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ABSTRACT

Calculations have been performed for the gaume~rey dose rate:
(1) inside & uniformly contemineted volume, as in a radiosctive cloud
or in contaminated water; (2) as a function of altitude above the center
of a uniformly contaminated circuler island; and (3) as & function of
altitude above uniformly comtaminated weter.

The calculations have been performed for monoenergetic sources of

0.15, 0.30, 0.60, 1.2, and 2.5 Mev and for some experimentally observed
fallout spectra.




FOREWORD

This report presents the results of a special study undertaken in
connection with the fallout program of Operation REDWING to provide a
theoretical basis for enalysis of the experimental results of Projects
2,61 through 2,66, Since a field instrumentation effort was not in-
volved, this report does not carry a project number, and will not be
replaced by a WI-series final report,

For readers interested in other pertinent test information, refer-
ence is made to ITR-1344, Summary Report of the Commander, Task Unit 3.
This summary report includes the following information of general inter-
est: (1) an overall description of each detonation, including yield,
height of burst, ground zero location, time of detonation, and ambient
atmospheric conditions at detonation; (2) a discussion of all project
results; (3) a summary of each project, including objectives and re-
sults; and (4) a complete listing of all reports covering the Military
Effects Program,
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CHAPTER 1

INTRODUCTION

There are two basic techniques for a field determination of the
distribution of redicective emitters in & medium: (1) securing semples
of radioactive material from various portioms of the medium and ana~
lyzing these samples with standard lsboratory counting equiment and
(2) making & rediation survey near the actual aistribution of emitters.
The first technique is the more asccurete, but it involves long time
delays associated with careful collection of semples, transportation to
& laboratory, and subsequent standerd geometry counting, The survey
technique has been epplied extensively during tests of nuclear .sapons
to the problem of delineating fallout areas on land and determining
contamination levels for Radiological Safety purposes. It has also
been applied to determine the distribution of rediocactive materisl in
the ocean and in the radioactive cloud following a muc.ear detonation.

The purpose of the calculations which follow is to establish the
relation between the gamma dose rate measured by a survey reading at a
specified location and the density of radioactive emitters in the
assumed distribution. In this mresentation the dose rate will be de- ,
fined as the radistion field measured in r/hr - nemely, the ionization -7
per unit volume of STP air. The actual situations under which such
measurements are performed can be approximeted by three ideal cases in
which the dose rate is taken: (1) within an infinite medium uniformly
bopulated with radioactive sowrces; (2) above the center of a circular
disk containing a uniform surface distribution of sources; or (3) in a
seml-infinite medium at various distances from the interface with the
complementary semi-infinite medium, heving a different compositionm,
which hes redioactive sources uniformly distributed throughout its vol-
ume. '

The first case corresponds to the measurement of the dose rate
within a muclear cloud or within water in which redioactive fallout has
been mixed. The second applies epproximately to the problem of deter-
mining the contamination of the surface of an island by a measurement
of the dose rate above its center. The large land-source problem is
thet in which the redius of the disk is allowed to become infinite.

The third case corresponds to the measurement of the dose rate in the
air above contaminated ocean water,

The actual caleculstions are performed for the following monoenerget-
ic sources: 150 kev, 300 kev, 600 kev, 1.2 Mev, and 2.5 Mev. The deta

‘Which may then be used to compute the absorption relations for eny spec-

trum, are applied to some experimentally observed fallout spectra.
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CHAPTER 2
BASIC THEORY

2.1 INTERACTIONS (F GAMMA RAYS

Gamme. rays of moderate ensrgy interact with matter by the follow-
ing three mechanisms:

1. FPhotoelectric Abscrption. The gamma ray ejects an electron
from an atom, imperting its total emergy to the electron. The gamme
ray disappears, and the energy is locally distributed by ionizing and
exciting collisions of the electron. .

2. Compton Scattering., The gamme ray lmparts a portion of its
energy to an electron and a scattered gamma ray of lower energy travels
in a new direction. The energy of the electron is locally distributed,
but the scattered gamme rey contributes to the resultant gemme dosage
elsevhere. :

3. Pair Production. A high~energy (>1.02 Mev) gemme ray can
interact with an electric field to produce an electron—positron pair.
The gamma ray disappears, and the kinetic energy of the electron and
positron are locally distributed. The subsequent amnihilation of the
positron produces two gamma reys of 0.511-Mev energy which travel in
opposite but arbitrary directions and contribute to the total gamme
dosage elseuhere.

Each of the above interactions hes & certain probability (up, po,
/-;g) of ocourring per unit peth length of a gemma ray in a given medium.

e probability thet any of the interactions occurs per unit peth length
is thenluo =py+ Ho+ [ and the probability that the gamme ray has not

. _ Mok
interacted in a distance X= e R

2.2 CALCULATION (F DOSE RATE

The dose rate at a particular point in a radiation field is defined
as the mmber of ion peirs produced per unit volume of air (STP) located
at that point. The mmber of ion peirs produced 1s portianal to the
energy lost per unit volume. Therefore, if the of particles of

]'Dei‘ined as the nmuber of gammas per unit time crossing a unit area
perpendicular to their direction of motion.

e -“w,t» Az 10 o ,‘-%5
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energy Eo at the point_is F, and the average fraction of the energy
lost per unit distancel is h, then the dose rate (in r/hr) is:

Dy =C E, hsy F - (2.1)
[o] o 0 *0

Where: C = 0.058; factor a‘l;g convert from energy (Mev) deposited per
wnit volume (an’) per second to roentgens per hour.

2.3 DOSE BUILDUP

The dose rate at & distance R due to the umnscattered flux from a

monoenergetic point source of radiation emitting A, photons per wnit
time can be calculated to be:
A

Dy, = CE, h.— g O} (2.2)
ou 0o 0
47rR2

! S

However, the dose rate is augmented by the contribution of the scattered
mhotons. The magnitude of this dose-rate buildup hes been computed for

some speclal cases (Reference 1). The buildup factor in air hes been

graphed as a function of energy for various source energies (Rslerence ;
2). For the purposes of the mmerical caleulations involved in this |
report, mrincipally to avoid tedious mumerical integrations, these -
curves have been epmroximated by cubic equations: |

Bo= 1+ by (uR) + oy (uR)?+ a, (ur)> (2.3)

The coefficients have been grarhed as a function of source energy E,
(Figure 2.1).

It will be assumed that these same coefficients apply in the case
of water, since the density effect is incorporated intoji, and the mean
atomic mmber is not greatly different from that of air.

~~ The foregoing buildup factors were calculated ones and include
contributions from the entire gexme. spectum below E,. However, actusal
Survey instruments usually do not detect radistion below & certain en—
€Ty, usually 60 to 75 kev. Therefore, the fraction of the scattered
dose contributed by such low-energy gammes wes estimated using the
curves in Reference 1, and this amount was subtrected from the calcu~
lated dose rate, Effectively, this procedure amownted to multiplying
Doy 0o, and do by a factor less than one representing the fraction of
the scattered dose contributed by dstectable gammas.,

During the solution of Case 3 s 1t is necessary to evaluate the
actual scattered flux penetrating the interface, rather then the dose
rate. The curves mresented in Reference 1 were again used to comvert
the scattered dose rate to flux as a function of energy. The method

——

Jh°=fu1 + Loky + T3404 vhere £, and f3 are the average fractions of

the initial energy deposited locally for Campton scattering and paix
produc'bion, respectively, ‘

11
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used wes to approximate the scattered spectrum by & sum of monoenergetic
sources of emergies 0.15, 0,30,'0.60, 1.2, and 2,5 Mev, where the rela~
tive strengths of these sources were determined by evajmting areas
under the energp-flux curves of Reference 1. For this purpose the var—
iation of h with energy wes neglected, since it does, in fact, deviate
from an average value, h, by less than 15 percent.




CHAPTER 3
FORMULAS

3.1 DOSE RATE IN AN INFINITE MEDIUM

The dose rate at P due to a monoenergetic volums density of actiwv-
ity, Avos 8t (R,0,4) is:

dDg = Bo(ugR) C Eg by Ayp B2 8in 0 dBdcp R o 1O LE% (3.1)

dose dose volume absorption solid
buildup factors angle

LA, sty i T sk ek s
e i oo R i 2
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Inserting the, assumed cubic equation for the bulldup factor and

integrating over all space varisbles s the total dose rate is derived to
be: ,

D, = C Eg by Zvo (1+ 0Dy + 2+ 6d) (3.2)
Fo .

When the sources emit a spectrum of gamme rays, the above dose rate must

~ be integrated over the energy spectrum,

3.2 DOSE RATE ABOVE CENTER (F CIRCULAR DISK v

The dose rate at point P dus to a monoenergetic uniform surface
density, A; , of isotropic sources at (R, 1s: :

- 1
Do = Bolik) CEoby ko Ramap o7 L (3.3)

— dr . AR

b .
SV

if the sources of the radiation do not emit isotropically, the quantity
80

—

. should be replaced by the mmber of rhotons emitted per wmit time,
Per unit surface area, per wilt solid angle in the particular direction.




For isotropic emitters, the dose rate integrated over ¢ and up to
the edge of & disk of radius p is:

D,(Z,p) = G E_ h, ﬁ:_o_ [K(poZ) - K(p V22 + p? )} (3.4)

- : X
Where: K(X) = 5i(-X) + e [(bo + oy + 24,) + X (e t+2d,) + x? do]
9] " '
-£;(=X) = f & at,1s the usual exponential integral.
t
X

For heights large compared to the radius of the source field

(2>>p), this formila approaches the formila for & point source having
the full strength of the disk at a distance Z, namely:

2 .
A - %
so P o Ho [1 + by (uz) +
4 Z°

. DO(Z,p)Z>—>P" C Ey hy

co(pcz)z“rdo(poZ)B] (3.5)

One interesting and useful result demonstrated by the above derive-
tlon is related to the fact that the two K factors are fumections of the
slant range to the near and far points of the contaminated circle and
do not depend on any other distance. In particular, a calculation of
the dose rate on the surface at the center of an uncontaminated circle
of radius p amidst an infinite contaminated plene yields the same an—
swer as the dose rate at a height p above an infinite conteminated
plane, since both are proportional to X (uyp).

The foregoing solution actually corresponds to a contaminated plane
in an infinite isotropic medium and thus differs slightly from the ground-
air problem in which the medium does differ on the two sides of the {ﬂane.
This fact affects the dose rate in the air through two mechanisms: (1
the effective atomic muber of the ground is somewhat different from
that of the air; therefore, the absorption and scattering cross sections
are different and (2) the scale of the scattered trajectories is fore-
shortened by the greater density of the soil and thus affects the dose
rate for finite-size source fields. Actually the error caused by the
isotropic-medium assumption is probably less than 15 percent.

The fact that the above formile becames logerithmically infinite as
the detector approaches the surface is associated with the mathematical
assumption that the vertical dimsnsion of the detector is small compered

16
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to its distance from the plane; hence, a finite mmber of sources are
at distance zero from the detector.

3.3 DOSE RATE IN ATR ABOVE CONTAMINATED WATER

The solution of the air-above~water problem is performed in two
steps: (1) the method of Section 3.1 is utilized to calculate the flux
crossing the water surface and (2) this flux is inserted into the dif-
ferential formila of Section 3.2 to calculate the effect of ‘the air abe
sorption. _

In both steps of this solution the Same assumption as that discus-
sed in Section 3.2 must be mede, 1.e., the dose-buildup characteristics
in & semi-infinite medium bounded by another different semi-infinite
medium are the same as in a homogeneous infinite medium. In this case
the errors should be small, because the effective atomic mmber of air
and water differ but slightly and thers is almost always an essentially
infinite boundary surface between,

Since the effective atomic mmbers do not differ greatly, the fur-
ther assumption will be mede that the same dose~budldup coefficients can
be applied to both media, Actually, the quantity desired from the water
caleulation is the flux as a function of energy - not the total dose
rate. Therefore, the scattered dose rate mist be allocated according

‘to the energy Spectrum of the scattered radiation. In the more~general

Problem, where the sources emit & Spectrun of gamma rays, this caleula~
tion can be remresented as a modification to the mrimary energy spectrum.

TABI_.E 3.1 SCATTERED ENERGY FIUX FRACTIONS, sy

Escat Mev) | 035 | 0.3 0.6 1.2 2.5 <0,75
F

E, (Mev)
0.15 0.15 0.85
0.3 0.55 | 0.20 0.25
0.6 0.25 | 0.30 | 0,25 0.20
1.2 0.20 | 0.20 | 0.25 | 0,25 0.10
2.5 0.10 | 010 | 0.5 | 0.35 | 0.25 0.05

The curves in Reference 1 have been used to allocate this dose rate
among the various contributing energies. The energy-flux curves have

©en separeted into intervels centered &t & serles of energles E,, Eo/2,
Eo/ls Eo/8, ete., with the lovest interval bomnded by 75 kev. For the

Se of these calculations » the average fractional energy loss, b

is assumed to have a constant valne of h = 0,33 X 10~%cxr~t over the

entire renge; therefore » the area under the emergy-flux curves within

each of the intervals measures their relative contributions to the scat-
tered doge rate. The fraction of the total scattered flux contributed

b4

EY oach energy, s;, camprted in this mammer is given in Table 3.1.

gain, the pert below 75 kev will be ignored, since instruments will not

| be sensitive to it,




In the ensuing calculstions, the scattered flux has been reintro-.
duced as an effective wmiformly distributed additional source such that
only the umscattered flux from the composite source need be calculated.
In other words, the flux at the surface will be correctly evaluated by
caleulation of the unscattered radiation from the composite source dis-
tribution. From formilas derived before, the additional source sirength
at Ey due to a source of strength A,  at E, is:

E h
Dby =s;—0 FL Toal (b + 20, +do) (3.6)
Ei Ho h

The effective source strength A”éj at energy E: can then be calculated
by adding the real source, Aj, to all terms AAvj due to primary source
of energy E, 2 Ej. K

The engular distribution of the scattered radiation will be assumed
to be the seme as thet of the unscattered rediation, since this corres-
ponds to isotropy in the upper hemisrhere. "

Using the method of Section 3.1, the mumber of unscattered photons
due to a source A’éo per unit time crossing a unit surface area at an
angle § is:

© %
A, () aQ = f e e/LLcmR cos § dR 4Q
b
R=20
&
- cos 6 dQ (3.7)
4 11 g

Where: p v = Interaction coefficient of water
%  for gammas of energy E,.

The factor cos O arises from the fact that a unit area of the surface
projects onto an area cos g perpendicular to the direction of flight of
the photons.
As cated in Section 3.2, quantity A,(0) is to be inserted ip-
stead of #so in the differential form of the infinite plane formula.
Lr

]This exgression mst be inserted into the differential formula because
the angular dependence of the radiation coming through the surface
differs from the contaminated plane case by & factor cos 6.
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Where: K(X) = XE4(X) (1-by)+ e [1 +X (cq + d) + X2 do]

X

This dose~rate expression pust subsequently be summed over the effective
source-energy spectrum, Ay, to obtain the total dose rate. The above
expression does not approach infinity as the detector aprroaches the
interface, since the volume distribution of sources places only an in-
finitesimal mmber of them at distance zero from the detector.

If & detector having a sensitive solid engle less than 2mis used,
a finite circle becomes the effective source, %nd the above integral
should be taken to the finite upper limit L=_a’ where o 1s the ac~

COS8
ceptancs dngle ¢f the detector. The finite field K¢ factor is then
given by the following expression:

(3.9)

R (2,0 = By (172) = cone &,

#oz>

cos




and (3) later

CHAPIER 4
RESTLTS (F CALCULATTICNS

Calculations have been performed for monoenergetic sources of 0.15,
0.30, 0.60, 1.2, and 2.5 Mev. In addition, they have been performed for
three particular gamme~ray-source spectra applicable to redioactive

fallout fields resulting from muclear detonations. The composition of
these spectra in terms of the caleulated energiles is sumerized in

Teble 4.l. They are applicable to: (1) fission-product activity from &
fission weapon, (2) early (one-Gey) activity from a thermomuclear weapon,
i2—to—7—day) activity from & thermomuclear weapon.

TARIE 4.1l ASSUMED SPECTRA

Eo (Mev) Relative Thoton Flux
Percent
Spectrum I Spectrum II Spectrum IIX
0J5 15 25 50
0.3 20 25 25
0.6 45 2, 20
1.2 15 2L, 4
2.5 5 2 1
_ Average Energy 0.66 Mev 0.59 Mev 0.34 hev
N S DS

Table 4.2 sumarizes the absolute conversion factors derived from
these calculations. The surface or volume density of activity is chosen
to be one curie per square meter or cubic meter, respectively.

Figures 4.1 through 4.8 present the factor to comvert a reading at
a height Z above a finite contaminated plane to a reading at a height of
3 feet, Figures 4.9 and 4.10 present the conversion of the 3-foot read—
ing from a finite-plene source to an infinite~plane source having the
same surface density of activity.

Figures 4.11 and 4.12 present the altitude conversion factors for
the air-over—-water case. .




L5,
for

18
on,

TABLE 4.2 ABSOLUIE CONVERSICH FACTGRS

E, Infinite® Volume Distrituticn | Infinite® Volume Distritation | Infinite Surfece Distribution
in Weter of 1 curie/meterd in Mr of 1 curie/meter of 1 curde/mote
Dose Rete | Dose Pate at 3 " Dose Rate in Air Dose Rate at 3 ft
in Water £t Above Meter Above Surface
Mev - r/r r/ur thr Gy
0.15 0,10, 0.05 1.95 157
0.3 0.60 _ 0.9 6.05 .32
0.6 1.25 0.4 12,1 A
1.2 2.58 1.28 22.0 .4y
2.5 5.37 . 2.7 39.2 15.%
1 1.36 0.67 12.2 kS
11 1.19 0.59 10.¢ d.o
111 0.60 0.2 6.2 N
Spistances large coupered to 1/, o
Aol 0
Sl o -
2 198 .5
. « V . , "(; e //
Voo Vew

7k
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CHAFTER 5
* DISCUSSION

The purpose of this report is to provide a calculational background
for the game~attemiation problem. The calculations represent approxi-
mate solutions to certain idealized problems which mey or may not apply
to practical field conditions. For example, the distribution of radio-
active material on lend may appear somewhat as a plane distribution,
but it is probebly modified by irregularities in the surface and leach-
ing into the soil., Only accurate experimental measurements can estab-
1ish the importance of such effects and, hence, introduce modiflcations
to the calculations.

The mmerical calculations have been performed with a desk calcu-
lator and were approrriately simplified., The gross division of the
energy spectrum could easily be refined by the use of more—~elaborate
computational equipment. The use of cublc equations to approximate the
buildup curves could also be eliminated by the use of high—speed com-
puters. However, in view of the lack of sensitivity of the results to
the energy spectrum and the uncertainty in the correlation to practical
situations, the curves presented in this report are probably sufficlent—
1y accurate.
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