5-01 | Hydrometeorological Stations | 5-1 | | | a. Facilities | 5-1 | | 5-02 | b. Maintenance | 5-4 | | 3-02 | Water Quality Stations
a. Facilities | 5-4 | | | b. Maintenance | 5-4 | | 5-03 | Sediment Stations | 5-5 | | 5-04 | Recording Hydrologic Data | 5-5 | | | a. Reservoir Elevation/Discharge and Streamflow | 5-6 | | | b. Precipitation | 5-7 | | | c. Snow Depth and Moisture Content | 5-7 | | | d. Wind and Temperature | 5- <i>7</i>
5-8 | | | e. Water Quality Measurements | 5-8 | | | f. Annual Snow Surveys | 5-8 | | F 0.F | g. Supplemental Readings | 5-9 | | 5-05
5-06 | Communication Network | 5-10 | | 3-06 | Communication with Project | 5-10 | | | a. Regulating Office with Project Office 1. Weekly Log Sheet | 5-11 | | | a would not blice | 5-11 | | | Gage Recorder ChartsWater Quality Data | 5-11 | | | 4. Emergency Reports | 5-12 | | | b. Between Project Office and Others | 5-13 | | | 1. Daily Report to National Weather Service | 5 - 13 | | | 2. Recording Rain Gage Monthly Charts | 5-14
5-14 | | 5-07 | Project Reporting Instructions | 5-14 | | 5-08 | Warnings | 5-14 | | | | 0 11 | | | VI - HADDOLOGIC BODICA CHE | | | | VI - HYDROLOGIC FORECASTS | | | 6-01 | General | 6-1 | | 6-02 | Flood Condition Forecasts | 6-1 | | 6-03 | Conservation Purpose Forecasts | 6-2 | | 6-04 | Long Range Forecasts | 6-2 | | 6-05 | Drought Forecast | 6-2 | | Paragrap | oh Title | Page | |----------|---|--------------| | | VII - WATER CONTROL PLAN | | | 7-01 | General Objectives | 7-1 | | 7-02 | Constraints | 7-2 | | | a. Lac Qui Parle Dam Bulkheads | 7-2 | | | b. Gates Jammed by Trees at Lac Qui Parle Dam | | | | c. Aggradation above Lac Qui Parle Dam | 7-3 | | | d. Siltation at Chippewa River Diversion Dam | 7-3 | | | e. Chippewa River Diversion - Tainter Gate | 7-3 | | 7-03 | Overall Plan for Water Control | 7-3 | | 7-04 | Standing Instructions to the Project Resource M | Manager /-4 | | 7-05 | Flood Control | 7 - 5 | | | a. General | 7-5
7-6 | | | b. Chippewa River Diversion Damc. Lac qui Parle Spring Regulation, | 7-0 | | | 1 Mar through 15 May | 7-8 | | | d. Summer / Fall Regulation | 7-10 | | | e. Winter Conservation Level | 7-14 | | | f. Free-up Period Flow Limitation | 7-14 | | 7-06 | Recreation | 7-14 | | 7-07 | Water Quality | 7-15 | | 7-08 | Fish and Wildlife | 7-15 | | 7-09 | Water Supply | 7-16 | | 7-10 | Hydroelectric Power | 7-16 | | 7-11 | Navigation | 7-17 | | 7-12 | Drought Contingency Plans | 7-17 | | 7-13 | Flood Emergency Action Plans | 7-17 | | 7-14 | Deviation from Normal Regulation | 7-17 | | 7-15 | Discharge - Minimum Instream Flows | 7-18 | | 7-16 | Loss of Communication | 7-19 | | | VIII - EFFECT OF WATER CONTROL PLAN | | | 8-01 | General | 8-1 | | 8-02 | Flood Control | 8-1 | | | a. Spillway Design Flood | 8-1 | | | 1. Marsh Lake Dam | 8-1 | | | 2. Lac Qui Parle Dam | 8-1 | | | 3. Chippewa River Diversion Dam | 8-1 | | | b. Probable Maximum Flood | 8-2 | | | 1. Marsh Lake Dam | 8-3
8-3 | | | 2. Lac Qui Parle Dam 3. Chippous Bivor Divorsion Dam | 8-3 | | | 3. Chippewa River Diversion Dam c. Standard Project Flood | 8-4 | | Paragrap | ph Title | Page | |----------|---|------| | | d. Intermediate Flood | 8-4 | | | 1. Marsh Lake Dam | 8-4 | | | 2. Lac Qui Parle Dam | 8-4 | | | 3. Chippewa River Diversion Dam | 8-4 | | 8-03 | Recreation | 8-5 | | 8-04 | Water Quality | 8-5 | | 8-05 | Fish and Wildlife | 8-5 | | 8-06 | Water Supply | 8-6 | | 8-07 | Hydroelectric Power | 8-6 | | 8-08 | Navigation | 8-6 | | 8-09 | Drought Contingency Plans | 8-7 | | 8-10 | Flood Emergency Action Plans | 8-7 | | 8-11 | Frequencies | 8-7 | | | a. Peak Annual Inflow Frequency | 8-7 | | | b. Pool Stage/Elevation Frequency | 8-8 | | | c. Discharge-Frequency Curves | 8-8 | | | d. Key Control Points | 8-9 | | 8-12 | Other Studies | 8-10 | | | a. Flood Forecasting | 8-10 | | | b. Low Flow Simulation | 8-10 | | | c. Flood Flow Simulation and Damages | 8-10 | | | IX - WATER CONTROL MANAGEMENT | | | 9-01 | Responsibilities and Organization | 9-1 | | | a. Corps of Engineers | 9-1 | | | b. Other Federal Agencies | 9-1 | | | c. State and County Agencies | 9-1 | | 9-02 | Interagency Coordination | 9-2 | | | a. Local Press and Corps Bulletins | 9-2 | | | b. National Weather Service | 9-3 | | | c. U.S. Geological Survey | 9-3 | | | d. Other Federal, State or Local Agencies | 9-3 | | 9-03 | Interagency Agreements | 9-3 | | 9-04 | Commissions, River Authorities, Compacts & Committees | | | 9-05 | Reports, Lac qui Parle Project | 9-4 | #### TABLES | Number | Title | Page | |--------|---|------| | 1-1 | Project Office, Points of Contact | 1-8 | | 2-1 | Lac Qui Parle Project, Authorized Purposes Assigned by Congress | 2-2 | | 4-1 | Sediment Deposition, Marsh Lake and Lac Qui
Parle Reservoirs | 4-7 | | 4-2 | Normal Temperatures at the National Weather Service Gages at Milan and Redwood Falls, Minnesota | 4-10 | | 4-3 | Average Precipitation at the National Weather Service Gages at Milan and Redwood Falls, Minnesota | 4-11 | | 4-4 | Average Pan Evaporation for the National Weather
Service Gage Station at Fargo, North Dakota | 4-12 | | 4-5 | Summary of Peak Discharges and Elevations/Stages at Lac Qui Parle Dam and Montevideo, Minnesota | 4-23 | | 4-6 | Lac Qui Parle Project Reservoir Net Inflow-Duration Table, Years 1940 through 1993 | 4-26 | | 4-7 | Lac Qui Parle Project Reservoir Tailwater Outflow-
Duration Table, Years 1940 through 1993 | 4-27 | | 4-8 | Summary of Average Monthly/Annual Reservoir Net Inflow, Years 1940 through 1993 | 4-28 | | 4-9 | Summary of Average Monthly/Annual Reservoir Outflow
Years 1940 through 1993
| 4-29 | | 4-10 | Population and Median Income, Counties Along the Minnesota River Compared to Minnesota and the United States | 4-37 | | 4-11 | Employment by Industry for Counties Along the Minnesota River | 4-38 | | 4-12 | Unemployment Rates for Counties Along the Minnesota
River Compared to State and National Figures | 4-39 | | 4-13 | Summary of Crop Damages From the Reservoir Down to
the City of New Ulm for the period
1965 through 1993 | 4-41 | | 5-1 | Lac Qui Parle Project Hydrometeorological Stations | 5-2 | | 5-2 | Streamflow Stations in the Vicinity of the Lac Qui Parle Project | 5-3 | | 5-3 | Snow Survey Sites Within the Lac qui Parle Project Area | 5-4 | | 5-4 | Points of Contact for Emergency Notification | 5-15 | | 7-1 | Lac Qui Parle Project Regulation, 1 March - 15 May | 7-9 | | 7-2 | Lac Qui Parle Project Regulation from 16 May through the end of February | 7-11 | | 7-3 | Minimum Outflow from Lac Qui Parle Dam | 7-18 | | 9-1 | Organizations With an Interest in Water
Control Activities | 9-2 | | 9-2 | Reports, Lac qui Parle Project | 9-5 | #### TABLES (continued) | Number | Title | Page | |--------|--|------| | E-1 | Minnesota River at Montevideo, Minnesota, U.S.G.S Gage No. 05311000, Rating No. 45.0 | E-1 | | E-2 | Minnesota River Near Lac qui Parle, Minnesota, U.S.G.S Gage No. 0530100, Rating No. 24.0 | E-7 | | E-3 | Pomme de Terre River at Appleton, Minnesota, U.S.G.S Gage No. 05294000, Rating No. 33.0 | E-13 | | E-4 | Lac Qui Parle River Near Lac qui Parle, Minnesota, U.S.G.S No. 05300000, Rating No. 39.0 | E-17 | | E-5 | Chippewa River Near Milan, Minnesota, U.S.G.S Gage No. 05304500, Rating No. 27.0 | E-22 | | E-6 | Minnesota River at Ortonville, Minnesota, U.S.G.S Gage No. 05292000, Rating No. 25.0 | E-26 | | E-7 | Yellow Bank River Near Odessa, Minnesota, U.S.G.S
No. 05293000, Rating No. 26.0 | E-29 | #### **EXHIBITS** - A SUPPLEMENTARY PERTINENT DATA - B RELATED MANUALS AND REPORTS - C PROPER MARKINGS FOR RECORDER CHARTS - D PROJECT LETTERS, AGREEMENTS AND RESOLUTIONS Partnering Agreement for Management of the Upper Minnesota River Mainstem - E STAGE-DISCHARGE TABLES: - E-1. MINNESOTA RIVER AT MONTEVIDEO, MINNESOTA, U.S.G.S GAGE NO. 05311000, RATING NO. 45.0 - E-2. MINNESOTA RIVER NEAR LAC QUI PARLE, MINNESOTA, U.S.G.S GAGE NO. 05301000, RATING NO. 24.0 - E-3. POMME DE TERRE RIVER AT APPLETON, MINNESOTA, U.S.G.S GAGE NO. 05294000, RATING NO. 33.0 - E-4. LAC QUI PARLE RIVER NEAR LAC QUI PARLE, MINNESOTA, U.S.G.S GAGE NO. 05300000, RATING NO. 39.0 - E-5. CHIPPEWA RIVER NEAR MILAN, MINNESOTA, U.S.G.S GAGE NO. 05304500, RATING NO. 27.0 - E-6. MINNESOTA RIVER AT ORTONVILLE, MINNESOTA, U.S.G.S GAGE NO. 05292000, RATING NO. 25.0 - E-7. YELLOW BANK RIVER NEAR ODESSA, MINNESOTA, U.S.G.S GAGE NO. 05293000, RATING NO. 26.0 #### PLATES | Number | Title | | | | | |--------------|---|--|--|--|--| | 2-1 | Project Map | | | | | | 2-2 | General Location Map | | | | | | 2-3 | Marsh Lake Dam, Plans and Sections | | | | | | 2-4 | Rating Curves for Various Tailwater Elevations | | | | | | | Marsh Lake Dam | | | | | | 2-5 | Lac Qui Parle Dam, Plans and Sections | | | | | | 2-6 | Lac Qui Parle Dam, Sections | | | | | | 2-7 | Rating Curves, Maximum Discharge, Lac Qui Parle Dam | | | | | | 2-8 | Rating Curves, Elevations Below 934.2 Feet | | | | | | | Lac Qui Parle Dam | | | | | | 2-9 | Rating Curves, Fixed Crest Spillway, Lac Qui Parle Dam | | | | | | 2-10 | Rating Curve, 2500-Foot Emergency Spillway | | | | | | | Lac Qui Parle Dam | | | | | | 2-11 | Rating Curve, U.S.G.S. Gage No. 05301000 | | | | | | 0.40 | Minnesota River near Lac Qui Parle, Minnesota | | | | | | 2-12 | Rating Curve, U.S.G.S. Gage No. 05311000 | | | | | | 0 10 | Minnesota River at Montevideo, Minnesota | | | | | | 2-13 | Minnesota River Channel Modifications | | | | | | 2-14 | River Mile 254 to 288.1 | | | | | | 2-14
2-15 | Elevation-Area-Storage Curves, Marsh Lake Reservoir | | | | | | 2-15 | Elevation-Area-Storage Curves, Lac Qui Parle Reservoir | | | | | | 2-10 | Bathymetric Map, Marsh Lake | | | | | | 2-18 | Bathymetric Map, Lac Qui Parle Reservoir, Upstream End | | | | | | 2-19 | Bathynetric Map, Lac Qui Parle Reservoir, Downstream End Rating Curve, U.S.G.S. Gage No. 05294000 | | | | | | 2 23 | Pomme de Terre River at Appleton, Minnesota | | | | | | 2-20 | Rating Curve, U.S.G.S. Gage No. 05300000 | | | | | | | Lac Qui Parle River near Lac Qui Parle, Minnesota | | | | | | 2-21 | Chippewa River Diversion, Plans and Sections | | | | | | 2-22 | Chippewa River Diversion, Sections | | | | | | 2-23 | Rating Curves for Selected Gate Openings, 27-Foot Tainter | | | | | | | Gate, Chippewa Diversion Dam | | | | | | 2-24 | Rating Curve, Chippewa River Below Diversion Dam | | | | | | 2-25 | Rating Curve, U.S.G.S. Gage No. 05304500 | | | | | | | Chippewa River near Milan, Minnesota | | | | | | 2-26 | Slope Rating Curves, Watson Sag Weir | | | | | | 2-27 | Rating Curve, U.S.G.S. Gage No. 05292000 | | | | | | | Minnesota River at Ortonville, Minnesota | | | | | | 2-28 | Elevation-Area Curve, Highway 75 Dam | | | | | | 2-29 | Elevation-Storage Capacity, Highway 75 Dam | | | | | | 2-30 | Spillway Rating Curves, Highway 75 Dam | | | | | | 2-31 | Service Spillway Rating Curve, Highway 75 Dam | | | | | | 2-32 | Rating Curve, U.S.G.S. Gage No. 05293000 | | | | | | | Yellow Bank River near Odessa, Minnesota | | | | | #### PLATES (continued) Title Number | 2-33 | Project Real Estate | | | | | |--------------|---|--|--|--|--| | 2-34 | Property Acquired by U.S. Government | | | | | | 2-35 | Marsh Lake Reservoir, Public Use Area | | | | | | 2-36 | Lac Qui Parle Reservoir, Public Use Area | | | | | | 2-37 | Chippewa River Diversion, Public Use Area | | | | | | 4-1 | Reservoir Inflow - Duration (Annual) | | | | | | 4-2 | Reservoir Outflow - Duration (Annual) | | | | | | 4-3 | Reservoir Monthly Inflow - Outflow | | | | | | 4-4 | Reservoir Annual Inflow - Outflow | | | | | | 4-5 | Minnesota River at Montevideo, Minnesota, Monthly | | | | | | | Streamflow Distribution | | | | | | 4-6 | Discharge vs. Area Flooded, Reach 1 | | | | | | | River Mile 288.1 to 271.2 | | | | | | 4-7 | Discharge vs. Area Flooded, Reach 2 | | | | | | | River Mile 271.2 to 240.0 | | | | | | 4-8 | Discharge vs. Area Flooded, Reach 3, | | | | | | 4 0 | River Mile 240.0 to 233.3 | | | | | | 4-9 | Discharge vs. Area Flooded, Reach 4, | | | | | | 4 10 | River Mile 233.3 to 146.82 | | | | | | 4-10
4-11 | Urban Damage-Discharge at Selected Basin Reference Points | | | | | | 5-1 | Minnesota River Agricultural Damage Reaches Hydrometeorological Stations, Upper Minnesota River | | | | | | 5-1 | Drainage Area | | | | | | 5-2 | Hydrometeorological Stations, Lac Qui Parle Project | | | | | | 5-2 | Immediate Area | | | | | | 5-3 | Snow Survey Locations | | | | | | 5-4 | Water Quality Stations, Location Map | | | | | | 7-1 | Lac Qui Parle Reservoir Regulation Schedule | | | | | | 8-1 | PMF Inflow Hydrograph, Marsh Lake Reservoir | | | | | | 8-2 | Probable Maximum Flood Inflow Hydrograph | | | | | | | Lac Qui Parle Reservoir | | | | | | 8-3 | PMF Inflow Hydrograph, Chippewa River Diversion Dam | | | | | | 8-4 | Annual Inflow-Frequency, Lac Qui Parle Project | | | | | | 8-5 | Stage-Frequency, Lac Qui Parle Reservoir | | | | | | 8-6 | Stage-Frequency, Marsh Lake Reservoir | | | | | | 8-7 | Discharge-Frequency, U.S.G.S. Gage No. 05293000 | | | | | | | Yellow Bank River near Odessa, Minnesota | | | | | | 8-8 | Discharge-Frequency, U.S.G.S. Gage No. 05294000 | | | | | | | Pomme de Terre River at Appleton, Minnesota | | | | | | 8-9 | Discharge-Frequency, U.S.G.S. Gage No. 05300000 | | | | | | | Lac Qui Parle River near Lac Qui Parle Minnesota | | | | | #### PLATES (continued) | Number | Title | |--------|---| | | | | 8-10 | Discharge-Frequency, U.S.G.S. Gage No. 05304500
Chippewa River near Milan, Minnesota | | 8-11 | Discharge-Frequency, Minnesota River at Ortonville, MN | | 8-12 | Discharge-Frequency, Minnesota R. near Lac Qui Parle, MN | | 8-13 | Discharge-Frequency, Minnesota River at Montevideo, MN | #### Mean Sea Level Reference Datum All elevations in this manual use the 1929 National Geodetic Vertical Datum (1929 NGVD) unless otherwise stated. #### Metric Equivalents and Conversions #### Length: 1 Centimeter = 0.394 inches 1 meter = 3.28 feet 1 kilometer = 0.621 miles #### Area: $1 \text{ meter}^2 = 10.764 \text{ feet}^2$ $1 \text{ kilometer}^2 = 0.386 \text{ miles}^2$ 1 hectare = 2.471 acres #### Volume: 1 meter³ = 35.31 feet³ 1 meter³ = 1.308 yards³ 1 meter³ = 0.81 x 10⁻³ acre-feet #### Flow: 1 meter³/second = 35.31 feet³/second #### Temperature: (Degrees Fahrenheit - 32)/1.8 = Degrees Celsius #### PERTINENT DATA (Also see Exhibit A) LAC QUI PARLE PROJECT LAC QUI PARLE DAM/LAC QUI PARLE RESERVOIR MARSH LAKE DAM/MARSH LAKE RESERVOIR Project Location: Lac Qui Parle, Chippewa, Swift, and Big Stone Counties, Minnesota, 7 miles Northwest of Montevideo, Minnesota, 288.1 Miles Above the Mouth of the Minnesota River, Latitude 45° 01' 17", Longitude 95° 52' 05" (Lac Qui Parle Dam) Drainage Area Above Lac Qui Parle Dam 4,050 square miles Drainage Area Above the Chippewa River Diversion Dam Only 2,050 square miles | Dam | | |-----|-----| | | Dam | Rolled-Earth Fill Rolled-Earth Fill Type: Length: Height: 4,100 <u>+</u> Feet 11,800 Feet 23-32 Feet 19.5 Feet Height:23-32 Feet19.5 FeetTop Width:23 Feet (roadway)10 FeetFreeboard:4.9 Feet (above full pool)Not Applicable #### Control Structure: Type: Length: 237 Feet Reinforced Concrete Reinforced Concrete 112 Feet #### Reservoir/Capacities/Areas: | Lac Qui Parle Reservoir | Elevation |
Capacity | Area | | | | |--|--|---|-------------------------------------|--|--|--| | | Feet | Ac-Ft | Acres | | | | | Gate Sills Conservation Pool Top of Flood Control Pool Flowage Easement Level Top of Dam | 922.70
933.00
941.10
945.00
946.00 | 41,000
158,700
253,500
281,500 | 7,750
21,450
27,450
28,850 | | | | | Marsh Lake Reservoir | | | | | | | | Service Spillway Crest ² | 937.60 | 12,050 | 5,150 | | | | | Emergency Spillway Crest | 940.00 | 26,000 | 8,100 | | | | Note: The two pools become one pool at approximately elevation 937.6 feet. The control shifts to Lac Qui Parle Dam. - Chippewa River Diversion information is in Exhibit A. - Conservation pool elevation at Marsh Lake = 937.6 feet. 2. #### I - INTRODUCTION 1-01. Authorization. This manual was prepared in compliance with the following: 1) Engineering Regulation 1110-2-240 titled "Water Control Management" dated 30 April 1987; 2) Engineering Manual 1110-2-3600 titled "Management of Water Control Systems" dated 30 November 1987; 3) Engineering Circular 1110-2-278 titled "Preparation of Water Control Manuals" dated 31 August 1993. It supersedes the previous manual (dated July 1966) and incorporates changes to the water control plan. The previous water control manual was authorized by letter, 800.2 (Reservoirs), UMVGW, Upper Mississippi Valley Division, 30 August 1948, Subject: "Manual of Regulation for Flood Control and Multiple Purpose Reservoirs." An interim reservoir regulation manual was submitted in November 1956. 1-02. Purpose and Scope. The purpose of this manual is to provide guidance and instruction for project personnel and as a reference source for others who may be involved with or affected by project regulation. The manual is for daily use in Water Control Section activities for essentially all foreseeable conditions. The scope of this manual covers all water control management activities as they relate to the hydraulic and hydrologic aspects of the project. - 1-03. Related Manuals and Reports. Prior reports on flood control and improved navigation for the region date from 1849. Some of the information is included in annual reports of the Chief of Engineers. A list of some of the reports follows. Additional reports are listed in Exhibit B. - a. Diversion of Floodwaters of Little Minnesota River into Lake Traverse, U.S. Engineer Office, St. Paul, Minnesota, 17 September 1945. - b. Report on Survey of Minnesota River, Minnesota, For Flood Control and Allied Purposes, Corps of Engineers, U.S. Army Office of the District Engineer, St. Paul, Minnesota, 3 January 1950. - c. Interim Reservoir Regulation Manual, Lac Qui Parle Dam and Reservoir, Corps of Engineers, U.S. Army, Office of the District Engineer, St. Paul, Minn., November 1956. - d. Interim Report on Survey of Big Stone Lake-Whetstone River Project, Project Modifications, Minnesota and North Dakota, U.S. Army Engineer District, St. Paul, Minnesota, Corps of Engineers, 2 Reports dated 30 January 1959 and 24 June 1960. - e. General Design Memorandum, Minnesota River, Minnesota, In the Interest of Navigation and Related Purposes, U.S. Army Engineer District, St. Paul, Corps of Engineers, St. Paul, Minnesota, February 1961. - f. Phase 1 Report for Flood Control and Related Purposes, Minnesota River Basin, Minnesota and South Dakota, Department of the Army, St. Paul District, Corps of Engineers, St. Paul, Minnesota, 8 March 1966. - g. Lac Qui Parle Reservoir and Minnesota River, Channel Improvement, Reservoir Regulation Manual, U.S. Army Engineer District, St. Paul, Minnesota, Corps of Engineers, July 1966. - h. Water Supply and Water Quality Control Study, Minnesota River Basin Reservoirs, Minnesota, South Dakota, Iowa, United States Department of the Interior, Federal Water Pollution Control Administration, July 1969. - i. Interim Survey Report, 9-Foot Navigation Channel Above Mile 14.7, Minnesota River, Minnesota, Department of the Army, St. Paul District, Corps of Engineers, St. Paul, Minnesota, 30 January 1970. 1 - 3 - j. Report on Probable Maximum Floods and Standard Project Floods, Minnesota River Basin, Minnesota, Department of the Army, St. Paul District, Corps of Engineers, St. Paul, Minnesota, June 1971. - k. Flood Control, Big Stone Lake-Whetstone River, Minnesota-South Dakota, Design Memorandum No. 3, Department of the Army, St. Paul District, Corps of Engineers, St. Paul, Minnesota, June 1973. - 1. Forecasting Rainfall and Snowmelt Runoff on Floods on Upper Midwest Watersheds, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Lab Report No. 151, June 1974. - m. Minnesota River Basin Report, Southern Minnesota Rivers Basin Commission, February 1977. - n. Highway 75 Dam and Reservoir, Reservoir Regulation Manual, Big Stone Lake-Whetstone River Project, Appendix B, Department of the Army, St. Paul District, Corps of Engineers, St. Paul, Minnesota, October 1979. - o. Upper Mississippi River Subbasins Study, Stage I, Report Alternatives, Public Law 87-639, United States Department of Agriculture, Soil Conservation Service, and Department of the Army, St. Paul District, Corps of Engineers, January 1980. - p. Computer Simulation of Low Flow Conditions, Minnesota River, Barr Engineering for U.S. Army Corps of Engineers, St. Paul District, 1980. - q. Operation and Maintenance Manual, Big Stone Lake-Whetstone River Flood Control, U.S. Army Corps of Engineers, St. Paul District, December 1986, Draft. - r. Sedimentation Rates and Changing Water Quality Pomme de Terre River Watershed, West Central Minnesota, Geology Department, University of Minnesota, Morris, Minnesota, Dr. James Van Alstine, March 1987. - s. Problem Appraisal Report, Operation Plan Evaluation for Highway 75-Lac Qui Parle Reservoir, U.S. Army Corps of Engineers, St. Paul District, September 1987. - t. Reservoir Operation Plan Evaluation for Highway 75-Lac Qui Parle Reservoirs, Minnesota River, Minnesota, U.S. Army Corps of Engineers, St. Paul District, September 1989 Draft Report. - u. Dam Failure Planning Report, Marsh Lake Dam, Minnesota River, Minnesota, U.S. Army Corps of Engineers, St. Paul District, August 1987. - v. Dam Failure Planning Report, Chippewa Dam, Chippewa River, Minnesota, U.S. Army Corps of Engineers, St. Paul District, September 1987. - w. Emergency Action Plan, Lac Qui Parle Flood Control Project, Corps of Engineers, St. Paul District, October 1988. - x. Drought Contingency Plan, Big Stone Lake Whetstone River, Highway 75 Dam, Lac Qui Parle Reservoir and Minnesota River Channel Improvement, Reservoir Regulation Manual, Appendix, U.S. Army Corps of Engineers, St. Paul District, September 1992, Draft. - y. Minnesota River Assessment Project Report, Report to the Legislative Commission on Minnesota Resources, Minnesota Pollution Control Agency, January 1994. - z. The Great Flood of 1993, Post-Flood Report, Upper Mississippi River and Lower Missouri River Basins, U.S. Army Corps of Engineers, North Central Division, Main Report, September 1994. - aa. Economic Analysis, Agricultural Flood Damages, Lac Qui Parle Flood Control Project, Gulf Engineers and Consultants, Incorporated, Project No. 22302401, Baton Rouge, Louisiana, Volume I: Main Report, Volume II: CACFDAS Output Data, Revised Draft Report, September 1994. 1-04. Project Owner. The U.S. Army Corps of Engineers, St. Paul District is responsible for the regulation of the Lac qui Parle Project. The United States government is the owner of the project. 1-05. Operating Agency. The U.S. Army Corps of Engineers, St. Paul District, Construction-Operations Division, Natural Resource Management Branch, is responsible for the operation and maintenance of the Lac qui Parle Project. Regulation instructions for the project are provided by the Water Control Section, Planning and Engineering Division. The project is attended continuously during normal business hours by the Project Resource Manager and his staff. The Area Resource Manager's office is in Fargo, North Dakota. The Project Resource Manager and his assistant and the Area Manager can be reached at the following numbers (see Table 1-1): | Table 1-1 | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--| | Project Office, Points of Contact | | | | | | | | | | | | Name | Number | | | | | | | | | | | Curt Hanson, Project Resource Manager | Work 612.269.6303
Home 612.269.9632
VHF Radio WUD 630
FM Radio 6300 | | | | | | | | | | | Wayne Gustafson (assistant) | Work 612.269.6303
Home 612.269.7915 | | | | | | | | | | | Project Fax Number | 612.269.5858 | | | | | | | | | | | Timothy Bertschi, Area Resource Manager | Work 701.232.1894
Home 701.232.5967
Cellular 701.238.1680
VHF Radio WUD 642 | | | | | | | | | | 1-06. Regulating Agency. The regulation of the Lac qui Parle Project is under the supervision of the Water Control Section, within the Hydraulics and Hydrologic Branch, Planning and Engineering Division, of the St. Paul District Corps of Engineers. ## II - DESCRIPTION OF PROJECT 2-01. Location. Lac qui Parle Project is located on the Minnesota River in western Minnesota near the South Dakota state line. The project lies along the northeasterly boundary of Lac qui Parle County and the southwesterly boundaries of Chippewa, Swift, and Big Stone Counties (Plate 2-1). The reservoir is immediately downstream of the headwaters of the Minnesota River at Big Stone Lake (Plate 2-2). Marsh Lake Dam is 303.5 river miles above the mouth of the Minnesota River and is located near Appleton, Minnesota just downstream of the Pomme de Terre River. The dam forms Marsh Lake Reservoir when the project pool is below elevation 937.6 feet. Lac qui Parle Dam is approximately
7 miles northwest of Montevideo, Minnesota, and is 288.1 miles above the mouth of the Minnesota River. The reservoirs extend upstream for a distance of about 27 miles. 2-02. Purpose. The Lac qui Parle Project was authorized by the Flood Control Act of 22 June 1936 (Public Law 74-738). The Act authorized flood control as a project purpose. The above, and other project purposes assigned by Congress following completion of the project, are listed in Table 2-1. Table 2-1 Lac qui Parle Project Authorized Purposes Assigned by Congress | Authorized Purpose | Public Law No. | Description | |---------------------------------|----------------|---| | Flood Control | 74-738 | Flood Control Act
of 1936 | | Recreation and
Surplus Water | 78-534 | Flood Control Act
of 1944 | | Fish and Wildlife | 85-624 | Fish and Wildlife
Coordination Act of
1958 | | Water Supply | 92-500 | Water Supply Act of
1958 | | Recreation | 89-72 | Federal Water
Project Recreation
Act of 1965 | | Water Quality | 92-500 | Federal Water
Pollution Control
Act Amendments of
1972 | | Fish and Wildlife | 93-205 | Conservation, Protection, and Propagation of Endangered Species Law of 1973 | # 2-03. Physical Components. a. General. The Lac qui Parle Project consists of: Marsh Lake Dam, Lac qui Parle Dam, the Chippewa River Diversion structures, and the Minnesota River Channel down to Granite Falls, Minnesota (Plate 2-2). Marsh Lake Dam divides the Lac qui Parle Reservoir into two sections when the Lac qui Parle pool is below approximately elevation 937.6 feet. The pool behind the dam is called Marsh Lake reservoir. Lac qui Parle Dam is immediately downstream of Marsh Lake Dam. The pool behind the dam is called Lac qui Parle reservoir. When the Lac qui Parle pool reaches the same level as the Marsh Lake pool, Marsh Lake and Lac qui Parle become essentially one pool and the control shifts to Lac qui Parle Dam. The Chippewa River Diversion Dam and the Watson Sag Weir divert high flows on the Chippewa River into Lac qui Parle Reservoir. The Minnesota River channel project provides the necessary channel capacity for the drawdown of the Lac qui Parle Project. b. Marsh Lake Dam. The Marsh Lake Dam is comprised of dredged earth fill totaling approximately 11,800 feet in length. The earth fill portion has a top width of 10 feet with a 1 on 3 side slope on the upstream and downstream sides. On the downstream side, the 1 on 3 side slope extends only to an elevation 5 feet below the top of the dam. Below this elevation, the slope changes to a 1 on 4 grade. The elevation of the top of the embankment ranges between elevation 948.6 feet and 952.6 feet. The maximum height of the dam is about 19.5 feet with an average top elevation of approximately 950.0 feet. A general plan and cross section are shown on Plate 2-3. - c. Marsh Lake Dam Service Spillway. The Marsh Lake Dam service spillway is a concrete fixed crest overflow section 112 feet in width with a crest elevation of 937.6 feet. A general plan and cross section are shown on Plate 2-3. A family of elevation-discharge curves for Marsh Lake Dam at various tailwater elevations are shown on Plate 2-4. - d. Marsh Lake Dam Stilling Basin. The Marsh Lake Dam stilling basin is a bucket type with a bottom elevation of 924.6 feet. The discharge flows into the downstream channel at an elevation of 929.6 feet. A general plan and cross section are shown on Plate 2-3. - e. Marsh Lake Dam Emergency Spillway. The Marsh Lake Dam emergency spillway has a crest elevation of 940.0 feet. Both the upstream and downstream slopes are paved with 12 inches of grouted riprap. The spillway is 90 feet wide. A general plan and cross section are shown on Plate 2-3. - f. Marsh Lake Dam Low Flow Outlet. The Marsh Lake Dam low flow gate has a sill elevation of 932.6 feet and discharges through a 2-foot square conduit into the stilling basin. The discharge is regulated by a 2-foot square sluice gate in the main spillway. - g. Marsh Lake Dam Outflow Channel. The Marsh Lake Dam outflow channel extends for about 1,500 feet downstream from the spillways. The channel has a bottom width of 25 feet and 1 on 2 side slopes, bounded on both sides by dikes having a top elevation of 938.0 feet. A general plan and cross section are shown on Plate 2-3. - The Lac qui Parle Dam is comprised Lac qui Parle Dam. of earth fill. The left bank section extends about 200 feet from the control structure to high ground. The right bank section, descends from the control structure for about 250 feet to the emergency spillway section which is 2,500 feet in length. the spillway section, the top of the dam rises gradually over a distance of 1,000 feet to elevation 950.5 feet. The dam extends about another 700 feet before intercepting higher ground. carries Chippewa County State Aid Highway (CSAH) No. 13 (Lac qui The roadway is 23 Parle CSAH No. 33) across the Minnesota River. The total length of the dam, including the control feet wide. structure and emergency spillway, is about 4,100 feet. A general plan and cross section are shown on Plates 2-5 and 2-6. i. Lac qui Parle Dam Control Structure. The Lac qui Parle Dam control structure consists of a concrete curtain wall section and a fixed concrete spillway section (Plate 2-5). The curtain wall section is divided into four bays, numbered 1 through 4, beginning from the left bank. The spillway section is divided into eight bays, numbered 5 through 12. All bays have a span of 17 feet and all piers are 3 feet wide. The piers support a bridge over the control structure with a deck elevation of 946.2 feet. Bays 1, 3, and 4 each have two 6.0- by 8.0-foot vertical lift gates with sill elevations at 922.7 feet. Bay No. 2 has three 4.0- by 4.0-foot vertical lift gates with sill elevations at 915.2 feet. These gates (Bay No. 2) are equipped with trash racks and are used for low flow regulation. The nine lift gates in the curtain wall section are numbered 1 through 9 beginning in bay No. 1. In the spillway section, the crest elevation is 934.2 feet. Bays 5 through 7 are uncontrolled spillways with no gates. In bays 8 through 12, each bay has three sections of movable steel bulkheads. The bulkheads have a top elevation of 940.7 feet when they are in the sealed position and are 5.5 feet wide. The bulkheads are raised and lowered according to the operating plan. A general plan and cross section are shown on Plates 2-5 and 2-6. A set of curves for determining discharge from Lac qui Parle Dam are shown on Plate 2-7. Individual elevation-discharge curves for the slide gates, fixed crest spillway and emergency spillway are shown on Plates 2-8, 2-9 and 2-10. An elevation-discharge curve (tailwater curve) for the Minnesota River at U.S.G.S. gage No. 05301000, just below Lac qui Parle Dam (200 feet downstream), is shown on Plate 2-11 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-12. The U.S.G.S. gage at Montevideo, Minnesota is a control point for Lac qui Parle Dam (see Chapter VII). A stage-discharge curve for U.S.G.S. gage No. 05311000, Minnesota River at Montevideo, Minnesota is shown on Plate 2-12 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-13. j. Lac qui Parle Dam Stilling Basin. The stilling basin for Lac qui Parle Dam varies in length and floor elevation across the width of the structure. The stilling basin for bays 1 through 4 has a floor elevation of 914.2 feet with an end sill top elevation of 920.2 feet. The stilling basin for Bay No. 2 contains a baffle block with a top elevation of 921.7 feet. In bays 5 through 7, the basin has a floor elevation of 918.7 feet. In bays 8 through 12, the elevation of the floor is 923.2 feet. The length of the basin varies from 42 to 60 feet and the total width is 237 feet. A general plan and cross sections of the various bays are shown on Plates 2-5 and 2-6. - Lac qui Parle Dam Emergency Spillway. k. spillway section is capped with soil cement and a bituminous surfaced roadway and is 2500 feet long. A concrete core wall is keyed 3 feet into natural ground along the upstream edge of the spillway and has an average top elevation of 940.75 feet. The downstream slope of the spillway is paved with 1 foot of grouted riprap on a 1 on 2 slope with at least 6 feet of horizontal paving at the toe of the fill. The upstream slope is 1 on 3 and seeded. The spillway is not level. The low point has a crown elevation of The original emergency spillway had a crown about 941.2 feet. The road has been resurfaced which has elevation of 941.1 feet. raised the top elevation slightly. Elevation 941.1 is the top of the flood control pool. A general plan and cross section are shown Elevation-discharge curves for the emergency on Plate 2-5. spillway are shown on Plates 2-7 and 2-10. - 1. Lac qui Parle Dam Outflow Channel. The Minnesota River channel was modified between Lac qui Parle Dam, (river mile 288.1) and Granite Falls, Minnesota, (river mile 245.0) (Plate 2-13). The project consisted of rock and snag removal and cutoffs at various locations to increase the bankfull capacity of the channel. - m. Reservoirs. The Lac qui Parle Project incorporates two reservoirs for the storage of water for flood control and water conservation; namely, Lac qui Parle and Marsh Lake reservoirs. Lac qui Parle Reservoir extends in a northwesterly direction about 15.4 2 - 8 miles above the dam. Marsh Lake Reservoir flows into Lac qui Parle and extends about 7 miles northwest above Lac qui Parle Reservoir. The combined storage capacity of both reservoirs at the maximum design elevation of 941.1 feet is 157,800 acre-feet. Marsh Lake Reservoir has 12,050 acre-feet of storage at the conservation pool elevation of 937.6 feet. Lac qui Parle Reservoir has 41,000 acrefeet of storage at the conservation pool elevation of 933.0 feet. The reservoir elevation-area and elevation-storage
curves for Marsh Lake and Lac qui Parle Reservoirs are shown on Plates 2-14 and 2-15. Bathymetric maps of maps of Marsh Lake and Lac qui Parle are shown on Plates 2-16, 2-17 and 2-18. The Pomme de Terre River is a tributary to Marsh Lake Reservoir. A stage-discharge curve for U.S.G.S. gage No. 05294000, Pomme de Terre River at Appleton, Minnesota is shown on Plate 2-19 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-8. The Lac qui Parle River is a tributary to Lac qui Parle Reservoir. A stage-discharge curve for U.S.G.S. gage No. 05300000, Lac qui Parle River near Lac qui Parle, Minnesota is shown on Plate 2-20 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-9. n. Chippewa River Diversion Dam. The Chippewa Diversion dam diverts a portion of the floodwaters of the Chippewa River into the Lac qui Parle Reservoir. The dam is constructed of rolled earth fill and carries a 32-foot wide highway across the Chippewa River at elevation 950.3 feet. Total length of the dam, which includes the main control structure and a low water control culvert, is about 1,900 feet. Side slopes are 1 on 3 on the upstream side and 1 on 4 on the downstream side. The approach channel has a 40-foot bottom width at elevation 932.8 feet and side slopes of 1 on 2. A 1,200-foot dike on the left bank of the approach channel has a minimum top width of 10 feet and side slopes of 1 on 3 with a top elevation of 950.3 feet. A general plan and cross section are shown on Plates 2-21 and 2-22. The main Chippewa River Diversion Dam Control Structure. control structure is a 5-span combination highway bridge and dam. Bays 1, 2, 4, and 5 have a fixed crest spillway elevation of 942.3 Discharge is onto a concrete apron at elevation 934.3 feet with a dentated end sill and baffles. Bay 3 provides the discharge control by means of a 27-foot Tainter gate. The top of the gate in the closed position is at elevation 942.3 feet. The sill elevation is 932.9 feet. Discharge through the gate is onto a concrete apron at elevation 932.0 feet with an end baffle at elevation 932.8 feet. The Tainter gate is powered by an electric gate lifter but can also be operated by hand. About 300 feet west of the right abutment of the control structure is a low water control culvert which was used prior to the installation of the Tainter gate in 1941. culvert is a 4- by 4- by 90.4-foot concrete box type through the earth dike. The inlet is controlled by a 4- by 4-foot vertical lift gate protected by a trash rack. The entrance invert is at elevation 933.3 feet and the exit invert is at 932.8 feet. A general plan and cross section are shown on Plates 2-21 and 2-22. A family of elevation-discharge curves for the Tainter gate at the Chippewa River Diversion Dam for various gate openings are shown on Plate 2-23. A tailwater rating curve for the Chippewa Dam is shown on Plate 2-24. A stage-discharge curve for U.S.G.S. gage No. 05304500, Chippewa River near Milan, Minnesota is shown on Plate 2-25 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-10. This gage is upstream of the Chippewa River Diversion Dam. p. Watson Sag Weir, Chippewa River Diversion Channel. The Chippewa River diversion channel passes some of the Chippewa River floodwaters into the Lac qui Parle Reservoir. It is an excavated channel about 3,500 feet in length with a bottom width of about 160 feet and side slopes of 1 on 3. The channel cuts through a part of a natural ridge which separates the Chippewa River from the abandoned glacial channel known as the Watson Sag. A six span combination highway bridge and spillway near the point of diversion controls the flow of water from the Chippewa River into the channel. A rolled earth dike on the left bank of the channel is an extension of the Chippewa River Diversion Dam and serves to protect the railroad tracks adjacent to the channel from being flooded. The dike has a 10-foot top width and side slopes of 1 on 3 on the channel side and 1 on 4 on the landward side. The elevation of the top of the dike varies from 946.3 feet to 947.8 feet. The spillway crest is at elevation 938.8 feet and discharge is onto a concrete apron at elevation 932.3 feet with a dentated end sill and baffles. The downstream channel bottom is at elevation 934.3 feet and the upstream approach bottom is 936.3 feet. The bridge deck is at elevation 950.0 feet. When the stage in Lac qui Parle reservoir is high enough and no flood flows are coming down the Chippewa River, the flow in the diversion channel will reverse and pass through the Chippewa River Dam and down the Chippewa River channel. A general plan and cross section are shown on Plate 2-21. A family of rating curves for the Watson Sag weir are shown on Plate 2-26. ## 2-04. Related Control Facilities. a. General. There are two dams upstream of the Lac qui Parle Project called Big Stone Lake Dam and Highway 75 Dam. Both are incorporated into the Big Stone Lake-Whetstone River Project. In 1935 Big Stone Lake was at an extremely low level after several years of extreme drought conditions. In that year, the Big Stone Lake - Whetstone River Project was initiated to maintain a better range of water levels on the lake and to utilize the immense 2-12 storage capacity of the lake for flood control and water conservation. The project was constructed by the State of Minnesota under the Federal Emergency Relief Act and the Works Progress Administration. Later, high lake levels, acceleration of silt deposit in the lower end of the lake, and flood damages, justified additional improvements downstream from the outlet of Big In 1958, the State of Minnesota, with some cost Stone Dam. sharing by the State of South Dakota, constructed a steel sheetpile dam (which serves as a silt barrier) in the Minnesota River between the outlet of Big Stone Lake and the mouth of the Whetstone River diversion channel. In addition, the Highway 75 Dam was completed in 1974. It provides 45,300 acre-feet of storage for the reduction of flood damages to downstream areas. The pool sustains open-water areas for waterfowl use in the national wildlife refuge which was established as part of the project. Highway 75 Dam has a drainage area of approximately 1,700 square miles. The locations of these structures are shown on Plate 2-1. Paragraphs 3-04, 4-10 and 4-11. b. Big Stone Lake Dam Outlet Structures. The dam has 8 slide gates each measuring 7 feet high and 10 feet-10 inches wide. There are also 2 low flow gates. One is 4 feet by 4 feet and the other is 18 inches in diameter. All slide gates discharge at elevation 960.7 feet and the low flow orifices discharge at elevation 961.2 feet. The crest of the slide gates, when closed, is elevation 964.7 feet. The dam is operated by the Minnesota Power and Light Company. Big Stone Lake Dam has a drainage area of approximately 1,160 square miles. A stage-discharge curve (tailwater curve) for the Minnesota River at Ortonville, U.S.G.S. gage No. 05292000, below the Big Stone Lake Dam is shown on Plate 2-27 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-11. c. Highway 75 Dam Outlet Structures. The service spillway is a reinforced-concrete gravity weir that is 65 feet long, with a crest elevation of 947.3 feet. Discharge is controlled by an electrically operated Bascule leaf gate that can be raised to a normal conservation pool elevation of 952.3 feet. The stilling basin is 68 feet long with a floor at elevation 934.0 feet. The stilling basin has five baffle blocks with top surfaces at elevation 938.58 feet and an end sill with a top elevation of 936.9 feet. A discharge channel 0.5 mile in length with a bottom width of 55 feet and 1 on 3 side slopes connects the service spillway with the Minnesota River. Low flows are discharged through a 42-inch diameter reinforced concrete conduit. This conduit is capable of discharging 75 cfs at a pool elevation of 947.3 feet and 114 cfs at a pool elevation of 952.3 feet. The emergency spillway for the Highway 75 dam is 715 feet long. The crest of the spillway is at elevation 956.6 feet and is 50 feet wide. A 1-foot deep v-shaped depression has been provided on the centerline of the emergency spillway crest and chute to concentrate any erosion in the center of the spillway and away from the training dikes constructed downstream from both ends of the spillway. Reservoir elevation-area and elevation-storage curves for the Highway 75 Dam are shown on Plates 2-28 and 2-29. Elevation-discharge curves for the service and emergency spillways and the tailwater at the Highway 75 Dam are shown on Plate 2-30. A head-discharge curve for the service spillway alone is shown on Plate 2-31. The Yellow Bank River is a tributary to the Highway 75 reservoir. A stage-discharge curve for the Yellow Bank River near Odessa, Minnesota is shown on Plate 2-32 and in Exhibit E. A discharge-frequency curve for this gage is shown on Plate 8-7. 2-05. Real Estate Acquisition. Construction of the Lac qui Parle Reservoir was initiated early in 1936 as a Works Progress Administration project sponsored by the State of Minnesota. The operation of the project was transferred from the State to the Corps of Engineers on 7 September 1950. Land acquisition was completed by the Corps during March 1961. The Corps has fee title to 516.31 acres for the dam, and easements on 19,826.67 acres for the reservoir. All of this area was conveyed to the United States by the State of Minnesota. Special easements on parcels of 32.80 and 1.31 acres of land in fee were also acquired by the Government. In 1957, 60.1 acres were withdrawn from public lands for use by the Department of the Army. All of the land acquisition for the project is complete. Project lands are shown on Plates 2-33 and 2-34. Flowage easements are to elevation 945.0 feet and are shown on Plate 2-34. # 2-06. Public Facilities. Also see Paragraphs 7-06 and 8-03. - a. General. There are 3
public use facilities associated with the Lac qui Parle Project. The areas are referred to as Area A, B, and C. A brief description of each area can be found in the following paragraphs. - b. Area A, Marsh Lake Dam. The public use facilities at Marsh Lake Dam consist of a picnic area, shoreline fishing access, and privies. Area A is located adjacent to Marsh Lake Dam (Plate 2-35). - c. Area B, Lac qui Parle Dam. The facilities at Lac qui Parle Dam consist of a picnic area, drinking water, shoreline fishing access, fish cleaning facilities, handicap-accessible privies, and a playground. Area B is located adjacent to Lac qui Parle Dam (Plate 2-36). - d. Area C, Chippewa River Diversion Dam. The facilities at the Chippewa Diversion Dam consist of shoreline fishing sites, and access to hunting areas and hiking trails. Area C is located adjacent to the Chippewa Diversion Dam and the Watson Sag Weir (Plate 2-37). - e. Other. Lac qui Parle State Park is located on the right bank just upstream of Lac qui Parle Dam. The Minnesota River is part of the State's Wild and Scenic Rivers System and is also a state canoe route. There are 19 boat access sites surrounding the project. #### III - HISTORY OF PROJECT 3-01. Authorization. The Lac qui Parle Project was a Works Progress Administration endeavor sponsored by the State of Minnesota from 1936 through 1939. During 1941 to 1951, the Lac qui Parle Project was reconstructed by the Corps of Engineers for flood control, as authorized under the June 22, 1936 Flood Control Act. 3-02. Planning and Design. A project for flood control at Lac qui Parle Lake was first described by the State of Minnesota in the first Biennial Report of the Commissioner of Drainage and Waters in 1921. The report followed the occurrence of several large floods in the Minnesota River Valley which culminated in the large flood of June 1919. Additional data are given in the Second Biennial Report of the Commissioner dated 1923. During 1922 or 1923, the Minnesota Game and Fish Commission constructed a small low-head dam at the lower end of Lac qui Parle Lake about 1.3 miles above the present dam and about 1/4 mile above the mouth of the Lac qui Parle River. Apparently the structure was utilized for conservation purposes only as the crest elevation was 925.96 feet. The structure was removed prior to the completion of the existing dam. This interest in flood control and water conservation in the Minnesota River Valley culminated in the Lac qui Parle reservoir project. Lac qui Parle is a French phrase meaning "lake that speaks". Construction. Construction of the Lac qui Parle reservoir 3 - 03. was initiated early in 1936 as a Works Progress Administration project sponsored by the State of Minnesota. It was authorized as a Federal project by the Flood Control Act dated 22 June 1936. State of Minnesota completed its portion of the construction in 1939. The Department of the Army, under the above Flood Control Act, completed its portion of the project during the period of September 1941 through December 1951, except for land acquisition which was completed in March 1961. The project completed by the Army included improvements to Lac qui Parle Dam and spillway, Marsh Lake Dam, access roads and dike, alterations to the Great Northern Railway bridge, construction of a Tainter gate at the Chippewa River Dam, and construction of 3 stage recorder houses. project also included modifications to the Minnesota River between Lac qui Parle and Granite Falls, Minnesota, consisting of rock and snag removal and cutoffs at various locations to provide for increasing the bankfull capacity of the channel. The project was transferred from the State of Minnesota to the United States on 7 September 1950. Operation of the project was assumed by the U. S. Army Corps of Engineers on 8 September 1950. Previous to the transfer, operation of the project had been under the direction of the Commissioner of Drainage and Waters, State of Minnesota. 3-04. Related Projects. The Big Stone Lake - Whetstone River Project, located immediately upstream, is also used for flood control and water conservation. This project includes the Highway 3-2 75 Dam and reservoir. Refer to Paragraph 2-04 and the Big Stone Lake - Whetstone River Project Reservoir Regulation Manuals for information about those projects. Also see Paragraphs 4-10 and 4-11. There are two hydropower dams downstream in the vicinity of Granite Falls, Minnesota (see Paragraph 4-11). 3-05. Modification to Regulations. Following completion of the dam in 1939, the conservation pool elevation was set at 934.2 feet year-round. The State of Minnesota lowered the conservation pool elevation to 932.0 feet in 1946 in an effort to provide more flood control storage for agriculture and alleviate problems in the downstream channel. That same year, following meetings with the Sport and Gun Club and agricultural interests, the conservation pool elevation was set at 931.2 feet. The project was transferred to the Corps of Engineers in 1950 and a spring drawdown to elevation 926 feet was adopted. Starting in 1968, the pool was raised every fall to 934.2 feet, from 15 October to 15 November, and held there through the winter to help prevent fish kill. A spring drawdown to elevation 931.2 feet, or lower, was to occur between 15 January and 15 March. In 1968 and 1969 there was insufficient inflow to raise the pool in the fall to elevation 934.2 feet in one month. In 1970 the regulation plan was changed to start the fall pool rise on 1 August. In 1979 the summer conservation pool elevation was officially changed to a band of 932.75 to 933 feet. The winter pool conservation pool elevation remained at 934.2 feet. In 1982 the spring drawdown period was changed to the period from 21 February to 10 March. The current plan has a summer conservation pool elevation of 933 \pm 0.2 feet. The winter conservation pool elevation is 934 \pm 0.2 feet (to reduce fish kill). The fall pool rise is to occur during the month of September. The spring drawdown level is equal to the summer conservation pool elevation of 933 \pm 0.2 feet. The spring drawdown occurs from 1 March to 15 March. # 3-06. Principal Regulation Problems. a. Reservoir Shoreline Erosion. Most of the shoreline erosion occurs along the clay banks which are located on the left bank approximately 3 miles upstream of Lac qui Parle Dam. The area is about 2,000 feet long with vertical drops of 15 feet in some locations. High reservoir levels greatly aggravate the erosion problems in this area. - Damage to Lac qui Parle State Park. The State Park is located on the right bank just upstream of Lac qui Parle Dam. the reservoir reaches elevation 934 feet, shoreline erosion begins to be a problem. At elevation 935 feet, some of the park's trails are flooded. When the pool elevation gets to 936 feet and above, the park has substantial problems with: loss of shoreline trees, damage to the swimming beach and problems with the park's sewer system. As the pool exceeds elevation 936 feet, the park has to shut down its restroom facilities. Above elevation 937 feet, parking areas, picnic areas and the swimming beach are inundated. At 938 feet, the boat access area is flooded and above 939 feet the campground is under water. Damage to cultural resources (e.g. Indian mounds) within the park also occurs at high pool levels. - c. Agricultural Damages. Agricultural damages occur downstream of the dam when local inflows plus releases from the dam exceed channel capacity. These damages include both crop losses and the inability to use the land (e.g. pastureland). - d. Damage to Cultural Resources. The National Register-listed Fort Renville site (21CP24) and sites within Lac Qui Parle State park are subject to erosion when the reservoir exceeds approximately elevation 935.0 feet. ## IV - WATERSHED CHARACTERISTICS 4-01. General Characteristics. The Minnesota River basin lies mostly in the southern part of Minnesota but also includes small portions of Iowa and South Dakota (Plate 2-2). Its total drainage area is 16,900 square miles, of which 14,900 square miles are in Minnesota. From its source in Big Stone Lake, the river flows southeast for 224 miles to Mankato where it turns and flows northeast 106 miles to its junction with the Mississippi River in St. Paul, Minnesota. The average fall of the stream bed over its entire length is about 0.8 feet per mile. Throughout its length the river flows between the high bluffs of a valley and meanders widely across the alluvium deposits. Below Mankato, MN, the valley is from one to three miles wide. The land is generally relatively flat to gently rolling and is nearly all cultivated. In the upper northwest corner of the watershed, Big Stone Lake reservoir is formed by a natural lake with a concrete dam at the outlet. Big Stone Lake has a drainage area of 668 square miles of which the Little Minnesota River is a major portion. The Little Minnesota River forms the headwaters of the Minnesota River. The Whetstone River with a drainage area of 395 square miles, which is almost entirely within South Dakota, flows into Big Stone Lake just upstream of Big Stone Dam. The original confluence was downriver from the dam. The Highway 75 Dam is approximately 9 miles downstream from Big Stone Lake Dam. The Yellow Bank River enters the Highway 75 reservoir just upstream of the Highway 75 Dam. Marsh Lake Dam is below the Highway 75 Dam. The Pomme de Terre River enters the Marsh Lake reservoir immediately upstream of the Dam. The Lac qui Parle Dam is downstream of Marsh Lake Dam. The Lac qui Parle River enters Lac qui Parle reservoir just above the dam from the south. The drainage area above the Lac qui Parle reservoir is 4,050 square miles. Water from a portion of the 2,050 square-mile Chippewa River watershed is diverted at times to Lac qui Parle reservoir for flood control through the Chippewa River diversion project. Lac qui Parle Lake, Marsh Lake, and the
Minnesota River are the most prominent surface water features in the region. The average stream discharges from the Pomme de Terre and Lac qui Parle Rivers combined, equal more than 30 percent of the average Minnesota River flow at the Lac qui Parle Dam. The Whetstone, Yellow Bank, and Chippewa Rivers contribute less than 10 percent of the average flow. A large artificial drainage network and huge extent of row-cropped land are the predominate watershed features. 4-02. Topography. The Minnesota River Valley is in a gently undulating prairie region with general elevations ranging from 700 to 1900 feet above sea level. The general topography of the basin is typically glacial characterized by gently rolling hills separated by level outwash plains. Throughout the valley there are numerous depressions ranging from a few feet to about 30 feet below the surrounding prairie. These depressions contain lakes and wetlands some of which have been drained. Geology and Soils. Most of the State of Minnesota is 4-03.covered by glacial deposits (drift). Much of the land surface consists of features derived from the several different ice sheets retreated from the state. that advanced and During the Pleistocene Epoch, the entire state was overrun at various times by continental ice sheets except for a small area in the extreme southeastern corner. The debris left by these ice sheets covered the original landscape to depths ranging from 100 feet to over 400 The glacial till in the area of the Lac qui Parle Project is made up principally of clays containing a noticeable amount of sand and gravel. The surface soils of the watershed are dark loess and glacial till soils developed under prairie vegetation. With the retreat of the last ice sheet (Keewatin) about 10,000 year ago, a huge lake (Glacial Lake Agassiz) began to form at the base of the melting glacier. Since the drainage system in the area had been filled by glacial drift, there was no place for this water to drain naturally. The rising water had to reach a height which would allow it to drain to the south. Before drainage in this direction became possible, the lake reached a size, estimated from its ancient beach ridges, ranging from 100 to 200 miles in width and more than 600 miles in length. When the outflow started, the general direction was southeast due to a flatiron shaped plateau known as the Coteau Des Prairies. The plateau is a morainal ridge extending from South Dakota in a southwesterly direction across Minnesota and into Iowa. The elevation of the crest of this ridge was nearly 2,000 feet above As the tremendous outflow from Lake Agassiz increased sea level. so did the erosion into the drift, creating the remarkable Valley This ancient river channel ranged in of the Minnesota River. width from 1 to 5 miles and 150 feet or more in depth and stretched over 330 miles from Big Stone Lake to the mouth. From the lower end of the outlet at Ortonville, Minnesota, to the vicinity of Lac qui Parle, the erosion carried down to the Archean bedrock of the original landscape. The outlet which was formed is now occupied by Big Stone Lake and Lake Traverse. The formation of these lakes was caused by the alluvial deposits of the Whetstone and Little Minnesota Rivers after the drainage of Lake Agassiz was completed. When the draining of Lake Agassiz was completed, siltation of the main channel began. Tributary streams created alluvial fans where they entered the main stream. These tributary streams within or adjacent to the project were also created by the draining of the However, erosion of these water from the melting ice sheet. tributary valleys did not reach the Archean rock as it did in the Erosion stopped at depths of 40 - 50 feet below the main channel. present drift on a moraine of an earlier ice age which was composed of granite, syenite, and gneiss. Tributary streams entering from the south have their origin in the above mentioned Coteau Des Prairies, and these streams descend rather rapidly from the upland areas, some dropping as much as 500 feet in a few miles. The Lac qui Parle River drops 790 feet over 66-miles with the greatest fall of 250 feet occurring in an 8-mile reach near Canby, Minnesota. the lowland plains adjacent to the main Minnesota River channel, the gradient is usually less than 2.0 feet per mile. In the lower 18 miles to the mouth the fall is about 14.0 feet per mile. Tributaries entering from the north, such as the Pomme de Terre and the Chippewa Rivers, are divided by north-south morainal hills which rise less than 75 feet above the water courses. Drainage in the upland regions of these streams is rather poorly defined with small lakes and marshy areas marking the water courses. Between the Pomme De Terre and Chippewa River mouths are some ancient channels apart from, but in the main Minnesota River Valley which were produced by these streams and carry flows only during periods of extreme floods. One of these abandoned channels is known as the Watson Sag and is now utilized in the Lac qui Parle Project for the Chippewa River Diversion Channel. The prehistoric river which created the Minnesota River named the River Warren in honor of General G. K. Warren. Warren explained the origin of the Valley in his report on the Examination and Survey of the Minnesota River published as Ex. Doc. #76, Forty-third Congress, Second Session, 1866-1867. maps, descriptions, and discussions were Warren's surveys, considered a valuable contribution to science. The Minnesota River has had several names given it by the early explorers in the On one of the earliest maps of the region dated 1688, it region. was shown as the "Des Mascoutens Nadouscioux" or River of the Mascoutins after a tribe of Sioux Indians living in the Valley. Another map dated 1754 called it the River Saint Piene; the most complete map of the entire territory dated 1841 by the explorer J. N. Nicollet had it noted as the St. Peters River. an act of Congress on 19 June 1852, the name was officially changed to "Minnesota River." 4-04. Sediment. There has been a large amount of sediment deposition in Marsh Lake reservoir over the past 48 years. A study conducted by the University of Minnesota (see Paragraph 1-03.) indicated that approximately 105 centimeters of silt has been deposited at the mouth of the Pomme de Terre River (near the dam). Only one core sample was taken for the University study. The Corps of Engineers, Waterways Experimental Station Laboratory at Eau Galle Dam (WI) is investigating the resuspension of sediments in Marsh Lake. An estimate of the amount of storage volume lost to sedimentation is shown in Table 4-1. Also see Paragraph 5-03. | * | | | | | | | | | | | | | | | |-----|-----|---|-----|-----|-----|------|------|------|-----|------|----|----|----|------|----|-----|----|-----|----|-----|-------------|-------------|-----|-----|------|------|------|----|-------|-----|-----|-----|---|-----|-------| *** | *** | 200 | **** | **** | **** | *** | **** | - | | 23 | 935 | | 9.8 | | ‱. | ж. | 23: | 40. z. | ~ :: | £Æ | 888 | ĸæ. | 11.1 | *** | | 33.53 | *** | *** | *** | | | ***** | | | | | w | ₩ | *** | *** | *** | *** | | *** | 31 | ₩. | ш | 913 | | 11. | ٠. | w. | Jε | 38 | 10 3 | S: | ٤ŧ | | | 22.2 | | | 3.2 | *** | *** | *** | | *** | | | | 833 | × | × | ₩ | | | *** | *** | | | 21 | 30 | ш | ж | Ψ. | ш | L. | *** | J¢ | ı. | 100 | S: | LI | | | 11.1 | | | | | | ₩ | | *** | | | 888 | 88 | W | × | ₩ | | | *** | | | | × | 3 | ш | ₩. | = | 11 | L | | J¢ | ÷ | v | S., | L l | | · C | ш | | | | | | | | | | | 33 | ₩ | | × | | | | | | | | œ | | • | | | *** | | | | | | •••• | | | 9999 | | 2222 | | | | | | | | | | × | × | | | | | | | | | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | | | | | | | | | | ₩ | | | | | | | | | | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | œ | | • | **** | | *** | | | |
 | •••• | | | 9999 | | 2222 | | | | | | | | | | × | | | | | | | | | | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | | | | | | | | | | × | | | | | | L | | | | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | | | | | | | | | | | | N | | | | h | | = | ı. | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | ۵, | | | | | i | , . | | | | | þ | | i | | h | | æ | k | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | Α. | 5€ | | | ю | i | r | | | | | þ | ż | ır | s | h | | æ | k | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | 1 | v | О | 1 | r | | | | | þ | ī | ır | s | h | | a | k | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | 1 | v | О | 1 | r | ; | | | | þ | Ē | u | S | h | | | k | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | . 1 | v | Ю | i | r: | | | | | þ | Œ | u | S | h | | 6 | k | | œ | | • | **** | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | 1 | v | О | i | rs | • | | | | þ | Ιā | u | S | h | • | ē | k | | œ | | • | | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | . 1 | v | О | i | r | 3 | | | | þ | E | ır | s | h | | ē | k | | œ | | • | | | *** | | | | | | •••• | | | 9999 | | 2222 | e: | 5€ | • 1 | v | Ю | i | r: | 3 | | Reservoir | Sediment
Load
Ac-Ft/Year ¹ | Number
of
Years ² | Estimated
Deposition
Ac-Ft | Percent of
Conservation
Storage
Lost ³ | |---------------|---|------------------------------------|----------------------------------|--| | Marsh Lake | 60.5 | 56 | 3388 | 28 | | Lac qui Parle | 69.0 | 56 | 3864 | 9 | ^{1.} U.S. Army Corps of Engineers, General Design Memorandum No. 1, Supplement No. 2, Flood Control, Big Stone-Whetstone River, Page 3, 30 November 1979. Based on an observed Sediment rate of 0.05 ac-ft/sq. mi. for the Big Stone River. Also see the Reservoir Operation Plan Evaluation dated September 1989, Pages 75 and 103. ^{2. 1939} through 1994 Marsh Lake Conservation Storage = 12,050 ac-ft = Storage Below Elevation 937.6 Feet Lac qui Parle Conservation Storage = 41,000 ac-ft = Storage Below Elevation 933.0 Feet 4-05. Climate. The climate in the region is characterized by moderate precipitation and wide variations in temperature. The area is subject to cold winters and warm summers, typical of continental conditions in the temperate zone. The average length of the growing season, the interval between killing frosts, is about 150 days. The climate is favorable for wheat, corn, soy beans, and other small grains. Historical temperature, precipitation, and evaporation values at typical National Weather Services stations in and adjacent to the Minnesota River basin are shown in Tables 4-2, 4-3, and 4-4 respectively. - a. Temperature. The average annual temperature is about 44 degrees Fahrenheit with average monthly temperatures varying between 12 degrees Fahrenheit in January and 74 degrees Fahrenheit in July. Extremes in temperatures which have been observed in the general area range from a low of -42 degrees Fahrenheit to 114 degrees Fahrenheit. Normal monthly temperatures (30-year average) for the National Weather Service gages at Milan and Redwood Falls, Minnesota are listed in Table 4-2. On the average, the first killing frost occurs on 22 September. - b. Precipitation. The mean annual precipitation over the basin is about 23.0 inches, with more than 75 percent of the precipitation falling during the months of April through September. Precipitation in the winter generally occurs as snow. Average monthly precipitation values for the National Weather Service gages at Milan and Redwood Falls, Minnesota are listed in Table 4-3. - c. Evaporation. Evaporation represents a major portion of the water lost from the reservoir during the period April through October. Evaporation from Lac qui Parle reservoir has been estimated to average about 30 inches per open water season. Average monthly pan evaporation for the National Weather Service gage at Fargo, North Dakota is listed in Table 4-4. Evaporation from lakes is less than pan evaporation due to cooler water temperatures. - d. Wind. The average wind speed in this area is about 10 miles per hour. The prevailing winds are from the northwest, but southeast winds are very common during the summer months. Wind speeds are usually highest during the afternoon and lowest at night. TABLE 4-2 # Normal Temperatures at the National Weather Service Gages at Milan, and Redwood Falls Minnesota In Degrees Fahrenheit | Month | Milan, MN | Redwood Falls, MN | |---|---|--| | January February March April May June July August September October | 8.7
15.3
27.4
44.3
57.4
67.2
71.8
69.6
59.5
48.3 | 12.9
27.9
32.6
52.1
59.7
72.7
78.0
75.4
63.5
45.7 | | November
December | 31.0
16.7 | 29.1
15.2 | | Annual | 43.1 | 47.1 | | Period of Record | 1951-80 | 1951-80 | TABLE 4-3 ## Average Precipitation at the National Weather Service Gages at Milan and Redwood Falls, Minnesota In Inches | Month | Milan, MN | Redwood Falls, MN | |--|--|--| | January February March April May June July August September October November | 0.63
0.73
1.39
2.32
2.93
4.04
3.34
3.30
2.37
1.93
1.06 | 0.59
0.72
1.42
2.33
3.16
3.87
3.51
3.23
2.39
1.69
1.20 | | December | 0.68 | 0.69 | | Annual | 24.72 | 24.80 | | Period of Record | 1949-90 | 1932-41
1943-63
1965-89 | TABLE 4-4 Average Pan Evaporation for the National Weather Service Gage at Fargo, North Dakota In Inches | Month | Fargo, ND Airport | |------------------|-----------------------------| | January | NA | | February | NA | | March | NA | | April | 3.64 | | May | 7.15 | | June | 7.41 | | July | 8.43 | | August | 7.31 | | September | 4.95 | | October | 3.29 | | November | NA | | December | NA | | Period of Record | 1963-80 (Gage Discontinued) | 4-06. Storms and Floods. Floods of damaging proportions occur quite frequently in the Minnesota River Basin. Floods which occur as a result of melting snow during the spring breakup are more prevalent, although floods may also result from heavy summer rains extending over the watershed. The most destructive floods are those that affect the agricultural economy of the region. A brief description of some floods that have occurred in the upper reaches of the Minnesota River from Big Stone Lake to Montevideo, Minnesota follows. - This flood was the result of excessive April 1881. the winter of 1880 - 1881. Below normal snowfall during temperatures prevailed up to the end of April, followed by a high and sudden rise in temperature, a condition which produced rapid runoff. There is very little information on this flood except for old newspaper accounts and high water marks. A description of the 1881 flood at Saint Paul is contained on Pages 1754 - 1756 of the Annual Report of the Chief of Engineers wherein the major portion of the flood waters was attributed to the Minnesota River. U.S. Geological Survey estimates the discharge at Mankato was about 110,000 cfs. - b. April 1897. The only evidence that there was a flood of high magnitude in the upper reaches of the river was a high water mark at Big Stone Lake. This high water mark indicates a flood stage only 0.26 foot lower than the maximum stage of record, established in April of 1952. There is no other information available. - c. April 1916. Rainfall during the fall of 1915 was above normal. The ground froze while saturated, a condition favorable for high runoff during the spring breakup. Snowfall during the winter averaged 4.8 inches in water content which is about normal. Flooding apparently originated on the Chippewa River where the discharge of 4,750 cfs occurred on 29 March. At Montevideo on 2 5 April, the flow was 7,540 cf with a stage of 15.45 feet. Flows 4-13 on the Chippewa did not recede very rapidly, and the discharge at Montevideo did not drop much below 3,000 cfs until the middle of June. Three flood crests occurred at Mankato, during March, April and July. - d. April 1917. Rain during the fall of 1916 averaged about 4.0 inches, followed by snow during the winter, averaging about 6.5 inches in water content. Again, as in 1916, this flood was apparently caused entirely by the Chippewa River. The crest at Montevideo occurred on 4 5 April with a flow of 10,000 cfs and a stage of 16.2 feet. - Prior to the winter of 1918, rainfall had June 1919. This was followed saturated the ground throughout the watershed. by abnormally heavy snowfall over the entire basin. Before any appreciable amount of runoff started in the basin above Montevideo, flooding was already occurring in the downstream reaches. Much of this flooding was attributed to ice and debris choking the main channel at many points. The runoff above Montevideo did not contribute much to this early flooding in the lower reaches, but all of the lower tributaries were flooding at this time. With the above normal and the watershed already main river at stages saturated, heavy rains fell in the upper reaches between 1 - 26 June, averaging approximately 7.0 inches with a maximum of 10.10 inches at Canby, Minnesota. The crest occurred at Montevideo on 25 June with a flow of 22,000 cfs and a stage of 19.4 feet, 5.4 feet 4 - 14 above flood stage. This flood inundated about 106,000 acres of bottom lands from Big Stone Lake to the mouth of the
river, resulting in a tremendous crop loss. This flood was the deciding factor in the planning of the Lac qui Parle flood control project. f. May - June 1942. This flood marked the end of a period of about 20 years wherein no high flows had occurred on the Minnesota River after 1 May in the vicinity of Montevideo. A series of frequent storms of high intensity began in the last week of April and continued for several months. These storms covered widespread areas of the Minnesota River watershed producing recurrent high discharges on a number of the tributaries in the upper reaches of the basin. Rainfall during the period 25 - 30 April averaged 3.5 inches. May and June received an average of 8.0 inches and 3.5 inches. The Little Minnesota and the Whetstone River basins during this period received approximately 15.0 inches of rainfall. Flood flows from these streams filled Big Stone Lake to 0.1 foot above the upper limit of the flood control storage. qui Parle reservoir was filled to elevation 940.0 or 1.1 feet below the top of the 2,500 foot emergency spillway. Operation of the Lac qui Parle Dam held the mean daily discharge of the Minnesota River at Montevideo to 4,540 cfs on 6 - 8 June, approximately 0. 5 foot below the flood stage of 14.0 feet. - April 1943. During the fall and winter months of 1942 g. - 1943, precipitation was somewhat above normal and temperatures were below normal. During the period 12 - 19 March, heavy snow and near-blizzard conditions occurred. This new snow had a high water content. Warmer weather followed with temperatures averaging about 80 degrees Fahrenheit in the latter part of March, causing rapid melting of the snow cover and a high runoff rate. Operation of Lac qui Parle Dam held the flood crest at Montevideo to 9,200 cfs 4 - 5 April (stage 16.0 feet) . However, the reach downstream from Montevideo to New Ulm was inundated from bluff to bluff. highway crossings on the main stem were overtopped, and buildings in the lowlands were partially submerged. In a low-lying residential area of Montevideo, three persons were drowned when their boat capsized in an attempt to retrieve some of their Many of the tributary streams attained new record belongings. flood stages During this period. Heavy precipitation, concentrated in the lower reaches, produced another flood in June which was the largest flood in the lower area since 1920. Relatively uniform flows from the operation of Big Stone and Lac qui Parle Dams of 1,200 to 2,000 cfs did not have any appreciable effect on the flood crests of the lower river. - h. March 1946. This flood was of minor importance and was produced mainly by the Lac qui Parle and Pomme De Terre Rivers. Operation of Lac qui Parle Dam held the peak flow at Montevideo to 5,380 cfs on 28 30 March with a crest stage of 14.25 feet. 4-16 However, this was the 5th consecutive year that floods had occurred in the lower reach of the river, produced entirely by the tributary streams below Montevideo. April, July 1947. Precipitation during the winter of 1946 - 1947 was below normal with March being the driest for the State of Minnesota since 1939. However, above normal rainfall during April 1947 averaged 3.5 inches over the watershed, and this was augmented by the snowmelt. This condition resulted in a flood similar in magnitude and characteristics to the spring flood of 1943. Floods of considerable magnitude occurred on the Little Minnesota, Whetstone, Yellow Bank, Pomme de Terre, and Lac qui Parle Rivers. Floodwaters on the Yellow Bank River overtopped U.S. Highway 75 near the head of Marsh Lake and eroded the shoulder of the roadway. Lac qui Parle reservoir was filled to its capacity and water overflowed the 2,500 foot emergency spillway at a depth of 0.1 foot. However, this outflow was not as great as the 1943 flood when the reservoir level was lower. During the early stages of the 1947 flood, a number of local farmers, in an attempt to prevent the flooding of their land downstream from the dam, placed some stop logs in the spillway of the Lac qui Parle Dam without proper authority. The gates in the dam were closed at the time. The discharge capacity of the dam was reduced, causing a higher level in the reservoir. The Minnesota River at Montevideo reached a peak flow of 8,500 cfs on 17 April and a stage of 15.95 feet, 0.3 foot lower than the 1943 peak. A residential area with about 50 homes was flooded. Heavy rains over the watershed between 3 and 5 July, averaging about 7.0 inches, again caused some flooding with crests generally below the April flood. Flooding on tributary streams below Montevideo produced the highest flood of record at that time on the Redwood River at Marshall, Minnesota. - April 1951. Above normal precipitation occurred during i. the fall and winter months. Flooding started on most tributaries the first week in April. The Yellow Bank River overtopped U. S. Highway 75 near the head of Marsh Lake. Flood flows from the Pomme De Terre, Lac qui Parle, and Chippewa Rivers filled Lac qui Parle reservoir to within 1.2 feet (elevation 939.90 feet) of the crest of the emergency spillway section. Due to the anticipated high water, the pool at Lac qui Parle Dam had been lowered to elevation 929.5 feet. The highest flows were attributed to the Chippewa The peak flow on the Minnesota River at Montevideo River Basin. occurred on 11 April with a discharge of 12,200 cfs and a stage of 16.80 feet (Table 4-5). The operation of Lac qui Parle Dam caused a reduction of 0.17 feet in the stage at Montevideo. streams below Montevideo combined to produce a maximum discharge at Mankato of 66,600 cfs. - k. April 1952. Above normal rainfall occurred during the fall of 1951. Heavy snowfall fell during the winter months of 1951 1952 resulting in an accumulation of snow about twice the normal amount. The snow survey made in mid-March indicated a 4-18 water content of about 4.0 inches. Drawdown of the pool at Lac qui Parle Dam was started in mid-February, and the pool was lowered to elevation 927.85 before the spring breakup. Temperatures rose sharply in early April, exceeding 50 degrees Fahrenheit on 7 April. The resultant runoff caused tributary streams to crest on 8 April. The crest on the Minnesota River at Lac qui Parle Dam and at Montevideo occurred on 10 April. Maximum outflow at Lac qui Parle Dam was 19,700 cfs and the peak stage was 0.85 feet above the crest of the 2,500 foot emergency spillway. The peak flow at Montevideo was 24,500 cfs with a stage of 20.02 feet, 6.0 feet above flood stage (Table 4-5). Fifty homes in a low lying area were evacuated. There was some damage to the dike on the diversion channel and to the emergency spillway. It was estimated that operation of the Lac qui Parle Dam resulted in less than 0.10 foot decrease in the stage at Montevideo. A secondary rise was caused by heavy local rains on 25 and 28 June, causing the Lac qui Parle pool to crest at an elevation of 936.0 by 30 June. 1. June 1953. Heavy rainfall during the latter part of April 1953 and continuing through May gradually filled the Lac qui Parle reservoir. In addition, excessive rainfall occurred on 16 and 25 June, causing a pool elevation in Lac qui Parle reservoir of 940.35 feet and a peak discharge at Montevideo of 9,770 cfs, (stage 16.1). - m. June 1957. Heavy rains during the period 14 May through 17 June filled Lac qui Parle reservoir to elevation 940.35 feet. Operation of the reservoir kept Montevideo below the flood stage of 14.0 feet during the period except for one day when a local rain of 7.5 inches fell in a 24 hour period. The maximum discharge at Montevideo occurred on 17 June with a flow of 5,500 cfs (stage 14.4). - April 1965. By 3 April 1965, the winter drawdown at n. Lac qui Parle had lowered the pool to elevation 929.22 feet. surveys had shown a snow water content varying from 2 to 5 inches with an average over the basin of about 4 inches. On 6 April 1965, rainfall averaging 1.63 inches over the basin was added to this available runoff. Temperatures near 50 degrees Fahrenheit started the melting within a week after the rainfall. The frost was still in the ground and the runoff was very high. On 14 April 1965, the Lac qui Parle pool crested at an elevation of 939.90 feet and remained above the conservation pool elevation of 931.2 feet The 14 foot flood stage at Montevideo was until 4 May 1965. exceeded on 10 April 1965, reaching a peak of 16.64 feet on 14 April 1965 (Table 4-5). Stages above flood stage were recorded at Montevideo until 27 April 1965. Flood damage at Montevideo and other downstream localities was minor. The peak stage at Mankato was reached on 10 April 1965. Since the travel time from Lac qui Parle Dam to Mankato is about seven days, the peak discharge from Lac qui Parle reservoir affected only the receding flows at Mankato. - o. Spring 1969. The water content of the snow in the headwaters of the Minnesota River Basin at the end of March 1969 was about 6 inches. The upper part of the basin received 1 to 1.5 inches of rain during April 7-10 just as the snowmelt runoff was reaching its peak. Conditions were such that severe flooding was inevitable. The highest discharge and pool elevation ever recorded were measured at the Lac qui Parle Dam (29,400 cfs and 942.47 feet). Montevideo also experienced a flood of record (35,100 cfs) (Table 4-5). - p. 1979. A heavy snowpack resulted in a peak discharge and pool elevation at Lac qui Parle Dam of 10,600 cfs and 939.78 feet on 18 to 19 April (Table 4-5). Heavy rains in June resulted in the pool rising to near an elevation of 940 feet after falling to 934 feet after the spring runoff. - q. 1985. A heavy snowpack resulted in a peak discharge and pool elevation at Lac qui Parle Dam of 9,360 cfs and 939.40 feet on 25 March 1985 (Table 4-5). - r. 1986. A heavy snowpack resulted in a peak discharge and pool elevation at Lac qui Parle Dam of 13,200 cfs and 941.06 feet on 8 April 1986 (Table 4-5). Heavy rains through the
summer kept the pool above an elevation 938 feet well into October. The pool reached a second peak elevation of 941.23 feet on 12 October. - s. 1993. By the end of April 1993, streamflow in the Minnesota River basin had been in the excessive range for 9 of the past 10 months. Wet antecedent conditions existed in the basin dating back to 1991. As a result, heavy rains in May brought flooding to the Minnesota River Valley. Most of the severe flooding occurred downstream of Mankato. Agricultural flooding occurred all along the river for the entire summer. The peak discharge and pool elevation at the Lac qui Parle Dam was 10,200 cfs and 941.72 feet on 3 August (Table 4-5). #### Table 4-5 Summary of Peak Discharges and Elevations/Stages at Lac qui Parle Dam, and Montevideo, Minnesota For Selected Floods | Lac qui Parle Dam¹ | | Lac qui | Parle Dam | Montevideo, MN Gage ² | | | | |--------------------|--------------------------|---------------------|--|----------------------------------|--------------------------|------------------------------------|--| | Date | Peak
Discharge
cfs | Date | Peak
Elevation
Feet ³ | Date | Peak
Discharge
cfs | Peak
Stage
Feet ⁴ | | | 4/12/69 | 29,400 | 4/13/69 | 942.47 | 4/12/69 | 35,100 | 21.68 | | | 4/10/52 | 19,700 | 4/10/52 | 941.95 | 4/10/52 | 24,500 | 20.02 | | | 4/08/86 | 13,200 | 4/08/86
10/12/86 | 941.06
941.23 | 4/08/86 | 13,990 | 17.26 | | | 4/14/65 | 10,700 | 4/03/65 | 939.90 | 4/14/65 | 12,900 | 16.64 | | | 4/18/79 | 10,600 | 4/19/79 | 939.78 | 4/19/79 | 12,200 | 16.21 | | | 8/03/93 | 10,200 | 8/03/93 | 941.72 | 8/04/93 | 11,500 | 16.46 | | | 4/10/51 | 9,760 | 4/11/51 | 939.90 | 4/11/51 | 12,200 | 16.80 | | | 3/25/85 | 9,360 | 3/25/85 | 939.40 | 3/26/85 | 11,510 | 16.09 | | - 1. U.S.G.S. Gage No. 05301000, 200 ft. downstream of the dam - U.S.G.S. Gage No. 05311000, Gage Datum = 909.12 ft., 1929 NGVD adj. The construction of the dam was completed in 1939 - 3. Corps Gage, 1929 NGVD Adjustment - Project Control Point, Target Stage = 17 feet = approximately 13,000 cfs National Weather Service Flood Stage = 14 feet 4-07. Runoff Characteristics. Floods on the Minnesota River and its tributaries are caused by both snowmelt runoff and summer storms. Floods occurring as a result of melting snow can encompass the entire basin. During the spring breakup, floods are often aggravated by ice jams forming in the river. Floods can also occur from heavy rains extending over the entire basin (e.g. 1919, 1944, 1993) or from intense rainfall events that are local in nature. The percent of time a given annual inflow or outflow, to or from the Lac qui Parle Project, is equaled or exceeded (annual flow duration), is shown on Plates 4-1 and 4-2. The mean monthly and annual inflow and outflow distributions for the project are presented on Plates 4-3 and 4-4. Plate 4-5 illustrates the variation in monthly streamflow at the Montevideo, Minnesota control point. Monthly inflow and outflow duration is shown in Tables 4-6 and 4-7. Average monthly and annual reservoir inflows and outflows are listed in Tables 4-8 and 4-9. Daily inflows were computed using mean daily outflows and the change in pool elevation from 1940 through 1993. Maximum monthly inflows and outflows occur in April, May, and June from snowmelt and spring rain runoff, but most of the spring inflow is retained in the reservoir for flood protection purposes. As a result of this retention, monthly inflows generally exceed outflows during the spring as the reservoir is filling. In the summer, the highest evaporation losses occur, and outflows are reduced. Outflows are decreased in late fall as necessary to raise the reservoir level to provide an additional volume of water for fish over the winter (see Chapter VII). | | DEC ALL SEASON | 0.10
0.12
0.15
0.26
0.26
0.48
0.78
1.15
1.15
1.246
25.44 | |---|--|---| | | DEC A | 3.11 | | | NOV | 0.32
0.48
0.89
13.39 | | | OCT | 0.27
0.54
0.72
1.62
2.25
4.41
15.29 | | ABLE | PERCENT OF TIME AT OR ABOVE INDICATED ELEVATION
APR MAY JUN JUL AUG SEP | 0.18
0.55
1.57
2.30
5.07
15.21 | | TION T. | DICATED
AUG | 0.17
0.33
0.50
0.66
0.74
1.07
2.06
3.96
7.51
17.00 | | TABLE 4-6 LAC QUI PARLE PROJECT SERVOIR NET INFLOW - DURATION TABLE YEARS 1940 THROUGH 1993 | ABOVE IN
JUL | 0.29
1.03
1.47
2.21
3.54
4.64
13.78
31.25 | | TABLE 4-6
JI PARLE
INFLOW - C
1940 THRC | AT OR A | 0.14
0.14
0.143
0.21
0.21
1.07
1.08
1.08
1.08
1.08
1.08
1.00 | | AC QU
NET I | r of Time
May | 0.13
0.74
1.34
2.14
3.41
5.69
50.74
100.00 | | LERVOIR Y | PERCENT
APR | 0.40
0.40
0.40
0.54
0.67
0.81
1.15
1.15
1.18
9.23
2.23
3.91
1.89
5.26
6.68
6.68
7.89
11.00
11.00 | | RESE | MAR | 0.29
0.58
0.73
1.23
1.23
3.75
5.84
8.01
17.17
30.45 | | | FEB | 0.26
1.04
100.00 | | | JAN | 100.00 | | | FLOW |
25000
24000
22000
22000
20000
19000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000
17000 | | | DEC ALL SEASON | 0.11
0.15
0.22
0.35
0.48
0.64
0.99
1.50
2.03
3.06
5.25
8.37
21.62 | |--|--|---| | | DEC AL | 4.64 | | | NOV | 0.43
1.73
8.58 | | TABLE | ON
OCT | 1.79
2.63
8.96 | | ATION | ELEVATI
SEP | 0.25
0.49
1.42
8.33 | | TABLE 4-7 LAC QUI PARLE PROJECT TAILWATER OUTFLOW - DURATION TABLE YEARS 1940 THROUGH 1993 | PERCENT OF TIME AT OR ABOVE INDICATED ELEVATION
APR MAY JUN JUL AUG SEP | 0.12
0.30
0.60
0.60
0.60
1.02
1.02
1.03
1.03
1.03
1.03
1.03
1.03 | | TABLE 4-7
LAC QUI PARLE PROJECT
TAILWATER OUTFLOW - DUF
YEARS 1940 THROUGH 1993 | ABOVE IN
JUL | 0.12
1.14
2.21
2.25
7.05
33.21
100.00 | | TABLE 4-7
II PARLE I
TER OUTF
1940 THRO | E AT OR /
JUN | 0.62
1.54
2.28
2.96
4.38
4.3.02
100.00 | | AC QU
TAILWA
'EARS | T OF TIME
MAY | 0.24
1.49
1.039
1.039
1.000 | | SERVOIR | PERCEN
APR | 0.19
0.19
0.19
0.19
0.19
0.19
0.19
0.19 | | RESE | MAR | 0.18
0.94
0.90
1.27
2.23
3.98
5.42
7.23
1.00.00 | | | FEB | 100.00 | | | JAN | 0.12 | | | FLOW |
25000
23000
23000
21000
21000
19000
17000
17000
12000
12000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | TABLE 4-8 SUMMARY OF AVERAGE MONTHLY/ANNUAL RESERVOIR NET INFLOW YEARS 1940 THROUGH 1993 | YEAR | JAN | FEB | MAR | MEAN
APR | MONTHLY
MAY | / ANNUAL
JUN | JUL. | FLOW IN C | SEP | ост | NOV | DEC | ANNUAL
NET | |----------------------------|------------|--|--------------|--------------|----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------| | | | ······································ | | | | | | | | | | | INFLOW | | 1940 | 0 | 0 | 413 | 1712 | 364 | 368 | 51 | 159 | 157 | 262 | 145 | 14 | 303 | | 1941 | 43 | 43 | 331 | 1276 | 476 | 366 | 281 | 153 | 337 | 352 | 293 | 199 | 346 | | 1942 | 105 | 28 | 272 | 479 | 1939 | 3095 | 804 | 602 | 980 | 809 | 568 | 222 | 827 | | 1943 | 204 | 282 | 1665 | 4767
4755 | 1357 | 1907 | 1036 | 634 | 432
377 | 280 | 194
365 | 144
161 | 1073
828 | | 1944
1945 | 187
129 | 210
153 | 659
1451 | 1755
1033 | 3113
636 | 1643
1171 | 672
663 | 477
476 | 265 | 281
330 | 243 | 90 | 555 | | 1946 | 76 | 18 | 3844 | 2384 | 1141 | 840 | 1304 | 47 1 | 509 | 657 | 684 | 229 | 1020 | | 1947 | 163 | 255 | 730 | 6127 | 2497 | 2487 | 934 | 324 | 413 | 294 | 591 | 262 | 1252 | | 1948 | 138 | 103 | 4714 | 3266 | 1403 | 630 | 542 | 645 | 480 | 333 | 251 | 176 | 1063 | | 1949 | 97 | 127 | 1041 | 1810 | 420 | 401 | 488 | 283 | 299 | 423 | 314 | 71 | 482 | | 1950 | 52 | 69 | 872 | 2926 | 2861 | 852 | 422 | 338 | 243 | 392 | 208 | 63 | 778 | | 1951 | 43 | 130 | 208 | 5894 | 1618 | 721 | 506 | 503 | 796 | 473 | 365 | 318 | 961 | | 1952 | 135 | 179 | 377 | 12452 | 2942 | 1751 | 2828 | 497 | 270 | 424 | 539 | 103 | 1868 | | 1953 | 82 | 472 | 1636 | 1571 | 1544 | 3504 | 2448 | 2394 | 368 | 224 | 240 | 161 | 1224 | | 1954 | 78 | 194 | 1518 | 1271 | 1531 | 1074 | 509 | 250 | 447 | 382 | 355 | 101 | 645 | | 1955 | 76 | 79 | 731 | 748 | 652 | 449 | 677 | 247 | 357 | 419 | 124 | 37 | 385 | | 1956 | 42 | 78 | 222 | 1121 | 647 | 688 | 651 | 796 | 199 | 397 | 324 | 93 | 440 | | 1957 | 63 | 79 | 1995 | 786 | 1321 | 2992 | 1501 | 882 | 1356 | 933 | 1027 | 404 | 1115 | | 1958 | 237 | 264 | 868 | 2164 | 746 | 504 | 328 | 140 | 247 | 295 | 332 | 71 | 515 | | 1959 | 55 | 30 | 203 | 355 | 727 | 289 | 195 | 241 | 287 | 526 | . 122 | 82 | 261 | | 1960 | 84 | 54 | 738 | 3113 | 653 | 463 | 282 | 247 | 228 | 389 | 233 | 87 | 547 | | 1961 | 50 | 45 | 253 | 733 | 635 | 255 | 76 | 141 | 267 | 188 | 174 | 107 | 244 | | 1962 | 31 | 70 | 582 | 3643 | 1847 | 2022 | 3649 | 1177 | 617 | 474 | 315 | 237 | 1227 | | 1963 | 114 | 125 | 510 | 800 | 893 | 1073 | 328 | 469 | 304 | 307 | 433 | 136 | 458 | | 1964 | 63 | 67 | 328 | 1248 | 839 | 270 | 246 | 439 | 547 | 321 | 226 | 33 | 386 | | 1965 | 29 | 52 | 86 | 5571 | 2522 | 2808 | 916 | 333 | 509 | 518 | 353 | 222 | 1156 | | 1966 | 154 | 328 | 3477 | 1872 | 1216 | 554 | 269 | 318 | 220 | 501 | 121 | 71 | 763
600 | | 1967 | 88
47 | 103 | 1008 | 2148
807 | 877
372 | 1166
395 | 496 | 261
289 | 226 | 456
535 | 321
197 | 48
139 | 290 | | 1968
1969 | 81 | 33
49 | 115
306 | 10921 | 4127 | 1346 | 338
587 | 195 | 199
262 | 394 | 289 | 132 | 1552 | | 1970 | 67 | 73 | 299 | 1160 | 961 | 1286 | 502 | 363 | 313 | 376 | 876 | 241 | 543 | | 1971 | 78 | 98 | 1434 | 1286 | 547 | 647 | 1528 | 223 | 203 | 466 | 1029 | 604 | 682 | | 1972 | 199 | 113 | 2270 | 3287 | 4136 | 3140 | 1185 | 1144 | 330 | 364 | 565 | 289 | 1425 | | 1973 | 144 | 254 | 2813 | 1114 | 1036 | 752 | 204 | 203 | 171 | 200 | 277 | 135 | 612 | | 1974 | 77 | 99 | 382 | 750 | 745 | 531 | 195 | 367 | 212 | 118 | 178 | 81 | 312 | | 1975 | 82 | 73 | 132 | 1647 | 1759 | 514 | 507 | 271 | 345 | 276 | 365 | 74 | 505 | | 1976 | 70 | 157 | 978 | 711 | 360 | 175 | 133 | 153 | 654 | 2052 | 1358 | 1 | 568 | | 1977 | 7 | 538 | 1214 | 506 | 184 | 321 | 245 | 230 | 303 | 411 | 536 | 246 | 394 | | 1978 | 130 | 62 | 2329 | 5734 | 1871 | 881 | 1038 | 319 | 290 | 331 | 192 | 119 | 1109 | | 1979 | 75 | 53 | 392 | 6814 | 2607 | 2271 | 956 | 705 | 275 | 363 | 516 | 244 | 1269 | | 1980 | 160 | 107 | 524 | 1204 | 400 | 1038 | 390 | 381 | 427 | 441 | 407 | 96 | 464 | | 1981 | 45 | 146 | 322 | 804 | 454 | 1093 | 539 | 248 | 357 | 576
472 | 370 | 100 | 421 | | 1982 | 63
204 | 28 | 548 | 2616
1657 | 1100 | 607
486 | 406 | 289 | 396 | 473 | 481
600 | 323 | 611
607 | | 1983 | 204
176 | 249
327 | 1025 | 1657
4032 | 1019 | 486
5434 | 508
1726 | 241
456 | 395
491 | 400
2695 | 699
1831 | 388
1026 | 607
1905 | | 1984
1985 | 176
485 | 327
350 | 1909
5464 | 4932
3082 | 1863
1870 | 5434
994 | 1726
624 | 456
384 | 491
1974 | 2695
559 | 1831
508 | 1026
368 | 1394 | | 1986 | 255 | 295 | 3463 | 10823 | 5345 | 2083 | 2847 | 2236 | 3250 | 2729 | 1251 | 832 | 2957 | | 1987 | 519 | 593 | 1346 | 1378 | 716 | 540 | 408 | 467 | 232 | 442 | 371 | 116 | 594 | | 1988 | 85 | 131 | 525 | 508 | 610 | 184 | 124 | 225 | 459 | 382 | 351 | 50 | 303 | | 1989 | 67 | 61 | 994 | 1965 | 888 | 324 | 274 | 204 | 663 | 348 | 421 | 60 | 523 | | 1990 | 39 | 72 | 222 | 616 | 489 | 1144 | 304 | 348 | 332 | 394 | 351 | 93 | 367 | | 1991 | 51 | 100 | 279 | 798 | 879 | 3538 | 2196 | 2231 | 967 | 554 | 563 | 314 | 1042 | | 1992 | 267 | 246 | 1308 | 1132 | 770 | 3729 | 2003 | 569 | 588 | 465 | 401 | 272 | 980 | | 1993 | 141 | 104 | 958 | 4598 | 3072 | 4009 | 7356 | 4815 | 1582 | 1188 | 1193 | 971 | 2515 | | PERIOD MEAN
(1940-1993) | 115 | 149 | 1153 | 2664 | 1400 | 1330 | 930 | 582 | 508 | 540 | 464 | 208 | 838 | | | * *** | | PERIO | D (1940-19 | 93) MONT | HLY NET N | AAXIMUN | IS AND MI | NIMUMS | 3 | | | | | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | | MINIMUM
YEAR | 1
1961 | 1
1941 | 1
1941 | 2
1969 | 3
1977 | 1
1987 | 1
1960 | 2
1974 | 1
1972 | 4
1970 | 1
1951 | 1
1976 | | | | | | | | | | | | | | | | | | MAXIMUM | 790 | 2710 | 14366 | 47197 | 9664 | 19179 | 9418 | 13041 | 7482 | 7773 | 6285 | 4191 | | TABLE 4-9 SUMMARY OF AVERAGE MONTHLY / ANNUAL RESERVOIR OUTFLOW YEARS 1940 THROUGH 1993 | YEAR | JAN | FEB | MAR | APR | MAY | JUN | JUL | IN CFS
AUG | SEP | ОСТ | NOV | DEC | ANNUAL
OUTFLOW | |---------------------------|--------------|--------------|---------------------|------------------|------------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|---------------------| | 1940 | 0 | 0 | 95 | 1505 | 437 | 100 | 9 | 9 | 9 | 9 | 9 | 9 | 182 | | 1941 | 16 | 77 | 297 | 771 | 656 | 114 | 169 | 17 | 20 | 22 | 59 | 65 | 191 | | 1942 | 43 | 21 | 33 | 285 | 1052 | 3492 | 1247 | 704 | 752 | 841 | 386 | 153 | 752 | | 1943 | 169 | 318 | 813 | 5199 | 1284 | 1558 | 1420 | 569 | 304 | 56 | 88 | 125 | 989 | | 1944 | 156 | 216 | 412 | 1764 | 2917 | 1850 | 532 | 218 | 138
| 144 | 142 | 135 | . 720 | | 1945 | 143 | 238 | 1004 | 1134 | 461 | 941 | 603 | 389 | 220 | 155 | 80 | 80 | 454 | | 1946 | 76 | 23 | 1891 | 2907 | 666 | 946 | 1117 | 495 | 244 | 505 | 54 5 | 287 | 811 | | 1947 | 189 | 92 | 263 | 4235 | 2994 | 2479 | 1502 | 413 | 112 | 113 | 183 | 192 | 1064 | | 1948 | 56 | 94 | 1424 | 4048 | 1531 | 404 | 332 | 336 | 219 | 34 | 3 3 | 89 | 717 | | 1949 | 74 | 195 | 835 | 1454 | 548 | 173 | 265 | 133 | 89 | 57 | 57 | 53 | 328 | | 1950 | 52 | 51 | 152 | 2439 | 2443 | 1193 | 423 | 72 | 118 | 25 | 28 | 45
270 | 587
823 | | 1951 | 30 | 155 | 243 | 5098 | 2039 | 628 | 456 | 267 | 531 | 122 | 72
33 | 33 | 1646 | | 1952 | 245 | 170 | 363 | 10595 | 3722 | 1076 | 2884 | 556
2046 | 41
639 | 58
40 | 40 | 50 | 956 | | 1953 | 46 | 250 | 531 | 1331 | 1325 | 1799 | 3309 | 2046
86 | 117 | 52 | 4 9 | 79 | 494 | | 1954 | 83 | 299 | 921 | 1315 | 1369 | 1071
121 | 487
565 | 29 | 74 | 39 | 34 | 33 | 201 | | 1955
1956 | 90
35 | 109
55 | 571
47 | 463
969 | 267
325 | 606 | 526 | 756 | 128 | 34 | 146 | 77 | 309 | | 1957 | 61 | 55
51 | 278 | 704 | 736 | 2093 | 2435 | 1076 | 1044 | 1123 | 1012 | 538 | 933 | | 1958 | 257 | 234 | 695 | 1915 | 992 | 281 | 126 | 59 | 25 | 25 | 26 | 57 | 390 | | 1959 | 60 | 57 | 123 | 164 | 122 | 217 | 20 | 18 | 22 | 23 | 53 | 50 | 77 | | 1960 | 53 | 54 | 158 | 3312 | 609 | 367 | 234 | 53 | 114 | 53 | . 37 | 53 | 422 | | 1961 | 64 | 75 | 172 | 151 | 455 | 156 | 19 | 20 | 21 | 21 | 24 | 29 | 101 | | 1962 | 27 | 34 | 147 | 3495 | 1556 | 1889 | 3091 | 2150 | 722 | 249 | 124 | 126 | 1139 | | 1963 | 121 | 96 | 317 | 666 | 875 | 1056 | 206 | 449 | 245 | 78 | 112 | 192 | 368 | | 1964 | 56 | 59 | 215 | 900 | 581 | 176 | 111 | 39 | 42 | 36 | 33 | 30
470 | 190 | | 1965 | 32 | 31 | 76 | 4769 | 2184 | 2808 | 1584 | 200 | 211 | 491 | 310 | 172
98 | 1070
6 27 | | 1966 | 195 | 283 | 2620 | 2327 | 1288 | 285 | 95
470 | 43 | 38
5 | 196 | 31
19 | 18 | 414 | | 1967
1968 | 97
48 | 64 | 637
80 | 1939
285 | 627
170 | 953
160 | 479
81 | 115
48 | 24 | 25
22 | 21 | 19 | 79 | | 1969 | 18
169 | 16
220 | 82 | 10315 | 3917 | 1895 | 589 | 106 | 25 | 22 | 90 | 158 | 1458 | | 1970 | 195 | 169 | 291 | 1179 | 825 | 1174 | 284 | 29 | 26 | 77 | 730 | 360 | 444 | | 1971 | 203 | 181 | 1448 | 1120 | 364 | 477 | 1326 | 56 | 84 | 356 | 957 | 580 | 599 | | 1972 | 231 | 148 | 1973 | 3310 | 3144 | 4058 | 1119 | 1226 | 309 | 75 | 552 | 366 | 1379 | | 1973 | 222 | 352 | 2392 | 1518 | 863 | 788 | 53 | 27 | 34 | 149 | 103 | 131 | 554 | | 1974 | 153 | 203 | 3 93 | 648 | 645 | 431 | 37 | 12 | 11 | 10 | 34 | 88 | 222 | | 1975 | 96 | 192 | 93 | 803 | 1596 | 1048 | 541 | 104 | 69 | 103 | 75 | 158 | 407 | | 1976 | 151 | 168 | 590 | 1048 | 228 | 54 | 38 | 26 | 22 | 4 | 1 | 1 | 194 | | 1977 | 1 | 1 | 669 | 616 | 200 | 151 | 46 | 25 | 25 | 26 | 180 | 355 | 192 | | 1978 | 253 | 93 | 1504 | 5983
6019 | 2022 | 946 | 913
1714 | 317
955 | 206
266 | 158
103 | 77
509 | 94
262 | 1047
1219 | | 1979
1980 | 145
227 | 196
247 | 351
296 | 1180 | 2728
296 | 1386
821 | 361 | 6 6 | 79 | 164 | 124 | 127 | 331 | | 1981 | 106 | 74 | 217 | 216 | 144 | 876 | 526 | 130 | 23 | 78 | 147 | 143 | 224 | | 1982 | 83 | 161 | 319 | 2578 | 1037 | 642 | 355 | 85 | 59 | 424 | 260 | 306 | 525 | | 1983 | 218 | 323 | 1046 | 1378 | 867 | 347 | 427 | 107 | 360 | 270 | 417 | 435 | 517 | | 1984 | 136 | 370 | 1300 | 5035 | 2131 | 4526 | 2578 | 368 | 252 | 1718 | 2437 | 1259 | 1841 | | 1985 | 602 | 434 | 4407 | 3228 | 1638 | 1369 | 695 | 324 | 1234 | 953 | 391 | 411 | 1312 | | 1986 | 385 | 298 | 2207 | 11009 | 5777 | 1990 | 2310 | 2674 | 2560 | 3083 | 1716 | 1106 | 2933 | | 1987 | 537 | 615 | 1351 | 1411 | 397 | 608 | 240 | 68 | 25 | 34 | 62 | 162 | 457 | | 1988 | 85 | 196 | 419 | 445 | 149 | 30 | 16 | 15 | 19 | 17 | 16 | 18 | 118 | | 1989 | 15 | 15 | 579 | 2057 | 864 | 158 | 101 | 48 | 18 | 19 | 20 | 53 | 329 | | 1990 | 44 | 33 | 181 | 281 | 310 | 659 | 378 | 258 | 111 | 151 | 99
427 | 90
305 | 217 | | 1991 | 65 | 24
267 | 389
1278 | 633 | 853
677 | 2624
2756 | 2573
2390 | 2480
696 | 664
336 | 298
117 | 427
372 | 305
278 | 951
885 | | 1992
1993 | 268
139 | 367
272 | 1278
4 81 | 1064
4454 | 677
3030 | 3116 | 7021 | 6060 | 1556 | 1362 | 1030 | 1019 | 2479 | | PERIOD MEA
(1940-1993) | 135 | 162 | 735 | 2475 | 1277 | 1147 | 944 | 512 | 271 | 267 | 271 | 212 | 701 | | | | | | | 4005: 355 | | | AND 12" | HA 41 IP 40 | | | | | | | JAN | FEB | PER
MAR | IOD (1940
APR | -1993) MC
MAY | JUN
JUN | JUL. | AND MIN | SEP | OCT | NOV | DEC | | | MINIMUM | 1 | 1 | 1 | 43 | 41 | 9 | 9 | 2 | 1 | 1 | 1 | 1 | | | YEAR | 1977 | 1977 | 1977 | 1956 | 1980 | 1940 | 1940 | 1974 | 1979 | 1976 | 1976 | 1976 | | | MAXIMUM
YEAR | 1050
1985 | 1220
1987 | 10396
1986 | 28700
1969 | 8955
1986 | 8780
1984 | 8115
1993 | 10060
1993 | 4370
1986 | 4020
1984 | 3760
1984 | 1824
1984 | | Water Quality. Lac qui Parle reservoir is a shallow wind 4-08. swept lake located in the Minnesota River watershed. Water quality in the lake is relatively poor, characterized by hard, nutrient rich water, nuisance blue-green algae, and frequently resuspended sediment. Lac qui Parle is classified as a hypereutrophic lake, typical for a lake in the northern glaciated plains ecoregion. Lakes in this ecoregion are generally shallow, well mixed, watersheds are predominately lakes whose hypereutrophic agricultural. Ninety-five percent of land use in Lac qui Parle's watershed is agricultural. Lack of proper conservation practices, wetland drainage, fragile and highly erodible soils, discharges, nutrient loading by birds, and internal nutrient recycling, all contribute to high nutrient loading in Lac qui Parle reservoir. The lake's shallow depth and large surface area allow frequent wind mixing of the water column. During calm periods develop allowing phosphorous stratification can intermittent release from the sediments into the water column. Properly treated water from the Minnesota River is suitable for domestic use. See Paragraphs 5-02, 7-07 and 8-04. ### 4-09. Channel and Floodway Characteristics. a. Main Stem and Tributaries. The Minnesota River channel was modified between Lac qui Parle Dam, (river mile 288.1) and Granite Falls, Minnesota, (river mile 245.0) (Plate 2-13). The project consisted of rock and snag removal and cutoffs at various 4-30 locations to increase the bankfull capacity of the channel. The channel was designed to handle a 15-year recurrence interval event. A general plan and a typical cross section of the channel are shown on Plate 2-13. The width of the flood plain varies from about 1/2 mile to 2 miles from Big Stone Lake to the Lac qui Parle Dam. Below the dam to the vicinity of New Ulm (river mile 146.3), the width is quite uniform, varying between 3,000 and 4,000 feet. In regions containing granite outcrops, the valley suddenly widens to about 10,000 feet. The depth of the valley varies from 100 to 200 feet. Once flow leaves the banks of the river, it can spread quite rapidly to the valley walls due to the relatively flat topography of the flood plain between the bluffs. An elevation-discharge curve for the Minnesota River at U.S.G.S. gage No. 05301000, just below Lac qui Parle Dam (200 feet downstream), is shown on Plate 2-11 and in Exhibit E. The Lac qui Parle River is a tributary to the Lac qui Parle reservoir. A stage-discharge curve for U.S.G.S. gage No. 05300000, Lac Qui Parle River near Lac qui Parle, Minnesota is shown on Plate 2-20 and in Exhibit E. The Lac qui Parle River has a slope of 12.7 feet per mile. The Pomme de Terre River is a tributary to Marsh Lake reservoir. A Stage-discharge curve for U.S.G.S. gage No. 05294000, Pomme de Terre River at Appleton, Minnesota is shown on Plate 2-19 and in Exhibit E. The Pomme de Terre River has a slope of 2.5 feet per mile. A tailwater rating curve for the Chippewa River Diversion Dam is shown on Plate 2-24. A stage-discharge curve for U.S.G.S. gage No. 05304500, Chippewa River near Milan, Minnesota is shown on Plate 2-25 and in Exhibit E. A stage-discharge curve for U.S.G.S. gage No. 05311000, Minnesota River at Montevideo, Minnesota is shown on Plate 2-12 and in Exhibit E. b. Environmental Conditions. Lac qui Parle and Marsh Lake are impounded natural lakes on the Minnesota River. The lakes were created by fluvatile dams formed at the confluences of the Lac qui Parle and the Yellow Bank Rivers with the Minnesota River. The lakes formerly varied in stage in concert with river discharge, and nearly dried out in drought years. Prior to impoundment, the lakes supported extensive stands of emergent and submersed aquatic plants. The lakes historically provided and continue to provide a major staging area for thousands of migrating waterfowl and a highly productive fishery. The State of Minnesota initiated the project for conservation of the abundant fish and wildlife resources. Since impoundment, the lakes have been continuously inundated (except for drawdowns) to at least an elevation range of 931.2 to 933.0 feet in Lac qui Parle (see Paragraph 3-05), and 937.6 feet in Marsh Lake. There has been a gradual deterioration in the quality of aquatic wetland habitat resulting from sedimentation, processes, nutrient loading, continuous inundation, and extended periods of high water. Long-duration high water events in recent years have killed much of the floodplain terrestrial vegetation in the reservoir area, even very old trees. Despite the deteriorating aquatic habitat and water quality conditions, Lac qui Parle still supports a popular, economically significant, and productive sport fishery. Walleye and northern pike are the most commonly creeled fish. A commercial fishery continues to harvest carp and buffalo from Lac qui Parle. Harvest has averaged 196,630
pounds per year over the last 10 years. The reservoir fishery is threatened by winter oxygen depletion and winterkill. The Minnesota River downstream from Lac qui Parle Dam supports a diverse fish assemblage, with 70 species reported during recent (1982 and 1992) surveys by the MNDNR. During the 1992 survey, carp, channel catfish, yellow bullhead, freshwater drum, shorthead redhorse, and northern pike and walleye were the most abundant large fishes found in the Minnesota River from Lac qui Parle Dam to Granite Falls. A study to determine the instream flow needs for the Minnesota River is being conducted with the Minnesota Department of Natural Resources and the Minnesota Pollution Control Agency. The interim low flow release schedule may be modified to provide instream flow needed for aquatic life, recreational activities, water appropriations, and waste assimilation. There is a need for more intensive management measures to rehabilitate wetland and aquatic habitat conditions in Marsh Lake. A drawdown of the reservoir during the growing season would consolidate sediments and trigger the germination of emergent aquatic plants. An interagency collaborative effort was begun in 1993 to plan for management of the Minnesota River. A plan for rehabilitation of Marsh Lake is being pursued that may include reservoir drawdown and other management measures. 4-10. Upstream Structures. There are two dams upstream of the Lac qui Parle Project called Big Stone Lake Dam and Highway 75 Dam. Both are incorporated into the Big Stone Lake-Whetstone River Project. Refer to Paragraph 2-04 for details on these structures. Big Stone Lake Dam has a drainage area of approximately 1,160 square miles. The dam is operated by the Minnesota Power and Light Company. Highway 75 Dam has a drainage area of approximately 1,700 square miles. The dam is operated by the U.S. Army of Corps of Engineers. 4-11. Downstream Structures. There are two dams downstream of the Lac qui Parle Project. One is located at Granite Falls, Minnesota and the other is located 3.7 miles downstream near Minnesota Falls, Minnesota (see Paragraphs 7-09, 7-10, 8-06 and 8-07). a. Granite Falls Dam. The Granite Falls Dam is a concrete gravity structure with 2.8 feet of flashboards on the crest of the overflow section. The overflow section has a nominal height of 21 feet and is 300 feet long. The dam was built in 1911 and is owned and operated by the City of Granite Falls. It is operated for hydroelectric power production and to provide an impoundment for the withdrawal of surface water for municipal use. The drainage area above Granite Falls is 6,370 square miles. b. Minnesota Falls Dam. The Minnesota Falls Dam is primarily a concrete and granite masonry structure with earth embankments at each end. The dam has a maximum height of 18 feet and is 600 feet long. The dam was built by the Northern States Power (NSP) Company in 1905 for the production of hydroelectric power. It is still owned by NSP and is no longer operated for hydropower. The impounded water is used to cool a 47 kilowatt steam electric generating plant owned by NSP. #### 4-12. Economic Data. a. Population. The Lac qui Parle reservoir and the downstream floodplain to New Ulm includes portions of seven counties: Chippewa, Lac qui Parle, Yellow Medicine, Redwood, Renville, Nicollet, and Brown. Table 4-10 displays the trends in population from 1980 to 1990 for the seven-county area. Figures for the state of Minnesota and for the U.S. as a whole are displayed as well for comparative purposes. Only Nicollet County grew in population over this period. The other counties realized population declines ranging from 6 to 16 percent. b. Income. Table 4-10 also displays median family income for the seven-county area. Nicollet County experienced the largest growth in median income from 1979 to 1989. Income growth exceeded that of the state over this period and equaled that of the nation as a whole. Median income changes for the other counties ranged from minor growth to moderate declines. | Table 4-10 Population and Median Income Counties Along The Minnesota River Compared to Minnesota and the United States | | | | | | | | | |---|-------------|-------------|-------------------|--------------------------|-------------------------------|--|--|--| | | | Population | | W-21 | Percent
Change in | | | | | Sample County
or Area | 1980 | 1990 | Percent
Change | Median
Income
1989 | Median
Income
From 1979 | | | | | Brown | 28,645 | 26,984 | -5.8 | 25,032 | -3.0 | | | | | Chippewa | 14,941 | 13,228 | -11.4 | 22,227 | -0.8 | | | | | Lac qui Parle | 10,592 | 8,924 | -15.8 | 21,646 | 1.9 | | | | | Nicollet | 26,920 | 28,076 | 4.3 | 30,491 | 6.6 | | | | | Redwood | 19,341 | 17,254 | -10.8 | 22,827 | 0.4 | | | | | Renville | 20,401 | 17,673 | -13.4 | 23,278 | -6.1 | | | | | Yellow Medicine | 13,653 | 11,684 | -14.4 | 21,537 | -0.1 | | | | | Minnesota | 4,075,970 | 4,375,099 | 7.3 | 30,909 | 3.8 | | | | | United States | 226,542,204 | 248,709,873 | 9.8 | 30,056 | 6.5 | | | | c. Employment. Table 4-11 presents employment of the labor force by industry within the seven-county area. Over 85 percent of the labor force is employed in either manufacturing, trade, or services. Table 4-12 shows how the counties compared with the state and with the U.S. in terms of unemployment in 1992. Each of the counties, with the exception of Chippewa, were equal to or lower than state levels and all counties were lower than national levels. | Table 4-11 Employment by Industry for Counties Along The Minnesota River | | | | | | | | |---|-----------------|------------|--|--|--|--|--| | Type of Industry | Number Employed | % of Total | | | | | | | Construction | 1,528 | 4.1 | | | | | | | Manufacturing | 11,073 | 29.6 | | | | | | | Wholesale/Retail Trade | 9,902 | 26.4 | | | | | | | Finance, Insurance, Real Estate | 1,582 | 4.2 | | | | | | | Services | 11,099 | 29.6 | | | | | | | Other | 2,267 | 6.1 | | | | | | | Total | 37,451 | 100.0 | | | | | | Table 4-12 #### Unemployment Rates for Counties Along The Minnesota River Compared to State and National Figures | Sample County or Area | 1992 Rate in Percent | |-----------------------|----------------------| | Brown | 5.1 | | Chippewa | 6.0 | | Lac qui Parle | 4.5 | | Nicollet | 3.3 | | Redwood | 4.5 | | Renville | 5.1 | | Yellow Medicine | 4.9 | | Minnesota | 5.1 | | United States | 7.4 | d. Flood Damages. A primary authorized purpose for the Lac qui Parle project is reduction of downstream flood damages. Beneficiaries of the reservoir's flood control operation include the cities of Montevideo and Granite Falls and the agricultural properties within the floodplain between the dam and New Ulm, a distance of approximately 150 miles. For purposes of evaluating crop damages, this area has been divided into four reaches. Discharge-area flooded relationships are depicted on Plates 4-6 to 4-9. Montevideo and Granite Falls have experienced flooding in the past. The flood of record occurred in 1969, an event equated to the 100-year flood. Damage categories include residential, commercial, and public properties. Emergency levees that were constructed in response to past floods still exist. These levees do provide some low level protection from flooding. However, they are still considered high risk structures that do not provide reasonable protection from the 100-year flood event. Potential flood damages at Montevideo and Granite Falls from a 100-year event amount to approximately \$2,000,000. A plot of residential and urban damage versus discharge for Granite Falls and Montevideo is shown on Plate 4-10. The magnitude of crop damage due to flooding depends on when the flood occurs during the growing season. Floods occurring before mid-April may cause little or no damage. Floods after this will cause damage to the extent that production operations may have to be repeated and delayed planting reduces ultimate crop yields. Mid-season floods are the most devastating since total yield loss may occur with no chance to replant a crop to salvage an income from the affected acreage. Table 4-13 summarizes crop damages from the reservoir down to the City of New Ulm for the period 1965 through 1993. The damage reaches are shown on Plate 4-11. #### Table 4-13 Summary of Crop Damages From the Reservoir Down to the City of New Ulm for the Period 1965 through 1993 | Reach
Description
See Plate 4-11 | Average Annual
Acres Flooded
1965-1993 | Crop Damage
per Acre | Total Average
Annual Damages
1965-1993 | |--|--|-------------------------|--| | Reach #1, Lac qui
Parle Dam to
Upstream of
Chippewa River | 944 | \$36.14 | \$34,116 | | Reach #2, From Reach #1 to upstream of the Yellow Medicine River | 873 | \$18.16 | \$15,854 | | Reach #3, From
Reach #2 to the
Yellow Medicine
and Redwood Co. Line | 526 | \$18.70 | \$9,836 | | Reach #4, From
Reach #3 to the U.S.
Highway 14
Bridge in New Ulm | 5,135 | \$37.12 | \$190,611 | | Total | 7,478 | \$33.49 | \$250,417 | Source: Economic Analysis Agricultural Flood Damages Lac qui Parle Flood Control Project, Prepared for St. Paul District Corps of Engineers by Gulf Engineers and Consultants Inc., Revised Draft Report September 1994 #### V - DATA COLLECTION AND COMMUNICATION NETWORK #### 5-01. Hydrometeorological Stations. Facilities. The regulation and proper operation of the a. project requires the collection and evaluation of meteorological, hydraulic and hydrologic parameters. Pool tailwater elevations, outflow, precipitation, wind, and air temperature are recorded at the project site. Data
Collection Platforms (DCPs) are used for recording the pool and tailwater elevations at Lac qui Parle Dam, Marsh Lake Dam and Watson Sag Weir and the pool elevaion at Highway 40. Wire weight gages are used to record stages at the Chippewa Diversion Dam and are also available at Watson Sag Weir and Highway 40. Equipment is also available for measuring the water content of snow, frost depth, and the lake ice thickness. Additional information is available at various Corps, U.S. Geological Survey (U.S.G.S.), and National Weather Service Table 5-1 lists the data collection gages in the project area. facilities at the Lac qui Parle Project. Table 5-2 lists various streamflow gage sites that are in the area including the control point at Montevideo, Minnesota. Table 5-3 is a tabulation of the snow survey stations that are in the basin. Plate 5-1 shows the locations of hydrometeorological stations in the Upper Minnesota River Basin. Plate 5-2 shows the locations of stations for the Lac qui Parle Project. Plate 5-3 shows the snow survey sites in the project area. # Table 5-1 # Lac qui Parle Project Hydrometeorological Stations (See Plate 5-2) | Location | Data Type | Equipment | Notes Corps Gage | | |--|-----------------------------------|---|------------------|--| | Lac qui Parle Dam | Pool Elevation | Data Collection Plat.1 | | | | Lac qui Parle Dam | Tailwater Elevation | Data Collection Plat.1 | U.S.G.S. Gage | | | Lac qui Parle Dam | Ice Depth | Manual | Corps Gage | | | Lac qui Parle Dam | Precipitation | Tipping Bucket Gage ¹ | Corps Gage | | | Highway 75 Dam, Low Flow | Precipitation | Data Collection Plat.
Tipping Bucket Gate | Corps Gage | | | Chippewa Diversion | Pool Elevation
Tailwater Elev. | Wire Weight
Gage on Both | Corps Gage | | | Chippewa Diversion | Precipitation | Recording Gage | NWS Gage | | | Chippewa Diversion | Air Temperature | Thermometer | Corps Gage | | | Chippewa Diversion | Windspeed/Dir. | Anemometer | Corps Gage | | | Chippewa Diversion | Snow Depth/Water
Content | Snow Tube | Corps Gage | | | Chippewa Diversion | Frost Depth | Frost Tube | Corps Gage | | | Watson Sag Weir | Pool Elevation
Tailwater Elev. | Data Collection Plat. ¹
Wire Weight
Gage on Both | Corps Gage | | | Marsh Lake Dam | Pool Elevation
Tailwater Elev. | Data Collection Plat. ¹
and a Talk-a-Mark | U.S.G.S Gage | | | Highway 40 Bridge
Over Lac qui Parle
Pool near Milan | Pool Elevation | Data Collection Plat. ¹
and a Wire Weight Gage | Corps Gage | | # Table 5-2 # Streamflow Stations in the Vicinity of the Lac qui Parle Project (see Plate 5-1) | Gage | Drainage Area | River and | Notes | |----------------------|---------------|-------------------------------------|---| | No./Owner | Sq. Mi. | Location | | | U.S.G.S. | 389 | Whetstone R Near | Flows Into Big Stone | | 05291000 | | Big Stone City SD | Lake | | U.S.G.S. | 1,160 | Minnesota R at | 1300 ft downstream of | | 05292000 | | Ortonville MN | the Big Stone Lake Dam | | U.S.G.S. | 398 | Yellow Bank River | 4.5 miles upstream | | 05293000 | | Near Odessa MN | From the Mouth | | U.S.G.S. | 905 | Pomme de Terre R | 8.0 miles upstream | | 05294000 | | at Appleton MN | From the Mouth | | U.S.G.S. | 983 | Lac qui Parle R | 0.5 Miles SW of | | 05300000 | | Near Lac qui Parle MN | Lac qui Parle MN | | U.S.G.S. | 4,050 | Minnesota R Near | 200 ft downstream of | | 05301000 | | Lac qui Parle MN | the Lac qui Parle Dam | | U.S.G.S. | 1,870 | Chippewa River Near | 5.5 Miles East of | | 05304500 | | Milan MN | Milan MN | | U.S.G.S.
05311000 | 6,180 | Minnesota River at
Montevideo MN | 400 ft downstream of
the Chippewa River
Control Point for the Project | Table 5-3 Snow Survey Sites Within the Lac qui Parle Project Area (See Plate 5-3) Location Number Clara City, Minnesota 1. Granite Falls, Minnesota 2. Vesta, Minnesota 3. 4. Tracy, Minnesota 5. Marshall, Minnesota Taunton, Minnesota 6. Marietta, Minnesota 7. Lac qui Parle State Park, Minnesota 8. Benson, Minnesota 9. Sunburg, Minnesota 10. Glenwood, Minnesota 11. 12. Cyrus, Minnesota Morris, Minnesota 13. Sisseton, South Dakota 14. Wilmot, South Dakota 15. Millbank, South Dakota 16. 17. Ortonville, Minnesota Appleton, Minnesota Maintenance. The tailwater gage at Lac qui Parle Dam and the pool elevation gage at Marsh Lake Dam are maintained by the U.S. Geological Survey. The National Weather Service maintains the precipitation gage. The rest of the gages listed in Table 5-1 are maintained by the Water Control gage crew. 18. # 5-02. Water Quality Stations. See Paragraphs 4-08, 7-07 and 8-04. The Corps has thirteen (13) water quality a. Facilities. data-collection stations within the Lac qui Parle Project. Station locations are shown on Plate 5-4. Only 2 of the stations have a long term record (L1 and L4). Periodic measurements are taken at the other locations. Insitu depth profiles of water temperature, and specific conductance monitored are dissolved oxygen, pH, electronically. In addition, water samples are collected and analyzed for nutrients such as total phosphorous and nitrogen species as well as suspended solids and chlorophyll a. Several of the stations in both Lac qui Parle and Marsh Lake are sampled for special studies and short term intensive monitoring. Water quality data is collected by project personnel, water quality unit staff, and volunteers from the Lac qui Parle Lake Association. stations are seasonal and are operated only as funding and resources allow. b. Maintenance. The water quality equipment used at the Lac qui Parle Project is not permanently deployed in the field. A Hydrolab Surveyor II is kept at the Lac qui Parle Project Office. The Surveyor II is used by Corps personnel and the local volunteers to monitor insitu water quality parameters. Maintenance is performed by both project personnel and Water Quality Unit staff. 5-03. Sediment Stations. The Corps of Engineers does not monitor sediment at the Lac qui Parle Project. Estimates of the sediment load for Lac qui Parle and Marsh Lake reservoirs are given in Paragraph 4-04. - 5-04. Recording Hydrologic Data. Currently the hydrometeorologic records collected are read into data base files on the computer system in the Water Control Section. The data from U.S.G.S. gages in the area are archived in the U.S.G.S. WATSTORE data base in Reston, Virginia. The daily precipitation data collected at the Chippewa Diversion Dam are archived by the National Climatic Data Center in Asheville, North Carolina. - a. Reservoir Elevation/Discharge and Streamflow Data. The Project Resource Manager obtains river and reservoir stage data from gages in the vicinity of the dams and other pertinent locations either in or adjacent to the Lac qui Parle reservoir project. The data is collected by recording and non-recording gages at frequencies varying with the conditions as determined by Water Control. Pool and tailwater readings are recorded at 8:00 a.m. daily unless otherwise directed by Water Control. The U. S. Geological Survey makes streamflow measurements as requested by the District Office. During flood conditions, the resource manager collects data from selected stations as requested by Water Control. Streamflow and stage data reports are transmitted according to Paragraph 5-06. - b. Precipitation. The official precipitation gage is a Friez 24-hour, dual-traverse rain and snow gage, with 12-inch recording capacity. Records are published by the U.S. Weather Bureau as Watson 1 NE. The gage is at the office near the Chippewa River Diversion Dam. The 24-hour precipitation is recorded at 8:00 a.m. daily by the Project Resource Manager. Whenever there is a rainfall of more than one inch, Water Control is notified immediately by telephone. Following weekends and holidays, the amount and the times of the weekend/holiday rainfall is taken from the Friez recording chart. See Paragraph 5-06. There are tipping bucket rain gages at Lac qui Parle and Highway 75 Dam. The data is transmitted by a DCP to the Project Office and the Water Control Section. - c. Snow Depth And Moisture Content. During the winter, regular measurements of snowfall are made at 8:00 a.m. daily, (except weekends and holidays) by the Project Resource Manager. Snowfall for weekends and holidays is recorded on the first workday following. In addition, measurements of the water content of the snow on the ground are made at least as often as indicated below: - (1) Each day when any new snowfall has occurred, except Saturdays, Sundays, and holidays. - (2) At weekly intervals, whether or not any new snow has fallen during the previous period. To determine the water content of the snow, follow the instructions contained in Circular B, "Instructions for Climatological Observers." The Resource manager reports "winter conditions" along with the normal reports on Monday mornings from the end of November until the end of March. The reports consist of the amount of snow on the ground, the water content of the snow, the thickness of the ice on the lake, and the ground frost depth. - d. Wind and Temperature. Daily readings of wind direction and velocity and maximum and minimum air temperature, are recorded at 8:00 a.m. on workdays. - e. Water Quality Measurements. Site personnel are asked, on occasion, to assist district office personnel or contractors to collect water samples and/or water quality measurements in the project area. - f. Annual Snow Surveys. Prior to the spring breakup, the resource manager conducts a snow survey in the Minnesota River Basin. The survey is taken during the last week of February and the first week of March when conditions warrant. Instructions as to the exact date to start the survey are issued by the Water Control Section of the District Office. If an
appreciable amount of snow should fall after the survey has been completed, another survey may be required. Prior to making the actual snow survey, the resource manager might conduct a snow reconnaissance in the basin to determine if a detailed snow survey is necessary. This windshield survey covers the general area of the snow survey sites. The resource manager drives through the area, making a visual inspection and stopping at appropriate locations to make a snow depth measurement. A report of this survey is forwarded to Water Control as soon as possible after completion. During the annual snow survey, at least four samples are taken at each station. The average snow depth and water content of the snow in inches is recorded and transmitted to the District Office to analyze the probable runoff to be expected. In addition to the snow samples, notes are made on the general conditions of snow cover in fields, timbered areas, river channels, dry runs, and ditches both at the stations where measurements are made and between the stations. Frost depths are obtained from power company crews, construction crews, or from anyone who may have occasion to penetrate the ground surface. Snow survey stations are shown on Plate 5-3. Table 5-3 lists the permanent snow survey stations which are be used each time a snow survey is requested. g. Supplemental Readings. Extra readings of the precipitation gage or other gages are made whenever required by the District Office. When extra readings of the rain gage are made, the total which has fallen since the last regular observation time is to be reported. The regular 8:00 a.m. reading should always include all the precipitation since the previous day's 8:00 a.m. reading. Instructions pertaining to the transmission of special readings are contained in Paragraph 5-06. 5-05. Communication Network. The staff can transmit hydrologic data and information by, telephone, radio, modem and via the United States mail. Streamflow, water level, rainfall and other pertinent data are received regularly from the project during normal regulation periods and daily during periods of flooding (see Paragraph 5-07). 5-06. Communication with Project. The information needed to operate the dam and regulate the reservoir is provided by the Project Resource Manager to Water Control. Daily (8:00 a.m.) readings for the pool, tailwater, and outflow are given, as well as precipitation and wind readings. The pool and tailwater elevations are also recorded by DCPs and transmitted via satellite directly to Water Control's digital ground readout station (DGRS). At each DCP gage, the correspondence between the gage and DCP readings is checked visually by project personnel at regular intervals. Daily inflow to the reservoir is calculated by Water Control from the change in reservoir elevation and the outflow. In the winter and spring, snow depth, water content, frost depth, and lake ice thickness are reported weekly to Water Control. The snow survey is used to estimate the amount of water available for spring runoff. Frost depth readings provide information on the amount of infiltration expected. The snow and frost information is also provided to the National Weather Service and the State of Minnesota Climatology Office. Daily data are reported to Water Control via telephone and modem. Copies of the official site log sheets are mailed monthly to Water Control. Also, the daily meteorological record is compiled on National Weather Service Form E-15 and mailed monthly to the National Weather Service Forecast Office in Chanhassen, Minnesota. - a. Regulating Office With Project Office. Water Control communicates with the project via the telephone. Present radio facilities do not allow for a reliable audible signal between St. Paul and the Lac qui Parle Project. - 1. Weekly Log Sheet. NAP Form 405, "Weekly Log Sheet," is used to record all pertinent data at the Lac qui Parle project, including gage readings noted or requested and local weather conditions. The original is mailed to Water Control in the District Office after the last entry has been made at the end of the week. - 2. Gage Recorder Charts. The charts from the weekly stage recorder (pool gage) at Lac qui Parle Dam are submitted to Water Control each week. Whenever the charts are removed, the recorder pen is reset. After removal, the following information is noted on the charts: the name of the site in large letters (LQP Pool, etc.), time of removal or pen resetting, time and date the new chart is started, and gage height from either the inside staff or tape gage, and initials of the observer. These notations enable Water Control to make whatever corrections are necessary to the record. Exhibit C contains an example of a properly annotated chart. The pool and tailwater gages at Marsh Lake Dam are continuous recording (A-71 type) gages. The gages are checked and the charts are annotated, as noted above, at least weekly. The charts from these gages are removed semi-annually and mailed to Water Control. on data sheets and mailed to the Water Quality Unit in the District office. Raw water samples analyzed for nutrients and chlorophyll are processed at the field site and shipped to a Corps-approved laboratory for analysis. All chemical analysis follow recommended EPA or equivalent procedures. Lab results are then forwarded to the Water Quality Unit. The data is reviewed and entered into DBASE and the USEPA's STORET data storage system. Project Water Quality Reports are generated on a yearly basis for the project site. The information is used to asses current trophic conditions in the reservoir and to evaluate the effects of operational changes and watershed management options on reservoir water quality and quality of releases from the project. - During floods other Emergency Reports. or4. emergencies, the Resource Manager reports by telephone daily to Requests for Water Control as soon after 8:00 a.m. as possible. any necessary additional readings on the same day are made by Water Control at the time of the morning call. Special reports are transmitted by telephone (612-290-5620) or by mail as directed by the District Office. If a telephone call must be made after the regular office hours on regular work days and/or Saturdays, Sundays, or holidays, first call Water Control. If Water Control cannot be contacted, one of the regulators in order of preference as shown in the front of the manual, is called. - b. Between Project Office and Others. Local residents are well-attuned to fluctuations in the lake level, and they have access to lake level information from the Resource Manager, either by telephone, in person, or through the local news media. Notifications of severe weather or impending unusual conditions would be handled through local law enforcement and civil defense authorities (see Paragraph 5-08). - 1. Daily Report to National Weather Service. Reports of daily Lac qui Parle project air temperatures, precipitation and Montevideo gage height are provided to the National Weather Service. The data is transmitted daily (except weekends and holidays) to the Weather Service Forecast Office in Chanhassen, Minnesota. The data is provided either by voice or direct computer entry (COMPU ROSA program). - 2. Recording Rain Gage Monthly Charts. Charts from the recording rain gage are removed and sent in on the first workday of each month. The charts are sent to the National Weather Service Forecast Office, 1733 Lake Drive West, Chanhassen, Minnsota. - 5-07. Project Reporting Instructions. The Project Resource Manager reports hydrologic and climatic conditions to Water Control. Normally, these reports are made each Monday, Wednesday and Friday. Water Control may request more frequent reports, if warranted by flooding situations, or less frequent reports under relatively quiescent conditions. Also, when the local 24-hour rainfall total exceeds 1.5 inches, the Resource Manager notifies Water Control as soon as possible. - 5-08. Warnings. In the event of impending emergency conditions, or advisories requiring interim gate changes, Water Control will call the Resource Manager at the Lac qui Parle Project. Paragraph 1-05 contains phone numbers for project personnel. Page viii contains phone numbers for Water Control and various District personnel. In the event of other emergencies affecting project regulation and concerns downstream, the officials listed in Table 5-4 will be contacted. | Table 5-4 | | | | | | |--|--------------------------------|------------------------------|--|--|--| | Points of Contact for Emergency Notification | | | | | | | Point of Contact | Telephone Numbers Work Home | | | | | | Lac qui Parle County, MN
Civil Defense Director, 24 Hr
County Sheriff, 24 Hr | 612.598.3720
612.598.3720 | 612.598.7751
612.598.7751 | | | | | Chippewa County, MN
Civil Defense Director, 24 Hr
County Sheriff, 24 Hr | 612.269.8808
612.269.2121 | 612.269.5070
612.269.5247 | | | | | Yellow Medicine County, MN
Civil Defense Director,
County Sheriff, 24 Hr | 612.564.3134
612.564.2130 | 612.843.4604
612.564.3583 | | | | | Montevideo, MN
Police and Fire Dept., 24 Hr
Emer. Services Coord., 24 Hr | 612.269.8808
612.269.2121 | 612.269.5070
612.269.5247 | | | | | Granite Falls, MN Police and Fire Dept., 24 Hr Emer. Services Coord., 24 Hr | 612.564.2129
612.564.2129 |
612.564.3920 | | | | | Granite Falls, MN
Hydropower Plant | 612.564.2530 | | | | | | Minnesota Div. Emergency Man.
Minnesota Statewide Emergency | 612.649.5451
1.800.422.0798 | 24 Hours
24 Hours | | | | Note: Phone Nos. for Water Control, District, and project personnel are listed on Page viii and in Paragraph 1-05. #### VI - HYDROLOGIC FORECASTS 6-01. General. All stream-stage forecasting in the public interest is performed by the National Weather Service (NWS) Forecast Office, in
Chanhassen, Minnesota. The St. Paul District, Corps of Engineers, provides advisory forecasts of reservoir inflow/outflow and pool elevation as needed for its projects. Corps' forecasts may arise from either wet or dry conditions, and are used to assist the NWS, Water Control regulators and the Project Resource Manager in their work. The water quality divisions of the various state agencies within the St. Paul District forecasts water quality conditions when warranted. The St. Paul District may provide data through its Water Quality Unit in the Environmental Resources Section. 6-02. Flood Condition Forecasts. The National Weather Service Forecast Office, in Chanhassen, Minnesota is the official source for all stream-stage forecast information. The Water Control Center prepares flood forecasts of reservoir inflow/outflow and pool elevation for internal use during critical flood periods (See Chapter 7.) During non-critical periods of reservoir regulation, forecasts are not required for regulation. - 6-03. Conservation Purpose Forecasts. Forecasts for water conservation purposes are not required for the Lac qui Parle Project. - 6-04. Long Range Forecasts. Long-range forecasts of reservoir inflows and levels are not normally required for flood periods or conservation purposes as discussed in Paragraphs 6-02 and 6-03. Long range forecasts for drought conditions may be required depending upon the severity of the drought as discussed in Paragraph 6-05. - 6-05. Drought Forecast. The Minnesota Department of Natural Resources and the National Weather Service routinely monitor and report drought indicators. Drought forecasting of project inflow/outflow and pool elevations is not normally required since there are no significant municipal water supply or hydropower concerns and the low flow plan adequately meets fish and wildlife concerns. During drought conditions, the regulation of the project will be in accordance with the approved drought contingency plan for the project (see Paragraphs 7-12 and 8-09). For additional information (see Paragraph 1-03). #### VII - WATER CONTROL PLAN 7-01. General Objectives. The water control plan incorporates procedures that affect flood control performance, water conservation, recreation, and environmental conditions. Ιt includes a provision for an autumn rise in Lac qui Parle reservoir to create enhanced conditions for fish survival during the winter. Conservation pool levels are maintained on both Lac qui Parle and Marsh Lake in the summer to facilitate recreation, and for fish and wildlife habitat requirements. The water control plan presented in this document differs from the previous plan in the following respects: - 1. The method of flood control has changed, both for spring snowmelt floods and for summer floods. - 2. The maximum release rate from Lac qui Parle Dam for non-flood events has been increased from 1,500 to 2,500 cfs. - 3. The minimum flow release from Lac qui Parle Dam has been increased from 14 cfs to 20 cfs for normal pool levels (see Table 7-3). - 4. The new plan requires the opening of the bulkheads during certain flood control situations. - 5. Computer simulations of previous flood events show no major benefit in making a pre-flood drawdown to elevation 931.2, so the new plan has no such drawdown for flood control. ## <u>Dimensions Pertinent to Project Regulation</u> Lac qui Parle Emergency Spillway 2500 feet at 941.5 feet (effective) Top of Flood Control Pool 941.1 feet Marsh Lake Spillway Crest 112 feet at 937.6 feet Lac qui Parle Spillway Bays 8 bays x 17 feet at 934.2 feet - 7-02. Constraints. Some of the notable physical problem areas which currently reduce or impede the effectiveness of water control operations at the Lac qui Parle project are: - a. Lac qui Parle Dam Bulkheads. The spillway bulkheads are not equipped with mechanisms to raise or lower them. They are normally moved by a backhoe, with a chain attached to the bucket. The bulkheads are difficult to move when there is water pressure against them. The new water control plan may require opening or closing of the bulkheads during periods when the reservoir is at or near full flood control pool (elevation 941.1), or in freezing conditions. - b. Gates Jammed by Trees at Lac qui Parle Dam. Sometimes uprooted trees become lodged in the gates at Lac qui Parle Dam. The trees reduce the flow capacity of the gates, and may also prevent them from being closed. - c. Aggradation above Lac qui Parle Dam. There is an area of deposition (sandbar) in the pool just upstream of Lac qui Parle Dam. Ice jams can form on this bar, causing large fluctuations in the pool level below the ice jam. The formation of this sand bar over the years has effectively raised the top-of-dead-storage level of Lac qui Parle from the low-flow gate sill (elevation 915.2) to approximately elevation 928 feet. - d. Siltation at Chippewa River Diversion Dam. The pool/channel behind the Chippewa River Diversion Dam is subject to siltation, which sometimes blocks the low flow outlet. Under severe conditions the flow into the diversion dam inlet channel can be restricted forcing more water over the Sag Weir. - e. Chippewa River Diversion Tainter Gate. The Tainter gate at the diversion structure has no heater or de-icing equipment. The gate is closed in the winter, and is frozen in place until it thaws in the spring. This can cause a delay in operation of the Tainter gate during a snowmelt flood situation. - 7-03. Overall Plan for Water Control. Following the spring breakup or the passing of a summer flood, the reservoir is maintained at conservation elevation, $933.0 \pm .2$ feet. The outflow from Lac qui Parle Dam is regulated to maintain this elevation while not exceeding a release rate of 2,500 cfs. A minimum flow of 20 cfs is maintained for downstream water supply and pollution abatement (see Table 7-3). During the month of September, the pool is raised gradually to an elevation of 934.0 feet to help prevent fish kill (see Paragraph 7-07). Before freeze-up starts, spillway bulkheads (bays 8-12) are put in the raised (open) (The bulkheads have only two positions: open and shut.) position. During years when the pool is above elevation 934.2 late in the fall, the bulkheads will be raised as soon as possible after the pool is down to the winter level, $934.0 \pm .2$. The pool is then held at elevation 934.0 ±.2 until the end of February. On 1 March each year, the lowering of the Lac qui Parle pool will begin, in order to bring the pool to conservation elevation 933.0 by 15 March. From then on until 15 May, the spring regulation schedule is in After 15 May, the summer/fall regulation schedule is in effect. The bulkheadds in bays 8-12 are installed on May 16. See Paragraph 7-05.b. for details on the Chippewa River Diversion Dam. 7-04. Standing Instructions to the Project Resource Manager. For information on data collection and transmission of reports, refer to Chapter 5. For procedures to be followed in the event of lost communications, refer to Paragraph 7-16. In the event of communication failure, the procedures outlined in this chapter should be followed as far as practicable until communications are re-established. #### 7-05. Flood Control. a. General. Floods in the area are of two types: spring floods caused by snowmelt, often with rainfall, and summer floods caused by periods of heavy or prolonged rainfall. For purposes of project regulation, the spring snowmelt flood period extends from 1 March through 15 May, and flooding after 15 May is considered to be in the summer flood period. #### Definitions: - 1. Lac qui Parle Reservoir Inflow: The sum of: Minnesota River flow from Highway 75 Dam, Diverted Flow (see below), and tributary and local inflows to the reservoir. In actual practice, this is calculated by adding the average outflow to the change in storage over the period (storage equation). - 2. Lac qui Parle Dam Discharge: The flow released from Lac qui Parle Dam, including flow from gates, spillway bays, and the emergency spillway. - 3. Chippewa Diversion Inflow: The total flow in the Chippewa River immediately upstream of the diversion channel leading to the Watson Sag Weir. - 4. Chippewa Diversion Dam Discharge: The flow released from the diversion dam downstream into the Chippewa River channel. - 5. Diverted Flow: the flow diverted by the Chippewa Diversion Dam through the Watson Sag Weir into Lac qui Parle reservoir. - 6. Total Project Inflow: The sum of the Lac qui Parle Reservoir Inflow and the Chippewa Diversion Inflow. - 7. Total Project Outflow: The sum of the Lac qui Parle Dam Discharge and the Chippewa Diversion Dam Discharge. - b. Chippewa River Diversion Dam. The Chippewa Diversion Dam diverts water from the Chippewa River over the Watson Sag Weir and down the Watson Sag channel into Lac qui Parle reservoir (Plate 2-19). Operation of the Chippewa River Diversion provides additional flood protection to downstream areas, including Montevideo, by diverting part of the Chippewa River flow into flood control storage in Lac qui Parle reservoir. The Chippewa Diversion Dam has 5 bays. Bays 1, 2, 4 and 5 are fixed-crest spillways with a crest elevation of 942.3 feet. Bay 3 contains a Tainter gate having a top elevation of 942.3 feet when closed. The Sag Weir has six spillway bays with a fixed crest elevation of 938.8 feet. See Chapter 2 and Appendix A. For constraints, see Paragraphs 7-02.d and 7-02.e. The flood-control operation of the Diversion Dam is the same for all seasons. An intermediate flow situation would have the Tainter gate partially open, dividing the flow between the Chippewa River channel and Watson Sag. As inflows increase, the gate is opened (to divide the flow equally) until the outflow is 1,000 cfs (downstream channel capacity). As inflows continue to rise, causing the outflow from the Diversion Dam to exceed 1,000 cfs, the Tainter gate is closed enough to maintain the discharge at 1,000 cfs. As the gate is
lowered and inflow continues to increase, the water level behind the dam and the flow over the Sag Weir also continue to increase. When the Diversion Dam pool reaches elevation 942.3 feet, flow begins to pass through the Diversion Dam spillway (bays no. 1, 2, 4 and 5). This mode of regulation continues until the gate is fully closed, and all the flow through the Diversion Dam is then passing through the spillway sections and over the Tainter gate. (The remainder of the inflow is diverted through Watson Sag.) On recession, when the outflow at the Diversion Dam falls below 1,000 cfs, the Tainter gate is opened as necessary to maintain the discharge at 1,000 cfs. When the discharge can no longer be maintained at 1,000 cfs, the gate is kept at the maximum opening until the flow through the Diversion Dam falls to about 600 cfs. Below this flow, the diversion through Watson Sag will fall off without some help from the Tainter gate. The Tainter gate is closed enough to divert about 50 percent of the inflow over the Sag Weir, resuming normal operation. Under normal operation, moderate flows are divided evenly between Watson Sag and the Chippewa River channel. "Moderate flows" means flows less than about 1,000 cfs Chippewa inflow (as measured at the Milan gage). Approaching winter, the Diversion Dam Tainter gate is to be closed before freeze-up occurs (flows allowing), because there is not deicing capability on the structure. The low-flow outlet is then used to control the outflows. During the winter, a minimum flow (approximately 10 percent of Chippewa River inflow) is maintained down the Watson Sag channel, to provide oxygenated water and suitable habitat for fish overwintering in the Watson Sag portion of Lac qui Parle Reservoir. c. Lac qui Parle Spring Regulation, 1 March through 15 May. The spillway bulkheads (bays 8-12) are in the raised (open) position. Between 1 March and 15 March, the pool at Lac qui Parle Dam will be drawn down from elevation 934.0 feet to elevation 933.0 (see Table 7-1 and Plate 7-1). The discharge during runoff will be set equal to inflow to hold elevation 933.0 feet, until inflow exceeds the dam's outflow capacity. At the Chippewa Diversion Dam, the discharge should follow the flow schedule, not exceeding channel capacity of 1,000 cfs insofar as possible. As the spring breakup begins and Lac qui Parle reservoir inflows exceed the discharge of 2,500 cfs, the pool is held at the conservation pool elevation of 933.0 feet by maintaining discharges equal to inflow (see Table 7-2 and Plate 7-1). As the inflows increase, opening of the gates continues as required to hold the pool level constant, until all gates are wide open. At the Chippewa Diversion Dam, flow begins over the spillway in bays numbered 1, 2, 4, and 5 when the stage reaches elevation 942.3. As the flow reaches 1,000 cfs, the Tainter gate is opened or closed as necessary to hold the discharge at 1,000 cfs. This mode of regulation continues until the gate is sealed and further control of the flow at the Chippewa Diversion Dam is automatic (see Paragraph 7-05.b.). | Table 7-1
Lac qui Parle Dam Spring Regulation Schedule
1 March - 15 May | | | | | |---|--------------------------|---|--|--| | For Lac qui Parle Condition: | | Set Lac qui Parle Discharge: | | | | Lac qui Parle
Inflow*
is less
than
outflow
capacity | 1 - 15 March | Discharge as necessary to achieve a uniform drawdown to elevation 933.0 by 15 March. | | | | | 16 March
to
15 May | Discharge inflow and hold pool at elevation 933.0 ±.2, or discharge minimum flow, whichever is greater. | | | | Lac qui Parle *Inflow greater
than outflow capacity | | Discharge full capacity: (all gates are open, all bulkheads are up) | | | | * See definition in section 7-05a, definition 1 | | | | | After all the gates at the Lac qui Parle Dam are fully opened, the pool will rise in an unrestricted manner until the stage at Montevideo approaches the urban target no-damage limit stage of 17 feet. At this point, and so long as flood control storage is available below elevation 941.1, the gates and bulkheads are closed as necessary to maintain the stage at Montevideo at 17.0 feet. However, if the pool is expected to exceed elevation 941.1 the dam will be fully open (all gates and bulkheads open) by the time the pool reaches that point to ensure the safety of the structure. As flows recede, gates and bulkheads are opened if necessary, to hold the stage at Montevideo near, but not over, the target stage. Opening of the gates continues until the dam is again fully open. On May 16, the bulkheads are placed in the closed position, and summer/fall regulation begins. (See Paragraph 7-05.d., and Table 7-2.) At the Chippewa Diversion, as soon as the outflow drops below channel capacity, the Tainter gate should be opened as necessary to maintain the discharge at 1,000 cfs. Opening of the Tainter gate should continue while holding 1,000 cfs discharge, until the gate is fully opened (See Paragraph 7-05.b.) d. Summer /Fall Regulation. Reservior regulation for summer and fall floods is formulated to reduce downstream agricultural and urban flood damages. The spillway bulkheads (bays 8-12) are installed (closed) on May 16. Generally, during the period from 16 May until the end of the following February, the outflow is limited to 2,500 cfs for all pool levels between conservation pool and elevation 938.0 feet. For floods which raise the pool above elevation 938.0, the regulation objective is to fully utilize the remaining flood control storage to store the flood peak, if at all possible, and if not, then to have the dam fully open (all gates and bulkheads open) by the time the pool reaches top of flood control (941.1 feet) to ensure the safety of the structure. These goals are reviewed and adjustments are made (at least) daily until the peak is reached (see the discussion following Table 7-2). After the peak has passed, the regulation schedule in Table 7-2 is followed. | Table 7-2 Lac qui Parle Dam Summer/Fall/Winter Regulation Schedule: from 16 May through the end of February | | | | | | |--|-----------------------|--|---|--|--| | Pool
Elevation | LQP
Inflow*
cfs | 16 May -
31 August | September
(see para.
7-05e) | 1 October
to end
February | | | Conservation
Pool | <2500 | Discharge inflow to hold pool elevation 933.0±.2 | Raise pool
uniformly
to
elevation
934.0 | Discharge inflow to hold pool elevation 934.0±.2 | | | below 938 ft. | >2500 | Discharge 2500 cfs from LQP Dam | | | | | above 938 ft. | >2500 | Use Discharge Computation Procedure | | | | | * See Paragraph 7-05.a. Definition No. 1 | | | | | | Discharge Computation Procedure for Summer/Fall Floods (for LQP pool above 938 feet, using 14-day inflow forecast) Discussion of Maximum Flood Control Storage: for Lac qui Parle reservoir, top of flood control is set at elevation 941.1 feet (the emergency spillway road has been re-surfaced once or twice, and the effective crest elevation is now approximately 941.5 feet.) For a given flood event, the peak pool elevation on Marsh Lake usually is higher than the peak on Lac qui Parle reservoir, from about 0.1 foot to more than 2 feet higher, depending on the type of flood. Floods which originate mostly above Marsh Lake Dam seem to have the higher differences, and floods in which all the tributaries are flooding have the lower differences. For estimating the available storage, the following representative values have been chosen: Lac qui Parle @ 941.1 feet = 122,800 acre-feet Marsh Lake @ 941.5 feet = 39,500 acre feet Total Max. Flood Control Storage = 162,300 acre-feet - 1. Find the flood storage available: subtract storage used at current pool elevations, for both Marsh Lake and Lac qui Parle (from storage tables, or Plates 2-14 and 2-15) from Maximum Flood Control Storage (162,300 acre-feet); convert result to cfs-days (divided by 1.9835). - 2. Obtain or synthesize a 14-day forecast inflow hydrograph for Lac qui Parle reservoir. Project current outflow 14 days. - 3. Plot outflow and inflow hydrographs together. If the recession of the inflow hydrograph does not recede below the current outflow within 14 days, see if the volume between the curves is less than the available flood storage. If so, hold discharge constant. If not, see if increasing the discharge by as much as 2,000 cfs will allow the remainder of the 14 days' inflow to be stored. Increase the discharge to the required amount, but not to exceed 2,000 cfs increase in the discharge per day. If the required increase is more than 400 cfs, it should be made in two or three equal steps throughout the day. - 4. If the hydrographs intersect on the recession (indicating inflow = outflow, or the flood peak), see if the volume between today and the projected intersection date can be stored with the current outflow projected either: - i) as a straight line, or - ii) with an increase of up to 2,000 today, or - iii) with daily increases of up to 2,000 per day through the intersection date. - 5. Set the discharge as indicated by the above projections, but not to exceed 2,000 cfs increase per day. As Lac qui Parle pool rises toward elevation 941.1, attempt to discharge inflow by increasing up to 2,000 cfs per day until either discharging inflow or the dam is wide open. Generally, the goal is a smooth transition to a wide-open condition at a pool elevation of 941.1 (gates fully open, bulkheads up.) - 6. On recession and when pool is below elevation 941.1 but above elevation
938, reduce outflow to inflow at a rate not to exceed 1,000 cfs decrease per day. Then discharge inflow or 2,500 cfs, whichever is greater, until pool is down to conservation level. - e. Winter Conservation Level. Starting in early to mid-September, depending on the available inflow, the Lac qui Parle discharge will be reduced so as to uniformly raise the pool to elevation 934.0 by 30 September. After this, the pool will be held at elevation 934.0 ± 0.2 feet throughout the winter until the end of February. On 1 March, the spring regulation schedule begins. (see Paragraph 7-05.c). The actual dates may vary depending on inflow and conditions in the reservoir. - f. Freeze-up Period Flow Limitation. To the extent that these procedures and runoff conditions allow, avoid discharging substantially more than 1,000 cfs during the initial winter freeze-up period. Also, notify the City of Granite Falls as soon as possible when discharges over 1,000 cfs are anticipated during this period. - 7-06. Recreation. Recreation in the project area consists primarily of hunting, fishing, camping, canoeing, hiking and auto tour routes. A Minnesota State Park with picnic and camping facilities is located on the right bank, just upstream of Lac qui Parle Dam. See Paragraphs 2-06 and 8-03. - 7-07. Water Quality. Each year during September, the Lac qui Parle pool will be raised to elevation 934.0 feet for the winter. The reservoir will be held at this elevation until 1 March, when the transition to elevation 933.0 begins. Fish and other aquatic life require adequate amounts of dissolved oxygen to survive. Stressed fish populations and winter fish kills can often be attributed to low levels of dissolved oxygen (DO). Conditions contributing to low dissolved oxygen levels include: - 1. Since DO is proportional to the water volume, low lake level means low water volume, which means low total DO. - 2. Poor quality inflows fail to bring in adequate DO levels during the winter months. - 3. Snow and ice cover reduce light penetration, and therefore photosynthetic DO production is reduced. Of these parameters, the only one which can be easily affected is the lake water volume. Holding the lake higher during the winter months creates a larger supply of dissolved oxygen for the critical winter months, reducing the chance of winter fishkill. See Paragraphs 4-08, 5-02 and 8-04. 7-08. Fish and Wildlife. Most of Lac qui Parle and Marsh Lake lie within the Lac qui Parle Wildlife Management Area, which is administered by the Minnesota Department of Natural Resources. Immediately upstream is the Big Stone National Wildlife Refuge, which is administered by the U. S. Department of the Interior, Fish and Wildlife Service. These wildlife areas, plus the Minnesota River valley, form a natural corridor which traverses the region from northwest to southeast. This corridor offers an excellent opportunity for viewing and photographing the wildlife found there. Conservation groups have expressed concern that the water levels in Lac qui Parle reservoir not be operated exclusively for flood control, to the detriment of fish and wildlife resources. See Paragraphs 7-07 and 8-05. 7-09. Water Supply. Granite Falls is the only community that is clearly dependent on Lac qui Parle outflows for its water supply. The Granite Falls water treatment plant has a capacity of 620 gallons per minute, (0.893 MGD) or 1.38 cfs. The city has two 300,000 gallon supply tanks, and a 275,000 gallon post-clarification tank for a total storage of 875,000 gallons. Average daily use is 275,000 gallons per day, with a high usage of 700,000 gallons per day. See Paragraph 8-06. 7-10. Hydroelectric Power. There are two hydropower dams at Granite Falls. Granite Falls Dam is in the town proper, while Minnesota Falls Dam is 3 miles downstream. Granite Falls Dam is still producing hydropower today, but Minnesota Falls was taken out of service in 1958, and its powerhouse was demolished. The pool at Minnesota Falls is still used to provide cooling water for a Northern States Power Company thermal power plant 1.5 miles upstream. Granite Falls Dam was built by the city in 1911 to produce electric power. The gravity overflow section has a nominal height of 21 feet, and is 300 feet long. In addition to hydropower production, the city also uses the impoundment to provide for its municipal water supply. The dam has three turbines: two older units produce 470 kW together, and the new turbine (1986) produces 710 kW. The total maximum flow capacity of the turbines is 900 cfs. 7-11. Navigation. Navigation is not an authorized purpose of the project. 7-12. Drought Contingency Plans. The drought contingency plan is in draft form (dated September 1992) and is a stand-alone document (see Paragraph 1-03 and 8-09). Copies of the plan are located at the Lac qui Parle Project Office at Watson, Minnesota, and in the District Water Control Section in St. Paul. 7-13. Flood Emergency Action Plans. The flood emergency action plan is a stand-alone document (dated October 1988) (see Paragraph 1-03 and 8-10). The plan is located at the Lac qui Parle Project Office at Watson, Minnesota, and in the District Water Control Section in St. Paul. 7-14. Deviation from Normal Regulation. Unusual circumstances that require minor deviations from the normal regulation plan must be approved by the District Engineer and Division Commander. For deviations that become necessary with little advance notice, Water Control will obtain verbal approval from the District Engineer and the Division Commander, with supporting documentation provided as soon as possible after the fact. Water Control personnel may authorize necessary short-term changes, under extreme emergency conditions, until approval from higher authority is obtained. 7-15. Discharge - Minimum Instream Flows. The reservoir will be operated during low water periods so as to provide required minimum flows downstream. The routine minimum discharge from Lac qui Parle Dam (interim schedule) is shown in Table 7-3, below: | Table 7-3 Minimum Outflow from Lac qui Parle Dam Interim Schedule ¹ | | | | |--|----------------------|--|--| | Pool Elevation | Minimum Release, cfs | | | | above 932.0 | 20 | | | | 932.0 to 930.0 | 15 | | | | below 930.0 | 10 | | | | 1. Pending the outcome of an instream flow study. | | | | Minimum outflow from the Chippewa River Diversion Dam will be approximately one-half the Chippewa Diversion Inflow. The remainder of the Chippewa flow is diverted through Watson Sag to provide for the needs of fish and wildlife (See Paragraph 7-05.b.). All requests by affected parties for increases or decreases in flow, or requests for deviations from current procedures, should be transmitted to the District Office for evaluation and approval. 7-16. Loss of Communication. In the event of failure of normal (telephone) communications, the Resource Manager will maintain contact with the District Office by any other means available, including radio, alternate telephone services, or sending a messenger to the nearest point where communications are available. If flooding conditions are also present, the primary objective will be to ensure the safety of the structures and to provide the most effective operation of the project by following the guidance in this chapter. During such emergency operation, the appropriate schedule in either Table 7-1 or Table 7-2 will be followed until contact with the District Office is reestablished. It will also be necessary for the Resource Manager to keep informed concerning effects of any reservoir releases on downstream damage centers. If Water Control cannot be contacted at the District Office, call one of the regulators in order of preference as shown on the list on Page viii, near the front of this manual. #### VIII - EFFECT OF WATER CONTROL PLAN 8-01. General. The primary benefits from the project are derived from flood control. Agricultural and urban flood control benefits are realized along the Minnesota River and at Montevideo and Granite Falls, Minnesota. Secondary benefits include fish and wildlife and recreation. ### 8-02. Flood Control. # a. Spillway Design Flood. - 1. Marsh Lake Dam. The spillway design flood for Marsh Lake Dam was estimated for the Dam Failure Planning Report (see Paragraph 1-03). The design flood was produced by reducing the Probable Maximum Precipitation hyetograph until the resulting event produced a peak reservoir stage with 3 feet of freeboard. The spillway design flood for Marsh Lake Dam results in a maximum outflow of 15,000 cfs and a maximum pool elevation of 947.1 feet. - 2. Lac qui Parle Dam. Information on the spillway design flood for Lac qui Parle Dam is not available. - 3. Chippewa River Diversion Dam. The spillway design flood for the Chippewa Diversion Dam was estimated for the Dam Failure Planning Report (see Paragraph 1-03). The design flood was produced by reducing the Probable Maximum Precipitation hyetograph until the resulting event produced a peak reservoir stage for which the dam could be expected to sustain no damage. Since this dam has no emergency spillway, the spillway design elevation was chosen to be 944.0 feet. The spillway design flood results in a maximum outflow of 7,000 cfs and a maximum pool elevation of 944.0 feet (6 feet of freeboard). This is the combined outflow from the outlet and the diversion channel. b. Probable Maximum Flood (PMF). The Lac qui Parle Project was constructed prior to the development of the current spillway design flood standards. The original design was not based upon PMF criteria. A PMF inflow hydrograph was developed for Lac qui Parle reservoir, Marsh Lake reservoir, and the Chippewa Diversion Dam for the Emergency Plan study (see Paragraph 1-03) and has been incorporated into this manual for comparative purposes. Additional details on the PMF for Marsh Lake reservoir and the Chippewa
Diversion can be found in the Dam Failure Planning Reports (see Paragraph 1-03). The PMF for each location was developed using a 15 June All-Season event. - 1. Marsh Lake Dam. The computed peak inflow into Marsh Lake reservoir from the PMF is 109,000 cfs. Routing of the PMF through the reservoir resulted in a computed peak pool elevation of 952.0 feet (zero freeboard) and a maximum outflow through the spillway and over the dam (without dam failure) of 108,000 cfs. The PMF inflow hydrograph is presented on Plate 8-1. - 2. Lac qui Parle Dam. The computed peak inflow into Lac qui Parle reservoir from the PMF is 124,000 cfs. Routing of the PMF through the reservoir resulted in a computed peak pool elevation of 946.5 feet and a maximum outflow through the spillway and over the dam (without dam failure) of 106,500 cfs. The PMF overtops the dam by 0.5 feet. The PMF inflow hydrograph is presented on Plate 8-2. - 3. Chippewa River Diversion Dam. The computed peak inflow into Chippewa Diversion Dam pool from the PMF is 98,000 cfs. Routing of the PMF through the reservoir resulted in a computed peak pool elevation of 954.2 feet and a maximum outflow through the spillway and over the dam (without dam failure) of 98,000 cfs (inflow=outflow). This is the combined outflow from the outlet and the diversion channel. The PMF overtops the dam by 4.2 feet. The PMF inflow hydrograph is presented on Plate 8-3. - c. Standard Project Flood. The Standard Project Flood has not been developed for the drainage area above the Lac qui Parle Project. - d. Intermediate Flood (IF). The intermediate flood (IF) is an event that is half way between the probable maximum flood (PMF) and the spillway design flood. - 1. Marsh Lake Dam. At Marsh Lake, the IF was assumed to be an event which produced a peak reservoir stage that is midway between the stage resulting from the PMF and spillway design flood. Routing of the IF through the reservoir resulted in a computed peak pool elevation of 949.6 feet. The computed peak inflow into Marsh Lake reservoir from the IF is 22,000 cfs. - 2. Lac qui Parle Dam. Information on the intermediate flood for Lac qui Parle Dam is not available. - 3. Chippewa River Diversion Dam. At the Chippewa Diversion Dam, the IF was assumed to be an event which produced a peak inflow that is midway between the PMF and spillway design flood inflow. The computed peak inflow into Marsh Lake reservoir from the IF is 53,000 cfs. Routing of the IF through the reservoir resulted in a computed peak pool elevation of 951.8 feet. - 8-03. Recreation. The current water control plan for the Lac qui Parle Project provides dependable and stable summer lake levels. This benefits resort owners, lakeshore residents, the state park, and area commerce. Stable summer levels reduce shoreline erosion, and improve wildlife habitat. See Paragraphs 2-06 and 7-06. - 8-04. Water Quality. Releases from the Lac qui Parle Project can affect both the quantity and quality of water available for water supply in the Minnesota River. Presently, no known problems exist with using Minnesota River water for municipal use after treatment. The pool is raised to elevation 934 feet in the fall to conserve dissolved oxygen. This provides additional oxygen for fish and other aquatic life between freeze-up and the spring thaw. See Paragraphs 4-08, 5-02 and 7-07. - 8-05. Fish and Wildlife. The water control plan for Lac qui Parle reservoir includes achieving a target lake level of 933.0 feet, if possible, following spring runoff. This target level provides sufficient lake volume to provide for aquatic habitat conditions during the growing season. The pool level is raised to elevation 934 feet in the fall to limit the potential for winterkill of fish. Marsh Lake does not support a consistent fishery because it is shallow and prone to winterkill. Marsh Lake is in need of more intensive management to improve deteriorated aquatic and wetland habitat conditions. See Paragraph 7-08. 8-06. Water Supply. The project does not have sufficient storage available to be a dependable long-term source of surface water for downstream water utilities. The City of Granite Falls is the only community in the immediate area that is dependent on Minnesota River water for water supply. The city has a water treatment plant that treats 620 gallons per minute (gpm) or 1.38 cfs daily. The utility has two 300,000 gallon supply tanks and a 275,000 gallon post-clarification tank for water storage. See Paragraph 7-09. 8-07. Hydroelectric Power. The City of Granite Falls operates a hydroelectric plant on the Minnesota River (see paragraph 4-11). The dam has three turbines that produce a total of 1,180 kilowatts of power. The facility supplies about 35 percent of the electric demand for the city. The current maximum usable flow for hydropower at the plant is 900 cfs. 8-08. Navigation. Navigation is not an authorized purpose of the project. - Drought Contingency Plans. The Drought Contingency Plan (DCP) provides a basic reference for water management decisions and responses to a water shortage in the Lac qui Parle basin induced by climatological droughts. The DCP includes a plan formulation for the release of low flows and an interagency process The drought contingency plan is in draft coordination matrix. form (dated September 1992) and is a stand-alone document (see Paragraph 1-03 and 7-12). - 8-10. Flood Emergency Action Plans. The Emergency Plan outlines procedures to be followed under various emergency conditions. The report includes: an emergency identification plan, an emergency operations and repair plan, an emergency notification list, and an inundation map. The plan is dated October 1988 and is a standalone document (see Paragraph 1-03 and 7-13). - **8-11. Frequencies.** Inflow and outflow duration data can be found in **Chapter 4**. - a. Peak Annual Inflow Frequency. Plate 8-4 shows the probability of a given maximum annual daily inflow into the Lac qui Parle Project. Daily inflows were computed using mean daily outflows and the change in pool elevation from 1940 through 1993. b. Pool Stage/Elevation Frequency. The annual probability of a given project pool stage/elevation occurring at Lac qui Parle Dam is presented on Plate 8-5. This curve was developed for the period 1940 through 1993. The data used to develop the curve reflects the maximum project pool elevation recorded at Lac qui Parle Dam. The control shifts from Marsh Lake Dam to Lac qui Parle Dam, depending on the project pool elevations. The annual probability of a given project pool stage/elevation occurring at Marsh Lake Dam is presented on Plate 8-6. This curve was developed for the period 1964 through 1993. c. Discharge-Frequency Curves. Table 8-1 lists discharge-frequency curves for various gages and the plates on which they can be found. Table 8-1 Peak Annual Discharge-Frequency Curves in the Vicinity or the Lac qui Parle Project | Plate Number | Description | |--------------|--| | 8-7 | U.S.G.S. Gage No. 05293000, Yellow Bank
River near Odessa, Minnesota | | 8-8 | U.S.G.S. Gage No. 05294000, Pomme de Terre
River at Appleton, Minnesota | | 8-9 | U.S.G.S. Gage No. 05300000, Lac qui Parle
River near Lac qui Parle, Minnesota | | 8-10 | U.S.G.S. Gage No. 05304500, Chippewa
River near Milan, Minnesota | | 8-11 | U.S.G.S. Gage No. 05292000, Minnesota
River at Ortonville, Minnesota ¹ | | 8-12 | U.S.G.S. Gage No. 05301000, Minnesota
River near Lac qui Parle ² | | 8-13 | U.S.G.S. Gage No. 05311000, Minnesota
River at Montevideo, Minnesota ³ | - 1. The gage is 1300 feet downstream of the Big Stone Lake Dam. - 2. The gage is 200 feet downstream of the Lac qui Parle Dam. - 3. This is a control point for the Lac qui Parle Project. d. Key Control Points. The only control point below the project is at Montevideo, Minnesota. The project is regulated during flood periods for a target stage of 17 feet at U.S.G.S. gage No. 05311000 in Montevideo (see Paragraph 7-05). - 8-12. Other Studies. See Paragraph 1-03. - a. Flood Forecasting. Forecasting Rainfall and Snowmelt Runoff on Floods on Upper Midwest Watersheds, University of Minnesota, St. Anthony Falls Hydraulic Lab, Report No. 151, June 1974. This report used SSARR (Streamflow Synthesis and Reservoir Regulation), HEC-1 (Flood Hydrograph Package), and the National Weather Service's River Forecast model to compare various flood forecasting techniques. The entire Minnesota River basin was modelled. - b. Low Flow Simulation. Computer Simulation of Low Flow Conditions, Minnesota River, Barr Engineering for U.S. Army Corps of Engineers, St. Paul District, 1980. This report discusses an HEC-3 model (Reservoir System Analysis for Conservation) that was developed to examine the effects of low flows in the Minnesota River valley. - c. Flood Flow Simulation and Damages. An HEC-5 model (Simulation of Flood Control and Conservation Systems) was developed as part of the effort to revise the current reservoir regulation manual (in 1994). Over 50 different operating plans for the Lac qui Parle Project were simulated. A detailed economic analysis was also done. (see Paragraph 1-03 and 4-12). ## IX - WATER CONTROL MANAGEMENT ## 9-01. Responsibilities and Organization. - a. Corps of Engineers. The Corps of Engineers is the owner, operator, and regulator of the Lac qui Parle Project. The St. Paul District Water Control Section has direct day-to-day responsibility for the regulation of flows from Lac qui Parle Dam, Marsh Lake Dam, Chippewa Diversion Dam and the Highway 75 Dam. The Construction Operations Division, Western Flood Control Project Office has responsibility for the operation and maintenance of the project (see Chapter V). - b. Other Federal Agencies. The National Weather Service has the responsibility for all hydrologic forecasts within the Minnesota River Basin. The U.S. Geological Survey collects data on
the discharges at various stations within this basin (see Table 5-2). The U.S. Fish and Wildlife Service, Soil Conservation Service, U.S. Geological Survey, and the U.S. Environmental Protection Agency all have an ongoing interest in the regulation of the Lac qui Parle Project. - c. State and County Agencies. The State and county agencies that have an interest in the regulation of the Lac qui Parle Project are listed in Table 9-1. ## Table 9-1 ## Organizations With an Interest in Water Control Activities ## NATIVE AMERICAN Upper and Lower Sioux ## FEDERAL U.S. Army Corps of Engineers U.S. Fish and Wildlife Service U.S. Environmental Protection Agency Federal Emergency Management Agency ## MINNESOTA Department of Natural Resources Pollution Control Agency Board of Water and Soil Resources ## COUNTY Big Stone County Lac qui Parle County Swift County Chippewa County Yellow Medicine County Watershed Districts ## OTHER Minnesota Valley Partnership ## 9-02. Interagency Coordination. Local Press and Corps Bulletins. Information concerning the regulation of the Lac qui Parle Project is provided by the St. Paul District's Public Affairs Office (PAO) to the local news media in response to their requests. Additionally, the PAO provides news releases of an advisory nature to the local media regarding These releases do not important aspects of project regulation. provide the public with forecasts of river stages or flows. River forecasting is a Congressionally mandated responsibility of the National Weather Service. - b. National Weather Service. Current readings from the reservoirs are supplied to the National Weather Service on a weekly basis or as requested. These readings include snow depth/water content, frost depths, precipitation, discharges and reservoir levels. The National Weather Service uses this information in developing their spring runoff outlook and flood forecasts. - c. U. S. Geological Survey. This agency receives data from its own and co-operative observer gages as well as from Water Control on a daily schedule and at other times as requested. - d. Other Federal, State or Local Agencies. Local interests include various recreation resources. Lac qui Parle State Park is located on the right bank just upstream of Lac qui Parle Dam. - 9-03. Interagency Agreements. The St. Paul District is participant in the Upper Minnesota River Partnership Group. group consists of representatives from the St. Paul District, the U. S. Fish and Wildlife Service, the Soil Conservation Service, the Minnesota Department of Natural Resources, the Minnesota Pollution Control Agency, and the Minnesota Board of Water and Its two main objectives are to provide a mechanism for Resources. and federal agencies to facilitate participating state the coordination of their programs and activities, and to provide an opportunity for other interested parties to express their concerns and receive quidance. Each participating agency, including the St. Paul District, functions within the partnership according to its own authorities, programs, funding, and management or regulatory responsibilities. The responsibilities of the St. Paul District in the upper Minnesota River valley include, among others, the regulation of Minnesota River flows through the Lac qui Parle Project. 9-04. Commissions, River Authorities, Compacts & Committees. Organizations and governments that have an interest in water control activities in the basin are listed in Table 9-1. 9-05. Reports. Table 9-2 presents a listing of reports compiled by or for the Water Control Section regarding the regulation of the Lac qui Parle Project. These reports are prepared in accordance with Engineering Manual No. 1110-2-3600. Blank copies of the necessary forms are kept in the Water Control Section. | Table 9-2
Reports, Lac qui Parle Project | | | |---|------------------------------|-----------------------| | Report Name | Date Required | Form Number | | Compiled by Water Control | | | | Annual Reservoir
Summary | 30 September | NCS-18 | | Reservoir Status
Bulletin | End of Month | Computer
Generated | | Gage Records | As Needed | Computer Archived | | Compiled by | Field Office for the Water C | ontrol Center | | Monthly Log Sheet | End of Month | NCS-64 | | Weekly Gage Charts | Monday, a.m. | Recorder Chart | | Snow Reports and Frost
Reports | December 7 to March 30 | NCS-430
NCS-58 | | Emergency Reports when
Required or Requested | Daily, 0800 | By Phone | | Other | | | | Monthly Climat-
ological Report | End of Month | WS-E15 | ## **EXHIBIT A** ## SUPPLEMENTARY PERTINENT DATA LAC QUI PARLE PROJECT ## EXHIBIT A ## SUPPLEMENTARY PERTINENT DATA LAC QUI PARLE PROJECT ## General | Drainage Area (Excluding Chippewa | | Square Miles | |------------------------------------|--------------|---------------| | Drainage Area (Including Chippewa | River) 6,100 | Square Miles | | Elevation of Pool Gage Zero (1929 | NGVD) | 900.00 Feet | | (Lac qui Parle, Marsh Lake, and | | | | Year of First Operation (State of | Minnesota) | 1939 | | Operation by Corps of Engineers be | gan 8 Se | eptember 1950 | ## Lac qui Parle Reservoir | Maximum Pool Elevation and Date | 942.47 Feet, April 1969 | |---------------------------------|-------------------------| | (Since Construction) | , - | | Conservation Pool Elevation | 933.0 Feet | | Full Pool Elevation | 941.1 Feet | | Capacity at Conservation Pool | 41,000 Acre-Feet | | Capacity at Full Pool | 162,300 Acre-Feet | | (See Paragraph 7-05.d.) | • | ## Lac qui Parle Dam | Maximum discharge of record and year | 29,400 cfs, 1969 | |--|---------------------| | Location in Miles above Mouth of MN River | 288.1 | | Type | Rolled Earth Fill | | Tof of Dam Elevation | 946.0 Feet | | Length (Includes Emergency Spillway Section) | 4,100 <u>+</u> Feet | | Freeboard Above Full Pool | 4.9 Feet | | Upstream Slope | 1 on 3 | | Downstream Slope | 1 on 4 | ## Lac qui Parle Dam Control Structure | Туре | Concrete | |-------------------------------|-------------| | Length Between Abutments | 237.0 Feet | | Elevation of top of Abutments | 946.7 Feet | | Elevation of top of Piers | 944.28 Feet | | No. of Bays | 12 | | No. of Gates (In Bays 1-4) | 9 | ## LAC QUI PARLE PROJECT ## Lac qui Parle Dam Gates Bays Nos. 1-4 inclusive Slide Gates Total Number of Gates 9 Sill Elevation, Bays 1, 3, and 4 Bays 1, 3, and 4 2-6'x8' Lift gates in each bay operated with a power unit or by hand Sill Elevation, Bay 2 Bay 2 (Low Water Control) 3-4'x4' Lift gates operated with a power unit or by hand ## Lac qui Parle Dam Fixed Crest Spillway Bays Nos. 5-12 Concrete Fixed Crest Crest Elevation 934.2 Feet Length of Each Bay 17 Feet Bays 5-7 inclusive Uncontrolled Bays 8-12 inclusive 3 Steel Bulkhead Sections in each Bay Elevation Top of Bulkhead (Closed) 940.7 Feet Bulkhead Size 5.5 L x 6.5 H Feet ## Lac qui Parle Dam Stilling Basin Type Concrete Length (Varies) 42 to 60 Feet Width 237 Feet Floor Elevation: Bays 8-12 incl. 923.2 Feet Bays 5-7 incl. 918.7 Feet Bays 1-4 incl. 914.2 Feet ## LAC QUI PARLE PROJECT ## Lac qui Parle Dam Emergency Spillway | Type | Earth fill with concrete | |-----------------------------|------------------------------| | | core wall and bituminous | | | surfaced roadway | | Length | 2,500 Feet | | Crest Elevation | Varies, 940.75 to 941.3 Feet | | Roadway Width | 23.0 Feet | | Upstream Embankment Slope | 1 on 3 | | Downstream (Grouted Riprap) | 1 on 2 | ## Bridge Over Lac qui Parle Dam | Elevation of Roadway | (Crown) | 946.2 | feet | |----------------------|---------|-------|------| | Elevation of Walkway | | 946.7 | Feet | | Roadway Width | | 23 | Feet | ## Marsh Lake Reservoir | Maximum Pool Elevation and Date | 945.55, | April 1969 | |---|---------|------------| | (Since Construction) | | | | Conservation Pool Elevation | | 937.6 Feet | | Full Pool Elevation (See Paragraph 7-05.d.) | | 941.5 feet | | Capacity at Conservation Pool | 12,05 | Acre-Feet | | Capacity at Full Pool | 35,000 | Acre-Feet | ## Marsh Lake Dam | Location in Miles Above Mouth of MN F | River 303.5 | |---------------------------------------|-------------------------| | Drainage Area | 2,800 Square Miles | | Туре | Rolled earth fill | | | Upstream slope ripraped | | | to Elevation 942.0 Feet | | Length | 11,800 Feet | | Top Elevation (Varies) | 948.6 to 952.6 Feet | | Maximum Height | 19.5 Feet | | Top Width | 10.0 Feet | ## LAC QUI PARLE PROJECT ## Marsh Lake Dam Control Structure Type Concrete Gravity Overflow Length 112 Feet Crest Elevation 937.6 Feet ## Marsh Lake Dam Low Water Control Type Concrete Conduit Size 2'x2' Square Length 17 Feet Control 2'x2' Vertical Lift Gate Sill Elevation 932.6 Feet ## Marsh Lake Dam Emergency Spillway Type Earth Fill-grouted riprap 90 Feet Crest Elevation 940.0 Feet ## Marsh Lake Dam Stilling Basin Type Bucket Type Bottom Elevation 924.6 Feet ## Chippewa River Diversion Dam On the Chippewa River Location near Watson, Minnesota Location in Miles Above Mouth 2,050 Square Miles Drainage Area Rolled Earth Fill Туре 17,975 Feet Total Length (includes dam and all dikes) 950.3 Feet Top Elevation 23.3 Feet Maximum Height 32.0 Feet Top Width A-4 ## LAC QUI PARLE PROJECT ## Chippewa River Diversion Dam Control Structure | Type | Concrete, Modified Ogee | |--------------------------------------|---------------------------| | Length Between Abutments | 147 Feet | | Number of Bays | 5 | | Length of Each Bay | 27 Feet | | Fixed Crest Elevation (Bays 1, 2, 4, | and 5) 942.3 Feet | | Tainter Gate (Bay No. 3) | 27.0 Feet - Operation | | ·- | with portable electric | | | unit (electric nut runner | | | or by hand). | | Gate Sill Elevation (Bay No. 3) | 933.6 Feet | | Elevation Top of Gate (Closed) | 942.3 Feet | | Stilling Basin Elevation (Bays 1, 2, | 4, and 5) 934.3 Feet | | Stilling Basin Elevation (Bay 3) | 932.0 Feet | ##
Bridge Over Chippewa River Diversion Dam | Roadway Elevation | 950.55 | Feet | |----------------------------|--------|------| | Roadway Width | 23.0 | Feet | | Elevation Top of Abutments | 950.3 | Feet | | Elevation Top of Curb | 950.8 | Feet | | Elevation Low Concrete | 947.8 | Feet | ## Chippewa River Diversion Dam Low Water Control Structure | Type | Concrete Conduit | |-----------------------|-------------------| | Size | 4×4 Feet | | Length | 90.4 Feet | | Entrance Invert | 933.3 Feet | | Exit Invert | 932.8 Feet | | Gate (Vertical Slide) | 4×4 Feet | ## LAC QUI PARLE PROJECT ## Chippewa River (Watson Sag) Diversion Channel | Length | 3,500 | Feet | |------------------|-------|------| | Bottom Width | 160 | Feet | | Bottom Elevation | 934.3 | Feet | | Side Slopes | 1 | on 3 | ## Dike, Chippewa River (Watson Sag) Diversion Channel | Location | Left | or | South | Bank | of Diversi | | | |---------------------------|------|----|-------|------|------------|-------|------| | Type | | | | | Rolled | Earth | Fill | | Top Elevation (Varies) | | | | | 946.3 - | 947.8 | Feet | | Top Width | | | | | | 10.0 | Feet | | Side Slope (Channel Side) | | | | | | 1 | on 3 | | Side Slope (Land Side) | | | | | | 1 | on 4 | ## Chippewa River Diversion (Watson Sag) Weir | Type | Concrete, | ${ t Modified}$ | Ogee | |------------------------------------|-----------|-----------------|------| | Length Between Abutments | | 177.0 | Feet | | Number of Bays | | | 6 | | Length of Bays | | 27.0 | Feet | | Fixed Crest Elevation | | 938.8 | Feet | | Stilling Basin Elevation | | 932.3 | Feet | | Elevation of Gage Zero (1929 NGVD) | | 900.00 | Feet | ## Bridge Over Weir Diversion (Watson Sag) Weir | Roadway Elevation | 950.00 Feet | |----------------------------|-------------| | Roadway Width | 23.0 Feet | | Elevation Top of Abutments | 949.8 Feet | | Elevation Top of Curb | 950.25 feet | | Elevation Low Concrete | 947.25 Feet | ## EXHIBIT B RELATED MANUALS AND REPORTS LAC QUI PARLE PROJECT ## **EXHIBIT B** ## **RELATED MANUALS AND REPORTS** ## LAC QUI PARLE PROJECT - 1. General. Prior reports for flood control and navigation aids date from about 1874 and include a number of printed documents and annual reports of the Chief of Engineers. These reports deal with investigations into the advisability of dredging, removal of obstructions, and construction of locks and dams on the Minnesota River, Lake Traverse, and the Red River of the North and tributary streams. In general, these early reports were favorable to dredging and the removal of obstructions but were unfavorable to the construction of locks and dams as aids to navigation. - 2. Report of an exploration of the Territory of Minnesota in 1849, Ex. Document No. 42, 31st Congress, Corps of Topographical Engineers, Captain John Pope, 1850. - 3. Examination and Survey of the Minnesota River, Ex. Document No. 76, 43rd Congress, 2nd Session, Corps of Engineers, Major G. K. Warren, 1866 1867. - 4. Survey of Minnesota River, Big Stone Lake, and Lake Traverse, House Document No. 75, 44th Congress, 1st Session, Corps of Engineers, Colonel T. N. Macomb, 1872. - 5. Report on Reservoir at Foot of Big Stone Lake, Senate Document No. 30, 48th Congress, 1st Session, Unfavorable recommendations as commerce did not justify cost of reservoir for navigation. - 6. Preliminary Examination of Big Stone Lake and Lake Traverse. House Document No. 71, 48th Congress, 2nd Session, (Unfavorable). This report examined the possibility of connecting the two lakes. - 7. Red River of the North and Big Stone Lake, House Document No. 127, 52nd Congress, 1st Session, Concluded that a reservoir at Big Stone Lake could aid navigation on the Mississippi River by increasing low flows. - 8. Preliminary Examination of Big Stone Lake, House Ex. Document No. 256, 53rd Congress, 3rd Session, Recommended a survey of Big Stone Lake and Lake Traverse for Reservoirs. - 9. Survey of Big Stone Lake and Lake Traverse for Reservoirs, House Document No. 134, 55th Congress, 2nd Session, 1897, Report includes plans for reservoir and estimate of cost, (Unfavorable, Recommended further study). - 10. Preliminary Report on Survey of Big Stone Lake and Lake Traverse for Reservoirs, House Document No. 675, 56th Congress, 1st Session, Progress Report, Final Report to be Made in 3 Years. - 11. Survey Report on Reservoirs at Big Stone and Lake Traverse, House Document No. 539, 58th Congress, 2nd Session, 1904 (Unfavorable Recommendation). - 12. Examination of the Bois de Sioux River, Lakes Traverse and Big Stone Lake, House Document No. 493, 60th Congress, 1st Session, 1908. This report examined the possibility of diverting floodwaters from the Red River of the North basin into the Minnesota River (Report Unfavorable). - 13. Survey of Minnesota River for Upper Valley Navigation Reservoirs, House Document No. 700, 62nd Congress 2nd Session, Recommended the construction of a 45-foot dam at Lac qui Parle with water power development to be operated as a navigation reservoir. - 14. Examination of Lake Traverse and Big Stone Lake. House Document No. 199, 65th Congress, 1st Session, 1917. This report looked at flood control, water power, and the possibility of connecting and extending navigation on and between the lakes. - 15. First Biennial Report of the Commissioner of Drainage and Waters to the Governor of the State of Minnesota and the Legislature, 1921, Presents plans of improvement for control of floods on the Minnesota River by means of 3 main stem reservoirs. - 16. Second Biennial Report of the Commissioner of Drainage and Waters to the Governor of the State of Minnesota and the Legislature, 1923, Results of continuation of studies on plan in 1st Biennial Report. - 17. Minnesota River, Minnesota (Navigation, water power, flood control, and irrigation), House Document No. 230, 74th Congress, 1st Session. The prospective flood control benefits from three reservoirs (Big Stone Lake, Lac qui Parle, New Ulm) was not sufficiently general in character to warrant Federal participation, Proposed the Mendota Reservoir. - 18. Big Stone Lake Reservoir Project and Lac qui Parle Reservoir Project, House Document No. 669, 76th Congress, 3rd Session, Reservoirs proposed to reduce the frequency of flooding in the upper portions of the Minnesota River Valley. A future reservoir is proposed near New Ulm, Minnesota in a tabulation of a comprehensive flood control plan. - 19. Report on Diversion of Flood Waters of Little Minnesota River into Lake Traverse, Review of House Document No. 230, 74th Congress, 1st Session, Includes a study of flood problems on the Minnesota River from Browns Valley to Lac qui Parle Dam. ## **EXHIBIT C** ## PROPER MARKING OF RECORDER CHARTS LAC QUI PARLE PROJECT ## **DISPOSITION FORM** For use of this form, see AR 340-15; the proponent agency is TAGO. REFERENCE OR OFFICE SYMBOL SUBJECT CENCS-ED-GH (1110-2-1400ь) Proper Marking of Recorder Charts TO THRU CENCS-PE 7 FROM CENCS-ED-GH DATE 13 Dec 88 CMT 1 KWillis/mc/619 CENCS-CO-W All Lockmasters, Park Managers, and Damtenders TO 1. Although a number of sites are marking their recorder charts properly, many are not. Water Control now has an 8-year backlog of charts that cannot be microfilmed because they are not properly marked. To mark them properly on site takes only an additional second or two, but it costs us hundreds of man-hours to redo incorrectly marked charts. - 2. Please direct your personnel to do them properly the first time. Your cooperation is greatly appreciated. - 3. Enclosed is a sample of the proper notation. If anyone has any questions please contact Water Control for clarification. Encl EDWARD G. EATON Chief, Water Control Water Control Manual, Lac qui Parle Project August 1995 ## Proper Markings for Recorder Charts ## Should Include - Elevation for at least three consecutive feet should be noted in order to set vertical scale. - 2. M-N-M (Midnight-Noon-Midnight) should be noted in order to set the horizontal scale. - 3. The date on which the observation was made should be noted. - 4. The gage reading at the time the recorder was checked should be noted. - 4a. Note: The recorder pen should be gently moved up and down to show when the reading was made. - 5. The person recording the observation should initial and log the time of the observation, along with any other (tape, staff, etc.) observations. - 6. The site name and number should be printed in large bold letters at both the beginning and ending of the recorder chart, along with the charts date. ## Additional Comments: Use a felt tip marker for your notation (regular pen and pencil are usually unreadable on microfilm). USE THIS SIZE LETTERING Notations should be made at least once a week in order to insure proper documentation when copies made from microfilm rolls. ## EXHIBIT D # PARTINERING AGREEMENT # FOR MANAGEMENT OF THE UPPER MINNESOTA RIVER MAINSTEMF FROM GRANITE FALLS TO BIGSTONE LAKE DNR NICH II'W We, as partners, agree to cooperatively participate in the development and implementation of integrated natural resource management strategies for the Upper Minnesota River mainstem from Granite Falls to Bigstone Lake. # GOALS - Cooperatively identify conditions, needs, constraints, and opportunities in resource management on the Upper Minnesota River. - II. Encourage public participation in program development and implementation. - III. Develop strategies for the integrated management of Upper Minnesota River resources. - IV. Implement developed strategies within agency authorities and budgets. We acknowledge the dynamic nature of the Upper Minnesota River and agree to meet again within three years to review our common essayy, to better serve the resource. pals and modify them, if nec James C. Gritman, Regional Director, Region S. U.S. Fish and Wildlife Service Minnesota Department of Natural Resources Rod W. Sando, Commissioner Col. Roger L. Baldwin, District Engineer St. Paul District Corps of
Engineers Minnesota Pollution Control Agency Charles W. Williams, Commissioner ## UPPER MINNESOTA RIVER PARTNERSHIP GROUP CHARTER ## **Operating Procedures** ## **OBJECTIVES** The objectives of the Upper Minnesota River Partnership Group (UMRPG) are to: (1) provide a mechanism for participating State and Federal agencies to facilitate the coordination of their programs and activities; and to (2) provide an opportunity for other interested parties to express their concerns and receive guidance on agencys' programs. ## **PARTICIPANTS** Representatives of the following State and Federal agencies are participants in the partnership group. Other agencies will be invited to participate as interest and opportunities grow. ## State Minnesota Department of Natural Resources Minnesota Pollution Control Agency ## Federal U.S. Army Corps of Engineers U.S. Fish and Wildlife Service ## **AUTHORITY** The authority for each agency's participation in the activities of the Partnership lies within that individual agency's programs, authorities, and management or regulatory responsibilities. Participation in the Partnership does not affect an individual agency's responsibility to issue permits, to manage programs, or to operate projects. ## **SCOPE** The scope of the UMRPG includes the mainstem of the Upper Minnesota River from Granite Falls to Big Stone Lake, specifically, all fee lands managed by the participating agencies and lands upon which the agencies have direct management authorities. Recognizing the importance of contributing watersheds to the mainstem area, Partners will address watershed problems to the extent possible by their individual agency authorities and budgets. ## **FUNDING** Each agency or interest would be responsible for the funding of its representatives. The UMRPG could recommend priority funding of identified research and/or implementation effort through an appropriate lead governmental unit. ## **OPERATION** The UMRPG will generally meet as per consensus of the group; however, there will be no fewer than three meetings annually. Meeting places and times will be determined by the UMRPG. Meetings will be open to the public when appropriate, as determined by the UMRPG. Discussion topics and management strategy proposals are welcomed from all participants of the UMRPG. Formal recommendations from the UMRPG will be reached through mutual agreement of the participants. ## **FUNCTIONS** The functions of the UMRPG include, but are not limited to, the following: - establish common goals and objectives for resource management between participating agencies. - providing the opportunity for agencies to discuss and assist each other in resource information collection and exchange. - recommending strategies for improving resource management. - providing a referral service to the public by assisting them in understanding each agency's authorities and identifying programs that meet their needs. - providing each agency with up-to-date information on current activities in the Upper Minnesota River area. - providing resource information to other agencies or groups. ## **EXHIBIT E** ## STAGE-DISCHARGE TABLES ## EXHIBIT E ## STAGE-DISCHARGE TABLES - E-1. MINNESOTA RIVER AT MONTEVIDEO, MINNESOTA, U.S.G.S GAGE NO. 05311000, RATING NO. 45.0 - E-2. MINNESOTA RIVER NEAR LAC QUI PARLE, MINNESOTA, U.S.G.S GAGE NO. 05301000, RATING NO. 24.0 - E-3. POMME DE TERRE RIVER AT APPLETON, MINNESOTA, U.S.G.S GAGE NO. 05294000, RATING NO. 33.0 - E-4. LAC QUI PARLE RIVER NEAR LAC QUI PARLE, MINNESOTA, U.S.G.S GAGE NO. 05300000, RATING NO. 39.0 - E-5. CHIPPEWA RIVER NEAR MILAN, MINNESOTA, U.S.G.S GAGE NO. 05304500, RATING NO. 27.0 - E-6. MINNESOTA RIVER AT ORTONVILLE, MINNESOTA, U.S.G.S GAGE NO. 05292000, RATING NO. 25.0 - E-7. YELLOW BANK RIVER NEAR ODESSA, MINNESOTA, U.S.G.S GAGE NO. 05293000, RATING NO. 26.0 | PAGE 1 | NO: 45.0 | ş | DIFF IN Q
PER
TENTH FT | .129
.220
.440
1.050 | 1.999
2.638
3.553
5.120
6.490 | 6.150
7.030
7.970
8.920
9.930 | 9.520
10.26
10.99
11.73 | 13.30
14.10
14.90
15.70 | 17.30
18.10
18.90
20.60 | 20.10
20.80
21.60
22.20
22.90 | 23.70
24.30
25.10 | |--|--|---------------------------|------------------------------|---|--|--|--|---|---|---|-------------------------| | PA(| . 10 x | AND CF | 1
E | .077
.283
.697
1.667
3.038 | 4.972
7.542
10.95
15.94
22.28 | 28.49
35.44
43.31
52.14
61.96 | 71.54
81.72
92.64
104.3 | 130.0
144.0
158.8
174.4 | 208.0
226.0
244.8
264.4 | 305.1
325.8
347.3
369.4
392.3 | 415.9
440.2
465.2 | | IVISION | TYPE:
TART DATE/ | MEEN PY CHK. BY | 80. | .064
.257
.645
1.540
2.880 | 4.750
7.255
10.52
15.38
21.58 | 27.85
34.70
42.48
51.21
60.93 | 70.56
80.67
91.51
103.1 | 128.6
142.5
157.3
172.8 | 206.2
224.1
242.9
262.4
282.8 | 303.0
323.7
345.1
367.2
390.0 | 413.5
437.7
462.6 | | WATER RESOURCES DIVISION | BY GAROAC
DD: | WELL DEFINED BETWEEN DATE | ECISION) | .051
.232
.596
1.420
2.728 | 4.536
6.974
10.10*
14.84
20.90 | 27.21
33.98
41.66
50.29 | 69.59
79.62
90.39
101.9 | 127.2
141.1
155.8
171.2 | 204.5
222.3
241.0
260.4
280.7 | 301.0
321.6
342.9
364.9 | 411.1
435.3
460.1 | | - 1 | -1994 @ 12:25 | IS WELL D | (EXPANDED PRECISION) | .039
.208
.549
1.306
2.581 | 4.327
6.701
9.755
14.30
20.23 | 26.58
33.26
40.85
49.38
58.91 | 68.63
78.59
89.28
100.7
112.9 | 125.9
139.7
154.3
169.6 | 202.7
220.5
239.1
258.5
278.7 | 299.0
319.5
340.8
362.7
385.4 | 408.7
432.8
457.6 | | GEOLOGICAL SURVEY | EXFANDED KAIING TABLE DATE PROCESSED: 07-18-1994 | AND IS COM | . 05 | .026
.186
.504
1.199
2.439 | 4.124
6.434
9.417
13.79
19.57 | 25.96
32.55
40.05
48.49
57.91 | 67.67
77.56
88.18
99.55 | 124.6
138.3
152.8
168.0 | 201.0
218.7
237.2
256.5
276.6 | 297.0
317.4
338.6
360.5
383.1 | 406.4
430.4
455.1 | | INTERIOR - GEOLOGICAL SUI
EXPANDED RATING TABLE | | AND | PER SECOND | .013
.164
.461
1.098
2.301 | 3.928
6.174
9.086
13.28
18.93 | 25.35
31.85
39.25
47.60
56.92 | 66.72
76.54
87.09
98.38 | 123.2
136.9
151.3
166.5 | 199.3
216.9
235.3
254.5
274.6 | 295.0
315.4
336.5
358.3
380.8 | 404.0
427.9
452.6 | | | |)S | SCHARGE IN CUBIC FEET | .000*
.144
.420
1.002
2.169 | 3.737
5.920
8.763
12.79 | 24.75
31.16
38.47
46.72
55.94 | 65.78
75.52
86.00
97.21 | 121.9
135.5
149.8
164.9 | 197.5
215.1
233.4
252.5
272.5 | 293.0
313.3
334.3
356.1
378.5 | 401.7
425.5
450.1 | | STATES DEPARTMENT OF | MINN | JREMENTS, NOS | DISCHARGE IN | .125
.382
.913
2.041 | 3.552
5.673
8.447
12.31 | 24.16
30.48
37.70
45.85 | 64.85
74.52
84.92
96.06 | 120.6
134.1
148.3
163.4
179.2 | 195.8
213.3
231.5
250.6
270.5 | 291.0
311.2
332.2
353.9 | 399.3
423.1
447.6 | | UNITED SI | AT MONTEVIDEO, | DISCHARGE MEASUR | 10. | .107
.345
.829
.1.918 | 3,373
5,433
8,138
11,85
17,09 | 23.58
29.81
36.94
44.99 | 63.92
73.52
83.84
94.91
106.7 | 119.3
132.7
146.9
161.8 | 194.1
211.5
229.7
248.7
268.5 | 289.0
309.2
330.1
351.7 | 397.0
420.7
445.1 | | | | DISC | 00. | .090*
.310*
.750* | 3.200*
5.199
7.837
11.39 | 23.00*
29.15
36.18
44.15
53.07 | 63.00*
72.52
82.78
93.77
105.5 | 118.0*
131.3
145.4
160.3 | 192.4
209.7
227.8
246.7
266.4 | 287.0*
307.1
327.9
349.5 | 394.6
418.3
442.6 | | | 05311000
MINNESOTA RIVER
NO OFFSETS USED | BASED ON | GAGE
HEIGHT
(FEET) | . 10 | . 50
. 60
. 70
. 80 | 1.00
1.10
1.20
1.30 | 1.50
1.60
1.70
1.80 | 2.00
2.10
2.20
2.30
2.40 | 2.50
2.60
2.70
2.80 | 3.00
3.10
3.20
3.30 | 3.50 | E-1 | PAGE 2
TYPE: LOG | RATING NO: 45.0
10-01-85 (0001) | DIFF IN Q
PER
TENTH FT | 25.80
26.50 | 23.50
24.00
24.40
24.90 | 25.40 | 25.80
26.20
26.70 | 27.10
27.60 | 28.00
28.50
28.90
29.30
29.80 | 30.20
30.60
31.10
31.00 | 33.00
32.00
34.00
33.00 | 35.00
34.00
36.00
35.00
36.00 | 37.00
37.00
37.00
38.00 | | |---|--------------------------------------|------------------------------|----------------|----------------------------------|----------------------------------|-------------------------|-------------------------|---|---|---|---|--------------------------------------|------------------------------| | Ħ | | 60. | 490.9 | 541.2
565.1
589.5
614.3 | 639.6 | 665.4
691.6
718.2 | 772.8 | 800.8
829.2
858.1
887.4
917.1 | 947.2
977.8
1009
1040 | 1104
1137
1170
1204
1238 | 1272
1307
1342
1378
1414 | 1450
1487
1524
1562
1600 | | | DIVISION | CH
4 TYPE: 001
START DATE/TIME | .08 | 488.3
514.6 | 538.8
562.7
587.0
611.8 | 637.1 | 662.8
688.9
715.5 | 742.6 |
798.0
826.4
855.2
884.4
914.1 | 944.2
974.7
1006
1037
1069 | 1101
1134
1167
1200
1234 | 1269
1303
1339
1374
1410 | 1447
1483
1521
1558
1596 | | | ŒS(| 25 BY GAKOACH
DD: 4 | RECISION) | 485.7
512.0 | 536.4
560.3
584.6
609.3 | 634.5 | 660.2
686.3
712.9 | 767.3 | 795.2
823.5
852.3
881.5
911.1 | 941.2
971.7
1003
1034
1066 | 1098
1131
1164
1197
1231 | 1265
1300
1335
1371 | 1443
1480
1517
1554
1592 | | | RVEY - | -1994 (* 12:25 | (EXPANDED PRECISION) | 483.1 | 534.1
557.9
582.1
606.8 | 632.0 | 657.6
683.7
710.2 | 764.5 | 792.4
820.7
849.4
878.5
908.1 | 938.1
968.6
999.5
1031
1062 | 1095
1127
1160
1194 | 1262
1296
1332
1367
1403 | 1439
1476
1513
1551 | | | ERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE | DATE PROCESSED: 07-18-1994 | .05 | 480.5 | 531.7
555.5
579.7
604.3 | 629.5 | 655.0
681.0
707.5 | 761.8 | 789.6
817.8
846.5
875.6
905.1 | 935.1
965.5
996.4
1028
1059 | 1091
1124
1157
1190
1224 | 1258
1293
1328
1363
1399 | 1436
1472
1509
1547
1585 | | | INTERIOR - GE
EXPANDED R | DAIR PROCE | PER SECOND | 477.9
504.0 | 529.4
553.1
577.2
601.8 | 626.9 | 652.5
678.4
704.8 | 759.0 | 786.8
815.0
843.6
872.7
902.2 | 932.1
962.5
993.3
1024
1056 | 1088
1121
1154
1187
1221 | 1255
1289
1324
1360
1396 | 1432
1469
1506
1543
1581 | | | IMENT OF IN | | | CUBIC FEET PER | 475.4
501.4 | 527.0
550.7
574.8
599.4 | 624.4 | 649.9
675.8
702.2 | 756.3 | 784.0
812.1
840.7
869.7
899.2 | 929.1
959.4
990.2
1021
1053 | 1085
1117
1150
1184 | 1251
1286
1321
1356
1392 | 1428
1465
1502
1539 | | STATES DEPARTMENT OF | MINN | DISCHARGE IN | 472.8 | 524.7
548.3
572.4
596.9 | 621.9 | 647.3
673.2
699.5 | 753.5 | 781.2
809.3
837.8
866.8 | 926.1
956.4
987.1
1018 | 1082
1114
1147
1180
1214 | 1248
1283
1317
1353 | 1425
1461
1498
1536 | | | UNITED S | MONTEVIDEO, M | α .0. | 470.3 | 522.3
545.9
569.9
594.4 | 619.4 | 644.7
670.6
696.9 | 750.8 | 778.4
806.5
835.0
863.9
893.3 | 923.1
953.3
984.0
1015 | 1079
1111
1144
1177
1211 | 1245
1279
1314
1349 | 1421
1458
1495
1532 | | | | AT | 00. | 467.7 | 520.0*
543.5
567.5 | 616.8 | 642.2
668.0
694.2 | 748.0 | 775.6
803.6
832.1
861.0
890.3 | 920.1
950.3
980.9
1012 | 1075
1108
1140
1174 | 1241
1276
1310
1346 | 1417
1454
1491
1528 | | | 0001 | MINNESOTA RIVER
NO OFFSETS USED | GAGE
HEIGHT
(FEET) | 3.80 | 4.00
4.10
4.20 | 4.40 | 4.50 | 4.80 | 5.00
5.10
5.30
5.40 | 5.50
5.60
5.70
5.90 | 6.00
6.10
6.20
6.30 | 6.50
6.60
6.70
6.80 | 7.00
7.10
7.20
7.30 | | | PAGE 3
TYPE: LOG | RATING NO: 45.0
10-01-85 (0001) | DIFF IN Q
PER
TENTH FT | 38.00 | 40.00 | 39.00
41.00 | 40.00 | 41.00 | 42.00
42.00 | 43.00 | 43.00 | 44.00 | 44.00 | 44.00 | 45.00 | 45.00 | 46.00 | 46.00 | 47.00 | 48.00 | 48.00 | 48.00 | 49.00 | 49.00 | 50.00 | 50.00 | 51.00 | 51.00 | 51.00 | 52.00 | 52.00
53.00 | |---------------------------------------|---------------------------------------|------------------------------|--------------|-------|----------------|-------|-------|----------------|--------------|-------|----------------| | • | - | 60. | 1639 | 1717 | 1756
1797 | 1837 | 1919 | 1961
2003 | 2045 | 2132 | 2175 | 2219 | 2264 | 2308 | 2394 | 2445 | 2492 | 2538 | 2633 | 2681 | 2729 | 2778 | 2827 | 2926 | 2976 | 3027 | 3078 | 3129
3181 | 3233 | 3285
3338 | | DIVISION | TART | 80. | 1635 | 1713 | 1752
1792 | 1833 | 1915 | 1957
1999 | 2041 | 2127 | 2171 | 2215 | 2259 | 2304 | 7395 | 2441 | 2487 | 2534 | 2628 | 2676 | 2724 | 2773 | 2822 | 2921 | 2971 | 3022 | 3073 | 3124 | 3227 | 3280
3333 | | - WATER RESOURCES DIVISION | 12:25 BY GAROACH DD: 4 | RECISION) | 1631 | 1709 | 1748
1788 | 1829 | 1911 | 1952
1994 | 2037 | 2123 | 2166 | 2210 | 2255 | 2299 | 2340 | 2436 | 2482 | 2529 | 2623 | 2671 | 2719 | 2768 | 2817 | 2916 | 2966 | 3017 | 3067 | 3119
3170 | 3222 | 3275
3327 | | • | | (EXPANDED PRECISION) | 1627 | 1705 | 1744 | 1825 | 1907 | 1948
1990 | 2033 | 2119 | 2162 | 2206 | 2250 | 2295 | 2386 | 2431 | 2478 | 2524 | 2619 | 2666 | 2715 | 2763 | 2812 | 2911 | 2961 | 3012 | 3062 | 3114 | 3217 | 3269
3322 | | | | .05 | 1623
1662 | 1701 | 1741
1780 | 1821 | 1903 | 1944
1986 | 2028 | 2114 | 2158 | 2202 | 2246 | 2290 | 2381 | 2427 | 2473 | 2520 | 2614 | 2662 | 2710 | 2758 | 2807 | 2906 | 2956 | 3007 | 3057 | 3160 | 3212 | 3264
3317 | | FERIOR - GEO | DAIE PROCESSED: | PER SECOND | 1619
1658 | 1697 | 1737
1776 | 1817 | 1898 | 1940
1982 | 2024 | 2110 | 2153 | 2197 | 2241 | 2286 | 2376 | 2422 | 2468 | 2515 | 2609 | 2657 | 2705 | 2753 | 2802 | 2901 | 2951 | 3001 | 3052 | 3155 | 3207 | 3259
3311 | | DEPARTMENT OF IN | | CUBIC FEET PER SECOND .04 | 1615
1654 | 1693 | 1733
1772 | 1813 | 1894 | 1936
1978 | 2020 | 2106 | 2149 | 2193 | 2237 | 2282 | 2322 | 2418 | 2464 | 2510 | 2604 | 2652 | 2700 | 2749 | 2797 | 2896 | 2946 | 2996 | 3047 | 3150 | 3201 | 3254
3306 | | STATES DEPAR | MINN | DISCHARGE IN | 1612
1650 | 1689 | 1729
1768 | 1809 | 1890 | 1932
1973 | 2016 | 2101 | 2145 | 2188 | 2233 | 2277 | 2362 | 2413 | 2459 | 2506 | 2600 | 2647 | 2695 | 2744 | 2792 | 2891 | 2941 | 2991 | 3042 | 3144 | 3196 | 3248
3301 | | UNITED | MONTEVIDEO, N | .01 | 1608
1646 | 68 | 1725
1764 | 1805 | 88 | 1927
1969 | 2011 | 2097 | 2140 | 2184 | 22 | 2273 | 7 6 | 2408 | 45 | 50 | 2595 | 64 | 2691 | 2739 | 2788 | 2886 | 2936 | 2986 | 3037 | 3139 | 3191 | 3243
3296 | | | RIVER AT
USED | 00. | 1604 | 1681 | 1721
1760 | 1801 | oσ | 1923
1965 | 2007 | 2033 | 2136 | 2180 | 2224 | 2268 | 2358 | 2404 | 2450 | 4 4 | 2590 | 2638 | 2686 | 2734 | 2783 | 2881 | 2931 | 2981 | 3032 | 3083
3134 | ~ | 3238
3290 | | , , , , , , , , , , , , , , , , , , , | USSIIOUU
MINNESOTA I
NO OFFSETS | GAGE
HEIGHT
(FEET) | 7.50 | 7.70 | 7.80 | • | | 8.30 | 8.50 | 8.70 | 8.80 | 8.90 | 00.6 | 9.10 | 02.6 | 9.40 | 9.50 | 9.60 | 0.80 | 06.6 | 0 | 0 | 0 (| 10.40 | 0 | 0 | 9 | 10.90 | 11.00 | 11.10
11.20 | | PAGE 4
TYPE: LOG | RATING NO: 45.0
10-01-85 (0001) | DIFF IN Q
PER
TENTH FT | 53.00 | 71.00 72.00 73.00 | 74.00 | 76.00
76.00 | 77.00
78.00
79.00 | 89.00
90.00 | 91.00 | 93.00 | 95.00 | 97.00 | 00.66 | 156.0 | 163.0 | 171.0 | 174.0 | 183.0 | 186.0
190.0 | 194.0 | 202.0
207.0
211.0 | |--|---|------------------------------|--------------|-----------------------|--------------|----------------|-------------------------|----------------|--------------|-------|--------------|-------|-------|----------------|----------------|-------|-------|-------|----------------|--------------|-------------------------| | £ | ••• | 60* | 3391
3445 | 3514
3586
3659 | 3732
3807 | 3882
3958 | 4035
4113
4192 | 4280
4370 | 4461
4553 | 4646 | 4740 | 4933 | 5130 | 5280
5440 | 5603
5769 | 5939 | 6114 | 6473 | 6659
6848 | 7042 | 7442
7648
7858 | | S DIVISION | 4 TYPE: 001
START DATE/TIME | 80. | 3386
3439 | 3507
3579
3651 | 3725
3799 | 3875
3951 | 4028
4105
4184 | 4271
4361 | 4451
4543 | 4637 | 4731 | 4923 | 5120 | 5265
5424 | 5586
5752 | 5922 | 9609 | 6455 | 6640
6829 | 7023
7220 | 7421
7627
7837 | | WATER RESOURCES DIVISION | | (EXPANDED PRECISION) | 3380
3434 | 3500
3572
3644 | 3718
3792 | 3867
3943 | 4020
4098
4176 | 4262 | 4442
4534 | 4627 | 4721 | 4913 | 5110 | 5249
5408 | 5570
5736 | 5905 | 6078 | 6436 | 6621
6810 | 7003 | 7401
7606
7816 | | RVEY - | ע | (EXPANDED | 3375
3429 | 3493
3564
3637 | 3710
3784 | 3860
3935 | 4012
4090
4168 | 4253 | 4433
4525 | 4618 | 4712 | 4904 | 5100 | 5233
5392 | 5553
5719 | 5888 | 6061 | 6418 | 6603
6791 | 6984
7180 | 7381
7586
7795 | | GEOLOGICAL SURVEY RATING TABLE | | .05 | 3370
3423 | 3485
3557
3630 | 3703
3777 | 3852 | 4005
4082
4160 | 4244 | 4424 | 4608 | 4702 | 4894 | 5090 | 5218
5376 | 5537
5702 | 5871 | 6043 | 6400 | 6584
6772 | 6964
7160 | 7361
7565
7774 | | INTERIOR - GEOLOGICAL SUI
EXPANDED RATING TABLE
DATE DROCESSED: 07-18. | | PER SECOND | 3364
3418 | 3478
3550
3622 | 3695
3770 | 3844
3920 | 3997
4074
4153 | 4235
4325 | 4415 | 4599 | 4693
4788 | 4884 | 5080 | 5202
5360 | 5521
5685 | 5854 | 6026 | 6382 | 6565
6753 | 6945
7140 | 7340
7544
7753 | | DEPARTMENT OF IN | | IN CUBIC FEET .03 | 3359
3412 | 3471
3543
3615 | 3688
3762 | 3837
3913 | 3989
4066
4145 | 4226
4316 | 4406 | 4590 | 4684 | 4875 | 5070 | 5186
5344 | 5504
5669 | 5837 | 6009 | 6364 | 6547
6734 | 6925
7121 | 7320
7524
7732 | | ξŽ | MINN | DISCHARGE II | 3354
3407 | 3464
3536
3608 | 3681
3755 | | 3981
4059
4137 | 4218
4307 | 4397 | 4581 | 4674
4769 | 4865 | 2060 | 5171
5328 | 5488
5652 | 5820 | 5991 | 6345 | 6528
6715 | 6906
7101 | 7300
7503
7711 | | UNITED STATE | MINNESOTA RIVER AT MONTEVIDEO,
NO OFFSETS USED | .01 | 3349
3402 | 3457
3528
3600 | 3673
3747 | 3822 | 3974
4051
4129 | 4209
4298 | 4388 | 4571 | 4665 | 4855 | 5051 | 5155
5312 | 5472
5636 | 5803 |
5974 | 6327 | 6510
6696 | 6887
7081 | 7280
7483
7690 | | | RIVER AT M
USED | 00. | 3343
3396 | 3450*
3521
3593 | 3666
3740 | 3814 | 3966
4043
4121 | 4200*
4289 | 4379 | 4562 | 4655
4750 | 4846 | 5041 | 5140*
5296 | 5456
5619 | 5786 | 5957 | 6309 | 6492
6678 | 6868
7062 | 7260
7462
7669 | | 05311000 | MINNESOTA RIVER
NO OFFSETS USED | GAGE
HEIGHT
(FEET) | 11.30 | 11.50 | 11.80 | 222 | 12.20
12.30
12.40 | 12.50 | 12.70 | 12.90 | 13.00 | 13.20 | 13.40 | 13.50
13.60 | 13.70
13.80 | 13.90 | 14.00 | 14.20 | 14.30
14.40 | 14.50 | 14.70
14.80
14.90 | Water Control Manual, Lac qui Parle Project August 1995 | PAGE 5 | iire: Loc | RATING NO: 45.0
10-01-85 (0001) | DIFF IN Q
PER
TENTH FT | 215.0 | 219.0 | 224.0 | 229.0
233.0 | 0 000 | 242.0 | 248.0 | 252.0 | 260.0 | 260.0 | 270.0 | 270.0 | 270.0 | 290.0 | 280.0 | 300.0 | 300.0 | 300.0 | | 310.0 | 330.0 | 330.0 | 340.0 | 350.0 | 350.0 | 350.0 | 370.0 | 360.0 | 380.0 | 380.0 | 390.0 | 400.0 | | 410.0 | 430.0 | |------------------------------|----------------------------|---------------------------------------|------------------------------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Ě | , | | 60. | 8073 | 8292 | 8516 | 8744 | 1100 | 9456 | 9703 | 9954 | 10210 | 10470 | 10740 | 11010 | 11290 | 11570 | 11860 | 12150 | 12450 | 13060 | | 13370 | 13690 | 14020 | 14690 | 15030 | 15380 | 15740 | 16100 | 164/0 | 16840 | 17220 | 019/1 | 18400 | 0.00 | 19220 | 19640 | | S DIVISION | | 4 TYPE: 001
START DATE/TIME: | 80. | 8051 | 8270 | 8493 | 8721
8953 | 0010 | 9432 | 9678 | 9929 | 10180 | 10450 | 10710 | 10980 | 11260 | 11540 | 11830 | 12120 | 12420 | 13030 | 9 | 13340 | 13660 | 13990 | 14650 | 15000 | 15350 | 15700 | 16060 | 16430 | 16800 | 17180 | 1/2/0 | 18360 | 000 | 19180 | 19600 | | - WATER RESOURCES DIVISION | 12:25 BY GAROACH | :
00 | (EXPANDED PRECISION) | 8030 | 8248 | 8471 | 8698
8930 | 9310 | 9407 | 9653 | 9904 | 10160 | 10420 | 10680 | 10960 | 11230 | 11510 | 11800 | 12090 | 12390 | 13000 | | 13310 | 13630 | 14280 | 14620 | 14960 | 15310 | 15670 | 16030 | 16390 | 16770 | 17140 | 17000 | 18320 | | 19140 | 19560 | | | • | | (EXPANDED | 8008 | 8226 | 8448 | 8675
8906 | 0142 | 9383 | 9628 | 9878 | 10130 | 10390 | 10660 | 10930 | 11200 | 11480 | 11770 | 12060 | 12360 | 12920 | | 13280 | 13600 | 14250 | 14590 | 14930 | 15280 | 15630 | 15990 | 16360 | 16730 | 17110 | 1,490 | 18280 | 0000 | 19100 | 19520 | | INTERIOR - GEOLOGICAL SURVEY | DATE PROCESSED: 07-18-1994 | | ON: | 7987 | 8204 | 8426 | 8652
8883 | 91.10 | 9359 | 9603 | 9853 | 10110 | 10370 | 10630 | 10900 | 11180 | 11460 | 11740 | 12030 | 12330 | 12930 | | 13250 | 13560 | 14220 | 14550 | 14890 | 15240 | 15590 | 15950 | 16320 | 16690 | 17070 | 17040 | 18240 | 10650 | 19060 | 19470 | | INTERIOR - | DATE PRO | | CUBIC FEET PER SECOND .04 | 7965 | 8182 | 8403 | 8629
8860 | 9005 | 9334 | 9579 | 9828 | 10080 | 10340 | 10600 | 10870 | 11150 | 11430 | 11710 | 12000 | 12300 | 12900 | 9 | 13210 | 13530 | 14180 | 14520 | 14860 | 15210 | 15560 | 15920 | 16280 | 16650 | 17030 | 17000 | 18200 | 01201 | 19020 | 19430 | | STATES DEPARTMENT OF | | | IN | 7944 | 8160 | 8381 | 8607 | 1200 | 9310 | 9554 | 9803 | 10060 | 10310 | 10580 | 10850 | 11120 | 11400 | 11680 | 11970 | 122/0 | 12870 | 9 | 13180 | 13500 | 14150 | 14480 | 14820 | 15170 | 15520 | 15880 | 16240 | 16620 | 16990 | 000/1 | 18160 | 10550 | 18970 | 19390 | | STATES DE | | MINN
WINN | DISCHARGE | 7922 | 8138 | 8359 | 8584
8813 | 0007 | 9286 | 9529 | 9778 | 10030 | 10290 | 10550 | 10820 | 11090 | 11370 | 11650 | 11940 | 12240 | 12840 | | 13150 | 134/0 | 14120 | 14450 | 14790 | 15140 | 15490 | 15840 | 16210 | 16580 | 16950 | 1,040 | 18120 | 00101 | 18930 | 19350 | | UNITED | | MONTEVIDEO, | .01 | 7901 | 8117 | 8337 | 8561
8790 | 0000 | 6262 | 9505 | 9753 | 10010 | 10260 | 10530 | 10790 | 11070 | 4 | 11630 | 11910 | 12210 | 12810 | 0 | 13120 | 13440 | 14080 | 14420 | 14760 | 15100 | 15450 | 15810 | 0/191 | 16540 | 16920 | 12000 | 18080 | 0.00 | 18890 | 931 | | | | MINNESOTA RIVER AT
NO OFFSETS USED | 00. | 7880 | 8095 | 8314 | 8538
8767 | 0008 | 9238 | 9480 | 9728 | 0866 | 0 | 10500 | 10770 | 11040 | 11310 | 11600 | 11880 | 12180 | 12780 | ' | 13090 | ٦. | 140 | | - | - | | 15770 | 7 | 16500 | 16880 | 17550 | 18040 | 3 | 18850 | 92 | | | 05311000 | MINNESOTA RIVER
NO OFFSETS USED | GAGE
HEIGHT
(FEET) | 15.00 | ron. | 15.20 | 15.30 | ı, | 15.60 | 15.70 | 15.80 | 5. | 16.00 | 6.1 | 16.20 | 16.30 | ₹. | 16.50 | 9 | 16.70 | o c | | 17.00 | 07.7 | 17.30 | | 17.50 | | | 17.80 | | 18 | 18 | 9 6 | | - | 18.60 | · œ | | 6 | | UNITED | UNITED STATES DEPARTMENT OF | RIMENT OF IN | INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION EXPANDED RATING TABLE | OLOGICAL SU | JRVEY - WAT | ER RESOURCES | DIVISION | TYPE: | PAGE 6
E: LOG | |--|----------------|-------------------------|-----------------------------|----------------|---|----------------|-------------------------|------------------------|---------------------------------|-------------------------|-----------------------------------| | 05311000
MINNESOTA RIVER
NO OFFSETS USED | AŢ | MONTEVIDEO, | MINN | | DATE PROCESSED: 07-18-1994 | SSED: 07-18 | e | 12:25 BY GAROACH DD: 4 | CH 4 TYPE: 001 START DATE/TIME: | - | RATING NO: 45.0
0-01-85 (0001) | | GAGE
HEIGHT
(FEET) | 00. | .01 | DISCHARGE IN | | CUBIC FEET PER SECOND .03 | .05 | (EXPANDED PRECISION) | PRECISION) | 80. | 60. | DIFF IN Q
PER
TENTH FT | | 18.80 | 19690
20110 | 19730
20160 | 19770
20200 | 19810
20240 | 19860
20290 | 19900
20330 | 19940
20370 | 19980
20420 | 20030
20460 | 20070
20510 | 420.0
440.0 | | 19.00 | 20550 20990 | 21040 | 20640 21080 | 20680 | 20730 21170 | 20770 | 20810 | 20860 | 20900 | 20950 | 440.0 | | 19.30 | 21900
22360 | 21430
21940
22410 | 21930
21990
22450 | 22040
22500 | 22080
22550 | 22130
22600 | 22170
22170
22640 | 22220
22690 | 22270
22740 | 21850
22310
22780 | 460.0
460.0
470.0 | | 19.50
19.60 | 22830 | 22880 | 22930 | 22970 | 23020 | 23070 | 23120 | 23170
23650 | 23210 | 23260 | 480.0 | | 19.70 | 23800 | 23850 | 23890 | 23940 | 23990 | 24040 | 24090 | 24140 | 24190 | 24240 | 490.0 | | 19.90 | 24790 | 24840 | 24890 | 24940 | 24990 | 25040 | 25100 | 25150 | 25200 | 25250 | 510.0 | | 20.00 | 25300 | 25350 | 25400 | 25450 | 25510 | 25560 | 25610 | 25660 | 25710 | 25770 | 520.0 | | 20.10 | 25820 | 25870 | 25920 | 25970 | 26030 | 26080 | 26130 | 26180 | 26240 | 26290 | 520.0 | | 20.30 | 26870 | 26930 | 26980 | 27040 | 27090 | 27140 | 27200 | 27250 | 27310 | 27360 | 550.0 | | 20.40 | 27420 | 27470 | 27520 | 27580 | 27630 | 27690 | 27740 | 27800 | 27850 | 27910 | 540.0 | | 20.50 | 27960 | 28020 | 28080 | 28130 | 28190 | 28240 | 28300 | 28350 | 28410 | 28470 | 560.0 | | 20.60 | 28520 | 28580 | 28630 | 28690 | 28750 | 28800 | 28860 | 28920 | 28970 | 29030 | 570.0 | | 20.80 | 29660 | 29720 | 29780 | 29840 | 29890 | 29950 | 30010 | 30070 | 30130 | 30190 | 580.0 | | 20.90 | 30240 | 30300 | 30360 | 30420 | 30480 | 30540 | 30600 | 30660 | 30720 | 30780 | 0.009 | | 21.00 | 30840 | 30890 | 30950 | 31010 | 31070 | 31130 | 31190 | 31250 | 31310 | 31370 | 590.0 | | 21.10 | 31430 | 31500 | 31560 | 31620 | 31680 | 31740 | 31800 | 31860 | 31920 | 31980 | 610.0 | | | 32040 | 32100 | 32170 | 32230 | 32290 | 32350 | 32410 | 32470 | 32540 | 32600 | 620.0 | | 21.40 | 33290 | 33350 | 32790 | 32850 | 32910
33540 | 32970 | 33670 | 33100 | 33160 | 33220 | 630.0 | | | | , ; | | | | |)
;
) | |)
- | | | | 21.50 | 33920 | 33990
34630 | 34050 | 34110 | 34180 | 34240 | 34310 | 34370 | 34440 | 34500 | 650.0 | | 21.70 | 35220* | 1 |)
) |) | , | , |)
) | , | > | 7 | : 0.00 | | - | 1) | ı | o _E | | | | | | | | | |--|---|---------------------------|----------------------------|----------------------------|---|--|---|---|---|---|---| | PAGE
TYPE: LOG | RATING NO: 24.0
0-01-90 (0001) | CFS | DIFF IN
PER
TENTH FT | 5.700
8.200
11.67 | 14.31
17.03
19.84
22.75
25.60 | 28.70
31.80
34.80
38.10 | 30.00
22.40
22.60
22.80
22.90 | 23.10
23.30
23.40
23.60
23.70 | 23.90
23.90
24.10
24.30
24.30 | 24.50
24.60
24.70
24.80
24.90 | 25.00
25.10
25.20
25.30
25.40 | | TYP | | AND DATE | 60. | 14.58
22.50
33.79 | 47.82
64.58
84.14
106.6
131.9 | 160.3
191.8
226.3
264.0
296.7 | 327.0
350.2
372.7
395.5
418.4 | 441.5
464.8
488.2
511.7
535.4 | 559.3
583.2
607.3
631.5
655.9 | 680.3
704.9
729.6
754.4
779.3 | 804.3
829.4
854.6
879.9
905.3 | | NOISION | TYPE:
TART DATE/ | WEEN CHK. BY | 80. | 13.98
21.62
32.53 | 46.30
62.78
82.05
104.2
129.3 | 157.3
188.5
222.7
260.1
293.5 | 323.9
347.9
370.5
393.2
416.1 | 439,2
462,4
485,8
509,4
533,1 | 556.9
580.8
604.9
629.1
653.4 | 677.9
702.4
727.1
751.9
776.8 | 801.8
826.9
852.1
877.4 | | - WATER RESOURCES DIVISION | BY GAROAC
DD: | WELL DEFINED BETWEEN DATE | PRECISION)
 13.38
20.76
31.30 | 44.80
61.01
80.00
101.8
126.6 | 154.4
185.2
219.2
256.2
290.2 | 320.9
345.7
368.2
390.9 | 436.9
460.1
483.5
507.0
530.7 | 554.5
578.4
602.5
626.7
651.0 | 675.4
700.0
724.6
749.4
774.3 | 799.3
824.4
849.6
874.8 | | | 1994 @ 12:25 | 11 | (EXPANDED PRI | 12.80
19.92
30.09 | 43.33
59.26
77.97
99.53
124.0 | 151.5
182.0
215.6
252.4
287.0 | 317.9
343.4
365.9
388.7
411.5 | 434.6
457.8
481.1
504.7
528.3 | 552.1
576.0
600.1
624.3
648.6 | 673.0
697.5
722.2
746.9 | 796.8
821.9
847.0
872.3 | | INTERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE | SED: 07-18-1994 | -, AND IS COMP BY | 0.05 | 12.22
19.09
28.91 | 41.89
57.55
75.97
97.25 | 148.6
178.8
212.1
248.6
283.8 | 314.9
341.2
363.7
386.4
409.2 | 432.3
455.5
478.8
502.3 | 549.7
573.6
597.7
621.8 | 670.5
695.1
719.7
744.5
769.3 | 794.3
819.3
844.5
869.8 | | ERIOR - GEOLOGICAL SU
EXPANDED RATING TABLE | DATE PROCESSED: | AND | PER SECOND | 11.66
18.28
27.76 | 40.47
55.86
74.00
94.99
118.9 | 145.7
175.7
208.6
244.8
280.6 | 311.9
338.9
361.4
384.1 | 430.0
453.1
476.5
499.9
523.6 | 547.3
571.2
595.3
619.4
643.7 | 668.1
692.6
717.2
742.0
766.8 | 791.8
816.8
842.0
867.2
892.6 | | | _ | | CUBIC FEET 1 | 11.10
17.48
26.63 | 39.08
54.20
72.06
92.76
116.4 | 142.9
172.5
205.2
241.0 | 308.9
336.7
359.2
381.8 | 427.6
450.8
474.1
497.6
521.2 | 544.9
568.8
592.8
617.0 | 665.6
690.1
714.8
739.5
764.3 | 789.3
814.3
839.5
864.7
890.0 | | ATES DEPARTMENT OF | E, MN | EMENTS, NOS | ISCHARGE IN (| 10.56
16.70
25.53 | 37.72
52.56
70.15
90.56
113.9 | 140.1
169.4
201.8
237.3
274.3 | 305.9
334.5
356.9
379.5 | 425.3
448.5
471.8
495.2
518.8 | 542.6
566.4
590.4
614.6 | 663.2
687.7
712.3
737.0
761.8 | 786.8
811.8
836.9
862.2
887.5 | | UNITED ST | QUI PARL | DISCHARGE MEASURE | 10. | 10.02
15.94
24.45 | 36.38
50.96
68.27
88.39
111.4 | 137.4
166.4
198.4
233.6
271.1 | 303.0
332.2
354.7
377.3 | 423.0
446.2
469.4
492.9
516.5 | 540.2
564.0
588.0
612.2
636.4 | 660.8
685.2
709.8
734.5
759.4 | 784.3
809.3
834.4
859.7
885.0 | | | VER NEAR LA | DISCH | 00. | 9.500*
15.20*
23.40* | 35.07
49.38
66.41
86.25 | 134.6
163.3
195.1
229.9
268.0* | 300.0*
330.0*
352.4
375.0 | 420.7
443.8
467.1
490.5
514.1 | 537.8
561.7
585.6
609.7
634.0 | 658.3
682.8
707.4
732.1
756.9 | 781.8
806.8
831.9
857.1
882.4 | | | 05301000
MINNESOTA RIVER NEAR LAC
OFFSET: 19.90 | BASED ON | GAGE
HEIGHT
(FEET) | 20.20 | 20.50
20.60
20.70
20.80
20.90 | 21.00
21.10
21.20
21.30
21.40 | 21.50
21.60
21.70
21.80
21.90 | 22.00
22.10
22.20
22.30
22.40 | 22.50
22.60
22.70
22.80
22.90 | 23.00
23.10
23.20
23.30 | 23.50
23.60
23.70
23.80
23.90 | | PAGE 2
TYPE: LOG | RATING NO: 24.0
10-01-90 (0001) | DIFF IN Q
PER
TENTH FT | 25.50
25.60
25.70
25.40
26.00 | 26.00
26.00
26.00
26.00
27.00 | 26.00
26.00
27.00
27.00
26.00 | 27.00
27.00
26.00
27.00 | 27.00
28.00
27.00
27.00 | 28.00
27.00
27.00
28.00 | 27.00
28.00
28.00
28.00
27.00 | 28.00
28.00
28.00 | |--|--|------------------------------|---|---|---|---|---|---|---|-------------------------| | Ţ | 7 | 60. | 930.8
956.4
982.0
1008 | 1060
1086
1112
1138 | 1190
1217
1243
1270
1296 | 1323
1350
1377
1404
1431 | 1485
1485
1512
1539
1566 | 1594
1621
1649
1676 | 1732
1759
1787
1815 | 1871
1899
1927 | | NOISION | ACH
4 TYPE: 001
START DATE/TIME: | 80. | 928.2
953.8
979.5
1005 | 1057
1083
1109
1135 | 1188
1214
1241
1267
1294 | 1321
1347
1374
1401 | 1455
1482
1509
1536 | 1591
1619
1646
1674
. 1701 | 1729
1756
1784
1812 | 1868
1896
1924 | | RES | 12:25 BY GAROACH DD: 4 | (EXPANDED PRECISION) | 925.7
951.2
976.9
1003 | 1054
1080
1106
1133 | 1185
1212
1238
1265
1291 | 1318
1345
1371
1398
1425 | 1452
1479
1507
1534
1561 | 1588
1616
1643
1671
1698 | 1726
1754
1781
1809
1837 | 1865
1893
1921 | | . ' | e | (EXPANDED | 923.1
948.7
974.3
1000 | 1052
1078
1104
1130
1156 | 1183
1209
1235
1262
1288 | 1315
1342
1369
1396
1423 | 1450
1477
1504
1531 | 1586
1613
1640
1668 | 1723
1751
1779
1806 | 1862
1890
1918 | | GEOLOGICAL SURVEY
RATING TABLE | SED: 07-1 | .05 | 920.6
946.1
971.8
997.5 | 1049
1075
1101
1127
1154 | 1180
1206
1233
1259
1286 | 1312
1339
1366
1393
1420 | 1447
1474
1501
1528
1556 | 1583
1610
1638
1665
1693 | 1720
1748
1776
1804
1832 | 1859
1887
1915 | | INTERIOR - GEOLOGICAL SUI
EXPANDED RATING TABLE | DATE PROCESSED: 07-18-1994 | CUBIC FEET PER SECOND | 918.0
943.6
969.2
994.9 | 1047
1073
1099
1125
1151 | 1177
1204
1230
1257
1283 | 1310
1337
1363
1390
1417 | 1444
1471
1498
1526
1553 | 1580
1608
1635
1662
1690 | 1718
1745
1773
1801 | 1857
1885
1913 | | | | | 915.5
941.0
966.6
992.3 | 1044
1070
1096
1122 | 1175
1201
1227
1254
1280 | 1307
1334
1361
1388
1414 | 1441
1469
1496
1523
1550 | 1577
1605
1632
1660
1687 | 1715
1743
1770
1798
1826 | 1854
1882
1910 | | STATES DEPARTMENT OF | RLE, MN | DISCHARGE IN | 912.9
938.5
964.1
989.8 | 1041
1067
1093
1120 | 1172
1198
1225
1251
1251 | 1304
1331
1358
1385
1412 | 1439
1466
1493
1520 | 1575
1602
1629
1657
1685 | 1712
1740
1768
1795 | 1851
1879
1907 | | UNITED ST | AC QUI PA | .01 | 910.4
935.9
961.5
987.2
1013 | 1039
1065
1091
1117 | 1169
1196
1222
1249
1275 | 1302
1329
1355
1382
1409 | 1436
1463
1490
1517
1545 | 1572
1599
1627
1654
1682 | 1709
1737
1765
1793
1820 | 1848
1876
1904 | | | 05301000
MINNESOTA RIVER NEAR LAC QUI PARL
OFFSET: 19.90 | 00. | 907.8
933.3
958.9
984.6 | 1036
1062
1088
1114
1140 | 1167
1193
1219
1246
1273 | 1299
1326
1353
1379 | 1433
1460
1488
1515
1542 | 1569
1597
1624
1651
1679 | 1707
1734
1762
1790
1818 | 1845
1873
1901 | | , | 05301000
MINNESOTA RIV | GAGE
HEIGHT
(FEET) | 24.00
24.10
24.20
24.30
24.40 | 24.50
24.60
24.70
24.80 | 25.00
25.10
25.20
25.30
25.40 | 25.50
25.60
25.70
25.80
25.90 | 26.00
26.10
26.20
26.30
26.40 | 26.50
26.60
26.70
26.80
26.90 | 27.00
27.10
27.20
27.30
27.40 | 27.50
27.60
27.70 | | PAGE 3
TYPE: LOG | RATING NO: 24.0
10-01-90 (0001) | DIFF IN Q
PER
TENTH FT | 29.00 | 28.00 | 29.00 | 28.00 | 29.00 | 28.00 | 29.00
28.00 | 29.00 | 29.00 | 29.00 | 28.00 | 29.00 | 29.00 | 29.00 | 29.00 | 47.00 | 48.00 | 48.00 | 48.00 | 49.00 | 50.00 | 20.00 | 50.00 | 91.00 | 61.00 | 61.00 | 62.00 | 63.00 | |--|---|------------------------------|--------------|--------------|-------|-----------------------|-------|-------|----------------------|-------|-------|-------|-------|-------|-------|-------|----------|----------------------|-------|-------|-------|--------------|-------|-------|------------|-------|-------|-------|-------|-------| | F | | 60. | 1955
1983 | 2011 | 2068 | 2096
2124 | 2153 | 2181 | 2210
2239 | 2267 | 2296 | 2325 | 2353 | 2411 | 2440 | 2469 | 2498 | 252 <i>1</i>
2572 | 2620 | 2668 | 2716 | 2765
2814 | 2864 | 2914 | 2964 | 3015 | 3135 | 3196 | 3258 | 3384 | | DIVISION | A TYPE: 001
START DATE/TIME: | 80. | 1952
1980 | 2008 | 2065 | 2093
2122 | 2150 | 2179 | 220 <i>/</i>
2236 | 2264 | 2293 | 2322 | 2351 | 2408 | 2437 | 2466 | 2495 | 2524
2568 | 2615 | 2663 | 2711 | 2760
2809 | 2859 | 2909 | 2959 | 3068 | 3129 | 3190 | 3252 | 3378 | | | 12:25 BY GAROACH DD: 4 | (EXPANDED PRECISION) | 1949
1977 | 2005 | 2062 | 2090
2119 | 2147 | 2176 | 2204
2233 | 2261 | 2290 | 2319 | 2348 | 2405 | 2434 | 2463 | 2492 | 2521
2563 | 2610 | 2658 | 2707 | 2755
2804 | 2854 | 2904 | 2954 | 3062 | 3123 | 3184 | 3246 | 3371 | | | 07-18-1994 @ 1Z | (EXPANDED | 1946
1974 | 2003 | 2059 | 2088
2116 | 2144 | 2173 | 2201
2230 | 2259 | 2287 | 2316 | 2374 | 2402 | 2431 | 2460 | 2489 | 2518 | 2606 | 2654 | 2702 | 2750
2799 | 2849 | 2899 | 2949 | 3056 | 3116 | 3178 | 3239 | 3365 | | OLOGICAL S
ATING TABL | | .05 | 1944
1972 | 2000 | 2056 | 2085
2113 | 2142 | 2170 | 2227 | 2256 | 2284 | 2313 | 2371 | 2400 | 2428 | 2457 | 2486 | 2554 | 2601 | 2649 | 2697 | 2795 | 2844 | 2894 | 2944 | 3050 | 3110 | 3171 | 3233 | 3359 | | INTERIOR
- GEOLOGICAL SURVEY EXPANDED RATING TABLE | DAIE PROCESSED: | CUBIC FEET PER SECOND .04 | 1941
1969 | 1997
2025 | 2054 | 20 8 2
2110 | 2139 | 2167 | 2224 | 2253 | 2282 | 2310 | 2368 | 2397 | 2426 | 2455 | 2484 | 2549 | 2596 | 2644 | 2692 | 2790 | 2839 | 2889 | 2939 | 3044 | 3104 | 3165 | 3227 | 3352 | | ES DEPARTMENT OF IN | | IN CUBIC FEET | 1938
1966 | 1994 | 2051 | 2079
2107 | 2136 | 2164 | 2193
2221 | 2250 | 2279 | 2307 | 2365 | 2394 | 2423 | 2452 | 2481 | 2544 | 2591 | 2639 | 2687 | 2736
2785 | 2834 | 2884 | 2934 | 3038 | 3098 | 3159 | 3221 | 3346 | | STATES DEPA | ARLE, MN | DISCHARGE I | 1935
1963 | 1991
2020 | 2048 | 2076
2105 | 2133 | 2161 | 2219 | 2247 | 2276 | 2305 | 2362 | 2391 | 2420 | 2449 | 2478 | 2539 | 2587 | 2634 | 2682 | 2780 | 2829 | 2879 | 2929 | 3032 | 3092 | 3153 | 3215 | 3340 | | UNITED | LAC QUI PA | .01 | 1932
1960 | 1989 | 2045 | 2073
2102 | 2130 | 2159 | 2216 | 2244 | 2273 | 2302 | 2359 | 2388 | 41 | 44 | 4 / | 2535 | 2582 | 2630 | 2678 | 2775 | 2824 | 2874 | 2924 | 3026 | 3086 | 3147 | 3208 | 3333 | | | MINNESOTA RIVER NEAR LAC QUI PARLE
OFFSET: 19.90 | 00. | 1929
1958 | 1986
2014 | 2042 | 2071
2099 | 2127 | 2156 | 2213 | 2241 | 2270 | 2299 | 2356 | 2385 | 2414 | 2443 | 24/2 | 2530* | 2577 | 2625 | 2673 | 2770 | 2819 | 2869 | 2919 | 3020* | 3080 | 3141 | 3202 | 3327 | | 000000 | MINNESOTA RIV
OFFSET: 19.90 | GAGE
HEIGHT
(FEET) | 27.80 | 28.00 | 8 | တေထ | 28.50 | ∞ ∘ | 28.80 | 8 | 29.00 | ν ο | U Q | 6 | 29.50 | σ, | σ | 29.90 | 0 | 0 | 0 | 30.40 | 0 | 0 0 | o c | 30.90 | | 31.10 | :. | ;; | | PAGE 4 TYPE: LOG | RATING NO: 24.0
0-01-90 (0001) | DIFF IN Q
PER
TENTH FT | 64.00
65.00
65.00
66.00 | 81.00
82.00
84.00
84.00
86.00 | 86.00
88.00
89.00
90.00 | 109.0
111.0
112.0
114.0 | 117.0
120.0
121.0
123.0
145.0 | 147.0
150.0
153.0
155.0 | 157.0
160.0
163.0
165.0
252.0 | 260.0
267.0
274.0 | |---|--|------------------------------|---------------------------------------|---|---|--------------------------------------|---|--|---|-------------------------| | | - | 60. | 3448
3512
3578
3643
3722 | 3803
3885
3968
4053
4138 | 4225
4312
4401
4491
4596 | 4705
4815
4928
5041 | 5275
5394
5515
5638
5780 | 5927
6077
6229
6384
6539 | 6696
6856
7018
7183 | 7686
7952
8225 | | DIVISION | 4 TYPE: 001
START DATE/TIME: | 80. | 3441
3506
3571
3637
3714 | 3795
3877
3960
4044
4130 | 4216
4304
4392
4482
4586 | 4694
4804
4916
5030
5145 | 5263
5382
5503
5625
5765 | 5912
6062
6214
6369
. 6523 | 6680
6840
7002
7167 | 7659
7925
8197 | | WATER RESOURCES DIVISION | :
00 | (EXPANDED PRECISION) | 3435
3499
3564
3630
3706 | 3787
3869
3952
4036
4121 | 4207
4295
4383
4473
4575 | 4683
4793
4905
5019
5134 | 5251
5370
5490
5613
5751 | 5897
6047
6199
6353
6508 | 6664
6824
6985
7150
7376 | 7633
7898
8170 | | | | (EXPANDED | 3442
3442
3559
36258
98 | 3779
3860
3943
4027
4112 | 4199
4286
4374
4464
4564 | 4672
4782
4894
5007
5122 | 5239
5358
5478
5601
5736 | 5883
6032
6183
6337
6492 | 6649
6808
6969
7133 | 7607
7871
8142 | | GEOLOGICAL SURVEY
RATING TABLE
CESSED: 07-18-199 | | . 05 | 3422
3486
3551
3617
3690 | 3771
3852
3935
4019
4104 | 4190
4277
4365
4455
4553 | 4661
4771
4883
4996
5111 | 5227
5346
5466
5588
5722 | 5868
6017
6168
6322
6477 | 6633
6792
6953
7117
7325 | 7581
7844
8115 | | INTERIOR - GEOLOGICAL SURVEY -
EXPANDED RATING TABLE
DATE PROCESSED: 07-18-1994 | | PER SECOND | 3416
3480
3545
3610
3682 | 3762
3844
3927
4010
4095 | 4181
4268
4357
4446 | 4650
4760
4871
4984
5099 | 5216
5334
5454
5576
5708 | 5853
6002
6153
6306
6462 | 6617
6776
6937
7100
7300 | 7555
7818
8087 | | ES DEPARTMENT OF IN | | IN CUBIC FEET | 3409
3474
3538
3604
3674 | 3754
3836
3918
4002 | 4173
4260
4348
4437
4532 | 4640
4749
4860
4973
5088 | 5204
5322
5442
5564
5693 | 5839
5987
6137
6291
6446 | 6602
6760
6920
7084 | 7529
7791
8060 | | | ARLE, MN | DISCHARGE 1 | 3403
3467
3532
3597
3666 | 3746
3828
3910
3994
4078 | 4164
4251
4339
4428
4521 | 4629
4738
4849
4962
5076 | 5192
5310
5430
5551
5679 | 5824
5972
6122
6275 | 6586
6744
6904
7067 | 7504
7765
8033 | | UNITED STAT | LAC QUI P | .01 | 3397
3461
3525
3591
3658 | 3738
3819
3902
3985
4070 | 4155
4242
4330
4419
4511 | 4618
4727
4838
4950
5064 | 5180
5298
5418
5539
5664 | 5809
5957
6107
6260
6415 | 6570
6728
6888
7051 | 7478
7738
8006 | | | MINNESOTA RIVER NEAR LAC QUI PARLE,
OFFSET: 19.90 | 00. | 3390
3454
3519
3584
3650* | 3730
3811
3893
3977
4061 | 4147
4233
4321
4410
4500* | 4607
4716
4827
4939
5053 | 5169
5286
5406
5527
5650* | 5795
5942
6092
6245
6400* | 6555
6712
6872
7035 | 7452
7712
7979 | | 05301000 | MINNESOTA RIV | GAGE
HEIGHT
(FEET) | 31.50
31.60
31.70
31.80 | 32.00
32.10
32.20
32.30 | 32.50
32.60
32.70
32.80
32.90 | 33.00
33.10
33.20
33.30 | 33.50
33.60
33.70
33.80 | 34.00
34.10
34.20
34.40 | 34.50
34.70
34.70 | 35.00
35.10
35.20 | | s 0, | α . | | | | | | | | | |--|--------------------------|----------------|--|---|---|---|---|---|---| | PAGE 5 TYPE: LOG RATING NO: 24.0 | FF IN
PER | 281.0
290.0 | 297.0
305.0
314.0
320.0 | 340.0
350.0
360.0
380.0 | 380.0
400.0
400.0
420.0 | 440.0
450.0
470.0
40.0 | 490.0
510.0
510.0
530.0 | 550.0
570.0
580.0
590.0
600.0 | 620.0
640.0
640.0
670.0
670.0 | | - | 60. | 8506
8794 | 9091
9395
9708
10030
10360 | 10700
11040
11400
11760 | 12520
12920
13320
13740
14160 | 14600
15040
15500
15960
16440 | 16930
17440
17950
18480
19020 | 19570
20130
20710
21300
21900 | 22520
23150
23800
24460
25140 | | S DIVISION DACH TYPE: 001 GRADE DAME/HTME. | 80. | 8477
8765 | 9061
9364
9676
9996
10330 | 10660
11010
11360
11730
12100 | 12480
12880
13280
13690 | 14550
15000
15450
15920
16400 | 16880
17390
17900
18420
18960 | 19510
. 20070
20650
21240
21840 | 22460
23090
23730
24390
25070 | | - WATER RESOURCES DIVISION 0 12:25 BY GAROACH DD: 4 TYP | (EXPANDED PRECISION) | 8449
8736 | 9031
9334
9645
9964
10290 | 10630
10970
11330
11690
12060 | 12450
12840
13240
13650 | 14510
14950
15410
15870
16350 | 16840
17340
17850
18370
18910 | 19460
20020
20590
21180
21780 | 22400
23030
23670
24330
25000 | | RVEY
-1994 | (EXPANDED | 8421
8707 | 9001
9303
9613
9932
10260 | 10590
10940
11290
11650 | 12410
12800
13200
13610
14030 | 14460
14910
15360
15820
16300 | 16790
17280
17800
18320
18850 | 19400
19960
20530
21120 | 22330
22960
23600
24260
24930 | | ERIOR - GEOLOGICAL SURVEY
EXPANDED RATING TABLE
DATE PROCESSED: 07-18-1994 | Φ. | 8393
8678 | 8971
9273
9582
9900
10230 | 10560
10900
11260
11620
11990 | 12370
12760
13160
13570
13990 | 14420
14860
15310
15780
16250 | 16740
17230
17740
18270
18800 | 19350
19900
20480
21060
21660 | 22270
22900
23540
24190
24860 | | INTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | IT PER SECOND | 8364
8649 | 8942
9242
9551
9867
10190 | 10530
10870
11220
11580
11950 | 12330
12720
13120
13530
13950 | 14380
14820
15270
15730
16200 | 16690
17180
17690
18210
18750 | 19290
19850
20420
21000
21600 | 22210
22840
23470
24130
24800 | | | IN CUBIC FEET PER | 8336
8620 | 8912
9212
9519
9835
10160 | 10490
10830
11180
11540 | 12290
12680
13080
13490 | 14330
14770
15220
15680
16160 | 16640
17130
17640
18160 | 19240
19790
20360
20940
21540 | 22150
22770
23410
24060
24730 | | UNITED STATES DEPARTMENT OF QUI PARLE, MN | DISCHARGE 1 | 8308
8592 | 8882
9181
9488
9803
10130 | 10460
10800
11150
11510 | 12250
12640
13040
13440 | 14290
14730
15180
15640 | 16590
17080
17590
18110 | 19180
19740
20300
20880
21480 | 22090
22710
23350
24000
24660 | | UNITED | .01 | 8280
8563 | 8853
9151
9457
9771
10090 | 10430
10770
11110
11470
11840 |
12220
12600
13000
13400 | 14250
14680
15130
15590
16060 | 16540
17030
17540
18060
18580 | 19130
19680
20250
20830
21420 | 22030
22650
23280
23930
24590 | | UNITED STA
05301000
MINNESOTA RIVER NEAR LAC QUI PARLE | 00. | 8253
8534 | 8824
9121
9426
9740
10060 | 10390
10730
11080
11440 | 12180
12560
12960
13360
13780 | 14200
14640
15090
15540
16010 | 16490
16980
17490
18000 | 19070
19620
20190
20770
21360 | 21960
22580
23220
23860
24530 | | 05301000
MINNESOTA RIV | GAGE
HEIGHT
(FEET) | 35.30 | 35.50
35.60
35.70
35.80 | 36.00
36.10
36.20
36.30 | 36.50
36.60
36.70
36.80 | 37.00
37.10
37.20
37.30 | 37.50
37.60
37.70
37.80 | 38.00
38.10
38.20
38.30 | 38.50
38.60
38.70
38.80 | | | 4.0 | N FFT | | | | | | | | | | | |-------------|-------------------------|--|---|--|--|--|--|---|--|--|--|--| | | TING NO: 2
01-90 (00 | DIFF I
PER
TENTH | 700.0 | 700.0 | 720.0 | 740.0 | 760.0 | 770.0 | 780.0 | 800.0 | 820.0* | | | - | - | 60. | 25830 | 26530 | 27250 | 27990 | 28740 | 29510 | 30300 | 31100 | 31920 | | | ACH | 4 TYPE
START DAT | 90. | 25760 | 26460 | 27180 | 27910 | 28670 | 29430 | 30220 | 31020 | 31830 | | | :25 BY GARO | :QQ | PRECISION) | 25690 | 26390 | 27110 | 27840 | 28590 | 29360 | 30140 | 30940 | 31750 | | | 8-1994 @ 12 | | (EXPANDED | 25620 | 26320 | 27030 | 27770 | 28510 | 29280 | 30060 | 30860 | 31670 | | | SSED: 07-1 | | . 05 | 25550 | 26250 | 26960 | 27690 |
28440 | 29200 | 29980 | 30770 | 31590 | | | DATE PROC | | PER | 25480 | 26180 | 26890 | 27620 | 28360 | 29120 | 29900 | 30690 | 31510 | | | | | IN CUBIC FEET | 25410 | 26110 | 26820 | 27540 | 28290 | 29050 | 29820 | 30610 | 31420 | | | | ARLE, MN | DISCHARGE.02 | 25340 | 26040 | 26750 | 27470 | 28210 | 28970 | 29740 | 30530 | 31340 | | | | LAC QUI PA | .01 | 25270 | 25970 | 26670 | 27400 | 28140 | 28890 | 29670 | 30450 | 31260 | | | | RIVER NEAR | 00. | 25200 | 25900 | 26600 | 27320 | 28060 | 28820 | 29590 | 30380 | 31180 | 32000* | | 05301000 | MINNESOTA
OFFSET: 19 | GAGE
HEIGHT
(FEET) | 39.00 | 39.10 | 39.20 | 39.30 | 39.40 | 39.50 | 39.60 | 39.70 | 39.80 | 39.90 | | | | DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE TYPE: 001 RATING START DATE/TIME: 10-01-9 | DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DD: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001 BIFF IN DIFF IN 002 .03 .04 .05 .06 .07 .08 .09 TENTH FT | ANN STANDS AND THE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DD: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) DIFF IN DIFF IN DIFF IN DIFF IN DIFF IN 2540 25410 25480 25550 25620 25690 25760 25830 700.0 | ATTECTOR OF THE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DIFF IN COUNTY FET PER SECOND CONTROL OF COUNTY | AND THE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DD: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) DIFF IN DIFF IN DIFF IN DIFF IN DIFF IN DIFF IN DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH START DATE/TIME: 10-01-90 (0001) DIFF IN DIFF IN DIFF IN DIFF IN DIFF IN DATE PROCESSED: 02500 25500 25500 25500 700.0 Z6800 26800 26900 27030 27110 27180 27250 720.0 | MN STANDS AND TABLE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DD: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) BER DIFF IN | MN STANDER PROCESSED: 07-18-1994 @ 12:25 BY GAROACH D1: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) DIFF IN PER -02 .03 .04 .05 .06 .07 .08 .09 TENTH FT -03 .04 .05 .2650 .2650 .2650 .2650 .700.0 | MN STANDER PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DIFF IN START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) DIFF IN DIFF IN PER -02 -03 -04 -05 -05 -05 -05 -05 -05 -05 | MN BATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH D1: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) DIFF IN | MN BATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DD: 4 TYPE: 001 RATING NO: 24. START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) BER 02 | ATTECTOR TO THE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DATE PROCESSED: 07-18-1994 @ 12:25 BY GAROACH DIFF IN START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) START DATE/TIME: 10-01-90 (0001) DIFF IN DIFF IN PER -02 -03 -04 -05 -05 -06 -07 -08 -08 -08 -09 -09 -09 -09 -09 | | PAGE 1
LOG
NO: 33.0
(0015) | S | DIFF IN Q
PER
TENTH FT | .240
.558
.796
1.002 | 1.188
1.362
1.525
1.679
2.450 | 2.400
3.600
5.000
7.000 | 0.50
3.99
6.03
8.10 | 22.30
4.40
6.50
8.70 | 33.00
35.20
37.30
39.60
41.80 | 44.c0
46.30
48.40
50.80
53.00 | 55.20
57.60
59.80
62.10 | |--|---------------------------|------------------------------|--------------------------------|--|---|---|---|---|--|--| | TYPE:
RATING: 10-01-90 | DATE | D 60. | .199
.731
1.505
2.487 | 3.657
5.002
6.511
8.175 | 12.95
16.46
20.59
25.50
32.28 | 42.39 1
56.00 1
71.83 1
89.71 2 | 131.7 2
155.9 2
182.2 2
210.7 2 | 7.55.2 | 6.9
6.9
5.7
5.7 | 3.5
0.8
2.4 | | DIVISION
3 TYPE: 001
START DATE/TIME | EN AND CHK. BY | 80. | .162
.666
1.418
2.380 | 3.532
4.860
6.353
8.002
10.28 | 12.70
16.12
20.18
25.00
31.57 | 41.30
54.53
70.15
87.83
107.6 | 29.4
79.5
07.7 | 270.7 27.
305.4 305.4
342.4 341.5 381.5 | 466.4 477
512.2 51
560.3 561
610.6 61 | 717.9 72
775.0 78
834.3 84
896.0 90 | | RESOURCES
BY HAVE
DD: | WELL DEFINED BETWEEN DATE | PRECISION) | .127
.604
1.333
2.275 | 3.409
4.720
6.197
7.830
10.03 | 12.46
15.78
19.77
24.50
30.86 | 40.22
53.08
68.50
85.97
105.5 | 127.2
150.9
176.8
204.8
235.0 | 267.4
301.9
338.6
377.5 | 462.0
507.5
555.4
605.4 | 712.3
769.2
828.3
889.7 | | - WATER
4 @ 13:41 | BY | (EXPANDED PRE | .096
.544
1.250
2.172 | 3.287
4.581
6.042
7.660 | 12.21
15.43
19.35
24.01
30.15 | 39.15
51.65
66.86
84.13
103.5 | 124.9
148.5
174.1
201.9
231.9 | 264.0
298.3
334.8
373.5 | 457.5
502.9
550.5
600.3
652.4 | 706.8
763.4
822.3
883.5 | | GEOLOGICAL SURVEY
RATING TABLE
CESSED: 08-12-199 | _, AND IS COMP | ,05 | .069
.487
1.169
2.070 | 3.168
4.444
5.888
7.491 | 11.97
15.07
18.93
23.51
29.45 | 38.09
50.24
65.25
82.31 | 122.7
146.0
171.5
199.1
228.8 | 260.7
294.8
331.1
369.5 | 453.1
498.3
545.6
595.2
647.1 | 701.2
757.6
816.3
877.2 | | INTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | AND | PER SECOND | .045
.432
1.090
1.971 | 3.050
4.309
5.737
7.324
9.289 | 11.73
14.71
18.51
23.01
28.75 | 37.05
48.85
63.66
80.51 | 120.5
143.6
168.8
196.2
225.7 | 257.4
291.3
327.3
365.6
406.1 | 448.7
493.6
540.8
590.2
641.8 | 695.7
751.9
810.3
871.0 | | OF | ss | CUBIC FEET .03 | .026
.380
1.014 | 2.933
4.175
5.587
7.158
9.049 | 11.50
14.34
18.09
22.51
28.06 | 36.02
47.48
62.08
78.73 | 118.3
141.2
166.2
193.4
222.7 | 254.2
287.8
323.6
361.7 | 444.4
489.0
5386.0
585.1
636.5 | 690.2
746.2
804.4
864.9 | | TES DEI | UREMENTS, NOS | DISCHARGE IN | .011*
.330
.940
1.779 | 2.819
4.043
5.438
6.994
8.813 | 11.26
13.97
17.66
22.00
27.37 | 35.00
46.14
60.53
76.98
95.48 | 116.1
138.8
163.6
190.5
219.6 | 250.9
284.3
320.0
357.8
397.8 | 440.0
484.5
531.2
580.1
631.3 | 684.7
740.5
798.4
858.7 | | UNITED S
AT APPLETON
FFSET: (4.1 | DISCHARGE MEASU | O 10. | .003
.284
.868
1.685 | 2.706
3.913
5.291
6.832
8.580 | 11.03
13.59
17.23
21.50
26.68 | 33.99
44.81
59.00
75.24
93.54 | 113.9
136.4
161.0
187.8
216.6 | 247.7
280.9
316.3
353.9 | 435.7
479.9
526.4
575.1
626.1 | 679.3
734.8
792.5
852.6 | | UNITED STR
TERRE RIVER AT APPLETON,
3.11 BREAK, OFFSET: (4.10, | DISC | 00. | .000*.240*.798 | 2.596
3.784
5.146
6.671
8.350* | 10.80*
13.20*
16.80*
21.00* | 33.00*
43.50*
57.49
73.52
91.62 | 111.8
134.1
158.5
185.0
213.7 | 244.5
277.5
312.7
350.0 | 431.4
475.4
521.7
570.1
620.9 | 673.9
729.1
786.7
846.5 | | 05294000
POMME DE T
OFFSET: 3. | BASED ON | GAGE
HEIGHT
(FEET) | 3.10
3.20
3.30 | 3.50
3.60
3.70
3.80 | 4.00
4.10
4.20
4.30 | 4.50
4.60
4.70
4.80 | 5.00
5.10
5.20
5.30 | 08. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | nal' rec dri | 09.9
09.9
9.9 | later Control Manual, Lac qui Parle Project August 1995 | PAGE 2
TYPE: LOG | RATING NO: 33.0
10-01-90 (0015) | DIFF IN Q
PER
TENTH FT | 64.40 | 67.00
69.00
71.00
70.00
70.00 | 70.00
70.00
60.00
60.00 | 52.00
52.00
53.00
53.00
54.00 | 54.00
55.00
56.00
56.00 | 57.00
58.00
59.00
59.00 | 60.00
60.00
61.00
61.00 | 62.00
63.00
64.00
64.00
65.00 | |---|--------------------------------------|------------------------------|-------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--| | Ħ | | 60. | 966.4 | 1033
1102
1173
1243 | 1383
1453
1514
1574
1634 | 1686
1739
1791
1844 | 1953
2008
2063
2119
2176 | 2233
2290
2348
2407
2466 | 2526
2586
2647
2708
2770 | 2832
2895
2958
3022
3086
3151 | | DIVISION | 3 TYPE: 001
START DATE/TIME | 80. | 959.9 | 1026
1095
1166
1236
1306 | 1376
1446
1508
1568 | 1681
1733
1786
1839
1893 | 1947
2002
2057
2113
2170 | 2227
2284
2343
2401
2460 | 2520
2580
2641
2702
2764 | 2826
2889
2952
3015
3080 | | ₽4 | :41 BY HAVE
DD: | RECISION) | 953.4 | 1019
1088
1158
1229 | 1369
1439
1502
1562 | 1676
1728
1781
1834
1887 |
1942
1997
2052
2108
2164 | 2221
2279
2337
2395
2454 | 2514
2574
2635
2696
2757 | 2820
2882
2945
3009
3073 | | RVEY - WAT | 4 @ 13 | (EXPANDED PRECISION) | 946.9 | 1013
1081
1151
1222
1292 | 1362
1432
1496
1556 | 1671
1723
1775
1828
1882 | 1936
1991
2046
2102
2159 | 2215
2273
2331
2389
2448 | 2508
2568
2629
2690
2751 | 2813
2876
2939
3003
3067 | | ERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE | SSED: 08-12-199 | .05 | 940.5 | 1006
1074
1144
1215
1285 | 1355
1425
1490
1550 | 1666
1718
1770
1823 | 1931
1986
2041
2097
2153 | 2210
2267
2325
2384
2442 | 2502
2562
2623
2684
2745 | 2807
2870
2933
2996
3060 | | INTERIOR - GE
EXPANDED R | DATE PROCESSED: | PER SECOND | 934.1 | 999.4
1067
1137
1208
1278 | 1348
1418
1484
1544
1604 | 1661
1712
1765
1818
1871 | 1925
1980
2035
2091
2147 | 2204
2261
2319
2378
2437 | 2496
2556
2616
2677
2739 | 2863
2926
2990
3054 | | DEPARIMENT OF IN | N
(90) (8.00,3.00) | N CUBIC FEET .03 | 7.726 | 992.7
1060
1130
1201
1271 | 1341
1411
1478
1538
1598 | 1655
1707
1760
1812
1866 | 1920
1975
2030
2085
2142 | 2198
2256
2313
2372
2431 | 2490
2550
2610
2671
2733 | 2795
2857
2920
2983
3047 | | STATES DEPAN | Σπ | DISCHARGE IN | 921.3 | 986.1
1053
1123
1194
1264 | 1334
1404
1472
1532 | 1650
1702
1754
1807
1861 | 1915
1969
2024
2080 | 2193
2250
2308
2366
2425 | 2484
2544
2604
2665 | 2788
2851
2914
2977
3041 | | UNITED | TERRE RIVER AT APPLETON, | .01 | 914.9 | 979.5
1046
1116
1187
1257 | 1327
1397
1466
1526
1586 | 1645
1697
1749
1802 | 1909
1964
2019
2074
2130 | 2187
2244
2302
2360
2419 | 2478
2538
2598
2659
2720 | 2782
2845
2907
2971
3035 | | | TERRE RIVER
3.11 BREAK, | 00. | 908.6 | 973.0
1040
1109
1180* | 1320*
1390*
1460*
1520* | 1640*
1692
1744
1797
1850 | 1904
1958
2013
2069
2125 | 2181
2238
2296
2354
2413 | 2472
2532
2592
2653
2714 | 2776
2838
2901
2964
3028 | | | 05294000
POMME DE T
OFFSET: 3. | GAGE
HEIGHT
(FEET) | 06.9 | 7.00
7.10
7.20
7.30 | 7.50
7.60
7.70
7.80
7.90 | 8.00
8.10
8.20
8.30 | 8.50
8.60
8.70
8.80 | 9.00
9.10
9.20
9.30 | 00000
00000
00000 | 10.00 | | PAGE 3
TYPE: LOG | RATING NO: 33.0
10-01-90 (0015) | DIFF IN Q
PER
TENTH FT | | 65.00 | 66.00 | 67.00 | | 67.00 | 68.00 | 68.00 | 68.00 | 00.69 | 70.00 | 70.00 | 70.00 | 71.00 | 71.00 | | 72.00 | 72.00 | 72.00 | 73.00 | 74.00 | | ᢐ᠂ | σ, | 75.00 | 76.00 |) | 76.00 | 76.00 | 77.00 | 78.00 | 78.00 | | 00.87 | 78.00 | 00.00 | 00.00 | 00.00 | 80.00 | 81.00 | 81.00 | 81.00 | |---|--|------------------------------|------|-------|--------|-------|------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|---------|------|------|------|-------|---------|---|-------|--|-------|-------|-------|--------|-------|-------|-------|---------|-------|-------|-------|-------|---------| | _ | 3 TYPE: 001 R
START DATE/TIME: 10 | 60. | | 3216 | 3201 | 3414 | | 3481 | 3549 | 3617 | 3685 | 3/34 | 3824 | 3894 | 3964 | 4035 | 4106 | : | 4177 | 4250 | 4322 | 4395 | 4469 | | 4542 | 4617 | 2694 | 4 / 6 / | ! | 4918 | 4995 | 5072 | 5149 | 5227 | 2000 | 0300 | 2333 | 2462 | 5622 | 7705 | 5702 | 5782 | 5864 | 5945 | | ES DIVISION | | .08 | , | 3203 | , , | 3408 | | 3475 | 3542 | 3610 | 36/8 | 7 7 7 | 3817 | 3887 | 3957 | 4028 | 4099 | ; | 4170 | 4242 | 4315 | 4388 | 4461 | 0.00 | 4000 | 4009 | 4004 | 4835 | | 4911 | 4987 | 5064 | 5141 | 5219 | 6207 | 7575 | 3376 | 0,55 | 5614 | 5 | 5694 | 5774 | 5855 | 5937 | | WATER RESOURCES | | PRECISION) | 2002 | 3268 | 233 | 3401 | | 3468 | 3535 | 3603 | 2012 | 0.5.0 | 3810 | 3880 | 3950 | 4020 | 4092 | | 4163 | 4235 | 4308 | 4381 | 4454 | 000 | 9774 | 7094 | 4752 | 4827 | | 4903 | 4979 | 5056 | 5133 | 5211 | 5289 | 25.00 | 5,442 | 5526 | 5606 |) | 5686 | 5766 | 5847 | 5929 | | RVEY - | | (EXPANDED | 3196 | 3262 | 332R | 3394 | į | 3461 | 25 | 3396 | 3724 | , | 3803 | 3873 | 3943 | 4013 | 4084 | | 4136 | 4228 | 4300 | 43/3 | 4446 | 4520 | 4594 | 4664 | 4744 | 4820 | | 4895 | 49/2 | 5049 | 5126 | 5203 | 5281 | 5360 | 2000 | 5518 | 5598 | | 5678 | 5758 | 5839 | 5920 | | | | UD . 05 | 3190 | 3255 | 3321 | 3388 | | 3454 | 3522 | 3530 | 3727 | | 3796 | 3866 | 3936 | 4006 | 4077 | | 4149 | 1771 | 277 | 4366 | 4439 | 4513 | 4587 | 4662 | 4737 | 4812 | | 4888 | 4964 | 0.4 | 9116 | 5196 | 5274 | 5352 | 5431 | 5510 | 5590 | | 5670 | 5750 | 5831 | 5912 | | INTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | | ST PER SECOND | 3183 | 3249 | 3314 | 3381 | 0 | 3448 | 25.02 | 3651 | 3720 | ! | 3789 | 3859 | 3929 | 3999 | 4070 | 6717 | 7112 | 4243 | 4260 | | 7566 | 4505 | 4580 | 4654 | 4729 | 4804 | | 4880 | 4700 | 51.10 | 0110 | 2188 | 5266 | 5344 | 5423 | 5502 | 5582 | | 5662 | 5742 | 5823 | 5904 | | | MN
3.90) (8.00,3.00) | IN CUBIC FEET .03 | 3177 | 3242 | 3308 | 3374 | 1770 | 3441 | 3576 | 3644 | 3713 | ı
I | 3782 | 3852 | 3922 | 3992 | 4063 | 4134 | 4206 | 9226 | 4213 | *** | 4 7 4 K | 4498 | 4572 | 4647 | 4722 | 4797 | | 48/3 | n 10 10 10 10 10 10 10 10 10 10 10 10 10 | 5103 | 0.00 | 0816 | 25 | 5336 | 5415 | 5494 | 57 | | 5654 | 5/34 | 5815 | 9886 | | 4 | | DISCHARGE 1 | | 3235 | \sim | m | - | |) ທ | 9 | 3706 | | 3775 | 3845 | 3915 | 3985 | 4026 | _ | | 4271 | | ` < | r | ▽ | | ဖ | 4714 | 7 | | 4865 | 0103 | 5005 | 2,00 | 2116 | \sim | m | 5407 | 4 | 2 | | 5646 | 5/26 | o o | × | | UNITED | AT APPLETC
OFFSET: (4. | .01 | 3164 | 3229 | 3295 | 3361 | 4 | 9 7 | 5.6 | 63 | 3699 | | 3768 | n 6 | 2 5 | , | 2 | 12 | 4192 | 4264 | 1 (6) | 4410 | : | 4483 | 4557 | 4632 | 4707 | 4782 | | 4607 | . ניניק | 5087 | 5164 | ř | 5242 | 32 | 5399 | 47 | 55 | | 5638 | † C | , a | io
D | | | TEKKE KIVEK AT APPLETON,
3.11 BREAK,OFFSET: (4.10 | 00. | 15 | 3222 | 28 | 35 | 4.2 | ! α | 55 | 62 | 3692 | | 3761 | 200 | 2 6 | 7 | 2. | 11 | 18 | 4257 | 32 | 40 | | 47 | 55 | 62 | 4699 | 77 | 0 | 4000 | 00 | 0.7 | . 5 | 3 | 5235 | 31 | Q) | 47 | 5.5 | - 1 | 5630 | 70 | , 2 | 0 | | 05294000 | | GAGE
HEIGHT
(FEET) | 9.0 | 10.70 | 0.8 | 0.9 | | 11.10 | ~ | Ч | 11.40 | | 11.50 | ∹- | • - | • | • | 2.0 | 2.1 | 12.20 | 2,3 | 2.4 | | .5 | 5.6 | 2.7 | 12.80 | c.
9 | , | 13.10 | | | 3.4 | • | 13.50 | 3.6 | 3.7 | 3.8 | o.
و | | 14.00 | 1.0 | 4 . 4 | ? | | PAGE 4
TYPE: LOG | 3 TYPE: 001 RATING NO: 33.0 START DATE/TIME: 10-01-90 (0015) | DIFF IN Q
PER
TENTH FT | 82.00 | 82.00
83.00* | |--|--|--|-------|-------------------------| | | : 001 RAE: 10- | 60. | 6027 | 6109
6192 | | S DIVISION | | 80. | 6019 | 6101
6183 | | ERIOR - GEOLOGICAL SURVEY - WATER RESOURCES
EXPANDED RATING TABLE
DATE PROCESSED: 08-12-1994 & 13-41 BV HAND | :00 | (EXPANDED PRECISION) | 6010 | 6093
6175 | | SURVEY - WAT
LE
12-1994 @ 13 | | (EXPANDED | 6002 | 6084
6167 | | ERIOR - GEOLOGICAL SUF
EXPANDED RATING TABLE
DATE PROCESSED: 08-12- | | D . 05 | 5994 | 6076
6159 | | ITERIOR - G
EXPANDED
DATE PROC | | PER SECON | 5986 | 6068
6150 | | STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION EXPANDED RATING TABLE DATE PROCESSED: 08-12-1994 & 13-41 RV HAVE | 3.00,3.00) | DISCHARGE IN CUBIC FEET PER SECOND .02 .03 | 5978 | 6060
6142 | | | POMME DE TERRE RIVER AT APPLETON, MN
OFFSET: 3.11 BREAK,OFFSET: (4.10,3.90) (8.00,3.00) | DISCHARGE 1 | 5969 | 6051
6134 | | UNITED | AT APPLET
OFFSET: (4 | .01 | 5961 | 6043
6126 | | | TERRE RIVER
11 BREAK, | 00. | 5953 | 6035
6117
6200* | | 05294000 | POMME DE OFFSET: 3 | GAGE
HEIGHT
(FEET) | 14.40 | 14.50
14.60
14.70 | | PAGE 1
LOG | 0: 39.0
(0001) | İ | DIFF IN Q
PER
TENTH FT | .680
.762
.810 | 2.9.960
2.00
6.00
7.00 | .60
.40
.30 | 8.30
9.40
0.00
5.00 | .60
.20
.50 | 00.00
00.20
00.40
00.00
00.00 | 5.40
6.30
7.30
30 | 7.80
8.20
8.60
9.10 | |-----------------------------|--|---------------------------|------------------------------|--------------------------------|---|---|--|---|--|--|--| | TYPE: I | 1 RATING NO: 39.
ME: 10-01-91 (0001 | AND CFS
DATE | DI DI TE | 6.000* 4
11.56 5
19.16 7 | 28.90 9
40.70 12
56.26 16
74.08 18 | 107.0 15
123.5 16
140.8 17
1159.0 18 | 196.4 18
215.2 18
234.6 19
254.5 20
274.9 20 | 293.7 18
3312.6 18
331.8 19
351.3 19 | 390.9 19
441i.0 20
4452.0 20
472.9 20 | 497.8 2553.6 25549.9 26576.7 26604.0 27 | 631.7 27
659.8 28
688.5 28
717.5 29 | | DIVISION | 3 TYPE: 001
START DATE/TIME | CHK. BY | 80. | 10.91
18.31 | 27.83
39.42
54.56
72.18 | 105.4
121.8
139.0
157.1
176.1 |
194.6
213.3
232.6
252.5
272.9 | 291.9
310.7
329.9
349.3
369.0 | 388.9
409.0
429.4
450.0 | 495.3
521.0
547.3
574.0
601.2 | 628.9 6
657.0 6
685.6 6
714.6 7 | | RESOURCES | 42 BY HAVE
DD: | WELL DEFINED BETWEEN DATE | RECISION) | 10.29 | 26.78
38.17
52.88
70.31
87.73 | 103.8
120.1
137.3
155.3 | 192.7
211.4
230.7
250.5
270.8 | 290.0
308.8
328.0
347.4
367.0 | 386.9
407.0
427.3
447.9 | 492.7
518.4
544.6
571.3 | 626.1
654.2
682.7
711.7 | | - W | 08-12-1994 @ 13:0 | MP BY | (EXPANDED PRECISION) | 9.683
16.66 | 25.75
36.94
51.24
68.47 | 102.3
118.4
135.5
153.5
172.2 | 190.9
209.5
228.7
248.5
268.7 | 288.1
306.9
326.0
345.4 | 384.9
405.0
425.3
445.8
466.6 | 490.2
515.8
542.0
568.6
595.7 | 623.3
651.3
679.8
708.8
738.1 | | | | AND IS | .05 | 9.098 | 24.74
35.73
49.62
66.66
84.29 | 100.7
116.8
133.8
151.6
170.3 | 189.1
207.6
226.8
246.5
266.7 | 286.3
305.0
324.1
343.5
363.1 | 382.9
403.0
423.2
443.8
464.5 | 487.6
513.3
539.4
566.0
593.0 | 620.5
648.5
677.0
705.8
735.2 | | INTERIOR - GE
EXPANDED R | DATE PROCESSED: | AND | PER SECOND | 8.532
15.10 | 23.76
34.54
48.04
64.87
82.60 | 99.13
115.1
132.0
149.8 | 187.2
205.7
224.8
244.5
264.6 | 284.4
303.2
322.2
341.5 | 380.9
400.9
421.2
441.7 | 485.1
510.7
536.7
563.3
590.3 | 617.8
645.7
674.1
702.9
732.2 | | DEPARTMENT OF IN | | , | IN CUBIC FEET PER | 7.987 | 22.80
33.37
46.48
63.11
80.93 | 97.59
113.5
130.3
148.0 | 185.4
203.9
222.9
242.5
262.6 | 282.6
301.3
320.3
339.6
359.1 | 378.9
398.9
419.2
439.6 | 482.6
508.1
534.1
560.6
587.6 | 615.0
642.9
671.2
700.0
729.3 | | STATES DEPAH | I PARLE, MN | UREMENTS, NOS | DISCHARGE IN | 7.461
13.62 | 21.85
32.23
44.96
61.38 | 96.05
111.9
128.6
146.2 | 183.6
202.0
221.0
240.5
260.6 | 280.7
299.4
318.4
337.6 | 377.0
396.9
417.1
437.6
458.3 | 480.0
505.5
531.5
557.9 | 612.2
640.1
668.4
697.1
726.3 | | UNITED | RIVER NEAR LAC QUI | SCHARGE MEASU | .01 | 6.955 | 20.94
31.10
43.46
59.68 | 94.52
110.2
126.9
144.4 | 181.8
200.1
219.0
238.5
258.5 | 278.8
297.5
316.4
335.7 | 375.0
394.9
415.1
435.5 | 477.5
502.9
528.9
555.3
582.1 | 609.5
637.3
665.5
694.2
723.4 | | | | D18C | 00. | 6.468 | 20.04
30.00*
42.00*
58.00* | 93.00*
108.6
125.2
142.6
160.9 | 180.0*
198.3
217.1
236.5
256.5 | 277.0*
295.6
314.5
333.7 | 373.0*
392.9
413.1
433.5
454.1 | 475.0*
500.4
526.3
552.6
579.4 | 606.7
634.5
662.7
691.3
720.4 | | | 05300000
LAC QUI PARLE
OFFSET: .00 | BASED ON | GAGE
HEIGHT
(FEET) | .30 | | 1.00
1.10
1.20
1.30 | 1.50
1.60
1.70
1.80 | 2.00
2.10
2.20
2.30
2.40 | 2.50
2.60
2.70
2.80 | 3.00
3.10
3.20
3.30 | 3.50
3.70
3.90 | | 2 | 0 ~ | α . | | | | | | | | | |--|------------------------------------|--------------------------|--|---|--------------------------------------|--------------------------------------|---|--|--------------------------------------|-------------------------| | PAGE
TYPE: LOG | RATING NO: 39.0
10-01-91 (0001) | DIFF IN PER TENTH FT | 28.40
28.90
29.10
29.50 | 30.10
30.60
30.80
30.70 | 33.00
34.00
34.00
35.00 | 36.00
35.00
36.00
36.00 | 37.00
36.00
38.00
37.00
38.00 | 38.00
38.00
40.00
39.00 | 41.00
40.00
42.00
41.00 | 42.00
43.00
42.00 | | ŢŢ | | 60. | 775.6
804.4
833.5
862.9
892.8 | 922.9
953.4
984.2
1015 | 1080
1114
1148
1182
1217 | 1252
1288
1323
1360
1396 | 1433
1470
1507
1544
1582 | 1620
1659
1698
1737
1776 | 1816
1857
1898
1940
1982 | 2024
2066
2109 | | NOISION | 3 TYPE: 001
START DATE/TIME | 80. | 772.7
801.5
830.6
860.0
889.8 | 919.9
950.3
981.1
1012 | 1077
1110
1144
1179 | 1249
1284
1320
1356
1393 | 1429
1466
1503
1541 | 1616
1655
1694
1733 | 1812
1853
1894
1936
1977 | 2020
2062
2105 | | WATER RESOURCES 13:42 BY HAVE | | PRECISION) | 769.9
798.6
827.6
857.0
886.8 | 916.9
947.3
978.0
1009
1041 | 1073
1107
1141
1175 | 1245
1280
1316
1352
1389 | 1426
1462
1499
1537
1575 | . 1613
1651
1690
1729
1768 | 1808
1849
1890
1932 | 2015
2058
2101 | | , . | | (EXPANDED PRECISION) | 767.0
795.7
824.7
854.1 | 913.8
944.2
974.9
1006 | 1070
1104
1137
1172 | 1241
1277
1313
1349
1385 | 1422
1459
1496
1533 | 1609
1647
1686
1725 | 1845
1886
1927
1969 | 2011
2054
2096 | | ERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE DATE PROCESSED: 08-12-1994 | | D . 05 | 764.2
792.8
821.8
851.1
880.8 | 910.8
941.2
971.8
1003 | 1067
1100
1134
1168 | 1238
1273
1309
1345 | 1418
1455
1492
1529
1567 | 1605
1643
1682
1721
1760 | 1800
1841
1882
1923
1965 | 2007
2049
2092 | | INTERIOR - G
EXPANDED
DATE PROC | | r PER SECOND | 761.3
789.9
818.9
848.2
877.8 | 907.8
938.1
968.8
999.7 | 1063
1097
1131
1165
1199 | 1234
1270
1305
1342
1378 | 1415
1451
1488
1526
1563 | 1601
1639
1678
1717
1756 | 1796
1837
1878
1919
1961 | 2003
2045
2088 | | DEPARTMENT OF IN | | CUBIC FEET | 758.5
787.1
816.0
845.2
874.8 | 904.8
935.1
965.7
996.6 | 1060
1093
1127
1161 | 1231
1266
1302
1338 | 1411
1448
1484
1522
1559 | 1597
1636
1674
1713
1752 | 1792
1833
1874
1915 | 1999
2041
2083 | | TES | I PARLE, MN | DISCHARGE IN | 755.7
784.2
813.1
842.3
871.9 | 901.8
932.0
962.6
993.5 | 1057
1090
1124
1158 | 1227
1263
1298
1334 | 1407
1444
1481
1518
1556 | 1594
1632
1670
1709
1748 | 1788
1829
1870
1911 | 1994
2037
2079 | | UNITED STA | RIVER NEAR LAC QUI | .01 | 752.8
781.3
810.2
839.3
868.9 | 898.8
929.0
959.5
990.4 | 1053
1087
1120
1155 | 1224
1259
1295
1331 | 1404
1440
1477
1514
1552 | 1590
1628
1666
1705 | 1784
1825
1865
1907 | 1990
2032
2075 | | | | 00. | 750.0*
778.4
807.3
836.4
865.9 | 895.8
925.9
956.5
987.3 | 1050*
1083
1117
1151 | 1220
1256
1291
1327 | 1400*
1437
1473
1511 | 1586
1624
1663
1701 | 1780*
1821
1861
1903 | 1986
2028
2071 | | 02300000 | LAC QUI PARLE
OFFSET: .00 | GAGE
HEIGHT
(FEET) | 4.00
4.10
4.20
4.40 | 4.50
4.60
4.70
4.80 | 5.00
5.10
5.20
5.30
5.40 | 5.50
5.60
5.70
5.80
5.90 | 6.00
6.10
6.20
6.30 | 6.30
6.30
6.30 | 7.00
7.10
7.20
7.30
7.40 | 02.7
04.7
07.7 | | PAGE 3
TYPE: LOG | RATING NO: 39.0
10-01-91 (0001) | DIFF IN Q
PER
TENTH FT | 44.00 | 46.00
47.00
47.00
47.00
48.00 | 48.00
49.00
49.00
49.00
50.00 | 50.00
51.00
51.00
52.00
51.00 | 53.00
52.00
53.00
53.00 | 52.00
52.00
52.00
52.00
53.00 | 53.00
54.00
54.00
54.00
54.00 | 61.00
62.00
61.00
63.00 | |--|------------------------------------|------------------------------|--------------|---|---|---|---------------------------------------|---|---|---------------------------------------| | | •• | 60. | 2152
2196 | 2242
2288
2335
2383
2430 | 2479
2527
2576
2625
2675 | 2725
2776
2827
2878
2930 | 2982
3035
3088
3141
3195 | 3246
3298
3351
3403 | 3509
3562
3616
3670
3725 | 3785
3846
3908
3971
4033 | | RESOURCES DIVISION | 3 TYPE: 001
START DATE/TIME | .08 | 2148 | 2237
2284
2331
2378
2426 | 2474
2522
2571
2620
2670 | 2720
2771
2822
2873
2925 | 2977
3030
3082
3136
3189 | 3241
3293
3345
3398
3451 | 3504
3557
3611
3665
3719 | 3779
3840
3902
3964
4027 | | TER | 7 | PRECISION) | 2144
2187 | 2232
2279
2326
2373
2421 | 2469
2517
2566
2615
2665 | 2715
2766
2817
2868
2920 | 2972
3024
3077
3130
3184 | 3236
3288
3340
3393
3445 | 3498
3552
3605
3714 | 3773
3834
3896
3958
4021 | | RVEY - | יי
ד | (EXPANDED | 2139
2183 | 2228
2274
2321
2368
2416 | 2464
2513
2561
2611
2660 | 2710
2761
2812
2863
2915 | 2967
3019
3072
3125
3178 | 3231
3283
3335
3387
3440 | 3493
3546
3600
3654
3708 | 3767
3828
3890
3952
4014 | | GEOLOGICAL SURVEY RATING TABLE | | .05 | 2135
2178 | 2223
2270
2316
2364
2411 | 2459
2508
2556
2606
2655 | 2705
2756
2806
2858
2909 | 2961
3014
3066
3120
3173 |
3226
3278
3330
3382
3435 | 3488
3541
3595
3649 | 3760
3822
3883
3946
4008 | | INTERIOR - GEOLOGICAL SU
EXPANDED RATING TABLE
DATE DEOCFESSED: 08-19- | | ET PER SECOND .04 | 2131
2174 | 2218
2265
2312
2359
2406 | 2454
2503
2552
2601
2650 | 2700
2751
2801
2853
2904 | 2956
3008
3061
3114
3168 | 3221
3272
3324
3377
3429 | 3482
3536
3589
3643
3697 | 3754
3816
3877
3939
4002 | | RIMENT OF | | IN CUBIC FEET | 2126
2170 | 2214
2260
2307
2354
2402 | 2450
2498
2547
2596
2645 | 2695
2745
2796
2847
2899 | 2951
3003
3056
3109
3162 | 3215
3267
3319
3371
3424 | 3477
3530
3584
3638
3692 | 3748
3809
3871
3933
3996 | | STATES DEPARIMENT | QUI PARLE, MN | DISCHARGE 1 | 2122
2165 | 2209
2256
2302
2349
2397 | 2445
2493
2542
2591
2640 | 2690
2740
2791
2842
2894 | 2946
2998
3051
3104
3157 | 3210
3262
3314
3366
3419 | 3472
3525
3579
3632 | 3742
3803
3865
3989 | | UNITED | NEAR LAC Q | .01 | 2118
2161 | 2205
2251
2298
2345
2392 | 2440
2488
2537
2586
2635 | 2685
2735
2786
2837
2889 | 2941
2993
3045
3098
3152 | 3205
3257
3309
3361
3414 | 3466
3520
3573
3627
3681 | 3736
3797
3859
3921
3983 | | | LE RIVER | 00. | 2113
2157 | 2200*
2246
2293
2340
2387 | 2435
2483
2532
2581
2630 | 2680*
2730
2781
2832
2884 | 2935
2988
3040
3093
3146 | 3200*
3252
3304
3356
3408 | 3461
3514
3568
3622
3676 | 3730*
3791
3853
3914
3977 | | 0530000 | LAC QUI PARI | GAGE
HEIGHT
(FEET) | 7.80 | 8.00
8.10
8.20
8.30 | 8.50
8.60
8.70
8.80 | 9.00
9.10
9.20
9.30 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 10.00
10.10
10.20
10.30 | 10.50
10.60
10.70
10.80 | 11.00
11.10
11.20
11.30 | | PAGE 4 | PATING NO: 39.0
0-01-91 (0001) | DIFF IN Q
PER
TENTH FT | 63.00
63.00
65.00
64.00 | 62.00
63.00
63.00
64.00
63.00 | 65.00
64.00
65.00
65.00
66.00 | 77.00
78.00
79.00
79.00
80.00 | 80.00
81.00
81.00
82.00
83.00 | 87.00
88.00
88.00
89.00 | 90.00
91.00
92.00
92.00 | 123.0
125.0
127.0 | |---|-----------------------------------|------------------------------|--------------------------------------|---|---|---|---|---|--------------------------------------|-------------------------| | TYPE | | 60• | 4096
4160
4224
4289
4353 | 4416
4479
4542
4605 | 4733
4798
4863
4928
4993 | 5070
5147
5226
5305
5385 | 5465
5546
5627
5709
5792 | 5878
5966
6054
6143
6233 | 6323
6414
6505
6598
6691 | 6811
6936
7062 | | S DIVISION | 3 TYPE: 001
START DATE/TIME | 80. | 4090
4154
4218
4282
4347 | 4410
4472
4536
4599
4663 | 4727
4791
4856
4921
4987 | 5062
5140
5218
5297
5377 | 5457
5538
5619
5701
5783 | 5869
5957
6045
6134
. 6224 | 6314
6405
6496
6588
6681 | 6799
6923
7049 | | WATER RESOURCES | 5:42 BI DAVE
DD: | PRECISION) | 4084
4147
4211
4276
4340 | 4404
4466
4529
4593
4656 | 4720
4785
4850
4915
4980 | 5054
5132
5210
5289
5369 | 5449
5529
5611
5693
5775 | 5861
5948
6036
6125
6215 | 6305
6395
6487
6579
6672 | 6786
6911
7037 | | RVEY - | ಶ | (EXPANDED | 4077
4141
4205
4269
4334 | 4397
4460
4523
4586 | 4714
4778
4843
4908 | 5046
5124
5202
5281
5361 | 5441
5521
5603
5684
5767 | 5852
5939
6027
6116
6206 | 6296
6386
6478
6570
6663 | 6774
6898
7024 | | ERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE | CESSED: OB | ND .05 | 4071
4135
4198
4263
4327 | 4391
4454
4517
4580
4643 | 4772
4772
4837
4902
4967 | 5039
5116
5194
5273
5353 | 5433
5513
5594
5676
5759 | 5843
5931
6019
6107
6197 | 6287
6377
6469
6561
6653 | 6762
6886
7011 | | INTERIOR -
EXPANDED | DA1E PRO | ET PER SECOND | 4065
4128
4192
4256
4321 | 4385
4447
4510
4573
4637 | 4701
4765
4830
4895
4961 | 5031
5108
5187
5265
5345 | 5425
5505
5586
5668
5750 | 5835
5922
6010
6098
6188 | 6278
6368
6459
6551
6644 | 6749
6873
6999 | | DEPARTMENT OF | W | IN CUBIC FEET .03 | 4058
4122
4186
4250
4314 | 4379
4441
4504
4567
4631 | 4695
4759
4824
4889 | 5023
5101
5179
5257
5337 | 5417
5497
5578
5660
5742 | 5826
5913
6001
6089
6179 | 6269
6359
6450
6542
6635 | 6737
6861
6986 | | STATES | QUI PARLE, N | DISCHARGE | 4052
4115
4179
4243
4308 | 4372
4435
4498
4561 | 4688
4753
4817
4882
4947 | 5015
5093
5171
5250
5329 | 5409
5489
5570
5652
5734 | 5817
5904
5992
6081
6170 | 6260
6350
6441
6533
6625 | 6725
6848
6973 | | UNITED | NEAR LAC | .01 | 4046
4109
4173
4237
4302 | 4366
4429
4491
4554
4618 | 4682
4746
4811
4876
4941 | 5008
5085
5163
5242
5321 | 5401
5481
5562
5643
5726 | 5809
5896
5983
6072
6161 | 6251
6341
6432
6524
6616 | 6712
6836
6961 | | | PARLE RIVER | 00. | 4040
4103
4166
4231
4295 | 4360*
4422
4485
4548 | 4675
4740
4804
4869
4934 | 5000*
5077
5155
5234
5313 | 5393
5473
5554
5635
5717 | 5800*
5887
5975
6063
6152 | 6242
6332
6423
6515
6607 | 6700*
6823
6948 | | 0
0
0
0 | LAC QUI PARLE
OFFSET: .00 | GAGE
HEIGHT
(FEET) | 11.50
11.60
11.70
11.80 | 12.00
12.10
12.20
12.30 | 12.50
12.60
12.70
12.80
12.90 | 13.00
13.10
13.20
13.30 | 13.50
13.60
13.70
13.80 | 14.00
14.10
14.20
14.30
14.40 | 14.50
14.60
14.70
14.80 | 15.00
15.10
15.20 | | | | UNITED | | STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION | TERIOR - GE | OLOGICAL SI | JRVEY - WAT | TER RESOURCES | DIVISION | | PAGE 5 | |-----------------------------|---|----------|---------------|--|-------------------------|--|------------------|--|-------------------------------|---------|---| | 05300000 | | : | | | EXPANDED R. DATE PROCES | EXPANDED RATING TABLE DATE PROCESSED: 08-12- | E
2-1994 @ 13 | EXPANDED RATING TABLE DATE PROCESSED: 08-12-1994 @ 13:42 BY HAVE | | | TYPE: LOG | | LAC QUI PARI
OFFSET: .00 | LAC QUI PARLE RIVER NEAR LAC QUI
OFFSET: .00 | NEAR LAC | QUI PARLE, MN | > | | | | : QQ | 3 TYPE: 001
START DATE/TIM | : 001 F | 3 TYPE: 001 RATING NO: 39.0
START DATE/TIME: 10-01-91 (0001) | | GAGE
HEIGHT | | | DISCHARGE I | ISCHARGE IN CUBIC FEET PER SECOND | PER SECOND | | (EXDANDED | EXPANDED DEFCISIONS | | | DIFF IN Q | | (FEET) | 00. | .01 | | .03 | .04 | .05 | 90. | .07 | 80. | 60. | FER
TENTH FT | | 15,30 | 7075 | 7087 | 7100 | 7113 | 7126 | 7138 | 7151 | 7164 | 77.17 | 7190 | 0 561 | | 15.40 | | 7215 | 7228 | 7241 | 7254 | 7267 | 7280 | 7293 | 7306 | 7319 | 130.0 | | 15.50 | 7332 | 7345 | 7358 | 7371 | 7384 | 7397 | 7410 | £691 | 7636 | 0777 | 6 | | 15.60 | 7462 | 7476 | 7489 | 7502 | 7515 | 7528 | 7542 | 7555 | 7568 | 7501 | 0.66 | | 15.70 | 7595 | 7608 | 7621 | 7634 | 7648 | 7661 | 7675 | 7688 | 7703 | 7715 | 0.001 | | 15.80 | 7728 | 7742 | 7755 | 1769 | 7782 | 9677 | 7809 | 7823 | 7836 | 7850 | 3.4.0 | | 15.90 | 7863 | 7877 | 7891 | 7904 | 7918 | 7931 | 7945 | 7959 | 7973 | 7986 | 137.0* | | 16.00 | *0008 | | | | | | | | | | | | PAGE 1 TYPE: LOG RATING NO: 27.0 | 0-01-90 (0015) | CFS
DATE | DIFF IN Q
PER
TENTH FT | 7.000
8.000
10.00
12.50 | 15.65
17.56
19.49
21.50
23.60 | 25.60
27.70
29.80
32.00 | 36.50
38.70
41.00
43.30
45.70 | 48.00
50.40
52.90
53.20
53.20 | 53.20
53.20
53.20
53.60
53.80 | 54.00
54.00
54.00
54.00 | 54.00
54.00
54.00
54.00 | |--|----------------|-----------------|------------------------------|--------------------------------------|---|---|---|---|---|--------------------------------------|----------------------------------| | 001 | | BY DA | 60. | 33.78
41.67
51.46
63.69 | 79.00
96.37
115.7
137.0 | 185.7
213.2
242.8
274.6
308.6 | 344.8
383.3
424.1
467.2
512.6 | 560.4
610.5
663.2
716.4
769.6 | 822.8
876.0
929.2
982.8 | 1091
1145
1199
1253
1307 | 1361
1415
1469
1523 | | DIVISION 7 TYPE: | IART | CHK. | 80. | 33.06
40.85
50.43
62.39 | 77.37
94.54
113.7
134.8 | 183.1
210.3
239.8
271.3 | 341.1
379.4
419.9
462.8
507.9 | 555.5
605.4
657.8
711.0 |
817.4
870.6
923.8
977.4
1031 | 1085
1139
1193
1247
1301 | 1355
1409
1463
1517 | | ER RESOURCES:43 BY HAVE DD: | • | DATE | PRECISION) | 32.35
40.04
49.40
61.11 | 75.76
92.74
111.7
132.6
155.5 | 180.5
207.5
236.7
268.1
301.6 | 337.4
375.4
415.7
458.4
503.3 | 550.6
600.3
652.5
705.6
758.8 | 812.1
865.3
918.5
972.0 | 1080
1134
1188
1242
1296 | 1350
1404
1458
1512 | | - WAT | | BY WELL | (EXPANDED PF | 31.64
39.23
48.39
59.84 | 74.16
90.95
109.7
130.4 | 177.9
204.7
233.7
264.8
298.2 | 333.7
371.5
411.6
454.0 | 545.8
595.2
647.1
700.3 | 806.7
859.9
913.1
966.6
1020 | 1074
1128
1182
1236
1290 | 1344
1398
1452
1506 | | ERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE DATE PROCESSED: 08-12-1994 | | AND IS COMP | .05 | 30.94
38.43
47.38
58.58 | 72.59
89.19
107.7
128.2
150.7 | 175.3
201.9
230.7
261.6
294.7 | 330.1
367.7
407.5
449.7 | 541.0
590.2
641.8
694.9
748.2 | 801.4
854.6
907.8
961.2
1015 | 1069
1123
1177
1231 | 1339
1393
1447
1501 | | INTERIOR - GEC
EXPANDED RJ
DATE PROCES | | AND | PER SECOND | 30.24
37.63
46.39
57.34 | 71.03
87.44
105.8
126.1 | 172.7
199.2
227.7
258.4
291.3 | 326.4
363.8
403.4
445.3 | 536.2
585.2
636.6
689.6
742.8 | 796.1
849.3
902.5
955.9
1010 | 1063
1117
1171
1225
1279 | 1333
1388
1442
1496 | | OF | | | CUBIC FEET .03 | 29.55
36.84
45.40
56.11 | 69.50
85.72
103.9
124.0 | 170.2
196.4
224.8
255.3
287.9 | 322.8
360.0
399.3
441.0 | 531.4
580.2
631.3
684.3
737.6 | 790.8
844.0
897.2
950.5 | 1058
1112
1166
1220 | 1328
1382
1436
1490 | | ATES DEPARTMENT | | ASUREMENTS, NOS | SCHARGE IN | 28.86
36.05
44.42
54.89 | 67.98
84.01
102.0
121.9 | 167.7
193.7
221.9
252.1
284.6 | 319.2
356.1
395.3
436.8 | 526.7
575.2
626.1
679.1 | 785.5
838.7
891.9
945.2
998.9 | 1053
1107
1161
1215
1269 | 1323
1377
1431
1485 | | UNITED ST | | SCHARGE MEASUF | 10. | 28.18
35.27
43.46
53.69 | 66.48
82.32
100.1
119.8 | 165.2
191.0
218,9
249.0
281.2 | 315.7
352.3
391.3
432.5
476.1 | 522.0
570.2
620.9
673.8 | 780.2
833.4
886.7
939.9 | 1047
1101
1155
1209 | 1317
1371
1425
1479 | | NEAR | | DISCH | 00. | 27.50*
34.50*
42.50*
52.50* | 65.00*
80.65
98.21
117.7 | 162.8
188.4
216.1
245.9
277.9 | 312.1
348.6
387.3
428.3 | 517.3
565.3
615.7*
668.6* | 775.0*
828.2*
881.4*
934.6* | 1042*
1096*
1150*
1254* | 1312*
1366*
1420*
1474* | | 05304500
CHIPPEWA RIVER | OFFSET: .50 | BASED ON | GAGE
HEIGHT
(FEET) | 1.10
1.20
1.30
1.40 | 1.50
1.60
1.70
1.80 | 2.00
2.10
2.20
2.30
2.40 | 2.50
2.60
2.70
2.80
2.90 | 3.00
3.10
3.20
3.30 | 3.50
3.60
3.70
3.80 | 4.00
4.10
4.20
4.30 | 4.50
4.60
4.70
4.80 | | PAGE 2
TYPE: LOG
RATING NO: 27.0
0-01-90 (0015) | DIFF IN Q
PER
TENTH FT | 54.00 | 56.00
57.00
57.00
58.00
59.00 | 60.00
60.00
61.00
61.00 | 62.00
64.00
64.00
65.00
66.00 | 66.00
66.00
68.00
68.00 | 69.00
70.00
70.00
71.00
72.00 | 72.00
73.00
74.00
74.00 | 76.00
76.00
76.00
77.00 | 79.00 | |---|------------------------------|-------|---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|-------| | | 60. | 1577 | 1632
1689
1746
1804 | 1923
1983
2044
2105
2167 | 2230
2294
2358
2423
2488 | 2554
2621
2688
2756
2825 | 2894
2964
3034
3105 | 3249
3322
3395
3469
3544 | 3619
3695
3771
3848
3926 | 4004 | | S DIVISION 7 TYPE: 001 START DATE/TIME | 80. | 1571 | 1627
1683
1741
1799 | 1917
1977
2038
2099
2161 | 2224
2287
2351
2416
2481 | 2547
2614
2681
2749
2818 | 2887
2957
3027
3098
3170 | 3242
3315
3388
3462
3536 | 3612
3687
3764
3840
3918 | 3996 | | WATER RESOURCES 13:43 BY HAVE DD: | PRECISION) | 1566 | 1621
1678
1735
1793
1851 | 1911
1971
2031
2093
2155 | 2217
2281
2345
2410
2475 | 2541
2607
2675
2742
2811 | 2880
2950
3020
3091
3162 | 3235
3307
3381
3454
3529 | 3604
3680
3756
3833
3910 | 3988 | | RVEY - | (EXPANDED | 1560 | 1616
1672
1729
1787
1846 | 1905
1965
2025
2087
2149 | 2211
2274
2338
2403
2468 | 2534
2601
2668
2736
2804 | 2873
2943
3013
3084
3155 | 3227
3300
3373
3447
3521 | 3597
3672
3748
3825
3902 | 3980 | | GEOLOGICAL SURVEY
RATING TABLE
CESSED: 08-12-199 | .05 | 1555 | 1610
1666
1723
1781
1840 | 1899
1959
2019
2080
2142 | 2205
2268
2332
2397
2462 | 2528
2594
2661
2729
2797 | 2866
2936
3006
3077
3148 | 3220
3293
3366
3440
3514 | 3589
3665
3741
3817
3895 | 3972 | | INTERIOR - GEOLOGICAL SU
EXPANDED RATING TABLE
DATE PROCESSED: 08-12- | T PER SECOND | 1550 | 1604
1661
1718
1775
1834 | 1893
1953
2013
2074
2136 | 2199
2262
2326
2390
2455 | 2521
2587
2654
2722
2790 | 2859
2929
2999
3070
3141 | 3213
3285
3359
3432
3507 | 3581
3657
3733
3810
3887 | 3965 | | DEPARIMENT OF I | IN CUBIC FEET | 1544 | 1599
1655
1712
1770
1828 | 1887
1947
2007
2068
2130 | 2192
2255
2319
2384
2449 | 2514
2581
2648
2715
2783 | 2852
2922
2992
3062
3134 | 3206
3278
3351
3425
3499 | 3574
3649
3725
3802
3879 | 3957 | | STATES DEPA | DISCHARGE 1 | 1539 | 1593
1649
1706
1764
1822 | 1881
1941
2001
2062
2124 | 2186
2249
2313
2377
2442 | 2508
2574
2641
2708 | 2845
2915
2985
3055 | 3198
3271
3344
3417
3492 | 3566
3642
3718
3794
3871 | 3949 | | UNITED | .01 | 1533 | 1588
1644
1700
1758 | 1875
1935
1995
2056
2118 | 2180
2243
2306
2371
2436 | 2501
2567
2634
2702
2770 | 2838
2908
2978
3048 | 3191
3264
3337
3410
3484 | 3559
3634
3710
3787
3864 | 3941 | | UN
RIVER NEAR MILAN,
50 | 00. | 1528* | 1582*
1638
1695
1752
1810 | 1869
1929
1989
2050
2111 | 2174
2236
2300
2364
2429 | 2495
2561
2627
2695
2763 | 2832
2901
2971
3041
3112 | 3184
3256
3329
3403
3477 | 3551
3627
3703
3779
3856 | 3933 | | 05304500
CHIPPEWA RIV
OFFSET: .50 | GAGE
HEIGHT
(FEET) | 4.90 | 5.00
5.10
5.20
5.30 | 5.50
5.60
5.70
5.80 | 6.00
6.10
6.20
6.30 | 6.50
6.60
6.70
6.80 | 7.00
7.10
7.20
7.30 | 7.50 | 8.00
8.10
8.20
8.30
8.40 | 8.50 | | PAGE 3
TYPE: LOG | RATING NO: 27.0
10-01-90 (0015) | DIFF IN Q
PER
TENTH FT | 78.00
79.00
80.00
81.00 | 81.00
81.00
82.00
83.00 | 83.00
85.00
84.00
85.00
86.00 | 87.00
86.00
88.00
88.00
88.00 | 92.00
93.00
93.00
94.00 | 95.00
96.00
96.00
98.00 | 97.00
99.00
99.00
99.00 | 101.0
101.0
102.0
102.0 | |---|------------------------------------|------------------------------|----------------------------------|--------------------------------------|---|---|---------------------------------------|--------------------------------------|--|----------------------------------| | £ | •• | 60. | 4082
4162
4241
4322 | 4402
4484
4566
4648
4731 | 4899
4984
5069
5155 | 5241
5328
5415
5503
5591 | 5683
5775
5869
5962
6057 | 6152
6247
6343
6440
6537 | 6635
6733
6832
6931
7031 | 7132
7233
7335
7437 | | S DIVISION | 7 TYPE: 001
START DATE/TIME | .08 | 4074
4154
4233
4314 | 4394
4476
4558
4640
4723 | 4807
4891
4975
5060
5146 | 5232
5319
5406
582 | 5674
5766
5859
5953
6047 | 6142
6237
6333
6430
6527 | . 6625
6723
6822
6921
7021 | 7122
7223
7324
7427 | | ∞. | 1 | PRECISION) | 4067
4146
4225
4305 | 4386
4468
4549
4632 | 4798
4882
4967
5052
5137 | 5224
5310
5397
5485
5573 | 5664
5757
5850
5944
6038 | 6133
6228
6324
6420
6517 | 6615
6713
6812
6911
7011 | 7112
7213
7314
7416 | | - WAT | ე
寸
ච | (EXPANDED | 4059
4138
4217
4297 | 4378
4459
4541
4624
406 | 4790
4874
4958
5043
5129 | 5215
5302
5389
5476
5565 | 5655
5748
5841
5934
6028 | 6123
6218
6314
6411
6508 | 6605
6703
6802
6901
7001 | 7102
7203
7304
7406 | | GEOLOGICAL SURVEY RATING TABLE | 3EU: 08-1 | .05 | 4051
4130
4209 | 4370
4451
4533
4615 | 4781
4865
4950
5035
5120 | 5206
5293
5380
5468
5556 | 5646
5738
5831
5925
6019 |
6114
6209
6305
6401
6498 | 6595
6694
6792
6891
6991 | 7092
7192
7294
7396 | | INTERIOR - GEOLOGICAL SURVEY EXPANDED RATING TABLE DATE PROCESSION 00-10-1004 | DAIE PROCES | PER SECOND | 4043
4122
4201
4281 | 4362
4443
4525
4607
4690 | 4773
4857
4941
5026
5112 | 5198
5284
5371
5459
5547 | 5637
5729
5822
5915
6009 | 6104
6199
6295
6391
6488 | 6586
6684
6782
6882
6981 | 7082
7182
7284
7386 | | DEPARTMENT OF IN | | CUBIC FEET | 4035
4114
4193
4273 | 4354
4435
4517
4599
4681 | 4765
4849
4933
5018
5103 | 5189
5276
5363
5450
5538 | 5628
5720
5813
5906
6000 | 6095
6190
6285
6382
6479 | 6576
6674
6772
6872
6971 | 7071
7172
7274
7375 | | STATES DEPAR | | DISCHARGE IN | 4027
4106
4185
4265 | 4346
4427
4508
4591
4673 | 4756
4840
4924
5009
5095 | 5180
5267
5354
5441
5529 | 5618
5711
5803
5897
5991 | 6085
6180
6276
6372
6469 | 6566
6664
6763
6862
6961 | 7061
7162
7263
7365 | | UNITED | MILAN, MN | .01 | 4019
4098
4177
4257 | 4338
4419
4500
4582
4665 | 4748
4832
4916
5001
5086 | 5172
5258
5345
5432
5520 | 5609
5701
5794
5887
5981 | 6076
6171
6266
6362
6459 | 6556
6654
6753
6852
6951 | 7051
7152
7253
7355 | | | RIVER NEAR 1
50 | 00. | 4012
4090
4169
4249 | 4330
4411
4492
4574
4657 | 4740
4823
4908
5077 | 5163
5250
5336
5424
5512 | 5600*
5692
5785
5878
5972 | 6066
6161
6257
6353
6449 | 6547
6644
6743
6842
6941 | 7041
7142
7243
7345 | | 00000 | • | GAGE
HEIGHT
(FEET) | 8.60
8.70
8.80 | 9.00
9.10
9.20
9.30 | 9.9
9.9
9.9
9.80 | 10.00
10.10
10.20
10.30 | 10.50
10.60
10.70
10.80 | 11.00
11.10
11.20
11.30 | 11.50
11.60
11.70
11.80 | 12.00
12.10
12.20
12.30 | | 4 | 0 ^ | α. |--|------------------------------------|----------------------------|---------|--------|--------| | PAGE
TYPE: LOG | RATING NO: 27.0
10-01-90 (0015) | DIFF IN
PER
TENTH FT | 103.0 | 118.0 | 119.0 | 119.0 | 120.0 | 122.0 | 122.0 | 123.0 | 123.0 | 125.0 | 125.0 | 127.0 | 127.0 | 128.0 | 128.0 | 130.0 | 131.0 | 131.0 | 132.0 | 133.0 | 137.0 | 130.0 | 140.0 | 130.0 | 140.0 | 140.0 | 140.0 | 140.0 | 140.0 | 140.0 | 140.0* | | | | 1 | 60. | 7540 | 7656 | 7775 | 7894 | 8014 | 8135 | 8257 | 8380 | 8504 | 8628 | 8754 | 8880 | 2006 | 9135 | 9264 | 9393 | 9523 | 9655 | 7876 | 9920 | 10050 | 06101 | 10320 | 10460 | 10600 | 10730 | 10870 | 11010 | 11150 | 11290 | 11440 | | | S DIVISION | 7 TYPE: 001
START DATE/TIME: | 80. | 7529 | 7644 | 7763 | 7882 | 8002 | 8123 | 8245 | 8368 | 8492 | 8616 | 8741 | 8867 | 8994 | 9122 | 9251 | 9380 | 9510 | 9641 | 9773 | 9066 | 10040 | 10170 | 10310 | 10450 | 10580 | 10720 | 10860 | 11000 | 11140 | . 11280 | 11420 | | | - WATER RESOURCES DIVISION @ 13:43 BY HAVE | :
00 | (EXPANDED PRECISION) | 7519 | 7632 | 7751 | 7870 | 1990 | 8111 | 8233 | 8356 | 8479 | 8603 | 8729 | 8855 | 8982 | 9109 | 9238 | 9367 | 9497 | 8296 | 09/6 | 9893 | 10030 | 10160 | 10300 | 10430 | 10570 | 10710 | 10850 | 10980 | 11120 | 11270 | 11410 | | | | | (EXPANDED | 7509 | 7621 | 7739 | 7858 | 7978 | 6608 | 8221 | 8343 | 8467 | 8591 | 8716 | 8842 | 6968 | 9606 | 9225 | 9354 | 9484 | 9615 | 9747 | 9880 | 10010 | 10150 | 10280 | 10420 | 10560 | 10690 | 10830 | 10970 | 11110 | 11250 | 11390 | | | | | D . 05 | 7498 | 7609 | 7277 | 7846 | 1966 | 8087 | 8209 | 8331 | 8454 | 8579 | 8704 | 8829 | 8956 | 9084 | 9212 | 9341 | 9471 | 2096 | 9.734 | 9886 | 10000 | 10130 | 10270 | 10400 | 10540 | 10680 | 10820 | 10960 | 11100 | 11240 | 11380 | | | VTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | | r PER SECOND | 7488 | 7597 | 7715 | 7834 | 7954 | 8075 | 8196 | 8319 | 8442 | 8566 | 8691 | 8817 | 8943 | 9071 | 9199 | 9328 | 9458 | 9589 | 9721 | 9853 | 9866 | 10120 | 10260 | 10390 | 10530 | 10670 | 10800 | 10940 | 11080 | 11220 | 11360 | | | TES DEPARIMENT OF II | | V CUBIC FEET | 7478 | 7585 | 7703 | 7822 | 7942 | 8063 | 8184 | 8306 | 8430 | 8554 | 8678 | 8804 | 8931 | 9028 | 9186 | 9315 | 9445 | 9216 | 5006 | 9840 | 9973 | 10110 | 10240 | 10380 | 10510 | 10650 | 10790 | 10930 | 11070 | 11210 | 11350 | | | STATES DEPAI | | DISCHARGE IN | 7468 | 7573 | 7691 | 7810 | 7930 | 8051 | 8172 | 8294 | 8417 | 8541 | 8666 | 8792 | 8918 | 9045 | 9173 | 9302 | 9432 | 9563 | 9694 | 9856 | 0966 | 10090 | 10230 | 10360 | 10500 | 10640 | 10780 | 10910 | 11050 | 11190 | 11340 | | | | MILAN, MN | .01 | 7457 | 7562 | 7680 | 7798 | 7918 | 8039 | 8160 | 8282 | 8405 | 8529 | 8653 | 8779 | 8905 | 9033 | 9161 | 9289 | 9419 | 55 | 9681 | 83 | 9946 | 10080 | 10210 | 10350 | 10490 | 10620 | 10760 | 10900 | 13040 | 11180 | 11320 | | | | RIVER NEAR MILAN,
50 | 00. | 7447 | 7550* | 7668 | 7787 | 9067 | 8026 | 8148 | 8270 | 8393 | 8516 | 8641 | 8766 | 8893 | 9020 | 9148 | 9276 | 9406 | 9537 | 8996 | 0086 | 9933 | 10070 | 10200 | 10340 | 10470 | 10610 | 10750 | 10890 | 11030 | 11170 | 11310 | 11450* | | | OFFSET: . | GAGE
HEIGHT
(FEET) | 12.40 | 12.50 | 12.60 | 12.70 | 12.80 | 12.90 | 13.00 | 13.10 | • | 13.30 | • | 13.50 | 13.60 | 13.70 | 13.80 | 13.90 | 14.00 | 14.10 | 14.20 | 14.30 | • | 14.50 | 14.60 | 14.70 | 14.80 | 4 | 15.00 | 15.10 | 15.20 | 15.30 | 15.40 | 15.50 | | UNITED STATE 05292000 MINNESOTA RIVER AT ORTONVILLE, MN OFFSET: 1.00 RREAK.OFFSET: (2.45 | | res department | OF INT | INTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | () | - WAT | ER RESOURCES:36 BY HAVE DD: | DIVISION 3 TYPE: 001 START DATE/TIME. | - | PAGE 1 TYPE: LOG RATING NO: 25.0 | |--|---|---------------------------------|---|---|---|---|---|---|---|---| | SUREM | surements, | 7.0 | | AND | . AND IS | BY | STAK WELL DEFINED BETWEEN DATE | WEEN CHK. | - | S | | DISCHARGE IN C. | HARGE IN | () | CUBIC FEET .03 | PER SECOND | .05 | (EXPANDED PF | PRECISION) | 80. | 60. | DIFF IN Q
PER
TENTH FT | | .037 .044 .050
.100* .125 .150 | 4 .05
5 .15 | | .056 | .000* | .006 | .012
.075
.250 | .019 | .025 | .031 | .062 | | .350* .410 .470
.950* 1.088 1.230
2.540* 2.799 3.069
5.684 6.067 6.462 | .470
1.230
3.069
6.462 | | .530
1.378
3.353
6.869 | .590
1.531
3.649
7.289 | .650
1.689
3.957
7.721 | .710
1.851
4.278
8.165 | | .830
2.187
4.956
9.091 | .890
2.362
5.314
9.573 | .600
1.590
3.144
4.386 | | 10.57 11.09 | 11.09 | | 11.62 | 12.17 | 12.72 | 13.29 | 13.87 | 14.46 | 15.07 | 5.610 | | 15.68 16.31 16.95 1 22.53 23.28 24.04 2 30.60 31.47 32.36 3 39.90 40.89 41.90 4 50.41 51.53 52.66 5 | 16.95
24.04
32.36
41.90
52.66 | 1 2 8 4 5 | 7.61
4.82
3.26
2.92
3.81 | 18.27
25.61
34.17
43.96
54.96 | 18.95
26.41
35.10
45.00
56.13 | 19.64
27.22
36.03
46.06
57.31 | 20.35
28.05
36.98
47.13
58.50 | 21.06
28.89
37.94
48.21
59.71 | 21.79
29.74
38.91
49.31
60.92 | 6.850
8.070
9.300
10.51
11.74 | | 62.15 63.39 64.65 65
75.11* 76.48 77.87 79
89.40* 90.79 92.20 93
03.8* 105.2 106.7 108
18.4* 119.8 121.3 122 | 64.65
77.87
92.20
106.7
121.3 | W [~ 01 D 14 | 65.91
79.27
93.61
108.1 | 67.19
80.68
95.04
109.5 | 68.48
82.10
96.48
111.0 | 69.78
83.53
97.92
112.5 | 71.09
84.98
99.38
113.9 | 72.42
86.44
100.8
115.4 | 73.76
87.91
102.3
116.9 | 12.96
14.29
14.40
14.60 | | 33.1* 134.5 136.0 137.4 149.3 150.7 152 152 164.2 165.6 167.7 17.7* 179.2 180.7 182.92.7 194.3 195.8 197. | | 137
152
167
182
192 | 4 | 138.9
153.7
168.6
183.6 | 140.3
155.2
170.1
185.1
200.5 | 141.8
156.6
171.6
186.7
202.1 | 143.3
158.1
173.1
188.2
203.7 | 144.8
159.7
174.6
189.7
205.2 | 146.3
161.2
176.2
191.2
206.8 | 14.70
14.90
15.00
15.70 | | 208.4 210.0 211.6 213.2 224.7 226.4 228.1 229.8 241.7 243.4 245.2 246.9 264.7 259.3 261.1 262.9 264.7 277.5 279.4 281.2 283.1 | 11.6
28.1
45.2
62.9
81.2 | 213
229
246
264
283 | 2.88.2.1. | 214.9
231.4
248.6
266.5
285.0 | 216.5
233.1
250.4
268.3
286.9 | 218.1
234.8
252.2
270.1
288.7 | 219.8
236.5
253.9
272.0 | 221.4
238.2
255.7
273.8
292.5 | 223.1
240.0
257.5
275.7
294.5 | 16.30
17.00
17.60
18.20 | | 296.4 298.3 300.2 302
315.9 317.9 319.9 321
336.0 338.1 340.2 342
356.8 359.0 361.1 365
378.3 380.5 382.7 38 | 0.60.12 | 302
323
342
363
384 | 302.2
321.9
342.2
363.2
384.9 | 304.1
323.9
344.3
365.4
387.1 | 306.0
325.9
346.4
367.5 | 308.0
327.9
348.4
369.6
391.5 | 310.0
329.9
350.5
371.8 |
311.9
332.0
352.6
374.0
395.9 | 313.9
334.0
354.7
376.1 | 19.50
20.10
20.80
21.50 | | 60.4 402.6 404.9 407.2 23.1 425.5 427.8 430.1 46.5 448.9 451.3 453.7 70.6 473.0 475.5 477.9 95.3 497.8 500.3 502.8 | 4444 | 407
430
453
477
502 | 211.088 | 409.4
432.4
456.1
480.4
505.4 | 411.7
434.8
458.5
482.9
507.9 | 414.0
437.1
460.9
485.3
510.4 | 416.3
439.5
463.3
487.8
513.0 | 418.5
441.8
465.7
490.3
515.5 | 420.8
444.2
468.2
492.8
518.1 | 22.70
23.40
24.10
24.70
25.40 | | 7 | 1) | O FI | | | | | | | | | |--|-------------------------------------|---------------------------|---|---|---|---------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------| | PAGE
TYPE: LOG | RATING NO: 25.0
10-01-90 (0001) | DIFF IN PER TENTH FT | 26.00
26.70
27.30
28.00 | 29.30
30.00
30.60
31.30 | 32.60
33.30
34.00
34.60
35.30 | 35.70
37.00
37.00
38.00 | 39.00
40.00
41.00
42.00 | 43.00
43.00
45.00
44.00 | 46.00
47.00
47.00
48.00
49.00 | 50.00
50.00
51.00 | | H | | 60. | 544.0
570.7
597.9
625.8
654.4 | 683.7
713.6
744.1
775.4
807.3 | 839.8
873.1
907.0
941.5 | 1013
1049
1087
1124
1163 | 1202
1242
1283
1324
1366 | 1409
1452
1496
1541 | 1632
1679
1726
1775
1823 | 1873
1923
1974 | | S DIVISION | 3 TYPE: 001
START DATE/TIME | .08 | 541.4
568.0
595.2
623.0
651.5 | 680.7
710.6
741.1
772.2
804.1 | 836.6
869.7
903.6
938.1 | 1009
1046
1083
1121
1159 | 1198
1238
1279
1320 | 1404
1448
1492
1536 | 1628
1674
1722
1770
1818 | 1868
1918
1969 | | WATER RESOURCES 14:36 BY HAVE | : DD: | PRECISION) | 538.8
565.3
592.4
620.2 | 677.8
707.5
738.0
769.1
800.8 | 833.3
866.4
900.1
934.6 | 1005
1042
1079
1117 | 1194
1234
1275
1316
1358 | 1400
1443
1487
1532 | 1623
1670
1717
1765
1813 | 1863
1913
1964 | | ୍ " ବ | | (EXPANDED 1 | 536.2
562.6
589.7
617.4 | 674.8
704.5
734.9
765.9 | 830.0
863.0
896.7
931.1 | 1002
1038
1075
1113 | 1190
1230
1271
1312 | 1396
1439
1527
1573 | 1665
1712
1760
1809 | 1858
1908
1958 | | ERIOR - GEOLOGICAL SURVEY .
EXPANDED RATING TABLE
DATE PROCESSED: 08-12-1994 | | .05 | 533.6
559.9
586.9
614.6 | 671.9
701.5
731.8
762.8 | 826.7
859.7
893.3
927.6 | 998.2
1035
1072
1109
1148 | 1187
1226
1267
1308
1349 | 1392
1435
1478
1523 | 1614
1660
1755
1804 | 1853
1903
1953 | | INTERIOR - G
EXPANDED DATE PROCI | | CUBIC FEET PER SECOND .04 | 531.0
557.3
584.2
611.8 | 669.0
698.5
728.8
759.7 | 823.5
856.4
889.9
924.2
959.1 | 994.6
1031
1068
1105 | 1183
1222
1262
1303 | 1387
1430
1474
1518
1563 | 1609
1656
1703
1750 | 1848
1898
1948 | | DEPARTMENT OF I | | IN CUBIC FEE | 528.4
554.6
581.5
609.0 | 666.0
695.6
725.7
756.6 | 853.1
885.6
920.7
955.6 | 991.1
1027
1064
1102
1140 | 1179
1218
1258
1299 | 1383
1426
1470
1514
1559 | 1605
1651
1698
1746 | 1843
1893
1943 | | ATES | MN
45,.30) | DISCHARGE I | 525.8
552.0
578.8
606.2
634.3 | 663.1
692.6
722.7
753.4 | 817.0
849.7
883.2
917.3 | 987.5
1024
1060
1098
1136 | 1175
1214
1254
1295
1337 | 1379
1422
1465
1509 | 1600
1646
1693
1741 | 1838
1888
1938 | | Ω | R AT ORTONVILLE, BREAK, OFFSET: (2. | .01 | 523.2
549.3
576.1
603.5
631.5 | 660.2
689.6
719.6
750.3 | 813.7
846.4
879.8
913.8 | 983.9
1020
1057
1094
1132 | 1171
1210
1250
1291
1332 | 1375
1417
1461
1505
1550 | 1595
1642
1688
1736 | 1833
1883
1933 | | | RIVE | 00. | 520.7
546.7
573.4
600.7
628.7 | 657.3
686.6
716.6
747.2 | 810.5
843.1
876.4
910.4 | 980.3
1016
1053
1090
1128 | 1167
1206
1246
1287
1328 | 1370
1413
1456
1501
1545 | 1591
1637
1684
1731 | 1828
1878
1928 | | 05292000 | MINNESOTA
OFFSET: 1 | GAGE
HEIGHT
(FEET) | 4.50
4.60
4.70
4.80 | 5.00
5.10
5.20
5.30 | 5.50
5.60
5.70
5.80 | 6.00
6.10
6.20
6.30 | 6.50
6.60
6.80
6.90 | ter Control | 7.50
7.70
7.80 | 8 8 8 . 10 | | PAGE 3
TYPE: LOG | RATING NO: 25.0
10-01-90 (0001) | DIFF IN Q
PER
TENTH FT | 51.00 | 53.00 | 53.00 | 53.00 | 55.00 | 55.00 | 26.00 | 56.00 | 57.00 | 58.00 | 58.00 | 00.09 | 59.00 | 61.00 | 61.00 | 62.00 | 63.00* | | |---|--|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------| | TX | 1 | 60. | 2025 | 2078 | 2130 | 2184 | 2238 | 2293 | 2349 | 2405 | 2462 | 2520 | 2579 | 2638 | 2697 | 2758 | 2819 | 2881 | 2944 | | | S DIVISION | 3 TYPE: 001
START DATE/TIME: | 80. | 2020 | 2072 | 2125 | 2179 | 2233 | 2288 | 2343 | 2400 | 2457 | 2514 | 2573 | 2632 | 2691 | 2752 | 2813 | 2875 | 2937 | | | ER RESOURCE | @ 14:36 BY HAVE
DD: | (EXPANDED PRECISION) | 2015 | 2067 | 2120 | 2173 | 2227 | 2282 | 2338 | 2394 | 2451 | 2508 | 2567 | 2626 | 2685 | 2746 | 2807 | 2869 | 2931 | | | URVEY - WAT | | (EXPANDED | 2010 | 2062 | 2114 | 2168 | 2222 | 2277 | 2332 | 2388 | 2445 | 2503 | 2561 | 2620 | 2679 | 2740 | 2801 | 2862 | 2925 | | | ERIOR - GEOLOGICAL SUI | DATE PROCESSED: 08-12-1994 | D . 05 | 2005 | 2057 | 2109 | 2163 | 2217 | 2271 | 2327 | 2383 | 2439 | 2497 | 2555 | 2614 | 2673 | 2734 | 2795 | 2856 | 2919 | | | NTERIOR - G
EXPANDED | DATE PROC | CHARGE IN CUBIC FEET PER SECOND .02 | 1999 | 2051 | 2104 | 2157 | 2211 | 2266 | 2321 | 7377 | 2434 | 2491 | 2549 | 2608 | 2667 | 2728 | 2789 | 2850 | 2912 | | | RTMENT OF I | | N CUBIC FEE | 1994 | 2046 | 2099 | 2152 | 2206 | 2260 | 2315 | 2371 | 2428 | 2485 | 2543 | 2602 | 2661 | 2722 | 2782 | 2844 | 2906 | | | UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY - WATER RESOURCES DIVISION EXPANDED RATING TABLE | MN
45,.30) | DISCHARGE 1 | 1989 | 2041 | 2093 | 2146 | 2200 | 2255 | 2310 | 2366 | 2422 | 2480 | 2538 | 2596 | 2656 | 2716 | 2776 | 2838 | 2900 | | | UNITED | 05292000
MINNESOTA RIVER AT ORTONVILLE, MN
OFFSET: 1.00 BREAK,OFFSET: (2.45, | .01 | 1984 | 2036 | 2088 | 2141 | 2195 | 2249 | 2304 | 2360 | 2417 | 2474 | 2532 | 2590 | 2650 | 2710 | 2770 | 2832 | 2894 | | | | RIVER AT C. | 00. | 1979 | 2030 | 2083 | 2136 | 2189 | 2244 | 2299 | 2355 | 2411 | 2468 | 2526 | 2584 | 2644 | 2703 | 2764 | 2825 | 2887 | 2950* | | | 05292000
MINNESOTA RIO | GAGE
HEIGHT
(FEET) | 8.30 | 8.40 | 8.50 | 8.60 | 8.70 | 8.80 | 8.90 | σ | 9.10 | 9.20 | 9.30 | 9.40 | 9.50 | 09.6 | 9.70 | 08.6 | 9.90 | 10.00 | | PAGE 2 | NO: 26.0 | DIFF IN Q
PER
TENTH FT | 0 | 0, | 0 | 0.0 | 0.0 | ç | 2 0 | 10 | .80 | 0 | 0, | 0 | 0.5 | 0 0 | <u>.</u> | 0 : | 0 0 | | 40 | 0 | 0 | 06 | 00. | | 0 5 | 0.0 | 0.00 | 0.0 | Q | 0. | 0.0 | 00. | 0 | |--|--|------------------------------|--------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|-------|------------|-------|-------|--|-------|-------|-------|-------|-------|-------|-------------|--------------|------|------|------|------|-------|------|------|------|--------------|-------| | PAC
TYPE: LOG | RATING NO:
10-01-91 | DIFE
F | 20.00 | 20.5 | 20.9 | 21.3 | 21.80 | 3 66 | ım | m | 23.8 | 4 | 24.7 | 25.1 | 25.5 | 25.90 | | 26.7 | 2.1.2 | 2 80 | 28.4 | 28.8 | 0 | 6 | 30.0 | | 31.0 | | 32.0 | 32.00 | ~ | ന | 4 | 34.0 | 3.5 | | H | | 60. | 443.0 | 463.4 | 484.3 | 505.6 | 527.3
549.4 | 572 0 | 594.9 | 618.3 | 642.1 | 666.4 | 691.0 | 716.1 | 741.5 | 793.7 | | 820.4 | 847.5 | 0.816 | 931.3 | 960.1 | 989.2 | 1019 | 1049 | | 1110 | 1173 | 1205 | 1237 | 1270 | 1303 | 1336 | 1370
1405 | 1,439 | | DIVISION | 7 TYPE: 001
START DATE/TIME | 80. | 441.0 | 461.4 | 482.2 | 503.4 | 525.1
547.2 | 569.7 | 592.6 | 616.0 | 639.7 | 663.9 | 688.5 | 713.5 | 739.0 | 791.1 | 1 | 7./18 | 872.3 | 900.2 | 928.5 | 957.2 | 986.3 | 01 | 1046
1076 | | 1138 | 1169 | 1201 | 1234 | 1266 | 1299 | 1333 | 136/
1401 | 1036 | | R RESOURCES | 3:40 BY HAVE
DD: | PRECISION) | 439.0 | 459.3 | 480.1 | 501.3 | 545.0 | 567.4 | 590.3 | 613.6 | 637.3 | 6.100 | 0.989 | 711.0 | 736.4 | 788.4 | , t | 815.C | 869.5 | 897.4 | 925.6 | 954.3 | 983.3 | 1013 | 1043
1073 | 100 | 1135 | 1166 | 1198 | 1230 | 1263 | 1296 | 1330 | 1398 | 1432 | | W. | -T
-D
-T | (EXPANDED P | 437.0 | 457.3 | 478.0 | 499.2 | 542.7 | 565.2 | 588.0 | 611.3 | 635.0 | 1.600 | 683.6 | 708.5 | 733.8 | 785.8 | 6 | 612.4 | 866.7 | 894.6 | 922.8 | 951.4 | 980.4 | 1010 | 1040
1070 | 1011 | 1132 | 1163 | 1195 | 1227 | 1260 | 1293 | 1326 | 1394 | 1429 | | | | .05 | 435.0 | 455.2 | 475.9 | 497.0 | 540.5 | 562.9 | 585.7 | 6.809 | 632.6 | | 681.1 | 706.0 | 731.3 | 783.1 | | 909. | 864.0 | 891.8 | 919.9 | 948.5 | 977. | 1007 | 1037
1067 | 1097 | 1128 | 1160 | 1192 | 1224 | 1256 | 1289 | 1323 | 1391 | 1425 | | INTERIOR - GEOLOGIC
EXPANDED RATING |
DAIE FROCE | PER SECOND | 433.0 | | | | 538.3 | 0 | 583.4 | 606.6 | 630.2 | 7.100 | 678.6 | 703.5 | 758.7 | 780.5 | 0 | . " | 61 | | 17. | 945.6 | 974. | 1004 | 1034
1064 | 7007 | 1125 | 1157 | 1188 | 1221 | 1253 | 1286 | 1320 | 1387 | 1422 | | DEPARTMENT OF IN | | CUBIC FEET | 431.0 | 451.1 | 471.7 | 492.8 | 536.1 | 558.4 | 581.1 | 604.2 | 657.8 | • | 676.2 | 701.0 | 751.8 | 9.777 | ر
د د د د د د د د د د د د د د د د د د د | 831.2 | 858.5 | 886.2 | 914.3 | 942.8 | 971.7 | 1001 | 1031
1061 | 1001 | 1122 | 1154 | 18 | 1217 | 1250 | 1283 | 1316 | 1384 | 1418 | | STATES DEPAR | W | DISCHARGE IN | 429.0 | 449.1 | 469.7 | 490.6 | 533.9 | 556.1 | 578.8 | 601.9 | 649.4 | • | 673.7 | 698
7.0 | 763.1 | 775.3 | 7 108 | 828.5 | 855.7 | 883.4 | 911.4 | 939.9 | 968.8 | 9000 | 1028
1058 | | 1119 | | | | | | 1313 | 1381 | 1415 | | UNITED | ODESSA, | .01 | 427.0 | 447.1 | 67 | သောဇ | 31 | m | w. | an a | 647.0 | | 671.3 | .0 - | 746 7 | 772.6 | o | S | 853.0 | 0 | 80 | 937.0 | 65 | 9
9
7 | 1055 | 1085 | 1116 | 1147 | 1179 | 1211 | 1243 | 1276 | 1343 | 1377 | 1412 | | | YELLOW BANK RIVER NEAR
OFFSET: 1.40 | 00. | 425.0* | 445.0 | 65. | 507 7 | 29. | 551.7 | 574.2 | 597.3 | 644.5 | | 668.8 | 0,50 | 744.1 | 770.0 | 796.4 | 823.1 | 850.3 | 877.8 | 905.8 | 934.2 | 963.0 | 1992.1 | 1052 | 1082 | 1113 | 1144 | 1176 | 1208 | 1240 | 1273 | 1340 | 1374 | 1408 | | 02293000 | YELLOW BANK
OFFSET: 1,40 | GAGE
HEIGHT
(FEET) | 5.40 | 5.50 | • | 5.80 | • | 00.9 | 6.10 | 6.20 | 6.40 | | 6.50 | 00.0 | 6.80 | 06.9 | 7.00 | 7.10 | 7.20 | 7.30 | 7.40 | 7.50 | 7.60 | 0, , , | 7.90 | | 8.10 | • | • | • | 8.50 | 8.60 | 06.8 | 8.90 | 00.6 | | RATING NO: 26.0
10-01-91 (0001) | DIFF IN Q
PER
9 TENTH FT | 35.00
36.00
36.00
36.00 | 37.00
37.00
37.00
38.00 | 39.00
39.00
40.00
39.00
41.00 | 40.00
41.00
42.00
41.00
43.00 | 42.00
43.00
43.00
44.00 | 44.00
45.00
45.00
45.00 | 46.00
46.00
47.00
47.00
48.00 | 47.00
49.00
48.00
49.00 | |------------------------------------|--|--|--|--|---|--|---------------------------------------|---
--| | E: 001 | 0. | 1474
1510
1546
1582 | 1619
1656
1693
1731 | 1808
1847
1887
1926 | 2007
2048
2090
2131
2173 | 2216
2259
2302
2346
2389 | 2434
2478
2523
2568
2614 | 2660
2706
2753
2800
2848 | 2896
2944
2992
3041 | | | 80. | 1471
1506
1542
1579 | 1615
1652
1690
1728
1766 | 1804
1843
1883
1922
1963 | 2003
2044
2085
2127
2169 | 2212
2254
2298
2341
2385 | 2429
2474
2519
2564
2609 | . 2655
2702
2748
2796
2843 | 2891
2939
2988
3037 | | DD: | PRECISION) | 1467
1503
1539
1575 | 1612
1649
1686
1724
1762 | 1800
1839
1879
1919
1959 | 1999
2040
2081
2123
2165 | 2207
2250
2293
2337
2381 | 2425
2469
2514
2559
2605 | 2651
2697
2744
2791
2838 | 2886
2934
2983
3032 | | , | (EXPANDE) | 1464
1499
1535 | 1608
1645
1682
1720
1758 | 1797
1836
1875
1915
1955 | 1995
2036
2077
2119
2161 | 2203
2246
2289
2332
2376 | 2420
2465
2510
2555
2600 | 2646
2692
2739
2786
2833 | 2881
2929
2978
3027 | | | .05 | 1460
1496
1532
1568 | 1604
1641
1678
1716 | 1793
1832
1871
1911 | 1991
2032
2073
2115
2156 | 2199
2242
2285
2328
2372 | 2416
2460
2505
2550
2596 | 2642
2688
2734
2781
2829 | 2876
2925
2973
3022 | | | PER | 1457
1492
1528
1564 | 1601
1637
1675
1712
1750 | 1789
1828
1867
1907 | 1987
2028
2069
2110
2152 | 2195
2237
2280
2324
2367 | 2411
2456
2501
2546
2591 | 2637
2683
2730
2777
2824 | 2872
2920
2968
3017 | | | | 1453
1489
1524
1560 | 1597
1634
1671
1709 | 1785
1824
1863
1903 | 1983
2024
2065
2106
2148 | 2190
2233
2276
2319
2363 | 2407
2451
2496
2541
2587 | 2632
2678
2725
2772
2819 | 2867
2915
2963
3012 | | NA | DISCHARGE .02 | 1450
1485
1521
1557 | 1593
1630
1667
1705 | 1781
1820
1859
1939 | 1979
2019
2061
2102
2144 | 2186.
2229
2272
2315
2359 | 2403
2447
2492
2537
2582 | 2628
2674
2720
2767
2814 | 2862
2910
2958
3007 | | SAR ODESSA, | .01 | 1446
1482
1517
1553 | 1590
1626
1663
1701
1739 | 1777
1816
1855
1895 | 1975
2015
2056
2098
2140 | 2182
2224
2267
2311
2354 | 2398
2442
2487
2532
2577 | 2623
2669
2716
2763
2810 | 2857
2905
2954
3002 | | INK RIVER NE | 00. | 1443
1478
1514
1550 | 1586
1623
1660
1697
1735 | 1773
1812
1851
1891
1930 | 1971
2011
2052
2094
2135 | 2178
2220
2263
2306
2350* | 2394
2438
2483
2528
2573 | 2619
2665
2711
2758
2805 | 2853
2900
2949
2997 | | YELLOW BA | GAGE
HEIGHT
(FEET) | 9.10
9.20
9.30 | 9.50
9.60
9.70
9.80 | 10.00
10.10
10.20
10.30 | 10.50
10.60
10.70
10.80 | 11.00
11.10
11.20
11.30 | 11.50
11.60
11.70
11.80 | 12.00
12.10
12.20
12.30 | 12.50
12.60
12.70
12.80 | | | RIVER NEAR ODESSA, MN DE TYPE: 001 RATING NC START DATE/TIME: 10-01-91 | DD: 7 TYPE: 001 RATING NG START DATE/TIME: 10-01-91 DISCHARGE IN CUBIC FEET PER SECOND (EXPANDED PRECISION) .02 .03 .04 .05 .06 .07 .08 .09 TEN | DISCHARGE IN CUBIC FEET PER SECOND 1450 1450 1463 1485 1489 1501 | DISCHARGE IN CUBIC FEET PER SECOND 1450 1450 1451 1521 1527 1530 1530 1548 1557 1550 | DISCHARGE IN CUBIC FEET PER SECOND O2 | DISCHARGE IN CUBIC FEET PER SECOND 1450 1450 1451 1522 1523 1521 1524 1524 1528 1529 1521 1522 1523 1524 1526 1526 1527 1529 1620
1620 | DISCHARGE IN CUBIC FEET PER SECOND O | DISCHARGE IN CUBIC FEET PER SECOND | DESCRIPCE IN CUBIC FEET PER SECOND 1450 | | PAGE 4 TYPE: LOG RATING NO: 26.0 | E E | 50.00 | 49.00
51.00
50.00
51.00 | 52.00
52.00
52.00
53.00 | 53.00
54.00
54.00
54.00
55.00 | 55.00
56.00
56.00
56.00 | 56.00
58.00
58.00
58.00 | 59.00
59.00
60.00
60.00 | 61.00
61.00
61.00
62.00
61.00 | |---|--------------------------|-------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--| | - | | 3091 | 3140
3191
3241
3392 | 3394
3446
3499
3551 | 3658
3711
3765
3820
3875 | 3930
3985
4041
4097
4154 | 4211
4268
4326
4384
4442 | 4501
4560
4619
4679
4739 | 4800
4861
4922
4983
5045 | | S DIVISION 7 TYPE: 001 | 80. | 3086 | 3135
3186
3236
3287
3338 | 3389
3441
3493
3546 | 3652
3706
3760
3814
3869 | 3924
3980
4035
4148 | 4205
4262
4320
4378
4436 | 4495
4554
4613
4673
4733 | 4794
4855
4916
4977
5039 | | WATER RESOURCES DIVISION 13:40 BY HAVE DD: 7 TYP | PRECISION) | 3081 | 3131
3181
3231
3282
3333 | 3384
3436
3488
3541
3594 | 3647
3750
3754
3809
3864 | 3919
3974
4030
4086 | 4199
4257
4314
4372
4430 | 4489
4548
4607
4667 | 4788
4810
4910
5033
5095 | | RVEY -
-1994 @ | (EXPANDED PRECISION) | 3076 | 3126
3175
3226
3277
3328 | 3379
3431
3535
3588 | 3642
3695
3749
3858 | 3913
3968
4024
4080
4137 | 4194
4251
4308
4366
4425 | 4483
4542
4601
4661 | 4782
4842
4963
5027
5089 | | ERIOR - GEOLOGICAL SURVEY
EXPANDED RATING TABLE
DATE PROCESSED: 08-12-199 | . 05 | 3071 | 3121
3170
3221
3271
3322 | 3374
3426
3478
3530
3583 | 3636
3690
3744
3798 | 3908
3963
4019
4075
4131 | 4188
4245
4303
4360
4419 | 4477
4536
4596
4655
4715 | 4776
4836
4897
4959
5020
5083 | | INTERIOR - GEOLOGIC
EXPANDED RATING
DATE PROCESSED: | r PER SECOND | 3066 | 3116
3165
3216
3266
3317 | 3369
3420
3472
3525
3578 | 3631
3684
3738
3792
3847 | 3902
3957
4013
4069
4126 | 4182
4239
4297
4355 | 4471
4530
4590
4649
4709 | 4769
4830
4891
4953
5014 | | DEPARTMENT OF IN | IN CUBIC FEET | 3061 | 3111
3160
3211
3261
3312 | 3364
3415
3467
3520
3572 | 3626
3679
3733
3787
3842 | 3897
3952
4007
4063 | 4177
4234
4291
4349 | 4466
4524
4584
4643
4703 | 4763
4885
4946
5008
5070 | | STATES DEPA | DISCHARGE 1. | 3056 | 3106
3155
3206
3256
3307 | 3358
3410
3462
3514
3567 | 3620
3674
3727
3782
3836 | 3891
3946
4002
4058
4114 | 4171
4228
4285
4343
4401 | 4460
4519
4578
4637
4697 | 4757
4818
4879
4940
5002 | | UNITED
AR ODESSA, | .01 | 3051 | 3101
3150
3201
3251
3302 | 3353
3405
3457
3509
3562 | 3615
3668
3722
3776
3831 | 3886
3941
3996
4052
4109 | 4165
4222
4280
4337
4395 | 4454
4513
4572
4631
4691 | 4751
4812
4873
4934
4996
5058 | | 05293000
YFLLOW BANK RIVER NEAR | 00. | 3046 | 3096
3145
3196
3246 | 3348
3450
3554
3557 | 3610
3663
3717
3771
3825 | 3880
3935
3991
4047 | 4160
4216
4274
4332
4390 | 4448
4507
4566
4625
4685 | 4745
4806
4867
4928
4990 | | 05293000
YFLLOW BANK | GAGE
HEIGHT
(FEET) | 12.90 | 13.00
13.10
13.20
13.30 | 13.50
13.60
13.70
13.80 | 14.00
14.10
14.20
14.30 | 14.50
14.60
14.70
14.80 | 15.00
15.10
15.20
15.30 | 15.50
15.60
15.70
15.80 | 116.00
116.10
116.20
116.30
116.30 | | | | UNITED | UNITED STATES DEPARTMENT OF | | INTERIOR - GEOLOGICAL SURVEY EXPANDED RATING TARLE | ERIOR - GEOLOGICAL SU | | - WATER RESOURCES DIVISION | DIVISION | 7 | PAGE 5 | |-----------------------------|--|------------|-----------------------------|---------------|--|-----------------------|-------------|----------------------------|---------------------------------|------|-----------------------------------| | 05293000 | | | | | DATE PROCESSED: | SSED: 08-12 | -1994 @ | 13:40 BY HAVE | | | | | YELLOW BANK
OFFSET: 1.40 | YELLOW BANK RIVER NEAR ODESSA,
OFFSET: 1.40 | AR ODESSA, | WN | | | | | | 7 TYPE: 001
START DATE/TIME: | 7 | RATING NO: 26.0
0-01-91 (0001) | | GAGE
HEIGHT | | | DISCHARGE I | IN CUBIC FEET | PER | | (EXPANDED F | PRECISION) | | | DIFF IN Q
PER | | (FEET) | 00. | .01 | .02 | .03 | .04 | • 05 | 90. | .07 | .08 | 60. | TENTH FT | | 16.60 | 5114 | 5120 | 5126 | 5133 | 5139 | 5145 | 5151 | 5158 | 5164 | 5170 | 62.00 | | 16.70 | 5176 | 5183 | 5189 | 5195 | 5202 | 5208 | 5214 | 5221 | 5227 | 5233 | 63.00 | | 16.80 | 5239 | 5246 | 5252 | 5258 | 5265 | 5271 | 5277 | 5284 | 5290 | 5296 | 64.00 | | 16.90 | 5303 | 5309 | 5316 | 5322 | 5328 | 5335 | 5341 | 5347 | 5354 | 5360 | 64.00 | | 17.00 | 5367 | 5373 | 5379 | 5386 | 5392 | 5398 | 5405 | 5411 | 5418 | 5424 | 64.00 | | 17.10 | 5431 | 5437 | 5443 | 5450 | 5456 | 5463 | 5469 | 5476 | 5482 | 5489 | 64.00 | | 17.20 | 5495 | 5501 | 5508 | 5514 | 5521 | 5527 | 5534 | 5540 | 5547 | 5553 | 65.00 | | 17.30 | 5560 | 5566 | 5573 | 5579 | 5586 | 5592 | 5599 | 5605 | 5612 | 5618 | 65.00 | | 17.40 | 5625 | 5631 | 5638 | 5644 | 5651 | 5658 | 5664 | 5671 | 5677 | 5684 | 65.00 | | 17.50 | 5690 | 2697 | 5703 | 5710 | 5717 | 5723 | 5730 | 5736 | 5743 | 5749 | 66-00 | | 17.60 | 5756 | 5763 | 5769 | 5776 | 5783 | 5789 | 5796 | 5802 | 5809 | 5816 | 66-00 | | 17.70 | 5822 | 5829 | 5836 | 5842 | 5849 | 5855 | 5862 | 5869 | 5875 | 5882 | 67.00 | | 17.80 | 5889 | 5895 | 5902 | 5909 | 5915 | 5922 | 5929 | 5936 | 5942 | 5949 | 67.00 | | 17.90 | 5956 | 5965 | 6969 | 5976 | 5982 | 5989 | 9669 | 6003 | 6009 | 6016 | 67.00 | | 18.00 | 6023 | 6030 | 6036 | 6043 | 6050 | 6057 | 6063 | 0209 | 1209 | 6084 | 67.00 | | 18.10 | 6090 | 2609 | 6104 | 6111 | 6117 | 6124 | 6131 | 6138 | 6145 | 6151 | 68.00 | | 18.20 | 6158 | 6165 | 6172 | 6179 | 6186 | 6192 | 6199 | 6206 | 6213 | 6220 | 68.00 | | 18.30 | 6226 | 6233 | 6240 | 6247 | 6254 | 6261 | 6268 | 6274 | 6281 | 6288 | 00.69 | | 18.40 | 6295 | 6302 | 6309 | 6316 | 6323 | 6330 | 6336 | 6343 | 6350 | 6357 | 00.69 | | 18.50 | 6364 | 6371 | 6378 | 6385 | 6392 | 6388 | 6406 | 6412 | 6419 | 6426 | 69.00 | | 18.60 | 6433 | 6440 | 6447 | 6454 | 6461 | 6468 | 6475 | 6482 | 6489 | 6496 | 70.00 | | 18.70 | 6503 | 6510 | 6517 | 6524 | 6531 | 6538 | 6545 | 6552 | 6559 | 6566 | 70.00 | | 18.80 | 6573 | 6580 | 6587 | 6594 | 6601 | 6608 | 6615 | 6622 | 6629 | 6636 | 70.00 | | 18.90 | 6643 | 6650 | 6657 | 6664 | 6671 | 6299 | 9899 | 6693 | 0019 | 6707 | 71.00 | | 19.00 | 6714 | 6721 | 6728 | 6735 | 6742 | 6149 | 6756 | 6764 | 6771 | 8778 | 71.00 | | 19.10 | 6785 | 6792 | 6429 | 9089 | 6813 | 6821 |
6828 | 6835 | 6842 | 6849 | 71.00 | | | 6856 | 6863 | 6871 | 6878 | 6885 | 6892 | 6889 | 9069 | 6914 | 6921 | 72.00 | | 19.30 | 6928
7000* | 6935 | 6942 | 6950 | 6957 | 6964 | 6971 | 8269 | 9869 | 6993 | 72.00* | U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA RATING CURVES FOR VARIOUS TAILWATER ELEVATIONS MARSH LAKE DAM LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL FILE NO. M34-R-LQP-5/90 PLATE 2-5 FILE NO. M34-R-LQP-5/91 **PLATE 2-6** (L) OO SECOND FOOT DAYS 951 951 946 CAPACITY - ACRE-FEET 941 ACKE5 941 941 LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL ACRES FILE NO. M34-R-LQP-5/99 PLATE 2-14 ELEVATION-AREA-STORAGE CURVES MARSH LAKE RESERVOIR U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA FILE NO. M34-R-LQP-5/100 PLATE 2-15 FILE NO. M34-R-LQP-5/102 PLATE 2-17 U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA FILE NO. M34-R-LQP-5/103 PLATE 2-18 FROM HAME NO 1811-2 FILE NO. M34-R-LQP-5/105 PLATE 2-20 FILE NO. M34-R-LQP-5/106 PLATE 2-21 FILE NO. M34-R-LQP-5/107 PLATE 2-22 (2) NOTE: THESE CURVES WERE DEVELOPED FROM ORIGINAL CURVES DATED 9 JULY 1954. RATING CURVES FOR SELECTED GATE OPENINGS 27 - FOOT TAINTER GATE CHIPPEWA RIVER DIVERSION DAM U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA FILE NO. M34-R-LQP-5/109 PLATE 2-24 943 942 IN FEET M.S.L. (NGVD 1929) ST. PAUL DISTRICT ST. PAUL, MINNESOTA U.S. ARMY CORPS OF ENGINEERS WATSON SAG WEIR ELEV. T.W 941.3 939.2 938.2 FILE NO. M34-R-LQP-5/112 PLATE 2-27 ## ELEVATION - AREA CURVE HIGHWAY 75 DAM U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA ELEVATION - STORAGE CAPACITY HIGHWAY 75 DAM U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA WATER CONTROL MANUAL ## SPILLWAY RATING CURVES HIGHWAY 75 DAM SERVICE SPILLWAY RATING CURVE **HIGHWAY 75 DAM** FILE NO. M34-R-LQP-5/117 PLATE 2-32 FILE NO. M34-R-LQP-5/118 PLATE 2-33 THIS PLATE REPRODUCED FROM AN ORIGINAL DRAWING PREPARED BY THE MINNESOTA DEFARTMENT OF HIGHWAYS DATED 18 MAY 1938 REVISIONS BY CORPS OF ENGINEERS ST. PAUL, MINN. APRIL 1947 - I. STRUCTURE SITE LIMITS INSERTED - 2.TAKING LINE MODIFIED TO REFLECT LIMITS OF ACQUISITION BY U. S. GOVERNMENT #### LEGEND ### INTEREST TO BE ACQUIRED BY UNITED STATES FEE SIMPLE TITLE FLOWAGE EASMENT FILE NO. M34-R-LQ LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL PROPERTY ACQUIRED BY U.S. GOVERNMENT LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL # MARSH LAKE RESERVOIR PUBLIC USE AREA #### Legend ▲ Boat Landing / Hiking Tailwater Fishing ★ Canoe Portage Hunting () U.S. Route Marker City Parking Day-Use Areas --- County Line Playground A - Marsh Lake B - Lac qui Parle C - Watson Sag Weir 1. Dam // Picnic Area **Drinking Water** Rest Rooms Fish Cleaning ☐ State Highway Handicap Facilities O Secondary Road LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL # LAC QUI PARLE RESERVOIR PUBLIC USE AREA LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL # CHIPPEWA RIVER DIVERSION PUBLIC USE AREA **RESERVOIR INFLOW - DURATION** PERIOD OF RECORD (1940 - 1993) LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL RESERVOIR INFLOW - DURATION (ANNUAL) **RESERVOIR OUTFLOW - DURATION** PERIOD OF RECORD (1940 - 1993) LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL RESERVOIR OUTFLOW - DURATION (ANNUAL) ## LAC QUI PARLE PROJECT RESERVOIR MONTHLY INFLOW - OUTFLOW LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL RESERVOIR MONTHLY INFLOW - OUTFLOW ## LAC QUI PARLE PROJECT RESERVOIR ANNUAL INFLOW - OUTFLOW PERIOD OF RECORD (1940 - 1993) LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL RESERVOIR ANNUAL INFLOW - OUTFLOW ## MINNESOTA RIVER AT MONTEVIDEO, MN MONTHLY STREAMFLOW DISTRIBUTION U.S.G.S. GAGE NO. 05051500 PERIOD OF RECORD (1909 - 1993) LAKE TRAVERSE PROJECT BOIS DE SIOUX RIVER WATER CONTROL MANUAL MINNESOTA RIVER AT MONTEVIDEO, MN MONTHLY STREAMFLOW DISTRIBUTION FILE NO. M34-R-LQP-5/128 PLATE 4-6 U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA DISCHARGE VS. AREA FLOODED REACH 2 RIVER MILE 271.2 TO 240.0 LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA DISCHARGE VS. AREA FLOODED REACH 3 RIVER MILE 240.0 TO 233.3 LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL MINNESOTA RIVER WATER CONTROL MANUAL DISCHARGE VS. AREA FLOODED REACH 4 RIVER MILE 233.3 TO 146.82 U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL URBAN DAMAGE-DISCHARGE AT SELECTED BASIN REFERENCE POINTS U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA **PLATE 4-10** 36 34 32 30 **58** **■**GF + MONTE **URBAN DAMAGE** FILE NO. M34-R-LQP-5/133 PLATE 4-11 FILE NO. M34-R-LQP-5/134 PLATE 5-1 FILE NO. M34-R-LQP-5/135 PLATE 5-2 FILE NO. M34-R-LQP-5/136 PLATE 5-3 M2 × WATER QUALITY STATION MAP NOT TO SCALE # WATER QUALITY STATIONS LOCATION MAP U.S. ARMY CORPS OF ENGINEERS ST. PAUL DISTRICT ST. PAUL, MINNESOTA PROBABLE MAXIMUM FLOOD INFLOW HYDROGRAPH LAC QUI PARLE RESERVOIR LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL FILE NO. M34-R-LQP-5/141 PLATE 8-3 ANNUAL PEAK INFLOW-FREQUENCY CURVE LAC QUI PARLE RESERVOIR WATER YEARS IN RECORD 1940 - 1993 BASIN AREA = 4,050 SQUARE MILES WEIBULL PLOTTING POSITIONS GRAPHICAL ANALYSIS LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL # ANNUAL INFLOW - FREQUENCY LAC QUI PARLE PROJECT STAGE-FREQUENCY CURVE ANNUAL INSTANTANEOUS PEAKS WATER YEARS IN RECORD 1940 - 1993 GAGE ZERO = 900.00 FEET (NGVD 1929) BASIN AREA = 4,050 SQ MI MEDIAN PLOTTING POSITIONS GRAPHICAL ANALYSIS LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL STAGE - FREQUENCY LAC QUI PARLE RESERVOIR STAGE-FREQUENCY CURVE ANNUAL INSTANTANEOUS PEAKS WATER YEARS IN RECORD 1964 - 1993 GAGE ZERO = 900.00 FEET (NGVD 1929) BASIN AREA = 2,800 SQ MI MEDIAN PLOTTING POSITIONS GRAPHICAL ANALYSIS LAC QUI PARLE PROJECT MINNESOTA RIVER WATER CONTROL MANUAL STAGE - FREQUENCY MARSH LAKE RESERVOIR ANNUAL INSTANTANEOUS PEAKS MINNESOTA RIVER NEAR LAC QUI PARLE, MINNESOTA WATER YEARS IN RECORD 1943 - 1993 USGS GAGE NUMBER 05301000 BASIN AREA = 4,050 SQ MI WEIBULL PLOTTING POSITIONS GRAPHICAL ANALYSIS WATER CONTROL MANUAL **DISCHARGE - FREQUENCY** MINNESOTA RIVER NEAR LAC QUI PARLE, MN MINNESOTA RIVER AT MONTEVIDEO, MINNESOTA WATER YEARS IN RECORD 1938 - 1993 USGS GAGE NUMBER 05311000 BASIN AREA = 6,180 SQ MI WEIBULL PLOTTING POSITIONS GRAPHICAL ANALYSIS **DISCHARGE - FREQUENCY** MINNESOTA RIVER AT MONTEVIDEO, MN