Aty LN

pril'3, 1996




AN ABSTRACT OF THE PROJECT OF

Erica Sahler for the Degree of Master of Science in Civil Engineering

presented on April 3, 1996.

Title: Analysis of A Single Degree of Freedom Roll Motion Model:
Simulation, Sensitivity Study, and Comparison to Multi-Degree-of-Freedom
Models

Abstract approved: %é/% ‘/(4 %NN

Solomon C.S. Yim

This study models roll motion response of a barge subjected to beam sea
conditions as a single-degree-of-freedom system. The measured wave, either regular
or random, is input into a computer program which uses a fourth-order Runge-Kutta
integration method to numerically predict roll motion response. The simulated results
are compared to measured data to determine the best system damping parameters.
Four different forms of the damping moment of the SDOF model are ‘analyzed. In
each form all coefficients are known except for the linear and nonlinear damping
parameters. Each form uses a combination of relative motion "Morison" damping
and/or linear structural damping. Predicted results of the four forms of the damping
moment are examined to determine the most suitable model. A sensitivity study on
the response to various system parameters is then conducted on the selected form.
Each form of the model uses a thirteenth-order polynomial restoring moment. An
analysis is also conducted to determine the effects of using lower order terms to
represent the restoring moment. Finally, results of the SDOF model from this report
are compared with a 3DOF and a 2DOF model subjected to the same wave

environment to determine which model more accurately predicts roll response.

| r.Agzpmved for puniic relecse i




Analysis of a Single-Degree-of-Freedom Roll Motion Model:
Simulation, Sensitivity Study, and Comparison to Multi-Degree-of-Freedom Models

by

Erica Sahler

A PROJECT
submitted to

Oregon State University

In partial fulfillment of
the requirement for the

degree of

Master of Science

Completed April 3, 1996



ACKNOWLEDGEMENTS

My studies at Oregon State would not have been successful without the
patience, help and assistance I received from each of the members of my Graduate
Committee. I will always be grateful to Dr. Solomon C.S. Yim for giving me the
opportunity to work for him on this project. He challenged me with high standards
and a demanding project which I will look back on with a great deal of pride and
sense of accomplishment. I would also like to thank Dr. Charles K. Sollitt and
Professor Harold D. Pritchett for their input and guidance throughout my studies.

In addition I would like to thank Mr. Warren A. Bartel for his endless
patience and willingness to provide advice and assistance. I have a great deal of
admiration for Warren’s work ethic and dedication. Warren was a major contributor
to the NFESC Report "Nonlinear Roll Motion and Capsizing of Barges in Random
Seas, Part I; Modelling and System Identification” (Yim et al. 1995). This report
provided a great deal of background information for my project and was the
foundation for my research.

Partial support from the Naval Facilities Engineering Service Center Contract
N47408-94-C-7426 and the Office of Naval Research Grant N0O0014-92-J-1221 are
gratefully acknowledged. Thanks to the OSU Computer Science Department for use
of the Meiko CS-2 supercomputer. This computer support is made possible by
National Science Foundation Grant CDA-9216172.

My studies at OSU were funded by the U.S. Navy’s Fully Funded Graduate
Education Program. I gratefully acknowledge their contribution and am thankful I

was given the opportunity to pursue a graduate degree.



And finally I would like to thank my family and friends who gave me
encouragement throughout my studies. Without their love and support successful

completion of my graduate study would not have been possible.




1.0

2.0

3.0

TABLE OF CONTENTS

Introduction

1.1  Objective
1.2 Literature Review
1.3 Scope

System Description

2.1  Assumptions

2.2  Equation of Motion

2.3 Description of Wave Field

2.4 Inertia and Added Inertia Coefficients
2.5 Damping Moment

2.6 Roll Restoring Moment

2.7  Various Forms of Equation of Motion

Model Tests and Identification of Damping Parameters

3.1 Model Test Procedure
3.2  Description of Analytical Prediction Procedure
3.3 Form 1: Relative Motion Damping Moment

3.3.1 Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26)

3.3.2 Regular Wave, H=6 Ft, T= 6 Sec (SB27)

3.3.3 Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29)

3.3.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)

3.3.5 Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25)
3.3.6 White Noise Spectrum, Hs= 6 Ft (SB33)

3.4 Form 2: Relative Motion Neglected in Damping Moment

3.4.1 Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26)

3.4.2 Regular Wave, H= 6 Ft, T= 6 Sec (SB27)

3.4.3 Regular Wave, H= 7.2 Ft, T= 8 Sec (§B29)

3.4.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)

3.4.5 Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25)
3.4.6 White Noise Excitation, Hs= 6 Ft (SB33)

3.5 Alternative Forms Considered

L W N =

O 00003 WKW

12

13
14
18

19
19
19
23
26
31

31

36
38
38
41
41
47

47



Table of Contents (cont’d)

4.0

5.0

6.0

Sensitivity Study

4.1 Variation of Damping Parameters of Form 2, Equation 2.8
4.1.1 Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26)
4.1.2 Regular Wave, H= 6 Ft, T= 6 Sec (SB27)
4.1.3 Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29)
4.1.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)
4.1.5 Random Wave Tests

4.2  Variation of Nonlinear Restoring Moment
4.2.1 Cubic Fit to Restoring Moment Curve
4.2.2 5th, 9th, and 13th Order Restoring Moment Curves

Comparison of Single, 2- and 3-Degree-of-Freedom Models

Concluding Remarks

6.1  Conclusions
6.2 Recommendations for Future Studies

References

57
57

57
58

67
70

72
72
75

80

87

87
89




LIST OF FIGURES

Figure page

2.1  13th Order Roll Restoring Moment Curve 10

3.1  Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 15
Regular Wave, H=6.6 Ft, T= 5 Sec (SB26)

3.2 Comparison of Spectral Densities, Measured and Filtered Wave (SB26) 16

3.3  Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 17
17 Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26)

3.4  Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 20
Regular Wave, H=6.6 Ft, T= 5 Sec (SB26, eqn 2.2)

3.5 Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 21
Regular Wave, H= 6 Ft, T = 6 Sec (SB27, eqn 2.2)

3.6 Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 22
Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29, eqn 2.2)

3.7 Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 24
Regular Wave, H= 5.7 Ft, T=10 Sec (SB30, eqn 2.2)

3.8  Comparison of Spectral Densities, Measured and Predicted Roll 25
H= 5.7 Ft, T= 10 Sec (SB30, eqn 2.2)

3.9 1024 Sec Time Series of Predicted Roll H= 5.7 Ft, T= 10 Sec 25
(SB30, eqn 2.2)

3.10 Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 27
Bretschneider Spectrum, H= 6 Ft, Tp= 8 Sec (SB25, eqn 2.2)

3.11 Comparison of Spectral Densities, Measured and Filtered 28
Wave, Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25, eqn 2.2)

3.12 Comparison of Spectral Densities, Measured and Predicted Roll, 29

Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25, eqn 2.2)



List of Figures (cont’d)

Figure

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

page
Histograms of Measured and Predicted Roll, Bretschneider Spectrum 30
(SB25, eqn 2.2)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 32
White Noise Spectrum, Hs= 6 Ft (SB33, eqn 2.2)
Comparison of Spectral Densities, Measured and Filtered Wave 33
White Noise Spectrum, Hs= 6 Ft (SB33, eqn 2.2)
Comparison of Spectral Densities, Measured and Predicted Roll 34
White Noise Spectrum, Hs= 6 Ft (SB33, eqn 2.2),
Histograms of Measured and Predicted Roll, White Noise Spectrum 35
(SB33, eqn 2.2)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 37
Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26, eqn 2.8)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 39
Regular Wave, H= 6 Ft, T= 6 Sec (SB27, eqn 2.8)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 40
Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29, eqn 2.8)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 42
Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30, eqn 2.8)
Comparison of Spectral Densities, Measured and Predicted Roll, 43
H= 5.7 Ft, T= 10 Sec (SB30, eqn 2.8)
Comparison of Measured and Predicted Wave and Roll, Bretschneider 44
Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25, eqn 2.8)
Comparison of Spectral Densities, Measured and Predicted Roll, 45
Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB2S, eqn 2.8)
Histograms of Measured and Predicted Roll, Bretschneider Spectrum 46
(SB25, eqn 2.8)
Comparison of Measured and Filtered Wave, Measured and Predicted Roll, 48

White Noise Spectrum, Hs= 6 Ft (SB33, Eqn 2.8)




List of Figures (cont’d)

Figure

3.27

3.28

3.29
3.30
3.31
3.32

4.1

4.2

4.3

4.4

45

4.6

4.7

4.8

4.9

Comparison of Spectral Densities, Measured and Predicted Roll,
White Noise Spectrum, Hs= 6 Ft (SB33, eqn 2.8)

Histograms of Measured and Predicted Roll, White Noise Spectrum
(SB33, eqn 2.8)

Comparison of Roll Responses Using Four Different Forms (SB26)
Comparison of Roll Responses Using Four Different Forms (SB27)
Comparison of Roll Responses Using Four Different Forms (SB29)
Comparison of Roll Responses Using Four Different Forms (SB30)

Variation of Linear Damping Parameter, Constant Nonlinear Damping
Parameter, £y =0.07, H= 6.6 Ft, T=5 Sec (SB26, eqn 2.8)

Variation of Nonlinear Damping Parameter, Constant Linear Damping
Parameter, & = 0.09, H= 6.6 Ft, T=5 Sec (SB26, eqn 2.8)

Variation of Linear Damping Parameter, Constant Nonlinear Damping
Parameter, £y = 0.07, H= 6.0 Ft, T=6 Sec (SB27, eqn 2.8)

Variation of Nonlinear Damping Parameter, Constant Linear Damping
Parameter, £, = 0.10, H= 6.0 Ft, T= 6 Sec (§B27, eqn 2.8)

Variation of Linear Damping Parameter, Constant Nonlinear Damping
Parameter, £y = 0.40, H= 7.2 Ft, T=8 Sec (SB29, eqn 2.8)

Variation of Nonlinear Damping Pararheter, Constant Linear Damping
Parameter, £, = 0.33, H= 7.2 Ft, T= 8 Sec (SB29, eqn 2.8)

Variation of Linear Damping Parameter, Constant Nonlinear Damping
Parameter, £y = 0.07, H= 5.7 Ft, T=10 Sec (SB30, eqn 2.8)

Variation of Linear Damping Parameter, Constant Nonlinear Damping
Parameter, £y = 0.07, H= 5.7 Ft, T=10 Sec (SB30, eqn 2.8)

Variation of Nonlinear Damping Parameter, Constant Linear Damping
Parameter, £, = 0.03, H= 5.7 Ft, T= 10 Sec (SB30, eqn 2.8)

49

50

51
53
54
55

59

62

63

65

68

69

71



List of Figures (cont’d)

Figure

4.10

4.11

4.12

4.13

4.14

4.15

4.16
4.17

4.18

4.19

5.1

5.2

5.3

5.4

5.5

page
Comparison of Numerical and Analytical Restoring Moment Curves, 73
Cubic Fit
Comparison of Measured and Predicted Roll, Cubic Restoring Moment, 74
H= 7.2 Ft, T= 8 Sec (SB29)
Comparison of Spectral Densities, Measured and Simulated Roll, 74
Cubic Restoring Moment, H= 7.2 Ft, T= 8 Sec (SB29)
Comparison of Numerical and Analytical Restoring Moment Curves, 76
5th Order Restoring Moment
Comparison of Measured and Predicted Roll, 5th Order Restoring 77
Moment H= 7.2 Ft, T= 8 Sec (SB29)
Comparison of Spectral Densities, Measured and Predicted Roll, 5th Order 77
Restoring Moment, H= 7.2 Ft, T= 8 Sec (SB29)
9th Order Fit to Restoring Moment Curve 78
13th Order Fit to Restoring Moment Curve 78
Comparison of Measured and Predicted Roll, 9th Order Restoring 79
Moment, H=7.2 Ft, T= 8 Sec (SB29)
Comparison of Measured and Predicted Roll Using 13th Order 79
Restoring Moment, H= 7.2 Ft, T= 8 Sec (SB29)
Comparison of 3DOF, 2DOF and SDOF Models, H= 6 Ft 81
T= 5 Sec (SB26)
Comparison of 3DOF, 2DOF and SDOF Models, H= 7.2 Ft 83
T= 8 Sec (§B29)
Comparison of 3DOF and SDOF Models, H= 5.7 Ft, T= 10 Sec 84
(SB30)
Comparison of 2DOF and SDOF Models, H=5.7 Ft, T= 10 Sec (SB30) 85
Comparison of 3DOF, 2DOF and SDOF Models, Bretschneider Spectrum 86

(SB25)



Table
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5
4.6
5.1
6.1

LIST OF TABLES

Page
Linear and Nonlinear Damping Parameters for Form 1, Equation 2.2 18
Linear and Nonlinear Damping Parameters for Form 2, Equation 2.8 36
Linear and Nonlinear Damping Parameters for Form 3, Equation 2.9 56
Linear and Nonlinear Damping Parameters for Form 4, Equation 2.10 56
Variation in Damping Parameters and Resulting Standard Deviations (SB26) 57

Variation in Damping Parameters and Resulting Standard Deviations (SB27) 61
Variation in Damping Parameters and Resulting Standard Deviations (SB29) 64
Variation in Damping Parameters and Resulting Standard Deviations (SB30) 67
Variation in Damping Parameters and Resulting Standard Deviations (SB25) 70
Variation in Damping Parameters and Resulting Standard Deviations (SB33) 72
Damping Parameters for SDOF, 2DOF and 3DOF Models 80

Summary of Damping Parameters for Form 2, Equation 2.8 88




1.0 Introduction

For decades the U.S. Navy has used large steel barges as a vital part of their
Military Preposition Force (MPF) offload process. The MPF is a fleet of cargo ships
prepositioned at strategic locations ready for deployment when called upon. For any
extended military action, the MPF is the main source of equipment transport. Many
of the locations to which the U S military may be called into action do not have deep
water facilities that can accommodate these vessels. As a result, the equipment is
offloaded several miles off shore and transported to the beach or permanent/temporary
pier via barges or "causeways" as the Navy has designated them.

The causeways currently being used by the Navy measure 21 foot (ft) wide, 90
ft long and have a 5 ft draft. The shape is very close to a rectangular steel box. Due
to it’s shallow draft and particular geometry, the causeways quite often have water on
the deck even in relatively low sea states. Hence their stability is sensitive to wave
action. To improve the reliability of their operation, a new generation of causeways,
in which the dimensions increase to 25 ft wide, 120 ft long and a draft of 8 ft is

currently under conceptual design and is the focus of this analysis.

1.1 Objective

A series of experiments have been conducted to provide data to calibrate the
prediction capabilities of several time, frequency and probability domain computer
programs developed by the Naval Facilities Engineering Service Center (NFESC),
Amphibious Division. Of particular interest to the NFESC engineers is a study of

capsizing when the causeways are subjected to high sea states for relatively long
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durations. Simple low degree-of-freedom dynamic models of the barge motions have
been developed for stochastic analytical and numerical studies to estimate the
probability of capsize. The motivation behind this study is to identify suitable system

damping parameters for the single-degree-of-freedom (SDOF) model.

1.2 Literature Review

The motion of free-floating vessels in open seas often contain complicated
nonlinear behaviors due to large displacement and hydrodynamic effects. In
particular, the stability of roll motion of barges with high centers of gravity is of
great practical importance. Existing stability criteria are expressed in terms of
minimum values of certain key features of the righting arm. For certain classes of
vessels, static stability standards based on statistical and other analyses of intact static
condition are sufficient for design purpose, and can give a qualitative understanding of
the stability behavior for the naval architect (Soliman and Thompson 1991). Although
this curve is found to be an important vessel characteristic in assuring safety
(Falzarano et al. 1992), other vessel properties are also significant. These include
hydrodynamic and viscous roll damping, as affected by the wave exciting force.

Because the cargo is carried above deck on a causeway, the center of gravity
of the entire system is considerably higher in proportion to that of a conventional ship |
which carries most of its cargo below deck. The dynamics of a high center-of-gravity
barge rolling in seaways can become difficult to model and predict because of the

highly nonlinear characteristics encountered. Accidental capsize of log barges (which



have very similar geometry and loading conditions as those considered in this study)

under average to calm sea condition has been well documented (McAllister 1995).

1.3 Scope

The scope of this study is to model the barge response when subjected to beam
sea conditions as a SDOF system for roll motion. The measured wave, either regular
or random, is input into a computer program which uses a fourth-order Runge-Kutta
integration method to numerically predict roll motion response. The simulated results
are compared to measured data to determine the best system damping parameters.
Four different forms of the damping moment of the SDOF model are analyzed. In
each form all coefficients are known except for the linear and nonlinear damping
parameters. Each form uses a combination of relative motion "Morison" damping
and/or linear structural damping. Predicted results of the four forms of the damping
moment are examined to determine the most suitable model. A sensitivity study on
the response to various system parameters is then conducted on the selected form.
Each form of the model uses a thirteenth-order polynomial restoring moment. An
analysis is also conducted to determine the effects of using lower order terms to
represent the restoring moment. Finally, results of the SDOF model from this report
are compared with a 3DOF and a 2DOF model subjected to the same wave

environment to determine which model more accurately predicts roll response.




2.0 System Description

The system considered in this analysis is that of a free floating barge subjected
to regular and random waves in open seaways. In general, a six degree-of-freedom
(6DOF) model is required to fully specify the motions of the barge. Subjecting a
barge to beam seas would be considered the most critical scenario for barge capsize.
This simplifies the equations of motion because under ideal beam conditions, the
response motions for a barge may be described by a three degree-of-freedom (3DOF)

model with heave, sway and roll represented by

my + m cos( )(y V) + m, sin(| ”l)(v -v) + Cp, V)
+ C (y V)| y-v] —m¢>z —m(z cosd) ¢
+R33(¢,z,n,a")sm( %)+ Koy = 0

mZ +m, cos(_’l)(Z‘-—W) +m, sin(l—"l)(z':'-W) + Cy (2-W)
s ay zz’ ay . 3 (2.1)
+ G, - w|z-w| + m¢y - m(z cosp)d’ + mg

*+ Ry(z, ¢,n,——) COS( ) =0

. . o . 3% N NP
1 -1 - - -
wp + 1 (& ay) + Gy (¢ ay) + Cy (¢ —ay) | & e |

+ m(zeosd)dz ~ m(z,c05)7 + R, (.21, a’y’)COS( %
- mgzgsinq& =0

(see Bartel 1996 for derivation and definitions). Although this model is significantly
simpler than a large number of time domain large body analysis models based on
potential theory, it is evident that these equations are still relatively involved and

computationally intensive to solve numerically compared to that of a SDOF model.




The 3DOF model based on these equations is currently being analyzed under a

separate study (Bartel 1996).

2.1 Assumptions

There are several assumptions made in the development and application of the
model equations for this analysis. The first is that the nominal wave length is
significantly greater than the beam of the barge. As a result, the wave surface can be
assumed linear across the beam. Secondly, wave forces and moments act at the
center of gravity in lieu of integrating pressure over the surface. Finally, it is
assumed that roll response can be uncoupled from heave and sway, therefore the

focus will be only on the pure roll motion of the barge modeled by a SDOF system.

2.2 Equation of Motion

Uncoupled roll motion subjected to beam sea conditions, assuming long wave
excitation and deep water conditions, is modeled by the equation

L + L,($-3ildy) + Cyy($-00/3y) + Cp(d-30/3y) | 6-d0ldy| 2-2)
+ R, (¢,1,0n/dy) = 0

where I, is the rotational inertia (in air) of the vessel about the roll axis, I,,, the
hydrodynamic added inertia, ¢ the roll acceleration, 37/dy the wave slope
acceleration, C,,; the linear damping coefficient, ¢ the roll velocity, 37/dy the wave
slope velocity, C,4y the nonlinear damping coefficient, and R, (¢,n,01/3y) the

nonlinear restoring moment.



2.3 Description of Wave Field
Based on linear wave theory, the velocity potential and related wave profile,

time derivatives and partial spatial derivatives are as follows:

& = 480Nk (D) oy — )

«» cosh(kh)
149
= E?t—l”o = Acos(ky - wi)
. _dn _ .
N = — = wdsin(ky - i)
ot
; 2.3
7 = 9 - w?Acos(ky -wt) @-3)
ot
7 = O __ kAsin(ky - o)
ay
7 = % = wkAcos(ky - wf)
7 = 9 _ w?kAsin(ky - wf)
dy
If deep water wave conditions are applied and water particle characteristics are
considered at the surface, the wave number, %, can be represented by
2
k= 2.9

8




and the resulting wave field characteristics reduce to

n = Acos(ky - wi)

# = wdsin(ky - wf)

i = oy

M= -2 2.5
: .
3

7 = Zny
4
3

i = g
4

2.4 Inertia and Added Inertia Coefficients

For a given barge, the rotational inertia, 4, can be analytically computed.
The hydrodynamic added inertia, 1,,,, depends on the frequency of the barge roll
motion. The value of the added inertia under the range of frequencies of the roll
motion response observed in this study is relatively constant. Therefore, a constant
added inertia coefficient is adopted for convenience of analysis. The first two terms
of equation 2..2 represent the inertial moment of the barge in air, I,¢, and the relative
motion added inertia moment, 1,,,(¢-37/9y), respectively. The term (¢-97/3y) is the
relative motion between the roll acceleration of the barge and the wave slope
acceleration resulting from wave excitation. For this analysis, the value of I, =
2.161046¢6 slug-ft> (Paulling 1995). With this information and knowing the natural
period of the barge is approximately 5 seconds, the added inertia is calculated to be

Ly, = 1.3725¢6 slug-ft’.



2.5 Damping Moment

In equation 2.2, the damping moment resulting from radiation of waves from
the barge (corresponding to linear energy dissipation in potential theory) is
represented by the linear term, Cy,;(¢-89/dy). The effects of damping resulting from
flow separation and turbulence are represented by the nonlinear Morison term,
Cun(® - 97/3y) | & - 99/38y|. Cuy and Cyy are the linear and nonlinear damping

coefficients expressed in the following convenient form:

C44L= 2 ‘Z* EL C44N= 2 u;:.* EN =0
where w, is the "natural frequency” of the barge (determined by small amplitude free
vibration tests) and is equal to approximately 5 seconds (Yim et al. 1995). £, and £,
are the damping parameters associated with the linear and nonlinear damping terms
(to be determined by system identification and/or numerical iteration). The terms
have been normalized by the sum of the inertia and added inertia terms, I, =1, +
L. The term (¢ - 37/3y) is the relative motion between the roll velocity of the barge

and the wave slope velocity resulting from wave excitation.

2.6 Roll Restoring Moment

The restoring moment term, R,,(¢,n,d7/3y), represents the moment created
from buoyancy and gravity forces acting on the barge under static conditions. The
restoring moment is a thirteenth-order (13th-order) polynomial made up of

coefficients of the righting moment curve multiplied by the corresponding power of
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the relative motion between the roll displacement and the wave slope as shown in the

following equation:

B, (6-01/3y)' B, (¢-0n/dy)* B, (6-dn/dy)’
R44(¢,)’,377/3y) =135 i + 11,5 7 + 9,5 - +
T T T

2.7
B7,5 (¢’3ﬂ/a}’)7 + Bs,s (¢ 'aﬂ/a)’)9 + B3,5 (¢ ‘371/3}’)11 + Bl,s (¢ '377/3)’)13
IT IT IT IT

The coefficients B, 5, By s, etc. are established by fitting a thirteenth-order polynomial
to the righting-moment curve shown in Figure 2.1 (Yim et al. 1995). The term is
normalized by the total inertia, I. Although a lower-order polynomial can be used
with sufficient accuracy for small angle motions, the additional time and effort
associated with using a thirteenth-order polynomial is minimal, and in the case of

large angle motions, the higher order terms are essential.

2.7 Various Forms of Roll Equation of Motion

Several combinations of the terms representing the damping moment in the
equation of motion are examined here. In addition to equation 2.2 which uses relative
motions in both the linear and nonlinear damping terms, models which approximately
account for and neglect different physical effects will be analyzed. One combination
assumes the magnitude of the wave-slope velocity is negligible compared to the roll
velocity (e.g. near roll resonance). As a result only the roll velocity component will
be considered in the linear and nonlinear damping terms. This is modeled by

equation 2.8:
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Righting Moment (ft-ib)
- o -

N

H 1 )] 1 ] b

_4 A [
-100 -80 -60 -40 <20 0 20 40 60 80 100
Roll (deg)

Figure 2.1 13th Order Roll Restoring Moment Curve. - numerical (Paulling 1995)
-- polynomial fit (Yim et al. 1995). By = 5.6051e6, By, s =-1.1657¢6,
By s= 1.7258e6, B; 5= 9.6915¢6, Bss= -9.3298e6, B; 5= 3.3999¢6, B, 5= -4.4569¢6.
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L + Ly@-3i/3) + Cuyd + Coyd | 8| @.8)
+ R,,(b,n,0n/3y) = 0
Equation 2.9 below assumes that the linear damping coefficient is dominated
by the barge characteristics (damping induced by the presence of mooring lines in the
experiments which is not modeled explicitly in this study). The relative motion
between the barge and wave slope velocity is accounted for only in the nonlinear
damping term.
1, + 1, (@-00ldy) + Cpyd + Con($-030/3y) | $-30/dy | 2.9
+ R, (¢,n,9n/dy) = 0
The final form of the model to be analyzed is equation 2.10:
L + Ly B-30/3y) + Couy(S-07/3y) | $-0ildy| 2.10)
+ R, (¢,n,0n/3y) = 0
This model assumes that damping effects are strictly nonlinear and relative motion
between the wave slope velocity and barge roll velocity significantly influences the

roll response.
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3.0 Model Tests and Identification of Damping Parameters

The four different forms of the model for roll motions are analyzed to
determine which form best predicts roll response when the barge is subjected to beam
sea conditions. In each case, the prototype measured wave is sampled at 2 Hertz
(Hz). The data is then filtered so that frequencies above 0.25 Hz are disregarded
because they do not contribute to the response motion. Wave profile and water
particle velocity as well as wave slope, wave slope velocity and wave slope
acceleration are then numerically computed. Regular wave cases analyzed are that of
the 5, 6, 8, and 10 sec waves with a desired 6 ft wave height. In addition, two
random cases are modeled; a Bretschneider spectrum of 6 ft significant wave height
and 8 sec dominant wave period, and a white noise spectrum of 6 ft significant wave
height and wave periods ranging from 4 to 20 secs.

In each of the forms, all terms are known except for the linear and nonlinear
damping parameters, £; and £y used in the damping coefficients, C,y;, and Cyy. An
initial estimate for the damping parameters is obtained through system identification
procedures. By comparing the standard deviation of predicted roll response to
measured roll response, an iterative approach is then used to identify the most
appropriate damping parameters for the model. The inertia coefficients and the
nonlinear restoring moment coefficients, constant for all the wave cases, are
determined through experimental measurements or computer analysis. The other
coefficients are determined through the measured data for each particular wave

excitation test.
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3.1 Model Test Procedure

Regular and random wave model tests have been conducted on a single barge
to simulate response in open seas. The facility used to conduct the tests was a 48 ft
wide, 250 ft long basin which was capable of generating long crested waves up to 3 ft
in height. A 1/16 scale model of the 120 ft long, 25 ft wide and 8 ft deep full scale
barge was used. For this analysis, only results of the barge subjected to beam sea
conditions are examined. Although the objective of the tests is to simulate motions of
the barge in open seas, mooring lines were attached to the model to prevent it from
drifting down the basin. The length, weight and sag of the mooring lines are
designed to ensure the natural period of the mooring system would be much larger
than the wave excitation period.

The particular wave conditions generated for this report were 4 regular wave
and 2 random wave tests. Regular waves of approximately 6 ft wave height (full
scale) were conducted for wave periods of 5, 6, 8 and 10 secs. The random wave
tests were for a Bretschneider spectrum of 6 ft significant wave height with and 8 sec
dominant wave period, and for a band limited "white noise" test of 6 ft significant
wave height with wave periods ranging from 4 to 20 secs. Model tests were run until
steady state had been reached before data collection began. Only 1024 secs (17
minutes) of data was collected for each run in order to avoid significant energy
accumulation from wave reflection, re-reflection and other "tank noise” which might

build up over time and could corrupt the wave excitation.
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3.2 Description of Analytical Prediction Procedure

Test SB26, the 6 ft, 5 sec regular wave, will be used as an example of the
procedure followed to establish damping coefficients and simulated roll response.
The entire time series of the measured wave input is examined to confirm the desired
wave height and period was consistent with the target spectrum. Figure 3.1a shows
the 1024 sec time series used in this analysis. The measured data is then subjected to
a low pass filter with cutoff frequency of 0.25 Hz after digital sampling. The filtered
wave is then displayed as shown in Figure 3.1b, this is the wave data input into the
simulation program. To ensure the input wave for simulation is correct, the spectral
densities of the measured and filtered wave are compared as shown in Figure 3.2.
The damping parameters for the linear and nonlinear damping coefficients are input
into the model equation and the simulation is executed. The results of the measured
roll response, Figure 3.1c, are then compared to those of the simulated roll response,
Figure 3.1d. A small section of the time series is compared as well, as shown in
Figure 3.3. The standard deviation of the measured and simulated data is then
compared to ensure the most accurate match of roll response. In the random wave
tests, the above procedure is performed and an addiﬁonal comparison of the spectral
and probability densities of roll response are made to ensure the most accurate match

of roll response.
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3.3 Form 1: Relative Motion Damping Moment

The first model to be analyzed is that of equation 2.2:

L + Luy($-0/0y) + Coyy (6-33/0y) + Copp(b-3i/0y) | =030y | (3.9
+ Ry, (¢,7,39/3y) = 0

Recall this form assumes both the linear (radiation damping) and nonlinear (Morison
type local flow separation) have significant influence on the roll motion response.

The resulting linear and nonlinear damping coefficients for this model are listed in

Table 3.1:
Wave Test Linear Damping Nonlinear Damping
Parameter Parameter

H=6.6 ft, T=5 sec 0.19 0.19
(SB26)

H=6 ft, T=6 sec 0.11 0.11
(SB27)

H=7.2 ft, T=8 sec 0.80 0.20
(SB29)

H=5.7 ft, T=10 sec 0.03 0.07
(SB30)

Bretschneider 0.04 0.04
Spectrum (SB25)

White noise 0.08 0.06
Spectrum (SB33)

Table 3.1 Linear and Nonlinear Damping Parameters for Form 1, Equation 2.2.
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3.3.1 Regular Wave, H= 6 Ft, T= 5 Sec (SB26)

Figure 3.4 represents the roll response of the model barge subjected to a 6.6
ft wave with a 5 sec period. The maximum roll response is approximately 13
degrees. The model indicates a linear damping parameter of 0.19 and a nonlinear
damping parameter of 0.19. The amplitude of the measured and predicted response is
nearly identical. However, the predicted roll response is out of phase by

approximately 1 sec (1/5 period) with the measured data.

3.3.2 Regular Wave, H= 6 Ft, T= 6 Sec (SB27)

Figure 3.5 represents the results of the model barge subjected to a 6 ft regular
wave with a 6 sec wave period. The maximum roll response is 11.5 degrees. The
model indicates both the linear and nonlinear damping parameters are 0.11. Figure
3.5 shows that amplitude of the predicted roll response matches the measured data
well. As in the 5 sec wave case, the predicted roll response is approximately 1 sec

(1/6 period) out of phase with the measured data.

3.3.3 Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29)

Figure 3.6 represents the results of the model barge subjected to a 7.2 ft
regular wave with an 8 sec wave period. The damping parameters established for this
wave test are 0.80 for linear damping and 0.20 for nonlinear damping. Note that the
linear damping parameter is significantly higher than the two previous test cases. The

maximum roll response of the measured data is; 4.1 degrees and is well matched by
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the predicted response of the model. This form of the model is not able to

consistently match the phase of the response. The predicted data appears to be

approximately 1 sec (1/8 period) out of phase (at the peak) with the measured data.

3.3.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)

Test SB30, in which the excitation is a 5.7 ft wave with a 10 sec period, proves
to be the most difficult response to match by any form of the model. Because the
natural period of the barge is approximately 5 secs, which is a multiple of the wave
excitation period, the response contains a superharmonic.

Figure 3.7 represents the best comparison of standard deviation and
superharmonic response which could be obtained with the given form of the model
equation (equation 2.2). If the damping parameter is increased, the superharmonic
characteristics are eliminated. If the damping parameter is decreased, the simulated
response amplitude is much greater than the measured response amplitude. The
damping parameters used in this figure are 0.03 for the linear coefficient and 0.07 for
the nonlinear coefficient. The standard deviation for the measured response is
calculated to be 1.84. The standard deviation of the simulated response is 1.90.
Figure 3.8 shows a good comparison of the measured and simulated spectral densities

for roll response.
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Figure 3.9 provides a representation of predicted roll response for the entire 1024 sec

time series. It is evident that the superharmonic does not occur in all locations with
the same amplitude. A parametric study presented in a later section of this report will
provide a better understanding of the effects of varying the linear and nonlinear

damping parameters.

3.3.5 Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25)

Figure 3.10a - 3.10d represent the measured and filtered wave input and the
resulting measured roll response and predicted roll response (to filtered wave
excitation) for a Bretschneider wave spectrum. As shown in Figure 3.11, the spectral
densities of the measured and filtered wave excitation input are compared to ensure
the proper input is being used for prediction. The damping parameters used for
prediction are equal to 0.04 for both the linear and the nonlinear terms. A visual
comparison of Figures 3.10c and 3.10d indicates the model provides an accurate
prediction. The standard deviation for the predicted roll response is 3.95 which
compared favorably to the standard deviation of 3.95 for the measured data. Figure
3.12 indicates the spectral densities are a very close match. The final comparison
made between measured and simulated data is a histogram of roll response. Figures
3.13a and b confirm that the model provides an accurate representation of roll

response motion.
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3.3.6 White Noise Excitation, Hs= 6 Ft (SB33)

Figures 3.14a through 3.14d represent the measured and predicted wave input
and measured and predicted roll response for a white noise excitation with wave
periods of 4 to 20 secs and a 6 ft significant wave height. A comparison of the
spectral densities, Figure 3.15, confirms that the simulated wave input matches the

measured wave excitation. The linear and nonlinear damping parameters used in the

| model are 0.08 and 0.06 respectively. A visual comparison of Figures 3.14¢ and

3.14d indicate the model provides a good simulation of roll response. The standard
deviation of predicted roll response, 5.30, compared well with the measured roll
response which is 5.29. A comparison of spectral densities, Figures 3.16, and
histograms, Figures 3.17a and 3.17b, confirm that measured and predicted roll
response compare quite well. Note that the there is a significant increase in
probability mass at the extreme values. This behavior is typical of nonlinear systems

with a softening stiffness (which is the case for barge roll motion).

3.4 Form 2: Relative Motion Neglected in Damping Moment

The second form of damping representation to be examined is the following

- - a" . PO
I + L, -a_;) * Cud + Candld] + o8
an :
R b A/ & s = 0
44(¢ n ay)
In this form, the relative motion between the wave slope velocity and the barge roll

velocity is neglected. As a result, only the bafge roll velocity contributes to the

equation. The following results will show this model displays an equal ability to
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predict response amplitude and a marked improvement in matching the phase of the

measured roll response. Table 3.2 lists the resulting damping parameters for this

model.

Test Case Linear Damping Nonlinear Damping
Parameter Parameter
H=6.6 ft, T=5 sec 0.09 0.07
(SB26)
H=6 ft, T=6 sec 0.10 0.07
(SB27)
H=7.2 ft, T=8 sec 0.33 0.40
(SB29)
H=5.7 ft, T=10 sec 0.03 0.07
(SB30)
Bretschneider Spectrum 0.04 0.04
(SB25)
White Noise Spectrum 0.07 0.08
(SB33)

Table 3.2 Linear and Nonlinear Damping Parameters for Form 2, Equation 2.8

3.4.1 Regular Wave, H= 6.6 Ft, T= 5 Sec (SB26)

Figure 3.18 displays the results of the model barge subjected to a 6.6 ft wave

with a 5 sec period considering only barge roll velocity. The damping parameters

used to achieve these results are 0.09 for the linear term and 0.07 for the nonlinear

term. The predicted amplitude closely matches the measured data. In addition, the

predicted roll response motion is nearly identical in phase to that of the measured

data.
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3.4.2 Regular Wave, H= 6 Ft, T= 6 Sec (SB27)

Figure 3.19 represents the barge response when subjected to a 6 ft, 6 sec wave
considering only barge roll velocity in the damping term. The damping parameters
used to achieve these results are 0.10 for the linear term and 0.07 for the nonlinear
term. The response amplitude adequately matches the measured response of 11.5
degrees. However, the predicted roll response is approximately 0.5 sec (1/12 period)
out of phase with the measured data. Although not an exact match, this is an
improvement over the phase difference of approximately 1 sec (1/6 period) produced

in the relative motion damping form.

3.4.3 Regular Wave, H= 7.2 Ft, H= 8 Sec (SB29)

Figure 3.20 represents the barge response when subjected to a 7.2 ft, 8 sec
period wave considering only the barge roll velocity in the damping term for
predicted response. The damping parameters used to match the measured roll
response of 4.1 degrees are 0.33 for the linear coefficient and 0.40 for the nonlinear
coefficient. As with the relative motion damping case, these coefficients are
significantly higher than the previous test cases. Further study should be conducted to
evaluate this phenomenon. This form of the model is an improvement over the
relative motion damping form because it more adequately matches the measured

behavior, particularly in the phase (at the peaks).
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3.4.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)

Figure 3.21 represents the roll response of the barge subjected to 5.7 ft regular
waves with a 10 sec period, considering only barge roll velocity in the damping term
of the predicted response. As with the relative motion case, it is difficult to match
response amplitude with the superharmonic effect. A damping parameter of 0.03 for
the linear damping term and 0.07 for the nonlinear term provides the closest match to
the measured roll response of 2 degrees. The standard deviation of the measured data
is 1.84 compared with 1.87 for the simulated roll response. This is a small
improvement over the prediction using relative motion damping which resulted in a
standard deviation of 1.88. Figure 3.22 shows that the spectral densities of the

measured and simulated roll response compare favorably for this form of the model.

3.4.5 Bretschneider Spectrum, Hs= 6 Ft, Tp= 8 Sec (SB25)

Figures 3.23a - 3.23d display the measured and simulated wave excitation and
measured and predicted roll response. The damping parameters used in the model are
0.04 for both the linear and nonlinear damping terms. Figures 3.23c and 3.23d
indicate a good visual comparison between the measured and simulated responses.

The standard deviation of 3.96 for measured data compared well to a predicted
standard deviation of 3.96. The energy under measured and simulated spectral
density curves are a close match although there is a slight shift in peak frequencies, as
shown in Figure 3.24. A final comparison of probability densities, Figures 3.25a and
3.25b, confirm that this form of the model provides a good simulation for the random

wave environment.
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3.5.6 White Noise Excitation, Hs= 6 Ft (SB33)

Figures 3.26a - 3.26d display the measured and filtered wave and predicted roll
response for a white noise wave excitation with wave periods of 4 to 20 secs and a
wave height of 6 ft. The damping parameters used in this model are 0.07 for the
linear term and 0.08 for the nonlinear term. The resulting standard deviation for
predicted roll response is 5.30 which is very close to the measured response standard
deviation of 5.29. A comparison of spectral densities, Figure 3.27, and probability
densities, Figures 3.28a and 3.28b, indicate the model provides an accurate prediction

of roll response. Again a significant build-up in the extreme values is observed.

3.5 Alternative Forms Considered
Other forms of the damping moment studied are those represented by equations
2.9 and 2.10:

L + Ly (-03iay) + Cud + Cop(d-00/dy) | 6 -04/dy| 2.9)
+ R,(¢,7,00/3y) = 0

I,$ + L, (®-0ii/dy) + Cop(d-030/3y) | b-0d0ldy| 2.10)
+ R(¢,7,0n/dy) = 0
These forms are capable of simulating the response amplitude, however they are not
as accurate in duplicating the measured phase. Figur_e 3.29a - 3.29d is a comparison
of all four forms for test SB26. The two forms which use relative motion in the
damping term have the greatest phase error. This indicates the system is inertia

dominated and that linear (structural) damping makes a significant contribution to the
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response. The form which uses linear damping with roll velocity only and relative

motion Morison nonlinear damping provides an improvement in the phase error, but
is still slightly out of phase. Figure 3.29b represents the model which uses strictly
structural damping. It is clear this model provides the best match. This trend is
evident for the 6 and 8 sec wave cases as well as shown in Figures 3.30 and 3.31.
The 10 sec wave test case displayed the same phase shifted results for all model forms
as shown in Figure 3.32.

In the random wave test cases, each model is equally successful at simulating
the measured response. Equation 2.10, which uses strictly Morison damping,
required a significant increase in the damping parameter for both random wave cases.
For example with test SB25, the Bretschneider wave excitation, the damping
parameters used for equation 2.2, 2.8, and 2.9 are very close to 0.04 for both the
linear and nonlinear damping terms. The damping parameter for equation 2.10,
which used only Morison dainping, is 0.42. Similar results are obtained with test
SB33, the white noise excitation. For equations 2.2, 2.8 and 2.9, the damping
parameters are in the range of 0.07 to 0.08, where as the damping parameter for
model equation 2.10 is 0.56. Tables 3.3 and 3.4 summarize the resulting damping
parameters for equaﬁéns 2.9 and 2.10.

Form 4 of the SDOF model considered only relative motion Morison damping.
It should be noted that all the damping parameters listed in Table 3.4 are extremely
high for the regular wave cases. These ratios are unrealistic and indicate that Form 4

is not an acceptable form of the model.
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" Wave Test Linear Damping Nonlinear Damping
Parameter Parameter
H=6.6 ft, T= 5 sec 0.09 0.14
(SB26)
H=6 ft, T=6 sec 0.10 0.11 ||
(SB27)
H=7.2 ft, T=8 sec 0.34 0.34
(SB29)
H=5.7 ft, T=10 sec 0.03 0.07
(SB30) f
Bretschneider Spectrum 0.04 0.04 [
(SB25)
White Noise Spectrum 0.07 0.08
(SB33) ~

Table 3.3 Linear and Nonlinear Damping Parameters for Form 3, Equation 2.9

Wave Test Nonlinear Damping
Parameter

H=6.6 ft, T=5 sec 1.07

(SB26)

H=6 ft, T=6 sec 1.25 i
(SB27)

H=7.2 ft, T=8 sec 88.00

(SB29)

H=5.7 ft, T=10 sec 1.25

(SB30)

Bretschneider Spectrum 0.42

(SB25)

White Noise Spectrum 0.56

(SB33) 1

Table 3.4 Linear and Nonlinear Damping Parameters for Form 4, Equation 2.10



4.0 Sensitivity Studies

4.1 Variation of Damping Parameters of Form 2, Equation 2.8
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A sensitivity study was performed on the model which provided the best results

for roll response, equation 2.8, in which damping from the wave excitation was

disregarded and only structural damping was considered. For each wave test, the

nonlinear damping parameter is held fixed and the linear damping parameter varied by

a wide range to determine the effects on simulated response. The linear parameter is

then held fixed and the nonlinear damping parameter is varied by a wide range to

determine the resulting effects on simulated roll response.

4.1.1 Regular Wave, H= 6 Ft, T= 5 Sec (SB26)

The previously established coefficients for this case were a linear damping

parameter of 0.09 and a nonlinear damping parameter of 0.07. Table 4.1. shows a

constant decrease in standard deviation as damping parameters increase for both the

linear and nonlinear variations.

Linear Nonlinear | Standard Linear Nonlinear Standard
Damping Damping Deviation Damping Damping | Deviation
Parameter | Parameter Parameter | Parameter
| o003 0.07 089 | 009 0.01 9.54
| oo0s 0.07 077 | 009 0.03 9.48
| o007 0.07 050 | 0.0 0.05 9.42
| o009 0.07 933 | 009 0.07 9.33
| on 0.07 900 | 009 0.09 9.28
0.13 0.07 360 | 0.09 0.1 9.20
| o 0.07 815 | . 0.09 0.13 9.12

Table 4.1 Variation in Damping Parameters and Resulting Standard Deviations (SB26)
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Figures 4.1a - 4.1e display the amplitude and phase changes which result from

varying the linear damping parameter. The trend observed from Figure 4.1 is that
with the lower linear damping parameter, the response amplitude is greater than the
measured. In addition, the phase of the predicted response lags the measured by
approximately 0.25 secs, Figure 4.1a. As the linear dampiﬁg parameter proceeds
through the range, the amplitude decreases and the phase shift transitions from a 0.25
sec lag to leading the measured response by approximately 0.25 secs, Figure 4.1e.

The effects of the variation of the nonlinear damping parameters is not as
evident. Figures 4.2a - 4.2¢ display the change in roll response with variation in the
nonlinear damping term. The predicted response phase is almost identical to the
measured response. There is not a visual change in the amplitude as the nonlinear
parameters proceed through the range. However, a comparison of standard deviations
shows a slight decrease as the nonlinear parameter increases, indicating this term does
provide a contribution to the response.
4.1.2 Regular Wave, H= 6 Ft, T= 6 Sec (SB27)

The linear and nonlinear damping parameters for this case were established as
0.10 and 0.07 respectively. Table 4.2 indicates a constant decrease in standard
deviation as the damping parameters increase. Figure 4.3 represents the resulting
changes when the nonlinear damping parameters were held fixed and the linear
damping parameters were varied. It is evident that amplitude decreases with an
increase in damping parameter. Figure 4.4a - 4.4e represents the results of holding
the linear damping parameter fixed and vuying the nonlinear damping paraxﬁeter.

The simulated response amplitude decreased through the range of damping




— ~ T 2 T T T2 T ™ T2

3 105 & 3 f"\\‘. A % f"q". VA N y
[0 . . \ /e \e . 3 > l: 3 o o \o

2 e\ s A O Y N T ]

o)) b * . \ L Ye » % I3 \ IS " - * . 2

O Oi- \ I: » > . 12 \e Py . . \. / e I' - ~
e s . \ ,' \. [ % I. \.. l- W . : \’ I
= _10f LA S /3 A . 7 s 5 v s . s 2
S VR VN V. .Y . V . .Y

750 755 760 765 770 -775 780 785 790

3
>
|
>
™

roll (degrees)
(=)
|
=
R
o

’a Ll IA L 1 l. I 1 i
s NN NN N NN
o ob 3 i 1 L U N A U A P U A S
g WA A N N A N A O A O R N
= N N W EW 1 i Y 3 ; 1
B0 VOV, VLV V.,V VU
750 755 760 765 70 755 780 785 790
C)gL =
fa ] ) $ ¥ ] ¥
sy N N N N NN AN,
S ob n 5 2 Ay A dw sy 73 Juw
3 U N A N N A N I N A A N
= LA A W N A N N N A N N
L VNV NN N Y

750 755 760 765 770 775 780 785 790

’UT N\ \ N ") \) i

AN AN A A S AT A N A N A

> EYR SR (A N L \ N (N T W A Son d

o OF » AN U ' B | WY A YR A \ N A W A S 2

3 EN A N A N A N N N A N A N

AN /. A V. . A /5
750 755 760 765 770 775 780 785 790

e) ¢ =0.15 time (seconds)

Figure 4.1 Variation of Linear Damping Parameter, Constant Nonlinear Démping
Parameter, £y = 0.07, H= 6.6 Ft, T= 5 Sec (SB26, eqn 2.8)
-- measured, .. predicted




"u,\ ¥ § 1 ¥ T. l. 1
AT AUNA {ﬂ‘ A AUNATE
G A S W A N Y N N A N O
sob VOV VOV VLV VL
750 755 760 765 770 775 780 785 790
a) £y = 0.01
g 10 A :A'% A’a NN i !’\ N\ ,A& ’
=X A W A A WY A WY A A A
e OF Yy ¢ - 3 r 3% v F b VPS5
z S N 1 1 { : 1 T 5 b
-0 VOV VY
750 755 760 765 770 775 780 785 790
b) £y = 0.03
’é\ i [} IA ] l. ] L ]
AN AN AN A N ”\'3 -”\s A
5 LA A VY A Y A W A W A N A N
- I A W A W AN W S N A W SR W
ot VOV V.V V. VLV
750 755 760 765 770 775 780 785 790
¢) & = 0.07
TN NN N NN NN
(] J 3 ) . s 9 Y J
S kY Y 3 I 1 j 3 s i FEE .
S N L O A O A N A O A O O A N
z. U R O A W S N W ;
op VOV VLV
750 755 760 765 770 775 780 785 790
d) £y = 0.11
g A l"\a 5’\3 ’h A A A AN
5 ER A W A Y W A W N W A W A W
@ OF 31 3 ERE N L N A U T A U A S
= A W S N B W A W S W A N A
3 -10 b’l u| 3‘if| ’U-l u 1 vl U’I V; ]

750 755 760 765 770 775 780 785 790
e & = 0.13 time (seconds)

Figure 4.2 Variation of Nonlinear Damping Parameter, Constant Linear Damping
Parameter, £, = 0.09, H= 6.6 Ft, T= 5 Sec (SB26, eqn 2.8)




61

parameters. It appears the phase shift remains unchanged throughout the range.

Linear Nonlinear Standard Linear Nonlinear | Standard
Damping Damping | Deviation Damping Damping | Deviation
Parameter | Parameter Parameter | Parameter

0.04 0.07 9.82 0.10 0.01 876 |
0.06 0.07 041 | 010 0.03 .67 J‘
0.08 0.07 897 | 0.10 0.05 8.60
0.10 0.07 850 | 0.10 0.07 850 |
0.12 0.07 790 J| 010 0.09 843 |
0.14 0.07 759 | 0.10 0.11 8.33
0.16 0.07 741 | 010 0.13 8.25

Table 4.2 Variation in Damping Parameters and Resulting Standard Deviations (SB27)
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4.1.3 Regular Wave, H= 7.2 Ft, T= 8 Sec (SB29)

The damping parameters established for test case SB29 are 0.33 and 0.40.

There is a constant decrease in standard deviation as the damping parameters increase

as shown in Table 4.3.

Linear Nonlinear Standard Linear Nonlinear Standard
Damping Damping Deviation Damping Damping Deviation
Parameter | Parameter Parameter | Parameter
0.20 0.40 3.40 0.33 0.25 3.06
0.25 0.40 3.26 0.33 0.30 3.05
0.30 0.40 3.12 0.33 0.35 3.04
0.33 0.40 3.03 0.33 - 0.40 3.03
0.40 0.40 2.84 0.33 0.45 3.03
0.45 0.40 2.70 0.33 0.50 3.02
0.50 0.40 2.56 0.33 0.55 3.01

Table 4.3 Variation in Damping Parameters and Resulting Standard Deviations (SB29)

Predicted response amplitude is greater than measured when the nonlinear

damping parameter is held fixed and the linear parameter is varied. The phase of the

predicted response leads the measured at the lower linear damping parameters. As

the linear parameter proceeds through the range, the phase shift changes and

eventually the predicted response lags the measured by approximately 0.5 sec. These

results are displayed in Figures 4.5a - 4.5e. Holding the linear damping parameters

fixed and varying the nonlinear produces no significant change in amplitude or phase

difference, as shown in Figures 4.6a - 4.6¢.
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4.1.4 Regular Wave, H= 5.7 Ft, T= 10 Sec (SB30)

Test case SB30 is the only test that displays sensitivity to change in damping
parameters. Table 4.4 shows the change in standard deviation over the range of

damping parameters. The sensitivity is very evident in Figures 4.7a - 4.7e which

Linear Nonlinear Standard Linear m Standard
Damping Damping Deviation Damping Damping | Deviation
Parameter | Parameter Parameter | Parameter
0.01 0.07 2.5 0.03 0.01 1.89
| o 0.07 2,054 l 0.03 0.03 188 |
| oo 0.07 1.87 0.03 0.05 1.87 '
| oos 0.07 174 | o003 0.07 1.87
" 0.07 0.07 1.70 0.03 0.09 13 |

0.09 0.07 1.68 0.03 0.11 185 |
[ on 0.07 1.66 | 0.3 0.13 13 |

Table 4.4 Variation in Damping Parameters and Resulting Standard Deviations (SB30)

show the rapid change in simulated response. The superharmonic virtually disappears
once the linear damping parameter reaches 0.05. Figure 4.8 displays the entire 1024
sec time series for this case. It is evident that the damping parameter has a major
effect on the occurrence and magnitude of the superharmonic. The standard deviation
changes rapidly with the increased damping parameter until the superharmonic is
eliminated at 0.05 damping. This is emphasized by the fact that when the linear

damping parameter varies from 0.01 to 0.05, the difference in standard deviation is
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0.8025. However, when the damping parameter is varied from 0.05 to 0.11 the

change in standard deviation is only 0.08. A variation in the nonlinear damping

parameter has very little effect on the response amplitude or superharmonic response

as shown in Figure 4.9,

4.1.5 Random Wave Tests

Tables 4.5 and 4.6 show the sensitivity of the model to Bretschneider and white

noise wave excitation. Both damping models exhibit a significant change in standard

deviation over the range of linear damping parameters. In each case, the standard

deviation decreases by over 50% as the linear parameter increases.

Linear m Linear Nonlinear
Damping Damping Deviation Damping Damping
Parameter | Parameter Parameter | Parameter

0.01 0.04 6.15 0.04 0.01 4.14
0.02 0.04 5.16 0.04 0.02 4.07
0.03 0.04 4.42 0.04 0.03 4.01
0.04 0.04 3.96 0.04 0.04 3.96
| o006 0.04 3.35 0.04 0.06 3.86
| oo0s 0.04 2.97 0.04 0.08 3.77
I o0 0.04 2.70 0.04 0.10 3.69

Table 4.5 Variation in Damping Parameters and Resulting Standard Deviations (SB25)
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Linear Nonlinear Standard Linear Nonlinear | Standard
Damping Damping Deviation Damping Damping | Deviation
Parameter | Parameter Parameter | Parameter
| oo 0.08 8.45 0.07 0.02 567 |
0.03 0.08 6.98 0.07 0.04 5.53
0.05 0.08 6.01 0.07 0.06 5.41
i 0.07 0.08 5.30 0.07 0.08 5.30
I o009 0.08 s78 | 007 0.10 5.20
0.1 0.08 429 | o007 0.12 5.10
L o1 0.08 393 | 007 | o4 5.01

Table 4.6 Variation in Damping Parameters and Resulting Standard Deviations (SB33)

4.2 Variation of Nonlinear Restoring Moment

All of the models considered in this analysis have used a 13th-order polynomial

restoring moment. A sensitivity test is conducted to determine the effects on the

predicted roll response when lower-order polynomials are used to fit the actual

restoring moment curve.

4.2.1 Cubic Fit to Restoring Moment Curve

Figure 4.10 shows the actual restoring moment curve and the 3rd-order

polynomial used to provide an analytical fit to the curve. This cubic term is then

substituted into equation 2.8. The resulting predicted roll response is shown in Figure

4.11. A comparison of the measured and predicted spectral densities for roll

response, Figure 4.12, indicates this polynomial is acceptable although it does not
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Righting Moment (ft-1b)

5 ; . .
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Figure 4.10 Comparison of Numerical (Paulling, 1995) and Analytical (Yim et al.
1995) Restoring Moment Curves, Cubic Fit, - numerical, - analytical. By; 5=
3.9502¢6, B,; s= -5.1930e6
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provide and "exact” match of the magnitude of the predict roll response relative to the

ones with higher-order terms(see following section).

4.2.2 5th, 9th and 13th-Order Restoring Moment Curves

Figure 4.13 shows the Sth-order polynomial fit to the restoring moment curve.
The resulting predicted roll response is shown in Figure 4.14. A comparison of the
measured and simulated spectral densities, Figure 4.15, confirms that the 5th-order
restoring moment polynomial provides accurate results. Figures 4.16 and 4.17 show
the Sth and 13th-order polynomial fits to the restoring moment curve and the resulting
roll responses, shown in Figures 4.18 and 4.19.

This sensitivity study indicates that a 3rd or Sth-order polynomial fits the
restoring moment curve with sufficient accuracy to provide valid roll response
simulation. However, it should be noted that it does not require a significant amount
of time or effort to use the 13th-order fit, and this high-order polynomial becomes a

requirement to accurately predict roll response at large roll angles.
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Figure 4.13 Comparison of Numerical (Paulling, 1995) and Analytical (Yim et al.
1995) Restoring Moment Curves, 5th Order Restoring Moment,
- numerical, — analytical. B,;s= 5.5384e6, B,; ;= -1.1747¢7, By s= 5.2136e6
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5.0 Comparison of Single, 2- and 3- Degree-of-Freedom Models

The final objective of this study is to compare the results of roll response for a
3DOF and a 2DOF model with the SDOF model. A comparison of the 5, 8 and 10
sec regular wave test cases is done as well as the Bretschneider spectrum. Table 5.1

lists a comparison of damping parameters for each of these cases. It is evident from

Wave | SDOF | SDOF | 2DOF | 2DOF | 3DOF | 3DOF
Test Linear | Non Linear Non Linear Non
Damp- | linear Damp- | linear || Damp- | linear

ing Damp- ing Damp- ing Damp-

Parame ing Parame ing Parame ing

ter Parame ter Parame ter Parame

ter ter ter

se26 | 009 | 007 | 032 | 03 | o040 | 040
se20 | 033 | o040 | o055 | o055 | 025 | o025
sB30 | 003 | 007 | 002 | oo1 | 003 | 003
se2s | 004 | 004 | 008 | 008 | 005 [ o005

Table 5.1 Damping Parameters for SDOF, 2DOF and 3DOF Models

this table that there is a wide range of damping parameters among the different
models. There does not appear to be any trend established by the damping
parameters for each wave test. In some instances, the parameters are higher in the
SDOF model and in others the 2DOF and 3DOF exhibit higher parameters.
Figures 5.1a - 5.1c, which show response to 5 sec wave excitation, indicate
that all three models simulate the amplitude of roll response very well. The 3DOF
and SDOF model match the phase identically, however, the 2DOF model leads the

measured response slightly.
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All three models accurately predict the roll response for the 8 sec wave

excitation case, Figures 5.2a - 5.2c. The amplitude as well as phase are nearly
identical in each case. It is interesting to note that each of the models required
unusually high damping parameters for this particular wave case.

Figures 5.3a and 5.3b compare SDOF and 3DOF responses for the 10 sec wave
test case. This is the only case observed where the higher-degree-of-freedom model
exhibits better prediction capabilities than the SDOF one. 1t should be noted that the
3DOF and 2DOF models used analytical input and the SDOF used measured input.
The SDOF model predicts the subharmonic activity seen in Figure 5.4b. Figure 5.4
compares the entire time series of the 2DOF and SDOF models. Again, the multi-
degree-of-freedom model predicts superharmonic response much more accurately.
However, results are not available to show prediction capabilities using measured
input for all three models.

The final comparison is for the Bretschneider Spectrum test case. This is the
only test case in which all models exhibit damping parameters which are close in
magnitude. Figures 5.5a - 5.5¢ indicate the SDOF and 3DOF models provide an
accurate prediction in this wave case. The 2DOF model, Figure 5.5b, is observed to
be less capable of producing the same results.

A more thorough study is recommended to determine the adequacy of each
model and to perhaps determine some correlations between the models. These
preliminary results, however, indicate the SDOF model may be equally as accurate
and in some cases more accurate than the mul&;degrees-of—ﬁwdom models. Use of

the single degree of freedom model can be an excellent tool for future research.
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6.0 Concluding Remarks

In this report, four different forms, each identical except for a variation in the
damping term were studied. From these equations, an SDOF model to predict barge
roll motion was identified. The form which provided the most accurate predicted
responses proved very capable of simulating barge response in both the regular and
random wave environment with the exception of test SB30. A sensitivity study was
conducted to determined the effects of varying damping parameters. In addition, the
restoring moment term was examined to determine the effects of using 3rd, Sth, 9th,
and 13th-order terms. Finally, a comparison was made between the SDOF, 2DOF

and 3DOF models to identify the strengths and weaknesses of each model among the

different wave test cases.

6.1 Conclusions

1) The model which provided the most accurate response simulation was
equation 2.8. This form assumes the relative motion effects can be negiected. Asa
result, only the barge roll velocity is considered in the damping terms.

2) The SDOF model was capable of predicting barge response for all regular
and random wave test cases except SB30, in which the 10 sec wave excitation was a
multiple of the barge’s natural roll frequency. As a result, the response motion
contained a superharmonic which was difficult to simulate.

3) A constant damping parameter cannot be used to predict all responses
throughout the wave excitation spectrum. The &amping parameters for the regular
and random wave excitations summarized in Table 6.1, show no obvious pattern of

behavior.




Wave Test Linear Damping Nonlinear Damping
Parameter Parameter

H= 6.6 Ft, T= 5 Sec 0.09 0.07
(SB26)

H= 6 Ft, T= 6 Sec 0.10 0.07
(SB27)

H= 7.2 Ft, T= 8 Sec 0.33 0.40
(SB29)

H= 5.7 Ft, T= 10 Sec 0.03 0.07
(SB30)

Bretschneider Spectrum 0.04 0.04

White Noise Spectrum 0.07 0.08

Table 6.1 Summary of Damping Parameters for Form 2, Equation 2.8

4) A sensitivity study of the restoring moment term determined that a 3rd or
Sth-order polynomial is sufficient for simulation when the magnitude of the roll
response is not large, although the 3rd-order polynomial tends to slightly underpredict
response at times. There is no discernable difference in predicted response provided
by a Sth or 13th-order restoring moment polynomial. The incremental computational
ﬁme using these higher-order polynomials is minimal. In addition, when roll
response becomes large, the higher-order polynomials become a requirement.

5) When comparing the SDOF model with the multi-degree-of-freedom
models, the results are mixed. In the regular wave tests, the SDOF model provides
the same results as the 3DOF, except in the IQ_second wave test case. The ability of

SDOF and 3DOF models to simulate random response is remarkably better than the
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2DOF model. These observations combined with the significant time saving makes

the SDOF very desirable to use.

6.2 Recommendations for Future Studies

1) Further studies in variation of the damping terms may improve the ability
to predict superharmonic response. Varying the effects of relative motion, roll
velocity and wave slope velocity could possibly produce better results.

2) A computer program is currently under development to predict the
probability of barge capsize. A comparison of the SDOF, 2DOF and 3DOF models
can be used in this program to establish further strengths and weaknesses of each
model. Although simplistic compared to the 2DOF and 3DOF models, the SDOF
model may provide equally adequate results with much less time invested.

3) In determining the damping parameters in this study, the standard deviation
of the amplitude was used as the criterion for determination. This assumes the phase
shift is unimportant. The focus of an alternate study could be to use a least-square
criterion which weighs both amplitude and phase shift in the error calculation.

4) In the random wave cases, a comparison of spectral densities showed a
shift in peak frequencies between the measured and predicted spectrum. Variations in
input data such as dominant period of wave spectrum could be analyzed to determine

if this shift may be eliminated or decreased.
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