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ABSTRACT 

Calculations have been performed for the gamma-ray dose rate: 
U) inside a uniformly contaminated volume, as in a radioactive cloud 
or in contaminated water; (2) as a function of altitude above the center 
of a uniformly contaminated circular island; and (3) as a function of 
altitude above uniformly contaminated water. 

The ^^cu^ions have been performed for monoenergetic sources of 
0.15, 0.30, 0.60, 1.2, and 2.5 Mev and for some experimentally observed 
fallout spectra. 



FOREWORD 

This report presents the results of a special study undertaken in 
connection with the fallout program of Operation REDWING to provide a 
theoretical basis for analysis of the experimental results of Projects 
2.61 through 2.66. Since a field instrumentation effort was not in- 
volved, this report does not carry a project number, and will not be 
replaced by a WT-series final report. 

For readers interested in other pertinent test information, refer- 
ence is made to ITR-1344, Summary Report of the Commander, Task Unit 3. 
This summary report includes the following information of general inter- 
est: (1) an overall description of each detonation, including yield, 
height of burst, ground zero location, time of detonation, and ambient 
atmospheric conditions at detonation; (2) a discussion of all project 
results; (3) a summary of each project, including objectives and re- 
sults; and (4) a complete listing of all reports covering the Military 
Effects Program. 
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CHAPTER 1 

INTRODUCTION 

There are two "basic techniques for a field determination of the 
distribution of radioactive emitters in a medium: (l) securing samples 
of radioactive material from various portions of the medium and ana-" 
lyzing these samples with standard laboratory counting equipment and 
(2) making a radiation survey near the actual distribution of emitters. 
The first technique is the more accurate, but it involves long time 
delays associated with careful collection of samples, transportation to 
a laboratory, and subsequent standard geometry counting. The survey 
technique has been applied extensively during tests of nuclear «oapons 
to the problem of delineating fallout areas on land and determining 
contamination levels for Radiological Safety purposes. It has also 
been applied to determine the distribution of radioactive material in 
the ocean and in the radioactive cloud following a nuclear detonation. 

The purpose of the calculations which follow is to establish the 
relation between the gamma dose rate measured by a survey reading at a 
specified location and the density of radioactive emitters in the 
assumed distribution. In this presentation the dose rate will be de- 
fined as the radiation field measured in r/hr - namely, the ionization rs 
per unit volume of STP air. The actual situations under which such 
measurements are performed can be approximated by three ideal cases in 
which the dose rate is taken: (l) within an infinite medium uniformly 
populated with radioactive sources,' (2) above the center of a circular 
disk containing a uniform surface distribution of sourcesj or (3) in a 
semi-infinite medium at various distances from the interface with the 
complementary semi-infinite medium, having a different composition, 
which has radioactive sources uniformly distributed throughout its vol- 
ume. 

The first case corresponds to the measurement of the dose rate 
Within a nuclear cloud or within water in which radioactive fallout has 
been mixed. The second applies approximately to the problem of deter- 
mining the contamination of the surface of an island by a measurement 
of the dose rate above its center. The large land-source problem is 
that in which the radius of the disk is allowed to become infinite. 
The third case corresponds to the measurement of the dose rate in the 
air above contaminated ocean water. 

The actual calculations are performed for the following monoenerget- 

^4^UrceS: 15° hs7>  3°° kOT» 60° ksv» 1'2 MOT» and 2.5 Mev. The data 
wnich may then be used to compute the absorption relations for any spec- 
trum, are applied to some experimentally observed fallout spectra. 
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CHAPTER 2 

BASIC THEORY 

2.1 INTERACTIONS CF GAM4A RAIS 

Gamma rays of moderate energy interact with matter by the follow- 
ing three mechanisms: 

1. Photoelectric Absorption. The gamma ray ejects an electron 
from an atom, imparting its total energy to the electron. The gamma 
ray disappears, and the energy is locally distributed by ionizing and 
exciting collisions of the electron. 

2. Compton Scattering. The gamma ray imparts a portion of its 
energy to an electron and a scattered gamma ray of lover energy travels 
in a new direction. The energy of the electron is locally distributed, 
but the scattered gamma ray contributes to the resultant gamma dosage 
elsewhere. 

3. Pair Production. A high-energy (>1.02 Mev) gamma ray can 
interact with an electric field to produce an electron-positron pair. 
The gamma ray disappears, and the kinetic energy of the electron and 
positron are locally distributed. The subsequent annihilation of the 
positron produces two gamma rays of 0.511-Mev energy which travel in 
opposite but arbitrary directions and contribute to the total gamma 
dosage elsewhere. 

Each of the above interactions has a certain probability (/i-^, /x2, 
/io) of occurring per unit path length of a gamma ray in a given medium. 
The probability that any of the interactions occurs per unit path length   j 
is then^u-o =Mi + H-2 + H-1 am* the l^obability "^^ ^e  gamma ray has not   ] 
interacted in a distance X = e   . J 

2.2 CALCULATION OF DOSE RATE 

The dose rate at a particular point in a radiation field is defined 
as the number of ion pairs produced per unit volume of air (STP) located 
at that point. The number of ion pairs produced is proportional to the 
energy lost per unit volume. Therefore, if the flusr of particles of 

itefined as the number of gammas per unit time crossing a unit area 
perpendicular to their direction of motion. 



energy E0 at the point is FQ and the average fraction of the energy 
lost per unit distance1 is EQ, then the dose rate (in r/hr) is: 

D0 = C E0 h0 F0 (2.1) 

Where: C = 0.058j factor to convert from energy (Mev) deposited per 
unit volume (cm^) per second to roentgens per hour. 

2.3 DOSE BUILDUP 

The dose rate at a distance R due to the unscattered flux from a 
monoenergetic point source of radiation emitting AQ photons per unit 
time can be calculated to be: 

Dou=CE0h0—°—e"H^ (2.2) 

However, the dose rate is augmented by the contribution of the scattered 
photons. The magnitude of this dose-rate buildup has been computed for 
some special cases (Reference 1). The buildup factor in air has been 
graphed as a function of energy for various source energies (Eaference 
^;. For the purposes of the numerical calculations involved in this 
report, principally to avoid tedious numerical integrations, these 
curves have been approximated by cubic equations: 

Bo - i + *o ^0
R) + % (/^)2 + *0 (^0R)

3      (2.3) 

The coefficients have been graphed as a function of source energy E0 

It will be assumed that these same coefficients apply in the case 
of water, since the density effect is incorporated into/xQ and the mean 
atomic number is not greatly different from that of air. 

+JSf foreSC5lng buildup factors were calculated ones and include 
contributions from the entire gamma spectrum below E0. However, actua") 
survey instruments usually do not detect radiation below a certain en- 
ergy, usually 60 to 75 kev. Therefore, the fraction of the scattered 
dose contributed by such low-energy gammas was estimated using the 
i"?!*3*  Reference !> and i*118 amount was subtracted from the calcu- 
lated dose rate. Effectively, this procedure amounted to multiplying 

Of  o0, and d0 by a factor less than one representing the fraction of 
xne scattered dose contributed by detectable gamras. 

During the solution of Case 3, it is necessary to evaluate the 
ra+   scattered flux penetrating the interface, rather than the dose 
axe. The curves presented in Reference 1 were again used to convert 

xne scattered dose rate to flux as a function of energy. The method 

0 ^1 + f2^2 + f3^3 1Äiere f2 and f3 are the average fractions of 
ÜL1^1*1 energy deposited locally for Cotapton scattering and pair 
production, respectively. 

11 



0.2 0.4 0.6        0.8     1.0 2 

Source    Energy   (Mev) 

e     lo 

Figure 2.1   Buildup factor coefficients. 

Bo=1 + bo^oR> + co^oR)2+ do(^oR)3 

12 



used was to approximate the scattered spectrum by a sum of monoenergetic 
sources of energies 0.15, 0.30, 0.60, 1.2, and 2.5 Mev, where the rela- 
tive strengths of these sources were determined by evaluating areas 
under the energy-flux curves of Reference 1. For this purpose the var- 
iation of h with energy_was neglected, since it does, in fact, deviate 
from an average value, h, by less than 15 percent. 

13 



CHAPTER 3 

FORMULAS 

3.1   DOSE RATE IN AN INFINITE MEDIUM 

The dose rate at P due to a monoenergetic volume density of activ- 
ity, Ay0, at (R,0,$ is: 

^o = Bo(/4>R)   C E0 h0   Ayo R^ sin 6 dödcfr dR   e 
volume 

"M* 
U-riEf 

dose        dose 
buildup   factors 

absorption   solid 
angle 

(3.1) 

b 

R sinö d<p 

u 



Inserting the, assumed cubic equation for the buildup factor and 
integrating over all space variables, the total dose rate is derived to 
be: 

Do = c Eo ho —°  (1 + b0 + 2crt + 6dJ (3.2) 

When the sources emit a spectrum of gamma rays, the above dose rate must 
be integrated over the energy spectrum. 

3.2 DOSE RATE ABOVE CENTER OF CIECÜTAR DISK 

flor,«^6 ?°Se ^e ? V0ij!A Pda8toa monoenergetic uniform surface 
density, Aß0, of isotropic sources at (R,</>) is: 

dDo = Bo(^oR)    CE0hoAso    RdRdc£  e"^    JL (3.3) 

i~'i\. (s- bJA 4TJR 

VRZT
2 

If the sources of the radiation do not emit isotropicaUy, the quantity 
so 

-j^ BhouM be replaced by the number of photons emitted per unit time, 

Per unit surface area, per unit solid angle in the particular direction. 

15 



For Isotropie emitters, the dose rate integrated over c£ and up to 
the edge of a disk of radius p Is: 

D0(Z,/>) = C E0 hQ iso H^Z)  ~K(^ov
/Z2 + ya

2) O.u) 

Where: K(X) = 7f,(-X) + e 

-t 

-X 
(bQ+ c0+ 2dQ) + X (c0 + 2d0) + X

2dc 

~£± (~z) = / -§— ^ is i^0 usual exponential integral. 

X 

For heights large compared to the radius of the source field 
(Z>>/j), this formula approaches the formula for a point source having 
the full strength of the disk at a distance Z, namely: 

DoW5>>^ C Eo ho     =-   e 
r A Z2 

1 + b^Z) + 

co0i^r+ d>0z); 
(3.5) 

One interesting and useful result demonstrated by the above deriva- 
tion is related to the fact that the two K factors are functions of the 
sitent range to the near and far points of the contaminated circle and 
do not depend on any other distance. In particular, a calculation of 
the dose rate on the surface at the center of an uncontaminated circle 
of radius p amidst an infinite contaminated plane yields the same an- 
swer as the dose rate at a height p above an infinite contaminated 
plane, since both are proportional to K (/J0/p). 

The foregoing solution actually corresponds to a contaminated plane 
in an infinite isotropic medium and thus differs slightly from the ground- 
air problem in which the medium does differ on the two sides of the plane. 
This fact affects the dose rate in the air through two mechanisms: (l) 
the effective atomic number of the ground is somewhat different from 
that of the airj therefore, the absorption and scattering cross sections 
are different and (2) the scale of the scattered trajectories is fore- 
shortened by the greater density of the soil and thus affects the dose 
rate for finite-size source fields. Actually the error caused by the 
isotropio-medium assumption is probably less than 15 percent. 

The fact that the above formula becomes logarithmically infinite as 
the detector approaches the surface is associated with the mathematical 
assumption that the vertical dimension of the detector is small compared 

16 



to its distance from the plane; hence, a finite number of sources are 
at distance zero from the detector. 

.ons 

3.3    DOSE RATE IN AIR ABOVE CONTAMINATED WATER 

st«J?19^?3^:1011 S ?*e ail^o^water problem is performed in two 
£2£rJj2 the

+
metilol.of Section 3.1 is utilized to^alculate lie flax 

SSSfi^8 "?" f?aCe ^ (2) **** flu3C is Verted into the dif- 
for^io^ i0n 3#2 t0 ealco:Lft1* *» «**•<* of'the aiTab- 

sad i?qSS SteP? °f ?iS Solution ^ sa*e assumption as that discus- 
Jf aÜ?^iS? ?:   SJ ^ nBde' i'e" *» d°*^W characteristic^ 
m^um at^       * "^r b0Unded by ^^^ different semi-infinite 
SrSrS ^6 S"? aS ^ a ***>&**">* infinite medium.   In this case 

infiS^bo^^a^Svet.^ ^ ^ ^ ** ^^^ 
ther f^rL^8 ef^efJVe atoadc nmibers d0 M* differ greatly, the fur- 
S^TSSJS^ S^iS? ^ *** **» same dose-buildufcoefficients^n 
älcSSil L ?? J?4***   Ao*":U* **» **ntit7 desired from the wa££ 
Ste     Ä2L? the*?m " a ^»wWatt of energy - not the total dose 
to th« ^erefoTe> ** scattered dose rate must be allocated according 
^oSL   SS«SSCtrUm °f *» Scattered ^i^tion.    m thTmorSge^il 
UoÄ Ä 2^6 B?T*8 mLt a Spectrum of Samma rays, this cSX- 
*ion can be represented as a modification to the primary'energy spectra. 

TABLE 3.1    SCATTERED ENERGY FLUX FRACTIONS, Si 

E0 (Mov)^\^^ 

0.15 0.3 0.6 1.2 2.5 SO.75 

0.15 
0.3 
0.6 
1.2 
2.5 

0.15 
0.55 
0.25 
0.20 
0.10 

0.20 
0.30 
0.20 
0.10 

0.25 
0.25 
0.15 

0.25 
0.35 0.25 

0.85 
0.25 
0.20 
0.10 
0.05 

among^ne^SLf Hefe?SS 1 h&™ been Mea *° *&»»*• *»*» dose rate 
^en semtSS^^ f1^2 ^f^*3-    **» energy-flux curves have 
E«//    E/T   + ^terval* centered at a series of energies E0, E0/2, 
Äi^?'*?0'' ^ the loTCst interval bounded by 75 kev.   For the 
iHLumS ^J*1^1*008' ^ averaSe fractional energy loss^ hf 
entSe^o!   +*     * """^ ^ °f £ = °-33 X lO^cm"1 over t£e ' 
each c/^   I ^erefore, the area under the energy-flux curves within 
tered do^iiS"^ ^?&S ^Sf ******> cont^butions to the seat- 
by each eL^i faction of the total scattered flux contributed' 

bfSnsSivfS tt^' 75keVröIlte ignoreä' sülce i^truments wUl not 

17 



In the ensuing calculations, the scattered flux has been reintro- 
duced as an effective uniformly distributed additional source such that 
only the unscattered flux from the composite source need be calculated. 
In other words, the flux at the surface will be correctly evaluated by 
calculation of the unscattered radiation from the composite source dis- 
tribution. From formulas derived before, the additional source strength 
at Ei due to a source of strength A^ at EQ is: 

A ^ = s±Eo   IH   io. V' (b0 + 2c0 ^0) (3.6) 
Ei ^o h 

The effective source strength Ayj at energy Ej can then be calculated 
by adding the real source, Aj, to all terms AAy-j due to primary source 
of energy E0 ^ E^. 

The angular distribution of the scattered radiation will be assumed 
to be the same as that of the unscattered radiation, since this corres- 
ponds to isotropy in the upper hemisphere. 

Using the method of Section 3.1, the number of unscattered photons 
due to a source Aj0 per unit time crossing a unit surface area at an 
angle 8 is: 

cos 0 dR du A0 (9) dft - 
J            KIT 

R = 0 

<o 
-                 cos  8   du 

A7/>ow 

(3.7) 

Where: /i.  = Interaction coefficient of water 
ow  for gammas of energy E0. 

The factor cos 0 arises from the fact that a unit area of the surface 
projects onto an area cos 0 perpendicular to the direction of flight of 
the photons. 

As indicated in Section 3.2, quantity A^e) is to be inserted in- 
stead of Aso in the differential form of the infinite plane formula.-1- 

UTT 

\b±3  expression must be inserted into the differential formula because 
the angular dependence of the radiation coming through the surface 
differs from the contaminated plane case by a factor cos 0 . 

18 



.7) 

of 

r 

use 

CO 2TT 

4o     Z0     e-^oH 
D0(2).- / 1 R^R)    CE^ -Rd*dR 

J J n R       4TTR
2 

R = Z   <£=0 W 

= C E0 h0   -Z2-   ^    (^Z) 

H3W 

(3.8) 

Where:    ^(X) = x£±(-X)    (i-b0) + -X 
1 + X (c0 + dQ) + X2 

This dose-rate expression must subsequently be summed over the effective 
source-energy spectrum, A^, to obtain the total dose rate.   The aW 
ex^ession does not approach Infinity as the detector approaches the 
SnEST'i"12*? ihm rdlVaaS «Irtrlbatlc« of sources jÜÄces only an in- 
finitesimal number of them at distance zero from the detector/ 
a ««SA«!n    f hSVijlg a eensltiTO soHd angle less than 27ris used, 
JJ^L^ei ^comes^th^effectivesource, and the above integral   ' 
shouM be «= *1= f^uplerl^T^'i^^eTÄ^ 

Ä »loSoSu/expässior ^ fS!d ^ **« iS *- 

*vf (^o2^) = K^ (^o2) ~ cosa Kv I —— 
\cos a > 

(3.9) 
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CHAITER 4 

RESULTS OF CALCuIATIOUS 

Calculations have been performed for monoenergetic sources of 0.15, 
0 30   d SriTand 2.5 Mevf In addition, they have been performed for 
?hree articular gamma-ray-source spectra applicable to radioactive 
fa^ouffieldfresSting £om nuclear detonations     The composition of 
Säe spectrf in terms of the calculated energies is summarized in 
Table 4 1.   They are applicable to:    (l) fission-product activity from a 
fission ^aponf(2) early( one-day) activity from a thermonuclear weapon, 
S (3) Zur t2-to-7-day) activity from a thermonuclear veapon. 

TABLE 4.1   ASSUMED SIECTRA 

E0 (Mev) 

045 
0.3 
0.6 
1.2 
2.5 

Average Energy 

Relative Photon Flits: 
Percent 

Spectrum I Spectrum 11 Spectrum III 

15 
20 
45 

25 
25 
24 

50 
25 
20 

15 
5 

24 
2 

4 
1 

0.66 Mev 0.59 Hev 0.34 liov 

Table 4.2 summarizes the absolute conversion factors derived from 
these Siculatio^The surface or volume density of activity is cnosen 
to be one curie per square meter or cubic meter, respectively. 

Figures 4.1 through 4.8 present the factor to convert a reading at 
a height Z above a finite contaminated plane to a reading a* a height-off 
3 feet     Figures 4.9 and 4.10 present the conversion of the 3-foot read- 
ingfrom a §S?e-plane source to an infinite-plane source having the 
sane surface density of activity.   

Figures 4.11 and 4-12 present the altitude conversion factors for 
the air-over-water case. 



TABLE 4.2   ABSOIOTE CCHVERSICN FACTORS 

1-5, 
for 

Mev 

0.15 
0.3 
0.6 
1.2 
2.5 

I 
II 

III 

Infinit«* Voluas Distribution 
in Vfeter of 1 curle/netep 

Dose Rat« 
in V/at«r 

0.104 
0.60^ 
l."25 
2.58 
5.37 . 

1.36 
1.1S 
0.60 

Dose Eat« at 3 
ft Above Vfeter 

■w, 

r/kr 

0.05 
0.29 
0.61 
1.28 
2.67 

0.67 
0.59 
0.29 

stances large coupared to 1/, 

Infinit«* Volume Distribution 
in Air of 1 curle/iaster3 

Dose Rat« in Air 

r/nr 

96 
554 

1160 
2360 
5Q40 

1250 
1110 

560 

yiph 

Infinite Surface Distribution 
of 1 curie/meter^ 

Dose Rate at 3 ft 
Above Surface 

r/nr 

1.95 
6.05 

12.1 
22.0 
39.8 

12 
10 

6, 
rf.C"7 

X' 

^o* 

i a 

.r      j.fli?  .^ 
1-"/,.   |0 ov 
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at 
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CHAPTER 5 

DISCUSSION 

The purpose of this report is to provide a calculational background 
for the gajmna-attenuation problem. The calculations represent approxi- 
mate solutions to certain idealized problems which may or may not apply 
to practical field conditions. For example, the distribution of radio- 
active material on land may appear somewhat as a plane distribution, 
but it is probably modified by irregularities in the surface and leach- 
ing into the soil. Only accurate experimental measurements can estab- 
lish the importance of such effects and, hence, introduce modifications 
to the calculations. 

The numerical calculations have been performed with a desk calcu- 
lator and were appropriately simplified. The gross division of the 
energy spectrum could easily be refined by the use of more-elaborate 
computational equipment. The use of cubic equations to approximate the 
buildup curves could also be eliminated by the use of high-speed com- 
puters. However, in view of the lack of sensitivity of the results to 
the energy spectrum and the uncertainty in the correlation to practical 
situations, the curves presented in this report are probably sufficient- 
ly accurate. 
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