REPORT DOCUMENTATION PAGE O R 88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
11 June 1996

PROFESSIONAL PAPER

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PROVIDING COMMON MUNITION MODELS VIA AN ORDNANCE SERVER

6. AUTHOR(S)

John DiCola, David Mutschler, Lawrence Ullom, Alexandra Wachter

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
COMMANDER REPORT NUMBER

NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION
22541 MILLSTONE ROAD

PATUXENT RIVER, MARYLAND 20670-5304

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
COMMANDER

NAVAL AIR SYSTEMS COMMAND
1421 JEFFERSON DAVIS HIGHWAY
ARLINGTON, VA 22243

11. SUPPLEMENTARY NOTES

“

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

In Distributed Interactive Simulation (DIS) exercises, it is often required that simulated entities interact on an equal basis. When different simulators
use different models for the same munitions, combat between the simulated entities may be skewed in favor of one simulation over another. Thereby,
the validity of exercise data might be lessened and the worth of the exercise reduced.

Using common munitions models eliminates this problem. One approach toward providing these models is to use an establish procedure or object class
library where an entity’s simulator would also simulate the ordnance it fires. However, since this library must be compiled and bound to the platform
simulation, this approach may lead to integration and performance issues.

This paper describes an alternative: an ordnance server. the ordnance server acts as a common repository that interfaces directly with the network.
Once a munitions is fired, the server assumes control and simulates it apart from its launching platform. Given available information, the server
employs the appropriate weapon model. The server simulates weapon flyout, status,trajectory, impact and other munitions attributes.

Since the server may be located apart from simulation platforms, processing load may be better distributed. Also, by operating within the DIS protocol,
the ordnance server provides no additional network load. Furthermore, it can be distributed to different sites about the network. Lastly, by using
ordnance servers near target sites, latency between a weapon detonation and its effect on a target can be substantially lessened.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Distributed Interactive Simulation (DIS); ordnance 5

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED N/A
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
D‘ s v
99 60 62 0 TIC Qb‘ﬁmip- ﬂgsﬂ\, -

E mel(q)

DEPARTMENT OF THE ARMY
V.S, ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333-5600

11 Jyn 1908

REMLY 70
ATTERTION OF

PERI-II

MEMORANDUM FOR Team Leader, Technical Publishing Team,
Naval Air Warfare Center Aircraft Division,
22541 Millstone Road
Patuxent River, MD 20670-5304

SUBJECT: Request for Releasc of Technical Information

1. Reference request for review dated 10 June 96, of the paper
titled “Providing Common Munitions Models Via an Ordnance Server®
for presentation at the 18th Interservice/Industry Training
Systems and Education Conference on 3-6 December 1996.

2. The undersigned reviewed the referenced papexr and, as manager
of a directly related program of work, approves it for public
release and presentation at the conference.

- ~r
T;Z:::~ M// / /75< L
FRANKLIN L

MDT2 Program Managex

PROVIDING COMMON MUNITION MODELS
VIA AN ORDNANCE SERVER

John DiCola, David Mutschler, Lawrence Ullom, Alexandra Wachter
ACETEF/MFS, Naval Air Warfare Center -- Aircraft Division
Patuxent River, MD

ABSTRACT

In Distributed Interactive Simulation (DIS) exercises, it is often required that simulated entities interact on an equal
basis. When different simulators use different models for the same munitions, combat between the simulated entities
may be skewed in favor of one simulation over another. Thereby, the validity of exercise data might be lessened and
the worth of the exercise reduced.

Using common munition models eliminates this problem. One approach toward providing these models is to use
an established procedure or object class library where an entity’s simulator would also simulate the ordnance it fires.
However, since this library must be compiled and bound to the platform simulation, this approach may lead to
integration and performance issues.

This paper describes an alternative: an ordnance server. The ordnance server acts as a common repository that
interfaces directly with the network. Once a munition is fired, the server assumes control and simulates it apart from
its launching platform. Given available information, the server employs the appropriate weapon model. The server
simulates weapon flyout, status, trajectory, impact, and other munition attributes.

Since the server may be located apart from simulation platforms, processing load may be better distributed. Also,
by operating within the DIS protocol, the ordnance server provides no additional network load. Furthermore, it can
be distributed to different sites about the network. Lastly, by using ordnance servers near target sites, latency
between a weapon detonation and its effect on a target can be substantially lessened.

BIOGRAPHIES
John DiCola
Mr. DiCola is g Simulation Engineer employed at the ACETEF/Manned Flight Simulator in the Naval Air Warfare
Center at Patuxent River, MD. He has a BSEE from Virginia Tech., and an MS in Computer Science from the
Florida Institute of Technology. His interests are distributed simulation and artificial intelligence.

David Mutschler

Mr. Mutschler is a Computer Engineer employed at the ACETEF/Manned Flight Simulator in the Naval Air
Warfare Center Aircraft Division at Patuxent River, MD. He has received a BA from Rutgers University, a Masters
of Engineering from Penn. State University, and an MS from Temple University where he is currently a Ph.D.
candidate in Computer and Information Science. His interests include distributed computing, simulation, software
engineering, and computer graphics. He is a member of the ACM, IEEE, and IEEE/CS.

Lawrence Ullom :

Mr. Ullom is an Electronics Engineer employed at the Air Combat Environment Test and Evaluation Facilities
(ACETEF) / Manned Flight Simulator in the Naval Air Warfare Center at Patuxent River, MD. He hasaBSEE
from West Virginia Institute of Technology. His interests include networking, distributed systems, and simulation.
He has served in several DIS subworking groups including Interface and Computing Architectures.

Alexandra Wachter

Mrs. Wachter is an Electronics Engineer employed at the ACETEF/Manned Flight Simulator in the Naval Air
Warfare Center at Patuxent River, MD. She has a BEE from the Georgia Institute of Technology. She is the
Distributed Simulation Team Leader in the Manned Flight Simulator laboratory.

PROVIDING COMMON MUNITION MODELS
VIA AN ORDNANCE SERVER

John DiCola, David Mutschler, Lawrence Ullom, Alexandra Wachter
ACETEF/MFS, Naval Air Warfare Center -- Aircraft Division Patuxent River, MD

PROBLEM STATEMENT

Need For Common Munitions Models

In the Distributed Interactive Simulation (DIS)
community, the lack of validated, DIS compatible,
high fidelity munition models has been a major
concern. Models of varying fidelity have been used
together in simulation exercises, resulting in
questions of exercise validity based on inconsistent
munition behavior and effectiveness across platform
simulations. In other words, persistent fidelity
variations between munition simulations have caused
many participants to claim that the exercise did not
produce a fair fight.

One problem is that many munition simulations are
integrated directly into the launching platform’s
simulation. Different models developed for different
simulations are developed independently and are
constructed using different design criteria and fidelity
requirements. Hence, it becomes difficult to
determine the “best” model. Moreover, because of
different interfaces, data requirements, and levels of
coupling with their launching simulations, it may
also be difficult to extract a munition model from one
simulation and integrate it into another.

To solve this (and other) problems, the Manned
Flight Simulator (MFS) laboratory of the Air
Combat Environment Test and Evaluation Facility
(ACETEF) designed and implemented the Ordnance
Server (OS). The OS is separate and distinct from
any launching simulation. It can be accessed
remotely by any simulation within an exercise.
Thereby, each simulation can access a uniform set of
munition models.

Use Of Libraries Is Inadequate

Another method of sharing models is using a
procedure or object library of common munition
routines. Simulations would link with the
appropriate routines for the munitions they require.

Unfortunately, while a library would permit different
simulations to share munition models, it introduces
several other problems. It may be difficult to link the
needed routines into the simulations because of the
variety of munition model interfaces. This is
especially. true for legacy systems. In addition,
configuration management of the routines can be

difficult since software must be made available to
different sites. Furthermore, each time a munition
routine is updated, all of the simulations that use that
routine must be relinked to take advantage of any
improvements. Lastly, since the munition model
could execute on the same processor as the
simulation, the munition model would contend for
that processor’s resources.

Lib. [Sim. #1 " [Lib. [Sim. #3
| |
¢ | »
Lib. |Sim. #2

Figure 1. Simulation w. Common Libraries

This paper will show that an ordnance server
provides common munition models without the
drawbacks of a procedure or object class library.
Furthermore, since the ordnance server uses standard
DIS messages required for the firing of any ordnance,
there is no additional loading of the network.

SOLUTION STATEMENT -- ORDNANCE
SERVER AS SUPERIOR SOLUTION

The ordnance server concept offers many advantages
over a library of munition routines. These
advantages include: ease of integration, testability,
ease of configuration management, distribution of
processing load, and reduction of network latency.

Integration to the ordnance server is provided by the
standard DIS Fire PDU. When the server receives
this message, it utilizes the given information to
discern the appropriate munition model and execute it
appropriately. This information is provided
regardless of the munition’s launching platform type.
Thereby, commonality is ensured and integration
into existing DIS simulations is straightforward.

Greater testability is available because the ordnance is
simulated using a separate executable. The
munitions can be tested, verified, and validated,
independently of a launching platform. Furthermore,
there should be no requirement to revalidate either a
platform or munition model when any change is

made to the other. This separation of the ordnance
models from the launching vehicle models also
facilitates the addition of new models and can reduce
the overall testing effort required.

Sim. #3

Sim. #1
|
! | >
Ordnance Sim. #2
Server :

Figure 2. Simulation with an Ordnance Server

The use of a server also facilitates configuration
management since all munition models are interfaced
via the server alone. Proliferation of software to each
of the simulation sites is not necessary.

An ordnance server’s ability to run on any supported
machine on the network during a DIS simulation
provides many benefits. The munition server can run
on the same hardware as the launching platform, or
can run independently on a separate machine. Thus,
it does not impact the processing power available to
any of the entity simulations.

An ordnance server is adaptable. It can be configured
to operate for selected munitions, types of launching
entities, or individual entities. Thereby, processing
load between ordnance simulations can be further
distributed.

Sim #1 Sim #3

i 1

L |
Ordnance Sim #2
Server #1

Sim #4 | Sim. #5
| § | |

| | 1 | |
Ordnance Sim. #6 Sim. #7
Server #2

Figure 3. A Distributed Ordnance Server

In addition, distributing the ordnance server can be
used to reduce network loading in many cases. One
approach is to collocate an ordnance serve and the
target entity (either on the same LAN or even the
same computer). By significantly reducing the
transmission length between the munition simulation
and it’s target, network latency can be drastically
reduced. For fast, highly dynamic targets, this could

alter the end-game outcome since the targeted entity
would have more timely updates of munition
location (for avoidance) or impact (for damage
assessment). It has been shown in other research (2)
that network latency is a dominant variable in the
interactivity limits of distributed simulation.

Lastly, the ordnance server only utilizes standard DIS
PDUs. No extra messages are generated. Hence,
utilization of an ordnance server adds no additional
loading onto the network. Furthermore, increasing
the number of munition servers will not, by itself,
increase the amount of traffic on a network, and the
increased bandwidth required by additional munition
models will be no different than if standard munition
simulations were used. Of course, each munition
server should be configured to avoid overlap to
prevent multiple munition simulations from being
erroneously generated given a single Fire PDU.

IMPLEMENTATION

The Ordnance Server developed at ACETEF/MFS
has been successfully used in many exercises and
demonstrations. Several types of Tactical Air
Combat Training Systems (TACTS) munition
models have been incorporated into the OS to
increase the fidelity of the munition simulations.
The OS was used to supply these validated missile
models for several events including tactical air
exercises requiring realistic air-to-air munitions. The
OS was also demonstrated at /ITSEC 95 where it
was used in conjunction with the Simulated Warfare
Environment Generator (SWEG) to simulate OPFOR
surface to air munitions.

ORDNANCE SERVER DESCRIPTION

Message Flow

DIS uses three types of PDUs to describe tracked
munition simulation: Fire, Entity State, and
Detonation PDUs. Should the munition emit any
signals (as for radar), Emission PDUs may also be
required. The Fire PDU provides munition launch
information, including munition type, launching
entity ID, munition entity ID, and a target entity ID
(if applicable). Once the munition is launched,
Entity State PDUs are issued to describe the
munition’s location and orientation. At the
termination of the munition’s flight, a Detonation
PDU is issued, regardless of the reason for
termination. The Detonation PDU describes the
reason for termination, the termination location, and
the target entity ID if applicable. = The target
simulation is then responsible for determining the
effects, if any, of the missile detonation.

Simulation Ordnance
Server
Fire _
FDU Entity PDUs
Emission PDUs
(if req’d)
Netwl?)ﬁ Detonation PDU

Figure 4. DIS Message Flow

When not using an ordnance server, all three PDUs
are normally output by the same simulation. When
the OS is used, the launching entity only outputs a
Fire PDU. The OS then assumes control of the
munition. It uses Entity State PDUs to report it’s
flight path and Emission PDUs to report it’s
emissions (if any). It is also the OS’s responsibility
to produce the detonation PDU when the munition’s
flight ends.

Configuring the Ordnance Server

The OS is extremely flexible and can be adapted to
work in a wide variety of situations. The keys to
this flexibility are the configuration file and the
graphical user interface (GUI). The configuration file
permits speedy initialization of the OS and is loaded
at startup. The GUI permits change of OS parameters
at run-time. These modifications may also be saved
into a configuration file.

Configuration
File Ordnance

Server

Figure 5. OS Configuration

Amidst the configuration data, the most important
information is the site, application, and entity ID that
distinguish the platforms to be served by the OS.
Through the use of wildcards, the OS can be
configured to serve a single entity, all entities from a
specific site and application, or all entities from a
specific site. This allows the user to set up multiple
OS’s in the optimal configuration that best matches
resources and requirements.

The configuration file also contains the name of the
terrain database file that is used to check for ground

impacts. The OS currently uses ModSAF Compact
Terrain Database (CTDB) type databases.

The data also contains the entity type to fly-out
model mappings. For example, the OS could be set
up to use a single AIM-9 flyout model whenever any
variant of the AIM-9 is launched.

Fuse and warhead types for each munition may also
be specified. Lastly, the emissions produced by a
munition’s radar (if any) can also be specified.

Munition Models

The OS currently includes two types of munition
models: the generic models and the detailed external
models. With the generic munition models, the user
can control several parameters, including drag,
weight, burn rate, and guidance method. Each o
these parameters can be modified via the GUI, and
saved to the configuration file.

The other type of munition model supported is the
detailed external model. These models are developed
externally to the ordnance server and integrated into
the OS via the model interface adapter (MIA). The
model interface adapter must be specifically tailored
for each external model. The MIA serves as a bi-
directional interface that inputs and outputs munition
and synthetic environment data from the model in the
same manner and format as the model’s original
simulation executive. Thereby, integration of the
model into the OS is greatly facilitated.

There are currently two types of external models
incorporated into the OS: Tactical Air Combat
Training System (TACTS) models, and the
Tomahawk Trajectory Generation Tool. The
TACTS models are validated, real-time, high fidelity
missile models used for training Naval air personnel
on the Tactical Combat Training Ranges. They
feature a well-defined interface that is standard across
weapon types. This greatly simplified the addition of
TACTS models to the OS because a single model
interface adapter could work for several munition
models.

TACTS Models Common Name
AA-2B, 2D Atoll
AA-8A, 8C Aphid
AA-10A, 10B, 10C Alamo
AA-11 Archer
AIM-TF, TM, 7TE2 Sparrow
AIM-9G, 9H, 9L, 9M, 9P3 Sidewinder
AIM-54A, 54C Phoenix
AIM-120 AMRAAM
FIM-92 Stinger
R-550 Magic

> %

SA-2 Guideline
SA-3 Goa -
SA-4 Ganef
SA-5 Gammon
SA-6 Gainful
SA-7 Grail
SA-8 Gecko
SA-9 Gaskin
SA-16

SA-N-3 Goblet

Table 1. TACTS Models in the OS

The Tomahawk Trajectory Generation Tool was
developed by the Dahlgren Division of the Naval
Surface Warfare Center, and is used to perform
Tomahawk munition fly-outs. Additional TACTS
models are currently being added, together with other
types of external models.

CONCLUSION

An ordnance server provides many benefits over and
above those benefits provided by a library of common
munition models. While both methods provide for
common munition modeling, the ordnance server
further supports testability, ease of integration,
configuration management, and distributed process
loading. Distribution of the ordnance server about
the network can also minimize network latency.

Integration of an ordnance server is facilitated by the
use of the Fire PDU as its interface. Since the OS
requires no additional messages, there is no addition
to network loading. Furthermore, the OS is highly
configurable to meet a variety of exercise
requirements. These include munition simulation for
one or all entities in an exercise, model mappings,
and warhead selection.

In past efforts, the ordnance server implemented by
ACETEF/MFS has proven to be a highly successful
tool. Given its versatility, it is being adapted for use
with the High Level Architecture (HLA) whereby it
will be used for STOW ‘97.

REFERENCES

1. DiCola, John; Fischer, Peter; Mutschler, David;
Ullom, Lawrence. “Improving Munition Simulation
Fidelity Through Use of an Ordnance Server”,
Proceedings of the AIAA Flight Simulation
Technologies Conference. July, 1996 (to be
published)

2. Foster, Lester and Feldmann, Peggy. “The
Limitations of Interactive Behavior for Valid
Distributed Interactive Simulation”, 13th DIS

Workshop on Standards for the Interoperability o
Distributed _ Simulations (Report ~ 95-13-027).
Institute for Simulation and Training. Orlando, FL.
pg. 175-189

3. Ullom, Lawrence and Fischer, Peter. “Using an
Ordnance Server to Provide Validated Weapon
Models to MODSAF”, Proceedin f the 6th

Computer _Generated _Forces and __ Behavioral
Representation Conference. 1996 (to be published)

