
Integrated Systems and
Software Engineering Process

ÄEPioved iex public releoagj
_,g^ jDiaHifon&sg ü&iisüted -;^i
)™^1—————- I IIMI.IIl a.nWII.I! J-1..I I.M1L HJ^W I ■**''■*■

19960611 116
SPC-96001-CMC
Version 01.00.04

May 1996

Integrated Systems and
Software Engineering Process

SPC-96001-CMC

Version 01.00.04

May 1996

Susan Rose
Lisa Finneran

Sanford Friedenthal
Howard Lykins

Peter Scott

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1996, Software Productivity Consortium, Herndon, Virginia. Permission to use, copy modify, and distribute this
material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that the above
copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting
documentation. This material is based in part upon work sponsored by the Defense Advanced Research Projects Agency under
Grant #MDA972-92-J-1018. The content does not necessarily reflect the position or the policy of the U.S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity
pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium. SOFTWARE
PRODUCTIVITY CONSORTIUM MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND

CMMSM and Capability Maturity ModelSM are service marks of Carnegie Mellon University.

Microsoft is a registered trademark of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

Other product names, company names, or names of platforms referenced herein may be trademarks or registered trademarks of
their respective companies, and they are used for identification purposes only.

CONTENTS
ACKNOWLEDGMENTS ix

EXECUTIVE SUMMARY xi

1. INTRODUCTION !

1.1 Overview 1

1.2 Objectives ; 1

1.3 Intended Audience 2

1.4 Organization 2

1.5 Using This Report 3

1.6 Typographic Conventions 4

2. PROCESS ISSUES _5

2.1 Overview 5

2.2 Integrated Management and Technical Activities 5

2.3 Standards Compliance : 7

2.4 Managing Complexity g

2.5 Process Adaptability and Tailorability 8

3. THE ISSEP MODEL n

3.1 ISSEP Structure u

3.1.1 Decomposition Strategy n

3.1.2 The Integration Emphasis 14

3.2 ISSEP Notation and Model Structure 14

3.2.1 IDEFO Notation 14

3.2.2 Model Structure 15

3.3 ISSEP Definition 16

3.3.1 Context (A-0) 16

3.3.2 Develop Operational System (AO) 18

3.3.3 Manage System Development (Al) 19

Contents

3.3.4 Design and Verify System (A2) 21

3.3.5 Develop Configuration Item (A3) 22

3.3.6 Integrate and Test System (A4) 30

3.4 Summary 32

4. ISSEP CONCEPTS AND RATIONALE 33

4.1 Systems and Software Interfaces 33

4.2 Information Flow 34

4.2.1 Partial Ordering of Activities 34

4.2.2 Formal/Informal and Major/Minor Information Flows 35
4.2.3 Pull Versus Push Philosophy 36

4.2.4 Tightly Coupled Communications With Reply 36

4.2.5 Management Control of Information Flows 37

4.3 The Development Plan 37

4.3.1 Long-Term Plan 38

4.3.2 Increment Plan 33

4.4 Risk Management 41

5. APPLYING THE ISSEP MODEL 43

5.1 Process Tailoring 43

5.2 Factors That Influence Process Tailoring 44

5.2.1 Project Size and Complexity 44

5.2.2 System Architecture and Organizational Structure 45
5.2.3 Project and Process Familiarity 45
5.2.4 Project Domain 45

5.2.5 Project Risk 45

5.3 Process Tailoring and Increment Planning 46

5.4 Applying ISSEP on a Development Effort 46

5.4.1 Applying ISSEP on a New Project 46

5.4.2 Applying ISSEP to an Ongoing Project 47

5.5 Using ISSEP With Different Life-Cycle Models 48

5.5.1 ISSEP and the Waterfall Life-Cycle Model 49

5.5.2 ISSEP and the Incremental Life-Cycle Model 49

5.5.3 ISSEP and the Evolutionary Life-Cycle Model 50

5.6 Example Application of the ISSEP Model 50

6. PROCESS ISSUES REVISITED 55

Contents

6.1 Integrated Management and Technical Activities 55

6.2 Standards Compliance 56

6.3 Managing Complexity 57

6.4 Process Adaptability and Tailorability 57

APPENDIX A. ISSEPIDEFO DIAGRAMS 59

APPENDIX B. ISSEP ACTIVITY DESCRIPTIONS 71

APPENDIX C. ISSEP INFORMATION FLOW DESCRIPTIONS 83

APPENDIX D. DEVELOP OPERATIONAL SYSTEM CONTEXT (A-l) 101

APPENDIX E. TOOL SUPPORT ENVIRONMENT 107

APPENDIX F. MAPPING TO STANDARDS 109

LIST OF ABBREVIATIONS AND ACRONYMS 115

GLOSSARY H7

REFERENCES 119

FIGURES

Figure 1. System Hierarchy 12

Figure 2. ISSEP Model Decomposition 13

Figure 3. IDEFO Activity 15

Figure 4. Context (A-0) 17

Figure 5. Develop Operational System (AO) 18

Figure 6. Manage System Development (Al) 19

Figure 7. Design and Verify System (A2) 21

Figure 8. Develop Configuration Item (A3) 23

Figure 9. Manage CI Development (A31) 24

Figure 10. Design and Verify CI (A32) 26

Figure 11. Develop Component (A33) 28

Figure 12. Integrate and Test CI (A34) 29

Figure 13. Integrate and Test System (A4) 31

Figure 14. Building Block: Develop Level (n) 32

Figure 15. Partial Decomposition of a Radar Subsystem 50

Figure 16. Context (A-0) 60

Figure 17. Develop Operational System (AO) 61

Figure 18. Manage System Development (Al) 62

Figure 19. Design and Verify System (A2) 63

Figure 20. Develop Configuration Item (A3) 64

Figure 21. Manage CI Development (A31) 65

Figure 22. Design and Verify CI (A32) 66

Figure 23. Develop Component (A33) 67

Figure 24. Integrate and Test CI (A34) 68

Figure 25. Integrate and Test System (A4) 69

Figure 26. Develop Product Line (A-1) 103

TABLES

Table 1. Diagram Structure for the ISSEP Model 16

Table 2. System Increments 39

Table 3. Updated System Increments 39

Table 4. CI1 Increments 39

Table 5. Diagram Structure for Appendix A 59

Table 6. ISSEP/MIL-STD-498 Compliance Matrix Ill

Table 7. ISSEP/CMM Compliance Matrix 114

Tables

This page intentionally left blank.

ACKNOWLEDGMENTS

The Software Productivity Consortium wishes to recognize the following contributors to the
development of this technical report:

• The Integrated Systems and Software Engineering Process (ISSEP) development team: Lisa
Finneran, Sanford Friedenthal, Howard Lykins, Susan Rose, and Peter Scott.

• Our external reviewers: Perry R. DeWeese (Lockheed Martin Aeronautical Systems), Ken Jackson
(Requirements Engineering Limited), and Thomas J. Pighetti (Lockheed Martin Astronautics) for
their comments and suggestions.

• Our internal reviewers: Christine Ausnit, Tim Powell, and Sarah Sheard for their guidance.

• Tim Powell for his role as program manager.

• Lisa Finneran for her support as project manager.

• The Generic Systems Engineering Process (GSEP) development team for creation of the GSEP
concepts and activities which have been incorporated into the ISSEP model.

• The Engineering Software-Intensive Systems (ESIS) Users Group for helping the development team
to focus on areas of concern in the systems and software development process.

• Dennis M. Buede, George Mason University and Wolter J. Fabrycky, Scott F. Midkiff, and Andre T.
Ramos, Virginia Polytechnic Institute and State University, for their insights on application of the
GSEP model which provided a greater understanding of the ISSEP model's underlying concepts.

• Bobbie Troy for her technical editing and Debbie Morgan for her word processing assistance.

Acknowledgments

This page intentionally left blank.

EXECUTIVE SUMMARY

This technical report describes the Integrated Systems and Software Engineering Process (ISSEP)
created by the Software Productivity Consortium (the Consortium). ISSEP's purpose is to enable
improvement of the overall systems development process allowing systems and software engineers to
more efficiently perform their work. The ISSEP model accomplishes this goal by defining a set of
management and technical activities, and most importantly, defining the mechanisms to coordinate and
control the development effort. The ISSEP model integrates the set of management and technical
development activities, incorporates risk management activities, and complies with major systems and
software engineering standards.

Balanced Approach

The ISSEP model provides a balanced process that equally emphasizes the management and technical
perspectives. Management activities provide the control necessary for developing a system. The
technical activities define both the systems and software development activities. A balanced approach
ensures that management is provided the technical expertise necessary for decision making and that the
engineers are provided the plans and procedures for meeting customer, user, and organizational
expectations.

Information Flow

The ISSEP model focuses on information flow and identification of critical systems and software
engineering process interfaces. The information flow defines the coordination and communication
mechanisms necessary for a successful system/software delivery. The ISSEP model defines the
minimum set of required interfaces between management and technical activities, among management
activities, and among the set of technical activities. These interfaces either provide the necessary
information to perform an activity or provide feedback information necessary to identify and mitigate
risk.

Standards Compliance

There are several emerging standards, both military and commercial, that have direct impact on today's
system and software development efforts. Systems/software acquisitions require that industry be
compliant and tailor many of these standards. Therefore, any process industry adopts must comply with
these standards. The ISSEP model provides a high level process framework for implementing these
standards, by defining activities and information flows for integrating the requirements documented in
these standards.

Executive Summary

Adaptable Process

The ISSEP model is an adaptable process and, as such, can be applied to a wide variety of systems and
software development efforts. The ISSEP model is tailorable and can be scaled to a wide variety of
development efforts.

1. INTRODUCTION

1.1 OVERVIEW

For the past several years, the Software Productivity Consortium (the Consortium) member companies,
as well as the software industry as a whole, have identified the need for integrated systems and software
engineering development processes and methods. The Consortium has gathered information concerning
this topic from several meetings, workshops (Software Productivity Consortium 1993b, 1994a, 1995a),
and national and international groups (Office of Naval Research 1994; NCOSE 1995). These needs cover
a broad range, including the lack of integrated/seamless development methods, the lack of management
visibility into the technical activities, and excessive numbers of hardware and software incompatibilities
discovered at integration time. Using this information as input, this technical report describes an
Integrated Systems and Software Engineering Process (ISSEP), including the management and technical
development activities.

The ISSEP model focuses strictly on the development phase of the system and software engineering life
cycle and the interfaces between systems and software. The development phase of the life cycle defines
the parts of the system to be developed and the processes for developing, implementing, and using each
part. The model does not include activities from other parts of the life cycle, such as deployment or
disposal. Future versions of the ISSEP model may address other parts of the life cycle.

1.2 OBJECTIVES

The main purpose of the ISSEP model is to enable improvement of the overall systems development
process by allowing systems and software engineers to perform their work more efficiently. To achieve
this goal, ISSEP deals with the complexity associated with developing large, multifaceted systems by
providing mechanisms for coordinating and controlling the development effort. The ISSEP model takes a
holistic view of systems development because many of the coordination and control challenges take
place where systems, software, and management interface. The objectives of the ISSEP model are to:

• Provide a balanced integration among the systems, software, and management activities

• Support a broad range of applications and projects

• Comply with major systems and software engineering standards

When integrating the systems, software, and management activities into the total model, ISSEP strives to
balance their interplay so that no discipline is over emphasized at the expense of another. The ISSEP

1. Introduction

model defines the critical information flows between activities. The model also defines its interfaces by
identifying where this information is created and describing where and how it is used.

The ISSEP model's scalability ensures that the process is appropriate for use on any size project. The
model is scalable because it defines a generic process that is applicable to the development of systems
and software regardless of size. The ISSEP model defines the process for developing the parts of the
system (including software parts) and provides a process framework for integrating them into the
complete system.

The ISSEP model was developed by investigating and adapting existing processes and process
frameworks. Building on well-known and accepted standards establishes a solid foundation. To help
validate the ISSEP model, the Consortium had the model reviewed by external reviewers, including
individuals involved with the international and national systems and software process standards and
representatives from industry.

1.3 INTENDED AUDIENCE

The primary audience for this technical report consists of those professionals responsible for creating or
modifying a systems and software engineering process. These professionals are usually the process
developers (process engineers) at the organizational or project level (i.e., those who define the process to
be used by the organization as an organizational standard process or instantiate it for use by a project).
The secondary audience is systems and software engineers. Their interest is to gain knowledge and buy-
in to the process. This report assumes the reader has a familiarity with the applicable system and
software standards listed in Section 2.

The ISSEP model focuses on the process information flow and identification of critical systems and
software engineering process interfaces. The ISSEP model provides process developers and process
improvement engineers with an understanding of the information and activities that are critical for
ensuring a smooth transition between systems and software engineering. The process provides guidance
for project practitioners, including managers, developers, and specialty disciplines, by defining where
information is created, how it can be communicated, and where the information is needed for effective
decision making.

1.4 ORGANIZATION

This report includes the following sections and appendixes:

• Section 1, Introduction. This section describes the ISSEP objectives, defines the primary
audience for the report, and provides an overview of each report section.

• Section 2, Process Issues. This section describes the important issues that ISSEP was developed
to address.

• Section 3, The ISSEP Model. This section explains the ISSEP model structure and describes the
model in detail.

• Section 4, ISSEP Concepts and Rationale. This section describes the ISSEP model's systems
and software interface, information flow, development plan, and risk management concepts.

1. Introduction

• Section 5, Applying the ISSEP Model. This section discusses how to apply the ISSEP model. It
describes process tailoring, how to get started applying ISSEP to a development effort, and how
to use the ISSEP model with various life-cycle models.

• Section 6, Process Issues Revisited. This section describes how the ISSEP model addresses the
process issues introduced in Section 2.

• Appendix A, ISSEP IDEFO Diagrams. This appendix contains the IDEFO diagrams of the
ISSEP model.

• Appendix B, ISSEP Activity Descriptions. This appendix contains the ISSEP model activity
descriptions in alphabetical order.

• Appendix C, ISSEP Information Flow Descriptions. This appendix contains the ISSEP model
information flow descriptions in alphabetical order.

• Appendix D, Develop Operational System Context (A-l). This appendix contains a
description of an example context for development of the operational system defined by the
ISSEP model.

• Appendix E, Tool Support Environment. This appendix describes the tool used to define the
ISSEP model and available formats for the ISSEP model.

• Appendix F, Mapping to Standards. This appendix contains a mapping of the activities in
MIL-STD-498 to the ISSEP model activities and the mapping of the Capability Maturity
Model's key process areas to the ISSEP model activities.

1.5 USING THIS REPORT

Appendixes A, B, and C contain the ISSEP model definition. Appendix A contains the IDEFO model
diagrams; Appendix B contains descriptions for each of the activities in the IDEFO diagrams; and
Appendix C contains descriptions for each of the information flows in the IDEFO diagrams. The reader
should consult these appendixes for more specific information about the ISSEP model when reading this
report.

Sections 1 and 2 provide background and rationale for the ISSEP model's creation. Section 3 provides a
textual description of the model and includes a high-level model description that explains the basic
model decomposition strategy and a detailed description of each of the IDEFO diagrams. The purpose of
Section 3 is to provide the reader with a detailed understanding of the model's structure and contents and
the flow of information through the model.

Section 4 describes the important ISSEP model concepts and rationale for how they are modeled.
Section 5 describes how to apply the ISSEP model and provides tailoring guidance, explanations of how
to begin applying the ISSEP model on new and ongoing projects, and a brief example describing an
application of the ISSEP model. Section 6 revisits the process issues defined in Section 2 and explains
how the ISSEP model addresses each issue. Sections 4, 5, and 6 refer to the ISSEP model as described in
Section 3 and assume a familiarity with it.

1. Introduction

1.6 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif font ISSEP information flow names and publication titles.

Boldfaced serif font ISSEP activity names and section headings.

Boldfaced italicized serif font Run-in headings in bulleted lists and low-level titles.

2. PROCESS ISSUES

2.1 OVERVIEW

This section describes the process issues considered when developing the ISSEP model. The ISSEP
model was created to meet the following objectives (listed in order of decreasing priority):

• Define an integrated set of management and technical activities for developing systems
containing software components

- Define the interfaces between the management and technical activities

- Define the interfaces among management activities

- Define the interfaces among technical activities

- Define the interfaces between the systems and software development processes

• Ensure compliance with existing standards and process frameworks

• Manage complexity when developing large, multifaceted systems

• Provide process adaptability and tailorability so that a broad range of applications and project
environments can be addressed while accommodating each project's unique characteristics

The following sections provide additional detail on each objective. Section 6 revisits these process issues
and describes the ISSEP model's approach to addressing each.

2.2 INTEGRATED MANAGEMENT AND TECHNICAL ACTIVITIES

ISSEP provides a balanced process that equally emphasizes the management and technical perspectives.
Successful management requires technical insight, and successful technical activities must be well
managed.

The management activities provide the control necessary for developing a system. These activities focus
on the plans needed to develop the system (e.g., resources, budgets, schedules) and the performance of
the technical activities relative to these plans. Management activities are also responsible for making
midcourse corrections to the plans to ensure successful system development.

2. Process Issues

•

The technical activities define both the systems and software engineering activities necessary to develop
systems containing software. Specifically, these activities include:

• Analyzing and specifying system requirements

Allocating requirements to software, hardware, and people

Analyzing and specifying software requirements

Designing components

Verifying and validating components

Integrating components

The management and technical activities work together to ensure that the development effort has clear
development goals based on customer needs. The management activities strive to establish a rapport with
the customer which aids in the creation of the operational concept which directs the development effort.

The balanced approach to the integration of management and technical activities ensures that neither set
of activities constrains the other or is overemphasized. The ISSEP model's integration addresses the
issues of what information interfaces exist between activities, how and where this information is created,
and how and where this information is used.

The information flow in the ISSEP model focuses on the:

• Information required to perform an activity

• Process interfaces between critical systems and software engineering activities

• Feedback of information used for effective decision making

The ISSEP model defines the minimum set of required interfaces between management and technical
activities, among the management activities, and among the technical activities. These interfaces provide
either the necessary information to perform a process activity or provide feedback information necessary
to identify and mitigate risk. Both management and technical information is needed for effective
implementation of an activity. The management information provides the control mechanisms, (e.g.,
schedule, resources assigned, budget constraints). The technical information provides the system
descriptions and/or products (e.g., requirements, hardware/software allocation, design architecture)
needed to perform an activity, as well as report status and risks to the management activities.

The interfaces between the ISSEP model process activities define the coordination and communication
mechanisms that ensure successful system/software deliveries. The ISSEP model focuses on those
interfaces that are critical and could result in excessive rework if decisions are made without adequate
information. For example, integrating hardware and software components can cause rework if
component interfaces are not adequately defined.

Finally, some information flow from an activity contains requests for action. The responding activities
inform the originating activity(ies) of the action taken and its results. This type of information flow is

2. Process Issues

necessary to ensure that information reaches its appropriate destination and has the anticipated results.
These feedback loops can originate with or terminate at both the management and technical activities.

The ISSEP model takes a high-level, engineering view of the development process, which includes
explicit management and technical activities. There are a number of other views that could have been
used to define the ISSEP model such as a configuration management view and quality assurance view.
Although interesting, these views are not explicitly included in this version of the ISSEP model.

2.3 STANDARDS COMPLIANCE

The ISSEP model was created to include, extend, and leverage the work of others as much as possible.
National and international standards heavily influenced the development of ISSEP. These standards
include MIL-STD-498 (Department of Defense 1994), EIA/IS-632 (EIA 1994), PI220 (IEEE 1994),
ISO/IEC 12207 (ISO/IEC 1995), the Systems Engineering Capability Maturity Model5" (SE-CMM)
(Software Engineering Institute 1994), and the Capability Maturity Model (CMMSM) for Software (Paulk
et al. 1993). The following list gives a brief summary of these inputs:

• MIL-STD-498: Software Development and Documentation. This interim military standard
focuses on establishing requirements for any type of software development and developing the
associated documentation. The standard identifies 19 activities covering the development life
cycle, from project planning to system and software development and deployment. This standard
references Data Item Descriptions that define the contents of the required documentation for
each life-cycle activity.

• EIA/IS-632: Systems Engineering. This interim commercial standard is based on
MIL-STD-499B. It identifies and defines the systems engineering tasks to be performed
iteratively throughout the system life cycle and describes the use of a Systems Engineering
Management Plan for defining and controlling an integrated product and process development
program.

• P1220: Standard for Application and Management of the Systems Engineering Process.
This trial-use standard describes eight elements of a systems engineering process and how the
process should be applied at each of six stages of a typical system life cycle, from system
definition to customer support. A National Standard for Systems Engineering is expected to
result from the merging of this standard with EIA/IS-632.

• ISO/IEC 12207: Information Technology—Software Life Cycle Processes. This international
standard is currently being adapted to create ANSI 016, the future U.S. commercial standard for
software development, which will also include the technical content of MIL-STD-498. ISO/IEC
12207 identifies 17 processes in the life cycle of software, divides each of them into a set of
activities, and divides the activities into sets of tasks. The scope of this standard is the
acquisition, supply, development, operation, and maintenance of software products.

• Systems Engineering Capability Maturity Model (SE-CMM). The SE-CMM describes the
essential elements of an organization's systems engineering process. It does not specify a
process, but rather provides a set of criteria that can be used when evaluating systems
engineering practices.

2. Process Issues

• The Capability Maturity Model (CMM) for Software. The CMM describes the key goals and
practices necessary for consistent quality in developed software. Like the SE-CMM, it provides a
set of evaluation criteria that can be used for assessing the maturity of various elements of a
software development process (e.g., software configuration management, software project
planning, peer reviews, intergroup coordination).

These are the emerging standards, both commercial and military, with the most direct impact on systems
and software development. It is important that processes, like the ISSEP model, comply with these
standards in order to meet a minimal set of accepted government and industry best practices.

In general, these standards and processes describe required systems and software development activities
and may additionally describe the work products produced by the activities. The ISSEP model provides a
high-level process framework for implementing these standards, by defining activities and information
flows for integrating the requirements documented in the standards. Thus, the ISSEP model provides
guidance not found in these standards and complements them by including important interface
descriptions. Although compliant with all of the above standards, the ISSEP model does not include all
the activities defined in the standards. The activities that are not explicitly contained in the ISSEP model
are either not within the scope of the model or not explicitly addressed in the model's high-level
management and development view.

2.4 MANAGING COMPLEXITY

An important consideration when developing systems is the ability to manage complexity and facilitate
engineering of large, multifaceted systems. The ISSEP model addresses managing complexity with
recursion and increments. The ISSEP model assumes that each system contains a hierarchical set of
system parts (e.g., software subsystems, hardware subsystems). The model is applied recursively for each
system part, and each part is responsible for communicating information up to its parent. The model
defines an integrated process for design, development, and integration of the parts by defining the
information and coordination needed by higher and lower levels of the decomposed system.

The ISSEP model takes an evolutionary perspective in aiding complexity management. In other words,
the ISSEP management activities divide the development objectives for the system into manageable
subsets called increments. Defining increments results in determining the order in which technical
activities are completed. Examples of activities that define an increment include producing particular
work products (e.g., a requirements specification), producing a prototype, and mitigating a critical risk.

2.5 PROCESS ADAPTABILITY AND TAILORABILITY

The ISSEP model is a generalized development process; therefore, it is adaptable to a broad range of
applications and project environments. Although the process model is defined at a high level, a very
detailed, enactable process can be derived by tailoring the process. Once tailored, the ISSEP process is
instantiated (i.e., specific resources, methods, and tools are assigned), and the instantiated process is
executed.

The benefits associated with an organization adopting a generalized model that can be tailored for
specific applications include familiarity with the process, continuous process improvement, and
organizational process standardization. Because the same process is used repeatedly, practitioners

2. Process Issues

become familiar with the process and need not be retrained for each project. Processes do not need to be
reengineered or recreated for each project. As knowledge is gained from applying the process, it can be
used to improve the process. As an organization's understanding of the process grows, the process can be
customized to address the organizational needs and goals in an efficient manner.

Process tailoring is defined as creating a specific process from a general one. To tailor the ISSEP model,
a project must consider its unique process drivers. A process driver is a characteristic of the project that
influences the definition of the detailed process activities. Process drivers include characteristics such as
the development strategy (e.g., waterfall, iterative, evolutionary), cost model or contractual constraints,
imposed standards, and required milestones. Before the process can be enacted, each activity must be
instantiated by choosing the methods, tools, techniques, and resources for performing the activity.

Tailorability is critical for generic process models. If process models are too inflexible, they complicate
tailoring by forcing reengineering of the process (i.e., adding or eliminating activities or information
flow from the model) or inhibit the specification required to make a process enactable. As discussed in
Sections 5.1 through 5.3, process tailoring plays an important role in creation of realistic and enactable
plans.

2. Process Issues

This page intentionally left blank.

10

3. THE ISSEP MODEL

This section describes the ISSEP model, including high-level activity and information flow descriptions,
and the modeling approach and notation used. Section 4 describes the concepts and rationale behind the
ISSEP model. Appendixes A, B, and C contain the ISSEP model's IDEFO diagrams, detailed activity
descriptions, and detailed information flow descriptions, respectively.

3.1 ISSEP STRUCTURE

Systems, especially large systems, are decomposed into smaller parts to simplify development. Breaking
a system into smaller parts makes the problem easier to solve and the parts easier to develop. Each part
can be developed independently, sometimes in parallel, and the parts can be integrated to produce the
system. Although this strategy makes each part easier to develop, integrating the parts can produce
problems that may be difficult to solve. Many of the problems with development of large, complex
systems are, in fact, associated with integration. The solution is to develop a means of decomposing the
system into parts that can be independently developed and integrated with relative ease to produce the
complete system.

There are two important aspects to the solution: ensuring that the sum of the decomposed parts is
sufficient for completion of the system (i.e., no significant pieces are missing), and ensuring the parts can
be integrated once produced. Many current development methods aid in decomposing the system (e.g.,
object-oriented methods). Development methods are necessary, but in the end it is unrealistic to assume
that any method, no matter how rigorously applied, provides flawless results. All system and software
development efforts require a process framework that provides the ability to recognize potential
development problems and take corrective actions early, before problems become more costly to solve.

Therefore, the ISSEP model defines the decomposition strategy for system development, which includes
information exchange and risk management mechanisms so that potential problems are addressed early
in the life cycle. The ISSEP model focuses on planning for the integration in design and implementation
at all levels of the decomposed system. The following sections discuss how the ISSEP model addresses
these problems.

3.1.1 DECOMPOSITION STRATEGY

A system decomposition is a hierarchy of system parts (see Figure 1). The total, integrated system is at
Level 0, or the root level. In the simplest case, customer needs (e.g., system requirements) are input to
the root level, and the completed system is output. If the system were small and simple, it could be
implemented at the root level (Level 0), and there would be no need for either decomposition or

li

3. The ISSEP Model

integration. The decision about whether the system needs to be decomposed and, if so, a description of
each decomposed part, is made when the system is designed and the development risks are analyzed.

System parts are defined as the results of the decomposition. In Figure 1, the system parts are segments,
subsystems, software and hardware configuration items (CSCI and HWCI), hardware components, and
software units. Figure 1 illustrates a sample decomposition in which Level 0 is the system level, Level 1
is the segment level, Level 2 is the subsystem level, Level 3 is the configuration item (CI) level, Level 4
is the component and unit level, and Level 5 is the unit level. Some of the parts in Figure 1 have not been
decomposed into components so that the entire figure could be scaled to fit the page width.

SW Unit 1.1.1.1

System

Segment 1 Segment 2

_T
Subsystem 1.1

X
Subsystem 1.2

CSC11.1.2
_L

HWC11.1.3

SW Unit 1.1.2.1 SW Unit 1.1.2.2

SW Unit 1.1.2.2.1 SW Unit 1.1.2.2.2

Subsystem 3.1

H.
Segment 3

Subsystem 3.2

X

CSCI 3.2.1

_L
Subsystem 3.3

HWCI 3.2.2

X X
HW Component 3.2.2.1 HW Component 3.2.2.2

Figure 1. System Hierarchy

A design activity exists at each level in the hierarchy. The design activity at each level defines the:

• Decomposition at the next lower level, if needed

• Requirements for each of the decomposed parts

• Risks associated with satisfying the requirements passed down from the parent level

• Risks associated with the lower-level decomposition that have been passed up from below

The design activity at the higher level defines the system decomposition for the next lower level and
passes its development requirements to each child. The child design activity analyzes the requirements
and defines its development strategy accordingly. The parent design activity receives each child's
decomposition strategy, implementation plan, and development strategy. The parent design activity is
then responsible for determining whether development should continue as defined by each child. If
changes to the parent or child decomposition are necessary, the design activities in the new or redefined
system parts perform the same actions, and so on until an acceptable decomposition is defined. As the
system is further and further decomposed, the decomposition strategy, the implementation plan, and the
risks associated with each level of decomposition are passed up the hierarchy for analysis.

If the system contains software, at some point in system decomposition, software-only system parts are
defined. The ISSEP model is not restricted to development of systems with software components;
however, the focus for this version of the model is software-intensive systems. Although the details of
the design activity in the ISSEP model differ for systems and software parts, the decomposition strategy
is the same. Software parts are decomposed, and their design activities pass risk and design information
back to the system part from which they were decomposed.

12

3. The ISSEP Model

The ISSEP model is intended to define the design process at each level of the system hierarchy.
Therefore, the ISSEP model is instantiated hierarchically to match the system decomposition. That is,
ISSEP is used at each level of the system decomposition to aid in developing the next lower-level
decomposition.

The ISSEP model can contain as many process levels as appropriate for the system under development.
However, the ISSEP model has divided the different system parts identified in Figure 1 into three groups
based on the process used to implement that part. The groups are system, CI, and component. The ISSEP
model defines the system grouping to include the system, segment, and subsystem parts. The process for
developing these parts includes the system engineering design activities. The ISSEP model defines the
CI grouping to include software and hardware CIs and software units that are further decomposable. The
process for developing these parts includes the software and hardware design activities, but does not
include the implementation of the software or hardware. The ISSEP model defines the actual
implementation of software and hardware in the process for developing components. Components,
therefore, cannot be decomposed and represent the leaves of the hierarchy.

In the most basic case, the ISSEP model consists of two levels of decomposition: the system level and
the CI level. In this case, the higher level is the system level and is named the Operational System level
and the lower level is the CI level (see Figure 2). A distinction is made between the two levels because
the ISSEP model defines the system and CI development processes differently. However, these two
levels are decomposable and can create a process with as many levels as necessary to develop the
system.

Figure 2 shows three boxes outside the dashed boxes—Manage System Development, Design and
Verify System, and Integrate and Test System—that define the Operational System level. The four
boxes within the dashed boxes—Manage CI Development, Design and Verify CI, Develop
Component, and Integrate and Test CI—define the activities for each Configuration Item level. The
operational system can be decomposed into more than one CI, as noted with the dashed boxes shadowing
the dashed box in the foreground. The CIs, in turn, can be decomposed into more than one component.
The solid boxes that shadow the Develop Component box similarly represent the components that
makeup the CI.

Manage

System

Development

Operational System

Design and

Verify System
Integrate and

Test System

Manage CI

Development

Configuration Item

Design and

Verify CI
Integrate and

Test CI

1-1 1
Develop

Component

Figure 2. ISSEP Model Decomposition

13

3. The ISSEP Model

Figure 2 shows only the activities that need to be performed for each system hierarchy level. For
simplicity, the interfaces and information flow between activities are omitted in this figure. However, the
information flows are the vital link to ensure successful integration between levels and, ultimately, a
successful system.

3.1.2 THE INTEGRATION EMPHASIS

Most of the activities traditionally associated with integration and testing take place in the integrate and
test activity boxes (e.g., Integrate and Test System and Integrate and Test CI) included at every
decomposition level. However, in the ISSEP model, integration considerations begin during the design.
The design activities are named Design and Verify System and Design and Verify CI to reflect the fact
that they encompass more than the traditional design activities.

The management boxes in Figure 2 have a gray background for emphasis. Every level has an associated
management box representing that level's planning and tracking activities. The management activities
control the flow of information. These activities receive information from above, below, and within the
process hierarchy. The information is used in producing plans that direct the development effort,
including integration analysis and planning.

During design, when the decomposition is being analyzed, one of the critical evaluation factors is
integration risk. Integration risks are identified and documented as part of the design along with the
integration and test procedures and integration plan. These procedures and plan are the by-products of
careful integration analysis done during design and used by the management activities during planning.
Thus, in much the same way that the decomposition strategy, at each decomposition level, is evaluated
based on design and implementation risks, it is also evaluated based on integration risks.

The remainder of this section describes the full ISSEP model, including activity and information flow
descriptions, emphasizing decomposition and integration.

3.2 ISSEP NOTATION AND MODEL STRUCTURE

This section describes the notation used to model ISSEP and provides the hierarchy of the ISSEP model.

3.2.1 IDEFO NOTATION

The IDEFO notation was selected for modeling ISSEP because it is widely used for "developing
structured graphical representations of a system or enterprise" (Department of Commerce 1993). The
tool used for generating the IDEFO diagrams and reports is System Architect/Business Process
Reengineering (SA/BPR) (Popkin Software and Systems, Incorporated 1991-95).

The model is consistent with the IDEFO standard (see Figure 3), so that a "box" is a rectangle
representing a function, and an "arrow" is a directed line representing the movement of data or objects.
Each box on a diagram has a number in the bottom right corner to identify it within the diagram. If the
box refers to a child diagram representing the decomposition of the function, then the number of that
child diagram is placed below the bottom right corner of the box. "Input arrows" enter the left side of a
box, and "output arrows" leave from the right side. "Control arrows" enter the top of the box, and
"mechanism arrows" enter the bottom of a box.

14

3. The ISSEP Model

Control

"
Input

Function
Name

0

Output

Mechanism

i k I i i) AO

Tunneled Mechanism

Input arrows represent data or objects required by a function to
produce the desired outputs. Output arrows represent what is
produced by the function. Control arrows specify the conditions
required for the function to produce correct outputs. Input and
control arrows differ in that control arrows provide guidance
that determines how the inputs are to be used in creating the
outputs. A mechanism arrow represents the means used to
perform a function.

Figure 3. IDEFO Activity

In the ISSEP model, a plan is the usual data in a control arrow because the plan allocates schedule and
budget and defines the scope of work to be performed by the activities. Without the plan, an activity is
unconstrained; therefore, the activity may fail to meet important time and cost considerations and may
not produce all aspects of the desired output (e.g., the output may not have the desired scope, structure,
or content). For example, the system design plan constrains the design activity. The input arrows to the
design activity include the system requirements, which are to be transformed by the activity into a
system design. In ISSEP, the important mechanism is the Development Environment.

Arrows (and their meanings) may be combined through "bundling" and separated through "unbundling,"
as represented by joins and forks. Hierarchical decomposition of functions is represented by "child
diagrams" that show the detail within each decomposed box. The same arrows enter and leave a child
diagram as enter and leave the parent box. However, if an arrow enters a box, but is not shown entering
the corresponding child diagram, then its arrowhead is marked with parentheses. This is known as
tunneling. For the ISSEP model, the data or objects represented by a tunneled arrow enter every box in
the child diagram.

3.2.2 MODEL STRUCTURE

Table 1 lists the hierarchy of diagrams representing the ISSEP model and gives the corresponding figure
numbers for the diagrams in this section and the enlarged versions in Appendix A. Diagram A-0,
Context, represents the ISSEP model as a single box. Diagram AO, Develop Operational System, is the
top level decomposition of the process and will be used to introduce some of the important features of
the model.

15

3. The ISSEP Model

Table 1. Diagram Structure for the ISSEP Model

Diagram Number Diagram Title Section 3
Figure Number

Appendix A
Figure Number

A-0 Context Figure 4 Figure 16

AO Develop Operational System Figure 5 Figure 17

Al Manage System Development Figure 6 Figure 18

A2 Design and Verify System Figure 7 Figure 19

A3 Develop Configuration Item Figure 8 Figure 20

A31 Manage CI Development Figure 9 Figure 21
A32 Design and Verify CI Figure 10 Figure 22

A33 Develop Component Figure 11 Figure 23

A34 Integrate and Test CI Figure 12 Figure 24

A4 Integrate and Test System Figure 13 Figure 25

Diagrams AO through A4 are the focus of this technical report. Diagram A-0 provides the external
interfaces to the Operational System.

3.3 ISSEP DEFINITION

This section focuses on diagrams listed in Table 1. Each subsection contains a diagram and a description
of the activities and information flows. Diagram A-l illustrates a typical context for the system
development and resides in Appendix D (see Figure 26). The layout of the activities in the IDEFO
diagrams in the ISSEP model does not represent time sequencing or dependencies; rather, the layout
defines the information flows between activities. The objective of the layout design is to make
information flows as clear and easy to follow as possible.

In the descriptions that follow, occasionally there are references to information flows that do not appear
on the associated diagram. These information flows are either bundled into the flows that are on the
diagram (see information flow descriptions in Appendix C) or are flows that are on the referenced child
diagram (see the child diagram and description for additional information).

3.3.1 CONTEXT (A-0)

Figure 4 defines the external interfaces for the Develop Operational System activity.

16

3. The ISSEP Model

Organization Plan/Status

Reusable A«5SPt<? V

Operational System Develop
Operational

System
0

Customer Needs —k.
—► System Baseline/Plan/Status

w
w

Development Environment

(i O i i AO

Manufacturing System

Figure 4. Context (A-0)

The control Organization Plan/Status contains the planning documents and the associated status
information used to guide and constrain the system development, such as organization structure and
objectives, cost and resource constraints, and organizational policies and procedures. The plan and
associated status provide context for managing the system development.

Reusable Assets consist of developed system parts and their associated documentation, such as
requirements, design and design rationale, integration and test plans, unit test cases, results of testing,
certification documentation, user documentation, and management plans and status information. These
reusable assets are available for inclusion in the developing system, as needed. Customer Needs define
the customers' and stakeholders' goals for the system from its conception until it is decommissioned,
including the reasons for the system's existence. In addition, the Customer Needs define the operational
concept that describes how the system is intended to function, the measures of system effectiveness,
critical influencing factors, customer requirements, and customer expectations. Parts and Materials refer
to the hardware items that are used in the creation of hardware components.

The mechanism Development Environment consists of the tools, methods, and people that will execute
the development process. The mechanism Manufacturing System supports the fabrication of hardware
components and the integration and test activities.

The Operational System that is produced is the system as delivered to the customer and may include
maintenance and user documentation. The System Baseline/Plan/Status includes planning documents and
associated status information, design documentation, integration and test information, and software
source code, which meet the objectives of the entire project.

17

3. The ISSEP Model

3.3.2 DEVELOP OPERATIONAL SYSTEM (AO)

Figure 5 defines the system-level activities and is a decomposition of the Context (A-0), and therefore,
has the same external interfaces. There are three system-level activities and one configuration item-level
activity. One of the system-level activities, Manage System Development, manages the two technical
activities, which perform the design, verification, integration and testing of the system. Manage System
Development also provides overall control to the configuration-item-level activity. The
configuration-item-level activity includes the management and technical subactivities required to
develop a CI.

Organization Plan/Status

Customer Needs
 ►•

Manage
System

Development
1

Reusable Assets

System Baseline/Plan/Status

A1 System Design Plan

Design and
Verify System

A2

Parts and Materials

System Development Results

System Design & Verification

Requirements

System Developmen

System

Baselined System l&T Procedures

Baselined CI Devt. Results

Plan/Status

CI
Develop

Configuration
Item

Baselined Customer Needs/

Baselined System l&T Results

Manufacturing System

Integrate and
Test System

" A4

A3

CI Baseline/Plan/Status

System l&T Results

Operational System

Figure 5. Develop Operational System (AO)

The Develop Operational System activity in the decomposition contains the following activities:

• Box 1, Manage System Development, plans, controls, and coordinates the development of the
system. This activity uses the Organization Plan/Status and the Customer Needs as a basis for
planning the system development, including the definition of the system increments. The results
of the design, development, and integration and test activities, along with status information
gathered from the System Development Results, which includes the System Design &
Verification, the System l&T Results, and the CI Baseline/Plan/Status, are used to produce the
System Baseline/Plan/Status, which grows as system development progresses to include all
nontangible parts of the system.

• Box 2, Design and Verify System, evolves a System Design from the Baselined Customer Needs
by analyzing those needs to define the System Requirements. The optimum design solution is
selected from alternative functional and physical architectures. This activity uses the adaptable
system requirements and functional and physical architectures contained in the Reusable Assets
if they can be adapted to the system under development. The System l&T Procedures are
produced for later use by the Integrate and Test System activity. After integration and test is
complete, the Baselined System I&T Results are input back into this activity so that the results
can be verified and it can be determined whether the system is ready for delivery to the
customer.

18

3. The ISSEP Model

• Box 4, Integrate and Test System, assembles and tests the hardware and software configuration
items according to the Baselined System I&T Procedures, which include test cases and expected
results, and documents the outcome in the System I&T Results, which describe the status of the
integration and test process and any exceptions to the observations expected by the procedures.
This activity produces the Operational System, which is delivered to the customer. The
Operational System is the tangible part of the system, but it may contain nontangible items such
as software and user documentation.

The following bullet describes the configuration-item-level activity:

• Box 3, Develop Configuration Item, creates an integrated and successfully tested configuration
item that meets the CI Requirements generated in the Design and Verify System activity and
baselined in the Manage System Development activity as part of the System
Baseline/Plan/Status. This activity uses the System Development Plan/Status as a control and
documents any status information and risks as part of the CI Baseline/Plan/Status. In the case of
a hardware CI, the input Parts and Materials and the mechanism Manufacturing System are used
to create any tangible components. This activity also uses the adaptable CI requirements and
architectural and detailed designs contained in the Reusable Assets if they can be adapted to the
CI under development.

3.3.3 MANAGE SYSTEM DEVELOPMENT (Al)

Figure 6 shows the ISSEP management activities at the system level. This activity is responsible for
maintaining baselines of the system-level products and managing the system-level activities. This
activity defines the system context (e.g., objectives, goals, stakeholders), analyzes system risks, and uses
this information along with the current development status to produce the system development plan. The
management activities are repeated every increment; thus, the system context, risks, and plan are
reviewed, and the plan is modified to reflect the current status and is updated, as necessary, to ensure that
the project remains focused on critical project objectives.

Organization Plan/Status

Customer Needs !_
Control
System
Baseline

System Baseline/Plan/Status

Baseline* EoS

Organizatioji Plan/Status

Baselined Customer Needs' Understand
System
Context

System Development Results

Estimate o

System Development Plan

Baselined Ris : Management Plan

nizatiofi Organization Plan/Status

Analyze
System Risk

the Situation

Risk Managemer

Baselinet I Increment Plan

Organization Plan/Status

Plan Sys.
Increment

Development]—,
4

Incremen Plan

Baselined Increment Results

Organization Plan/Status

Track
Sys. Increment
Development

5

ition Organization Plan/Status

Develop/
Update

System Plan

System Development Pia i Update

Increment Requirements

Figure 6. Manage System Development (Al)

19

3. The ISSEP Model

The following list describes the management activities:

Box 1, Control System Baseline, establishes a product baseline for the system. Every
nontangible part of the system, at some point, is input into this activity. Each part is reviewed to
determine whether it qualifies for baselining and, if accepted, is added to the current system
baseline that is output. Even the outputs from the other management activities are baselined in
this activity. The rigor of the review and baseline functions are determined by the system
development plan and can range from an informal review and creation of a new version of the
system baseline to a formal acceptance followed by formal configuration management. As part
of the review activity, changes to the previous baseline are noted, and these changes are stored,
tracked, and analyzed as part of the planning process. This activity serves as a synchronization
point between the technical baseline and management plans. Every time the baseline is modified,
the other management activities in this diagram are performed. This procedure ensures that the
current plans always reflect the current baseline and vice versa.

Box 2, Understand System Context, identifies factors that could have an influence on the
success of the system development and defines the scope of this increment of the development.
The Baselined Customer Needs are analyzed, along with other pertinent parts of the current
System Baseline/Plan/Status, to determine the increment objectives and constraints and to
identify alternatives for meeting the objectives while remaining within the constraints. This
information is documented in the Estimate of the Situation.

Box 3, Analyze System Risk, identifies potential increment risks and analyzes the risks to
determine which are critical to the development effort and when mitigation action is
recommended. The activity uses this information to develop a set of mitigation strategies for
each risk and a time table for implementing the mitigation strategies. The main source used for
identifying the risks is the Estimate of the Situation, and the output from the analysis is the Risk
Management Plan.

Box 4, Plan System Increment Development, creates the detailed development plan for the
next increment. This activity uses the Baselined Risk Management Plan and the Increment
Requirements to determine how to achieve the increment objectives and mitigate risk.
Development goals for the increment are established and used as a basis for selecting a
development strategy. Detailed size, cost, and schedule estimates are made. The development
process for the increment is tailored and instantiated, and detailed work assignments are
documented. This detailed planning remains within the scope of the System Development Plan,
adding detail, as necessary, to make the plan enactable. The output of this activity is the
Increment Plan.

Box 5, Track System Increment Development, uses the System Development Results to assess
the progress and analyze the seriousness of situations that arise during development. This
activity controls the enactment of the Baselined Increment Plan and ensures that the
development is enacted according to plan. When the development deviates too far from the plan
or when the development goals documented in the plan are met, this activity terminates the
development activities and initiates the Develop/Update System Plan activity.

Box 6, Develop/Update System Plan, uses the Baselined Increment Results to create the System
Development Plan. This plan defines each of the development increments at a high level. If a

20

3. The ISSEP Model

System Development Plan already exists, this activity updates the plan based on the results of the
past increment development efforts, including lessons learned, newly identified risks, and status
information. If this is the first increment, this activity generates the first version of this plan from
the context information and risk analysis. This plan is a living document and is kept accurate and
current.

3.3.4 DESIGN AND VERIFY SYSTEM (A2)

Figure 7 defines the system design and verification activities in the ISSEP model. The major input is the
Baselined Customer Needs, and the major control flow is the System Design Plan. There are three design
activities that are followed by two evaluation and verification activities. The results of the evaluation,
validation, and verification are fed back and used to make appropriate modifications, and the revisions
are also evaluated, validated, and verified.

Reusable Assets

System Desigi Plan

Analyze
System

Requirements!—v

1

System Requirement:

>| Define
Functional

Architecture

Functional Architecture

Synthesize
Physical

Architecture

Physical Architecture

Alternatives & Custome ■ Needs
Evaluate
System

Alternatives

Baselined System l&T Results

System Design Results

System Design

System Evaluation Results

System Design & Verification

Validates
VerifySystem

Solution
5

System !&'' Procedures

System V&V

J
Results

Baselined Customer Needs

Figure 7. Design and Verify System (A2)

The following list describes the design activities:

• Box 1, Analyze System Requirements, examines the Baselined Customer Needs to assess the
problems the system is to solve, determines the needs that the system is to address, defines the
environment in which the system is to operate, and defines the requirements that the system must
satisfy to be acceptable to the user and customer of the system. This activity uses the adaptable
system requirements contained in the Reusable Assets if they can be adapted to the system under
development. The resulting System Requirements will then define the behavioral and
performance requirements for the system that, when met, satisfy the system developer's
obligations in the production of the system.

21

3. The ISSEP Model

• Box 2, Define Functional Architecture, creates a Functional Architecture by partitioning the
System Requirements. The Functional Architecture is made up of a hierarchy of functions, their
internal behavior, and their interfaces. These interfaces can be electrical, mechanical, or logical.
Interfaces define the interactions of the functions with each other as well as with the external
environment. Using criteria that include performance and design considerations, this activity
identifies alternative feasible solutions that meet the requirements. The adaptable functional
architectures contained in the Reusable Assets are used if they can be adapted to the system
under development.

• Box 3, Synthesize Physical Architecture, allocates the System Requirements and the elements
of the Functional Architecture to a Physical Architecture that defines the viable alternatives in
terms of hardware, software, and people (procedures). This activity defines where the functions
are accomplished, the technical parameters that drive the performance of the parts of the system,
and how the interfaces communicate the interactions among the parts. The adaptable physical
architectures contained in the Reusable Assets are used if they can be adapted to the system
under development. This activity identifies alternative feasible solutions that implement the
requirements and functions.

The following list describes the evaluation and verification activities:

• Box 4, Evaluate System Alternatives, performs trade studies of the alternative functional
architectures to select the alternative that best supports the Baselined Customer Needs and
System Requirements. The physical solution alternatives are analyzed to determine which one
best satisfies the allocated functional and performance requirements, interface requirements, and
design constraints. The resulting System Design identifies the preferred alternative based on a
comparison of all alternatives and includes a record of requirements, alternatives, and design
decisions. The System Evaluation Results document the studies and any proposed improvements.

• Box 5, Validate & Verify System Solution, evaluates the System Requirements to ensure that
they represent the Baselined Customer Needs and project constraints and that all operations and
support concepts have been fully addressed. The completeness of the Functional Architecture is
assessed to determine whether the validated requirements are satisfied. The Functional
Architecture verifies that the Physical Architecture is traceable to the verified Functional
Architecture and to the validated System Requirements. The System I&T Procedures describe
how the hardware and software CIs are to be progressively assembled and tested to determine
compliance with the System Requirements and System Design. Analyzing the Baselined System
I&T Results, which document the outcome of the Integrate and Test System activity,
determines whether any changes have to be made to the requirements or architecture of the
system and verifies that the system is complete and ready for delivery. The System V&V Results
document the results of any form of verification and/or validation completed on any of the work
products produced in the design of the Operational System, including testing the system itself.

33.5 DEVELOP CONFIGURATION ITEM (A3)

Figure 8 defines the activities necessary to develop a single CI. Although there is only one Develop
Operational System activity for a given operational system, there may be multiple Develop
Configuration Item activities. For each instance of this activity, there is a Manage CI Development
activity to manage development of the entire CI and a Design and Verify CI activity that elaborates

— - - - - _

3. The ISSEP Model

requirements and produces an architectural and detailed design. There will be as many Develop
Component activities as necessary to code and unit test (or in the case of reusable components, to
procure) the components. Finally, there is a single Integrate and Test CI activity to assemble cohesive
collections of components into builds (ultimately, into the entire CI).

System Development Plan/Status

Figure 8. Develop Configuration Item (A3)

The Develop Configuration Item activity in the decomposition contains the following activities:

• Box 1, Manage CI Development, plans, controls, and coordinates the development of the CI of
concern. This activity uses the System Development Plan/Status (produced by the Manage
System Development activity) along with the CI Requirements (allocated to the CI by the
Design and Verify System activity) as a basis for planning the CI development, including the
definition of the CI development increments. The results of the design, development, and
integration and test activities produce the CI Baseline/Plan/Status, which grows with each build
oftheCI.

• Box 2, Design and Verify CI, transforms the Baselined CI Requirements into a set of
Component Requirements, taking into account the Baselined CI I&T Results (for the second and
subsequent iterations). If there are Reusable Assets, this activity reviews them for use in the CI
under development, as well as for reusable fragments of requirements and design specifications.
In addition, it produces CI I&T Procedures (part of CI Design and Verification), which are
baselined for use by the Integrate and Test CI activity. Note that this activity does not
communicate directly with the Develop Component activity; instead, outputs are first baselined
by the Manage CI Development activity.

23

3. The ISSEP Model

• Box 4, Integrate and Test CI, assembles and tests the components according to the Baselined
CII&TProcedures, which include test cases and expected results, and documents the outcome in
the CI I&T Results, which describe the status of the integration and test process and any
exceptions to the observations expected by the procedures. An unsuccessful completion of this
activity implies the need for reimplementation of the Design and Verify CI activity (and, if
problems cannot be resolved there, reimplementation of the Design and Verify System activity
as well). Successful completion of integration and test for the entire CI produces the CI.

The following bullet describes the component-level activity:

• Box 3, Develop Component, creates an integrated and successfully tested component that meets
the Component Requirements generated in the Design and Verify CI activity and baselined in
the Manage CI Development activity as part of the CI Baseline/Plan/Status. This activity uses
the Component Development Plan as a control and documents any status information and risks in
the Component Devt. Results/Status. In the case of a hardware component, the input Parts and
Materials and the mechanism Manufacturing System are used to create any tangible parts. This
activity also uses the adaptable components requirements and architectural and detailed designs
contained in the Reusable Assets if they can be adapted to the component under development.

3.3.5.1 Manage CI Development (A31)

Figure 9 shows the ISSEP management activities at the configuration-item level. This activity is
responsible for maintaining baselines of the configuration-item-level products and managing the
configuration-item-level activities. This activity defines the configuration item context, analyzes
configuration item risks, and uses this information along with the current development status to produce
the configuration item development plan. The management activities are repeated every increment; thus,
in every increment the context, risks, and plan are reviewed, and the plan is modified to reflect the
current status and updated, as necessary, to ensure that configuration item development remains focused
on critical configuration item objectives.

System Development Plan/Status

CI Requirements I s^e"\ Development Plan/Status
Control CI |

CI Baseline/Plan/Status

Baselinec CI EoS

£ /stem Development PlanVstatus

Baselined

Analyze CI
Risk System Development Plan/Stati 5

Plan CI
Increment

Development I—,
4

CI Incremen

Increment Plan

System Development Plan/s|atus

Track CI
Increment

Development

CI Incremen Results

Increment Results

Systen Development Plan/Status

Develop/
Update CI Plan

CI Development Plan Update

CI Increment Requirements

Figure 9. Manage CI Development (A31)

24

3. The ISSEP Model

The following list describes the management activities:

• Box 1, Control CI Baseline, establishes a baseline of the CI. Every nontangible part in the CI
(e.g., components, plans, and design documents), at some point, is input into this activity where
it is reviewed to determine whether it qualifies for baselining and, if accepted, added to the
current baseline, which is output. Even the outputs from the other management activities in this
diagram are baselined in this activity. As part of the review activity, changes to the previous
baseline are noted, and these changes are stored, tracked, and analyzed as part of the planning
process.

• Box 2, Understand CI Context, identifies factors that could have an influence on the success of
the CI development and defines the scope of this increment of the development. The Baselined
CI Requirements are analyzed, along with other pertinent parts of the current CI
Baseline/Plan/Status, to determine the increment objectives and constraints and to identify
alternatives for meeting the objectives while remaining within the constraints. This information
is documented in the CI Estimate of the Situation.

• Box 3, Analyze CI Risk, identifies potential increment risks, analyzes the risks to determine
which are critical to the development effort and when mitigation action is recommended. The
activity uses this information to develop a set of mitigation strategies for each risk and a time
table for implementing the mitigation strategies. The main source used for identifying the risks is
the Baselined CI EoS, and the output from the analysis is the CI Risk Management Plan.

• Box 4, Plan CI Increment Development, creates the detailed development plan for the next CI
increment. This activity uses the Baselined CI RMP and the CI Increment Requirements to
determine how to achieve the increment objectives and mitigate risk. Development goals for the
increment are established and used as a basis for selecting a development strategy. Detailed size,
cost, and schedule estimates are made. The development process for the increment is tailored and
instantiated, and detailed work assignments are documented. This detailed planning remains
within the scope of the CI Development Plan, adding detail, as necessary, to make the plan
enactable. The output of this activity is the CI Increment Plan.

• Box 5, Track CI Increment Development, uses the CI Development Results to assess the
progress of the development and analyze the seriousness of situations that arise. This activity
controls the enactment of the Baselined CI Increment Plan and ensures that the development is
enacted according to plan. When the development deviates too far from the plan or when the
development goals documented in the plan are met, this activity terminates the development
activities and initiates the Develop/Update CI Plan activity.

• Box 6, Develop/Update CI Plan, uses the Baselined CI Increment Results to create the CI
Development Plan. This plan defines each of the development increments at a high level. If a CI
Development Plan already exists because it was created in a previous increment, this activity
updates the plan based on the results of the past increment development efforts, including lessons
learned, newly identified risks, and status information. If this is the first increment, this activity
generates the first version of this plan from the context information and risk analysis. This plan
is a living document and is kept accurate and current.

25

3. The ISSEP Model

3.3.5.2 Design and Verify CI (A32)

Figure 10 defines the software design and verification activities. The major input for this activity is the
Baselined CI Requirements, output from the Manage System Development activity where the
requirements were baselined. As with the Design and Verify System activity, there are three design
activities that are followed by two activities for evaluation and verification. The only difference between
the system-level activity and this one is that Define Functional Architecture and Synthesize Physical
Architecture have been replaced with Perform Architectural Design and Perform Detailed Design,
respectively. As at the system level, the results of evaluation and verification are fed back into the
requirements analysis and design activities.

Reusable Assets CI Design

CI Design

Analyze CI
Requirements

CI Requirements Specification

Baselined CI Requirements CI Requirements/Alternatives

Figure 10. Design and Verify CI (A32)

The following list describes the Cl-level design activities:

• Box 1, Analyze CI Requirements, refines the Baselined CI Requirements to produce a
requirements specification that is usable by the design, evaluation, and verification and
validation methods of choice. If Reusable Assets are available, this activity examines them to
find existing components as well as requirements specification and design artifacts for potential
reuse. The output of this activity elaborates the behavioral and performance requirements for the
CI, ensuring that they are sufficiently detailed for use in the design. These requirements, if met,
will ensure that the CI satisfies the Baselined CI Requirements. In some cases, issues arising in
this activity will necessitate reimplementation of system design and/or requirements analysis
activities.

• Box 2, Perform Architectural Design, creates a CI Architecture by allocating requirements to
software components and describing their interrelationships (e.g., dependencies and interfaces
between components). This activity uses the Reusable Assets, if available, to locate any
components or architectural fragments to be reused. The dependencies, input/output behavior,
and performance constraints (e.g., throughput, stimulus/response time) of each component are
specified in this activity.

26

3. The ISSEP Model

• Box 3, Perform Detailed Design, specifies any necessary information about the internal
structure of the components identified in the Perform Architectural Design activity. Such
information can include mandated algorithms, data structures, or code fragments (either existing
or to-be-developed), details of internal logic (e.g., conditional paths of execution and the timing
allocations for each), and any other constraints on the internal design. If available, the Reusable
Assets are reviewed for any reusable specifications or specification fragments.

The following list describes the evaluation and verification activities:

• Box 4, Evaluate CI Alternatives, selects the requirements specification, software architecture,
or detailed design that best meets the Baselined CI Requirements (both functional and
performance requirements). It is also important that the alternative meets the constraints in the
CI Design Plan. This activity is invoked after (and perhaps during) each of the preceding design
activities; results of the evaluation may necessitate reimplementation of one or more previous
activities. If at least one alternative meets all applicable requirements and constraints, it will be
verified and validated in the Validate & Verify CI Solution activity. Evaluation results and any
recommendations for improvement are communicated in the CI Evaluation Results.

• Box 5, Validate & Verify CI Solution, validates CI Requirements for compliance with the
Baselined CI Requirements. This activity also verifies CI Architecture against CI Requirements
Specification and verifies CI Detailed Design against CI Architecture. Both validation and
verification review the input specification (including requirements traceability) for completeness
and consistency. This activity generates the CI I&T Procedures for use by the Integrate and
Test CI activity. After completion of that activity, Validate & Verify CI Solution analyzes the
Baselined CI I&T Results to determine whether any changes to requirements analysis or design
decisions are necessary to make the integrated CI ready for integration at the system level. This
activity examines all the requirements to verify that the selection made in Evaluate CI
Alternatives really does meet the requirements.

3.3.5.3 Develop Component (A33)

Figure 11 defines the activities that produce the system components. Both hardware and software
components can be developed using this set of activities, but the focus of this technical report and this
description is on the development of software components. The Component Development Plan provides
the plans that control the activities. The major input into the process is the Component Requirements and
the activities produce the component and all the design, testing, and status information that accompany
it. There is a feedback loop from the Perform Unit Testing & Analysis activity to the other two
activities. This feedback loop communicates the results of the testing and analysis so that modifications
can be made to either the component or the test cases as a prelude to retesting the component. The
component is released to the Develop Configuration Item activity only after it has adequately passed
the unit testing.

27

3. The ISSEP Model

Component Development Plan

Reusable Assets
Parts and Materials^ Implement

► Cnmnnnen!

Component Requirement;
Component

Manufacturing System

Component

Develop Unit
Test Cases

Uni Test Cases
■ ►

Perform Unit
Testing &
Analysis

3

Component Devt. Results/Status

Figure 11. Develop Component (A33)

The following list describes the design activities:

• Box 1, Implement Component, produces the component, given the Component Requirements.
The Component Development Plan describes how the component will evolve (if at all) over
multiple builds of the CI. For software components, this activity equates to coding. For hardware
components, this activity may involve using a manufacturing system to assemble physical Parts
and Materials. If Reusable Assets are available, they are incorporated in the implementation as
specified by the Component Requirements. The Component that is produced includes
implementation decisions, status, lessons learned, and newly identified risks that may impact
future development or evolution of the component or the development and/or integration of other
parts of the CI or another system part.

• Box 2, Develop Unit Test Cases, produces the test cases and specifies the order in which they
will be run. The result is output as Unit Test Cases, which are used for unit testing. This activity
follows Implement Component because unit testing is usually "white box." As used here, white
box means that the Unit Test Cases are based on both Component Requirements and the structure
of the Component itself. "Black box testing," a subset of white box testing, is based only on
requirements. White box testing includes all the black box cases plus additional cases based on
design. The Component Development Plan specifies whether white box or black box testing
should be performed.

• Box 3, Perform Unit Testing & Analysis, implements the Unit Test Cases on the Component
and analyzes the test results to ensure that implementation of the component is complete and
consistent with respect to Component Requirements. If not, it will be necessary to repeat one or
both of the previous activities. The Component Development Results/Status are produced. These
results include the implementation decisions and rationale; the test cases; the results of the
testing and the associated analysis; any newly identified risks; and the source code, if this is a

28

3. The ISSEP Model

software component. The Component is a hardware unit if this is a hardware component. The
Component is an executable version of the software unit on an appropriate electronic media (e.g.,
tape or diskette) if this is a software component.

3.3.5.4 Integrate and Test CI (A34)

Figure 12 defines the activities in which the software components are assembled into the CI and tested to
ensure that they meet requirements. The major inputs for this activity are the Baselined CI I&T
Procedures, produced by the Validate & Verify CI Solution activity and baselined by the Manage CI
Development activity; the Component Baseline; and the collection of Components to be integrated and
tested. Results of this activity are a CI Aggregate (or the entire CI) and the CI I&T Results, which are
baselined by Manage CI Development and fed back into the Validate & Verify CI Solution activity, if
necessary.

In this activity, the I&T procedures are detailed based on design information; the CI is assembled,
integrated, and tested; and the integration testing is analyzed.

CI l&l Plan

Component Baseline

Detail CI I&T
Procedures

Component

Detailed CI I&T Procedures

Assemble/
Integrate CI

Baselined CI I&T Procedures

Manufacturing

CI Aggregate

Test CI
Aggregate

CI Integration Results

CI Test Results

CI

Analyze CI I&T
Results

CI I&T Results

CI I&T Procedure Updates

System

Figure 12. Integrate and Test CI (A34)

The following list describes the activities for integrating and testing software components within one CI:

• Box 1, Detail CI I&T Procedures, transforms Baselined CI I&T Procedures into Detailed CI
I&T Procedures based on design information in the Component Baseline. If there are multiple
iterations of testing one CI, this activity will also use the CI I&T Procedure Updates resulting
from analysis of testing results. The Detailed CI I&T Procedures should be sufficiently detailed
to allow integration and test engineers to carry out the Assemble/Integrate CI and Test CI
Aggregate activities.

29

3. The ISSEP Model

• Box 2, Assemble/Integrate CI, assembles individual Components into a CI Aggregate (which
may be the entire CI). The components are assembled according to the detailed procedures
defined in the Detail CI I&T Procedures activity. Results of this activity are the CI Aggregate
to be tested and the CI Integration Results for use in analyzing test results.

• Box 3, Test CI Aggregate, carries out the tests prescribed by the Detailed CI I&T Procedures
on the CI Aggregate. If necessary, this activity also involves inspecting commercial off-the-shelf
(COTS) or other reusable components (i.e., anything not produced by Design and Verify CI) to
ensure that they will work properly with other components. Note that in this activity, you inspect
the actual reusable software or hardware; in Validate & Verify CI Solution, the designer
(presumably) reviewed their documentation. This activity produces CI Test Results for analysis
in the next activity.

• Box 4, Analyze CI I&T Results, reviews the CI Integration Results and CI Test Results to see if
any problems were uncovered. If so, this activity will determine whether the problem lies in
testing and integration. If so, it will define CI I&T Procedure Updates and cause the entire
Integrate and Test CI to be repeated. Otherwise, it will capture the results of integration and
testing in CI I&T Results, which will be reviewed by management, baselined, and provided to the
Validate & Verify CI Solution activity.

3.3.6 INTEGRATE AND TEST SYSTEM (A4)

Figure 13 defines the system integration and test activity in the ISSEP model. This activity assembles
and tests the hardware and software CIs according to the Baselined System I&T Procedures, which
include test cases and expected results, and documents the outcome in the System I&T Results, which
describe the status of the integration and test process and any exceptions to the observations expected by
the procedures. When this activity has been successfully completed, the Operational System is ready for
delivery to the customer. The Operational System is the tangible part of the system, but may contain
nontangible items such as software and user and design documentation.

30

3. The ISSEP Model

System l&T

Baselined Cl Devt. Results

Plan

Detail System
l&T Procedures

Detailed System l&T Procedures

Cl

Assemble/
Integrate
System

Baselined System l&T Procedures

Manufacturing System

System Aggregate

Test System
Aggregate

System

System Test Results

Integration Results

Operational System

Analyze
System l&T

Results

System l&T Results

System l&T Procedure Updates

Figure 13. Integrate and Test System (A4)

The following list describes the integration and test activities:

• Box 1, Detail System l&T Procedures, uses implementation details from the Cl Designs and
the Cl l&T Results and uses parts of the Baselined Cl Development Results in the System
Baseline/Plan/Status to elaborate on the Baselined System l&T Procedures. This activity takes
into account any System l&T Procedure Updates that may have been fed back by the Analyze
System l&T Results activity and produces a set of Detailed System l&T Procedures explaining
exactly how the CIs are to be integrated and tested and how the results are to be analyzed.

• Box 2, Assemble/Integrate System, progressively assembles and integrates the CIs according to
the Detailed System l&T Procedures until the Operational System is complete, then provides the
System Integration Results for analysis.

• Box 3, Test System Aggregate, if needed, inspects incoming Cl-level COTS parts. After each
step of integration, as defined by the Detailed System l&T Procedures, this activity performs the
specified tests on the current System Aggregate, up to and including the Operational System
itself. Finally, this activity uses independent personnel to perform any required system
qualification testing and provides the System Test Results for analysis.

• Box 4, Analyze System l&T Results, uses the System Integration Results and the System Test
Results to determine whether the Detailed System l&T Procedures need to be updated. This
activity lists any failures and their apparent causes and generates the System l&T Results to be
baselined and forwarded to the validation and verification activities of Design and Verify
System.

31

3. The ISSEP Model

3.4 SUMMARY

This section described the ISSEP model. Descriptions of each activity and how the activity consumes the
inputs to produce the outputs have also been included. Two levels of system decomposition were used to
illustrate the application of the model: from System to CI and from CI to Component. This
decomposition was matched by levels of the model, the framework for which was provided in the
activities Develop Operational System and Develop Configuration Item. The point was made in
Section 3.1 that, in general, the system of interest may be decomposed into an arbitrary number of levels,
elements of which may have such names as "unit," "subsystem," and "segment," and may consist of
software or hardware or both. The ISSEP model may then be instantiated to correspond to those levels.

The major activities represented by the ISSEP model at any given level, other than the bottom level, are
shown by Figure 14 in a building block diagram called "Develop Level (n)," which is a generalization of
the Develop Operational System and Develop Configuration Item diagrams. The Develop
Component diagram represents the bottom or "leaf level of development even in the general case.

Level (n-1) Devt. Plan/Status

Level (n) Design & Verification

T Level (n) Subsystem

Figure 14. Building Block: Develop Level (n)

32

4. ISSEP CONCEPTS AND RATIONALE

A greater appreciation of the ISSEP model can be achieved by understanding the underlying model
concepts in addition to an examination of the model itself. This section describes the following major
ISSEP model concepts and includes the rationale for why and how these concepts are critical:

• Systems and software interfaces

• Information flow

• The development plan

• Risk management

4.1 SYSTEMS AND SOFTWARE INTERFACES

The ISSEP model distinguishes between the systems and software process interfaces and the systems and
software product interfaces. The process interfaces define the information flows between software- and
system-centered activities. The product interfaces define the points within the developing system where
the system and software parts interact. The following list describes the ISSEP model's process and
product interfaces:

• Process Interface. The information flows in the ISSEP model define the activity order. The
flows are designed such that the systems design is strongly tied to the software design. The
system-level design information flows to the software level where it is used to produce the
software design. In return, risks associated with the software design, requests for information,
and design decisions flow from the software level to the system-level design. The system design
cannot be finalized until it receives confirmation that the software level can support the system-
level design decisions. This is an iterative process, where information is exchanged until
consensus on the design is reached.

The system may be decomposed into several levels of design. Software-intensive systems may
include several levels of software below the systems level. Regardless of the number of levels,
the lowest level software design and risks become incorporated into the design at all levels in the
decomposition by being incorporated by the next higher and higher levels, one level at a time.
Indeed, design and risks from one subsystem may even influence the design of other subsystems
because they force a change in the allocated requirements and/or implementation strategy.

One important aspect of the ISSEP model is to ensure that integration risks are evaluated and
proactively dealt with during design. Integration of software with software, software into system

33

4. ISSEP Concepts and Rationale

parts, and system parts with other system parts is examined and incorporated at all levels of the
design. Then, at every level in the decomposition, the results of the integration are evaluated to
identify any risks that may create future integration problems (either in the remainder of this
development effort or in the extended life of the system).

• Product Interfaces. The system/software product interfaces are established iteratively during the
design activities, but are finalized during the Synthesize Physical Architecture activity.
Although this is a system-level activity, the product interface designs are significantly influenced
by the software designs. Indeed, because of the recursive nature of the model, the software
interface designs are often agreed upon before the system interface designs have finished
negotiation. This is not the traditional ordering where the interfaces are defined by the system-
level activities and software design activities must implement them. Unlike the traditional
ordering, the ISSEP model ordering encourages commitment and buy-in from affected
development groups, which has psychological benefits. In addition, the ISSEP model's ordering
has the advantage of ensuring that the software design has had ample opportunity to influence
the total system design, which decreases the number of system/software integration problems.

4.2 INFORMATION FLOW

Information flow is the key to how the ISSEP model activities are implemented. This section describes
the following information flow concepts:

• Partial ordering of activities

• Formal/informal and major/minor information flows

• Pull versus push philosophy

• Tightly coupled communications with reply

• Management control of information flows

4.2.1 PARTIAL ORDERING OF ACTIVITIES

The layout of the activities in the IDEFO diagrams in the ISSEP model does not represent time
sequencing or dependencies; rather, the layout defines the information flows between activities. The
objective of the layout design is to make information flows as clear and easy to follow as possible.
However, information flows do define a partial ordering of the ISSEP activities. The rules for the partial
ordering determine when ISSEP activities can begin and end.

An ISSEP activity begins whenever the inputs are available and ends when the outputs are completed.
The complete input is not required before the activity begins as long as the part of the input necessary for
commencing work on the activity is available. For example, the Risk Management Plan is an input to the
Plan System Increment Development activity. The entire Risk Management Plan (RMP) need not be
complete before the planning activity can begin. In fact, frequently the development plans do not include
the risk mitigation activities initially. Later, the risk mitigation activities are added to the plan, and their
impact to the plan is analyzed and used to help in mitigation selection. Thus, information about the plan
influences the creation of the RMP, and RMP influences the plan contents. However, the RMP must be

34

4. ISSEP Concepts and Rationale

completed before the Increment Plan can be completed because the risk mitigation strategies
documented in the RMP must be adequately represented in the Increment Plan for effective risk
management to occur.

The information flows in the ISSEP model are partially ordered because the input information flows are
not required to be complete before initiation of an activity. The inputs need to be complete only before
the outputs are completed.

There is, however, one other factor that determines when the ISSEP activities begin and end: the
development plans that control the activity. These plans contain information that may delay the start or
end of an activity. For example, the Analyze System Risk activity is controlled by the Organizational
Plans/Status. This plan directs the Manage System Development activities and provides coordination
information, such as availability of risk analysis information from other processes (e.g., CI risks) and
also controls the Analyze System Risk activity so that other parallel, concurrent processes can have
access to this information. This coordination is necessary to ensure that information needed in different
parts of the system development is available for timely decision making. Section 4.2.5 gives more detail
on how the management activities control the information flow.

4.2.2 FORMAL/INFORMAL AND MAJOR/MINOR INFORMATION FLOWS

Processes have formal and informal information flows. A formal information flow is one that is required
by the process. An informal information flow is one that is not required by the process, but that may be
used for convenience. Informal information flows may never substitute for the formal ones defined in the
process. An example of a formal information flow is the requirement for each set of development
activities to provide status information to the management activities. An example of an informal
information flow is the transfer of status information from one set of development activities directly to
another set of development activities.

Integrated product development teams are a mechanism sometimes used for implementing formal and
informal information flows. The ISSEP model defines only the formal interfaces. The ISSEP model does
not preclude the use of informal interfaces, where appropriate, but those interfaces are not included in the
ISSEP model descriptions. Eliminating the informal interfaces from the model not only reduces the
arrows on the diagrams, but focuses the reader on the primary communication among activities.

Information flows can also be either major or minor. A major information flow contains information
critical to the implementation of the process. All of the information flows in the ISSEP model
descriptions are major. Most information in the process is transferred along a few major flows.

Minor information flows meet at least one of the following criteria:

• Information not critical to the implementation of the process. This information is excluded from
the ISSEP model to improve the clarity of the diagrams.

• A flow that is not consistently produced or consumed. These flows may be added to the ISSEP
model as part of a specific tailoring of the process, as required for a particular situation.

• Information assumed present. For example, engineers' access to a technology base is assumed
and, therefore, not explicitly included in the ISSEP model.

35

4. ISSEP Concepts and Rationale

An example of a minor information flow is status information from the Analyze System Risk activity.
This information could contain such items as the total effort spent performing the analysis and how many
people were involved. This type of information is assumed present. When minor information flows are
needed, they are specified during process tailoring (see Sections 5.1 through 5.3).

4.23 PULL VERSUS PUSH PHILOSOPHY

There are two opposing views of how information flows into activities: information can be pushed or
pulled into the activity. In the pull mode, activities "pull" needed information from a source. In the push
mode, the activities receive everything possible from the source, and must distinguish mandatory
information from optional information based on activity needs. The ISSEP model can be characterized as
a "pull" model because it only identifies the mandatory information that flows into an activity; any
additional information, if necessary, must be pulled from the source. The ISSEP model designates the
mandatory information so that there is no confusion in the receiving activity as to what inputs must be
included in the creation of the mandatory outputs.

For example, in the Develop Operational System diagram (AO), only the CI Requirements are
mandatory inputs to the Develop Configuration Item activity. If, however, the Develop Configuration
Item activity needs information that is part of the System Baseline but not part of the CI Requirements, it
can pull that information from the System Baseline flow. Specifically, if the Develop Configuration
Item activity needs to examine the proposed test cases contained in the Baselined System I&T
Procedures, the activity pulls that information through the CI Requirements information flow. (Note that
Baselined System I&T Procedures is a major information flow from the perspective of the Integrate and
Test System activity.) However, most of the time the test cases will not be required and are not required
inputs to the Develop Configuration Item activity.

4.2.4 TIGHTLY COUPLED COMMUNICATIONS WITH REPLY

Some information flows from an activity contain requests for action. For example, risks identified during
the implementation of an activity need to be resolved, and the resolution needs to be communicated back
to the initiating activity. The risk information may also be sent with or without the identified resolution
implementation information to other affected activities that are required to respond and indicate what
action was taken. This type of information flow is necessary to ensure that information reaches the
appropriate destination and the necessary actions have been taken.

The ISSEP model contains this type of feedback loop and has labeled this type of information flow
"tightly coupled communications with reply." The following example demonstrates this type of loop in
the Develop Operational System diagram. The CI Baseline/Plan that is output from the Develop
Configuration Item activity may contain requests for action (e.g., requests for more parts, more
personnel, a modification to the current schedule). These requests flow into the Manage System
Development activity where resolutions are either made or the requests are passed via the System
Baseline or the System Development Plan/Status to other activities that may be able to honor the
requests. Regardless of which activity(ies) ultimately resolves the issues, the resolution(s) is documented
by that activity, action is taken, and the action and results are passed back to the Develop Configuration
Item activity from the resolving activity through the Manage System Development activity as part of
either the updated System Baseline or System Development Plan/Status. It is the responsibility of the

36

4. ISSEP Concepts and Rationale

Manage System Development activity to track the status of the reply and to ensure that the reply is sent
to the Develop Configuration Item activity.

4.2.5 MANAGEMENT CONTROL OF INFORMATION FLOWS

Information in the ISSEP model flows to and from the set of management activities. The management
activities are the control point in the process because they:

• Establish baselines for release to other activities (i.e., create and maintain the baseline flows)

• Control the routing of information to other activities

• Use the information to update and maintain the development plan

The concept of management activities being the control for the development activities is not unique;
however, the ISSEP model's definition of the management activities and management philosophy is
worthy of explanation.

Management can mean different things: it can be a role, a function, or a set of activities. In the ISSEP
model, management refers to the set of management activities. Managers (the role) perform some of the
ISSEP management activities, but not all. For example, a risk analyst, not the project manager, may be
assigned to the Analyze System Risk activity. Many of the functions typically associated with
management are included in the ISSEP management activities (e.g., planning and tracking); however,
other management functions, such as generating performance reviews, are not part of the ISSEP
management activities. Other functions not typically associated with the management function, such as
controlling a baseline, are included in the ISSEP management activities.

In the ISSEP model, the management activities are decentralized. Each part of the system decomposition
(except the component level, which is not further decomposed) has its own management activities. This
helps ensure communication flow by removing the bottleneck situation that can result from a central
management control point (in much the same way that decentralizing computing processors eliminates
the bottleneck of trying to access a common processor). Decentralization also improves visibility (i.e.,
managers can be focused on the small set of activities within that system part and not be distracted by the
overall complexity of the development effort), which results in better planning and decision making. In
this way, plans and decisions can be very specific and incorporate very detailed information that might
be lost in the masses of information flowing through a centralized set of activities. The management
activities route information to other system parts to ensure that the management activities' narrow
visibility does not lead to local decision making that negatively impacts the system as a whole.

4.3 THE DEVELOPMENT PLAN

The management activities two main functions are controlling information flow and creating and
maintaining the development plan. The ISSEP model defines the development plan as a living document
that is continuously updated and expanded to provide accurate and current plans. The development plan
is composed of a long-term plan and an increment plan.

37

4. ISSEP Concepts and Rationale

4.3.1 LONG-TERM PLAN

The scope of the long-term plan is the entire system (or system part) being developed. (There is a
development plan for each level in the system hierarchy). This plan defines the context for the
development (i.e., scope, objectives, and stakeholders), documents constraints levied from above (or
from an external source), defines standards and organizational processes to be used, defines the work
products to be produced, defines a work breakdown structure, defines the system parts (e.g., CIs) that
will make up this system part, and defines the increments (e.g., subsets). The long-term plan is a high-
level plan. Detailed planning is contained in the increment plan. In general, the long-term plan provides
the road map of what will be done and the plan for making sure that all the system parts come together in
the end.

The long-term plan for a system part is influenced by constraints from system parts above and feedback
from system parts below in the system hierarchy. For example, a CI's long-term plan is constrained by
its requirements and scope that were determined by its parent system part (i.e., the system part above it in
the hierarchy). Within those constraints, the CI creates a long-term plan that defines how it will be
decomposed (in addition to the other parts of the long-term plan listed above). If that decomposition
defines three components, each of the components provides feedback to the CI describing their long-term
plans and indicating risks associated with the CI's long-term plan. The CI modifies its long-term plan, as
appropriate, and sends feedback to its parent system part containing its revised long-term plan (if it was
revised) and how the constraints originally passed down to it may be affected if the long-term plan is
implemented. Thus, the long-term plans from each system part in the hierarchy influence each other and
converge on a realistic plan for the total development effort.

4.3.2 INCREMENT PLAN

The long-term plan constrains the increment plan, which defines how a particular system part will be
developed (e.g., the sequence of activities that need to be performed and when they should be performed
to meet the objectives of the long-term plan). Not all the increment plans are defined at the same time.
The ISSEP model encourages plans to contain the detail for the next increment (or several increments),
but not for all future increments. Too much detailed planning up front usually leads to rework of plans or
inflexibility. As the time for implementing future increments approaches, the increments are expanded to
include more and more detail until, when the implementation begins, a very detailed plan that is
specified to an enactable level of detail is available.

Just as each system part has a long-term plan, each system part has an increment plan. The content of the
increment plans of one system part is affected by the increment plans from other system parts above it
and below it in the system hierarchy in the same way that the long-term plans of the system parts
affected each other. However, less iteration is needed when elaborating the increment plans because the
major negotiations have already taken place when the long-term plans were defined because the long-
term plans establish the context for the increment plan development.

Increments define the partitioning of work into manageable pieces. However, the size of a manageable
piece differs depending on the complexity. Because the definition of an increment is so dependent on the
specific characteristics of the system part being developed, the ISSEP model defines the increments for
each system part dynamically during the implementation of the management activities. That is, during
the initial implementation of the Manage System Development activities, the increment definition for
the entire system is created at a high level. (The increment definitions are contained in the long-term

38

4. ISSEP Concepts and Rationale

plan.) This increment definition is passed down to the Develop Configuration Item activity and into the
Manage CI Development activity, providing the basis for defining the increments for the CI.

As an example, the long-term plan (from the Manage System Development activity) defines the system
increments as shown in Table 2.

Table 2. System Increments

Number

Increment 1

Increment 2

Increment 3

Increment 4

Increment 5

Increment 6

Description

Develop system development plan

Design system

Develop high-risk CIs and any items with tightly coupled dependencies

Integrate and test the developed CIs

Develop remainder of the CIs and make any needed modifications

Integrate and test entire system

After the first and second increments have been completed and the system design is known, assume the
system is decomposed into the following four CIs: CI1, CI2, CI3, and CI4. Table 3 shows the updated
system Increments 3, 4, 5, and 6.

Table 3. Updated System Increments

Number

Increment 3

Increment 4

Increment 5

Increment 6

Description

Develop CI1 and CI3 (assume CI1 is a high-risk component and CI3 is tightly coupled to CI1)

Integrate and test CI1 and CI3

Develop CI2 and C14

Integrate CI1 and CI3 with CI2 and CI4

Each CI would create an increment plan that details how the increment will be developed. Each
increment definition has associated constraints (e.g., cost and schedule) that are documented in the long-
term plan. Using the above example, CI1 and CI3 receive the CI Requirements and the increment
constraints from the management activities at the beginning of the third increment. This information
constrains the increment plans created by CI1 and CI3 for their development, which takes place in the
system's third increment. CI1 and CI3 have their own increment definitions (numbered 1 to n), which are
based on the definition of the system's Increment 3 in Table 3. For example, during Increment 1, the
management process for CI1 defined the long-term plan, including objectives, constraints, cost, schedule,
increment definitions, and development process for CIl's development. Table 4 lists the increment
definitions in CIl's long-term plan.

Table 4. CI1 Increments

Number Description

Increment 2 Complete CI requirements

Increment 3 Complete CI design

Increment 4 Develop all CI components

Increment 5 Integrate and test components

39

4. ISSEP Concepts and Rationale

Note: CIl's increment plan did not include Increment 1 because Increment 1 was the increment that
created the long-term plan.

The management process for CD may develop a different increment plan. It is not required that the
increment plans be similar as long as they meet the constraints of the system increment plan.

There are two requirements for increment definitions in the ISSEP model: an increment must 1) move
the development toward completion, and 2) contain at least one implementation of the management
activities. In the example shown in Tables 2 through 4, after the technical activities of each increment are
complete, the following management activities are performed:

• Track Increment Development. This activity is started at the beginning of the increment, but
does not complete until the increment ends.

• Develop/Update Plan. The system plan is modified, if necessary, based on the results of the
development done during this increment.

• Control Baseline. The work products produced during the increment are baselined, and the
updated system plan is also baselined.

• Understand Context. The context for the next increment defined in the updated system plan is
analyzed and refined.

• Analyze Risk. The risks associated with the next increment are identified, and risk mitigation
activities are selected.

• Plan Increment Development. The detailed plan for the next increment is produced.

The Track Increment Development activity initiates and the next increment development begins.

After each increment is implemented, the increment definition is further refined to reflect the knowledge
gained during its implementation. This refinement helps the system development effort remain in control
and ensures that plans remain realistic and reflect the current status.

The increment plan, the detailed plan that describes how each of the increments are to be enacted, is
based on the increment definitions. In Table 4, the increment plan for Increment 2, Complete CI
requirements, would define what activities needed to be performed to complete the requirements
definition (e.g., Analyze CI Requirements, Evaluate CI Alternatives, and Validate & Verify CI
Solution). Each of these activities would be further specified through process tailoring (see Sections 5.1
through 5.3). That is, the tailoring would specify a requirements analysis method, the tools to be used (if
any), the metrics to be collected, the standards to be followed, and possibly a template for the
requirements traceability matrix. The increment plan would also contain the information needed for
instantiation of the specified activities including staff assignments, specific milestones (or inchstones),
and logistical information such as needed facilities or technical support.

The long-term plan and increment plan work together to create a complete and detailed plan, but
eliminate the requirement for the plan developers to do the detailed planning before the long-term,
high-level plan is stable.

40

4. ISSEP Concepts and Rationale

4.4 RISK MANAGEMENT

Risk is one of the important factors that influence the enactment of the ISSEP model. Risk factors
influence decision making and are explicitly addressed in the project plans. Risk identification is
explicitly performed as part of the Analyze System Risk and Analyze CI Risk activities. In these
activities, all possible areas of risk (e.g., organizational, process, development) are examined, and risks
are identified. However, risk identification and communication is an implicit (ongoing) part of all the
ISSEP activities. For example, when design alternatives are evaluated (during the Evaluate System
Alternatives activity), risks associated with the alternatives are identified and the alternative's risk
profile (i.e., identified risks, risk factor estimates, and assessment of risk mitigation actions) is
considered as part of the evaluation. The risk profile associated with the recommended alternative
becomes part of the design documentation.

Less obvious are other, nondesign-oriented risks that may also be identified when design alternatives are
evaluated, such as staffing risks. For example, the risk that implementation of the alternative requires
staff with a particular skill, which is in short supply and may not be available to meet the schedule,
impacts the design if it makes an implementation alternative high risk.

This implicit risk identification is part of all ISSEP activities, and the rigor of the identification is
determined by the development plan that controls the activity. Thus, criteria such as the number and
complexity of interfaces and the criticality of the system part are used to determine the risk identification
rigor that is necessary. Determining the risk identification rigor for all system parts developed below a
particular part of the system is part of the initial risk analysis and planning. Not all system parts being
developed need to have the same amount of risk identification rigor (not all parts of the development are
at equal risk). During the risk analysis and planning activities for every increment, the risk identification
information that is received from the system parts below is evaluated, and a decision is made to have the
rigor associated with that portion of the development increased, decreased, or remain unchanged. The
control of risk identification rigor by the higher level system parts provides a mechanism to ensure that
sufficient information is available for effective risk management while not unnecessarily burdening the
development effort if risks are under control.

41

4. ISSEP Concepts and Rationale

This page intentionally left blank.

42

5. APPLYING THE ISSEP MODEL

The goal in applying any engineering process is to provide sufficient guidance so the engineering can be
completed in a controlled manner while minimizing the amount of unnecessary work. That is, a detailed
process provides additional insights just like a detailed plan gives both the planner and the follower more
information and a better understanding of what it will take to enact the plan. However, it takes time to
elaborate a process in detail. Consequently, the goal is to provide sufficient detail in the process so that
the process activities can be efficiently and effectively performed, but balance this goal against the effort
necessary to specify the process so that the most benefit (from enacting the process) can be derived from
the minimum effort (in creating a detailed process).

In reality, a perfect balance may not be achieved at first or even after several tries. Part of what makes
this balancing act so difficult is that it depends on the project's unique characteristics as well as on the
process. For example, more experienced engineers need less detail in the plans than do less experienced
engineers, and complex interfaces require more detail in the interface design and more iteration to
complete than do simple interfaces. The act of further specifying a process or process model so that it
reflects the project characteristics is called process tailoring (Software Productivity Consortium 1995b;.

5.1 PROCESS TAILORING

Process tailoring is creating a specific process from a general process. Process tailoring includes:

• Process Architecting. Process architecting is defining a set of processes and the interfaces
between the processes. In the ISSEP model, process architecting involves defining the specific
processes for the systems, subsystems, CIs, and components that make up the system being
developed.

• Process Specification. Process specification is defining an activity by identifying the specific
information that must be contained in the inputs and outputs, decomposing the activity into
subactivities or tasks, and instantiating the activity to make an enactable process. An activity is
enactable when there is sufficient detail to allow the process to be carried out by the resources
assigned to complete it.

Process tailoring creates the detailed process that becomes the essence of the project plan. The tailored
process defines each of the activities to the enactable level, describes precedence order of the activities
and their dependencies, and describes the contents of the information flows (e.g., inputs and outputs). A
large part of generating a detailed project plan is process tailoring. High-level plans such as the long-
term plans described in Section 4.3 include high-level processes. Detailed plans such as the increment

43

5. Applying the ISSEP Model

plans, also described in Section 4.3, include tailored processes. The more detailed the plan, the more
precisely the process is architectured and specified. Thus, process tailoring is a large part of planning.

Because every application of the ISSEP model has unique characteristics, it is not possible to define a
tailored version of the ISSEP model that is generally applicable. Certainly, one approach for creating a
more tailored ISSEP model is to use the IDEFO diagrams and decompose each of the ISSEP model
activities into their constituent activities (e.g., decompose Analyze System Risk into activities like
Identify Risks, Evaluate Risks, Develop Mitigation Strategies, and Plan Risk Mitigation). It is beyond the
scope of this report to describe all the concepts involved in process tailoring and process engineering
(Software Productivity Consortium 1994a). It is, however, possible to describe how to apply the ISSEP
model by describing what factors most influence its tailoring and how to approach introducing the model
to new and ongoing development efforts.

5.2 FACTORS THAT INFLUENCE PROCESS TAILORING

The major factors that influence the tailoring of the ISSEP model are:

• Project size and complexity

• System architecture and organizational structure

• Project and process familiarity

• Project domain (e.g., real-time, information systems, C3I)

• Project risk

5.2.1 PROJECT SIZE AND COMPLEXITY

The project's size and complexity are important factors in determining the information flow contents.
The project's size can vary from a small team of individuals working together to perform the activities,
to a large number of teams or individuals working independently on parallel efforts. If, for example, a
small team of engineers is designing a system part, and the same team members define the functional and
physical architecture and perform the evaluation of the design alternatives, documentating the rationale
for each design alternative may not be necessary. Documentation of the rationale may not be necessary
because team's involvement in the creation of the alternatives ensures their familiarity with designs and
associated rationale. It is still necessary, however, to document the design and rationale for the selected
alternative as part of the final system design.

Project complexity also impacts the amount of detail necessary in the information flows. Returning to the
above example, the small team may be required to document the design rationale for every design
alternative even if they perform the evaluation and if the design includes sufficient complexity. The team
may forget or misinterpret their design rationale during the evaluation if it contained subtle, intricate
information that might necessitate reconstruction of the missing information.

44

5. Applying the ISSEP Model

5.2.2 SYSTEM ARCHITECTURE AND ORGANIZATIONAL STRUCTURE

The architecture of the system being developed and the structure of the organization responsible for the
development are influential in determining the ISSEP process architecture. Certainly, the system
architecture determines the decomposition of the system, which is reflected in the process architecture.
That is, a system may be decomposed into five CIs based on the results of the Design and Verification
activity. The process would be architected with five Develop Configuration Item activities to reflect the
five CIs and the interfaces between them and the system.

The organizational structure further constrains the process architecture by imposing organizational
characteristics on the process. For example, two different organizational structures might be developing
one of the five CIs mentioned above. In this case, it may be necessary to have that CI divided in to two
different activities. That is, there would be six Development Configuration Item activities in the
process architecture instead of five; and the two that were derived by splitting the one CI into two sets of
processes may be defined slightly differently from the other four Develop Configuration Item activities.
These two processes would be tightly coupled and may contain additional coordination and control
mechanisms and plans to transfer the results of the development of one part of the CI to the other CI for
final integration and test.

5.2.3 PROJECT AND PROCESS FAMILIARITY

Familiarity with the project and the process impacts how the process is specified. For example, if the
designers are familiar with the design for this or similar projects, there is less need to document the detail
associated with the design. If, on the other hand, the development is unprecedented, then the design
information requires more detail to ensure that all critical design aspects are being considered and
communicated. Process familiarity has a similar impact on process tailoring. The more times engineers
follow a process, the more knowledgeable they become about enacting the process and the easier it is for
them to efficiently perform the activities and produce the desired outputs.

5.2.4 PROJECT DOMAIN

The domain of the project also impacts the process specification. For example, a real-time system will
require more rigorous performance and timing information than an information system. The information
system may require design of data structures not required for the real-time system. These different
domains impact the development methodologies selected.

5.2.5 PROJECT RISK

Risk is one of the main drivers of process tailoring. Indeed, the factors described in Sections 5.2.1
through 5.2.4 could be generally grouped under project risk. For example, the risk that complex
interfaces may be misinterpreted necessitates the addition of detailed interface descriptions to the design
information. The risk that a single CI developed in parallel by different organizational structures may not
be easily integratable necessitates additional process mechanisms to coordinate, integrate, and test the
completed item. However, the factors described above that influence process tailoring are sufficiently
important that they warrant independent discussion.

Risks result from a lack of knowledge or a lack of resources (e.g., time, money, people). Gaining,
knowledge or compensating for a lack of resources typically involves tailoring the process. For example,

45

5. Applying the ISSEP Model

design risks may be mitigated by gathering knowledge so that the risk in implementing the resulting
design is minimized. Risks associated with customer/user acceptance may be mitigated by providing
frequent interchange meetings. Schedule risks may be mitigated by architecting the process so that
several activities are done in parallel (with the addition of mechanisms to ensure that the parallel effort
does not introduce other risk). In fact, planning risk mitigation actions frequently results in process
tailoring.

5.3 PROCESS TAILORING AND INCREMENT PLANNING

Increment planning is determining which process activities to include in each increment (see Section 4.3
for a discussion on increments). A development plan (e.g., System Development Plan) initially contains a
definition of all the development increments at a high level. The process activities in the increments are
not tailored, and the process may not be fully architected. Before implementing an increment, the process
for that increment must be tailored. It is possible to tailor all the increments defined in the development
plan when creating their initial definitions. However, it is not recommended to tailor the increments too
far in advance of when they will be implemented because lessons learned and knowledge from
implementing early increments should be used when tailoring later increments. Tailoring the increments
prematurely may result in tailoring rework.

The first several increments are typically short and focused on reducing risk and gathering feedback. The
results of the risk reduction and the implementation feedback are used to tailor later increments and
create improved plans. As the development effort progresses, the increments get longer because many of
the risks have been mitigated and the process and the plans are relatively stable.

5.4 APPLYING ISSEP ON A DEVELOPMENT EFFORT

The ISSEP model can be applied at any stage in a development effort, from initial concept development
to final system test. This section describes how to apply the ISSEP model in two different points in the
development life cycle: at the beginning and the middle of the life cycle.

It is difficult to clearly define when the life cycle begins. Does it begin with the arrival of the initial
customer/user requirements, with the initial creation of the development plan, or even earlier, with the
initiation of the preliminary discussions with the customer regarding the possibility of a development
effort? The ISSEP model defines the start of the life cycle as the point in time when the initial
development planning begins. The following discussion describes how to apply the ISSEP model from
this point.

5.4.1 APPLYING ISSEP ON A NEW PROJECT

ISSEP tailoring begins with the execution of the management activities and creation of the initial version
of the development plan. Creation of this plan is the first development increment. This long-term plan is
based on the initial Customer Needs and the Organizational Plans/Status. The Customer Needs are
baselined and become the initial contents of the first version of the development plan.

After each management activity, the information output from the activity is baselined and added to
version 1 of the development plan. The context defined in the Understand System Context activity is
the context for the entire development, and the risks identified and analyzed in Analyze System Risks

46

5. Applying the ISSEP Model

are the entire development risks. These activities are done at a high level, and the detailed context and
risk analyses are done in future increments. The context and the risk analyses are input into the Plan
System Increment Development activity and used to create a detailed plan to produce the initial
development plan. In particular, this detailed plan describes the risk mitigation activities that must be
performed to ensure that the initial development plan is realistic. After these mitigation activities are
performed, the information is used to generate the initial development plan.

If the effort for performing the risk mitigation activities is sufficiently large, then it will take more than
one increment (and perhaps several increments) to generate the development plan. In this case, the initial
development plan describes risk mitigation activities and how the results of these activities will be used
in developing successive versions of the plan. Eventually, sufficient risk mitigation is accomplished and
incorporated into the version of the development plan that will be used to control the subsequent
development activities.

After version 1 of the development plan is created (even if it only contains increments for doing risk
mitigation activities), the plan is baselined as part of the System Baseline/Plan/Status. When changes are
made to any part of the System Baseline/Plan/Status (i.e., a new set of Customer Needs is input, the
results of the development effort are added to the baseline, status information is added, or changes are
made to the development plan), a new version of the baseline is established and all parts of the new
version are appropriately examined and updated. This examination and updating is done in the
management activities. Consequently, every time information is input into the management activities a
new version of the System Baseline/Plan/Status is created. This ensures that the development effort
remains synchronized; that is, the plans always reflect the current status and are based on the current
development information, and the development work is being controlled by the latest-and-greatest
version of the development plans.

5.4.2 APPLYING ISSEP TO AN ONGOING PROJECT

An ongoing project is defined as one that already has some form of a development plan and is at some
point in the process of implementing that plan. This section defines the type of ongoing projects that
would benefit most from implementing the ISSEP model and describes how the model would be applied
in this case.

One of the main objectives of the ISSEP model is to help development efforts maintain control. ISSEP
feedback loops encourage the early detection and resolution of problems and help projects avoid making
overly optimistic projections. Although applying a process like ISSEP is beneficial from the outset of a
development effort, it is also appropriate to use the process on an ongoing effort. Although ISSEP could
be applied to any ongoing effort, ISSEP's control mechanisms make it the process of choice for efforts
that are "out of control" because they provide a means to regain project control. The ISSEP model
accomplishes this by establishing activities and information links that gain control while requiring only
the minimum necessary rework and not requiring the effort to effectively "start over" with all new work
products.

The first step in applying ISSEP to ongoing projects is to implement the management activities.
Although this is the same first step as when implementing ISSEP on a new project, the implementation is
slightly differently for ongoing projects. The initial System Baseline/Plan/Status that is baselined
includes all previous plans, status information, and the current version of the system parts that have been
developed as well as the Customer Needs. The high-level context and risks that are identified and

47

5. Applying the ISSEP Model

analyzed are based on the project's current state. All assumptions are noted and considered during the
risk analysis; however, rework is not initiated until other less costly approaches have been eliminated.
The plan that is created in this first ISSEP increment (or several increments, if necessary) defines the
plan for continuing the development effort. Although the project is not just beginning, the first several
increments after initiating ISSEP are short. In these increments, risks are mitigated and the plan is
refined.

The ISSEP feedback mechanisms ensure that any errors in the developed work products, or any risks
associated with the continued effort, surface as the development work continues. For example, the
development plan for the ongoing project may begin with a validation and verification of the design at all
system levels. If no verified requirements specification is available at a level, the requirements
specification will need to be created. If the specification that exists has not been verified, it will be
required to be verified. If the verification uncovers defects in the specification, the specification will
need to be modified, and so on. Each of these activity sets may be in separate increments (and the
development plan may be modified after each), or the plan may indicate that within certain constraints,
the work can be done within the same increment. The decision about what is included in an increment is
based on the need for frequent feedback.

After several increments, the plan becomes more realistic, and the ISSEP information flows are
reasonably well established. At this point, any differences in the process based on when the process was
introduced are insignificant.

5.5 USING ISSEP WITH DIFFERENT LIFE-CYCLE MODELS

The ISSEP model is independent of life cycle and can be used to implement any life-cycle model such as
waterfall, incremental, and evolutionary. This independence is because the ISSEP model defines how
work will be done, and a life-cycle model defines the stages through which the developed products
transition on their way to completion. Although there are similarities between development models like
ISSEP and life-cycle models (e.g., you do design and create the design for the system), the main
difference is that the life-cycle model defines a specific ordering of product stages. The development
model is not order-dependent. Therefore, the ISSEP model does not define order for creation of system
parts or determine whether the parts are developed in multiple builds or the entire system is created in a
single build.

The following discussion explains how to select a life-cycle model and instantiate the ISSEP model for
that life cycle. Sections 5.5.1 through 5.5.3 describe how to use the ISSEP model when implementing the
three life-cycle models mentioned above.

In the ISSEP model, the initial version of the development plan contains a description of the life-cycle
model that will be followed during the development. The model selection is made in the
Develop/Update System Plan activity. The main criteria for selecting the life-cycle model are
contractual delivery requirements, the amount of interfacing necessary to establish complete and accurate
system requirements, and the system risk profile (i.e., whether the system is a high or low risk
development effort). An analysis is done to determine which type of model or combination of models
will be most appropriate. The process tailoring and eventual instantiation of the ISSEP model is greatly
influenced by the life-cycle model chosen. If the project situation changes and the life cycle must be

48

5, Applying the ISSEP Model

changed or modified, some process tailoring rework will be necessary; but, because the ISSEP model is
not life-cycle dependent, the development process itself can remain unchanged.

5.5.1 ISSEP AND THE WATERFALL LIFE-CYCLE MODEL

The waterfall model, traditionally used for development of software systems, defines a sequential set of
activities. Each activity is implemented, and the product(s) developed during implementation are
verified. If the products pass verification, the next activity in the sequence begins. If the verification
failed, the activity is reimplemented and reverified. If a defect is identified that forces a previous
activity's work products to be modified, control is passed back to the correcting activity; from there, the
initial sequence is repeated. When implementing the waterfall model, the entire system goes from
activity to activity as a whole.

The waterfall model is most appropriate when the requirements are well defined at the onset of
development and the project is low risk. This situation implies that there is less probability that defects
will be found late in the life cycle, which will necessitate rework. The waterfall model is less appropriate
if not all parts of the system will spend the same amount of time in each activity because time will be
wasted waiting for the system parts that take more time to complete an activity.

If the waterfall model is selected when the initial development plan is created, the ISSEP model is
tailored such that each of the waterfall activities maps to an ISSEP increment. For example, the first
increment after the development plan is complete might be the first waterfall activity, the next increment
the next waterfall activity, and so on. When applying the waterfall model with ISSEP, a simple tailoring
might be to implement a risk reduction waterfall, where the risks identified by the ISSEP activities are
used to determine the rigor that is necessary in subsequent activities. The risk reduction approach helps
minimize the rework that can result when defects are found late in the life cycle.

5.5.2 ISSEP AND THE INCREMENTAL LIFE-CYCLE MODEL

"The 'incremental' strategy determines user needs and defines the system requirements, then performs
the rest of the development in a sequence of builds. The first build incorporates part of the planned
capabilities, the next build adds more capabilities, and so on, until the system is complete" (Department
of Defense 1994). After the requirements are defined, the builds can follow any appropriate process for
development.

The incremental model is most appropriate when the requirements are initially well defined, and they can
be grouped into increments that can be developed independently without resulting in undue integration
risk.

If the incremental model is selected when the initial development plan is created, the ISSEP model is
tailored such that the next increment analyzes the requirements for the entire system using the ISSEP
model's iterative approach to gather information from each of the system parts in the decomposed
system. The builds are defined during implementation of the next set of management activities, are
documented in the next version of the development plan, and are based on the requirements analysis. The
defined builds are mapped to ISSEP increments such that the next set of increments produces the first
system build, the next set produces the second system build, and so on. The increments can be defined to
allow the builds to overlap so that as the first build completes design and begins implementation, the
next build begins design.

49

5. Applying the ISSEP Model

5.5.3 ISSEP AND THE EVOLUTIONARY LIFE-CYCLE MODEL

"The 'evolutionary' strategy also develops a system in builds, but differs from the incremental strategy
in acknowledging that the user need is not fully understood and all requirements cannot be defined up
front. In this strategy, user needs and system requirements are partially defined up front, then are refined
in each succeeding build" (Department of Defense 1994). Similarly to the incremental model, each build
may follow any development process.

The evolutionary life-cycle model is most appropriate when the customer requirements are not well
understood initially, and feedback from the customer is necessary to ensure a successful development.

If the evolutionary model is selected, the initial development plan describes the approach for determining
the requirements for the initial build. The next increment implements that approach and defines the
requirements for the first build. Then the management activities are implemented, and the next version of
the development plan is created to define the initial build and map it to ISSEP increments. Either the
entire build can be complete before the customer provides feedback, or the customer can be involved at
other points in the process and provide more frequent direction. The customer feedback points and their
focus are defined in the development plan.

Although the ISSEP model can work well with all these life-cycle models, its real strengths are evident
when implementing ISSEP on incremental or evolutionary efforts because the ISSEP model's
communications mechanisms and risk-based approach provide the extra information needed when the
development is high risk or the requirements are incomplete or unstable.

5.6 EXAMPLE APPLICATION OF THE ISSEP MODEL

The radar subsystem in Figure 15 is an example of applying the ISSEP model to a system that is
decomposed into multiple levels.

Radar Subsystem

Antenna Assembly
Subsystem

(M echanical/
Electronic)

Pilot Interface/Control
Subsystem

(Hardware/Software)

Power Subsystem
(Electrical) Level 1

Pilot Command and
Display Subsystem

(Software/Electronics)

Signal Processing
Subsystem

(Software/Electronics)

Signal Processor CPU
Network

(CPUs and
Interconnections)

Level 2

Signal Processing
Software Subsystem

(Software)
Level 3

Pilot I/O CPU
(Single CPU)

Pilot Command
Software Subsystem

(Software)

Pilot Display Software
Subsystem
(Software)

Figure 15. Partial Decomposition of a Radar Subsystem

50

5. Applying the ISSEP Model

The ISSEP process for the radar subsystem would include the following:

Develop Level (0) (Radar Subsystem)

Develop Level (1) (Antenna Assembly Subsystem)

Develop Level (1) (Pilot Interface/Control Subsystem)

Develop Level (2) (Pilot Command and Display Subsystem)

Develop Component (Pilot CPU)

Develop Level (3) (Pilot Command Software Subsystem)

Develop Level (3) (Pilot Display Software Subsystem)

Develop Level (2) (Signal Processing Subsystem)

Develop Level (3) (Signal Processor CPU Network)

Develop Level (3) (Signal Processor Software)

Develop Level (1) (Power Subsystem)

The activities for each instance of the process at each level are identical except that the design activities
can be system design activities or CI (i.e., software or hardware) design activities.

To understand the relationship between levels, consider the roles of a system or software engineer. The
essence of system and software engineering consists of refining and allocating customer requirements to
subsystems; allocating design decisions to subsystems; and ensuring that, once designed, the subsystems
work together properly. At lower levels of the process, requirements and design decisions can also be
allocated to individual components.

Requirements can be broadly classified as functional and nonfunctional. Functional requirements
describe how an element of the system must behave. A functional requirement describes how an element
should consume inputs and transform them into outputs. For example, a functional requirement to
highlight the image of an aircraft that is too close to the host aircraft could be imposed on the entire radar
subsystem. This requirement could be divided among the subsystems as follows:

• The Signal Processing Software Subsystem would identify specific images as aircraft and tag
each image with the distance from the host.

• The Pilot Command Software Subsystem would allow the pilot to define a critical distance.

• The Pilot Display Software Subsystem would use the critical distance to select aircraft images
for highlighting.

Nonfunctional requirements specify constraints on how the functional requirements can be implemented.
An example of a nonfunctional requirement is the upper bound on the time for the pilot display to reflect
the change in position of another aircraft. This nonfunctional requirement would be imposed on the
entire radar subsystem and divided among the following subsystems:

51

5. Applying the ISSEP Model

• Antenna Assembly Subsystem (influences rotational speed of the antenna)

• Pilot Interface/Control Subsystem (influences the lower bound on CPU speed and the upper
bound on software stimulus response time)

- Pilot Command and Display Subsystem (influences the upper bound on stimulus response
time of the two software subsystems and the lower bound on CPU speed)

— Pilot Command Software Subsystem (influences the upper bound on software
stimulus response time)

— Pilot Display Software Subsystem (influences the upper bound on software
stimulus response time)

- Signal Processing Subsystem (influences the lower bound on the speed of CPUs and network
and the upper bound on software stimulus response time)

— Signal Processor CPU Network (influences the lower bound on speed of CPUs and
network)

— Signal Processor Software (influences the upper bound on software stimulus response
time)

In addition to allocating customer requirements, design decisions will impose additional requirements on
subsystems and components. For example, partitioning of requirements between the Pilot
Interface/Control Subsystem and the Antenna Assembly Subsystem necessitates a physical interface
between the two. Interface details (e.g., use of an electrical rather than a fiber-optic connection) would be
specified as part of Design and Verify Level (0). This design decision would flow down as a physical
interface requirement through the Pilot Interface and Control Subsystem to the Signal Processing
Subsystem. Finally, in Design and Verify Level (3) for the Signal Processor CPU Network, the interface
between the electrical cable and the CPU network would be specified. The characteristics of this
interface would impose requirements on design of the CPU network and the Signal Processing Software
Subsystem.

As another example, consider the Pilot Command and Pilot Display Software Subsystems. To implement
a zoom and roam requirement, the Design and Verify Level (2) activity for the Pilot Command and
Display Subsystem could decide the software function in the Pilot Command Software subsystem that
would have to synchronize with a function in the Pilot Display Software Subsystem. This decision would
impose an interface requirement on the Develop Level (3) processes for these two subsystems. It could
also affect selection of an operating system, which would impose additional requirements on the two
Develop Level (3) processes. (It is assumed that both software subsystems run on the Pilot CPU.)

The set of functional and nonfunctional requirements imposed on a component or subsystem can be
viewed as a contract between levels of the process. In addition to requirements on the item under
development, process requirements (such as for periodic reviews and status reporting) are part of the
contract between levels. For example, the Level (2) Development Plan/Status input to the Signal
Processor Software Subsystem could require status reporting on a biweekly basis and upon completion of
specific milestones, such as completion of the architectural design.

52

5, Applying the ISSEP Model

When implementing the ISSEP model, it is necessary to pass design issues to the next higher level for
resolution. For example, the team developing the Pilot Display Software Subsystem could decide that the
subsystem has too little time to highlight an aircraft that is too close to the host because it must compare
the distance tag for each aircraft with the critical distance provided by the pilot. The risk could be
mitigated in at least two ways:

1. The software could be provided with its own CPU, or the CPU it shares with the other Pilot
Command Software Subsystem could be upgraded. This decision could be made by the process
for the Pilot Command and Display Subsystem. It would require higher-level buy-in if it
impacted cost constraints or other requirements.

2. The Signal Processing Software Subsystem could be given the responsibility of determining
which aircraft are too close to the host. Providing this ability would involve adding a function to
that subsystem and adding a logical interface between it and the Pilot Command Software
Subsystem (which provides the critical distance). The decision would have to be a consensus
among development processes for these two subsystems, the two Level 2 processes in Figure 15,
and the Pilot Interface and Control Subsystem process at Level 1. Buy-in from the Signal
Processor CPU Network process might be required as well.

The ISSEP model also requires buy-in on decisions from the next higher level. There are several kinds of
examples of this decision. One is refinement of an ambiguous requirement. A typical example is
specifying details of subsystem-to-subsystem interfaces. Consider the interface between the Signal
Processing Software Subsystem and the Pilot Display Software Subsystem. This situation is almost
identical with the one described in Option 2 of the previous example. That is, the development teams for
these two subsystems could work out the details informally, but their decisions would need approval
from, at minimum, the processes for the Signal Processing, Pilot Interface/Control, and Pilot Command
and Display Subsystems. Design of an interface between the Pilot Command and Pilot Display Software
Subsystems, on the other hand, could require approval only from the and Pilot Command and Display
Subsystem process.

Another example is in the area of detailed user interface requirements. Requirements passed to the Pilot
Display Software Subsystem process might state only that the display format shall enable the pilot to
determine, in less than 1 second, whether the host aircraft is in imminent danger of colliding with another
aircraft. If the requirement was this vague, the Pilot Display Subsystem process would have ensured that
its elaboration had buy-in from all stakeholders. This could be accomplished via direct communication
between that process and the stakeholders or by assigning joint responsibility to that process and one or
more ancestor processes.

Another type of decision that needs higher-level approval is the decision to change a tradeoff between
nonfunctional requirements. For example, the Signal Processing Software subsystem might determine
that it could greatly increase the accuracy of aircraft position if it could be allowed a little more
computation time. This change would require buy-in from higher levels, because it would probably
necessitate taking time away from another subsystem or changing the overall timing requirements for the
Radar Subsystem. This example is a specific case of changing requirements allocation, a decision which
requires approval from the activity that made the allocation in the first place. In addition to changing
allocation of nonfunctional requirements, functional requirements can be moved from one subsystem to
another.

53

5. Applying the ISSEP Model

This page intentionally left blank.

54

6. PROCESS ISSUES REVISITED

The ISSEP model is intended to be useful for real-world systems and software engineering. To ensure
practicality, the ISSEP model addresses the key systems and software engineering process issues and is
compatible with the standards most likely to be imposed on system and software development efforts.
This section revisits the key process issues described in Section 2 and shows how the ISSEP model
resolves them. The key process issues are:

• Integrated management and technical activities

• Standards compliance

• Managing complexity

• Process adaptability and tailorability

6.1 INTEGRATED MANAGEMENT AND TECHNICAL ACTIVITIES

The ISSEP model defines process interfaces between the management and technical activities and
between the systems and software development activities. These interfaces define the information
exchange mechanisms that integrate these sets of activities. The information exchange mechanisms
include the information flows (i.e., the specific information that is passed across the interface) and the
activity descriptions that define how the information is used for generating new information and
determining where information should be routed.

Much of this technical report describes the information exchange mechanisms. The management
activities rely on the technical activities to provide the information they need for decision making. The
technical activities rely on the management activities for creating the baselines and developing the plans
that control the implementation. The systems-level activities rely on information from the software
activities to ensure that the designs can be developed with minimal risk and that they can be efficiently
integrated once implemented. The software activities rely on the system-level activities to provide the
high-level design and integration plans that scope and direct the efforts. Without all the pieces, the ISSEP
process would be missing a vital part of what makes the process work. In fact, the management and
technical and systems and software activities are so tightly integrated, that it would be awkward to
separate any part from the whole and still have an implementable process model.

55

6. Process Issues Revisted

6.2 STANDARDS COMPLIANCE

The approach for development of the ISSEP model has built on existing work done in systems and
software engineering. Specifically, the processes and work-product descriptions in several well-known
standards have been reviewed, and the ISSEP model is compliant with them. The specific standards
reviewed during ISSEP development were MIL-STD-498, EIA/IS-632, P1220, ISO/IEC 12207, the
SE-CMM, and the CMM. These standards describe required systems and software development activities
and may additionally describe the work products produced by those activities. The standards tend not to
define the information flow between activities.

The standards with which the ISSEP model complies are largely software engineering or systems
engineering standards. They concentrate on the management or technical activities and do not define
specific information exchange mechanisms between them. Although these standards are extremely useful
and provide substantial guidance, their focus on one aspect of development of large, complex systems
means that much of the task of implementing the different standards concurrently is left to the
implementors. The ISSEP model provides a means to effectively combine the standards. Following an
ISSEP generated process, developers have the ability to select the best aspects of several standards.

The ISSEP model defines activities and work products so that the requirements documented in the
standards can be implemented. The ISSEP model focuses on high-level process activities and the
information flows that contribute to successful implementation and provides a framework for application
of these standards.

The ISSEP model's emphasis on information helps users of standards focus on the engineering, rather
than on document production. During process tailoring, the documents required by the standards can be
directly mapped to the ISSEP defined information, and a documentation task can be specified that
produces the document(s) from the already available information. In this way, the development process
is truly an engineering process where document generation is a by-product of the effort, not the focus.

ISSEP model compliance does not mean that every activity in every standard can be directly mapped to
an ISSEP activity, although many can. However, the ISSEP model does not preclude the inclusion of any
of the standard activities. Because the ISSEP model is at a high level, most of the development activities
in the standards are directly mappable, but the mapping is not one-to-one. This technical report
concentrated on the software standards, and Appendix F defines a mapping of the ISSEP model to the
software engineering standard MIL-STD-498 and the CMM. The predecessor to this report, A Tailorable
Process for Systems Engineering (Software Productivity Consortium 1995b), which included the ISSEP
systems engineering and management activities, provides a mapping to the systems engineering
standards EIA-IS-632 and the SE-CMM.

6.3 MANAGING COMPLEXITY

There are two ways that the ISSEP model manages complexity. First, the appropriate levels of
abstraction for the development of each system part are defined. Second, realistic communication
mechanisms that reduce the effects of fragmented development are defined.

Level of Abstraction. This report describes how the ISSEP model is decomposed to mirror the
decomposition of the developing system. However, if the highest level processes had to "solve the entire

56

6. Process Issues Revisited

problem" in detail in order to control the lower level activities, the problem would still be complex, and
the benefits of the decomposition would not be realized. Rather, in the ISSEP model, the system parts at
each level define the system at an appropriate level of abstraction depending on their level in the
hierarchy. That is, the higher level activities develop designs and plans at a high level and lower level
activities develop designs and plans in more detail. By allowing each level to remain focused within their
level of abstraction, the job of dealing with the complexity of the entire system is distributed among all
the parts. This is an effective way of managing complexity if communications mechanisms are in place
to transfer information.

Communication Mechanisms. The ISSEP model defines communication mechanisms that promote the
flow of information. This means that information defined by the model is routinely communicated. For
example, any risks identified by the design activity are transferred to the management activity for further
analysis. The management activity does not have to request the design activity to transfer the risks. On
the other hand, in process models, where communication mechanisms do not promote the flow of
information, information must be actively requested before it is available. The ISSEP model's
communication mechanisms promote information exchange throughout the system hierarchy. The
information exchange mechanism helps manage complexity because it reduces the impact of
fragmentation caused by the distributed development.

The ISSEP communication mechanisms also encourage all participants in the development to take a
proactive role in the successful completion of the system. The more knowledgeable the participants are
of the development effort, the more likely they are to feel a part of a team effort, and the more likely they
are to find and resolve defects. The psychological factors of a strong team, empowered with knowledge,
working together to produce a complex system, cannot be overlooked. The ISSEP communication
mechanisms provide the foundation for this approach which, if implemented, can make a very large team
work as effectively as a small one.

6.4 PROCESS ADAPTABILITY AND TAILORABILITY

The ISSEP model is adaptable and can be tailored and instantiated to generate system and software
development processes for projects of any size, complexity, architecture, domain, or organizational
structure. As discussed in Section 5.5, the ISSEP model can be applied with any life-cycle model. These
features make ISSEP an attractive process model for organizations that develop diverse types of projects
or need a process that can easily fit into their current culture. The ISSEP model can be introduced into an
organization without making changes to many of the current subprocesses such as organizational
processes (e.g., reporting channels), document production, peer review, training, quality assurance, and
configuration management. In fact, because the ISSEP model is high-level, organizations that already
have an organizational standard development process can still adopt the ISSEP model as a process
framework of which their current process can be a part.

As discussed in Section 5.1, the ISSEP model, like all process models, must be tailored for use by a
project. The ISSEP model helps tailoring by defining the activities that perform the tailoring: Plan
System Increment Development and Plan CI Increment Development. The ISSEP model assumes
that tailoring is part of project planning, thus, these activities must identify the information that is
considered when performing the tailoring.

57

6. Process Issues Revisted

Process tailoring and process adaptability complement each other. If a process is at a sufficiently high
level to be easily adaptable, the process is high level enough that it needs a rigorous amount of process
tailoring to make it enactable. Although high-level processes require more tailoring, their flexibility to
accommodate a wide variety of development strategies makes them appropriate choices for adoption. By
providing tailoring guidance, the ISSEP model facilitates process tailoring and compensates for the
additional rigor needed due to its generic nature.

58

A. ISSEPIDEFO DIAGRAMS

This appendix contains the IDEFO diagrams for the ISSEP model. Section 3.2.1 contains a description of
the IDEFO notation.

Table 5. Diagram Structure for Appendix A

Diagram Number Diagram Title Section 3
Figure Number

Appendix A
Figure /Page
Number

A-0 Context Figure 4 Figure 16, Page 60
AO Develop Operational System Figure 5 Figure 17, Page 61

Al Manage System Development Figure 6 Figure 18, Page 62
A2 Design and Verify System Figure 7 Figure 19, Page 63

A3 Develop Configuration Item Figure 8 Figure 20, Page 64

A31 Manage CI Development Figure 9 Figure 21, Page 65

A32 Design and Verify CI Figure 10 Figure 22, Page 66

A33 Develop Component Figure 11 Figure 23, Page 67

A34 Integrate and Test CI Figure 12 Figure 24, Page 68
A4 Integrate and Test System Figure 13 Figure 25, Page 69

59

Appendix A. ISSEPIDEFO Diagrams

E
03

■**

w
>.

CO

"cö
c
o

CD
Q.

o

co
ZI
15
CO
cl

J5
Q_
c
o

v-»
co
N

"c
CÖ
TO

CO
3

CO
+-•
CO
c
CO

0

"03
co
CO
m
E

CO

_ o
CO

Q. C
o o
CD IS > 2
O CD _
Q Q.CO o

E
CD

■4-»
CO

o
<

(0 CO
T3

CD CD
to
CO
<

CD
2
k_

CD CD

F
CO o CO
-) CO
CD 3
□C U

o
<

o
U

jo
.CO
"L-

CD

T3
C
CO

CO

CO
Q.

c
CD

E
c
o
v-
'>
c

LLI
•*->
c
CD
E
Q.
o
CD
>
CD
Q

E
CD *-»
CO
>.

CO
TO
c

Ü

*3
C
CO

60

Appendix A. ISSEPIDEFO Diagrams

o <

</3

a.
O
a. o

61

Appendix A. ISSEPIDEFO Diagrams

73

£
O

CO

oo

E

62

Appendix A. ISSEPIDEFO Diagrams

<

T3
C

£

63

Appendix A. ISSEPIDEFO Diagrams

E <
4—
CO B
(n *-*

c
O) o
c s°
3
(1

3
bo

CO IC
c

3 o
C U
(0 n. Z* o

u >
u
Q
o
es
u
3
bo
£

3
(0
<1>
er
i-
o8

-^
C
(I)

O CO

E "D 3

£ c CO
CD

3 CD rr
o- 10
CD CO c er DQ CD

1- o O.

x> O

ci> CD
r >

CD
CD n <n
co

CQ ü

64

Appendix A. ISSEPIDEFO Diagrams

<

£
EL
O

es

E

65

Appendix A. ISSEPIDEFO Diagrams

▲
c
o
CO
ü

(0
CD
t_

CO cjj € £

es
ul

&
V

CD 3

2 <»
* g» 0. tr

> c '55 i— ^ ■\

O (p öS oö

'ÜL Q >
1\ ö ü o
> \

UJ \ in

o \ %ö%
CB &'-K
■u -c B

 w
■■= CD o
n > W

\ ♦ ik i

\
1 c '

Ö)
'55 . 1- n
0)
Q U CD

"3
co —— CD .> CD

ü ^ tr <n

C > &
UJ < ü

~5
co
CD

DC

c o

o

'55
m ■D

c
Q i
■a

CD ® ■

CD
c

"55
co

'S
CD
Q

o & "
0) ü CD
Q. CD Q

JZ
o 5f

c
CD

E
<\ C CO

ü \ — '55
2\ E Ä

'3\ \ k c3Q
V w

SM •C TJ
.£ \ \ CD CD
a \ v\ °-I
° \ \ CD

Q

, V —V t' ,i 1 i L

V CM
\ cd \

E3 c o o .S5

•P CD co

0-0°

\ k \ ^
\

\

<
n k i L

c
CD »2
a > k. ü i — ^
O) CD E

N CD

Q c CT — < CD

£ ü er
CD
CO
co <
CD

r L i L

n
co
CO ^-^"^
3
CD er

CO

E
CD

C
CD

E

CT
CD
rr
ü

cn
<

U

•c o
>
•o

c
.£?
'vi
U a

CN
es

E

CD

E
CD

'5 er
CD
tr
ü
■D
CD
c
05
co
co
m

66

Appendix A. ISSEPIDEFO Diagrams

to
3

C
ro
Q. **
c
a>
E
Q.
O

>
03
Q
c
03
c
o
D.
E
o
ü

co A
^ -S5 .+_>

3
CO
03

DC '
S
03
Q
+J

c
03
c
o
Q.
E
o
O

Ä CO

D00.«
,- 03 CO
E C >«
o o5 2

 p

t 03 =
03 |_ <

o_

'^ a
CO
CO
ü
+^
CO

• 0}
H . . .
■k

•- - OJ Z3
c co
-} 03
—' CO
Q. CO ^ o ü
CD *-

 p.

> co
03 ,03

<t_- Q H
c
a>
c i k i i i k
o
Q..
E
o
ü

1
+-• 1"" E

& 1 I to
, _ ^ E o

03 Q.
Ö.E
E ° - O

^
^ CD ^

C
*L.
3
o

"5
c

i i
03
lli

c
03

i

'S
CO
CO

*1—

03
E CO

2
<
0)

co
2 3

er
.O TJ 03
co C CC
<o co *-»
3 CO c
CD tr 03

CC co
ü.

c
o
a.
E
o
ü

<

c
o
D.
E o
U
D.
O

5

67

Appendix A. ISSEPIDEFO Diagrams

k «0
▲

•4—»

3
CO
CD

DC
ü CO

oö 4-»

co
ü ■D

Q.
D

h: ,* CD
oÖ

3
 ^

öS
■D
CD ^

«i 3 ü
S co O
N Q,

■= DC

i_

a.
w CO c

<
H

"5
co

08

CD

GC V k ü
♦^ 1
*A /

a /
1-
Ü S

CO 3
CO

W CD CD ^

st
C

I
re

ga
l DC

^ ^
*o

">

© CD O) *-*
h- 05 2

CD

< D>

S
CO
CD

C

*
3

"O
CD
O

< ü

ü f
2
0. CM E

CD *-^
CO H -55O

*? 75 CD >.

Ö ^ em
l

gr
at

~* C/>
w ~OJ

■a SS
_CD < £ 3

Q

co
CD

■O
CD
ü

ü
CO

i i 3
C
CO

c 0
CO \-m

K ^ 4-* c
CD

Q.

1-
o3 H ^

e« ö-g C
O __

ü CD ta
il

oc
e Q.

E
ü
T3

© ,*- 0 CD
75 QQ. ü _C
CO
CO

CO

"CD
CO
CO n t i i i

c ea
CD
c
o
Q.
E
o
ü ^^

<

a
ä

68

Appendix A. ISSEPIDEFO Diagrams

E'
CD *-»
co

CO

nj c o
■■5
Q)
Q.
O

co
CD

■o
co
ü
o

E
&
w >>

CO
T3
O

ffl
0>

C
CO E

E
©
to >.
to

CO

(1)
L_
D)

<
E
CD *-*
CO >.

CO

3
CO
0)
er

E
CD
CO
>.
to

3
CO
CD
er
4-»
CO
CD
H
E
0)

' to
><
(0

I-
CD 08
N —

£E
CO CD

<t
to

7f

CO

n CD

£ s.
co D)
CD <

J

E
0)
to
>.
to

co
CD

co
•0
Q.
D
2
3

XJ
CD
O
O

o3

E
t/S >.
co

CM

£ a p
XI co t
ES=. <D

co C CO
<

»
3
CO
CD
er
•5:
CD
Q

ü
■a
CD
c

Ö3
co
CO

CD

co
£
3

« 'S
to g
CO et
£ •- O öS

A A A

o

co
CD k_
3

T3
CD
ü
O

E a
"co >»
co
TJ
CD
C

"CD
co
co

Cü

co

£

E
CD *-»
CO >%

CO

CN

c

o

"5
c
co

69

Appendix A. ISSEPIDEFO Diagrams

This page intentionally left blank.

70

B. ISSEP ACTIVITY DESCRIPTIONS

This appendix contains detailed activity descriptions for the ISSEP model. Section 3.3 contains a
high-level description of the activities. The activity descriptions are in alphabetical order.

Analyze CI I&T Results (A344)

Use the CI Integration Results and the CI Test Results to determine whether the Detailed CI I&T
Procedures need to be updated. List any failures and their apparent causes and generate the CI I&T
Results to be baselined and forwarded to the validation and verification activities of Design and Verify
CI.

Analyze CI Requirements (A321)

From the Baselined CI Requirements, ensure that CI requirements are specified with the degree of
precision mandated by the selected design method(s). Refine, elaborate, and express the behavioral and
performance requirements in a usable form to create the CI Requirements Specification. This
specification becomes the basis for what will be developed in this CI. Consider Reusable Assets, if
available, when creating the CI Requirements Specification, to leverage existing components as well as
requirements specification and design artifacts. Consider and resolve any alternative specification
recommendations that may have been initially developed for some requirements, examined in the
Evaluate CI Alternatives activity, and documented in the CI Evaluation Results. Analyze and resolve any
inconsistencies, omissions, or other errors in the CI Requirements Specification identified in the Validate
& Verify CI Solution activity and documented in the CI V&V Results, which is part of the CI Design
Results.

Analyze CI Risk (A313)

Identify potential long- and short-term risks, particularly those that affect the current increment. Use the
Baselined CI EoS and other parts of the CI Baseline/Plan/Status, as necessary, to determine the
significant risks to the development of this increment. The risks identified should be within the scope of
the context defined in the EoS. Produce a CI Risk Management Plan, which includes the risks and
strategies for risk mitigation.

Analyze System I&T Results (A44)

Use the System Integration Results and the System Test Results to determine whether the Detailed
System I&T Procedures need to be updated. List any failures and their apparent causes and generate the
System I&T Results to be baselined and forwarded to the validation and verification activities of Design
and Verify System.

71

Appendix B. ISSEP Activity Descriptions

Analyze System Requirements (Ä21)

From the Baselined Customer Needs, assess the problems the system is to solve and the needs that the
system is to address; define the environment in which the system is to operate; and hence, define the
requirements that the system must satisfy to be acceptable to the user and customer of the system. Use
the work products contained in the Reusable Assets where they can be adapted to the system under
development. Include behavioral requirements that ensure that the system will generate appropriate
responses to system inputs and events. Derive performance requirements from the needs and assess them
against their effect on the system's ability to meet the customer/user requirements. After the behavioral
and performance requirements are established, merge them to define the System Requirements by
identifying the behavioral requirements (if any) that the performance requirements constrain. Refine the
requirements by analyzing their consistency and ensure that they represent identified customer
expectations and project constraints by accommodating the System Design Results.

Analyze System Risk (A13)

Identify potential long- and short-term risks, particularly those that affect the current increment. Use the
Baselined EoS and other parts of the System Baseline/Plan/Status, as necessary, to determine which are
critical to the increment development effort and when mitigation action is recommended. The risks
identified should be within the scope of the context defined in the EoS.

Develop a set of mitigation strategies for each risk and a time table for implementing them. Produce a
Risk Management Plan, which includes the risks and strategies for risk mitigation.

Assemble/Integrate CI (A342)

Progressively assemble and integrate the Components according to the Detailed CI I&T Procedures.
Provide the CI Aggregate for testing and provide the CI Integration Results for analysis. Continue until
the aggregate becomes the complete CI.

Assemble/Integrate System (A42)

Progressively assemble and integrate the CIs according to the Detailed System I&T Procedures. Provide
the System Aggregate for testing and provide the System Integration Results for analysis. Continue until
the aggregate becomes the complete Operational System.

Control CI Baseline (A311)

Baseline CI Requirements, CI Development Plan, CI Development Results, and all management and
technical products created during this increment. Review every product to determine whether it qualifies
for baselining and, if accepted, add to the current baseline information in the CI Baseline/Plan/Status,
which is output. Track implementation of changes to ensure that product configuration is controlled.
Identify and include, in each baseline, all nontangible parts of the developing CI (e.g., design and end-
user documentation, software, and all the planning and status information) necessary for the recreation of
the baseline. Track all subsequent changes to baselines as part of the configuration status. Maintain the
history of changes to each baseline.

72

Appendix B. ISSEP Activity Descriptions

The rigor of the review and baseline functions are contained in the CI Development Plan and range from
an informal review and creation of a new version of the CI Baseline/Plan/Status to a formal acceptance
and formal configuration management. As part of the review activity, note changes to the previous
baseline and store, track, and analyze these changes as part of the planning process.

With each increment, the product baseline grows (e.g., the new product and associated plans and
documentation are added to the previous baseline). If it is necessary to make changes to any part of a
baseline, make those changes in the appropriate activities and update and version the revised products in
the Control CI Baseline activity so that this activity always maintains the "latest and greatest" version of
all the baselined products.

Control System Baseline (All)

Baseline Customer Needs and all management and technical products created during the current
increment, System Development Plan, and System Development Results to establish a product baseline
for the system. Review every product to determine whether it qualifies for baselining and, if accepted,
add to the current system baseline, which is output. Track implementation of changes to ensure that
product configuration is controlled. Identify and include, in each baseline, all nontangible parts of the
developing system (e.g., design and end-user documentation, software, and all the planning and status
information) necessary for the recreation of the baseline. Track all subsequent changes to baselines as
part of the configuration status. Maintain the history of changes to each baseline.

The rigor of the review and baseline functions are contained in the System Development Plan and range
from an informal review and creation of a new version of the system baseline to a formal acceptance and
formal configuration management. As part of the review activity, note changes to the previous baseline
and store, track, and analyze these changes as part of the planning process.

With each increment, the product baseline grows (e.g., the new product and associated plans and
documentation are added to the previous baseline). If it is necessary to make changes to any part of a
baseline, make those changes in the appropriate activities and update and version the revised products in
the Control Baseline activity so that this activity always maintains the "latest and greatest" version of all
of the baselined products.

Define Functional Architecture (A22)

Create a Functional Architecture, made up of a hierarchy of functions and their internal behavior and
interfaces, by partitioning the System Requirements. The interfaces can be electrical, mechanical, or
logical, and they define the interactions of the functions with each other as well as with the external
environment. Use criteria that include performance and design considerations and begin to focus on a
solution. Identify alternative feasible solutions that meet the requirements. Use the adaptable functional
architectures contained in the Reusable Assets where they can be adapted to the system under
development. Update the Functional Architecture, as necessary, to accommodate selections and
improvements identified in the System Evaluation Results and to ensure that it is compliant with the
System Requirements according to the System V&V Results.

73

Appendix B. 1SSEP Activity Descriptions

Design and Verify CI (A32)

Develop a validated and verified design for the CI by analyzing the Baselined CI Requirements, and
selecting from among alternative architectural and detailed designs to obtain an optimum solution. Use
the adaptable CI requirements and architectural and detailed designs contained in the Reusable Assets if
appropriate. Document the design, including component requirements, and any risks, in the CI Design &
Verification. Generate CI I&T Procedures for later use by the Integrate and Test CI activity. After CI
integration and test is complete, verify the Baselined CI I&T Results and determine whether the CI is
ready for system integration.

Design and Verify System (A2)

Evolve a System Design from the Baselined Customer Needs by analyzing those needs to define the
System Requirements and selecting from alternative functional and physical architectures to obtain an
optimum design solution. Use the adaptable system requirements and functional and physical
architectures contained in the Reusable Assets if they can be adapted to the system under development.
Generate System I&T Procedures for later use by the Integrate and Test System activity. After
integration and test is complete, verify the System Test Results and determine whether the system is
ready for delivery to the customer.

Detail CI I&T Procedures (A341)

Using implementation details from the Component Baseline, which is part of the CI
Baseline/Plan/Status, elaborate on the Baselined CI I&T Procedures. Take into account any CI I&T
Procedure Updates fed back by the Analyze CI I&T Results activity. Produce a set of Detailed CI I&T
Procedures explaining exactly how the components are to be integrated and tested and how the results
are to be analyzed.

Detail System I&T Procedures (A41)

Using implementation details from the CI Designs and the CI I&T Results, which are parts of the
Baselined CI Devt. Results in the System Baseline/Plan/Status, elaborate on the Baselined System I&T
Procedures. Take into account any System I&T Procedure Updates fed back by the Analyze System I&T
Results activity. Produce a set of Detailed System I&T Procedures explaining exactly how the CIs are to
be integrated and tested and how the results are to be analyzed.

Develop Component (A33)

Create a successfully tested Component that meets the Component Requirements, which were generated
in the Design and Verify CI activity and baselined in the Manage CI Development activity as part of the
CI Baseline/Plan/Status. Use the Component Development Plan part of the CI Baseline/Plan/Status to
control the development activities and document any status information and risks in the Component
Devt. Results/Status. In the case of a hardware component, use the input Parts and Materials to
incorporate purchased parts, and use the mechanism Manufacturing System to perform fabrication. Use
or modify existing components contained in the Reusable Assets if they can be adapted to the component
under development.

74

Develop Configuration Item (A3)

Appendix B. ISSEP Activity Descriptions

Create an integrated and successfully tested Configuration Item that meets the CI Requirements
generated in the Design and Verify System activity and baselined in the Manage System Development
activity as part of the System Baseline/Plan/Status. Use the System Baseline/Plan/Status to control the
development activities and document any status information and risks in the CI Baseline/Plan/Status. In
the case of a hardware configuration item, use the input Parts and Materials and the mechanism
Manufacturing System to create any tangible components. Use the adaptable CI requirements and
architectural and detailed designs contained in the Reusable Assets if they can be adapted to the CI under
development.

Develop Operational System (AO)

Produce an Operational System that meets the Customer Needs by following the Organization
Plan/Status, using Parts and Materials as required, and taking advantage of existing Reusable Assets
where appropriate. Also produce the System Baseline/Plan/Status as supporting information to describe
the current development effort. Use the Development Environment to support the development process
and the Manufacturing System to perform any hardware fabrication or to provide special tools or test
equipment.

Develop Unit Test Cases (A332)

Develop the Unit Test Cases for the component and specify the order in which they will be run. Base the
Unit Test Cases on both the Component Requirements and the structure of the Component itself, since
unit testing is usually "white box." Take into account the prior test results from the Component Devt.
Results/Status.

Develop/Update CI Plan (A316)

Use the Baselined CI Increment Results to define the CI Development Plan Update. The CI Development
Plan is a long-term plan that defines each of the development increments at a high level, including the
planning constraints for the next level of decomposition (e.g., components). If a CI Development Plan
already exists, update the plan based on the results of the past increment development efforts, including
lessons learned, newly identified risks, and status information. If this is the first increment, generate the
first version of this plan from the context information and risk analysis results contained in the CI
Baseline/Plan/Status. This plan is a living document and is kept accurate and current.

Develop/Update System Plan (A16)

Use the Baselined Increment Results to define the System Development Plan Update. The System
Development Plan, a long-term plan that defines each of the development increments at a high level,
including the planning constraints for the next level of decomposition (e.g., CIs). If a System
Development Plan already exists, update the plan based on the results of the past increment development
efforts, including lessons learned, newly identified risks, and status information. If this is the first
increment, generate the first version of this plan from the context information and risk analysis results
contained in the System Baseline/Plan/Status. This plan is a living document and is kept accurate and
current.

75

Appendix B. ISSEP Activity Descriptions

Evaluate CI Alternatives (A324)

Compare alternatives to determine which best meets the Baselined CI Requirements (both functional and
performance requirements) within the constraints of the CI Design Plan, and suggest improved
alternatives where appropriate. Focus the evaluation on alternative specifications for a requirement (or
requirements), alternative architecture (or architectural elements), or alternative designs (or design
components), as appropriate. Document the results of the evaluation in the CI Evaluation Results and,
when no design risks requiring immediate resolution remain, document the selected alternative as part of
the CI Design, which becomes part of the CI Design & Verification.

Evaluate System Alternatives (A24)

Perform trade studies of the alternative functional architectures to select the arrangement that best
supports the identified Baselined Customer Needs and System Requirements. Identify improvements that
would lead to a better Functional Architecture. Analyze the physical solution alternatives to determine
which one best satisfies the allocated functional and performance requirements, interface requirements,
and design constraints. Identify improvements that would lead to a better Physical Architecture. Collect
the System Evaluation Results to document the studies and proposed improvements. Establish the
System Design based on a selected architecture, including preliminary specifications of the CSCIs,
HWCIs and interfaces, as well as a record of requirements, alternatives, and design decisions leading to
the selection.

Implement Component (A331)

Implement the Component to meet the Component Requirements, as controlled by the Component
Development Plan. Use or modify existing components or parts contained in the Reusable Assets if they
can be adapted to the component under development. For software components, perform the coding and,
if required by the plan, evolve the component over multiple builds of the CI. For hardware components,
use the input Parts and Materials to incorporate purchased parts and the mechanism Manufacturing
System to perform fabrication and assembly. In either case, incorporate the prior test results from the
Component Devt. Results/Status. Include the implementation decisions, status, lessons learned, and any
newly identified risks with the implemented Component. The Component is the hardware unit or the
executable version of the software unit on appropriate electronic media.

Integrate and Test CI (A34)

Assemble and test the Components according to the Baseline CI I&T Procedures, which include test
cases and expected results, and document the outcome in the CI I&T Results, which describe the status
of the integration and test process and any exceptions to the observations expected by the procedures.
Use the Manufacturing System mechanism to provide any tools and test equipment required. When the
integration and testing is successful and no issues remain, the CI is ready for verification in the Design
and Verify CI activity.

Integrate and Test System (A4)

Assemble and test the hardware and software Configuration Items according to the Baselined System
I&T Procedures, which include test cases and expected results, and document the outcome in the System

76

Appendix B. ISSEP Activity Descriptions

I&T Results, which describe the status of the integration and test process and any exceptions to the
observations expected by the procedures. Use the Manufacturing System mechanism to provide any tools
and test equipment required. When the activity has been successfully completed, the Operational System
is ready for verification in the Design and Verify System activity. The Operational System is the tangible
part of the system. Nontangible items such as software and user documentation are contained in the
System Baseline/Plan/Status.

Manage CI Development (A31)

Plan, control, and coordinate the development of the CI by managing the Cl-level activities. Use the
System Baseline/Plan/Status, which includes the CI Requirements as a basis for creation of the CI
Baseline/Plan/Status, including the definition of the CI development increments. The System
Development/Plan/Status provides the scope and context, constraints, and the high-level planning
considerations for development of this CI. Gather the status information for this output from the CI
Development Results, which include the CI Design & Verification, the CI I&T Results, and the
Component Devt. Results/Status. Also use the results of the design, development, and integration and
test activities to produce and maintain the baseline information, which grows as CI development
progresses to include all nontangible parts of the CI. Repeat the management activities every increment,
so that the CI context, risks, and plan are reviewed, and the plan is modified to reflect the current status
and updated, as necessary, to ensure that this part of the project remains focused on critical project
objectives.

Manage System Development (Al)

Plan, control, and coordinate the development of the system by managing the system-level activities. Use
the Organization Plan/Status and the Customer Needs to define the system context (e.g., objectives,
goals, stakeholders) and analyze system risks as a basis for creating the System Baseline/Plan/Status,
including the definition of the system increments. Gather the status information for this output from the
System Development Results, which include the System Design & Verification, the System I&T Results,
and the CI Baseline/Plan/Status. Also use the results of the design, development, and integration and test
activities to produce and maintain the baseline information, which grows as system development
progresses to include all nontangible parts of the system. Repeat the management activities every
increment, so that the system context, risks, and plan are reviewed and modified to reflect the current
status to ensure that the project remains focused on critical project objectives.

Perform Architectural Design (A322)

Design an architecture that satisfies the CI Requirements Specification, defining a set of components and
their interrelationships and allocating requirements to them. The components of the architecture
represent pieces of the functionality (or requirements) allocated to the CI. Specify the dependencies,
input/output behavior, and performance constraints (e.g., throughput, stimulus response time) of each
component. The relationships among the components represent the interfaces between them and any
assumptions/constraints placed on these interfaces. Identify alternative feasible solutions that meet the
requirements. Use any existing components or architectural fragments from the Reusable Assets where
they can be adapted to the CI under development. Refine the architecture based on recommendations
from the Evaluate CI Alternatives activity, which are documented in the CI Evaluation Results. Analyze

77

Appendix B. ISSEP Activity Descriptions

and resolve any architecture risks identified in the Validate & Verify CI Solution activity and
documented in the CI V&V Results, which are part of the CI Design Results.

Perform Detailed Design (A323)

Refine the CI Architecture, specifying the internal structure of the components. Include mandated
algorithms, data structures, or code fragments (either existing or to-be-developed), details of internal
logic (e.g., conditional paths of execution and the timing allocations for each), and any other constraints
on the internal design, resulting in a CI Detailed Design that defines the viable alternatives. Consider
adaptation and use of available specifications or specification fragments from the Reusable Assets.
Consider and resolve any alternative design recommendations input from the Evaluate CI Alternatives
activity, which are documented in the CI Evaluation Results. Analyze and resolve any design issues
identified in the Validate & Verify CI Solution activity and documented in the CI V&V Results.

Perform Unit Testing & Analysis (A333)

Exercise the Unit Test Cases and analyze the test results to ensure that implementation of the component
is complete and consistent with respect to the Component Requirements. Generate the Component Devt.
Results/Status, which includes the implementation decisions and rationale; the test cases; the results of
the testing and the associated analysis; newly identified risks; and, if this is a software component, the
source code.

Plan CI Increment Development (A314)

Use the Baselined CI RMP, the CI Increment Requirements, and any required additional information
contained in the CI Baseline/Plan/Status to determine how best to reach the increment objectives and
mitigate risk. First, establish development goals for the increment and use them as a basis for selecting a
development strategy. Make detailed size, cost, and schedule estimates. Tailor and instantiate the
development process for the increment and document detailed work assignments. Hence, develop the
detailed development plan for the next increment. This plan is the CI Increment Plan, a portion of the CI
Development Plan, which becomes part of the CI Baseline/Plan/Status. This detailed plan remains within
the scope of the CI Development Plan, with added detail to make it enactable.

Plan Sys. Increment Development (A14)

Use the Baselined Risk Management Plan, the Increment Requirements, and any required additional
information contained in the System Baseline/Plan/Status to determine how best to reach the increment
objectives and mitigate risk. First, establish development goals for the increment and use them as a basis
for selecting a development strategy. Make detailed size, cost, and schedule estimates. Tailor and
instantiate the development process for the increment and document detailed work assignments. Hence,
develop the detailed development plan for the next increment. This plan is the Increment Plan, a portion
of the System Development Plan, which is part of the System Baseline/Plan/Status. This detailed plan
remains within the scope of the System Development Plan, with added detail to make it enactable.

78

Appendix B. ISSEP Activity Descriptions

Synthesize Physical Architecture (A23)

Allocate the System Requirements and the elements of the Functional Architecture to a Physical
Architecture that defines the viable alternatives in terms of hardware, software, and people (procedures).
Define interfaces that communicate the interactions between the parts of the system, and define technical
parameters that drive the performance of the parts. Use the adaptable physical architectures contained in
the Reusable Assets where they can be adapted to the system under development. Identify alternative
feasible solutions that implement the requirements and functions. Update the Physical Architecture, as
necessary, to accommodate selections and improvements identified in the System Evaluation Results,
and to ensure that the physical architecture conforms to the Functional Architecture and System
Requirements, according to the V&V Results.

Test CI Aggregate (A343)

After each step of integration, as defined by the Detailed CI I&T Procedures, perform the specified tests
on the current CI Aggregate, up to and including the CI itself. Use independent personnel to perform any
required CI qualification testing. If needed, perform inspection of incoming component-level COTS
parts. Provide the CI Test Results for analysis.

Test System Aggregate (A43)

After each step of integration, as defined by the Detailed System I&T Procedures, perform the specified
tests on the current System Aggregate, up to and including the Operational System itself. Use
independent personnel to perform any required system qualification testing. If needed, perform
inspection of incoming Cl-level COTS parts. Provide the System Test Results for analysis.

Track CI Increment Development (A315)

Control the enactment of the Baselined CI Increment Plan and ensure that the development progresses
accordingly. Use the CI Development Results to assess progress against the plan and analyze and/or
resolve development issues. Minor modifications to the plan are permitted, but if major replanning is
necessary, or when the development goals documented in the plan are met, terminate this activity and
initiate the Develop/Update CI Plan activity. Produce CI Increment Results that contain the actual
development measures and any risks that were identified and/or resolved during the increment.

Track Sys. Increment Development (A15)

Control the enactment of the Baselined Increment Plan and ensure that the development progresses
accordingly. Use the System Development Results to assess progress against the plan and analyze and/or
resolve development issues. Minor modifications to the plan are permitted, but if major replanning is
necessary, or when the development goals documented in the plan are met, terminate this activity and
initiate the Develop/Update System Plan activity. Produce Increment Results that contain the actual
development measures and any risks that were identified and/or resolved during the increment.

79

Appendix B, 1SSEP Activity Descriptions

Understand CI Context (A312)

Identify factors that that could have an influence on the success of CI development. Define the scope of
this increment of the CI development. Analyze the Baselined CI Requirements and other parts of the CI
Baseline/Plan/Status, as necessary, to determine the factors that influence the success of this increment
of the CI development. Determine the increment objectives and constraints and identify alternatives for
meeting the objectives while remaining within the constraints. Identify the stakeholders, for the
increment. Produce or update the CI Estimate of the Situation that documents the context for use in
managing the increment development.

Understand System Context (A12)

Identify factors that that could have an influence on the success of system development. Define the scope
of this increment of the system development. Analyze the Baselined Customer Needs and other parts of
the System Baseline/Plan/Status, as necessary, to determine the factors that influence the success of this
increment. Determine the increment objectives and constraints and identify alternatives for meeting the
objectives while remaining within the constraints. Identify the stakeholders, for the increment. Produce
or update the Estimate of the Situation that documents the context for use in managing the increment
development.

Validate & Verify CI Solution (A325)

Validate the CI Requirements Specification to ensure that it adequately represents the Baselined CI
Requirements and is complete and consistent. Assess the completeness of the CI Architecture in
satisfying the validated requirements. Verify that the CI Detailed Design is traceable to the verified CI
Architecture as well as to the validated CI Requirements Specification. Generate the CI I&T Procedures,
which describe how the components are to be progressively assembled and tested to determine
compliance of the integrated CI with the CI Requirements Specification and the CI Design. Analyze the
Baselined CI I&T Results to determine whether any changes have to be made to the requirements,
architecture, or detailed design. Verify that the CI is complete. Identify any inconsistencies, omissions,
ambiguities, or areas for concern, and document them in the CI V&V Results, along with all verification
and validation completed on any of the work products produced in the design of the CI, including the
results of testing the CI itself.

Validate & Verify System Solution (A25)

Evaluate the System Requirements to ensure that they represent identified Customer Needs and project
constraints and that all operations and support concepts have been fully addressed. Assess the
completeness of the Functional Architecture in satisfying the validated requirements. Verify that the
Physical Architecture is traceable to the verified Functional Architecture as well as to the validated
System Requirements. Generate System I&T Procedures, which describe how the hardware and software
CIs are to be progressively assembled and tested to determine compliance of the integrated system with
the System Requirements and System Design. Analyze the Baselined System I&T Results, which
document the outcome of the Integrate and Test System activity, to determine whether any changes have
to be made to the requirements or architecture of the system. Verify that the system is complete and
ready for delivery. Produce the System V&V Results to document all verification and validation

80

Appendix B. ISSEP Activity Descriptions

completed on any of the work products produced in the design of the Operational System, including the
results of testing the system itself.

81

Appendix B. ISSEP Activity Descriptions

This page intentionally left blank.

82

C. ISSEP INFORMATION FLOW DESCRIPTIONS

This appendix contains detailed information flow descriptions for the ISSEP model. The information
flows are in alphabetical order.

Alternatives & Customer Needs
The Alternatives & Customer Needs provide the work products of the system design
activities for the evaluation and verification activities to identify selected alternatives
and to report whether they are compliant.

Includes:
Baselined Customer Needs
System Requirements
Functional Architecture
Physical Architecture

Baselined CI Devt. Results
The Baselined CI Devt. Results are part of the System Baseline/Plan/Status and are a
version of the CI Development Results included in the CI Baseline/Plan/Status. They
include the CI Design & Verification, Component Devt. Results/Status, and the CI
I&T Results and provide implementation details for the Detail System I&T Procedures
activity.

Included in:
System Baseline/Plan/Status

Baselined CI EoS
The Baselined CI EoS, Estimate of the Situation, defines the mission of the CI and its
development, the relationships of the other system units involved in the development
of the CI, and relationships with stakeholders. This information flow documents
objectives, assumptions, and constraints on the development of the CI. The objectives
can be political, technical, organizational, and/or economic. Assumptions include
stakeholder expectations, how interactions are to be handled with other system units,
and how the development will be staffed.

Included in:
CI Baseline/Plan/Status

Baselined CI I&T Procedures
The Baselined CI I&T Procedures describe how the components that make up the CI
design are to be progressively assembled and tested to determine compliance with the
CI Requirements. The procedures include the test cases and expected results. These

83

Appendix C. ISSEP Information Flow Descriptions

procedures are the baselined version of the CI I&T Procedures that were generated in
the Design and Verify CI activity, bundled as part of the CI Design & Verification and
baselined in the Manage CI Development activity as part of the CI
Baseline/Plan/Status.

Included in:
CI Baseline/Plan/Status

Baselined CI I&T Results
The Baselined CI I&T Results document the outcome of the Integrate and Test CI
activity. This information flow includes issues, concerns, status information, as well as
the results from executing the test cases. The CI I&T Results becomes part of the CI
Baseline/Plan/Status in the Manage CI Development activity and is used in the Design
and Verify CI activity as input to the Validate & Verify CI Solution activity where it is
used to perform an analysis of the final integrated CI and determine whether it is
complete.

Included in:
CI Baseline/Plan/Status

Baselined CI Increment Plan
The Baselined CI Increment Plan documents the development goals and associated
success criteria that support the objectives for the CI that are documented in the CI
Baseline/Plan/Status. This information flow defines the estimated size and scope of the
development for the current increment; development cost and schedule for each
activity planned for the increment; resources allocated to each activity in the
increment; methods, tools, and facilities needed to complete the increment's activities;
sequence and dependencies between the increment's activities; and the work
breakdown structure (WBS) for the activities in the current increment.

Included in:
CI Baseline/Plan/Status

Baselined CI Increment Results
The Baselined CI Increment Results include current plan-to-actual cost information,
schedule progress, and risk management information. This information flow also
contains information about issues and concerns that have been identified and an
analysis of their potential impact.

Included in:
CI Baseline/Plan/Status

Baselined CI Requirements
The requirements for each of the CIs in the system are generated in the Design and
Verify System activity. The requirements for each CI, CI Requirements, are baselined
in the Manage System Development activity as part of the System Baseline/Plan/Status
and are passed down into the appropriate Develop Configuration Item activity (i.e.,
each Develop Configuration Item activity gets a unique set of CI Requirements). The
CI Requirements are then baselined at the CI level in the Manage CI Development

84

Appendix C. ISSEP Information Flow Descriptions

activity, become part of the CI Baseline/Plan/Status, and flow into the Design and
Verify CI activity.

Included in:
CI Baseline/Plan/Status
CI Requirements/Alternatives

Baselined CI RMP
The Baselined CI RMP, documents the identified risks, potential risk mitigation
strategies, selected risk mitigation strategies and the rationale for their selection, and
the implementation plan for the selected strategies.

Included in:
CI Baseline/Plan/Status

Baselined Customer Needs
The Baselined Customer Needs consist of a baselined version of the Customer Needs,
which define the customers' and stakeholders' (e.g., users, acquirers, manufacturing,
contractor, subcontractors, developers) goals for the system from its conception until it
is decommissioned. This information flow also defines the reasons for the system's
existence. This flow defines the operational concept that describes how the system is
intended to function, the measures of effectiveness of the system, the critical
influencing factors, customer requirements, and customer expectations.

Included in:
System Baseline/Plan/Status
Alternatives & Customer Needs

Baselined EoS
The Baselined EoS defines the mission of the system and its development, the
relationships of the organizations involved in the development of the system part, and
relationships with stakeholders. This information flow documents objectives,
assumptions, and constraints on the development of the system part. The objectives
can be political, technical, organizational, and/or economic. Assumptions include
stakeholder expectations, how interactions are to be handled with other organizational
units, and how the development will be staffed.

Included in:
System Baseline/Plan/Status

Baselined Increment Plan
The Baselined Increment Plan] documents the development goals and associated
success criteria that support the objectives for the system part that are documented in
the System Baseline/Plan/Status. This information flow defines the estimated size and
scope of the development for the current increment; development cost and schedule for
each activity planned for the increment; resources allocated to each activity in the
increment; methods, tools, and facilities needed to complete the increment's activities;
sequence and dependencies between the increment's activities; and the WBS for the
activities in the current increment.

85

Appendix C. ISSEP Information Flow Descriptions

Included in:
System Baseline/Plan/Status

Baselined Increment Results
The Baselined Increment Results include current plan-to-actual cost information,
schedule progress, and risk management information. This information flow also
contains information about issues and concerns that have been identified and an
analysis of their potential impact.

Included in:
System Baseline/Plan/Status

Baselined Risk Management Plan
The Baselined Risk Management Plan documents the identified risks, potential risk
aversion/mitigation strategies, selected risk aversion/mitigation strategies and the
rationale for their selection, and the implementation plan for the selected strategies.

Included in:
System Baseline/Plan/Status

Baselined System I&T Procedures
The Baselined System I&T Procedures are part of the System Baseline/Plan/Status and
are a version of the System I&T Procedures generated by the Design and Verify
System activity. This information flow describes how the hardware and software CIs
are to be progressively assembled and tested to determine compliance with the System
Requirements. Test cases and expected results are included.

Included in:
System Baseline/Plan/Status

Baselined System I&T Results
The Baselined System I&T Results consist of a baselined version of the System I&T
Results, which document the outcome of the Integrate and Test System activity; enable
the Design and Verify System activity to determine whether any changes have to be
made to the requirements or architecture of the system; and verify that the system is
complete and ready for delivery.

Included in:
System Baseline/Plan/Status

CI
The CI is the tangible (e.g., hardware with embedded software) integrated and tested
Component for this CI. Over time, as more components are developed, the CI will
grow and eventually it will include the entire CI. However, it is not necessary to have
all the CI components developed before Integration and Test can begin, and the CI
created may not initially contain all components.

86

Appendix C. ISSEP Information Flow Descriptions

The nontangible results of the Integration and Test activity, which includes things such
as integrated software components, are contained in the CI I&T Results, baselined in
the Manage CI Development activity, and become part of the CI Baseline.

Includes:
CI Aggregate

CI Aggregate
The CI Aggregate is the current integrated set of Components, ranging from a single
Component to the full CI as integration and testing proceed.

Included in:
CI

CI Architecture
The CI Architecture defines a set of architectural components that are intended to
satisfy the requirements defined in the CI Requirements Specification. More that one
CI Architecture may be developed for each CI.

Included in:
CI Requirements/Alternatives

CI Baseline/Plan/Status
The CI Baseline/Plan/Status contains all the information about the current CI
development effort. This information flow includes planning and associated status
information, design information, integration and test information, and software source
code which meet the objectives of the CI development. Information from this
information flow may be pulled by the Manage CI Development activities as needed.

Included in:
System Development Results

Includes:
Baselined CI Requirements
Baselined CI EoS
Baselined CI RMP
Baselined CI Increment Plan
Baselined CI Increment Results
Baselined CI I&T Procedures
Baselined CI I&T Results
CI Design Plan
CI I&T Plan
CI Increment Requirements
Component Development Plans
Component Requirements
Component Baseline

87

Appendix C. ISSEP Information Flow Descriptions

CI Design
The CI Design contains the validated and verified design (including requirements
specification, architecture, and detailed design) for the CI. This information flow
contains only the recommended design alternative. Other design alternatives are kept
in a design repository for future access.

Included in:
CI Design & Verification

CI Design & Verification
The CI Design & Verification contains the results of the Design and Verify CI activity.
This information flow contains the design, procedures for testing the implementation
of the design, design decisions, and any issues and concerns associated with the
design.

Includes:
CI Design
CI I&T Procedures
CI V&V Results

Included in:
CI Development Results

CI Design Plan

The CI Design Plan is that part of the CI Baseline/Plan/Status which is required to
control the Design and Verify CI activities.

Included in:
CI Baseline/Plan/Status

CI Design Results
CI Design Results contains the issues, concerns, and recommendations that resulted
from the evaluation of the specification and design alternatives and, if available, the
validation and verification of the selected alternative. If more work must be done to
create an acceptable alternative, this information is fed back into the activities that
created the alternative that was analyzed.

Includes:
CI Evaluation Results
CI V&V Results

CI Detailed Design
The CI Detailed Design defines a set of detailed designs that are intended for each of
the CI Architectures defined in the CI Architecture. More that one CI Detailed Design
may be developed for each CI Architecture.

Included in:
CI Requirements/Alternatives

88

Appendix C, ISSEP Information Flow Descriptions

CI Development Plan
The CI Development Plan contains the outputs from the management activities
collected for baselining in the "plan" portion of the CI Baseline/Plan/Status.

Includes:
CI Estimate of the Situation
CI Risk Management Plan
CI Increment Plan(s)
CI Increment Results
CI Development Plan Update

CI Development Plan Update
If a CI Development Plan already exists, this update incorporates the results of the

past increment development efforts, including lessons learned, newly identified risks,
and status information. If this is the first increment, this update becomes the first
version of the plan, derived from the context information and risk analysis results
contained in the CI Baseline/Plan/Status.

Included in:
CI Development Plan

Includes:
CI Design Plan
CII&TPlan
Component Development Plans

Included in:
CI Baseline/Plan
CI Baseline/Plan/Status

CI Development Results
The CI Development Results are the results of the CI development activities, including
the design documents, results of developing the component(s), and the integration and
test results. After each technical activity (i.e., Design and Verify CI, Develop
Component, and Integrate and Test CI) completes, all the documentation associated
with the activity is passed via the CI Development Results flow into the Manage CI
Development activity for baselining.

Includes:
CI Design & Verification
Component Devt. Results/Status
CI I&T Results

CI Estimate of the Situation
The CI Estimate of the Situation defines the mission of the CI and its development, the
relationships of the other system units involved in the development of the CI, and
relationships with stakeholders. This information on flow documents objectives,
assumptions, and constraints on the development of the CI. The objectives can be
political, technical, organizational, and/or economic. Assumptions include stakeholder

89

Appendix C. ISSEP Information Flow Descriptions

expectations, how interactions are to be handled with other system units, and how the
development will be staffed.

Included in:
CI Development Plan

CI Evaluation Results
The CI Evaluation Results contain the issues, concerns, comments, and
recommendations that resulted from analyzing the one or more alternatives for each
activity in the design process. That is, there will be evaluation results associated with
the evaluation of the requirements specification(s), CI architecture(s), and CI detailed
design(s).

Included in:
CI Design Results

CII&TPlan
The CI I&T Plan is that part of the CI Baseline/Plan/Status which is required to control
the Integrate and Test CI activities.

Included in:
CI Baseline/Plan/Status

CI I&T Procedure Updates
The CI I&T Procedure Updates are generated by the Analyze CI I&T Results activity
to ensure that any changes needed in the Detailed CI I&T Procedures may be
incorporated.

CI I&T Procedures
The CI I&T Procedures describe how the components that make up the CI design are
to be progressively assembled and tested to determine compliance with the CI
Requirements. The procedures include the test cases and expected results.

Included in:
CI Design & Verification

CI I&T Results
The CI I&T Results document the outcome of the Integrate and Test CI activity. This
information flow includes issues, concerns, status information, as well as the results
from executing the test cases. This flow becomes part of the CI Baseline/Plan/Status in
the Manage CI Development activity.

Included in:
CI Development Results

CI Increment Plan

The CI Increment Plan documents the development goals and associated success
criteria that support the objectives for the CI that are documented in the CI
Development Plan. This information flow defines the estimated size and scope of the

90

Appendix C. ISSEP Information Flow Descriptions

development for the current increment; development cost and schedule for each
activity planned for the increment; resources allocated to each activity in the
increment; methods, tools, and facilities needed to complete the increment's activities;
sequence and dependencies between the increment's activities; and the WBS for the
activities in the current increment.

Included in:
CI Development Plan

CI Increment Requirements
The CI Increment Requirements are the technical requirements that must be met by
this CI development increment. The Increment Requirements are a subset of the total
CI requirements that have been allocated to this CI increment.

Included in:
CI Baseline/Plan/Status

CI Increment Results
The CI Increment Results include current plan-to-actual cost information, schedule
progress, and risk management information. This flow also contains information about
issues and concerns that have been identified and an analysis of their potential impact.

Included in:
CI Development Plan

CI Integration Results
The CI Integration Results describe the status of the assembly/integration process and
any exceptions to the observations expected by the procedures.

CI Requirements
The CI Requirements are the specific technical requirements for each of the CIs to be
developed. This flow is generated in the Design and Verify System activity and
baselined in the Manage System Development activity as part of the System
Baseline/Plan/Status. CI Requirements are also baselined in Manage CI Development
and become part of the CI Baseline/Plan/Status.

Included in:
System Baseline/Plan/Status

CI Requirements/Alternatives
The Analyze Requirements, Perform Architecture Design, and Perform Detailed
Design activities may produce multiple, acceptable solutions. These solutions are
grouped into CI Requirements/Alternatives.

Includes:
Baselined CI Requirements
CI Requirements Specification
CI Architecture
CI Detailed Design

91

Appendix C. ISSEP Information Flow Descriptions

CI Requirements Specification
The CI Requirements Specification contains the technical requirements for the CI
being developed. The specification provides the basis for the CI architecture, detailed
design, and development.

Included in:
CI Requirements/Alternatives

CI Risk Management Plan
The CI Risk Management Plan documents the identified risks, potential risk mitigation
strategies, selected risk mitigation strategies and the rationale for their selection, and
the implementation plan for the selected strategies.

Included in:
CI Development Plan

CI Test Results
The CI Test Results describe the status of the testing process and any exceptions to the
observations expected by the procedures.

CI V&V Results
The CI V&V Results contain the issues, concerns, comments, and conclusions that
resulted from validation and verification of the recommended alternative. There will
be V&V results associated with the examination of each of the design activities (i.e.,
the requirements specification, CI architecture, and CI detailed design).

Included in:
CI Design Results
CI Design & Verification

Component
The Component is the item that was assembled/created during the Develop Component
activity. The Component includes both the tangible items (e.g, hardware) that are
created from parts and materials produced in the Develop Component activity.
Documentation, plans, issues, and other nontangible products created during the
Develop Component activity are part of Component Devt. Results/Status.

Component Baseline
The Component Baseline is part of the CI Baseline/Plan/Status and is derived from the
Component Devt. Results/Status from each Component of the CI. This information
flow includes the Component designs and test results and provides implementation
details for the Detail CI I&T Procedures activity.

Included in:
CI Baseline/Plan/Status

92

Appendix C. ISSEP Information Flow Descriptions

Component Development Plan
The Component Development Plan contains all the planning information for work
done for a Component. This information flow controls the development of components
below the CI level.

Included in:
CI Baseline/Plan/Status

Component Devt. Results/Status
The Component Development Results/Status are the results of the Component
development activities, including the test cases and the results of the unit testing and
analysis. If implementation of the component is not complete and consistent with
respect to the Component Requirements, the Component Devt. Results/Status is fed
back to the Manage CI Development and/or the Design and Verify CI activity for
correction. Documentation, plans, issues, and other nontangible products created
during the Develop Component activity are part of Component Devt. Results/Status.

Included in:
CI Development Results

Component Requirements
The Component Requirements are the specific technical requirements for each of the
components to be developed. This information flow is generated in the Design and
Verify CI activity as part of the CI Design and baselined in the Manage CI
Development activity as part of the CI Baseline/Plan/Status.

Included in:
CI Baseline/Plan/Status

Customer Needs
The Customer Needs define the customers' and stakeholders' (e.g., users, acquirers,
manufacturing, contractor, subcontractors, developers) goals for the system from its
conception until it is decommissioned. This information flow also defines the reasons
for the system's existence. This flow also defines the operational concept that
describes how the system is intended to function, the measures of effectiveness of the
system, the critical influencing factors, customer requirements, and customer
expectations.

Detailed CI I&T Procedures
The Detailed CI I&T Procedures describe exactly how the Components are to be
integrated and tested and how the results are to be analyzed. These procedures
elaborate on the Baselined CI I&T Procedures, using implementation details from the
Component Baselines and part of the Baselined CI Development Results in the CI
Baseline.

Detailed System I&T Procedures
The Detailed System I&T Procedures describe exactly how the CIs are to be integrated
and tested and how the results are to be analyzed. These procedures elaborate on the
Baselined System I&T Procedures, using implementation details from the CI Designs

93

Appendix C. ISSEP Information Flow Descriptions

and the CI I&T Results and parts of the Baselined CI Development Results in the
System Baseline.

Development Environment
The Development Environment defines the tools, methods, and people that will
execute the development process.

Estimate of the Situation
The Estimate of the Situation defines the mission of the system and its development,
the relationships of the organizations involved in the development of the system part,
and relationships with stakeholders. This information flow documents objectives,
assumptions, and constraints on the development of the system part. The objectives
can be political, technical, organizational, and/or economic. Assumptions include
stakeholder expectations, how interactions are to be handled with other organizational
units, and how the development will be staffed.

Included in:
System Development Plan

Functional Architecture
The Functional Architecture defines the hierarchy of functions that satisfy the System
Requirements. Each function documents the inputs to, outputs from, and internal
behavior of the function. There are often performance requirements that are allocated
to constrain the behavior of the function. Functional interfaces define the information
that flows between functions. These interfaces can be electrical, mechanical, or logical.
Interfaces define the interactions of the functions with each other as well as with the
external environment. The functions can be identified using techniques such as
object-oriented or structural decomposition.

Included in:
Alternatives & Customer Needs

Increment Plan
The Increment Plan documents the development goals and associated success criteria
that support the objectives for the system part that are documented in the System
Baseline/Plan/Status. This information flow defines the estimated size and scope of the
development for the current increment; development cost and schedule for each
activity planned for the increment; resources allocated to each activity in the
increment; methods, tools, and facilities needed to complete the increment's activities;
sequence and dependencies between the increment's activities; and the WBS for the
activities in the current increment.

If the objective of this increment is to develop the System Baseline/Plan/Status, then
the Increment Plan contains the estimated size, cost, and schedule for development of
the plan; the WBS for work done to create the plan, if applicable; the resources
allocated to complete the plan; the methods, tools, and facilities needed to complete
the plan; and sequence dependencies between the plan development activities.

94

Appendix C. ISSEP Information Flow Descriptions

Included in:
System Development Plan

Increment Requirements
The Increment Requirements are the technical requirements that must be met by this
system development increment. The Increment Requirements are a subset of the total
system requirements that have been allocated to this system increment.

Included in:
System Baseline/Plan/Status

Increment Results
The Increment Results include current plan-to-actual cost information, schedule
progress, and risk management information. This flow also contains information about
issues and concerns that have been identified and an analysis of their potential impact.

Included in:
System Development Plan

Manufacturing System
The Manufacturing System is the mechanism by which any hardware fabrication
required during the activity Develop Component is accomplished and by which the
different tools and test equipment typically required for the Integrate and Test
activities are provided.

Operational System
The Operational System is the tangible part of the system and contains the integrated
and tested hardware and software that meet the objectives of the entire program as
expressed in the Customer Needs.

Includes:
System Aggregate

Organization Plan/Status
The Organization Plan/Status contains all the planning information and the associated
status information used to guide and constrain the system development, such as
organization structure and objectives, cost and resource constraints, and organizational
policies and procedures. This information flow also includes all relevant issues,
concerns, and objectives for this system. This plan and its associated status provide
context for managing the development of the system.

In summary, the Organization Plan/Status may include an Estimate of the Situation; a
Risk Management Plan; key deliverable descriptions; estimates of size, cost, and
schedule; reusable entity definitions; status information, issues, and concerns; and
lessons learned.

95

Appendix C. ISSEP Information Flow Descriptions

Parts and Materials
Parts and Materials are hardware items (i.e., tangible items) that are used in creating
hardware components and parts used in the deployment of software items (e.g., tapes,
diskettes, and computer hardware used for development transferred to the target site).

Physical Architecture
The Physical Architecture defines mappings from the Functional Architecture to
subsystems, components, people, hardware, and software. This information flow
defines where the functions are accomplished and how the interfaces between the
people, hardware, and software support the interfaces between the formal system
functions. This work product includes the physical layout and potential failure
mechanisms.

Included in:
Alternatives & Customer Needs

Reusable Assets

The Reusable Assets consist of adaptable system and CI requirements, functional and
physical architectures, CI designs, and developed system parts, which are available to
support the development of the operational system. Included are their associated
documentation such as requirements, design and design rationale, integration and test
plans, unit test cases, results of testing, and management plans and status information.
These reusable assets are available for inclusion in the developing system, as needed.

Risk Management Plan
The Risk Management Plan documents the identified risks, potential risk mitigation
strategies, selected risk mitigation strategies and the rationale for their selection, and
the implementation plan for the selected strategies.

Included in:
System Development Plan

System Aggregate
The System Aggregate is the current integrated set of software and hardware CIs,
ranging from a single CI to the full Operational System as integration and testing
proceed.

Included in:
Operational System

System Baseline/Plan/Status
The System Baseline/Plan/Status contains all the information about the current system
development effort. This information flow includes planning and associated status
information, design information, integration and test information, and software source
code, which meet the objectives of the entire project. Information from this flow may
be pulled by the Manage System Development activities, as needed.

Includes:
Baselined Customer Needs

96

Appendix C. ISSEP Information Flow Descriptions

Baselined EoS
Baselined Risk Management Plan
Baselined Increment Plan
Baselined Increment Results
Baselined System I&T Procedures
Baselined CI Devt. Results
Baselined System I&T Results
System Design Plan
CI Requirements
System I&T Plan
Increment Requirements
System Development Plan/Status

System Design
The System Design identifies the preferred alternative Physical Architecture that is
selected after the trade-off analysis. This solution is selected based on a comparison of
all alternatives. The System Design includes a record of requirements, alternatives, and
design decisions and is used to further engineer or implement the system.

Included in:
System Design & Verification

System Design & Verification
The System Design & Verification includes a record of requirements, alternatives, and
design decisions, describes how the hardware and software CIs are to be assembled
and tested, and documents the results of the verification and validation completed on
the work products of the design activities.

Includes:
System Design
System I&T Procedures
System V&V Results

Included in:
System Development Results

System Design Plan
The System Design Plan is required to control the Design and Verify System activities.

Included in:
System Baseline/Plan/Status

System Design Results
The System Design Results provide feedback to the system design activities from the
evaluation and verification activities to identify selected alternatives and to report
whether the work products are compliant.

97

Appendix C. ISSEP Information Flow Descriptions

Includes:
System Evaluation Results
System V&V Results

System Development Plan
The outputs from the management activities collected for baselining in the "plan"
portion of the System Baseline/Plan/Status.

Includes:
Estimate of the Situation
Risk Management Plan
Increment Plan(s)
Increment Results
System Development Plan Update

System Development Plan/Status
The System Development Plan/Status contains all the planning information and the
associated status information for work done to develop the system. This information
flow also includes all relevant issues, concerns, and lessons learned from development
of each increment of the system. This plan and its associated status provide the
information for managing the development of CIs below the system level.

Included in:
System Baseline/Plan/Status

System Development Plan Update
An update of the System Development Plan based on the results of the past increment
development efforts, including lessons learned, newly identified risks, and status
information. If this is the first increment, this update becomes the first version of the
plan based on the context information and risk analysis results contained in the System
Baseline/Plan/Status.

Included in:
System Development Plan

System Development Results
The System Development Results contain the results from the development activities:
Design and Verify System, Integrate and Test System, and Develop Configuration
Item. If the system is composed of multiple levels of subsystem, then development
results from subsystems that cannot be resolved at lower levels are included in the
System Development Results for this system part.

98

Appendix C. ISSEP Information Flow Descriptions

Includes:
System Design & Verification
CI Baseline/Plan/Status
System I&T Results

System Evaluation Results
The System Evaluation Results include the models; test results, including sensitivity
analysis; and assessed risks identified in the analysis of each of the system alternative
designs considered. These evaluation results define estimates of system performance.

Included in:
System Design Results

System I&T Plan
The System I&T Plan is that part of the System Baseline/Plan/Status which is required
to control the Integrate and Test System activities.

Included in:
System Baseline/Plan/Status

System I&T Procedure Updates
The System I&T Procedure Updates are generated by the Analyze System I&T Results
activity to ensure that any changes needed in the Detailed System I&T Procedures may
be incorporated.

System I&T Procedures
The System I&T Procedures describe how the hardware and software CIs are to be
progressively assembled and tested to determine compliance with the System
Requirements. Included are test cases and expected results.

Included in:
System Design & Verification

System I&T Results
The System I&T Results document the outcome of the Integrate and Test System
activity, enable the Design and Verify System activity to determine whether any
changes have to be made to the requirements or architecture of the system, and verify
that the system is complete and ready for delivery.

Included in:
System Development Results

System Integration Results
The System Integration Results describe the status of the assembly/integration process
and any exceptions to the observations expected by the procedures.

99

Appendix C. ISSEP Information Flow Descriptions

System Requirements
The System Requirements define the behavioral and performance requirements for the
system that, when met, satisfy the system developer's obligations in the production of
the system.

Included in:
Alternatives & Customer Needs

System Test Results
The System Test Results describe the status of the testing process and any exceptions
to the observations expected by the procedures.

System V&V Results
The System V&V Results document the results of any form of verification and/or
validation completed on any work products produced in the design of the operational
system, including testing the system itself.

Included in:
System Design Results
System Design & Verification

Unit Test Cases
Unit Test Cases contain the set of test cases necessary to test the Component and the
sequence in which the test cases should be applied. In many situations, performing one
test case will depend on successful completion of another test case.

100

D. DEVELOP OPERATIONAL SYSTEM
CONTEXT (A-l)

This appendix contains a more complete context diagram containing the Develop Operational System
activity. (In IDEFO notation, this diagram is numbered A-l and becomes the parent diagram for the node
AO). The A-l diagram (see Figure 26) and the discussion that follows provide better understanding of
external processes that produce inputs, controls, and mechanisms used by the ISSEP model.

Diagram A-l is an example context. The activities in the diagram represent a possible and reasonable
context for the ISSEP model, but some assumptions have been made regarding the organizational and
development factors that are present in this example. A different set of assumptions would generate a
different ISSEP context. The discussion in Section D.l includes a list of the major underlying
assumptions and a rationale for why these assumptions were made.

D.l CONTEXT ASSUMPTIONS

There are three major assumptions that are being made in the A-l diagram:

• Product Lines. The operational system defined by the ISSEP model is part of a product line and
the product line development includes a Develop Domain System activity.

• Process Focus. The organization that is implementing the ISSEP model for the operational
system development has an organizational process focus, and process definition and
improvement take place at the highest level of the product-line development (i.e., at the A-l
level).

• Additional Systems. The manufacturing system (e.g., manufacturing of tooling and test
equipment as well as system components) and support system (e.g., support for deploying,
maintaining, and disposing of the system) are necessary and sufficient for development of the
operational system.

D.l.l PRODUCT LINES

A product line is a collection of similar existing and potential systems that address a designated business
area market. The product-line approach to system development benefits organizations that produce
systems that solve a set of similar problems with corresponding similar solutions, as opposed to the
conventional approach that emphasizes one-of-a-kind handcrafting of each system. Effective production
of product lines requires creating a domain that contains the members of the product line and the
associated capability for production of future members (Software Productivity Consortium 1993a
1995b).

101

Appendix D. Develop Operational System Context (A-l)

Not all systems are appropriate for inclusion in a product line, even if the organization is structured to
take a product-line approach. However, the product-line approach is interesting and becoming a more
popular development strategy for organizations attempting to leverage resources in order to gain a
market advantage. Section D.3 describes how the A-l process would be impacted if the product-line
approach were not used.

D.1.2 PROCESS Focus

Process focus involves establishing a set of organizational activities that are responsible for defining and
improving the organization's processes (Paulk et al. 1993). An organizational process focus is an
important aspect of improving process maturity. Although process focus does not have to be at the A-l
level, this level is traditionally where processes are defined and organizational improvements are made
within the product-line approach. Section D.3 describes how the A-l process would be impacted if the
process focus were not at this level.

D.1.3 ADDITIONAL SYSTEMS

Frequently, processes other than the Develop Operational System defined in the ISSEP model are
needed when producing large systems. The A-l diagram includes the processes for the manufacturing
and support systems. The manufacturing system process provides manufactured parts needed in the
development of the operational system. The support system process provides support for the
development of the operational system and continued support for the system after delivery to the
customer (e.g., maintenance). These are not the only processes that could be modeled. Other processes
such as the proposal process could have been included.

The A-l diagram includes the manufacturing system process to illustrate where the mechanisms for
manufacturing the hardware parts and any test equipment are created when developing an operational
system that includes hardware components. The A-l diagram includes the support system process to
illustrate where other nonhardware mechanisms (e.g., technology transfer mechanisms) are created for
use in the ISSEP model. Section D.3 describes how the A-l process would be impacted if the
manufacturing and support system processes were omitted.

D.2 DEVELOP PRODUCT LINE (A-l)

Figure 26 defines the Develop Product Line activities. The Develop Operational System, which is the
focus of the ISSEP model, receives inputs, controls, and mechanisms from the other activities either
directly or indirectly. All the information flows on the Develop Operational System context, A-0, are
identified in the A-l diagram.

102

Appendix D. Develop Operational System Context (A-l)

Organization Plan/Status

Business Reqt irements

System Baseline/Plan/Status
Domain Assets

Mfg. System BL/Plan/Status

Figure 26. Develop Product Line (A-l)

As with all the other ISSEP model decomposition levels, the Develop Product Line activities include a
set of management activities, Manage Product Line. As with the other ISSEP model management
activities, these management activities develop the plans and control the other Develop Product Line
activities. The Develop Domain System activity creates the Domain Assets. The Domain Assets are
system parts that have been designed for reuse and created for use when developing members of the
product line (produced in the Develop Operational System activity). These assets and the results from
the Develop Operational System, Develop Manufacturing System, Develop Support System,
Manage Product Line, and Define & Improve Processes activities are baselined and become Reusable
Assets. The Reusable Assets that were not developed in the Develop Domain System activity are
available for reuse; but because they were not developed with reuse in mind, they may have limited reuse
opportunities.

The following list describes the Develop Product Line activities:

• Box 1, Manage Product Line, plans, controls, and coordinates the development of the product
line. This activity uses the Organization Plan/Status and the Business Requirements as a basis
for planning the product-line development. Status information is gathered from the Product Line
Results. The updated product line plans, including the status information, are bundled to create
the Product Line Plan/Status. The Reusable Assets, which are part of the Product Line Baseline,
grow as the product line expands with the addition of newly developed assets. The Product Line
Baseline also contains the Operational System Design and all the other designs, plans, status,
test, and related documentation created by the operational, manufacturing, and support systems.

• Box 2, Define & Improve Processes defines the Development Environment used for creation of
the operational, manufacturing, and support systems. The development environment consists of
processes, methods, tools, and facilities. This activity is often included at the product-line level
so that a standard environment is developed, which can be applied across the entire product line.

103

Appendix D. Develop Operational System Context (A-l)

Some of the key activities that are considered part of the Define & Improve Processes activity
include the assessment of the organizational processes, benchmarking of best practices, defining
and modifying the standard processes, selecting standard tools and methods, and developing and
providing training to ensure the necessary skill levels. The input Process Drivers include unique
tailoring requirements for each system development and lessons learned and related process
metrics that enable the development environment to be continuously improved. The development
environment is baselined and controlled in a similar way to the actual systems being developed
to ensure the integrity of the environment.

• Box 3, Develop Domain System, creates Domain Assets such as hardware, software, procedures,
tools, and facilities, which can be used in developing members of the product line. The purpose
of this activity is to provide a source of easily adaptable, reusable parts. This is accomplished
through an analysis of the domain followed by the creation of parts that were identified as
providing the most promising opportunities for reuse.

• Box 0, Develop Operational System, creates the operational system, including both the design
and build of the operational system, and outputs the Operational System and the System
Baseline/Plan/Status. The control into this activity is the Product Line Plan/Status, which directs
the development of the operational system, and one input is the Reusable Assets, which may be
used in the system development, if appropriate. Note that in the A-0 context, the control into the
Develop Operational System activity is the Organization Plan/Status, which on this diagram is
the control into the Manage Product Line activity. This difference is the result of how the
product-line activities, and in particular how the management of the product-line activities, have
been modeled in this A-l context. If there were no product-line activities in this A-l context,
then the Organization Plan/Status would directly control the Develop Operational System, and
the A-0 and A-l contexts would have identical controls.

• Box 5, Develop Manufacturing System, creates elements such as the manufacturing tooling,
test equipment, processes, procedures, and facilities used in the development of the operational
system. The outputs of this activity include the manufacturing system design baseline and
associated plans and status, Mfg. System BUPlan/Status, and its physical realization,
Manufacturing System. The Manufacturing System is a mechanism to implement the build
process within the Develop Operational System activity. This activity includes the inputs
Operational System Design and Parts and Materials. In order to ensure that the operational
system can be built within design-to-cost goals, effective communication channels must be
maintained between the Develop Operational System and Develop Manufacturing System.

• Box 6, Develop Support System, produces the support system for deploying, maintaining, and
disposing of the operational system. Support systems are needed to implement these activities.
The output Support System BL/Plan/Design includes both the support system design baseline and
associated plans and status and the physical realization of the support systems, Support System.

D.3 CHANGING ASSUMPTIONS

The following descriptions provide insight on how the process defined by the A-l diagram would be
impacted if a product-line approach is not used.

104

Appendix D. Develop Operational System Context (A-l)

Product Lines. If the operational system defined by the ISSEP model is not part of a product-line
development effort, the Develop Domain System activity box in Figure 26 would be omitted. Because
this activity develops the Domain Assets, which is the major contributor of Reusable Assets, the
opportunities for reuse in the development of the operational system would be greatly reduced. Without
the Domain Assets, the only Reusable Assets are those created by the Develop Operational System
activity. Other mechanisms for reuse, such as a reuse repository, could be added to make opportunistic
reuse of these assets possible, or Reusable Assets could be removed from the ISSEP model.

Process Focus. If the process focus implemented by the Define & Improve Processes activity is
omitted from the A-l diagram, the Development Environment it creates must be produced by another
activity. Organizations that are not producing product lines may choose to model the creation of the
Development Environment as part of creation of the support system. If the Development Environment is
created by the support system, it would still be modeled in Diagram A-l as a mechanism into the
Develop Operational System activity.

Additional Systems. If the systems created by the manufacturing and support systems are not required for
the development of the operational system, they can be omitted from the A-l diagram without any
significant impact. However, if manufacturing or support is required, either these activities need to
remain part of the A-l diagram, or other activities that can generate the requirements must be substituted.

Many of the assumptions stated in Section D.l are appropriate when developing large, complex systems.
As stated in Sections 5.1 through 5.3, process drivers impact how the process is tailored. Assumptions
like those stated in D.l are important process drivers, and if they change, the A-l context must be
modified accordingly. However, this description of the A-l context should provide a high-level
understanding of where and how the major inputs, controls, and mechanisms for the ISSEP model are
generated.

105

Appendix D, Develop Operational System Context (A-l)

This page intentionally left blank.

106

E. TOOL SUPPORT ENVIRONMENT

This appendix describes the tool support available for the ISSEP model. The appendix begins with a brief
description of the tool selection process that was used to choose a tool for developing the ISSEP model.
Section E.2 defines the ISSEP model's electronic format, and Section E.3 suggests tool support options
for the ISSEP model.

E.1 TOOL SELECTION

Before the requirements for a tool could be formulated, a model representation notation had to be
selected. The following notations were considered:

• Data flow diagrams, widely used and understood by software engineers

• Functional flow block diagrams, widely used and understood by systems engineers

• PERT charts, widely used and understood by managers

• IDEFO diagrams, widely used and understood by process developers

Each notation has its interested parties among the community addressed by ISSEP, but the choice of
IDEFO was largely based on its wide acceptance for use in developing structured graphical
representations of a system.

The tool requirements then became the following:

• Support IDEFO graphics, dictionaries, and rule checking

• Run under Windows

• Permit cut-and-paste to Microsoft Word (Word)

• Be low cost and user friendly

A dedicated IDEFO tool was preferred over the combined use of a word processor, a drawing tool, and a
database tool. Popkin's SA/BPR tool (Popkin Software and Systems, Incorporated 1991-1995) was
selected. This tool facilitates the generation of a hierarchical set of IDEFO diagrams, along with the
supporting function, data, and object descriptions. SA/BPR provides balancing between parent and child
diagrams and generates Interface Description Language (IDL) files that can be used to export IDEFO
models to other IDEFO tools.

107

Appendix E. Tool Support Environment

E.2 AVAILABLE ISSEP FORMATS

The ISSEP model is available electronically. The activity and information flow descriptions are available
in either Word, Rich Text Format (RTF), or as encyclopedias in the SA/BPR tool. The IDEFO models are
available in IDL, in SA/BPR-compatible formats, or as pict files in Microsoft Office compatible formats
(e.g., in Word or PowerPoint compatible files). This report is available in Word or RTF format. The
report and model can be ordered from the Software Productivity Consortium Clearinghouse at
1-800-827-4772 or e-mail brewer@software.org.

E.3 TOOL SUPPORT FOR ISSEP

Once the ISSEP model has been successfully installed at a user's site, work can begin on tailoring it for
the organization. The first step is to understand the process needs of the organization and to use this
information to further specify the process and, thus, provide an additional level of detail to the model.
Part of this specification includes the incorporation of existing processes and procedures and the
identification of necessary automated support for the ISSEP activities. The tools need not be integrated;
they can be standalone project management tools, word processors, spreadsheets, requirements
traceability tools, design tools, compilers, and debuggers. Alternatively, an entire environment such as
I-CASE can be used. ISSEP is not tool dependent, but adding tool support will make implementing many
of the activities more practical and less tedious.

This report does not specify ISSEP tool requirements, but a report survey can be found in A Tailorable
Process for Systems Engineering (Software Productivity Consortium 1995b). Defining the tooling
requirements is one of the next steps in further specifying the ISSEP model.

108

F. MAPPING TO STANDARDS

F.l MAPPING TO MIL-STD-498

This appendix contains a mapping of the ISSEP model to the detailed requirements in Section 5 of
MIL-STD-498 (see Table 6). The nineteen activities contained in MIL-STD-498 are listed in the first
column. The nineteenth activity, Other Activities, has been expanded and each Other Activity is a
separate row in the matrix. Under the heading ISSEP Activities, the ISSEP model activities are listed and
categorized as follows:

• ISSEP Management Activities (Management). These columns apply to both the system and CI
management activities.

• Design and Verify System Activities (System)

• Design and Verify CI Activities (CI)

• Develop Component Activities (Comp.)

• Integrate and Test CI Activities (CI I& T)

• Integrate and Test System Activities (Sys. I&T)

This matrix contains only explicit mappings where a significant part of the ISSEP model activity is
performing tasks directly related to the tasks required by the MIL-STD-498 standard. An X in the matrix
indicates that the MIL-STD-498 activity in that row is performed in the ISSEP model activity in the
corresponding column. Frequently, there are several Xs in a row indicating that there are several ISSEP
activities that perform the one MIL-STD-498 activity. Every ISSEP activity is mapped to at least one
MIL-STD-498 activity.

However, not every MIL-STD-498 activity is mapped to an ISSEP model activity because, in some
cases, there is no direct mapping possible; rather, the mapping is more implicit. For example, the
MIL-STD-498 activity Preparing for Software Use could be mapped to all of the following ISSEP model
activities:

• Planning activities, Plan Increment Development and Develop/Update Plan, because
preparing for software use must be planned

• Control Baseline activity because the manual baselines must be controlled and incorporated into
the delivered baseline

109

Appendix F. Mapping to Standards

• Design activities, Analyze CI Requirements, Evaluate CI Alternatives, and Validate &
Verify CI Solution, because preparing for use is a design consideration

• Integration and test activities, Detailed CI I&T Procedures, Test Aggregate CI, and Analyze
CI I&T Results, because the manuals must be tested to ensure that they accurately reflect the
delivered system and software products

However, putting an X in each of these columns would add little guidance because preparing the
software for use is only a small part of the tasks performed by these activities. Although some
MIL-STD-498 activities, like the example above, can only be mapped implicitly to the ISSEP model, all
of the MIL-STD-498 activities have either an implicit or explicit mapping to the ISSEP model.

no

Appendix F. Mapping to Standards

x
4=
ö

©
O c

_g
a
E o
O
00
t>

Q

co
co

®

ö

co
LU

>

<
LU
CO
CO

5
Sjinsey psi uu9jsAs ezApuy X X

e+Dßejßßv uue+sÄs jsei X X
uuejsÄs ejDjßejui/eiquuessv X

sejnpeoojd i>8i uueisAs peipiea X

siinsey iw \o ezApuy X X

5 e^Dßejßßv 10 jsei X X

ü 10 ejaiBejui/eiquuessv X
sejnpeoojd pg| o P©IPj9a X

d
E
o
ü

sisApuv # ßujisei ijun ajjo^ied X
sesDO +S91 jjun doieAea X
^ueuoduuoo |U9uu9|duu| X

ü

uojjnps 10 Ai!J9A « ö+DpjPA X X X
seA!|DUJO||v 10 ©ipnpAg X X
ußjsea peipjea uujojjed X

ußjsea pjnpejiujojv iuiojJ9d X
sjueuuejinbey io szÄpuy X X

E

co

uoiinps uuejsAs AjueA >8 ejDpiPA X X X
seAjjDUjeiiv uue+sAs ejpnpAg X X

ejnpe|!L|OJV pe;ooo|iv ezisemuAs X
9jnp91j1p.1v puoLpunj euyea X
Sjueaiejinbed uu9j.sAs ezApuy X

c
a>
E
©

o
c
D

uD|d ejDpdn/do|9Aea X
|U9uudo|eAea J,U9UJ9JOU| >PDJI X X
|U9UUdO|9A9Q |U9UU9JOU| UD|d X

>|S!d 9zApuy X

1X9JUOO puDjsjepun X

9Uj|9SDg P4UOO X

c
a>
E
S
3
a
©
et
00

Q
B)
Ji
5

co

a>

5
■o
c
D
ai
c
"c
c
o
Q

©

a. E
st

ab
lis

hi
ng

 a
 s

of
tw

ar
e

d
e
ve

lo
p
m

e
n
t

1
en

vi
ro

nm
en

t

|

CO
"co
>
0
c
o

-J2
c
<D
£
©

a
©

E
to >-
co

c
a
CO

<D
"O

£
CO >

CO

CO
"co >
o
C
Ö

c
©
£

D
a
2
2
o

o
co

c
a
CO

©
•D
©
O

O
co

ai
c
CO

&
C

o
2
c
©
£
©
a
£
©
D

O
co

CD
C
CO

$■

TO
C
o
c
o

2
©

-1—
c

c
z>

c
CO

.2
c
O
4-
o
O

Ö
o
u
Ö
co
O

c
CO

J>
■o
c
o
c
O
+-
2
a
c

Ö

X

Ö
co
O

cs
c

4—
CO

.2
c
o

o
JE
o
a
E
©
CO

©
CO
D
©
0

o
CO
k—

a
c

ö
Q
2
a.

c
o

•♦—
CO
c

©
b

o
CO
fc—

C

Ö
Q
2
a.

c
©
£
©
CB
0
c
O
£
c
o

■s=

2
D
cs
tp
c
o
o
2
o

o
co

c
o

o

©

■o
2
a
©
o

o
co

G>

©
o
c
2
3
CO
CO

a

0
3
cr
©
g

o
CO

c
o

o
© >
o

o o

CO

©
>
2
c
o

—5

111

Appendix F. Mapping to Standards

©
D
.C
C o o

©

.0

sensed i)8i uuejsAs ezApuv

« e+Dßejßßv uuejsAs jsej X
„> UUSJSAS e|DJße;u|/e|quuessv
w sainpaoojd psi uue^sAs peip+ea

s+insey P8| o ezApuv
5 eiDßejßßy ID jsei X
rj D ejDJße4U|/8|quu9ssv

sejnpeoojd j#| 13 pe|p;ea

d SjsApuy ^ ßu.i+sei 4|un uujo^ed
| sesDO |sei nun, doieAea
O jueuoduuoo |usuj9|duu|

uoijnps IQ AJU9A $ 9jDpiPA
seAijDUjenv D ejDnpAg

00
LU ^ ußjsea pe|p+ea uujoped
1—
> ußjsea pjnp9jjup.1v u-uojJ9d
1—
U

Sjueuuejjnbed 13 ezApuv
<
O. uo||nps wejsAs Aju9A # ejppiPA
UJ
oo E seA^DUJGjiv uue+sAs 9-pnpAg
co S 9jnp9jjup.1v p9jpoonv 9ZjS9UiuAs

>> 9jnp9jjupjv puoipunj 9uipa
Sjueuuejjnbed UJ9J.SAS ezApuv

._ UDid e|Dpdn/do|eAea X X
© 4ueaido|eAea p9UJ9jou| >IODJI X X X
O ;U9UUdO|9A9a JU9UJ9JOU| UDW X X
ö >)sjd 9zApuv X X
^ pojuoo puDjsjopun. X

eu||9SDg P4UOQ X

in
©
3=
>

3=
ü
<
©
JZ
0

c
©
E
©
0
c
ö
E
CO

S
of

tw
ar

e
m

a
n

a
g

e
m

e
n

t i
nd

ic
at

or
s

 1

S

ec
ur

ity
 a

n
d
 p

riv
ac

y

|

©
E
©
a
0 c
0
£

0
g
+- c
0
0

JO
■D

CO

CO

C
©
öi
0
>

>

0

0
CO

1
©
0

C C
oo

rd
in

at
io

n
w

ith
 a

ss
oc

ia
te

1
Im

pr
ov

em
en

t o
f p

ro
je

ct
 p

ro
ce

ss
es

 I

112

Appendix F. Mapping to Standards

F.2 MAPPING TO THE CAPABILITY MATURITY MODEL

The section contains a mapping of the ISSEP model to the CMM (see Table 7). The Key Process Areas
(KPAs) for Levels 2 and 3 in the CMM are listed in the first column. Under the heading ISSEP
Activities, the ISSEP model activities are listed and categorized as follows:

• ISSEP Management Activities (Management). These columns apply to both the system and
configuration item management activities.

• Design and Verify System Activities (System)

• Design and Verify CI Activities (CI)

• Develop Component Activities (Comp.)

• Integrate and Test CI Activities (CI&T)

• Integrate and Test System Activities (Sys. I&T)

An X in the matrix indicates that the CMM KPA in that row is performed in the ISSEP model activity in
the corresponding column. Frequently, there are several Xs in a row indicating that there are several
ISSEP activities that perform one CMM KPA. Every ISSEP activity is mapped to at least one CMM
KPA. However, not every CMM KPA is mapped to an ISSEP model activity because, in some cases,
there is no ISSEP activity that adequately covers the total requirements of the CMM KPA.

The Level 4 and 5 KPAs have not been included in the matrix because the ISSEP model does not contain
any mappings to them.

113

Appendix F. Mapping to Standards

.X
4=
O

©
ü
C

a
E o
O

U
QT
UJ
CO
CO

©
jQ
O

co
LU

>
1—
O
<
LU
CO
CO

s
tn

sjinsey pg| uugjsAs 9zApuy
8+oßojßßv aie^sAs jsai X

uusjsAs 9pjß9ju|/9|qw9ssv
sejnpeoojd j#| uuojsÄs p9|pj9a

s+insey po| Q ezApuv X
S e+Dßsjßßv 10 jsei X X

ü 10 9JDjß94U|/8|qUI8SSV X
sejnpeooJd pgl o ps|P+ea X

a
E
8

sjsApuv *% ßuijsei ijun aijo^od X X
sesDo jsei jjun dopAea X
lueuodaioo 4U8Ui8|dai| X

ö

uojpps 10 A;UOA $ ejDpjpA X X X X
S9A!pujo4iv 10 ©|DnpA3 X
ußjsea peipjea luiapgd X

uß|sea pjnpsjjLjojv uujojJ9d X
sjueuuejinbsd io ezApuv X X X

E
a>

uoi+nps uue+sAs AJUOA $ 9jDp!PA X X
S9ALpUJ9J|V UU94SÄS 9|DnpA3

ejnpejjqojv pe+Dooiiv 9Z|S9i4uAs
ejnpejjLjojv puojpunj euyea
sjueuuejpbed W9jsAs szApuy X X

"c
©
E
o
ö>
o c
o

uD|d 8|Dpdn/do|9Aea X X X X X X X X X X
4ueaidopA©a |U9UU9JOU| >JODJI X X X X X
4U9UldO|9A9a 4U9UU9JOUI UD|d X X X X X X X X

>|S!d 9zApuy X X X
pojuoo puDjSjgpun X X

9U!|9SDg P4UOO X X

2
0

o
tn
k»
,2
"5
o

3
o

£
o
Q
o
ü

csi

©

1
«0
o
2
<

a>
u
2
Q.

I
©

t—

c
©
£
0)
CD
0
c
0

42
c
a>
E
2
3
CT
©

a>
c
'c
c
0
0.

o
©

Q.
©
0

o
co

c
0
a>
c

o
g

1—

©

2"
Q.

2
p

o
co

©
E
©
D)
O
c
D

O
g
c
o
ü
A
3
co

2
o

o
co

©
ü
c
g
3 co

D
3
o
©
0

o
co

-t—
c
©
E
©
co
o
c
0

c
o
2
3
ö)
C
o o
2
p

o
co

©

1
£
0
©
<

©
u
2
QL

>

©
1—

co
3
ü
O

LL.
CO co
©
ü
2
Q.
C
o

c
0
2>
O

c
0

c

©
Q
S3
©
ü
2
Q.
C
o
o
N
c
o

o

E
9
a
2 a.
es
c
"c

©
E
©
CD
ö
C
D

2
o

o
co
TJ
©

2
-2
c

C
©
©
c
ö)
c
LU

O
3

T3
g

©
ö

o
co

c
o
ö
c

o
o u
a
3
2
g
©

-4—
C

©
">
©

©
©

114

LIST OF ABBREVIATIONS AND ACRONYMS

CI configuration item

CMM Capability Maturity Model

COTS commercial off-the-shelf

CPU central processing unit

CSCI computer software configuration item

CI command, control, communications, and intelligence

Devt. development

EIA Electronic Industries Association

EoS Estimate of the Situation

ESIS Engineering Software-Intensive Systems

C*SEP Generic Systems Engineering Process

HW hardware

HWCI hardware configuration item

I&T integration and test

I-CASE integrated computer-aided software engineering

IDEFO Integrated Computer-Aided Manufacturing Definition

EDL Interface Description Language

IEC International Electrotechnical Commission

!EEE Institute of Electrical and Electronics Engineers, Inc.

ISO International Standards Organization

ISSEP Integrated Systems and Software Development Process

ns

List of Abbreviations and Acronyms

KPA

NCOSE

PERT

SA/BPR

SE-CMM

RMP

RTF

SQA

SW

Sys.

V&V

WBS

Key Process Area

National Council on Systems Engineering

Program Evaluation and Review Technique

System Architect Business Process Reengineering

Systems Engineering Capability Maturity Model

Risk Management Plan

Rich Text Format

software quality assurance

software

system

validation and verification

work breakdown structure

116

GLOSSARY

Baseline

Component

Configuration item

Increment

Nontangible item

Process interface

Process tailoring

(1) An approved version of a system, configuration
item, or component regardless of media, fixed at a
specific time during the development life cycle.

(2) To place the collective products of the development
activities under version control.

Either of:
(1) A software unit which is an element of a software
configuration item.

(2) An element of the physical or system architecture,
specification tree, and system breakdown structure that
is a subordinate element to an assembly and may be
composed of two or more subcomponents, or parts; or
one or more subassemblies and their associated life-
cycle processes. In a noncomplex system, the
component may be the lowest element (IEEE P1220).

An aggregation of hardware, software, or both that
satisfies an end use function and is designated for
separate configuration management by the acquirer
(MIL-STD-498).

A subset of development work which, when
completed, creates a portion of the system and
progresses the effort toward delivery. Increments
specify the activities that are to be performed for each
of the developing system parts.

Developed items such as software, design, and user
documentation that are the baselined portions of a
delivered system.

Defines the information flows between software- and
system-centered activities.

Creating a specific process from a general one.

117

Glossary

Product interface

Risk

Subsystem

System

System and software development

System part

Tangible item

Validate

Verify

Defines the points within the developing system where
the system and software parts interact.

A measure of the uncertainty of attaining a goal,
objective, or requirement pertaining to technical
performance, cost, and schedule (EIA/IS 632).

A system part that is derived from decomposing a
system or another subsystem.

An integrated composite of people, products, and
processes that provide a capability to satisfy a stated
need or objective (EIA-IS-632).

An inclusive term encompassing new development,
modification, reuse, reengineering, maintenance, and
other activities resulting in system/software products
(Derived from MIL-STD-498).

Any part of a decomposed system, including a
subsystem, configuration item, component, or the
system itself.

Developed items, such as hardware, that are physical
entities. Items that are physical in nature, but contain
embedded nontangible components. (An airplane or a
car are tangible items even though they contain
embedded software.)

Evaluate the results of the requirements analysis
activities to ensure compliance with customer
expectations and project and external constraints
(Derived from IEEE P1220).

Evaluate the products of a given development phase to
determine whether they satisfy the requirements
specified at the start of the phase.

118

REFERENCES

Department of Commerce
1993

Department of Defense
1994

EIA
1994

IEEE
1994

NCOSE
1995

ISO/IEC
1995

Office of Naval Research
1994

Paulk, M.C., B. Curtis,
M.B. Chrissis, and C.V. Weber
1993

Popkin Software and Systems,
Incorporated
1991-1995

Software Engineering Institute
1994

Draft Federal Information Processing Standards Publication 183:
Announcing the Standard for INTEGRATION DEFINITION FOR
FUNCTION MODELING (IDEFO). Washington, D. C:
Department of Commerce, National Institute of Standards and
Technology, Computer Systems Laboratory.

Military Standard: Software Development and Documentation,
MIL-STD-498. Washington, D. C: Department of Defense.

EIA Interim Standard—Systems Engineering. EIA/IS-632.
Washington, D. C: Electronic Industries Association.

IEEE PI 220: Trial-Use Standard for Application and Management
of the Systems Engineering Process (Final Draft). New York, New
York: IEEE, Inc.

Systems Engineering in the Global Marketplace: Proceedings of
the Fifth Annual International Symposium of the National Council
on Systems Engineering. St. Louis, Missouri.

International Standard: Information Technology—Software Life
Cycle Process. Geneva, Switzerland: ISO/IEC.

■ First Annual Workshop on Engineering of Systems in 21th
Century: Facing the Challenge Proceedings. Dahlgren, Virginia:
Office of Naval Research, Naval Surface Warfare Center.

Capability Maturity Model for Software, version 1.1,
CMU/SEI-93-TR24. Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University.

System Architect's Tool for Business Process Reengineering
(SA/BPR). New York, New York: Popkin Software and Systems,
Incorporated.

SE-CMM Model Description Systems Engineering Improvement.
SECMM-94-04, Release 2.03, November 8. Pittsburgh,
Pennsylvania: Software Engineering Institute.

119

References

Software Productivity
Consortium
1993a

1993b

1994a

1994b

1995a

1995b

Reuse-Driven Software Processes Guidebook, SPC-92019-CMC,
version 02.00.03. Herndon, Virginia: Software Productivity
Consortium.

System Engineering Workshop Summary, SPC-93128-MC, version
01.00.05. Herndon, Virginia: Software Productivity Consortium.

ARPA/SISTO Software Strategy Workshop, August 18, 1994,
SPC-94092-CMC, version 01.00.01. Herndon, Virginia: Software
Productivity Consortium.

Process Engineering With the Evolutionary Spiral Process Model,
SPC-93098-CMC, version 01.00.06. Herndon, Virginia: Software
Productivity Consortium.

Minutes ofESIS User Group Meeting, October 19, 1995. Herndon,
Virginia: Software Productivity Consortium (Distributed via the
World Wide Web).

A Tailorable Process for Systems Engineering SPC-94095-CMC,
version 01.00.05. Herndon, Virginia: Software Productivity
Consortium.

120

