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1.0 INTRODUCTION

This report will summarize the current work being done to extract
geophysical information from Synthetic Aperture Radar (SAR) images of sea
jce. There are many ways of organizing such a summary and we have chosen
to divide it into three main areas; sea ice image classification, ice
kinematics and sea ice image characterization. Image classification refers
to algorithms that subset the pixels within an image based on an estimation
of the type of sea ice (of course, we are including water as a type of sea
jice) that pixel came from. Ice kinematics refers to algorithms that
extract velocity vectors from the images that estimate the movement of the
jce. Image characterization refers basically to everything else; i.e.
algorithms that attempt to extract any other geophysical parameters from
the images except ice type or ice motion. Since ice type and motion are
the dominant areas of research by far and very little work has been done in
the other areas, we felt justified in discussing these other algorithms in
one section.

There is, of course, much interplay between these areas; we do not
mean to imply by this organization that the algorithms are necessarily
independent. Ice kinematic algorithms often need to characterize a section
of one image so as to track it to another image and this characterization
is often perilously close to performing ice type mapping. Performing ice
type classification on the whole image before performing ice kinematic
estimations may help decrease search times in the kinematic algorithms. We
are, rather, organizing the algorithms as to their main intent; i.e. the
final output product that is driving the structure of the algorithm.
Although this causes some overlap in the methods employed, we fell it gives
a more natural segmentation.

For each of these areas we will describe the algorithms currently
being applied, mention their advantages and disadvantages when known, and
report any error analysis that has been performed to test how well the

algorithms actually work. References will he given where we have found
them, but much of this work is ongoing and thus has not been published but
rather has been discussed at workshops or with individual communications.
To insure that no major research area has been missed, and to expand the
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details on the algorithms presented here, a series of discussions with the
major researchers has been planned for the latter part of July. All
additional information gathered during these discussions will be
subsequently summarized.

Section 2 of this report will briefly present the background of the
SAR sea ice algorithm research to provide a framework for the current
research. Section 3 will discuss the ice type classification work, Section
4 will discuss the ice kinematics work and Section 5 will discuss the image
characterization algorithms. Finally, Section 6 will discuss future
directions that we believe will be taken in these areas. In addition,
included as an appendix is a paper presented at IGARSS 87 which also
summarized sea ice algorithms and was the initial source of information for
this report. Although we have changed the organization slightly, the same
information has been incorporated here along with the additional
information that has been gathered.

2.0 BACKGROUND

Research into radar signatures of ice has been going on for over
twenty years. The earliest works [1-4 for example; there is a lot of
Titerature on this subject so all the references in this report are meant
as samplings, not inclusive lists] established that radar returns did
indeed differ for the various ice types and began to examine how changes in
frequency, polarization and incidence angle affected the resultant image.

A large amount of scatterometer data was collected [5-9] and used mainly to
test ice type classification algorithms; i.e. to determine how well ice
types could be differentiated using various radar parameters. Statistical
analysis of single pixel backscatter intensities including cluster plots,
probability density function estimation, hypothesis testing, etc. [10-13]
were applied in order to determine algorithms that give the maximum
separation for any given pair of ice types (see section 3 for a more
detailed discussion of these algorithms). 1In geperal, the conclusions
drawn from these studies were as follows. First, the character of the ice
returns differed greatly from season to season. Summer conditions with the
possibility of free water on the surface of the ice tend to make the
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returns from varying ice types very similar and thus make differentiation
very difficult. Winter conditions were much better since the ice types had
more differing backscatter characteristics. Second, X-band data appeared
to give the greatest difference in backscattered energy between ice and
water. In fact, cross-polarized data gave the best results of all, but
this required a lot of transmitted power to receive the signal. The X-
band like-polarized data was very similar, however, but required less
power, so it became the favorite data set for separating first year ice,
multi-year ice and water. Third, L-band data exhibited the best textural
differences between ice types, showing ridge Tines and meltpools much
better then the X-band, and gave more promise of being able to
differentiate between ice types instead of simply differentiating between
water and any other ice. Finally, C-band data was shown to fit midway
between the X and L-band results; appearing very similar to L-band in
summer conditions but more like the X-band during other times of the year.

Thus much research went into characterizing how SAR images of
different polarization and frequencies respond to different ice types and
in different seasons. Obviously, the next easiest step was to derive
automatic algorithms to do the ice type classification and thus, as
summarized in section 3, whole families of algorithms were tested on the
data to perform that function [12-15]. Most of them were designed to make
use of the image characterizations that researchers had previously observed
visually and to simply automate the process. Eventually, however, it was
recognized that it might be useful to derive algorithms that extract
quantities other then SAR ice type directly from the SAR images and one
such quantity of great interest was ice kinematics. Thus much research
went into generating algorithms for measuring ice motion [16-18] (see
section 4 for further discussion) and since the problems were investigated
after the initial SAR image analysis described above, the research was
based more on different aspects of the problem then on image
characteristics that were visually observed by researchers. Section 4 is
therefore organized more according to the research probleme (detecting
shifts, detecting rotations, etc.) then section 3.

0f course, ice kinematics is only one area of geophysical research,
and a number of other algorithms for extracting lead locations [19], floe
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sizes and floe shapes directly from the image have been developed and are
discussed in section 5. Even these are just a few of the possibilities,
and some possible future directions for SAR sea ice algorithms are
discussed in section 6; more rigorous algorithm testing, use of the SAR
phase information and characterization of pieces of SAR images for
identification in other images are just some of the possible directions.

3.0 ICE TYPE CLASSIFICATION

As mentioned in section 2, this area received the earliest attention
in SAR sea ice work since the first questions that researchers needed to
answer were how the backscattered returns differed for the various ice
types. In addition, a lot of useful geophysical information can be
extracted from an accurate ice type map and this further spurred activity;
jce concentration, ice floe differentiation, lead location, lead shape
characterization and ice floe distributions are just some examples. As
noted above, this research was driven more by the visual characterization
of the SAR images and the algorithms that were developed tried to exploit
those attributes. One possibility, therefore, for organizing these
algorithms is under the three catagories: (1) algorithms based on
individual pixel intensities; (2) algorithms based on local pixel
intensities (or texture analysis); (3) other techniques which will include
supervised methods and expert systems. The first category represent
algorithms which try to characterize the ice types based on the behavior of
the intensity of individual pixels. The second category represents
algorithms which make use of spatial relationships in the pixel
intensities; these characteristics often being referred to as texture. The
final category is basically all the other algorithms.

Algorithms in the first category can be further broken down into three
types; simple thresholding, adaptive thresholding and statistical
comparisons. Simple thresholding is based on the assumption that the ice
Thus an ice type map can be produced simply by deciding the intensity
ranges that each ice type occupies and thresholding the image accordingly.
In actual implementation, such algorithms usually require some noise
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smoothing first in order to reduce the variation in intensities from any
given ice type (especially considering the speckle characteristics of SAR
imagery). Also, they assume that the data has already been radiometrically
corrected, since gain changes due to antenna patterns or range fall-off
effects make such global thresholding operations useless. The threshold
values are usually determined from histograms of the total image. If such
histograms display obviously separated areas the threshold determination is
easy; more often the histogram needs to be massaged or a threshold guessed
at since the histogram is usually unimodal. Figure 1, illustrates the
unimodal nature found in unaltered SAR sea ice images. It would be
extremely difficult to determine a threshold location from this image.
Figure 2, shows the same image after the above described corrections have
been made, here the threshold location is obvious.

That differences in backscattered intensities can be used to determine
ice type has been demonstrated on scatterometer data [11] and has been used
successfully on SAR data to estimate ice concentration [13,20]. The ice
concentration work, when compared to manually interpreted data, showed a
14% error [20]. The so called "mixed pixel" problem, where a single SAR
resolution cell return can be composed of partial ice and partial water
returns, can also be addressed by using the histogram to estimate the
percentage of ice/water pixels [20]. In general, simple thresholding has
been shown effective in distinguishing ice and water (i.e., performing ice
concentration) on images that have had their noise reduced, and are
radiometrically correct. This is illustrated in figure 2. Simple
thresholding appears to be inadequate for distinguishing between different
jce types due to the large overlap region in intensity values that most ice
types share.

To address some of the drawbacks of simple thresholding, algorithms
based on adaptive thresholding have been investigated. These algorithms
use a small, local histogram to establish a threshold only for that local
area, then move to the adjacent local area to determine a possibly
different threshold, These algorithms are driven by the ohservation that
Tocal histograms taken over the border between two different ice types will
appear bi-modal even when the total image histogram is still unimodal and
thus can be used locally to segment the image. This is demonstrated in
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figure 3 which contains two local histograms one over an ice area and the
other over an ice/water border. Notice that the local histogram of the
jce/water border area is bimodal and can be used to seperate this local
area into its two corresponding types. Also, notice that the global
histogram of this image ,shown in figure 1, is unimodal. Additionally,
these algorithms have an advantage in that the statistics of the classes
can be allowed to drift slightly (i.e. the threshold that separates two ice
types can be different for the near range sections of the image then for
the far range sections) thus alleviating the need for strict radiometric
correction. These algorithms are just being investigated, so no error
analysis is available yet. Figure 4, shows an example of this Tocal
histogram segmentation (adaptive) algorithm on synthetic data along with a
threshold map produced by the global thresholding algorithm.

It should be noted that although the adaptive thresholding algorithms
discussed above and the statistical approaches discussed below actually
rely on information from pixels within a local area, they are included in
this section on individual pixel algorithms instead of the later section on
Tocal pixel algorithms because the algorithms are based on the assumption
that the pixel intensities are identically distributed and independent,
thus the local operations are simply to derive estimates of the single
pixel parameters that have less noise. This is to be contrasted to the
algorithms that will come later which depend on their being some spatial
correlations between pixels; i.e. that they are not identically distributed
and independent.

A third type of algorithm in this class is based on the statistics of
the pixel intensities. Cluster plots of the mean backscatter values for
different polarizations or frequencies for scatterometer data have been
seen to divide the returns into classes that correspond to different ice
types [11], this is illustrated in figures 5 and 6. Recently a cluster
plot of local mean versus local variance from a SAR image has been shown to
distinguish between open water and ice sufficiently to allow lead location
dotermination with a 20% error as.compared to manual interpretation [17],
Figure 7, shows a cluster plot of local mean versus local variance from the
image shown in figure 8 (Rev. 1482). It has been shown that the higher
order statistics (third order or higher) probably contain very little
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discriminating ability [12] and thus the mean and variance may be as far as
one should go. Further, it has been proposed that the histograms derived
from different ice types do not display any statistical differences [12]
and thus could not be used as classifier.

A second class of algorithms are ones based on local pixel intensities
(i.e. the local, spatial relationship between pixel intensities), often
called texture analysis. As mentioned above, these algurithms attempt to
exploit any spatial correlations in the images, and initially were prompted
by the observations that L-band data contained a lot of texture information
in the form of ridge lines and meltpools that seemed to visually
distinguish between ice types.

The most promising texture measure to data has been the co-occurrency
matrix [21]. Briefly, the user specifies a vector which represents a
separation between two pixels and then forms a 2-D matrix whose rows and
columns represent all possible intensity values for any pixel and whose
entries are the percent occurrence in the image of two pixels, separated by
the specified vector, and having the corresponding row and column values.
Obviously, there is a co-occurrency matrix for each possible vector
separation. What these matrices are measuring is the spatial correlations
within the image; thus they are very good in locating ridge lines, or any
other directional aspect. It is, however, extremely computationally
intensive to generate these matrices, but what you gain is a great deal of
flexibility; in fact a large number of operations have been designed for
these matrices [21] to extract a single value to use in classification that
corresponds to how peaked the matrix is along the diagonal, how evenly
spread out the values are, where the highest concentration of pixel pairs
lie, etc. Thus a lot of texture information can be measured by applying
operations to these co-occurrency matrices, and using the so-called inertia
measure [21] on cross-polarized X-band data, ice classification between
first, second and multiyear ice was done with a 35% error based on manual
interpretation [14].

Another algarithm to exploit spatial correlations makes use of the
Fourier transform. By integrating the energy in various subsets of the
Fourier domain such as annuli, wedges or straight lines that go through the
origin, the energy in features that have a given spatial relationship (such
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as a specified frequency but any orientation, or a specified orientation
and any frequency) can be calculated [15]. The rate of fall-off of the
Fourier transform magnitude with frequency (where integration over angle
was used to remove angular dependence) has been shown to be well correlated
with ice concentration, however these results are still being investigated
and have not yet been published (this work is being researched mainly at
ERIM). In general, this algorithms show promise and they are much more
computationally efficient then the co-occurrency matrices, although they
lack the latter's flexibility.

A third texture algorithm models the image as an autoregressive
process and uses the coefficients of that process to classify the data. As
in the previous methods this algorithm is exploiting any spatial
correlations, but further it is assuming those correlations can be modeled
with an all pole filter. Initial results (this is being pursued mainly at
JPL) show good classification when compared visually with the SAR image,
but no published results are available yet.

A final set of algorithms make use of the two dimensional
autocorrelation of the total image. Obviously, the shape of this
autocorrelation will contain information on the shape of correlated pixels
within the image. Such an approach has been used to locate and
characterize leads (i.e. give their shape, orientation and the average
distance between them) in ice imagery and gave good results when visually
compared [19]. The 2-D shape of the autocorrelation function has been fit
to an ellipse and the parameters of the ellipse have been used to
characterize ice floe shapes (this has been done mainly at ERIM). Both
these algorithms however, belong really to the image characterization
discussion (Section 5) since they are not measuring ice type and so will be
mentioned there again.

Finally, some other algorithms which really do not fall into any
category have also been researched. Supervised classification algorithms
which make use of a priori data about specific ice classes (usually the
JPL) though no results are available yet. Also, an expert system approach
using a rule-based algorithm is being investigated (at the University of
Kansas) where the rules are being derived from interviews with SAR image
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analysts; no results for this approach are available yet either.

The current state of ice classification algorithms can be summarized
as follows. Ice concentration (i.e. separating ice images into simply ice
and water) seems to be well in hand using X-band (preferably cross-
polarized) winter data and perform simple thresholding or segmentation
based in means and variances. Distinguishing between different ice types
still needs more effort, but a promising texture approach appears to be co-
occurrency matrices, while adaptive thresholding appears to hold promise as
a “"statistical" approach. Obviously, more error analysis needs to be done
on all the algorithms and they need to be tested on data from a variety of
seasons since it may become necessary to use different algorithms for
images from different seasons. Also, it appears that statistics higher
then the second order will not be very useful and that some amount of noise
smoothing will have to be done before performing any c]assifitation,
although some of the adaptive algorithms may allow a relaxing on the need
for radiometric correction.

4,0 ICE KINEMATICS

As mentioned above, work on ice kinematics came after the initial
burst of activity on ice segmentation, so the areas of research are more
defined along the research problem boundaries as opposed to being driven by
image characteristics. We have divided the discussion therefore into three
areas; use of manual or computer aided interpretation, automatic detection
of shifts, and automatic detection of rotations.

The problem in ice kinematics is, of course, to automatically derive
velocity vectors for the ice motion. It was recognized early on that the
problem contains different aspects depending on where the image was taken.
Ice motion within the ice pack was almost always strictly translational;
very little rotation occurred although there was some deformation of the
ice in its movement. The marginal ice zone was very different however

since the ice floes ratated, broke apart and merged together rather
regularly in addition to translating. This was obviously noted as being
the more difficult area to perform ice kinematics automatically, so almost

all the work to data has been on data from the ice pack and on detection of
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translational motion (strictly shifting of the image). Some work however
has just recently been done on the problem of rotation detection, although
to date it has been applied strictly to images within the ice pack.

Manual interpretation of the data to determine ice movement vectors
was the first approach and is, of course, the most straightforward. The
human interpreter is much more able to detect the same ice patch or ice
floe in two separate images even if it has rotated and deformed in addition
to shifting. Most manual interpretation (performed mainly at ERIM) uses
SAR images that have been collected over very large areas in a stripmap
mode and this usually implies optically processed data since the digital
processing algorithms do not lend themselves to generating such large
quantities of data. Figure 9 illustrates a vector field and ice edge
generated from optically processed stripmap SAR data gathered during the
1984 Marginal Ice Zone Experiment (MIZEX-84). It shows both the motion and
shape of the ice edge as it changed from June 29 to July 6. More recently,
computer programs have been developed (mainly at JPL) that allow users to
display images, locate the same points in each image, then allow the
computer to determine the velocity vectors from those points. This
combines the advantages of the human interpreter image processing
capability with the computer power for performing the straightforward
manipulations. Unfortunately, this requires digital data and thus does not
have the advantage of manually scanning large tracts of optical data.

Although a large number of researchers have been working on the
problem of automatically detecting shifts (mainly, as mentioned above,
using data within the ice pack), unlike the ice segmentation work an almost
unified algorithm appears to have emerged. Unfortunately, most of this
work is very current and not much has been published; [16,18] give some
overview and in what follows we shall include the researcher and the
institute on the results that we state. The first problem is to Tocate the
same ice patch within two images that are separated in time. It is
generally agreed that some pyramid approach is necessary to make the
algorithms computationally pessible., Although some differ in details, all
such approaches generally correlate the two images on a very gross scale
first to locate areas having higher correlation, then look within those
areas to determine finer estimate of the shifts. Although the cross-
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correlation function is usually used, some indication have been given that
a finite gradient measure is less noisy and that some noise smoothing
operations applied beforehand can help the algorithms (Emery and Collins,
UBC). Although these techniques only handle shifts it has been calculated
that rotations < 15 degrees will still allow them to work (Vesecky,
Stanford) without significant degradation. A number of images, mainly
SEASAT data, has been used to test the algorithms (although ground truth to
compare against is somewhat lacking in this area) and the results look very
good. Figure 8, shows two SEASAT images used for this analysis. Figure 10,
shows three different resolutions of the image REV. 1482 which are used to
determine estimates of the shifts. Figure 11, illustrates the displacement
vector fields for the different resolution images shown in figure 10.

With the shift detection well in hand, the next problem is automatic
detection of rotations. As mentioned above, rotations > 15 degrees can
cause considerable difficulties when detecting similar ice patches using
cross-correlations, so some means of allowing for rotations needs to be
considered. One approach is to explicitly rotate the image by a set of
incremental values and perform the cross-correlation on each, using the
peak cross-correlation output as the indicator of the rotation value
(Strong, GSFC). This is, however, computationally intensive and so
algorithms to detect the same ice patch in another image that are
insensitive to rotations of that ice patch are being investigated. One
such approach is to characterize the ice patch by moments that are
invariant to rotation (Vesecky, Stanford; Lee, JPL), although these can
also be somewhat hard to compute and may not differentiate between ice
patches within the same image sufficiently. A second approach is to use an
edge definition to characterize the ice patch which is also rotationally
invariant (Vesecky, Stanford) although this implies a method of locating
the edges with sufficient accuracy. In general, automatic detection of
shifts is a relatively new area of research and not much can yet be said on
the accuracy of any of the algorithms.

In summary, the ice kinematics algorithms are much less scattered then .
the ice segmentation algorithms; a few very definite approaches are being
studied. The estimation of motion vectors for ice images within the ice

pack is well established since the ice motion is mainly translational and
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good, automatic algorithms exist. These usually involve a pyramid of
cross-correlations to locate similar ice patches and limit search areas.
Handling rotation or images from the marginal ice zone is still in its
earliest stages; no good algorithms yet exist.

5.0 ICE IMAGE CHARACTERIZATION

A1l of the algorithms collected here have been discussed previously,
but we thought it useful to collect them again under this heading. In the
previous two sections we have emphasized two ice problems; ice type
classification and ice motion determination. In this section, we will
briefly mention the algorithms that extract other information from the SAR
images. This is a relatively new area of research, segmentation and
kinematics have dominated the research field for a while, and is often
difficult to separate from the others; they will in fact share many of the
same algorithms. But the information they are trying to extract is
different and represent a new direction in SAR ice algorithm development;
trying to estimate some specific geophysical parameter directly from the
SAR image.

Two main algorithms have been developed. The first, mentioned in
Section 3, is to locate and characterize lead locations [19]. This
algorithm first creates a binary image to indicate ice and water (and thus
really starts as an ice segmentation algorithm) then uses the shape of the
main lobe of the autocorrelation to estimate the average shape of the lead
and the location of the secondary peak to estimate the mean distance
between Teads. Ground truth to compare against in this area is somewhat
lacking, but good visually compared results were obtained. Results from
this algorithm are shown in figure 12. Figure 12a is a STAR-1 image used
for this analysis, figure 12b shows the binary image, figure 12c¢ is a
contour plot of the autocorrelation of the binary image, and figure 12d is
a reproduction of the lTead locations. The second main algorithms try to

extract mean floe shane and mean floe dencity ~ The mean floe chane can he
extracted very similarly to the lead characterization. The half-power
shape of the main Tobe of the autocorrelation function is extracted and fit

to an ellipse; the shape of the ellipse then estimates the average shape of
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occurrency matrix perhaps) may be needed to further distinguish between ice
types.

Future algorithms in ice kinematics will obviously need to be directed
towards generating methods of characterizing ice patches that allow for
both translational and rotational detection. These algorithms will have to
be applied to the marginal ice zone also, so perhaps some method of
handling deformation (floes that break up or merge) will need to be added
although this may merely be finding a characterization that looks for
features that remain constant (ridge line structures or meltpool Tlocations
perhaps).

In general, a good start has been made in creating automatic methods
of extracting sea ice parameters. Ice concentration and ice translation
detection appear to be well in hand and the current research efforts are
directed towards fine tuning these algorithms, modifying them for wider
application, and generating new algorithms in the harder areas.
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Ann Arbor,

Over the past several years research
on SAR sea ice imagery has focused on
determing whether information on ice
field parameters, including ice type, ice
concentration, density and sizes of
leads, and floe size distribution, could
be obtained from the SAR data. This
research has shown promising results and
produced an extensive SAR signature data
base as well as rudimentary algorithms
for obtaining these parameters. With the
advent of operational SAR satellite
systems, it becomes even more important
to develop this capability to monitor ice
conditions in the Arctic in support of
navigation, exploitation, and clima-
tology. Therefore the focus of the SAR
research has now shifted to the develop-
ment of efficient automatic and almost
real-time algorithms. In this paper we
present an overview of the progress made
in the development of these algorithms.

The approaches taken to construct
algorithms for deriving the various sea
ice parameters are summarized in Table 1.
The two key elements in these approaches
are image segmentation and statistical
analysis in either the image or Fourier
domain. For example, an algorithm
developed to derive lead statistics
segments the image based on the
difference in intensity between ice and
open water, and then uses characteristics
of the autocorrelation of the segmented
image to obtain lead dimensions, spacing
and density [1]}. As indicated in Table
1, algorithms for ice type, ice
concentration, and lead statistics are
using primarily fully digital approaches,
whereas ice kinematics and floe size
distribution algorithms at present still
rely heavily on a combination of manual
interpretation, to arrive at the
segmented image, and computer analysis of
the manually derived image data. Fully
digital approaches for these two sea ice
parameters are being pursued in parallel.
Algorithms have yet to be developed for
determination of ridge statistics or ice
thickness from SAR data. Of the possible
approaches listed in Table 1, many would
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make use of the phase as well as the
intensity information contained in the
SAR signal, allowing, for example, ice
floe motion to be derived on the basis of

the Doppler shift imparted to the
returned signal.

The progress made to date on
development of digital SAR sea ice
algorithms is summarized in Table 2.
Here we consider four stages in algorithm
development: 1) understanding of the
physical basis for deriving the sea ice
parameter; 2) translation of that
understanding into a mathematical model;
3) implementation of the mathcmatical
model into a computer algorithm; and 4)
validation of the algorithm.

The physical basis for deriving most
of the sea ice parameters from SAR data
is the large contrast between radar cross
sections of ice and open water {2,3].
This characteristic alone is a sufficient
basis for lead and floe size distribution
and total ice concentration algorithms in
most imaging situations [1,4,5]. For ice
type discrimination and fractional
concentration algorithms, additional
information is required. Local image
texture and the statistics of SAR
intensity, which have been shown to be
useful in discriminating floes of
different ice types and degrees of
deformation [6,7]), have been exploited
for these algorithms. Both ice/water
contrast and texture within floes are
used as the basis for ice kinematics
algorithms involving manual
interpretation [4], but to date the
digital algorithms make use of the
textural characteristics of the entire
scene such as linear features and
persistent patterns [8,9]. In the case

of deriving ridge statistics, we do not
as yet completely understand the physical
mechanism for SAR imaging of ridges
making it difficult to generalize ridge
signatures in a way that could be
quantified. Ice thickness is the extreme
case where it is not known if SAR can
provide this information.
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] A major step in algorithm development
is the transition from the physical basis
to a mathematical model and its
implementation in a digital algorithm.

At this step it is to some extent
necessary to quantify the methodology of
a human interpreter in such a way that
the method can be implemented within a
computer architecture. For ice/water and
ice type discrimination, the mathematical
model consists of a hierarchy of
intensity and texture measures associated
with the various scene components. These
descriptive measures are generated from
the SAR and scatterometer signature data
bases and account for both natural
variations in ice surface conditions and
speckle-related variations. An algorithm
is then implemented that compares local
image statistics to these measures. At
this stage segmented images can be
obtained (i.e. ice type or ice .
concentration maps) (10,11]). Subseguent
processing is needed for floe size and
lead statistics. Fourier transform
techniques, specifically the
characteristics of the autocorrelation
function, have been found useful for
obtaining lead orientation and density
information, but less useful for floe
size. For floe size determination, a

mathematical model must still be
determined that will quantify boundary
information efficiently. Pattern recog-
nition type techniques are being
investigated for this purpose and for ice
kinematics algorithms since shape and
context information are so important in
manual interpretation of SAR imagery.
These manipulations may be facilitated by
the use of parallel-processor computer
frameworks such as that of the ERIM cyto-
computer [12].

Algorithm validation, i.e. comparison
with independent measures of the sea ice
parameter of interest, has been carried
out for the ice type, ice concentration,
and lead distribution algorithms only.
The ice type and lead distribution
algorithms have been exercised on single
SAR scenes for which ice surface
observations were available. The ice
concentration has been the most
extensively validated by comparing
concentration estimates to those derived
from near-simultaneous passive microwave
data and aerial photography [13], but
under summer MIZ conditions only. Lack
of SAR imagery with sufficient spatial
and seasonal coverage is at present a
limiting factor in validation efforts.

Table 1. SAR Sea Ice Algorithm Approaches

Sea Ice
Parameter

Current
Algorithm Approaches

Possible
Algorithm Approaches

Ice Type

Image Segmentation
-pixel intensity

Multivariate
Complex Data

-neighborhood texture

Ice Concentration

Image Segmentation
Statistical Analysis

Combination with
Passive Data

Fourier Analysis

Lead Distribution

Image Segmentation

Complex Data

+ Autocorrelation

Ice Kinematics

Manual Interpretation
+ Computer-generated
vector fields

Single and Multiple
Frame Doppler
Analysis

Pattern Recognition
+ Autocorrelation

Floe Size
Distribution

Ridge Statistics

Ice Thickness

Manual Analysis
+ Computer-generaled
satistics

Pattern Recognition

Edge Detection

?
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Progress on Digital SAR Sea Ice Algorithms

Sea Ice Physical Basis Mathematical Algorithm Algqrithm
Parameter Understood Model Implemented Validated
Ice Type yes yes yes limited
Ice Concentration yes yes yes summer only
Lead Distribution yes yes yes limited
Ice Kinematics yes under under no
development development
Floe Size yes no no no
Distribution
Ridge Statistics no no no no
Ice Thickness no no no no
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Figure 1. Global histogram of a SAR sea ice image.
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Figure 2. Global histogram of a SAR sea ice image after a
smoothing algorithm was applied to reduce system noise.
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Figure 3. Local histograms of a SAR image.
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Fig. 5. Ku-band backscatter coefficient distribution envelopes from

Beaufort Sca ice in the March, 1979 period. The hyperspace el-
lipses are standard deviation contours for each of the classes shown,
The ice class symbols arer G-grey, G-W~Grey white, FS—-smooth
first-year, FR —rough first-year, S§—smooth second-year, SR —rough
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Fig. 6. Ku-band backscatter coc(ficient and K-band emissivity distri-
bution envelopes from Beaufort Seaice In March, 1979. These hyper-
space distribution contours demonstrate the advantage of a combined
active/passive mecasurement to scparale sca ice classes. Clearly the
emissivity data give added separation to the ellipses for the old ice
classes as can be observed {rom a comparison of Figs. § and 6.
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Figure 9. SAR sea ice floe vector and edge generated from manual
interpretation of optically processed SAR data gathered
during MIZEX-84.
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Figure 11. Displacement field (1 vector out of 4% shown) for different resolutions: m = 81, with
seed tie points shown as circles, m =27, m =9,andm = 3. The displacements for m
= 1 (not shown) are indistinguishable from those for m = 3. Actually, the scene from
Rev. 1482 is 17.0 km downtrack from the scene from Rev. 1439 [5]; this uniform
displacement must be added before any significance is attached to zeroes of the field.
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"Figure 12a. STAR-1 image after smoothing by a median filter.
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Figure.1l2b. Binary image showing open-water leads.




Figure 12c. Contour plot of the autocorrelation function produced
from the binary image shown in figure 12b.

Figure 12d. One possible reconstruction of lead position from
autocorrelation function.




