
FINAL

INSTALLATION RESTORATION PROGRAM

SITE INSPECTION REPORT VOLUME II OF III

102nd AIR CONTROL SQUADRON NORTH SMITHFIELD AIR NATIONAL GUARD STATION SLATERSVILLE, RHODE ISLAND

SEPTEMBER 1995

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISCLAIMER NOTICE

UNCLASSIFIED DEFENSE TECHNICAL INFORMATION UNCLASSIFIED

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	REPORT DOCUMENTATION PAGE			0704-0188
Public reporting burden for this isolfaction of informal gathering and maintaining the data needed, and comi collection of information, including suggestions for re Davis Highway, Suite 1204, Arrington, 74–22202-4302	tion is estimated to average 1 hour per re pleting and reviewing the collection of inf iducing this burgen to Washington Head and to the Office of Management and 80	sponse, including the time for ormation. Send comments reg quarters Services, Directorate f lidget, Paperwork Reduction Pr	reviewing instructions, leartr arding this burden estimate or information Operations an oject (0704-0188), Washingtor	ting existing data sources, or any other aspect of this dig Reports, 1215 Jefferson h. DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AI	ND DATES COVERED	
	September 1995		n Report 5. FUNDING NUME	BERS
4. TITLE AND SUBTITLE Site Inspection Report, 102nd A	in Control Squadron North	h Smithfield		
Air National Guard Station, Sla	tersville, Rhode Island - V	Volume II of III		
6. AUTHOR(S)				
NA	······		8. PERFORMING O	PGANIZATION
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		REPORT NUMBE	
Aneptek Corporation 209 West Central Street				
Natick, Massachusetts 01760 9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	<u></u>	10. SPONSORING/	
3. SPONSONING / MONITONING / CELLO			AGENCY REPO	RT NUMBER
ANGRC/CEVR				
3500 Fetchet Avenue Andrews AFB MD 20762-5157				a an
11. SUPPLEMENTARY NOTES				
		•		
	······································			
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTIO	
Approved for public release; distribution is unlimited				
13. ABSTRACT (Maximum 200 words)				
Site Inspection Report, 102nd A Slatersville, Rhode Island, Volu report. Three areas of concern (passive soil gas survey was conc and analyzed. Low level contan No further action was recomme	me II of III. This is the so (AOCs) were investigated ducted of the entire statio nination of fuel-related co	econd volume of a t under the Installa n. Soil and ground	tion Restoration H water samples we	Program. A Procent A Pre collected
			e e generation de la companya de la co	
•				
14. SUBJECT TERMS			15. NU	MBER OF PAGES
		onmontol Rospons	16 PRIC	CE CQQ8
Installation Restoration Progra Compensation and Liability Act	m; Comprenensive Envir t (CERCLA); Air National	l Guard; Site Inspe	ction, Rhode	
Islaise Churth at Lossal CAURONI; 5181 OF REPORT	OF THIS PAGE	19. SECURITY CLASS OF ABSTRACT	IFICATION 20. LIM	ITATION OF ABSTRAC
Unclassified	Unclassified	Unclassified	Standarg B	orm 298 (Rev. 2-89)

that this information be consistent with the rest of	FOR COMPLETING SF 298 announcing and cataloging reports. It is important of the report, particularly the cover and title page. ow. It is important to stay within the lines to meet	
Block 1. Agency Use Only (Leave blank).	Block 12a. Distribution/Availability Statement.	
Block 2. <u>Report Date</u> . Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.	Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).	
Block 3. <u>Type of Report and Dates Covered</u> . State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).	DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents." DOE - See authorities.	
Block 4. <u>Title and Subtitle</u> . A title is taken from the part of the report that provides the most meaningful and complete information. When a	NASA - See Handbook NHB 2200.2. NTIS - Leave blank.	
report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification	Block 12b. <u>Distribution Code</u> . DOD - Leave blank.	
in parentheses. Block 5. <u>Funding Numbers</u> . To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the	 DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports. NASA - Leave blank. NTIS - Leave blank. 	
following labels: C - Contract PR - Project G - Grant TA - Task PE - Program WU - Work Unit Element Accession No.	Block 13. <u>Abstract</u> . Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.	
Block 6. <u>Author(s)</u> . Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the	Block 14. <u>Subject Terms</u> . Keywords or phrases identifying major subjects in the report.	
report. If editor or compiler, this should follow the name(s).	Block 15. <u>Number of Pages</u> . Enter the total number of pages.	
Block 7. <u>Performing Organization Name(s) and</u> <u>Address(es)</u> . Self-explanatory.	Block 16. Price Code. Enter appropriate price	
Block 8. <u>Performing Organization Report</u> <u>Number</u> . Enter the unique alphanumeric report number(s) assigned by the organization performing the report.	code (NTIS only). Blocks 17 19. Security Classifications. Self-	
Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.	explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified	
Block 10. Sponsoring/Monitoring Agency Report Number. (If known)	information, stamp classification on the top and bottom of the page.	
Block 11. <u>Supplementary Notes</u> . Enter information not included elsewhere such as: Prepared in cooperation with; Trans. of; To be published in When a report is revised, include a statement whether the new report supersedes or supplements the older report	Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited	

is assumed to be unlimited.

10.5

and the second second

÷

or supplements the older report.

ì

•

FINAL

INSTALLATION RESTORATION PROGRAM

SITE INSPECTION REPORT

102nd AIR CONTROL SQUADRON NORTH SMITHFIELD AIR NATIONAL GUARD STATION SLATERSVILLE, RHODE ISLAND

SEPTEMBER 1995

Prepared For

AIR NATIONAL GUARD READINESS CENTER ANDREWS AFB, MARYLAND 20331-6008

Prepared By

ANEPTEK CORPORATION ^c 209 West Central Street Natick, Massachusetts 01760

APPENDIX A

PASSIVE SOIL GAS SURVEY REPORT

J.

605 Parfet Street • Suite 100 Lakewood, Colorado 80215 303-238-0090 • 800-845-5137 Fax 303-238-2522

(本)

November 28, 1994

Mr. Mike Plumb ANEPTEK Corporation 209 West Central Street Natick, Massachusetts 01760

Phone: (508) 650-1048 Fax : (508) 651-1560

Dear Mr. Plumb:

Enclosed please find the draft report on the findings of the PETREX Soil Gas investigation performed at the North Smithfield ANGS Site located in Slatersville, Rhode Island.

If you have any questions concerning the enclosed, please do not hesitate to call either Mark Hatheway or myself. We will await your comments prior to issuing our final report.

Respectfully Submitted, NORTHEAST RESEARCH INSTITUTE LLC

Jullit

Julia Olney Gullett Senior Geologist

encl /JOG

D2185JG/11.28.94

605 Parfet Street • Suite 100 Lakewood, Colorado 80215 303-238-0090 • 800-845-5137 Fax 303-238-2522

 $\langle \pi \rangle$

FINAL REPORT ON THE FINDINGS OF THE PETREX SOIL GAS SURVEY CONDUCTED FOR ANEPTEK CORPORATION

PREPARED BY:

DATE:

Julia Olney Gullett, Senior Geologist

APPROVED BY:

DATE:

11-28-54

James H. Viellenave, Vice President

NORTHEAST RESEARCH INSTITUTE 605 PARFET STREET, SUITE 100 LAKEWOOD, COLORADO 80215 (303) 238-0090

994-2195

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY		_ 1
2.0 INTRODUCTION		2
3.0 OVERVIEW OF THE PETREX TECHNIQUE		2
4.0 OBJECTIVES	• •	2
5.0 SCOPE OF WORK	•	3
6.0 FIELD ACTIVITIES		3
7.0 METHOD QA/QC		3
8.0 RESULTS		4
9.0 DISCUSSION		4
10.0 CONCLUSION		6
11.0 RECOMMENDATIONS		e
12 O LIMITATIONS		7

APPENDICES

A. PETREX Protocol

B. Tables 1 and 3

C. Sample Mass Spectra of Compounds Identified

D. Histograms Used in Determining Contour Intervals

E. Relative Response Maps Plates 1 - 3

1.0 EXECUTIVE SUMMARY

Northeast Research Institute LLC (NERI) and ANEPTEK Corporation recently performed PETREX Soil Gas sampling at the Air National Guard Station (ANGS) in North Smithfield, Rhode Island. The purpose of the soil gas investigation was to screen the study area for the presence of benzene, toluene, ethylbenzene/xylene(s) (BTEX), trichloroethene (TCE), and trichloroethane (TCA) which may be indicative of chemical occurrences in the subsurface.

VOCs related to petroleum hydrocarbon mixtures such as gasoline, and Diesel/Fuel Oil fuel Limited occurrences of the chlorinated solvents TCE and were identified in soil gas. tetrachloroethene (PCE) were also detected. TCA was not identified in soil gas. The distributions of the gasoline and Diesel/Fuel Oil fuel mixtures were mapped by characterizing the hydrocarbon compounds detected and formulating soil gas signatures, or fingerprints, for each mixture. High soil gas response levels of hydrocarbons more likely related to gasoline (such as BTEX), were detected east of Building 110, north of Building 106 and in the vicinity of Buildings 107 and 111. The soil gas response levels detected in each of these areas may be indicative of potential source areas of gasoline release. High relative response levels for the Diesel/Fuel Oil like hydrocarbons (such as naphthalene) were detected in the vicinity of Building 109 and northwest of Building 106. The intermediate response levels for both mixtures indicate that primary migration of the hydrocarbons may have occurred following a north - south migration pathway. The hydrocarbon occurrences appear to extend beyond the survey boundaries primarily to the north, therefore the areal extent of the VOC occurrences was not defined by this investigation.

2.0 INTRODUCTION

Northeast Research Institute LLC (NERI) and ANEPTEK Corporation recently performed PETREX Soil Gas sampling at the Air National Guard Station (ANGS) in North Smithfield, Rhode Island. The purpose of the soil gas investigation was to screen the study area for the presence of benzene, toluene, ethylbenzene/xylene(s) (BTEX), trichloroethene (TCE), and trichloroethane (TCA) which may be indicative of chemical occurrences in the subsurface.

3.0 OVERVIEW OF THE PETREX TECHNIQUE

Each PETREX soil gas sampler consists of two or three activated charcoal adsorption elements (collectors) housed in a resealable glass container in an inert atmosphere.

Soil gas sample collection is performed by unsealing the sampler and exposing the collector to the soil gas of the subsurface environment at the base of a shallow borehole. Sample collection proceeds via free vapor diffusion through the opening of the uncapped sampler container. Following a controlled period of time, the sampler is retrieved from the borehole, resealed, and submitted for analysis.

One collector from each soil gas sampler is analyzed by Thermal Desorption/Mass Spectrometry (TD-MS). Selected second collectors may be analyzed by Thermal Desorption-Gas Chromatography/Mass Spectrometry (TD-GC/MS) for compound confirmation. At least ten percent of samplers used in any project are three collector samplers. The third collector is used for setting instrument sensitivity prior to analysis.

Compounds are identified by comparison to standard reference spectra run on the same instrument. The mass spectral ion count of the appropriate indicator peak(s) for each compound or group of compounds is then plotted as relative response on a map and contoured using a variety of standard geostatistical analyses.

For a more detailed and technical discussion of the method, please refer to Appendix A, PETREX Protocol.

4.0 OBJECTIVES

The purpose of the PETREX Soil Gas Survey was to:

- 1. Collect and report VOC's and SVOC's as constituents of soil gas;
- 2. Map the areal extent of the reported compounds in order to exhibit areas of potential subsurface contamination; and
- 3. Attempt to determine the extent of migration of the reported compounds in the subsurface.

5.0 SCOPE OF WORK

Eighty (80) PETREX soil gas samplers were utilized for this soil gas investigation. Samplers were place in a regular pattern throughout the site on one hundred (100) foot intervals. The survey was designed by ANEPTEK to screen potential source areas including the septic leach field located south of the primary study area.

6.9 FIELD ACTIVITIES

Sampler installation was performed between October 13th and 17th, 1994, sampler retrieval was performed on November 2nd and 3rd, 1994. Sampler installation and retrieval was performed by ANEPTEK personnel following one day of on-site training in the methods and protocols associated with performing a PETREX Soil Gas Survey.

Sampler exposure time was determined by the use of exposure time test samplers (time tests). Time test samplers were installed concurrently with the survey sampler installation and removed for analysis following a three (3) day exposure period. The purpose of the time test samplers was to assess the loading rate of Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) onto the PETREX collectors. Based upon the analyses of time test samplers, 16 days was determined to be an optimum exposure period.

7.0 METHOD QA/QC

7.1 Lot Control

÷

Ĵ

. !

 $_{1}$

Quality assurance/quality control (QA/QC) collectors from each lot manufactured by NERI were analyzed by TD-MS to ensure that they were contaminant free before the lot of collectors used in the field was released from the PETREX laboratory. No compounds were detected above background on the QA/QC collectors.

7.2 Travel Blanks

Two PETREX samplers were provided as travel blanks. These travel blanks remained sealed and traveled with the survey samplers from the laboratory to the field and back to the laboratory to monitor for potential contamination of the survey samplers. The travel blanks were analyzed under the same instrument conditions as the survey collectors. The results of the analysis of the travel blanks are provided in Table 1, Appendix B.

A more detailed description of the PETREX QA/QC may be found in the PETREX Protocol located in Appendix A.

8.0 RESULTS

1

All samplers were analyzed by NERI's standard method of Thermal Desorption/Mass Spectrometry (TD-MS). The results of the analyses indicate that petroleum hydrocarbon mixtures related to both a gasoline and Diesel/Fuel Oil mixture were the most prominent compounds detected in soil gas. The distributions of the gasoline and Diesel/Fuel Oil fuel mixtures were mapped by characterizing the hydrocarbon compounds detected and formulating soil gas signatures, or fingerprints, for each mixture. In order to report the compounds identified, mass spectral peaks indicative of the compound mixtures were selected and their corresponding ion counts were summed. Table 2 lists the mass peaks (indicator peaks) which were used to represent the petroleum hydrocarbon mixtures reported in Table 1, Appendix B, and Plates 2-3, Appendix D.

TABLE 2 REPORTED COMPOUNDS AND THEIR INDICATOR MASS PEAKS (AMU)

<u>Compound</u> Gasoline Mixture

C₆-C₁₀ Aromatic Hydrocarbons

C9-C14 Aliphatic Hydrocarbons

Diesel/Fuel Oil Mixture

123, 137, 151, 165, 181, 195

Indicator peak

78, 92, 106, 120, 134

In addition to the compounds reported above, limited occurrences of TCE and PCE were also identified. The locations and relative response of these occurrences are reported in Table 3, Appendix B.

Example mass spectra of the mixtures identified in this soil gas investigation are provided as Figures 1-4, Appendix C. A mass spectrum of a representative travel blank is shown in Figure 5.

9.0 DISCUSSION

The soil gas response levels discussed in the following section are described as high and intermediate relative to the entire data set. The ion count values that have been reported represent qualitative soil gas values that were evaluated relative to the other sampler locations.

The response values are reported in ion counts. Ion count values are the unit of measure assigned by the mass spectrometer to the relative intensities associated with each of the reported compounds. These intensity levels or response levels do not represent an actual concentration of the reported compounds; however, they are best utilized as a qualitative measurement. A difference in fon count values of an order of magnitude or more is considered significant when interpreting potential source areas and migration/dispersion pathways versus background areas.

The contour intervals depicted on Plates 2-3 were determined using histograms formulated from the statistical distribution of the data set. The histograms used to determine the sample population breaks are provided as Figures 1-2, Appendix D.

For a complete discussion of relative response map evaluation, please refer to the PETREX Protocol, Appendix A.

9.1 The Distribution of The Gasoline Mixture

The distribution of the Gasoline Mixture is shown on Plate 2, Appendix E. High soil gas response levels of the gasoline range hydrocarbons were detected in the vicinity of Building 110, north of Building 106 and in the vicinity of Buildings 107 and 111. The soil gas response levels detected in each of these areas may be indicative of potential source areas of gasoline release. Several spatially continuous samples exhibiting high response levels were detected east of Building 110 in a north - south trending pattern. The responses detected in this area may indicate a primary potential source in this area. Intermediate response levels, which generally depict migration patterns, for the gasoline mixture were detected throughout the central portion of the study area, and also appear to follow a north-south migration pathway. The intermediate response levels detected in the vicinity of Building 106 indicate that migration is limited to this vicinity. The intermediate response levels detected in the vicinity of Building 111 indicate that migration may have occurred towards the northeast. Isolated occurrences of intermediate response were also identified in the vicinity of Buildings 104 and 105, west of Building 108 and at a single location in the leach field. The environmental significance of these apparently separate occurrences is difficult to ascertain, however the response levels detected at these locations are not those generally indicative of potential source areas. The distribution of the gasoline mixture extends beyond the survey boundaries to the north, east and potentially to the west and was not defined.

The identification of the aromatic hydrocarbons was not possible at several sample locations due to interference associated with terpenes. Terpenes are naturally existing vegetative compounds sourced predominantly from pine trees, whose mass fall within the same mass range as several petroleum hydrocarbons. The samples in which interference by terpenes masked the identification of the gasoline range hydrocarbons have been denoted by a "T" on Tables 1, Appendix B, and Plate 2, Appendix E.

9.2 The Distribution of The Diesel/Fuel Oil Mixture

High relative response levels for the Diesel/Fuel Oil hydrocarbons were detected in the vicinity of Building 109, northwest of Building 106 and at a single location southeast of Building 110. The intermediate response levels detected indicate a north-south preferential migration pathway.

ļ

Isolated occurrences of the diesel/fuel oil mixture were also detected east and southeast of Building 104, and east of Building 111.

10.0 CONCLUSIONS

VOCs related to gasoline and diesel/fuel oil petroleum hydrocarbon mixtures were detected in soil gas at this site. In addition limited occurrences of TCE and PCE were detected. The distributions of the hydrocarbon mixtures were mapped and potential source areas were identified. The primary potential source area of gasoline release appears to have been identified in the vicinity located east of Building 110. The primary potential source area of diesel/fuel oil release appears to have been identified in the are located west of Building 109. A preferential migration pattern trending north-south appears to exist for both compound mixtures. The areal extent of hydrocarbon occurrences extends beyond the survey boundaries, and was not defined by this investigation.

The distribution of the compounds which comprise the diesel/fuel oil soil gas mixture is less extensive than that of the aromatic compounds which define the gasoline mixture. The aliphatic compounds are much less mobile in the subsurface due to their chemical structure and lower mobility. Conversely the higher solubility and mobility of the aromatic compounds tend to illustrate the extents of chemical migration.

Because soil gas emanation rates are site and chemical specific, the environmental significance of the soil gas response values must be determined relative to compound concentrations in subsurface soil and/or groundwater. Changes in soil gas response in orders of magnitude may be used to plan future investigative studies, and to aid in characterizing the behavior (migration, attenuation) of the chemicals in the subsurface. The PETREX method is extremely sensitive and often detects compounds in the low part per billion (ppb) range; therefore areas depicted as background by the PETREX method generally do not represent environmentally significant contaminant levels in the subsurface.

11.0 RECOMMENDATIONS

Į,

1

Based upon the findings of the PETREX soil gas survey, NERI recommends:

- 1. Performing an extended PETREX soil gas survey in directions in which chemical occurrences appear to extend beyond the limits of this investigation. The data obtained from this follow up investigation can be used to determine additional potential source areas and define the areal extent of migration.
- 2. Perform subsurface profiling in the vicinity of sample locations 21, 24, 25, 30, 33, 36, 41, 45, 48, 53, 60 and 62. Soil and groundwater analyses should include methods which detect aromatic and aliphatic hydrocarbons as well as chlorinated hydrocarbons.

12.0 LIMITATIONS

Í

ţ.

17

This report represents NERI's professional interpretation and judgment based on technical information gathered during investigative activities. Professional judgments expressed herein are restricted to facts available within the established limits of the scope of work, budget, and schedule. NERI assumes no responsibility for the existence or disclosure of conditions which did not come to its knowledge, or conditions not generally recognized as environmentally unacceptable, at the time this report was prepared.

It is NERI's specific intent that all observations and conclusions presented will be used as a guide and not necessarily a firm course of action unless explicitly stated as such. No warranties are expressed or implied and the information included in this report is not to be construed as legal advice.

D2185JG1/11.28.94

APPENDIX A PETREX Protocol

Northeast Research Institute LLC

¢

REVISED SEPTEMBER 1993

PETREX ENVIRONMENTAL SOIL GAS PROTOCOL

INTRODUCTION

The PETREX Technique provides a means by which trace quantities of gases from subsurface derived organic contaminants can be detected and collected at the earth's surface. The Technique is integrative, thereby eliminating the short-term variations associated with other gas/vapor detection methods. The PETREX Technique directly collects and records a broad range of organic compounds emanating from subsurface sources.

SOIL GAS COLLECTOR PREPARATION

Adsorption collector wires (after construction) are cleaned by heating to 358° C in a high vacuum system. Wires are packed under an inert atmosphere in glass culture tubes. One collector out of every batch of thirty is checked for cleanliness by mass spectrometry. Another collector from the batch is checked for adsorptive capability. Based on the results, the batch of collectors is approved for release into the field.

SOIL GAS SAMPLER INSTALLATION

The sampler consists of two or three collectors, each a ferromagnetic wire coated with an activated charcoal adsorbent in a screw top glass culture tube. Each sampler is typically placed in a shallow hole, 14-18 inches deep. The hole is backfilled and the location is marked. The sampler is left in the ground from one to thirty days, then retrieved and sealed for transportation back to the laboratory for analysis.

The PETREX soil gas sampling technique is adaptable to various surface conditions commonly encountered within survey areas. These surfaces typically include concrete, asphalt, grass, and gravel. Two installation methods are routinely utilized to adapt to these surface conditions.

The first method utilizes a coring shovel for sampler installations in grass or otherwise loosely consolidated soil conditions. The shovel cores a 14 inch deep by 2 inch diameter hole in the surface soils.

PETREX soil gas samplers are placed (open end down) at the bottom of each core hole. The samplers are then backfilled with an aluminum foil plug and the original excavated soil. To complete installation, sample locations are marked with ribbon flagging and a numbered pin flag, as well as entered into a field notebook and plotted on a field map.

The second method of sampler installation utilizes an electric rotary hammer, equipped with an 18 inch by 1.5 inch diameter drill bit, for sampler installations under concrete, asphalt, or otherwise consolidated conditions. A hole is drilled through the surface to the dimensions of the drill bit equipped to the rotary hammer.

PETREX soil gas samplers are placed at the bottom of each drilled hole. For retrieval purposes, a cleaned galvanized steel wire is attached to each sampler. Aluminum foil is used to plug each hole to approximately two inches below grade. Then each hole is capped to grade with hydraulic cement. The hydraulic cement serves as protection from the external surface environment.

To complete sampler installation, sampler locations are marked with paint (where applicable), entered into a field notebook, and plotted on a field map.

SOIL GAS SAMPLER RETRIEVAL

PETREX soil gas samplers are retrieved following a time period that has allowed for the soil gas emanating from the subsurface environment of a survey area to equilibrate with the installed PETREX samplers. This time integration period is determined for each PETREX soil gas survey based on time calibration data or site conditions.

Retrieval operations are dependent on surface conditions and routinely consist of the following two methods.

The first method applies to grass covered or loosely consolidated soil conditions. A trowel is utilized to expose the backfilled samplers; then with a pair of tongs, the samplers are brought to the surface. At the surface, the samplers are sealed, cleaned, and labeled. Following retrieval, all debris are gathered and the core hole is backfilled with original material.

The second method applies to concrete, asphalt, or other consolidated surface conditions. A hammer and chisel is utilized to remove the hydraulic cement plug and expose the sampler. By means of the pre-attached retrieval wire, the sampler is brought to the surface. At the surface, the retrieval wire is removed and the sampler is sealed, cleaned, and labeled. Following retrieval, each drill hole is backfilled and patched with cement or asphalt.

TIME CALIBRATION SAMPLERS

¢

Time calibration samplers are included in PETREX soil gas surveys, as appropriate. These samplers are included as a means of monitoring the loading rates of volatile and semivolatile organic compounds (VOCs and SVOCs) emanating from the soil gas at a survey area onto the PETREX collectors.

During PETREX sampler installation, two sets of three to five time calibration samplers are also installed at survey sample locations that best represent the range of soil gas response for the survey area. These representative locations are determined based on previous soils and/or groundwater studies and other site specific conditions such as gradient and potential source areas.

The first set of time calibration samplers are generally retrieved within a week or less following the initial installation and the second set one week later. Often, permanent on-site personnel are instructed to perform time calibration sampler retrieval.

Lengths of exposure periods of the survey samplers for each survey are determined based on the results of each respective set of time calibration samplers. Time calibration samplers are usually analyzed within 24 hours upon receipt at the laboratory. At the first indication of significant relative ion count intensities and significant total ion count values, the decision is made to retrieve the entire complement of survey samplers.

If there are no significant relative ion count intensities detected from the second set of time calibration samplers, then the survey samplers are allowed to equilibrate in the field for a maximum time period of up to 30 days. The average environmental PETREX soil gas survey requires a collector integration period of one day to two weeks.

METHOD QA/QC

2

Within every survey sampler, the two or three collector wires should have adsorbed identical compounds. Like compounds on separate collectors relate an acceptable quality assurance (QA) during the survey's analysis. The first wire is analyzed by Thermal Desorption/Mass Spectrometry (TD/MS). The data from the first wire is reported on the relative response maps. The second wire is retained for analysis by Thermal Desorption-Gas Chromatography/Mass Spectrometry (TD-GC/MS), if warranted by the initial TD/MS analysis of the second wire.

Approximately ten percent of the total PETREX survey samplers contain three collector wires. The third collector wire, a QC collector wire, is used by the operator to test the mass spectrometer's operating conditions prior to survey analysis. Some of these quality control (QC) collectors are also used to check the mass spectrometer sensitivity during survey analysis. In addition, the QC collector may be used to compare the reproducibility of the detected VOCs.

TRAVEL BLANKS

Two PETREX samplers, each containing a single collector wire, are included with each PETREX soil gas survey as travel blanks. These blanks are analyzed with the survey samplers to indicate whether there may have been contamination introduced to the survey samplers during installation or shipment. If compounds other than normal atmospherics (e.g., CO₂, H_20 , N_2 , and Ar) are detected on the blanks, these results are taken into consideration in the data presentation. This process, an initial step to data interpretation, involves the correction of ion count values of the detected blank contaminants from the entire survey's data set. The resulting ion count values are provided on the relative response maps.

MASS SPECTROMETER TUNING

An Extranuclear Quadrupole C-50 Mass Spectrometer or similar instrument, equipped with a Curie-point pyrolysis/thermal desorption inlet, is used for collector analysis. Mass assignment and resolution are manually adjusted using a Perfluorotributylamine (PFTBA) standard or a built-in tuning program, depending on the instrument. A linear correction, based on the known spectrum of PFTBA, is calculated. This correction is applied to a second PFTBA spectrum. If correct mass (M/Z) values are obtained, the operator proceeds to the next tuning step. If not, Step 1 is repeated until correct masses are obtained.

Peak intensity ratios are set from the major peaks in the PFTBA spectrum using the following values:

Mass		Spectrum
<u>(M/Z)</u>		Intensities
69	=	100%
131	=	48% <u>+</u> 5%
219	=	50% <u>+</u> 5%

During tuning, the ion signal for mass (M/Z) 69 of PFTBA is measured at a preset sample pressure and detector voltage and compared to previous values at the same setting.

Electron energy is set to 70 electron volts. All other operating parameters, such as scans, scan range, and mass offset, are established in the computer program. These values may only be changed by the laboratory manager.

Tuning is performed at the beginning of a run so that an individual survey is analyzed at the same set of instrument conditions. The samplers are analyzed in random order.

LABORATORY ANALYSIS

Periodic machine background and blank PETREX collector analyses are performed to assure that there is no carry-over between successive collectors. If there are peaks present which are not related to atmospheric gases, the supervisor is notified and the mass spectrometer is shut down and cleaned as necessary.

A written sample number record is kept during the analysis to prevent accidental cross numbering. The mass spectrometer control program contains appropriate "flag statements" that prompt the operator with a warning if an input sample number has already been analyzed. The operator then checks the current number, along with the disk storage location of the previously entered number to identify the true numbering situation.

COMPOUND IDENTIFICATION

Compound identification is based on molecular weight, compound fragmentation, and isotope distribution, as applicable. Each VOC exhibits a unique mass spectral signature. NERI maintains a large library of spectra of individual compounds, accessible by computer. In addition, the company maintains a large library of mass spectra of commonly used chemical mixtures; e.g., gasolines, diesels, industrial oils and solvents, coatings, plastics, etc. These spectra are used to assist in both compound and mixture identifications.

The ion count response of an indicator peak(s), representative of the compound and away from interference by other compounds, is extracted for data presentation and mapping.

INTERPRETATION OF SOIL GAS DATA

Soil gas data (including PETREX) reflect volatile and semivolatile organics collected at a point in the near surface. The sources of these volatile organics may be in the stratigraphic column and/or in groundwater below the collection point. Thus, the organics can be derived from surface spills, deposition, or migration into the deeper vadose zone, and groundwater. The soil gas survey reveals the <u>areal</u> extent of contamination and is the optimum guide in identifying areas in order to develop a vertical profile, including the drilling of soil borings and monitoring wells.

Soil gas data are always semi-quantitative in that multiple sources in soil and/or groundwater cannot be differentiated. However, the higher ion responses are representative of higher concentrations in the subsurface, given that geologic conditions are relatively consistent.

Due to chemical differences between individual compounds, including their ability to both adsorb and desorb from the charcoal PETREX collector element, it is invalid to compare the ion count of a compound at one sampling location to that of another compound.

APPENDIX B Tables 1 and 3

Northeast Research Institute LLC

. (^{*}

Table 1PETREX Relative Soil Gas Response Values
(in ion counts)North Smithfield ANGS, Slatersville, RI
ANEPTEK Corporation

Sample Number	Gasoline	Diesel/Fuel Oil
1	24,564	ND
2	1,375	ND
3	1,430	ND
4	19,912	ND
5	110,879	ND
6	619	ND
7	57,588	ND
8	Т	ND
. 9	ND	ND
10	133,322	ND
11	218,077	ND
12	91,825	ND
13	29,778	ND
14	ND	ND
15	10,129	ND
16	61,984	ND
17	43,473	ND
18	2,819	ND
19	21,151	ND
20	63,030	ND
21	5,817,152	136,764
22	535,800	42,911
23	128,554	ND
24	114,050	
25	2,417,029	628,655
26	675,452	90,690
27	885,217	
28	868,758	190,967
29	50,621	ND
30	1,719,666	
31	97,784	
32	68,126	• *
	2,685,389	
34 35	117,450	
35	987,799	43,149

5

Page 1

Table 1

PETREX Relative Soil Gas Response Values (in ion counts) North Smithfield ANGS, Slatersville, RI ANEPTEK Corporation

Sample		
Number	Gasoline	Diesel/Fuel Oil
36	269,056	11,731
37	221,462	8,731
38	Т	ND
39	90,507	ND
40	91,196	ND
41	7,190,290	3,117,008
42	329,328	1,151,093
43	402,774	70,630
44	817,531	536,098
45	3,883,497	284,293
46	165,474	ND
47	24,776	1,383
48	2,582,176	168,418
49	635,737	112,997
50	90,223	27,943
51	13,206	6,617
52	45,872	1,397
53	1,437,331	33,130
54	159,397	10,473
55	Т	ND
56	Т	ND
57	[·] T	ND
58	Т	ND
59	703,406	ND
- 60	3,667,199	10,696,322
61	316,573	
62	1,856,655	4,996
63	1,166,522	ND
64	2,398,249	ND
65	T	
66	T .	
67	8,113,850	
68	: Ţ	1
69	2,630	
, 70	T	
71	Ĩ	ND

Page 2

Table 1PETREX Relative Soil Gas Response Values
(in ion counts)North Smithfield ANGS, Slatersville, RI
ANEPTEK Corporation

Sample		
Number	Gasoline	Diesel/Fuel Oil
72	T	ND
73	10,043	ND
74	14,758	ND
75	44,733	ND
76	22,041	ND
77	3,042	ND
78	ND	ND
79	ND	ND
80	3,388	ND
900	ND	ND Travel Blank
901	ND	ND Travel Blank

Notes:

Ś

- 1. The C6-C10 aromatics were summed to represent gasoline.
- 2. The C9-C14 aliphatic hydrocarbons were summed to represent diesel/fuel oil.
- 3. ND = Not Detected
- 4. The presence of naturally occurring aromatic terpenes, a class of compounds generated by vegetation, masked the identification of gasoline aromatics. However, review of the mass spectra suggests that there were no other hydrocarbons present that would indicate the presence of gasoline.

Table 3Additional Compounds Detected in Soil GasNorth Smithfield ANGS, Slatersville, RIANEPTEK Corporation

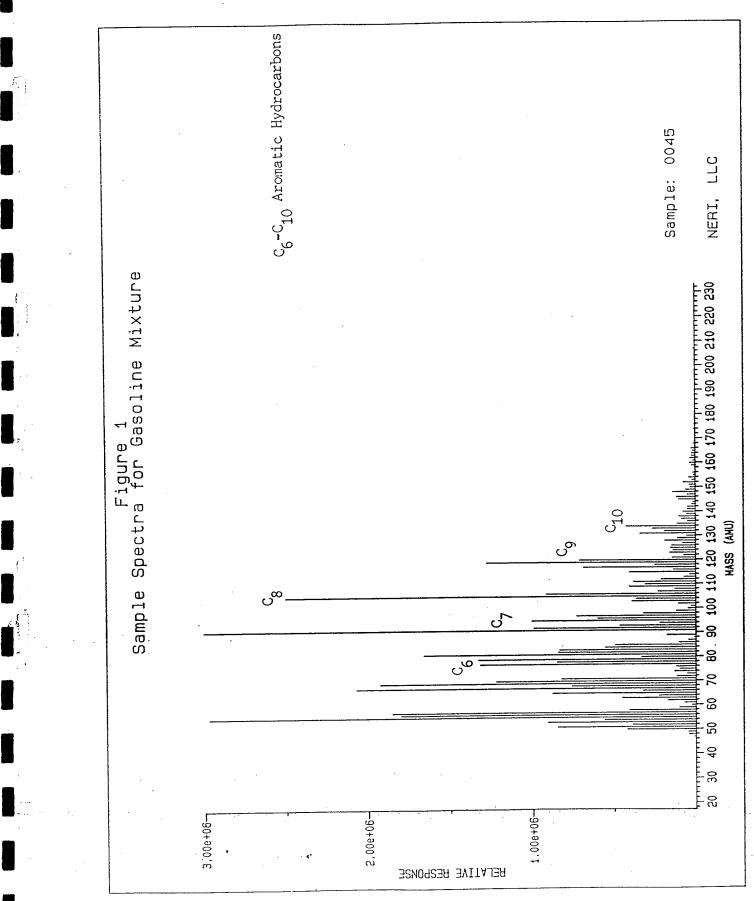
Compound	Sample Location	Relative Response (in ion counts)
TCE	24 74	318,638 24,632
		16 520
PCE	15 24 36	16,238 26,214 491,484
	37	80,379

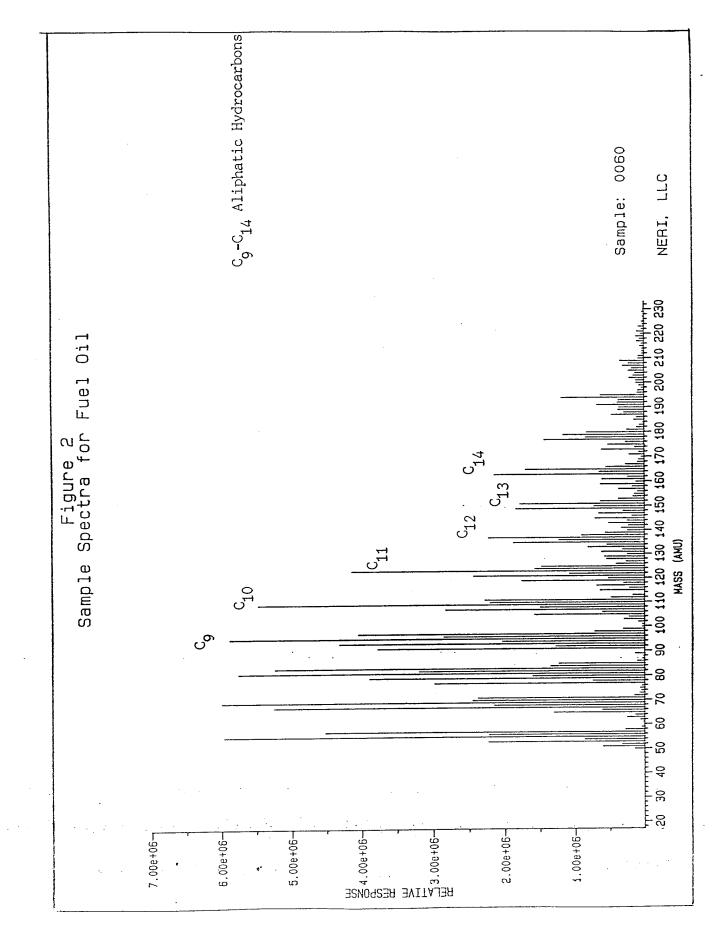
TCE - Trichloroethene Indicator Mass Peak(s) 130

PCE - Tetrachloroethene

Indicator Mass Peak(s) 164

2185-2.tx2

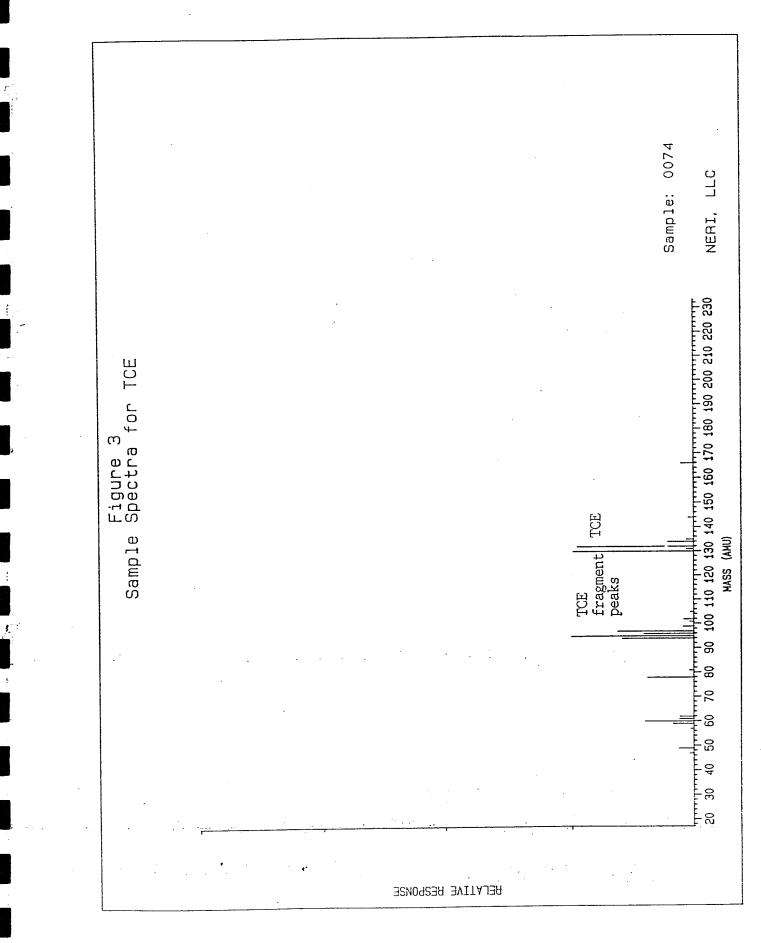

.

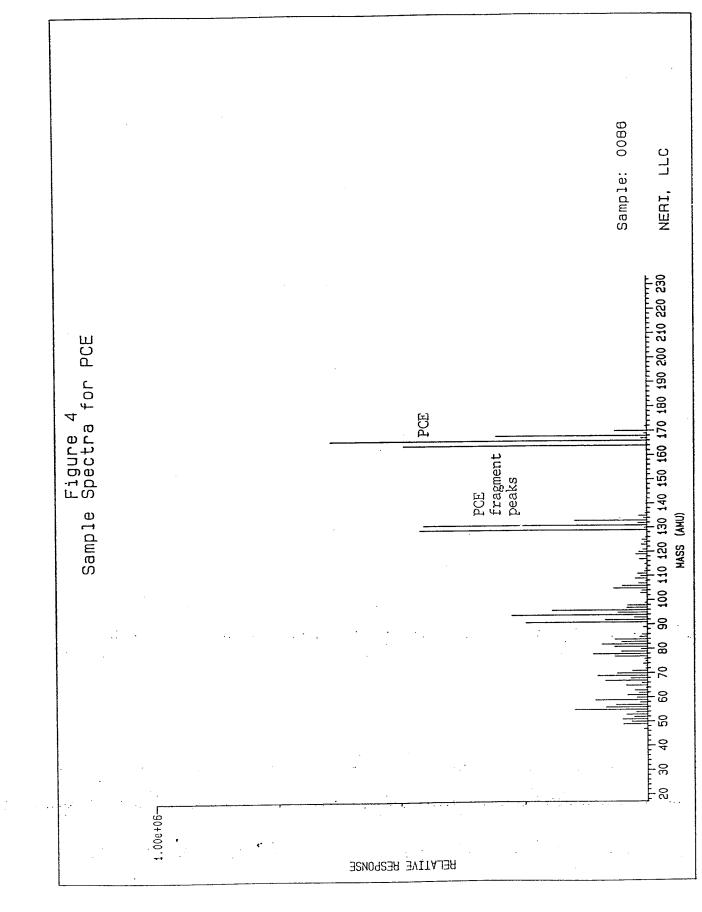

APPENDIX C Sample Mass Spectra of Compounds Identified

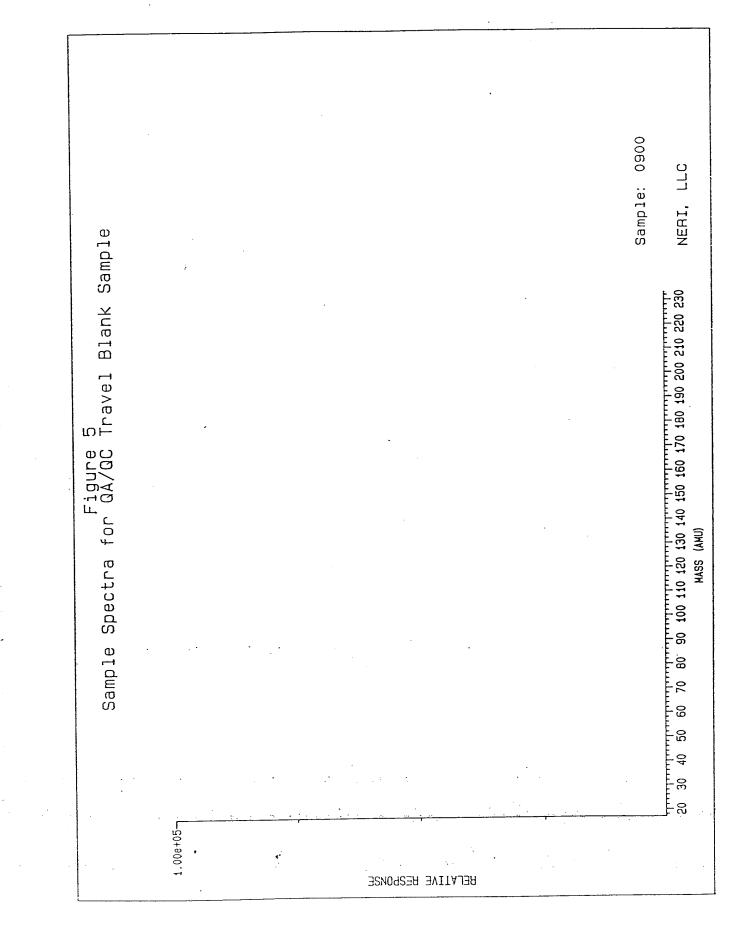
-

Northeast Research Institute LLC

••




.


· · ·

• •

.

APPENDIX D Histograms Used to Determine Contour Intervals

Northeast Research Institute LLC

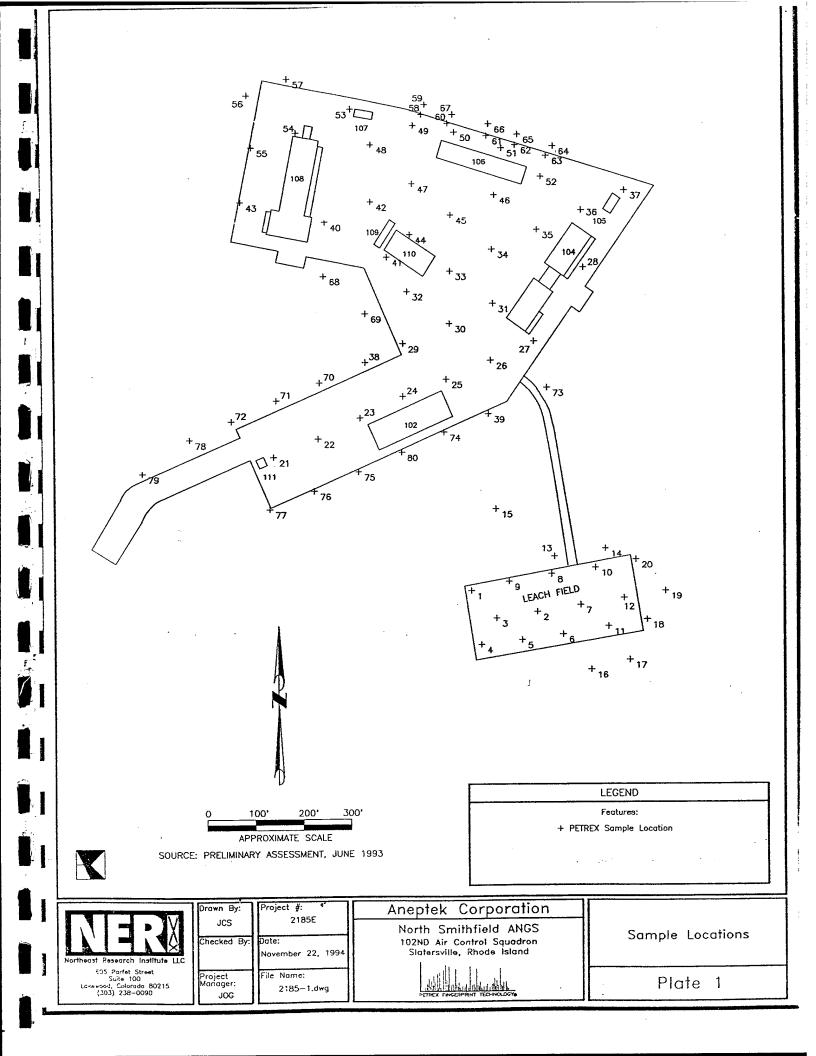
¢,

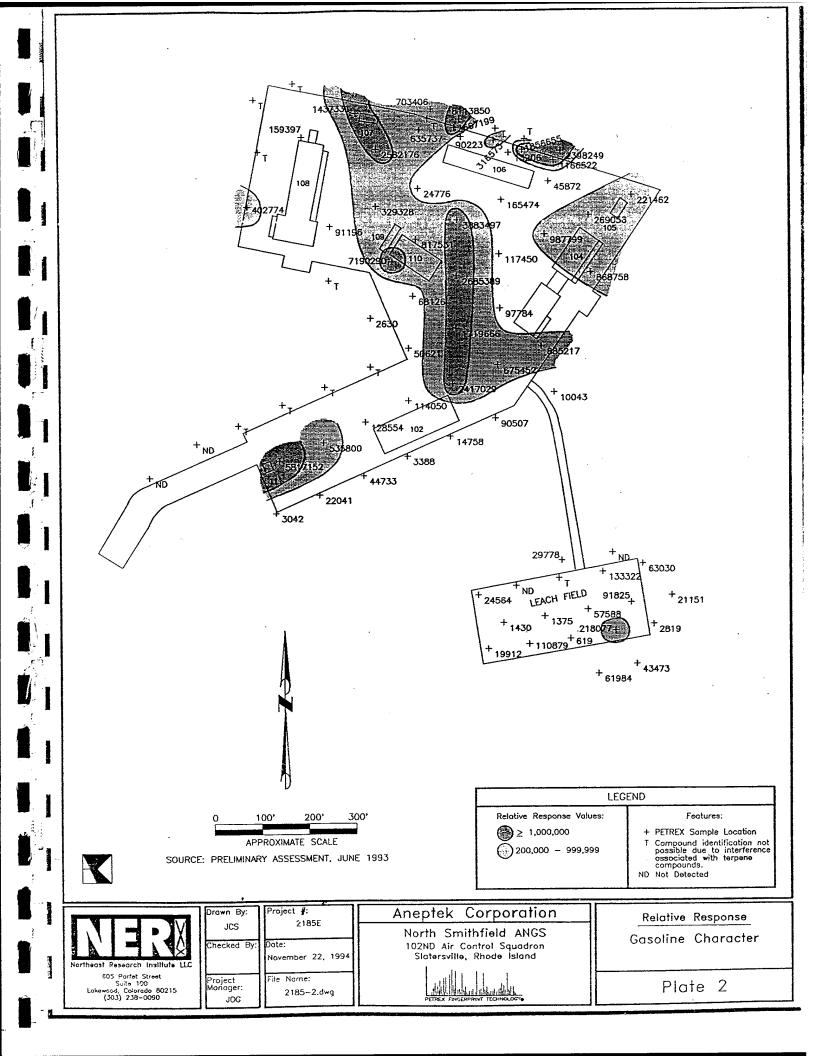
0000\$6 Arrows indicate sample population breaks used to establish contour intervals depicted on Plate 2. Frequency *SL* 00000L Relative Response (in ion counts) Gasoline Mixture Histogram Figure 1 20. 15. . [°]01 Ś (number of samples)

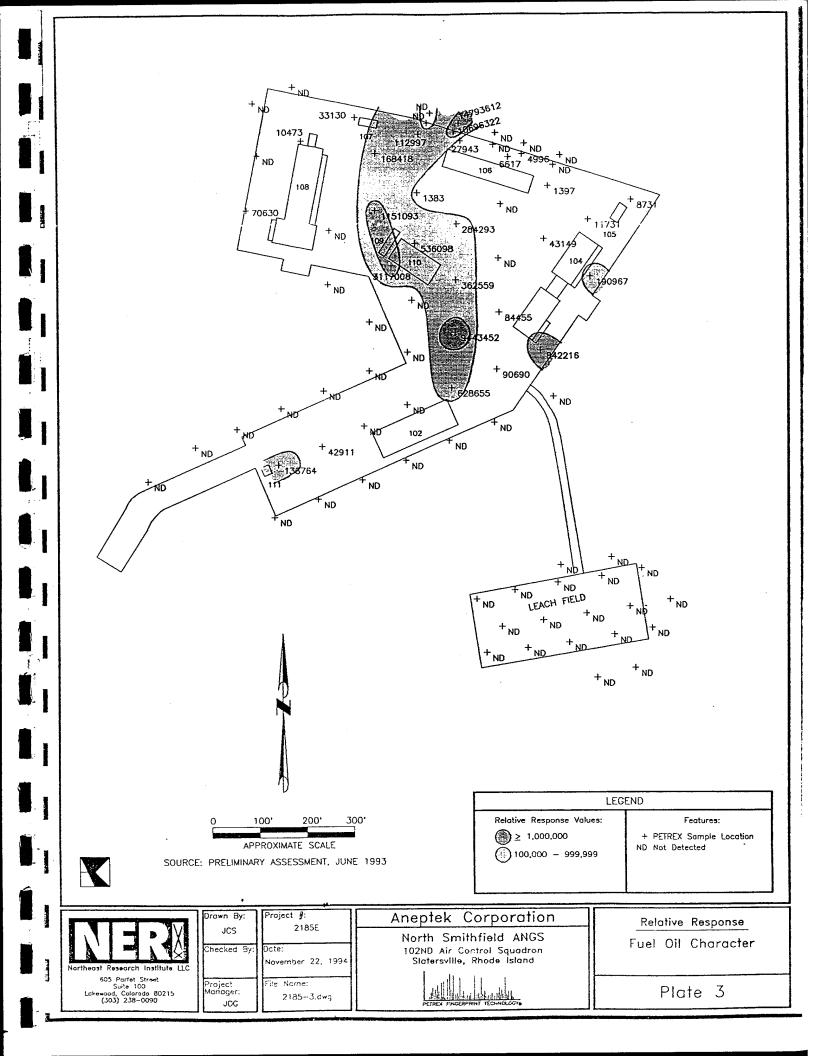
Frequency

2185gas.his

0000\$6 Arrows indicate sample population breaks used to establish contour intervals depicted on Plate 3. Frequency 0000SL 00000L Relative Response (in ion counts) Diesel/Fuel Oil Histogram Figure 2 70. . (number of samples) Frequency


2185dies.his


£


.

APPENDIX E Plates 1-3

Northeast Research Institute LLC

APPENDIX B

ļ

FIELD GC SCREENING RESULTS

Environmental
 Control
 Technologies, Inc.

9 e., Alexa and Deive Suite 10 Bedford, NH 03110 (603) 668 0707 Fax (603) 668-0767 800-962-3755 101 Federal Stree Suite 1900 Boston, MA 02410 (017) 342-3669 Fax (617) 342-7080 800-962-3755

FIELD GAS CHROMATOGRAPHY PROJECT

SOIL HEADSPACE ANALYSIS

December 14, 1994

SITE:

North Smithfield Air National Guard Base Slatersville, Rhode Island

ECT Job # ANEPT.01446L3

Prepared for:

Mr. Jeffrey Healey Program Manager ANEPTEK Corporation 209 West Central Street Natick, Massachusetts 01760

Environmental Control Technologies, hac 9 Cedaewood Drive Suite 10 Bedford, NH 03110 (603) 668-0707 Fax (603) 668-0767 800-962-3755 101 Federal Sirvet Suite 1900 Boston, MA 02110 (617) 342-5069 Fax (617) 342-5080 800-962-3755

FIELD GAS CHROMATOGRAPHY PROJECT SOIL HEADSPACE ANALYSIS North Smithfield Air National Guard Base Slatersville, Rhode Island

INTRODUCTION

ECT has completed a Field Gas Chromatography Project at the above-referenced property (SITE) at the request of Mr. Jeffrey Healey of ANEPTEK Corporation (Client). This report is subject to the Limitations attached in Exhibit A.

This Field Gas Chromatography Project was conducted between November 29 and December 6, 1994, in order to identify volatile hydrocarbons and chlorinated solvents, specifically benzene, toluene, ethyl benzene, xylenes (BTEX), trichloroethene (TCE), 1,1,1-trichloroethane (TCA), dichlororethene (DCE), and perchloroethene (PCE), in sample headspace from soil samples collected at the SITE. ECT tested 40 soil samples on SITE (see RESULTS in TABLE 1) provided to ECT by the Client. A set of the sample chromatograms are provided in Exhibit B.

INSTRUMENTATION

An SRI Model 8610 gas chromatograph (GC), equipped with a 15-meter capillary column and photoionization detector (PID) was used to analyze samples on SITE. Data was acquired with an SRI Peak II computer-based software system.

METHODOLOGY

Method blanks and standards were analyzed daily to maintain quality control. A calibration was established based upon a standard prepared with BTEX, TCE, TCA, DCE, and PCE obtained from Supelco, Inc.

Identification of the analytes is based on a comparison of the retention times for the detected peaks against those associated with the calibration standard. Calibration standards were generally analyzed at the beginning and end of each day, after 8 to 10 samples, and after a transfer of the mobile laboratory to a new Area of Concern (AOC).

Page 2 North Smithfield ANG Slatersville, Rhode Island ECT Job #ANEPT.01446L3

Quality Assurance/Quality Control

In order to evaluate the precision of the sampling and analytical methodology, samples of a 21.75 ug/l of benzene to 41.5 ug/l of perchroloethene calibration standards were analyzed at the beginning and end of each day as well as after every 8 to 12 samples analyzed. The concentration for toluene in the standard samples ranged from a low of .134 mg/l to a high of .171 mg/l (relative percent difference range of 12.2 to 12.9 %) while the total xylenes concentration ranged from a low of .732 mg/l to a high of .961 mg/l (relative percent difference range of 13.5 to 14.1 %).

Soil Samples

Approximately 2 mls of each soil sample were collected by the Client and associated sampling subcontractor, from split-spoon samples collected from the borings, and transferred into a 40 ml VOA vial containing 30 mls of distilled water. After resealing the vial, it was agitated for one minute and placed in a water bath at 40° C for five (5) minutes allowing the headspace to reach equilibrium. Subsequently, a 200 ul aliquot of sample was injected into the GC for analysis. Results were calculated as parts-per-billion (ppb).

Supporting materials follow.

ENVIRONMENTAL CONTROL TECHNOLOGIES, INC.

Andrew C. Tingle

Project Manager/Hydrogeologist

enclosures

			TABLE	F				
		S FIELD GAS	SOIL HEADSPACE S CHROMATOGRAPY		RESULTS	-		
-	4	North Smith Slater	ı Smithfield Air Slatersville, Rh	Air National G , Rhode Island	luard			
SAMPLE ID	SB-01- 02	SB-01- 04	SB-01- 06	SB-01- 08	SB-02- 02	SB-02- 07	SB-03- 04.5	SB-03- 08.5
SAMPLE DEPTH (in feet)	0-2	2-4	4-6	6-8	0-2	5-7	2.5-4.5	6.5-8.5
DATE SAMPLED	11/29/94	11/29/94	11/29/94	11/29/94	11/29/94	11/29/94	11/30/94	11/30/94
DETECTOR	DIA	DIG	PID	PID	DIG	PID	DIG .	DID
MATRIX		SOIL		SOIL	SOIL	SOIL	SOIL	Soll SOIL
ANALYTE		Conc	Concentrations	(in	parts per	per billion)		
Benzene	QN	QN	QN .	, CIN	DN	DN	QN	QN
Toluene	QN	DN	QN	QN	UN -	QN	QN	DN
Ethylbenzene	QN	ND	ДŊ	, UN	QN	DN	QN	DN
Total Xylenes	DN	141	364	80	ND	93	QN	QN
Dichloroethene	DN	ND	QN	DN	QN	DN	QN	DN
Trichloroethene	DN	UN	GN	QN .	ND	QN	ND	DN
Trichloroethane	UN	UN	UN .	QN	QN	QN	ND	DN
Tetrachloroethene	QN	DN	ND	QN	UN	ДN	ND	DN
<pre># of Unknowns/ Estimated Range</pre>	1104	20 327-1967	19 310-3875	11 227–975	1 . 581	3 133-1866	DN	QN
11=								

.

Į,

-

~

•

ND - Not Detected

, **1**

.

.

--.

-		•						
		TAI	TABLE 1 (con	(continued)				
		S(FIELD GAS	SOIL HEADSPACE S CHROMATOGRAPY		RESULTS			
	4	North Smithfield Slatersville		Air National G , Rhode Island	Guard 1d		-	
SAMPLE ID	SB-03- 10.5	SB-03- 12	SB-04- 02	SB-04- 09	SB-05- 02	SB-05- 06.5	SB-05- 12	SB-05- 16
SAMPLE DEPTH (in feet)	8.5-10.5	10-12	· 0-2	7-9	0-2	4.5-6.5	10-12	14-16
DATE SAMPLED	11/30/94	11/30/94	11/30/94	11/30/94	11/30/94	11/30/94	11/30/94	11/30/94
DETECTOR	DIG	DIG	QIA .	PID	PID	PID	PID	DIđ
MATRIX	SOIL	SOIL	SOIL	SOIL	TIOS	SOIL	SOIL	SOIL
ANALYTE		Ū	Concentrations	(in	parts per	billion)		
Benzene	QN	DN	QN	DN	DN	ΠŊ	DN	QN
Toluene	QN	QN	GN	UN	DN	QN	UN	DN
Ethylbenzene	QN	164	DN	111	ДN	QN .	QN .	ND
Total Xylenes	QN	QN	.DN	QN	QN	390	528	1430
Dichloroethene	DN	DN	QN	QN	ND :	QN	ND	QN
Trichloroethene	ND	ŊŊ	ΠN	QN	DN	UN .	UN .	QN
Trichloroethane	QN	UN	, dn	QN	DN	ND	DN	QN
Tetrachloroethene	DN	UN	QN	1207	QN	1190	DN	QN
<pre># of Unknowns/ Estimated Range</pre>	ДN	UN	QN	1 1028	QN	1 923	1 307	2 202+282
PID = Photolonization detector ND = Not Detected		-1			-			

		TABLE	-	(continued)				
		FIELD GAS	SOIL HEADSPACE S CHROMATOGRAPY	N	RESULTS			
		North Smith Slater	n Smithfield Air National Guard Slatersville, Rhode Island	Lr National G Rhode Island	Guard Id	-	-	
SAMPLE ID	SB-06- 02	SB-06- 07	SB-06- ` 12 :	SB-07- 02.5	SB-08- 02.5	SB-08- 07.5	SB-09- 02.5	SB-09- 07.5
SAMPLE DEPTH	0-2	5-7	10-12	. 0.5-2.5	0.5-2.5	5.5-7.5	0.5-2.5	5.5-7.5
name sampt.ED	12/1/94	.12/1/94	12/1/94	12/1/94	12/1/94	12/1/94	12/2/94	12/2/94
	PTD	DIG	DIG	DIG	DIG	PID	DIG	PID
MATRIX	SOIL	Ι.	SOIL	SOIL	SOIL	IIOS	SOIL SOIL	SOIL
LEAD CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR		Ŭ.	Concentrations	(ł'n	parts per	billion)		
	GN	QN	QN	άN :	QN	UN	DN	QN
Tolnene	QN	QN	DN	QN	ND	UN	DN	QN
R+hv1henzene	QN	QN	DN	QN	ЦN	UN.	ND	110
Total Xvlenes	DN	55	129	DN	QN	287	DN	92
	DN	QN .	DN	QN	QN	UN	DN	QN
mrichloroethene	DN	QN	QN	UN	QN	UN	QN	QN
Trichloroethane	DN	QN	DN	DN	QN	QN	QN	QN
Tetrachloroethene	DN	QN	QN	UN	QN	ŇD	DN	QN
# of Unknowns/ Fatimated Range	509	2 74+407	2 101+336	1 168	QN	QN	QN	2 92+335
PTD = Photoionization detector								

1

D

WID = Photoconization ND = Not Detected

		TABLE	н	(continued)	-			
		SI FIELD GAS	SOIL HEADSPACE 3 CHROMATOGRAPY		RESULTS			
	N	North Smithfield Slatersville		Air National G , Rhode Island	Guard d		-	
SAMPLE ID	SB-09- 12	SB-10- 02	SB-10- 04	SB-10- 06	SB-10- 08	SB-11- 02	SB-11- 07	SB-11- 12
SAMPLE DEPTH (in feet)	10-12	0-2	2-4	4-6	6-8	0-2	5-7	10-12
DATE SAMPLED	12/2/94	12/2/94	12/2/94	12/2/94	12/2/94	12/5/94	12/5/94	12/5/94
New Same	DIG	QIA	DIG	PID	PID	PID	PID	PID
HATRIX	SOIL	JIOS.	SOIL	SOIL	SOIL	SOIL	soil	SOIL
ANALYTE		ບັ	Concentrations	(in	parts per	billion)		
Benzene	QN	UN	QN	DN	UN	UN .	DN	DN
Toluene	DN	UN	QN	DN	ND	QN	DN	DN
Ethvlbenzene	DN	QN	UN	DN	UN	DN	QN	DN
Total Xylenes	QN	UN	175	520	87	QN	240	QN
Dichloroethene	. dn	UN	UN	QN	QN	QN	DN	QN
Trichloroethene	QN	UN	ΩN	QN	QN	QN	DN	QN
Trichloroethane	ND	UN	UN	UN	QN	QN	142	QN
Tetrachloroethene	QN	UN	ДN	572	ND	UN	DN	QN
# of Unknowns/ Estimated Range	2 96+108	QN	11 121-1373	14 163-7868	4 57-579	3 125-585	22 67- 16,949	3 204- 4489
PID = Photononization detector								

. ..

. .

.

L

ND = Not Dotected

		-						
		TABLE	н	(continued)	•			
		FIELD GAS	SOIL HEADSPACE GAS CHROMATOGRAPY	PACE JRAPY RESULTS	JLTS			
	~ ~	North Smith Slater	ı Smithfield Air Slatersville, Rh	Air National G , Rhode Island	Guard d		-	
SAMPLE ID	SB-12- 02	SB-12- 07	SB-12- 12	SB-13- 02.5	SB-13- 07	SB-13- 10.5	SB-14- 02.5	SB-14- 07
SAMPLE DEPTH (in feet)	0-2	5-7	10-12	0-2	5-7	8.5-10.5	0-2	5-7
DATE SAMPLED	12/5/94	12/5/94	12/5/94	12/6/94	12/6/94	12/6/94	12/6/94	12/6/94
DETECTOR	DIG	DIG	. DIG	DIG	PID	DIG	DIG	PID
MATRIX	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL SOIL	SOIL
DESCRIPTION AND Y TE		3		(in	5	billion)		
Benzene	UN.	dN	QN .	UN	ND 、	ИD	QN	UN
Toluene	QN	QN	UN	DN	ND	UN	DN	DN
Rthvlbenzene	QN	DN	QN	DN	ND	QN.	DN	ND
Total Xvlenes	DN	QN	ND	QN	UN	UN	DN	QN
	GN	UN.	. DN	ЦN	QN	DN	QN	DN
Trichloroethene	GN	UN	, ON	, CN	QN	QN	QN	QN
Trichloroethane	QN	ND.	UN	QN .	DN	UN	DN	DN
Tetrachloroethene	DN	UN ,	ΠN	QN	DN	DN	DN	QN
# of Unknowns/ Rstimated Range	2.123+494	2 491+3081	3 765-2956	2 142+1900	3 7:7-1387	5 164-7010	2 74+89	3 61-244
PID = Photoionization defector ND = Not Detected								

÷

F.

Ì.

EXHIBIT A

EXHIBIT A

LIMITATIONS

1.

T

The conclusions and recommendations contained in this Field Gas Chromatography report are based solely on conditions that existed at the time of the survey and on the services provided, and are not based on scientific tasks or procedures beyond those described or beyond the budgetary and time constraints imposed by ANEPTEK Corporation (Client). The stated conclusions and recommendations represent the best professional judgement of Environmental Control Technologies, Inc. (ECT) and should not be construed as statements of scientific certainty. Specifically, ECT does not and cannot represent that the SITE contains no asbestos containing materials; solid waste; hazardous materials, substances, or wastes; petroleum products or other latent conditions beyond those observed during this Field Gas Chromatography report. No other warranty, expressed or implied, is made.

2. This Field Gas Chromatography report approximates environmental conditions at the SITE. Moreover, contamination and sources of contamination may not yet have manifested themselves at the time of the survey. In addition, ECT can not predict which potential issues will become actual problems, legal or otherwise, because laws and enforcement priorities may change and environmental conditions at the SITE may also change over time.

3. The analyses and conclusions in this report may be based in part upon chemical test data provided by other sources referenced herein and are contingent upon their validity. ECT did not attempt to independently verify the truthfulness, accuracy or completeness of all information reviewed or received during this study, and EDT disclaims any liability that may arise from its reliance on such information.

4. Observations were made of the SITE as indicated in this report. Where access to portions of the SITE was unavailable or limited, ECT renders no opinion as to the presence or potential presence of hazardous materials, substances or wastes, or petroleum products in those portions of the SITE.

5. This Field Gas Chromatography report did not include an investigation as to whether any and all activities performed on the SITE have been granted all required environmental permits or licenses, or are or have been conducted in compliance with any or all applicable environmental laws and regulations. Accordingly, ECT makes no representations and offers no opinions as to whether any and all activities performed thereon are, or have been, conducted in compliance with all applicable environmental laws and regulations.

- 6. Inspections for asbestos containing materials (ACM), airborne radon and lead paint are outside of the scope of this Field Gas Chromatography report, however, to the extent that ECT becomes aware of the potential presence of one or more of these materials as a consequence of our visual inspection or record review, ECT will report this information to Client.
- 7. This Field Gas Chromatography report was prepared solely for the exclusive use of Client in accordance with generally accepted scientific practices strictly for use as a preliminary environmental evaluation of the SITE, and no other party may rely upon the information contained herein. ECT acknowledges and agrees that Client may convey this report to the seller, Title Insurer or others directly associated with the transaction of the SITE. No warranty, expressed or implied, is made or extended to any such third parties, all of whom may rely upon the information in this report at their own risk and without any legal recourse against ECT, its officers, directors, employees or agents, regardless of the legal basis for their claims; provided, however, that no third party may rely upon this report unless it agrees to be bound by these terms. To the extent that any warranty is made in this Field Gas Chromatography report, it may not be assigned by Client to any other party.
- 8. ECT makes no guarantee, warranty, or other representation that this report will necessarily be found in a judicial process to satisfy the "all appropriate inquiry" standard set forth in the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. Section 9601 <u>et seq.</u>, or in its analogues set forth in comparable state or local statutes, ordinances, rules, or regulations.

EXHIBIT B

•

• •

SB-01-02

tab name : ECT Mobile J Client : AMEPTEK Client ID : 01446.L3 Collected : 11/29794 Holding time : < 24 hrs Analysis date : 11/2971994 12:15:47 Method : Direct Injection Description : AMEPTEK - No. Smithfield Column : MXT-1 0.53mm : 15 M Carrier : Nitrogen Data file : AMEP92.CHK (c:\chron\data\aneptek) Sample : 200 ul vapor Operator : Andrew lingley

	'siabl	154 	_ 200499 			·	d2. 990a	V Eceponent	Retention	lirea	External
	12.1							(tunkaqsar)	0.383	575.78	N/A
	-										
	3	 									
F 	1		والمراجع وال							· · ·	•
	ţ			·							
ن 	- 4				•						
3 1		 									
	1	Bi									
-			- L L L								
, Fi	1						· .	-			
2 	· 1										•
-	1	}									
-	ł	4									
	1	5		·							
	i	4									
		1		•		¢*					
	ł									-	
		i i i	· · · · · · · · · · · · · · · · · · ·	- · · · .			 				

٠.

SB-01-04

Lab name : EUT Mobile 1 Client : AMEPTEK Client ID : 01446.L3 Collected : 11/29/94 Holding time : < 24 hrs Analysis date : 11/29/1994 12:45:02 Method : Direct Injection Description : AMEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : AMEPE3.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley

i

right -51	.200aM	312,000mV [50	ounent Retention	Area	Extern
17. I		Junkiv	an) 0.900	522.41	N/ (
2					
ē					
51 19.079		(uni.គ	ыл), 5 . 256	249.94	N
15. 7-		lunka	own) 7.150	308.43	H
7. 8		lunkn	own) 7.955	182:15	Я
7i		lunkn	9.333	477.62	N
7.555		lunkni		103.85	
11. 11 12.341		lunkni Xyleni	אס 3 11.000 11.266	216.45 215.19	N 21
8. 12-		- Iunko	own) 11,950	201.00	. 1
8. 13		lunka	own) 12.933	134.27	N
12.638 22.556 18.14 11.357		tuoka tuoka Kunka tunka	gwn) (3,383 gwn) (3,750 gwn) (3,950 gwn) (4,383	222.61 336.67 291.35 210.06	N N N N
25. 15		(un) ri	um) 15.000	433.96	N
1		lunka	onc) 15.750	105.34	N
6.085 16 7.543		(a,[aµ]	osa) 14.083	132.97	N
12. 17 10.879		វ័យអ) ឆ្នា ស្រ្តេង ច	pun) 17.183 gun) 17.500	219.97 139.08	11 1
18 12.207		(un) m	oun) - 18.956	294.25	ti

SB-01-06

Lab name : EUT Hobile 1 Ulient : ANEFTEK Ulient ID : 01446.L3 Eollected : 11/29/94 Holding time : < 24 hrs Analysis date : 11/29/1974 13:11:55 Method : Direct Injection Description : ANEFTER - No. Smith+ield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEPB4.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley

 (\cdot)

!

£ Î	9eiçht 1	-5t	.200mV		512.05∂mV	Convonent	Retention	ĥrea	External
	295. 1	·		namente la cale : l'alacter e		(unknoon)	0,900	1416.10	N/A
	2								
	2	 							
	ភ្							•	
	25. 5					(mataom)	5.233	352.35	11/A
	5								
È.	15. 7					l(unknown)	7.133	232.39	H/A
	8. 9					lunknowa)	7.756	204.15	n/a
	15.78					iunkno:::0}	9.316	531.68	ħ/Â
	16.873 15. 10					(unknown) Kylenel	9.783 10.133	251.48 242.05	N/A 27.17
	14. 11 11.91	 2				(unknoun) ävlenes	10.966 11.283	310.33 198.44	N/A 19.95
a E	10.75 11					(unknown)	11.966	231.76	N/A
	9.1	3				(unkaowa)	12.093	147.94	N/A
	14.61 22.05 17.1 8.95	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				(unknown) (unknown) (fri De Benzene (unknown)	13,383 13,733 13,900 14,268	261.71 424.13 222.43 145.71	n/a 11/a 0.03 11/a
	25.40 1					(unknown)	14.933	428.85	N/A
	12.97	1				lunknown)	15.666	219.39	N/A
Í	11. 1	7		۴.		(unkadaa)	17,133	305.64	N/A
-	13. 1 17.80					Runkussa) Runkussa)	17-846 18:095	146.34 172.21	N/A N/A
	11.95					-lunksuva:	18.866	236.48	H/A

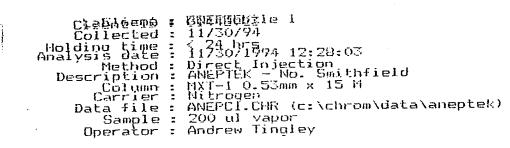
Client Client ID Collected Nolding time Analysis date Method Description Column Carrier	11 38 12 14 15 15 21 18 18 18	11/29/94 < 24 hrs 11/29/1994 13:39:47 Direct Injection ANEPTEK - No. Smithfield MXT-1 0.53mm x 15 M Nitrogen
Carrier Data file Sample		Nitrogen ANEPB5.CHR (c:\chrom\data\aneptek) 200 ul vapor Andrew Tingley

Į

Height	51.200mV		512.000mV	Consonent	Retention	Area	External
19?. 1	, , ,	anna ann an Santaine an Santai		(yakabun)	0.700	951.37	N/A
2					•		
3							
4							
4	د - برج 						
3. 7				(มกร้ออรก)	7:166	139.43	N/A
5. 8				lunknown)	7.850	133.92	11/A
				(unknowa)	9.383	326.31	N/A
13.352				. ((U))) (U)) (U)) (U)) (U)) (U)) (U)) (7.000	J28+31	
111				Avlens3	11.316	123.12	12.32
á. 12 –		·	·	(unkaosn)	12.016	112.25	нля
13							
5.61.7				(unknown)	13,533	114.42	N/A
b. 14				(โกม) ของ 	14.016	127.46	R/A
15	-						
16							
2.345	f	·	٠	((ynkaosn)	16.683	160.72	N/A
2.345 171 7.488	1			lunknosn)	17.215	160,85	N/A
18 7.799				(uninern)	19.133	105.00	N/A
	· . · ·						

Lab name	2	ECT Mobile 1
Client	:	ANEPTEK
Client ID	=	01446.L3
Collected	=	11/29/94
Holding lime	=	< 24 hrs
Analysis date	=	11/29/1994 16:45:59
riethod	Ξ	Direct Injection
Description	2	ANEPTEK - No. Smithfield
Eolumn	· :	MXT-1 0.53mm × 15 H
Carrier	-	Nitrogen
Data file	:	ANEPB9.CHR (c:\chrom\data\aneptek)
Sample	Ξ	200 ul vapor
		Andrew Tipglev

Heit	ー写上。 aht	, 200m√	5t2.000mV	Cooponent	Retention	ĥrea	External
ļ							
	2						
•							
	5						
	7						
	3						
	10						
- -	11]						
	13						
	1. 16			(antroon)	17.983	125.59	WA


SB-02-07 .

Lab name :	:	ECT Mobile 1
Elient :		
Client (D :	:	01446.L3
Collected :	:	11/29/94
Unding time .	-	< 74 hrs
Analysis date :	2	11/29/1994 17:12:18
Methor		Direct Injection
Description	:	ANEPTEK - No. Smithfield
ິ 🖸 🖓 ເທກ 🔅	2	MXT-1 0.53mm x 15 h
Carrier	:	Nitrogen
Data file :	2	ANEPBIO.CHR (c:\chrom\data\aneptek)
Sample	=	200 ul vapor
Operator -	2	Andrew Tingley

.

Nei aht	-51.200mV	512.000mV	Coeponent	Retention	Årea	External
1 1.545			lenkaova)	1.233	101.97	197A
2						
. <u>.</u>					•••	
ć		• •				
6						
E 71			l lunknown) Xylenel	7.733 7.966	581.40 109.94	12.21
-				-		
i						
			, .			
5.53 i			(unkucan)	17.683	113.98	N/A
		/	1 _ 1			

SB-03-04.5

.

Height	-51.200mV	512.000mV	Component	Retention	Агеа	External
nerşine						
 . :						•••
						•
ľ					•	
r ,						
	5					
	6 ·					
, ·						
61 12						
	12					
	13					
				• •		
1			l I F			
- <i>4</i>						

Lab name	2	ELT Hobile 1
Client	:	ANEFTER
Client ID	:	01446.L3
Coliected	2	11/30/94
Holding time	=	K 24 hrs
Analysis date	:	11/30/1994 12:56:57
Hethod	2	Direct Injection
Description	:	ANEFTEK - No. Smithfield
Column	2	MXT-1 0.53mm × 15 M
Carrier	:	Nitrogen
Data file	2	ANEPC2.CHR (c:\chrom\data\aneptek)
Sample	:	200 ul vapor
Operator	:	Andrew Tingley
cp = r r r r		

<u>_</u>__

	Reight	-51	. 200mV				51	2.000mV	Comoonent	Retention	Area	Externa	1.
•	1							n yerren samar i taring de					
	2												
	3												
	4												
	r J								•				
	Ь												
	7												
	ć		1										
	r,												
	1(-					
					• ·		• .			. ·			•
		2											
	Ŀ												
	1:												
		}		•		٢.							
	i	:						-					
-		-)				÷						

.

SB-03-10.5

}

Client : Client ID : Collected : Holding time : Analysis date : Method : Description : Column : Carrier :	01446.L3 11/30/94 < 24 brs 11/30/1994 13:23:18 Direct Injection ANEFTEK - No. Smithfield MXT-1 0.53mm x 15 N Nitrogen
Carrier : Data file : Sample :	

.

He: ohl						Comunent	Retention	
· · · · · · · · · · · · · · · · · · ·					-			
5						•		
5						•	•	
5					l			 •
5 5					(
6								
	i a							
	i							
7-								
8[
						-		
10-								
11	-							
12	-							
15								
14;								
15								
14-	- 1 -							
		•	*'					
17								
16					r I I I I I I I I I I I I I I I I I I I			

Lab name :	ECT Mobile 1
Client :	ANEPTER
Client 1D :	01446.1.3
Collected :	11/30/94
Holdion time :	< 24 brs
Analysis date :	11/30/1994 13:49:32
Method :	Direct Injection
Description :	ANEPTEK - No. Smithfield
	MXT-1 0.53mm x 15 M
Carrier :	Nitrogen
Data file :	ANEPC4.CHR (c:\chrom\data\aneptek)
Sample :	200 ul vapor
Operator :	Andrew Tingley

Height	-51,200	m			312.000mV	Component	Retention	Area	External
			·						
r Ch						1			
3.43	1					Ethyl Benzene	6.533	202.83	19.90
	BI								
	?	-							
[] 1	0								
1									
1	2								
1									
1									
ł	5								
İ				¢'					
Î					- -				
									·
,						·			

SB-04-02

Lab name :	ECT Mobile 1
Client :	AMEFTEK
Client 1D :	
Collected :	
Holding time :	< 24 hrs
Analysis date:	11730/1994 15:31:17
Method :	Direct Injection
Description :	ANEPTEK - No. Smithfield
	MXT-1 0.53mm x 15 M
Carrier :	Nitrooen
Data file :	ANEPC5.CHR (c:\chrom\data\aneptek)
Sample :	200 ul vapor
Operator :	Andrew Tingley

1

Л

.

	Neight	-51				512.00	CmV	Component	Retention	frea	External	
		1										
		3								, ·		
		4] 5]				·						
		61 <u> </u>					Ana 2014 (1994)					-
		8		 -	÷							
	:	9 10										
-		11)										
		13		• .								
-		14										
		15		د.								
		18										·
•		Anna -	ι,	 								

н	eight 1	-51	.200mV	 	5	12.000mV	Coaponent 1	Retention	Area	External
	£5. 1		a na sa				(נומבהסצה)	0.700	315.70	N/A
	2									
	51	· ·							• •	
	4									
	5			-						-
	3.761 7	 					 Ethyl Senzene 	5,550	160.65	15.76
	9	1						a. 254		176 50
	5.363 9	1					FCE	8,350	961.24	170.50
	10									
	11									
		2] ····· } 3]								
	1-									
	15	 5								
	1			۲						
		,								
	ii									
	į			 						

レ

Lab name :	ECT Mobile 1
Client :	
Client 1D :	01446.L3
Collected :	
Holding time :	< 24 brs
Analysis date :	11/30/1994 17:32:00
Nethod :	Direct Injection
Description :	ANEPTEK - No. Smithfield
ະ ຕາມ ເວິ	MXT-1 0.53mm x 15 M
Carrier :	Nitrogen
Data file :	ANEPC7.CHR (c:\chrom\data\aneptek)
Sample :	200 ul vapor
	Andrew Tingley

Ŧ

lierght	-51.200mV	Vm000.512	Component	Retention	ĥrea	External
211.		ťur	okoova)	9.716	1031.57	N/A
1.	2/					
:					. ·	
ý.				· .		
	71					
			·			
	Q					
	3					
		um		÷.		

ECT Hobile 1
AWEPTEK
01446.LS
11/30/94
< 24 hrs
11/30/1994 17:57:29
Direct Injection
ANEFTEK - No. Smithfield
MXT-1 0.53mm × 15 H
Nitrogen
ANEPCÖ.CHR (c:\chrom\data\aneptek)
200 ul vapor
Andrew Tingley

l H	leight .	-51.200	∋mV		,	512.000	nV	Cossonent	Retention	Area	External	
	Li-	-								-		
	.	-										•
										•		
j	4 -	-		•								
	5.											
	č-											
, ,	7											
	5.5%						FCE		9,165	483.75	75.69	
	6.447						(un	knosn)	9.600	428.64	N/A	
	5.10						5	ene l	9.956	281,13	31.75	
	11		. •			· · ·						
	12	· • • • • • • • • • • • • • • • • • • •										
•	13	· · · · · · · · · · · · · · · · · · ·										
	2.14						ltur	iknown.	14.018	115.67	N/A	
	iđ						-					
	16				۰. •							
	 7] 		!		·							
	1 13 1	,					1					
	i i		:- 			,				•		

SB-05-12

-

Lab name : EET Mobile 1 Client : ANEPTEL Client ID : 01446.L3 Collected : 11/30/94 Holding time : < 24 hrs Analysis date : 11/30/1994 10:23:36 Method : Direct Injection Description : AMEPTEK - No. Smithfield Column: MXT-1 0.53mm x 15 H Carrier : Mitrogen Data file : AMEPCS.CHR (c:\chrom\data\aneptek) Sample : 200 ui vapor Operator : Andrew Tingley

-

.

- ---- ----

- Ę

Height .	-12.300mV		 3.29.000m♥	Component	Retention	Àr ea	Externa)
		· · ·					
9.776 9.10 11 11 12 13				(unknewn) Xylenel	9.716 10.133	1026.79 522.77	N/A 60.07
19 19 18 18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		• • •			·		

		ECT Mobile 1
		ANEPTER
Client ID	2	01446.13
Collected		
Holdina time	:	< 24 hrs
Analysis date	:	11/30/1994 10:49:23
Method	2	Direct Injection
Description	:	ANEPTEK - No. Smithfield
		14X F-1 0.53mm × 15 N
		Nitrogen
Data file	:	ANEPC10.CHR (c:\chrom\data\aneptek)
Sample	:	200 ul vapor
Operator	:	Andrew Tincley
•		

- Heji	ight .	-25.600mV			235.00	⊃mV 	Copponent	Retention	ĥi eə	External	
	1	}									
	7										
	1										
	41.									•	
	5										
	H-									•	
	71-										
	81										
÷	91-										
	0. 10					1	vlenel	10.165	1762.02	177.02	
	11	-						· .			
	12										
	13										
:	19- 2.397						unknowe)	14, 233	131.55	N/A	
	15										
	14			۲.							
				· .							
	iē										
	1		• •		· · · · · · · · · · · · · · · · · · ·	····· · · /					

Lab name :	ECT Mobile 1
Client :	
Client ID :	01446.L3
Collected :	12/1/94
Holding time :	< 24 brs
	、1270171994 11:23:25
	Direct Injection
	ANEPTEK - Mo. Smithfield
	MXT-1 0.53mm x 15 H
Carrier :	Mitrogen
Data file :	ANEPD3.CHR (c: \chrom\data\aneptek)
	200 ul vapor
Operator :	Andrew Tinglev

sht	-25.63	9t)arV			256.	. 000mV	Conconcent	Retention	ਲਾ 69	External
	}			 			ac no on cin c	ne cen cron	in ea	
8	. 1									
1										
	1									
3						1			· •	
¥										
						4. s 2. s 2. s 2. s 2. s 2. s 2. s 2. s 2				
5										
4	· · · · ·									
1										
8								,		r
 9										
10									•	
11	- }		-					• •		
121										
151										
.]¢	- - - -	1					lunknosn?	13,950	125.80	肟毒
15										
14				٠.						
12 -										
i				•						
		1								
		,	· .							

SB-06-07

Lab name	:	ECT Mobile 1
Client	2	ANEPTER
Client ID	2	01446.L3
Collected		
Holding time	:	< 24 hrs
Analysis date	2	1270171994 11:40:43
Hethod	2	Direct Injection
Description	Ξ	ANEFTEK - No. Smithfield
Column	- 2	MXT-1 0.53mm x 15 H
		Nitrogen
Data file	2	ANEPD4.CHR (c:\chrom\data\aneptek)
Sample	2	200 ul vapor
Operator	:	Andrew Tingley

licipht	25.400mV	256.000mV	Someonent	Retention	Âr ea	External
						·
				·		
;						
5 , 5, 1			lunknown)	10.115	616.10	N/A -
5.32 4.1			inukuonu) ZAJEU≅S Inukuonu)	10.733 10.950	130.11 172.78	N/A 7.50
: 1						
" 1.						
i						
- 1						
ļ			5 			
	l	e e e e e e e e e e e e e e e e e e e	!			

Lab name	:	ECT Mobile 1
Client	:	ANEPTER
Client ID	2	01446 L3
Collected	:	12/1/94
Holding time	:	< 24 brs
Analysis date	:	12/01/1994 12:15:44
Method	÷	Direct Injection
Description	2	ANEPIEK - No. Smithfield
		MXT-1 0.53mm x 15 M
Carrier	2	Ni Lrogen
Data file	:	ANEPD5.CHR (c:\chrom\data\aneptek)
Sample	2	200 al vapor
Operator	:	Andrew Tingley

	Szight	-20	. 6094	กรี					256.00	0a\'	Consonent	Retention	Area	External
	-									1				
	1													
	21													
	2											·	•	
	4)													
	. 5													
	5													
	2		} }											
	6													
- -														
	ç													
	4. 10									3	(unknown)	10.183	330.75	N/A
	4.039 11 3.350			•							Xylenel (unknown)	10.550 11.150 -	138.59 126.93	15.39 N/A
													LUPTO	
	13													
	14													
	15									.				
	15		. L . 1											
				l 1 <u>.</u>	•		**							• •
	17	 1												
	i .			i.										
						<u>-</u>		•						

SB-07-02.5

.

Lab name	2	ECT Mobile 1
		ANEPTEK
Client ID	:	01446.L3
Collected		
Holdina time	:	< 24 brs
Analysis date	:	12/01/1994 13:40:51
		Direct Injection
		ANÆPTEK – No. Smithfield
		MXT-1 0.53mm × 15 H
		Nitrogen
		ANEPD6.CHR (c:\chrom\data\apeptek)
Sample	Ξ	200 ul vapor
		Andrey Tingley
1372 / China Ph		25% OWDAY

.

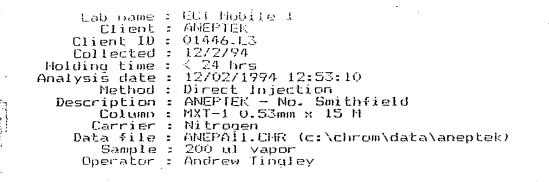
:

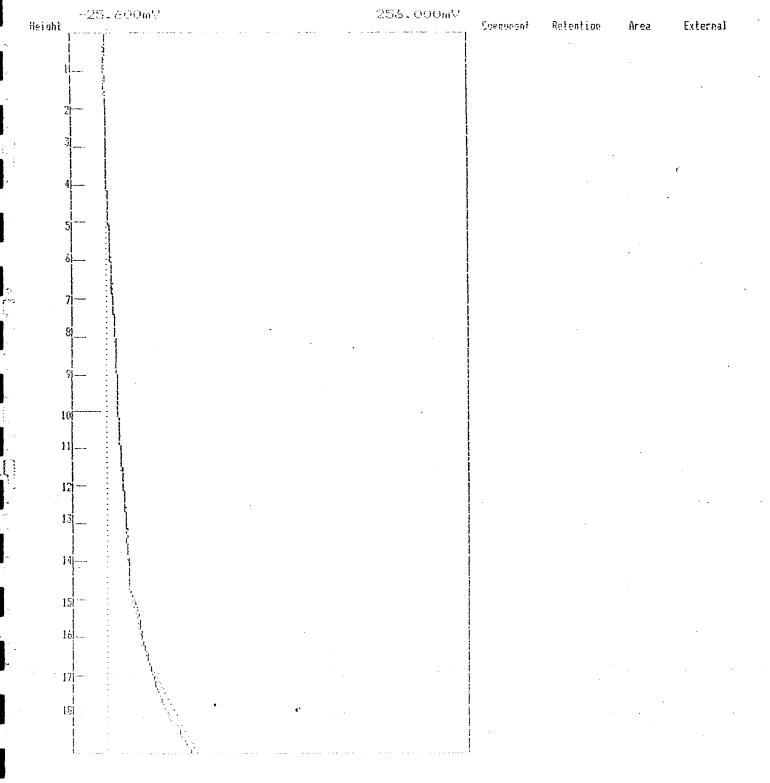
:

llei	-23	. 500aN	 	 256	, 000mV	Lossonant	Retention	firea	External
•	1						·		
,	3								
	6							•	•
	2] 2]								
	16						• .		
	12								
	14 2.556 15		۲.			lunkogmi)	14.150	112.79	N/A
		· · · · · · · · · · · ·	 	 					

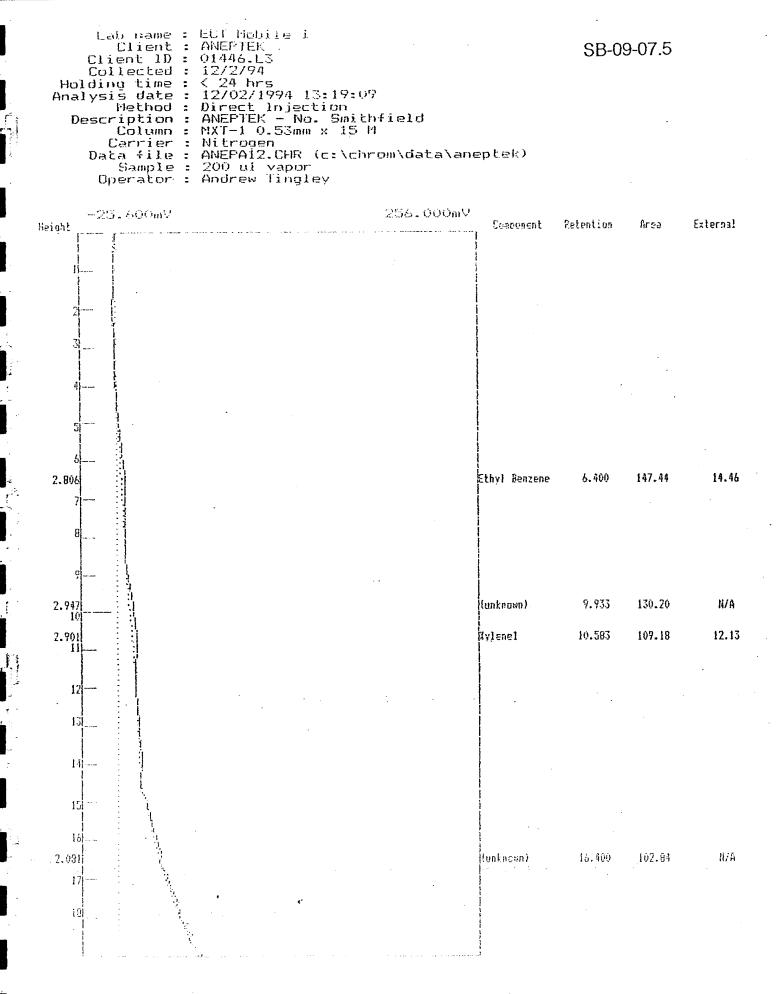
-

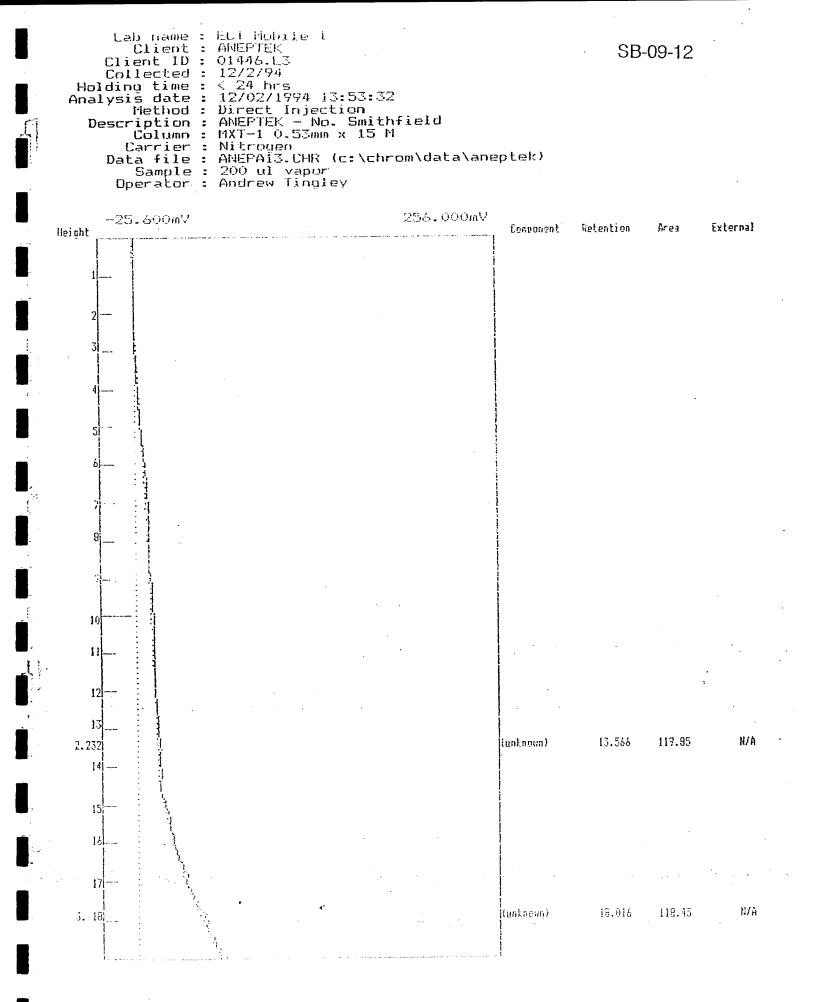
ECT Mobile 1
ANEPTEK
01446.13
12/1/94
< 24 brs
12/01/1994 15:21:57
Direct Injection
ANEPTEK - No. Smithfield
MXT-1 0.53mm × 15 M
Nitrogen
ANEPD7.CHR (c:\chrom\data\aneptek)
200 ul vapor
Andrew Tingley


	-25. Neight	500m♥ 		254.00	OmV Σos	oonent R	etention	Area	External
	2								
	3								
									•
	5								
	7								
	8					•.			
	9								
	10								
	12							•	-
	13								
;	14	L - Contra Co							
	15					·	۰.		taga - t
	10	5. 2. - 1. - 1.					•		
	17								
			· ·· · ·						

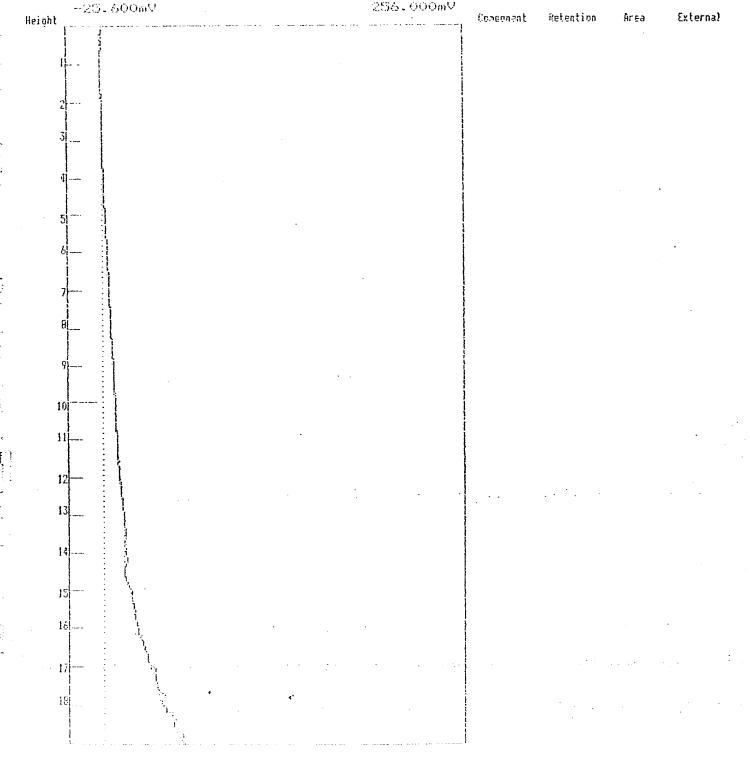

Lab name :	ECT Mobile 1
Client :	ANEPTEK
Client ID :	01446.L3
Coilected :	12/1/94
Holding time :	< 74 brs
Analysis date :	12/01/1994 15:48:32
Mathod :	Direct Injection
Description :	ANEFTEK - No. Smithfield
Column :	MXT-1 0.53mm × 15 H
Carrier :	Nitrogen
Data file :	ANEPD9.CHR (c:\cbrom\data\aneptek)
Sample :	200 ul vapor
Operator :	Andrew lingley

1

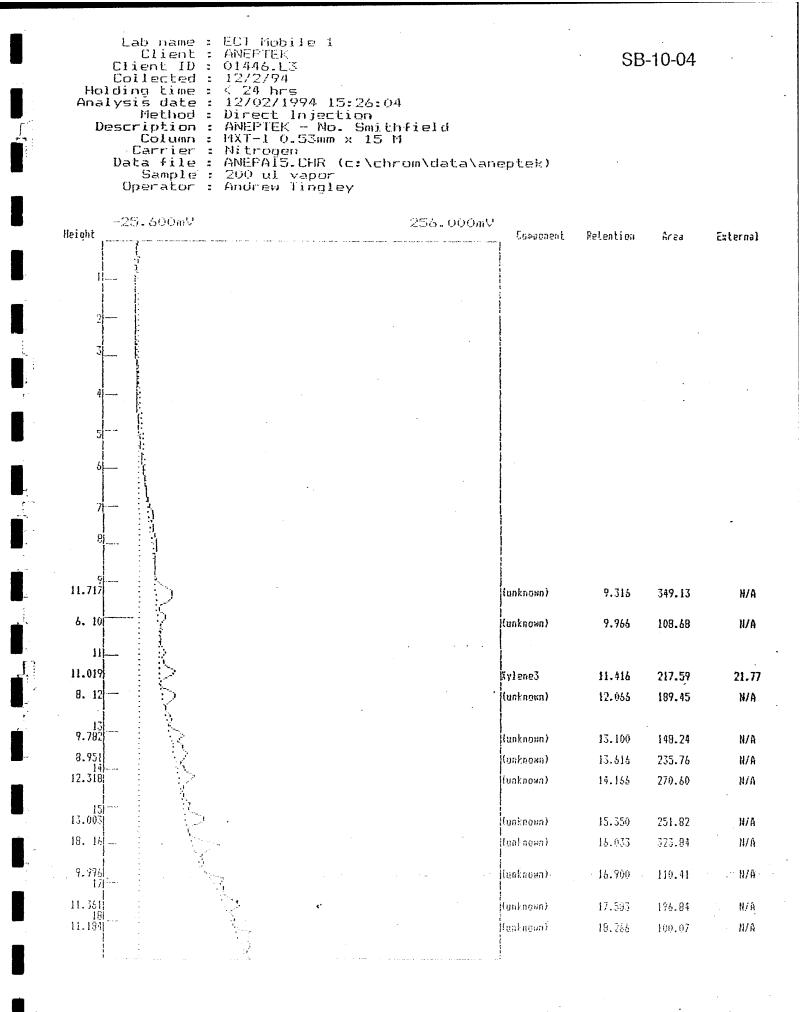

_[

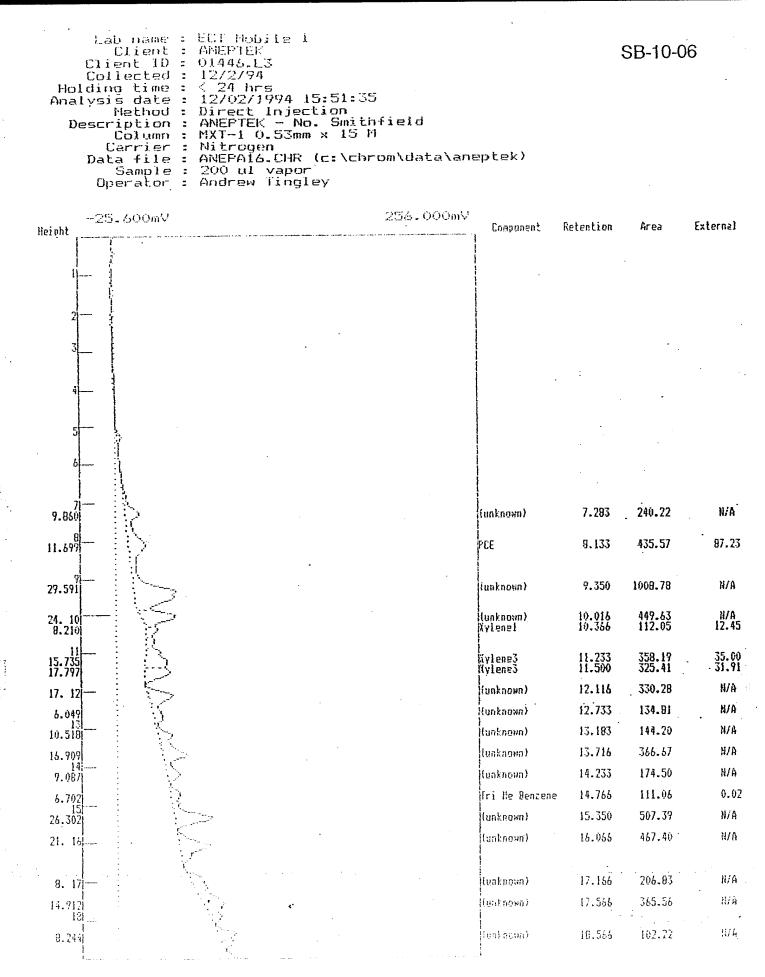

Height	-23.500m ⁰		236.000mV	Looponent	Retention	Ĥrea	External
							-1
4					·		•
	7						
	SI				·		
4.62 1				Xvlene i	10.550	350.84	39.92
1							
1		• •					

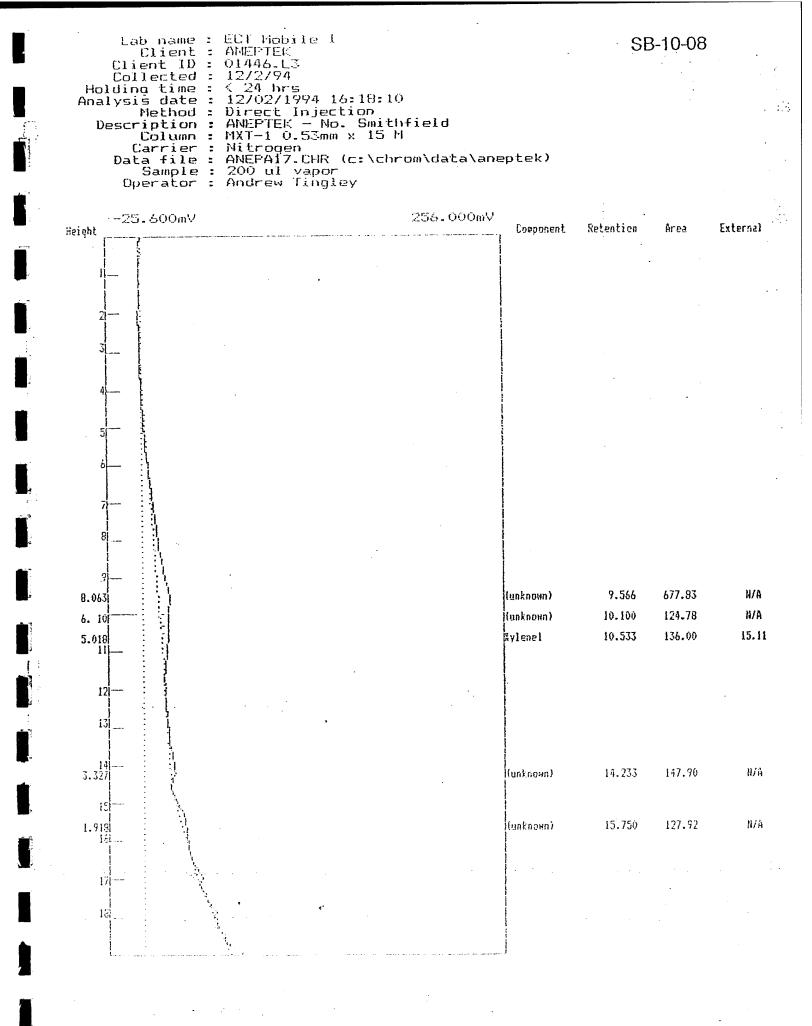
SB-09-02.5



.

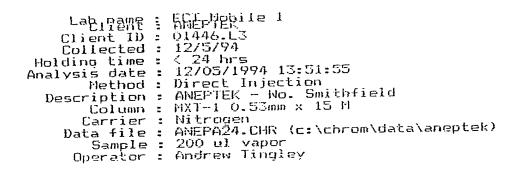

.

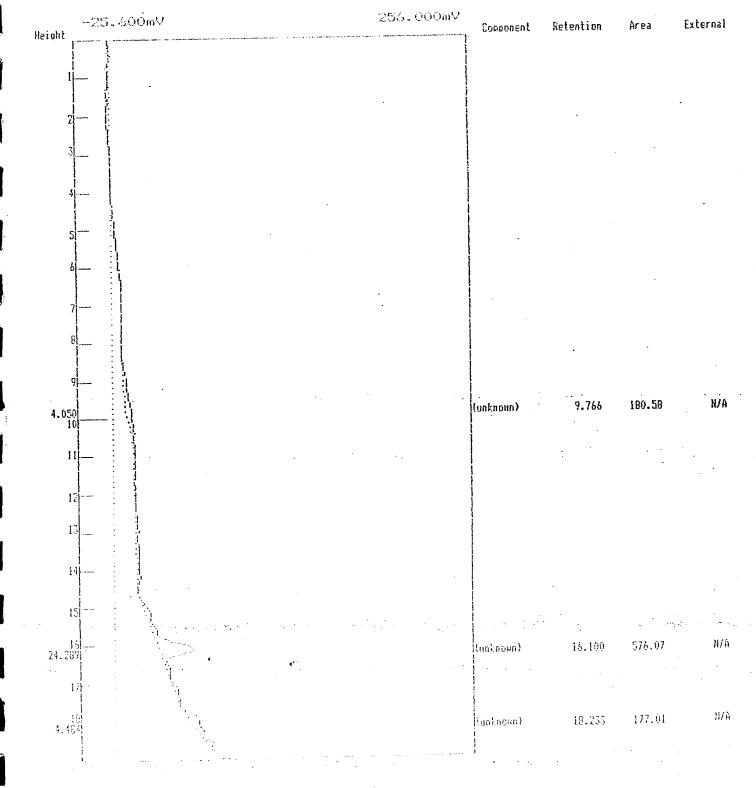

Lab name : EU1 Mobile 1 Client : ANEPTEK Client ID : 01446.L3 Collected : 12/2/94 Holding time : < 24 hrs Analysis date : 12/02/1994 15:00:47 Method : Direct Injection Description : ANEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEPAI4.CHR (c:\cbrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley



. .

SB-10-02




 	Cli	ent ID :	ECT Mobit ANEPTEK 01446.L3 12/5/94 < 24 brs 12/05/199				SB-11-0	2	
	nat	arrier :	<pre>< 24 hrs < 24 hrs 12/05/199 Direct In ANEPTEK - MXT-1 0.5 Nitrogen ANEPA22.0 200 ul va Andrew Ti</pre>	HR (c:\chr	om\data\an	eptek)			
i	-25 Height	.600mV			256.000mV	Connenent	Retention	Area	External
	1								
	. 3	-							
	4								
	-								
	6								
	71	· / · ·							
ĺ	9								
	2.214					(unknown)	5.515	144.80	NIA
	3.50?					(unknown)	7.483	164.92	N/A
	10			·					
	12							•	
	13								
	5.050					(unknovn)	13.683	194.07	N/A
	15}	; ; ;							
	- 16								
3	······································		ξ:	e en	• • • • • • •			· · ·	· .
	15	· · · · ·		¢*					· .
	I			· · · · · · · · · · · · · · · · · · ·		.1			
				•					

À

Ana)	- Client : Client 10 : Collected : lysis date : Method : escription : Column : Carrier : Data file : Sample : Operator :	: ANEPTEK - No. MXT-1 0.53mm × Nitrogen ANEPA23.CHR (c	on Smithfield 15 M ::\chrom\data\and	eptek)			
	-25.600mV		255.000m ^V	Component	Retention	Area	External
leioht 				<u>.</u>			
2							
5	-						
35. 5 6				(unknown)	5.216	487.01	N/A
· 8.927 42. 7		2		(unknown) (unknown)	6.783 7.133	118.79 723.57	n/a N/a
25.8	-			lunknown)	7.983	687.01	N/A
Ģ				(unknown)	9.166	1682.25	N/A
58.368]			(unknown)	9,800	685.86	N/A
47.872 16. 10	· · · · · ·			(unknown) (unknown)	10.150 10.750	218,28 239 , 93	n/a h/a
14.162		> 		(unknown)	11.300	· 543.56	N/A
341292 35.291				(unknown)	11.700	737.20	N/A
12 16.409 30.13		\leq		(unknown) (unknown)	12.483 12.883	330.50 508.85	n/a N/a
	1			(unknown)	13.483	860.25	N/A
35.168 52.14				(neonknu)	14.016	1594.30	N/A
19.59?		· · · · · · · · · · · · · · · · · · ·		Iri Ne Benzene	i4.633	272.45	0.04
58, 15				(unknown)	15.083	1075.02	11/A
45. 16 14.273				(unknovn) (unknovn)	15,016 16,133	810.91 162.51	11/A 11/A
31.000				l l(unknown)	16.733	616.99	N/A
16.725 11.258			and the second sec	lunknown) lunknown)	17.316	362.69 113.40	11/A 11/A
11.258 18 15.150	1			lunknoun)	19.250	158.85	N/A

SB-11-12

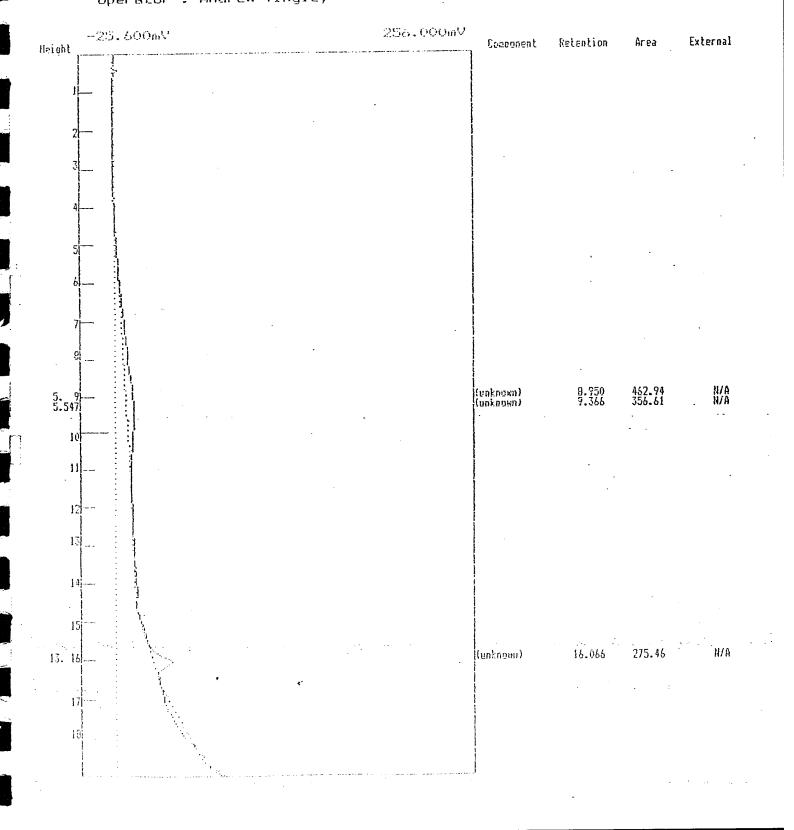
SB-12-02

Lab name :	ECT Mobile 1
Client :	ANEPTEK
Client ID :	01446.L3
Collected :	12/5/94
Holding time :	< 24 hrs
Analysis date :	12/05/1994 15:30:52
Method :	Direct Injection
Description :	ANEFTEK - No. Smithfield
	MXT-1 0.53mm × 15 M
Carrier :	
Data file :	ANEPA26.CHR (c:\chrom\data\aneptek)
Sample :	200 ul vapor
Operator :	Andrew Tingley

Ţ.

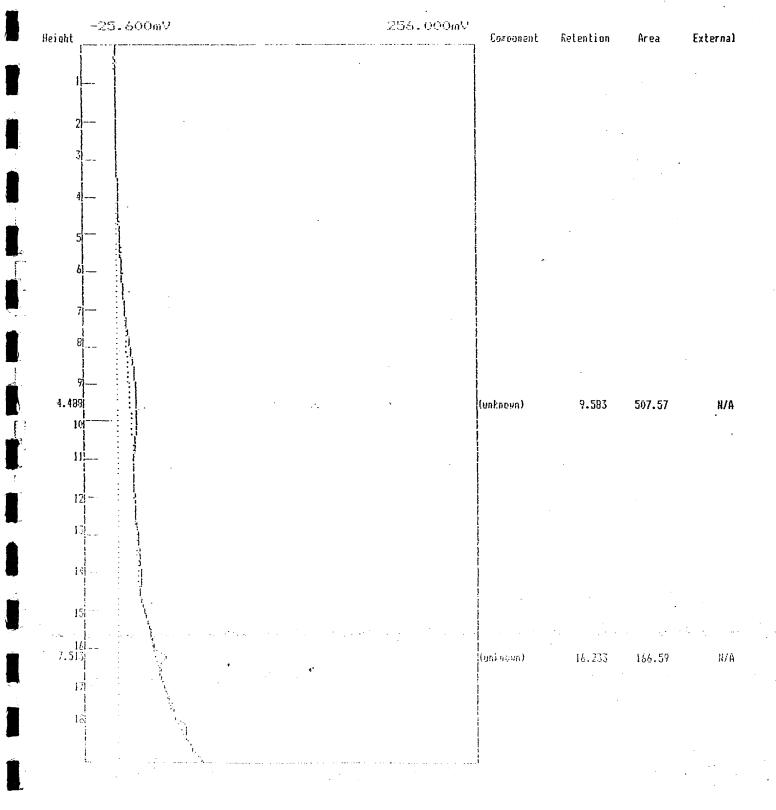
Height ,	-25.600mV	255.000mV	Component	Retention	Area	External
55. t			l(unknown)	0.916	253.62	N/A
2						
7					•	•
_						
4					- •-	-
5	5				·	
6						
7	7					
8			a.			
5	S					
10	0					
_ 11						
17	2			•		
	J					
•						
1						
1			÷	· · · · · ·		
11 6.53	6		(unknoan)	15.183	138.01	11/A
1						
			,			
				•		· .

Lab name : ECT Mobile 1 Client : ANEPTEK Client ID : 01446.L3 Collected : 12/5/94 Holding time : < 24 hrs Analysis date : 12/05/1994 15:56:26 Method : Direct Injection Description : ANEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEPA27.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley


.

-

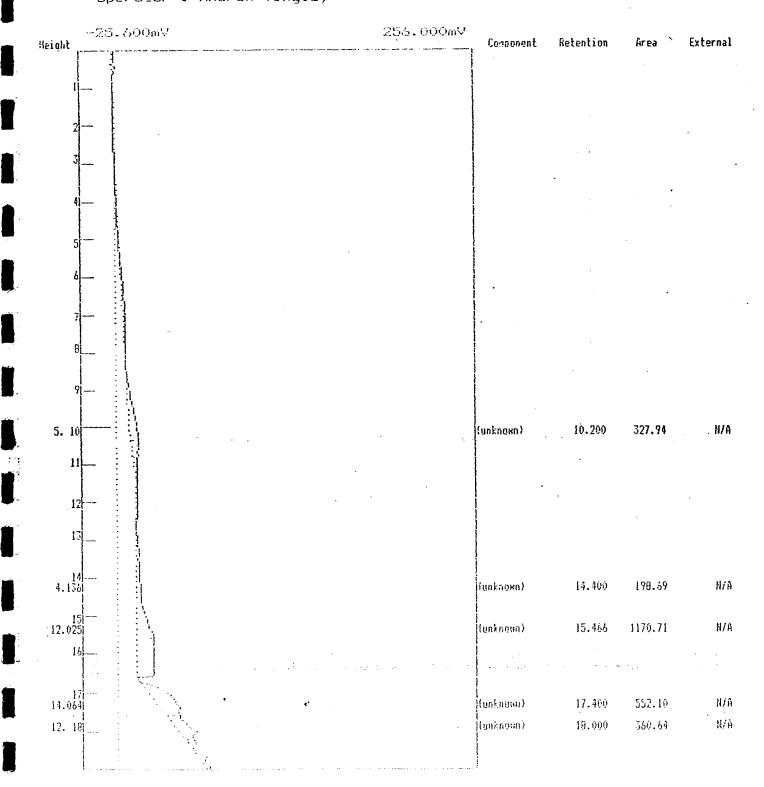
								· ·		
					• •					
					•					
					•					
					•		•			
					•					
					· .	(unknown)	9.166	504.79	N/A	. ·
		· ·					•			
· · · · · · · · · · · · · · · · · · ·										
									ż	
् .)	;			a na		(unknown)	15.783	205.50	N/A	
	•		۲,				. *		. •	÷.
Ş										
	1									


SB-12-12

Lab name : ECT Mobile 1 Client : ANEPTEK Client ID : 01446.L3 Collected : 12/5/94 Holding time : < 24 hrs Analysis date : 12/05/1994 16:22:22 Method : Direct Injection Description : ANEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEFA28.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley

SB-13-02.5

Lab name : ECT Mobile 1
Client : ANEFTER
Client ID : 01446.L3
Collected : 12/6/94
Holding time : < 24 hrs
Analysis date : 12/06/1994 11:37:08
Method : Direct Injection
Description : ANEFTEK - No. Smithfield
Column : MXT-1 0.53mm \times 15 M
Carrier : Nitrogen
Data file : ANEPA33.CHR (c:\chrom\data\aneptek)
Sample : 200 ul vapor
Operator : Andrew Tingley


SB-13-07

Lab name : ECT Mobile 1 Client : ANEPTEK Client ID : 01446.L3 Collected : 12/6/94 Holding time : < 24 hrs Analysis date : 12/06/1994 12:02:22 Method : Direct Injection Description : ANEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEPA34.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley

	Heicht	-25	. 600m\ 	?	 	25	6.000mV	Component	Retention	Ārea	Exte	rnal	
	:												
											÷		
	<u>ء</u> د				- .								
	· · ·											·	
			•										
										•			
	ł	2											
	-				•								
	ł	<u> </u>										,	
2- 		7—											
	6. 1(a st	1		. •		•		lunknovn) · ·	10.200 10.766	515.93 102.97		H/A H/A	
	4.51 1	ii							100130	171171			
	1												
-	1	3											
	1												
	i	5						-					
		ė.—-) 				(unknown)	16.100	308.06		N/A	• ,
	1	7		•	4 *								
	1	6i	•	1 1 1 1 1									
		l 1		· · · · · · · · · · · · · · · · · · ·	 								

SB-13-10.5

Lab name : ECT Nobile 1 Client : ANEPTEK 01446.13 Client () 2 01446.15 12/6/94 < 24 hrs 12/06/1994 12:27:51 Direct Injection ANEPTEK - No. Smithfield MXT-1 0.53mm x 15 M Collected : Holding time ; Analysis date : Nethod : Description 2 Column : Nitrogen ANEPA35.CHR (c:\chrom\data\aneptek) 200 ul vapor Andrew Tingley Carrier Data file Ξ : Sample Operator :

SB-14-02.5

Lab name : ECT Mobile 1 Client : ANEPTEK Client 1D : 01446.L3 Collected : 12/6/94 Holding time : < 24 hrs Analysis date : 12/06/1994 12:56:21 Method : Direct Injection Description : ANEPTEK - No. Smithfield Column : MXT-1 0.53mm x 15 M Carrier : Nitrogen Data file : ANEPA36.CHR (c:\chrom\data\aneptek) Sample : 200 ul vapor Operator : Andrew Tingley

ileioht	25.600mV	256.000mV	Component	Retention	Area	External
Ĩ		n under können				
2						
3						• •
4					•	
5			•			
6						
r 1 7						
- ·						
). 9				-		•
10					•	
i I	2	-				
l I						
1	4					
1						
Ē.						N'AS
1 9.53		· · · · ·	(untnovn) -	16.083	151,18	₩/À
			1	17	100 51	N / A
5.1			(nutuonu)	17.916	102.56	N/A
	(1				

.

.

SB-14-07

Lab name	2	EUI HODIIE I
Client	=	ANEPTEK
Client ID	2	01446.上区
Collected	:	12/6/94
Holding time	:	< 24 hrs
Analysis date	=	12/06/1994 13:27:28
Method	=	Direct Injection
Description	Ξ	ANEPTEK - No. Smithfield
Column	:	MXT-1 0.53mm x 15 时
Carrier	2	Nitrogen
Data file	:	ANEPA37.CHR (c:\chrom\uata\aneptek)
Sample		200 ul vapor
Operator	:	Andrew Tingley

lleight	-25.7	520mV			236-000	n∨ ,	Consonent	Retention	Area	External
u.										
j.										
	2									
	3									
Î	4								·	
	5									
5	6-	1			•					
	7-	1								
2.	8						(unknown)	7.950	276.62	N/A
	9									
		· 								
	10		•							
•	12	.								
	13									
	14									
	15					ŝ				
7.(16						(unkagun)	15.193	188.70	N/A
	17-		•	۰. ۲						
-	19	۰. ۱۹۹۹ - ۲۰۰۲ ۱۹۹۹ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ -								

APPENDIX C

SOIL BORING/MONITORING WELL LOGS

K	ANEP' corpor			BOI	RING LOG	Sheet <u>1</u> of	
JOB NO.	<u>North S</u> 94110.3	2	<u> </u>		1/29/94 0:50 a.m 12:10 p.m.		hfield, Rl
DRILLER	OR Seaboard NT Hager (HSA (4.25°) PEMobil_B-53 IPclear, sunny/50's	GROUND SURFACE ELEVATION	
	3Y_J. Hage			DEPTH TO W	ATER TABLE $\frac{7.5}{}$ F		
		SAMP	LING		SAMPLE	DESCRIPTION	1
DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE			HNU
1	2 4 3	24*	17	SPT	Moist, brown, fine to coo trace coarse to fine gra	arse sand, little to some silt, vel.	
2	8				- -		HNU – Oppr
3	11 28 110	20	13"	SPT	<u>Top 3"</u> : As above. <u>Lower 10":</u> Moist, very de trace coarse to fine grav	ense, gray fine sand, trace silt, vel.	
4	100/2"						HNU – Oppr
5	10 19 20	24*	9"	SPT	Moist, dense, gray fine s sand, trace silt, trace fi	sand, trace coarse to medium ne to coarse gravel.	
6	15 20		13"	SPT	Moist, medium dense gro	ay fine sand, trace coarse to	
7 8	10 6 8	24*	13	<u> </u>	medium sand, trace silt,	trace coarse to fine gravel.	
9	8 9/5" 100/0"	5"	o"	SPT	No recovery. Wet, gray s	and and silt on outside of spoon	HNU – Oppr
10							
11					Refusal at 8.4' with bot		
12					End of boring at 8.4' g		
13					Note: augered through o at ~3'.	gravel and cobbles beginning	
14		<u> </u>					
15				-			
16							
17		l					
<u>18</u> 19							
20							
	ANULAR SOIL	s	COHESI	IVE SOILS	(SPT)	PROPORTIONS	WATER CONTENT
BLOWS/	FT. DEN	SITY	BLOWS/FT.	DENSITY		PEN - Penetrated REC - Recovered Trace 0 to 10%	D Dry
<4 4-10 10-30 30-50 >50	LOO M. DEN	DENSE	<2 2-4 4-8 8-15 15-30 >50	V. SOFT SOFT M. STIFF STIFF V. STIFF HARD	140 lb. weight falling 30 ¹¹ onto a two foot long 2 ¹¹	HIGE - Holow-Stem Auger HIGE - Lobow-Stem Auger SS - Spit Spoon Detector HIGE 0 to 102 Some 20 to 333 And 35 to 503	D - Ory M = Moist W = Wat

-

* Measured at end of drilling. During drilling, W.T. measured at 8.4'

.

			EPT			BOI	RING LOG		Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-02</u>			
	PROJECT JOB NO. CONTRACT	941	10.32				1/29/94 2:30 - 4:10 p.m.	<u>National Guar</u> GROUND SURF	Smithfield Air d, North Smith ACE ELEVATION			
	DRILLER CONSULTA LOGGED	NT Had	ger Ge	eoScience		WEATHER/TEN	PE HSA (4.25") Mobil B- MP	- COMMENTS So	mples – every . at 2.1' after			
				SAMPL	ING			DESCRIPTION				
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6		PEN	REC	TYPE				HNU		
	1	4		24*	6"	SPT	<u>Top 2":</u> Moist, loose brow fragments, little to same <u>Lower 4":</u> Moist, medium	silt, trace coarse t dense light brown i	o fine gravel. fine sand,	HNU = Oppm		
	2	10 12					trace coarse to medium gravel.	sand, little silt, trac	e coarse fine			
	3											
	4											
	5											
	6	22 31		24*	20"	SPT	Top 2": Moist, medium de coarse to medium sand,	ense, light brown fir trace to little silt, l	ne sand, trace trace coarse	HNU = Oppm		
	7	<u>33</u> 35	_				to fine gravel. <u>*Lower 18":</u> Wet, dense <u>c</u> coarse medium sond, tro	aray fine sand, trace	e silt, troce			
	8						coarse mealum sona, uo	ce course to me y	10461.			
	9	· · ·										
	10						Augered to 10' — rare o sample taken at 10'. Cu	cobbles, very dense.	110 351 1	HNU = Oppm		
E i	11	 					little clay, trace coarse to fine gravel.	to medium sand, tre	ace coarse			
	12						End of boring at 10°. G	routed to surface.				
	13											
	14											
r F	15											
	16											
	17											
	18											
	19											
: Liù	20								00000710110			
-	 					IVE SOILS	(SPT) Standard Penetration Test-	PEN - Penetroted	PROPORTIONS	WATER CONTENT		
	<pre>BLOWS/ <4 </pre>	r1.	V. LO	DOSE	8LOWS/FT. <2 2-4	V. SOFT SOFT	140 lb. weight folling	REC – Recovered HSA – Hollow-Stem Auger SS – Split Spoon	Trace 0 to 10% Little 10 to 20% Some 20 to 35%	D = Dry M = Moist W = Wet		
	4-10 10-30 30-50 >50		LOOS M. D DENS V. DI	ENSE SE	4-8 • 8-15 15-30 >50	M. STIFF STIFF V. STIFF HARD	30 omo o wo root long 2	PID – Photoionization Detector	And 35 to 50%			

.

• Color change (and change to medium dense to dense)estimated at 5.5"

		ANEP corpor			BO	RING LOG		Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-03</u>			
	PROJECT	North	Smithfield	ANGS	DATE1	1/30/94	LOCATION N.	Smithfield Air			
	JOB NO.		32			0:45 a.m 12:10 p.m	National Guar	d, North Smith	field, RI		
	CONTRACT	OR				4.25" HSA	GROUND SURF	ACE ELEVATION			
	DRILLER	Seaboar	<u>d</u>		DRILL RIG TY	4.25 HSA PE <u>Mobil B-53</u>					
			GeoScience			IPsunny. 50's		ontinuous samp			
	LOGGED E	3Y_J. Hag	er			ATER TABLE >10	FTplanned if we	ater comes into	<u> </u>		
			SAMPL	ING		SAMPLE	DESCRIPTION				
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE				HNU		
	1	*4	24"	2*	SPT	1. · · · · · · · · · · · · · · · · · · ·	to Con and t	ittle eilt trace	HNU = Oppm		
1	2	5	-			Moist fill, loose brown co coarse to fine gravel.	burse to mie sono, i	ittle sit, duce			
	2	<u> </u>									
	3	3	24"	5"	SPT						
	4	<u> </u>	4			Moist fill, medium brown little silt, trace coarse to		l, trace to			
		.12					o nilo grocoli				
•	5	11 9	24"	0"	SPT	No recovery – spoon hi	t obstruction at 6° -	- pushed			
	6	4				obstruction out of the w	-				
	7	7	24"	10"	SPT	Top 4": As above (SPT : ments in spoon.	SB-03 - 04.5) but	wood frag-	HNU = 0ppm		
	<u> </u>	18				Bottom 6": In grass slee	eve - change to nat	turol fill			
	8	25			_	material within sleeve: M sond, trace silt, trace c	oarse to medium sar	nd, trace	-		
	9	40 25	24"	18"	SPT	coarse to fine gravel.					
	10	40 47	-			Moist very dense fine gr sand, trace silt, trace c	ray sand, trace coars oarse to fine gravel.	se to medium			
	11	63 28	18.5"	18"	SPT	Moist, very dense, gray	fine sand, little coar	se to medium	HNU = Oppm		
₩₩9 ¹⁵		63				sand, trace silt, trace c	oarse to fine gravel.		HNU = Oppm		
	12	87 100/05				Refusal with spoon at 1	2.5'.		nito - oppin		
	13		1			Augered to 12'. Boring overnight to determine i	was dry at completic if water will collect.	on. Left open			
	14		1			End of boring at 12.5'.	**				
ے۔ ز	15					Grouted to surface on '	12/2/94.				
	16		_								
	17		_								
-	18		_								
	19		-								
	20							r			
<u>í</u>	GR/	ANULAR SO	ILS	COHESIN	E SOILS	(SPT)		PROPORTIONS	WATER CONTENT		
1	BLOWS/	FT. DE	NSITY	BLOWS/FT.	DENSITY	Standard Penetration Test=	PEN Penetroted REC Recovered	Troce 0 to 10%	D = Dry		
	<4 4-10 10-30 30-50 >50	LO M. DE	LOOSE OSE DENSE NSE DENSE	<2 2-4 4-8 8-15 15-30 >50	V. SOFT SOFT M. STIFF STIFF V. STIFF HARD	140 Ho, weight falling 30″onta a two foot long 2 ″ 0.D, spiit spoon sampler	HSA - Hollow-Stem Auger SS - Split Spoon PID - Photoionization Detector	Little 10 to 20% Some 20 to 35% And 35 to 50%	W - Wet		

. -

* Gravel at surface down to 0.5". Driller shoveled away gravel to reach sand at 0.5" and started sampling there.

.

** Boring still dry after 24 hours.

, [K	1	EPT pora	'EK tion		BOI	RING LOG		Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-04</u>			
	PROJECT JOB NO. CONTRACT	94	110.32				1/30/94 ::05 pm - 2:55 pm 4.25" HSA	LOCATION <u>N.</u> <u>National Guard</u> GROUND SURF/	t, North Smith	ield, RI		
	DRILLER CONSULTA LOGGED E	NT Ha	ger G	eoScience		WEATHER/TEN	PE <u>Mobil B—53</u> JP. <u>clear, sunny, 50's</u> ATER TABLE <u>~10.5</u> F	COMMENTS S	ompling every : DC C			
						during drillin	g		1			
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS	5	SAMPL PEN	REC	TYPE				HNU		
-	1	PER 6		24*	12"	SPT	Moist fill, very loose, bro medium sand, trace little	own fine sand, trace silt.	coarse to			
;		4								HNU = Oppm		
	2 3	3					Augered through cobbles	to 5'.				
	4											
	5						Moist fill, medium dense,	brown fine sand tr	ace course to			
	6	1 2 14		24"	5	SPT	medium sand, little silt, l fragm e nts of coarse grav	trace coarse to fine	aravel, several			
7	7	30					fragments.					
	8	4 12 6		24"	3"	SPT	Moist fill, medium dense, medium sand, little silt, root fragments.	, brown fine sand, tr trace coarse to fine	gravel. Stem			
	9 10	4					Augered through cobbles	to 10'.		HNU = Oppm		
	11	9/5 1	00/2	5"2"	0"	SPT	No recovery. Spoon refusal at 10' 5	1/2".				
. [12			•			Auger refusal at 10.5°.					
. [_		Cuttings wet.					
	13						End of boring at 10.5'.	Grouted to surface.				
	15											
	16	—										
	17											
	18											
:	19											
-	20											
	GR	ANULAR	SOIL	s		IVE SOILS	(SPT)		PROPORTIONS	WATER CONTENT		
	8LOWS/ <4 4-10 10-30 30-50	′FT.	L00	OOSE SE DENSE	BLOWS/FT. <2 2-4 4-8 8-15 15-30	DENSITY V. SOFT SOFT, M. STIFF STIFF V. STIFF	Standard Penetration Test= 140 lb. weight faling 30° anto a two foot long 2 " 0.0. spit spoon sampler	PEN - Penetrated REC - Recovered HSA - Hollow-Stem Auger SS - Spill Spoon PID - Photoionization Detector	Troce 0 to 10% Little 10 to 20% Some 20 to 35% And 35 to 50%	D – Dry W – Moist W = Wet		
	>50			ENSE	>50	HARD						

Ę

-

		ANEP			BOF	RING LOG		Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-05</u>			
		<u>North</u> 94110.				11/30/94 4:00 pm - 5:30 pm 4.25" HSA	National Gua	N. Smithfield Air ard, North Smith FACE ELEVATION	field, RI		
	CONSULTA	<u>Seaboar</u> NT <u>Hager</u> 3Y J. Hag	GeoScienc		WEATHER/TEM DEPTH TO WA	PE Mobil B-53 PE clear, sunny 50's ATER TABLE <u>14.5</u> tion of boring	-	ampling every 5	5'		
È			SAMP				E DESCRIPTION				
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE				HNU		
1	1	17	24"	18*	SPT	0 - 0.5 - Pavement Moist fill, dense, dark b silt, trace coarse to find	e aravel.		HNU = Oppm		
	2	24 21 22	-	_		Tip of spoon contained coarse to medium sand	reddish brown fine : , little silt.				
	<u>3</u> 4					Augered through cobbles	s to 5' (out of fill t	by 5').			
	5		4								
	6	27 66 150/5"	17	17"	SPT	Moist, very dense, light coarse to fine gravel, l	brown coarse to fi trace silt. Several co	ne sand, little obbles broken	HNU = 0ppm		
	7					by spoon.					
	8		<u> </u>								
	9					Augered through cobble	es to 10'.		HNU = 0ppm		
	10										
,	11	11 12 22	24*	14"	SPT	Wet, dense, light brown medium sand, trace co	fine sand trace silt arse to fine gravel.	, trace to			
.	12	28									
	13		1								
	14		1			Augered 'through cobble	s to 15'				
- -	15		1								
	16	22 45	20.5"	14"	SPT	Wet, very dense, light t medium sand, trace sil	t, trace coarse to fi	ine gravel.	HNU = 0ppm		
	17	70 100/25"	-			Tip of spoon possible s mica schist (musconite) musconite.					
	18		1			Refusal of spoon at 16					
,	19		-			End of boring at 16.7'. Grouted to surface 12/					
	20		-				,	·			
	GR.	ANULAR SO	LŠ	COHESI	VE SOILS	(SPT)		PROPORTIONS	WATER CONTENT		
	BLOWS/	FT. DEI	NSITY	BLOWS/FT.	DENSITY	Standard Penetration Test=	PEN ~ Penetroled REC ~ Recovered	Trace 0 to 10%	D = Dry		
l	<4 4-10 10-30 30-50 >50	LO M. DE	LOOSE DSE DENSE NSE DENSE	<2 2-4 4-8, 8-15 15-30 >50	V. SOFT SOFT M. STIFF STIFF V. STIFF HARD	140 lb. weight falling 30 [°] anto a two-foot long 2 ^{°°} 0.D. spirt spoon sampler	HSA — Hellow-Stern Auger SS — Split Spoon PD — Photoionization Detector	Little 10 to 20% Some 20 to 35% And 35 to 50%	W = Woist W = Wet		

•

.

.

.

* Dark before boring completed. ** W.L. 11.0' after 14.5 hours. (Boring left open overnight and grouted on 12/1/94)

		1	EPT							Sheetof			
		COR	PORA	TION			BOI	RING LOG			No. <u>SB-0</u>		
F	PROJECT	No	rth Sr	nithfield /	ANGS	. [DATE	12/1/94	_		Smithfield Air		
J	IOB NO.	94	110.32	2	<u>. </u>	. 1	rimes	10:00 am - 10:50 am	_	National Guar	d, North Smith	field, RI	
	CONTRACT	OR				-		4.25" HSA		GROUND SURF	ACE ELEVATION		
	ORILLER					-	DRILL RIG TY	PE Mobil B-53					
				eoScience	e, Inc.			IP. <u>clear, cold, 30's</u>			ompling every ont of building		
l	LOGGED E	3Y_J.	Hager	• 		-	DEPTH TO W	ATER TABLE 7.8	FT.		one of sanonig		
\vdash							after compl	etion of boring		RIPTION			
-	DEPTH			SAMPL								HNU	
	BELOW GRADE (FT.)	(SPT) BLOWS PER 6	5	PEN	RE	C	TYPE						
F		3				,		Moist fill, grass at surfa dark brown to brown fin	ce with	n roots to 2".	Then dense,	HNU = Oppm	
\vdash	1	20 15		24"	13		SPT-	coarse to fine gravel. B	roken d	cobble in spoo	n tip.		
L	2	10		<u></u>									
	3												
+								Augered through cobbles	s to 5'	•			
	4				-								
	5												
	6	39		_								HNU = 0ppm	
F	6	<u>55</u> 47		24"	12		SPT	Upper ~4": As above. Lower 8": Moist fill, ver					
L	7	42			_			trace coarse to medium to fine gravel. Broken of					
	8							to line gravel. Broken o	200016	louged in spor	<i>ii</i> up.		
┟	· • · • •												
╞	9			<u></u>									
	10												
	11	<u>11</u> 19		24"	18		SPT	Wet, dense, brown fine	sand.	trace coarse t	o medium		
┢		34		24				sand, little silt, trace c of gravel in spoon (gra	oarse t	o fine gravel,	2" x 1" piece		
-	12	47						or gravei in spoon (gro	miej.				
	13							End of boring at 12'.					
ſ	1.4							Grouted to surface 12,	/2/94.				
F	<u>14</u> 15	<u> </u>											
ſ													
$\left \right $	16												
	17					<u>.</u>							
	18												
	19												
ſ		ļ		_								1	
	20	LANULAR	SOIL	۱ ۲	 	HESIV	E SOILS	(SPT)			PROPORTIONS	WATER CONTENT	
	BLOWS/		DENS		BLOWS		DENSITY	Standard Penetration Test=	PEN - PA				
ŀ	<4			OOSE	<2		V. SOFT	140 lb, weight falling	1	allow-Stem Auger	Trace 0 to 10% Little 10 to 20%	0 – Dry M – Moist	
	4-10		L003	SE	2-4 4-8		M. STIFF	30 ^{°°} anto a two foot long 2 ^{°°} 0.0. split spoon sampl e r		otaionization	Some 20 to 35% And 35 to 50%	W - Wet	
ļ	10-30 30-50	1	M. DEN	DENSE SF	8-15 15-30	ì	STIFF V. STIFF		0er	tector			
	>50			ENSE	>50	,	HARD				<u> </u>		

* Water encountered at 8' during drilling. Rose to 7.8' at end of drilling and continued to rise thereafter.

** Estimate change to natural material at $\sim 5 \ 1/2'$

.

		1 AN	EPT	EK				Sheet _	_1of	1
			PORA			BC	RING LOG	Boring	No. <u></u> 88–07	, <u> </u>
	PROJECT	 N(orth So	nithfield	ANGS	DATE	12/1/94	LOCATION N.	Smithfield Air	
	JOB NO.					DATE TIMES	12:10 pm - 12:30 pm	- 1	d, North Smith	
	CONTRACT	TOR					4.25" HSA	GROUND SURF	ACE ELEVATION	
	DRILLER	Sec	board	•		DRILL RIG T		_		
	CONSULTA	NT	ager G	eoScienco	e, Inc.		MP. <u>clear, cold, 30's</u>	COMMENTS	ompling every	<u>5'</u>
-	LOGGED I	3YJ.	Hager					т.		
				SAMP		at end of		DESCRIPTION		
	DEPTH			JAME		1				HNU
	BELOW GRADE (FT.)	(SPT) BLOW PER	S	PEN	REC	TYPE		<u>.</u>		
				- 4 7	1.08	007	0 — 0.5' Pavement			HNU=0.2ppm+
	1	8		24"	12"	SPT	- Moist fill, medium dense, fine samd, trace silt, ma	dark brown to brow bist little coarse to fi	ine gravel.	1110-0.2pp11+
	2	8					4		,	
	3	9					Augered through cobbles Auger refusal at 5' bedro		tor detected	
	4						End of boring at 5'.	SCK. NO Probable was		
							Boring grouted to surfac	e.		
.	5			<u> </u>			-			
	6						4			
3	7						_			
	8									
	9			-						
	10									
	11									
[12									
	13									
	14									
	15									
1	16									
	17									
	18									
1	19									
	20									
	GR	ANULA	R SOILS	5		IVE SOILS	(SPT)		PROPORTIONS	WATER CONTENT
	BLOWS/	'ศ.	DENS	SITY	BLOWS/FT.	DENSITY		PEN — Penetrated REC — Recovered	Troce 0 to 10%	0 = 0ry
ŧ	<4 4-10		V. LO	,	<2 2-4	V. SOFT SOFT	30° onto a two foot long 2	HSA - Hollow-Stem Auger	Little 10 to 20% Some 20 to 35%	W = Moist W = Wat
	10-30			ENSE	4-8 8-15	M. STIFF STIFF	0.D. split spoon sampler		And 35 to 50%	
	30-50 >50		DENS V. D		15-30 >50	V. STIFF HARD				

.

•

-

.

* HNU reading slightly above 0 appears to be background in this area affected by exhaust fumes from the rig.

			EPT			BO	RING LOG		_1of1 NoSB-0	
	PROJECT JOB NO. CONTRACT	94	110.32	ithfield		date Times	12/1/94 1:50 pm - 2:20 pm	1	Smithfield Air d, North Smithf ing 102 and 10 ACE ELEVATION	ield, RI 04
	DRILLER CONSULTA LOGGED E	NT_Ho			e, Inc.	WEATHER/TE	YPE <u>4.25" HSA, Mobil B-53</u> MP. <u>clear, cold, 30's</u> MTER TABLE <u>6.5</u> FT.	COMMENTS So	mpling every 5	
						at end of a	frilling		<u></u>	
	DEPTH BELOW GRADE	(SPT) BLOW		SAMPI PEN	REC	TYPE	SAMPLE DE	SCRIPTION		HNU
	(FT.)	PER								
	1	30		24*	9"	SPT	0 — 0.5' Pavement Moist fill, medium dense, bro medium sand, trace silt, tra	own fine sand, tr	ace coarse to	HNU ≕ 0ppm
	2	<u>11</u> 9							- j	
r' 	3	12					Augered through cobbles to	5'.		
	4							· .		
	5									
	6	20 20		24"	14"	SPT	Top 2": As above.	Kable bassing fine	and trace	HNU=0ppm
	7	15 11					*Lower 12": Wet fill, dense, coarse medium sand, little s	silt, trace coarse	to fine gravel	
	8			<u> </u>			End of boring at 7'. Grouted	d to surface.		
	9			·.						
	10									
	11									
	12						-			
_[]	13									
	14									
	15									
	16						4			
	17						-			
	18									
	19						-			
.	20 GR/	ANULAF	R SOILS		COHESI	VE SOILS	(SPT)		PROPORTIONS	WATER CONTENT
ан с. 2	BLOWS/	FT.	DENS		BLOWS/FT.	DENSITY V. SOFT	REC -	- Penetrated - Recovered	Trace 0 to 10%	D - Dry
	<4 4-10 10-30 30-50 >50		V. LO LOOSI M. DE DENS V. DE	e Ense E	2-4 4-8 8-15 15-30 >50	V. SOFT SOFT M. &TIFF STIFF V. STIFF HARD	30" onto a two foot long 2 " SS -	- Hollow-Stern Auger Spit Spoon Photoionization Detector	Utue 10 to 20% Some 20 to 35% And 35 to 50%	M ≕ Noist W ≕ Wet

* Estimate change to natural material at \sim 5'.

-

BLDW GRADE (FT.)PEN BLOWS PER 6"PEN PENREC RECTYPE11224"19" $O - 0.5'$ Pavement Top 13": Moist fill, red-brown fine sand, trace medium to coarse sand, trace sit, little coarse to fine gravel +Lower ~6": (change in brass sleeve) Moist, dense, light brown fine sand, trace sit, little coarse medium sand, trace sit, trace coarse medium sand, trace sit, trace coarse to fine gravel.HNU11224"19"SPTto coarse sand, trace sit, little coarse to fine gravel +Lower ~6": (change in brass sleeve) Moist, dense, light brown fine sand, trace coarse medium sand, trace sit, trace coarse to fine gravel.HNU3	RI
PRQJECT North Smithfield ANGS DATE 12/2/94 DATE 12/2/94 JOB NO. 94110.32 TIMES TILIES om - 12:20 pm Notional Cuord, North Smithfield, Smithfield, Scotter and Stress of Data ORNURATIOR	
JOB NO. 94110.32 TIMES 11:25 am - 12:20 pm National Guard, North Smithfield, North Smithfield, Contractor CONTRACTOR	NU
CONTRACTOR	NU
DRILLER Seaboard DRILL RIG TYPE HSA 4.25", Mobil B=53 WEATHER/TEMP. AOC A CONSULTANT Hager DEPTH DEPTH TO WATER TABLE 8.3 FT. DEPTH SAMPLING DEPTH TO WATER TABLE 8.3 FT.	NU
CONSULTANT Hager GeoScience, Inc. WEATHER/TEMP. portly cloudy, ~30°F COMMENTS LOGGED BY J. Hager WEATHER/TEMP. portly cloudy, ~30°F COMMENTS DEPTH SAMPLING SAMPLE DESCRIPTION H DEPTH SAMPLING SAMPLe DESCRIPTION H DEPTH SAMPLE DESCRIPTION H BLOWG PEN REC TYPE O - 0.5' Povement H 1 12 24" 19" SPT Top 13": Misist fill, red-brown fine sand, trace medium to coarse and, trace sind, trace s	NU
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
Sour LiveDEPTH BELOW (FT.)(SPT) PER 6"PENRECTYPE11224"19" $O - 0.5'$ Povement 	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_
1 12 24" 19" SPT Top 13": Moist fill, red-brown fine sand, trace medium to coarse sand, trace silt, little coarse to fine gravel stower ~6": (change in brass sleeve) Moist, light brown fine sand, trace coarse medium sand, trace silt, trace coarse to fine gravel. HNU 2 16	— Oppm
1 12 24 19 3F1 100 </td <td>- opp</td>	- opp
216+Lower $\sim 6^{-}$; (change in brass sleeve) Moist, dense, light brown fine sand, trace coarse medium sand, trace silt, trace coarse to fine gravel.325	
3 25 11 4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 46 24" 20" SPT Wet, very dense, gray-brown fine sand, trace coarse to medium sand, trace fine gravel. HNU 10 10 10 10 10 10 HNU 11 46 24" 20" SPT Wet, very dense, gray-brown fine sand, trace coarse to medium sand, trace fine gravel. HNU	
4	
4 -	
5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 19 24" 15" SPT Moist, tip of spool wet, dense, groy brown interstation. 7 15	
15 15 7 15 8	= Oppm
7 18	
9	
9	
9	
26 Wet, very dense, gray-brown fine sand, trace coarse to HNU 11 46 24" 20" SPT Wet, very dense, gray-brown fine sand, trace coarse to HNU 54 54	
11 46 24" 20" SPT medium sand, trace fine to coarse gravel, little silt. HNU	
11 46 24" 20 SPT medium sand, trace fine to coarse gravel, little silt.	
	= 0ppm
12 51 End of boring at 12'. Grouted to surface.	
13	
14	
15	
17	
18	
19	
20	
BLOWS/FT. DENSITY BLOWS/FT. DENSITY Standard Penetration Test- PEN - Penetrated	CONTENT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$4-10$ LOOSE $2-4$ SOFT 30° onto a two foot long 2 " SS - Spir Spoon Some 20 to 35% W = V	у
10-30 M. DENSE 8-15 STIFF* Out and address of the sector	y oist
30-50 DENSE 15-30 V. STIFF >50 V. DENSE >50 HARD	y oist

.

.

* Out of fill at ~ 1 1/2' - 2' below ground surface.

	ANEI	PTEK ration		BC	BORING LOG Boring No. <u>SB-1</u>					
OB NO. ONTRACI	94110 IOR	Smithfield .32 rd	·	TIMES	<u>12/2/94</u> 1:30 pm - 2:30 pm TYPE <u>4.25" HSA, Mobil B-5</u> 3	LOCATION <u>N. Smithfield Air</u> National Guard, North Smit corner of building 110 GROUND SURFACE ELEVATION AOC A	hfield, Rl			
ONSULT	ANT Hager	GeoScienc ger	e, Inc.	WEATHER/TI	MPE 4.23 H3A, Mobility B=33 EMP. partly cloudy, ~30° F	COMMENTS <u>Continuous sam</u>	pling			
					ings after 72 hours SAMPLE DES		Γ			
DEPTH BELOW GRADE FT.)	(SPT) BLOWS PER 6	SAMF PEN	REC	TYPE	SAMPLE DES		HNU			
1	19 14	24"	13"	SPT	Moist fill, coarse gravel and a dense, dark brown to brown a	coarse to fine sand, little	HNU=0 ppm			
2	9	-			silte, trace coarse to fine gra	ivei.	HNU=0 ppm			
3	3 18 25	24"	19"	SPT	<u>Top 3</u> ". As above. + <u>Bottom 16</u> ". Moist, dense, light brown to gray-brown fine sand, trace coarse to medium sand, trace silt, trace fine gravel.					
4 5	30 18 18 17	24"	18"	SPT	Moist, dense, light brown to g trace coarse to medium sand trace clay, broken cobble in s	5 ppm				
6 7	20 9 17	24"	12"	SPT	Spoon tip wet, dense, gray-b coarse to medium sand, trace	rown silty fine sand, trace e coarse to fine gravel, trace	(sample in spoon)			
8	30 22				Augered to 7'. Cuttings wet. HNU in breathing zone = 0.4	HNU at drill bit =10 ppm	HNU=Oppm			
9					End of boring at 8'. Grouted					
10 11										
12										
13										
14				<u> </u>	_					
15					4					
16					-					
17					-1					
<u>18</u> 19										
20										
	ANULAR SO				(SPT) Standard Penetration Test- PEN - F	Penetroted	WATER CONTENT			
8LOWS/ <4 4-10 10-30 30-50	V.	ENSITY LOOSE DOSE DENSE	BLOWS/FT. <2 2-4 4-8 8-15	DENSITY V. SOFT SOFT M. STIF STIFF	F 0.0. soff socon sometring PDC - F	Recovered Trace 0 to 10% Hollow-Stem Auger Little 10 to 20% phil Spoon Some 20 to 35% Photoionization And 35 to 50%	D = Dry M = Moist W = Wet			

-

Ţ

.

	K		EPT pora			BO	RIN	NG LOG		Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-11</u>		
	PROJECT	No	rth Sn	hithfield	ANGS	DATE	12	/5/94		LOCATION N.	Smithfield Air	
							THES 11:25 cm - 12:15 pm National Guard, North Sm				d, North Smith	
	JOB NO.							.20 gm	-	of building 10 GROUND SURF		
· 1						1						
						DRILL RIG TYPE 4.25" HSA. Mobil B-53						
					e, Inc	WEATHER/TEMP. <u>rain</u> , 40's DEPTH TO WATER TABLE <u>7.5</u> FT.				<u> </u>		
	LOGGED E	3YJ.	Hager			DEPTH TO V after drilling		R TABLE	FT.			
				SAMP	LING	arter animing	y	SAMPLE	E DES	CRIPTION		
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER (5	PEN	REC	TYPE				<u></u>		HNU
	1	10 15		24*	12"	SPT	to	st fill, medium to der fine gravel, little coar	nse o rse to	oarse gravel, lit fine brown sa	ttie medium nd, trace	HNU=0ppm*
		10					silt. +Ti	p of spoon contained	l fine	brown sand, tr	ace coarse	
	2	14	<u> </u>				- to	medium sond, little s	silt, tr	ace fine gravel.		
	3											
.							Aug	ered through cobbles	to t	5'. Strong odor	in soil at 5'.	
	4						4					HNU=20ppm borehole
	5						4					HNU=0.4ppm
	6	21		24"	12"	SPT	Wet	, dense, gray fine sa d, trace coarse to fi	indy :	silt, trace coars	e to medium	in breathing
- i -		<u>21</u> 16		24			She	en on water in spool	ne gi n.		oldy.	zone
- L	7	16					4					
	8						1					HNU=0ppm during augering
-							Aug	ered through cobbles	to	0'.		HNU=7ppm
-	9						-					in augers HNU=0ppm
é l	10											breathing
	11	22		24"	18"	SPT	Wet	t, very dense, gray find dium sand, trace find	ne so	ndy silt, trace vel. trace clav.	coarse to	zone
		<u>31</u> 54		24			_		, g. c	,		
	12	56					-	I of boring at 12'.				
	13						She	een on water in borin	ng at	completion of	drilling.	
5							Gro	outed to surface.				
	14	ļ					-					1
	15											
	16											
	17						-					
	18]				-					
	19						-1					
	20											
	GR	ANULAR	SOIL	5	COHES	IVE SOILS		(SPT)			PROPORTIONS	WATER CONTENT
1 7 -	BLOWS/	'FT.	DENS	SITY	BLOWS/FT.	DENSITY		Standard Penetration Test=	1	Penetrated Recovered	Trace 0 to 10%	D = Dry
_	<4		V. L	DOSE	<2	V. SOFT	•	140 lb. weight falling	hsa -	Hollow-Stem Auger	Little 10 to 20%	W = Noiet
	4-10		L005		2-4 4-8	M. STIFF	F	30°onto o two foot long 2 " O.D. spiit spoon sampler	P10 -	plit Spoon Photoionization	Some 20 to 35% And 35 to 50%	W - Wet
	10-30 30-50		M. D DENS	ENSE	8-15 15-30	STIFF V. STIFF	-			Detector		
	>50			ENSE	>50	V. Stirr HARD			1			

-

+ Estimate change to natural material at \sim 2'. • Odor evident at \sim 1.5'.

· · · · · · · · · · · · ·

			EPT pora			BO	RING LOG		1of NoSB-12	
CO JO	ONTRACTO	94 DR	110.32	nithfield		TIMES	12/5/94 LOCATIONN. Smithfield Ai 1:55 pm - 2:45 pm National Guard, North Smith south of builging 107 GROUND SURFACE ELEVATION			
	RILLER	<u>Sea</u> NT <u>Ha</u>	board Iger G	eoScience		WEATHER/TE	DRILL RIG TYPE <u>4.25" HSA, Mobil B-53</u> WEATHER/TEMP. <u>rain, 40's</u> DEPTH TO WATER TABLE <u>~9</u> FT. after drilling			ouse erratic
				SAMP	ING	I ditter drinning	SAMPLE DE	SCRIPTION		* F
BE	EPTH ELOW RADE T.)	(SPT) BLOW PER	s	PEN	REC	TYPE				HNU
	1	23		24*	6"	SPT	0 – 0.5' Pavement *Moist fill, medium dense, br coarse to medium sand, trad	rown fine sandy s ce coarse fine gro	ilt, trace ovel.	
-	2	12 12 12								
	3						Augered through cobbles to	5'.		HNU=0ppm
	5 6	17 24 28		24"	14"	SPT	Moist very dense, gray-brow silt, trace coarse to fine gra (cuttings wet at 7.5')	n coarse to fine avel.	sand, little	
	7 8	33					Augered through cobbles to	10'.		
-	9									
	10 11	33 55		24"	15"	SPT	Wet, very dense, gray-browr to medium sand, trace coar Broken cobble in spoon.	fine sandy silt, se to fine gravel,	trace coarse trace clay.	N.D.
-	12	40 76								
	13 14						End of boring at 12'. Grout	ed to surface.	•	
	15						-			
-	16									
	17 18						-			
	19						-			
	20							r		
	GRA BLOWS/	r	R SOIL		COHES BLOWS/FT.	IVE SOILS		- Penetrated - Recovered	PROPORTIONS	WATER CONTENT
	<4 4-10 10-30 30-50 >50	-	LOOS M. E DENS	ENSE	<2 2-4 4-8 8-15 15-30 >50	V. SOFT SOFT M. STIFI STIPF V. STIFF HARD	140 lb, weight lating HSA 30° onto a two foot long 2 ″ SS - 0.D, split spaan sampler PiD -	- Hollow-Stern Auger Split Spoon	Little 10 to 20% Some 20 to 35% And 35 to 50%	W = Woist W = Wet

.

* Estimate change to natural material at ~ 2' - 2 1/2'.

		ANEP corpoi			BO	RING LOG		1of1 No1			
	PROJECT JOB NO. CONTRACT	94110.	Smithfield 32			12/6/94 10:10 am - 11:00 am	LOCATION N. National Guard SG-64 GROUND SURFA	d, North Smith	field, Rl		
	DRILLER CONSULTA	<u>Seaboar</u> NT <u>Hager</u>	d GeoScienc er	e, Inc.	WEATHER/TE	YPE <u>4.25" HSA, Mobil B-5</u> MP. <u>partly cloudy, 50's</u> WATER TABLE <u>5.7</u> F	COMMENTS <u>Bor</u> outside the fe	COMMENTS <u>Boring was planned for</u> outside the fence, but ground was to soft for rig access.			
i t			SAMP		.I.,	SAMPLE	DESCRIPTION	ESCRIPTION			
	DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE				HNU		
ſ.	1	44	24"	15"	SPT	0 — 0.5° Pavement Moist fill, very dense, bro medium sand, trace littlw	wn fine sand, trace silt, little coarse to	coar se to fine gravel.	HNU=0ppm **		
Ĺ	2	65 29 23				Broken cobbles in spoon. Tip of spoon contained li					
	4					Augered through cobbles	to 5'.				
	5 6	18 33 44	24*	12*	SPT	Moist, very dense, gray—t medium sand, trace silt	prown fine sand, trac trace coar se to fine	ce coarse to gravel.	N.D.		
	7 8	71	-		·	Augered through cobbles	to 10'.				
	9 10						·				
	11 12	30 100/4	- <u>10</u> *	6"	SPT	Wet, very dense, gray-br medium sand, trace little Spoon refusal in a cobbl	e silt, trace coarse t	e coarse to to fine gravel.	N.D.		
	13		_			End of boring at 10.8'.	Grouted to surface.				
	<u>14</u> 15		-								
			_								
	16 17	 									
	18										
 - :	<u>19</u> 20										
	GR/	ANULAR SC			IVE SOILS	(SPT)		PROPORTIONS	WATER CONTENT		
}; . } 	BLOWS/ <4 4-10 10-30 30-50 >50	V. LC M. DE	NSITY LOOSE OSE DENSE NSE DENSE	BLOWS/FT. <2 2-4 4-8 8-15 15-30 >50	DENSITY V. SOFT SOFT M. STIFF STIFF V. STIFF HARD	140 b. weight falling 30° anto a two foot long 2 " 0.0. split spoon sampler	HSA - Hollow-Stem Auger SS - Split Spoon	Troce 0 to 10% Little 10 to 20% Some 20 to 35% And 35 to 50%	D – Dry N – Moist W – Wet		

•

•

-

* Estimate change to natural material at \sim 2.5'. ** HNU behaving very eratically – could not get repeatable readings.

•

	ANEPTEK CORPORATION			BO	RING LOG	Sheet <u>1</u> of <u>1</u> Boring No. <u>SB-14/MW-02</u>		
PROJECT	North S	mithfield A	NGS	DATE _1	2/6/94	LOCATION N.	Smithfield Air	
JOB NO.	- · · · - -	2			1:25 am - 11:50 am	National Guard, North Smithfield, RI NW corner of site		
	0R							
	Seaboard				YPE 4.25" HSA, Mobil B-53	GROUND SURFA		
	NT_Hager (MP. partly cloudy, 50's	COMMENTS Boring was planned for ou		
	IY_J. Hage			DEPTH TO V	WATER TABLE 4 FT. 3' after 1 hour. 3	the fence but for rig occess		
DEPTH		SAMPL	ING		SAMPLE DE	SCRIPTION		
BELOW GRADE (FT.)	(SPT) BLOWS PER 6"	PEN	REC	TYPE				HNU
1	15	24"	8"	SPT	0 -0.5' Pavement. Moist fill, medium dense, da fine sand, little coarse to fi	rk brown to brown	n coarse to	N.D.*
	10				**Tip of spoon contained bro		1	
23	<u> 10 </u> 4				medium sand, trace to littl gravel.	le silt, trace coars	se to fine	
4					Augered through cobbles to	5'.		
5								
6	40 56	24*	21"	SPT	Wet, very dense, gray-browr medium sand, trace coarse little silt.	n fine sand, trace to fine gravel, tra	coarse to ace to	N.D.+
7	<u>60</u> 65			1				
8					Augered to 8.5' to install we	ell. (see diagram	for MW-02)	
9					End of boring at 8.5'.			
10		· ·			-			
11				-				
12								
13					-			
14								
15					4			
16								
17			_					
18								
19								
20				VE SOILS	(SPT)		PROPORTIONS	WATER CONTE
BLOWS/	NULAR SOIL		BLOWS/FT.	DENSITY	`´	Penetroted		
<pre><4 4-10 10-30 30-50</pre>	V. L LOO	OOSE SE DENSE	<2 2-4 4-8 8-15 15-30	V. SOFT SOFT M. STIFF STIFF V. STIFF	HEC	Hollow-Stem Auger L Split Spoon S	race 0 to 10% Jitle 10 to 20% Same 20 to 35% And 35 to 50%	D = Dry W = Moist W = Wet

-

* HNU behaving very erratically – could not get repeatable readings, so values are not noted. ** Estimate change to natural material at $\sim 2' - 2 1/2'$.

K	1	EPTEK poration		во	RING LOG	Boring	1of1 NoMW-01	
PROJECT	941	th Smithfield	· · · · · · · · · · · · · · · · · · ·	date Times	<u>12/5/94</u> <u>8:05 am - 10:00 am</u> <u>SG-54</u> GROUND SURFACE ELEVAT			ield, Rl
DRILLER CONSULTA	<u>Seat</u> NT Ha		e, Inc.	WEATHER/TE DEPTH TO V	DRILL RIG TYPE 4.25" HSA, Mobil B-53 WEATHER/TEMP. rain, 50's DEPTH TO WATER TABLE ~9 during FT.			<u>oil sample</u> s e <u> </u>
		SAMF	LING	during drink	SAMPLE DE	SCRIPTION		
DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	S PEN	REC	TYPE				HNU
1	16	24"	20"	SPT	0 — 0.5' Povement <u>Upper 12":</u> Moist fill, dense, trace medium coarse sand, t	dark to light brow trace to little silt,	wn fine sand, I trace fine	HNU=Oppm
2	19 11 35				to coarse gravel. * <u>Lower 8":</u> Moist, dense, rea coarse to medium sand, trac			
4					Augered through cobbles to :	5'.		
5	<u>19</u> 23	24"	17"	SPT	Moist, dense to very dense, trace coarse to medium san fine gravel, trace little clay.	light gray—brown d, little silt, trace	course to 1	HNU=0ppm
7	23 15/4 100/			· ·	Augered through cobbles to	10'.		
<u>8</u> 9								
10	<u>16</u> 36		17"	SPT	Wet, very dense, gray-brown coarse sand, trace coarse to	fine sand silt, tr o fine gravel, trac	dee meanant l	HNU=0ppm
12					-			
13					Augered to 13' and installed End of boring at 13'.	well (see diagrar	n for MW-01)	
<u>14</u> <u>15</u>								
16								
17					-			
<u>18</u> 19								
 20					(SPT)	1	PROPORTIONS	WATER CONTENT
GR BLOWS/	· · · · · · · · · · · · · · · · · · ·	DENSITY	BLOWS/FT.	DENSITY	Standard Penetration Test= PEN -	- Penetrated		
<4 4-10 10-30 30-50 >50		V. LOOSE LOOSE M. DENSE DENSE V. DENSE	<pre><2 2-4 4-8 8-15 15-30 >50</pre>	V. SOFT SOFT M. STIFF STIFF V. STIFF HARD	140 Ib. veight falling HSA - 30° onto a two foot long 2 " SS - 0.0. split spoon sampler PID -	- Hollow-Stem Auger L Split Spoon	Frace 0 to 10% Little 10 to 20% Seme 20 to 35% And 35 to 50%	D Dry M = Moist W Wet

-

.

.

• Estimate change to natural material at $1 \frac{1}{2} - 2$.

		PTEK					_1of		
	CORPC	RATION		BO	RING LOG	Boring	No. <u>03</u>		
PROJECT	North	Smithfield	ANGS	DATE	12/6/94	1	Smithfield Air		
JOB NO.	94110	0.32		TIMES _	3:30 pm - 4:05 pm	National Guar	d, North Smith st of existing	field, RI	
CONTRACT	TOR					GROUND SURF	ACE ELEVATION	wen.	
		ord		DRILL RIG T	YPE 4.25" HSA Mobil B-53				
•		r GeoScience	e, Inc.		MP. partly cloudy 50's		edge of woods	south of	
LOGGED I	BY Ho	iger		DEPTH TO M	WATER TABLE <u>3.5</u> FT. ing 3.0° after 16 hours.	bose, west of	access road.		
	ĸ	SAMPL	ING	during drim	1	DESCRIPTION			
DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE				HNU	
1	1	24"	13"	SPT	Moist, v e ry loose, brown fir medium sand, trace coarse	ne sandy silt, trace to fine gravel, ro	e coarse to oots.	N.D.*	
2	2				Dark brown organic silt in	tip of spoon.			
3		-			Auger hit a boulder at 3'. south and restarted. Color	Boring had to be change at ~4' to	moved 2* gray-brown.		
4									
5						a and trace east	a ta madium		
6	2		17"	SPT	sand, trace coarse to fine	gravel, trace silt.	sand trace coarse to medium gravel, trace silt.		
7	<u>32</u> 32							N.D.+	
8					Ended at 7' and left over 12/7/94 and installed well	hight augered to 8. I. (see diagram for	.5' on - MW-03)		
9					End of boring at 8.5'.				
10									
11					-				
12									
13	· · · · · · · · · · · · · · · · · · ·				4				
14					-				
15					4				
16					-				
17									
18					-				
20				· · • • • • • • • • • • • • • • • • • •					
	ANULAR S	OILS I	COHESI	VE SOILS	(SPT)		PROPORTIONS	WATER CONT	
BLOWS/	·····	ENSITY	BLOWS/FT.	DENSITY		i - Penotroted			
<4 4-10 10-30 30-50		. LOOSE OOSE 1. DENSE DENSE	<2 2-4 4-8 8-15 15-30	V. SOFT SOFT M. STIFF STIFF V. STIFF	140 b. weight falling HS 30° onto a two foot long 2 "SS 0.0. split spoon sampler PD	 Recovered A - Hodiow-Stem Auger Split Spoon Photoionization Detector 	Troce 0 to 10% Little 10 to 20% Some 20 to 35% And 35 to 50%	D = Dry M = Moist W = Wet	
>50		. DENSE	>50	HARD					

* HNU behaving very erratically - could not get repeatable readings, so values are not noted.

٠

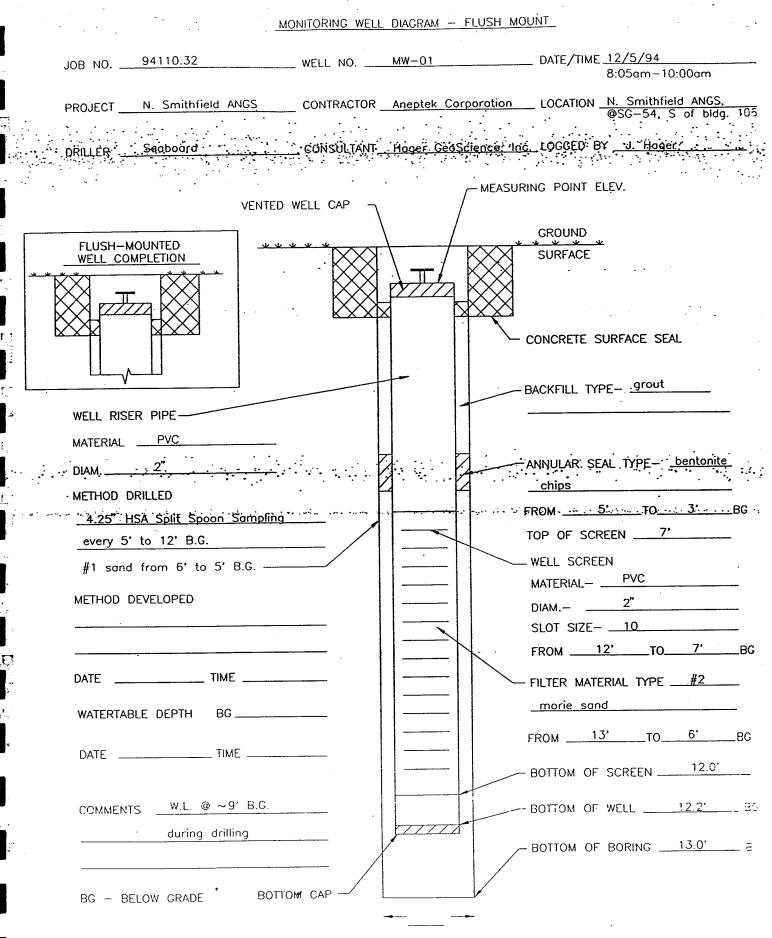
:

	ANEF			ВО	RING LOG	Sheet <u>1</u> of <u>1</u> Boring No. <u>MW-04</u>			
ł	94110	Smithfield /		DATE TIMES	12/7/94 10:25 am - 1:00 pm	LOCATION <u>N. Smithfield Air</u> National Guard, North Smithfield, RI			
DRILLER	Seaboa	rd	<u> </u>	DRILL RIG T	(PE 4.25" HSA, Mobil B-53	GROUND SURFACE ELEVATION			
		GeoScience jer		WEATHER/TEMP. <u>cloudy, then rain, 40's</u> DEPTH TO WATER TABLE <u>3.5</u> FT. <u>building 106 (motor</u>)					
		SAMPL	ING	ofter drilling	ofter drilling.				
DEPTH BELOW GRADE (FT.)	(SPT) BLOWS PER 6	PEN	REC	TYPE			HNU		
1	1 3	24"	16"	SPT	Top 2": Moist very loose, da litter, trace coarse to fine s gravel.	rk brown organic silt w/ leaf and, trace coarse to fine	N.D. *		
2	2 5					wn silt, trace coarse to fine gravel.			
3					Augered through cobbles to Auger refusal at 4.5'. Boring betewwn SG-57 and SG-76 Blows = 1-1-3-11	45'. g dry. Moved to new location . Materail resampled at 0-2'.			
5	88		17"	SPT		n fine sandy silt, trace coarse			
6 7	62 60 59	. 24"			cobble in spoon.	ise to the grove. Broken			
8					Augered to 8.5' through co diagram for MW-04)	bbles and installed well (see			
9 10							N.D. *		
11					End of boring at 8.5'	· ·			
12									
13]	-		-				
14					-				
<u>15</u> 16		_							
17		_							
18		_							
19									
20 GF	RANULAR SC	DILS	COHES	SIVE SOILS	(SPT)	PROPORTIONS	WATER CONT		
BLOWS, <4 4-10 10-30 30-50 >50	V. L(M	ENSITY LOOSE DOSE DENSE ENSE	BLOWS/FT. <2 2-4 4-8 8-15 15-30	. DENSITY V. SOFT SOFT M. STIFF STIFF V. STIFF	140 lb. weight falling 30° anto a two foot long 2 " S5 - 0.D. spit spoon sompler PID -	- Penetroted - Recovered Trace 0 to 10% - Hollow-Stem Auger Little 10 to 20% - Spit Spoon Some 20 to 35% - Photoionization And 35 to 50% Detector	D m Dry M = Moist W = Wet		

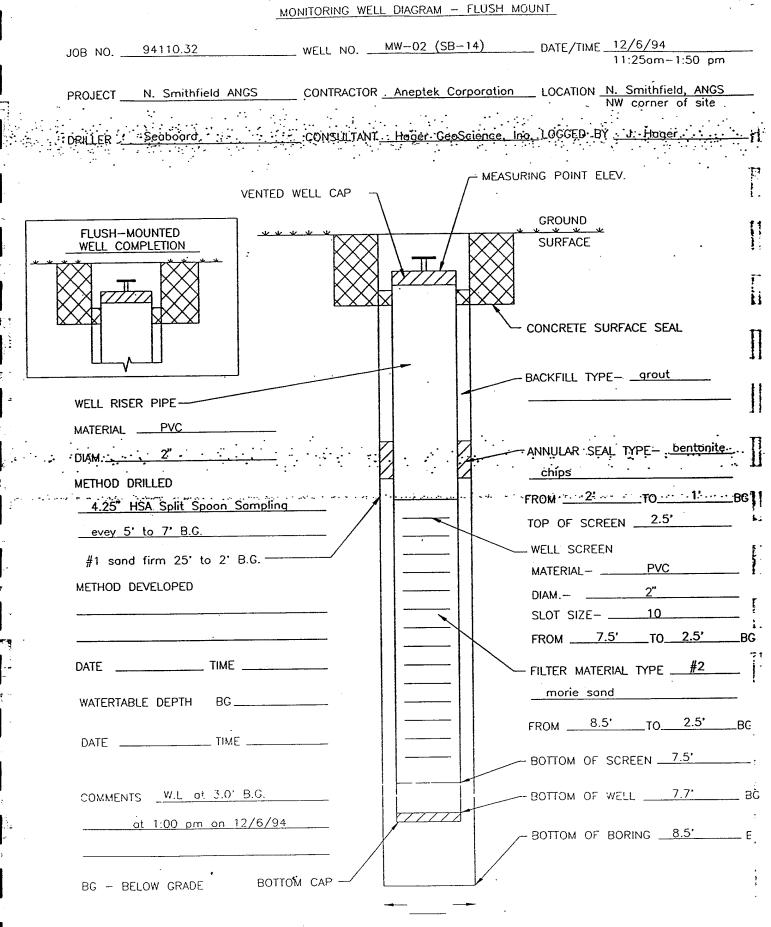
-

•

• •

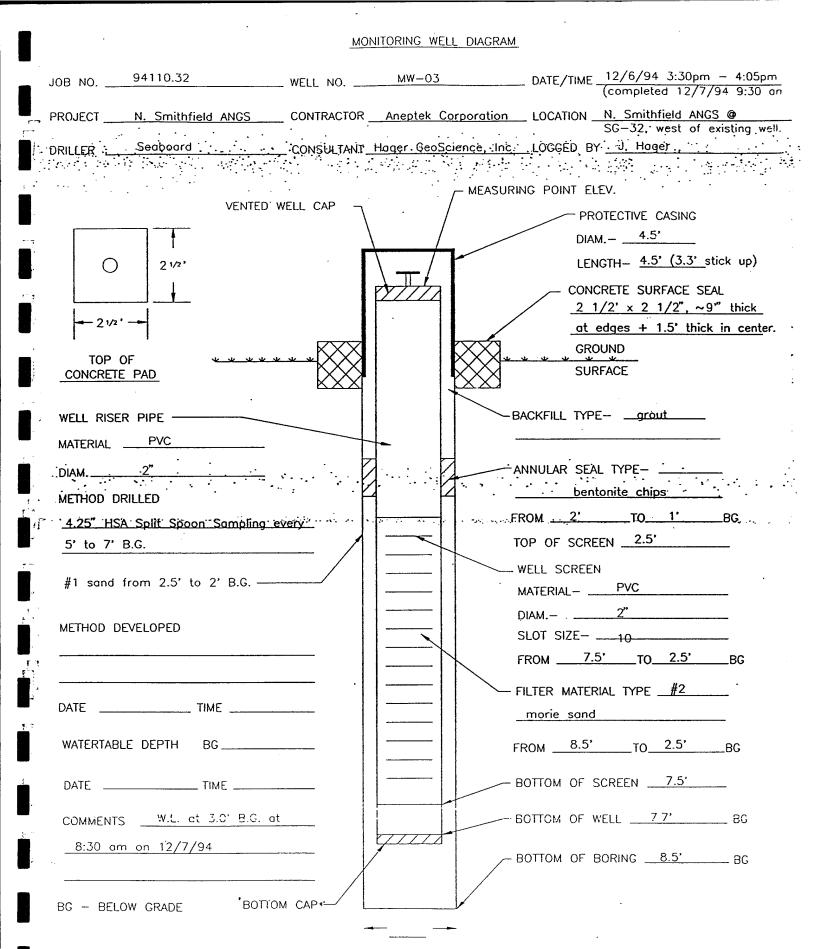

* HNU could not be zeroed; negative readings only, so values were not recorded. Driller and inspector evaluated nature of material.

-


APPENDIX D

.

MONITORING WELL CONSTRUCTION LOGS



HOLE DIAMETER

HOLE DIAMETER

.

HOLE DIAMETER