
University

of Southern

California

Agents for Information Gathering
Craig A. Knoblock

Jose" Luis Ambite

USC/Information Sciences Institute

July 1995

ISI/RS-95-427

-r-^ed fOT public «Jens«
^Distribution UnUxnited_

INFORMATION
SCIENCES

INSTITUTE

'9960605 017
DTTC QUALITY DJäPECTED 1

'im. 3101822-1511

4676 Admiralty Way/Marina del Rey/California 90292-6695

Agents for Information Gathering
Craig A. Knoblock
Jose Luis Ambite

USC/Information Sciences Institute

July 1995

ISI/RS-95-427

Also appears in T. Bradshaw, ed., Software Agents, AAAI/MIT Press,
Menlo Park, CA, In Press.

DISTRIBUTION STAU

Approved for public release;
Distribution Unlimited

DISCLAIMS! NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE FORM APPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1995
3. REPORT TYPE AND DATES COVERED

Research Report
4. TITLE AND SUBTITLE

Agents for Information Gathering

6. AUTHOR(S)

Craig A. Knoblock and Jose Luis Ambite

5. FUNDING NUMBERS

NSF:
IRI/9313993

Rome/ARPA:
F30602-91-C-0081

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RS-95-427

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARPA
3701 N. Fairfax Drive
Arlington, VA 22203-1714

NSF
4201 Wilson Blvd.
Arlington, VA 22230

Rome Labs
Griffiss AFB
NY 13441

11. SUPPLEMENTARY NOTES

Also appears in, T. Bradshaw, ed., Software Agents, AAAI/MIT Press,
Menlo Park, CA, In Press.

12A. DISTRIBUTION/AVAILABILrTY STATEMENT

UNCLASSMED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

With the vast number of information resources available today, a critical problem is how to locate, retrieve
and process information. It is impractical to build a single unified system that combines all of these infor-
mation resources. A more modular approach is to build specialized information agents where each agent
provides access to a subset of these resources and can serve as an information source to other agents. In this
paper we present the architecture of the individual information agents and describe how this architecture
supports a network of cooperating information agents. We describe how these information agents represent
their knowledge, communicate with other agents, dynamically construct information retrieval plans, and
learn about other agents to improve their accuracy and efficiency. We have already built a small network of
agents that have these capabilities and provide access to information for logistics planning. We are building
another for the trauma care domain.
14. SUBJECT TERMS

Agents, information gathering, information integration

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month.a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of ...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

■ See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Agents for Information Gathering

Craig A. Knoblock and Jose Luis Ambite
Information Sciences Institute and Department of Computer Science

University of Southern California

Abstract

With the vast number of information resources available today, a critical problem is how to
locate, retrieve and process information. It is impractical to build a single unified system that
combines all of these information resources. A more modular approach is to build specialized
information agents where each agent provides access to a subset of these resources and can serve
as an information source to other agents. In this paper we present the architecture of the indi-
vidual information agents and describe how this architecture supports a network of cooperating
information agents. We describe how these information agents represent their knowledge, com-
municate with other agents, dynamically construct information retrieval plans, and learn about
other agents to improve their accuracy and efficiency. We have already built a small network of
agents that have these capabilities and provide access to information for logistics planning.

1.1 Introduction

With the growing number of information sources available, the problem of how to com-
bine distributed, heterogeneous information sources becomes more and more critical. The
available information sources include traditional databases, flat files, knowledge bases,
programs, etc. Traditional approaches to building distributed or federated systems do
not scale well to the large, diverse, and growing number of information sources. Re-
cent Internet systems such as World Wide Web browsers allow users to search through
large numbers of information sources, but provide very limited capabilities for locating,
combining, processing, and organizing information.

A promising approach to this problem is to provide access to the large number of
information sources by organizing them into a network of information agents [Papazoglou
et al., 1992]. The goal of each agent is to provide information and expertise on a specific
topic by drawing on relevant information from other information agents. To build such
a network, we need an architecture for a single agent that can be instantiated to provide
multiple agents. We will base our design on our previous work on SIMS [Arens et al., 1993,
Knoblock et al., 1994, Arens et al., 1995], an information mediator that provides access
to heterogeneous data and knowledge bases.

This chapter focuses on the design of an individual (SIMS) agent and discusses the
issues that arise in using this design to build a network of information gathering agents.
In Section 1.2, we present an approach to organizing a group of information agents.

Chapter 1

Then, in Sections 1.3 to 1.6, we present the design of the individual agents. Section 1.3
describes how the knowledge of an agent is represented as a set of interrelated mod-
els. Section 1.4 describes how the agents exchange queries and data with one another.
Section 1.5 describes how information requests are flexibly and efficiently processed. Sec-
tion 1.6 describes how an agent learns about the other agents in order to improve its
accuracy and performance over time. Section 1.7 describes closely related work in this
area. Section 1.8 concludes with a discussion of the current status and the work that

remains to be done.

1.2 Agent Organization

In order to effectively use the many heterogeneous information sources available in large
computer networks, such as the Internet, we need some form of organization. The concept
of an agent that provides expertise on a specific topic, by drawing on relevant informa-
tion from a variety of sources, offers the basic building block. We believe that agents
will be developed to serve the information needs of users in particular domains. More
complex agents that deal with wider and/or deeper areas of knowledge will appear in an
evolutionary fashion, driven by the market forces of applications that can benefit from

using them.
Similar to the way current information sources are independently constructed, infor-

mation agents can be developed and maintained separately. They will draw on other
information agents and data repositories to provide a new information source that oth-
ers can build upon in turn. Each information agent is another information source, but
provides an abstraction of the many information sources available. An existing database
or program can be turned into a simple information agent by building the appropriate
interface code, called a wrapper, that will allow it to conform to the conventions of the
organization. Note that only one such wrapper would need to be built for any given
type of information source (e.g., relational database, object-oriented database, flat file,
etc). The advantage of this approach is that it greatly simplifies the individual agents
since they only need to handle one underlying language. This makes it possible scale the
network into many agents with access to many different types of information sources.

Some agents will answer queries addressed to them, but will not actively originate
requests for information to others; we will refer to these as data repositories. Usually,
these agents will correspond to databases, which are systems specially designed to store
a large amount of information but in which the expressive power of their data descrip-
tion languages and their reasoning abilities have been traded off for efficiency. In the
rest of the chapter, we will use the term data repository when we want to emphasize

Agents for Information Gathering

such behaviour, otherwise we will use the terms information agent or information source
(interchangeably).

Figure 1.1 shows an example network of information agents that will be used through-
out the chapter to explain different parts of the system. The application domain of
interest is Logistics Planning. In order to perform its task, this agent needs to obtain in-
formation on different topics, such as transportation capabilities, weather conditions and
geographic data. The other agents also integrate a number of sources of information that
are relevant to their domain of expertise. For example, the Sea_Agent combines assets
data from the Naval_Agent (such as ships from different fleets), harbor data from the
Harbor_Agent and the Port .Agent (such as storage space or cranes in harbors, channels,
etc, information that has been obtained, in turn, from repositories of different geograph-
ical areas). These four agents (circled by the dotted line in the figure) will be examined
in greater detail in the following sections.

There are several points to note about this network that relate to the autonomy of
the agents. First, each agent may choose to integrate only those parts of the ontologies
of its information sources necessary for the task that it is designed for. For example,
the Transportation-Agent might have a fairly complete integration of the Sea, Land
and Air agents, while the LogisticsJPlanning_Agent might only draw on some parts
of the knowledge of the Weather and Geographic agents. Second, we may need to
build new agents if we cannot find an existing one that contains all the information
needed. For example, if the Geographic Jig ent did not include some particular geopo-
litical facts required by the Logistics_Planning_Agent, the latter could access directly
the Geopolitical-Inf ormation-Agent. However, if much of the information was not
represented, an alternative geographic agent would need to be constructed (and linked).
Third, the network forms a directed acyclic graph, not a tree, because a particular agent
may provide information to several others that focus on different aspects of its expertise
(like the Port_Agent, that is accessed by the Geopolitical, Air and Sea agents).
Nevertheless, cycles should be avoided, otherwise a query may loop endlessly without
finding some agent that can actually answer it. In summary, in spite of the complexity
introduced by respecting the autonomy of the agents in the organization, the fact that
individual agents can be independently built and maintained makes the system flexible
enough to scale to large numbers of information sources and adaptable to the needs of
new applications.

In order to build a network of specialized information agents, we need an architecture
for a single agent that can be instantiated to provide multiple agents. In previous work
we developed an information server, called SIMS, which provides access to heterogeneous
data and knowledge bases [Arens et al, 1993]. We use the Loom Interface Manager (LIM)
[Pastor et al, 1992] as a wrapper for relational databases. Using SIMS and LIM, we built

Chapter 1

Logistics
Planning

Agent

Weather
Agent Geographic

Agent

(Transportation)
Agent

Map
Agent

'Geopolitical
, Information

Agent

Land
Agent

Naval \
Agent J f Harbor \

Port \
Agent J /

~JT

f Atlantic X
f Fleet 1
VRepository J

V Agent J

/Atlantic \
[Seaport
\Reposiiorj2 j

f Pacific \
(Fleet
V Repository J /Atlantic >^

(Seaport
V Ki-positorvl J

f European >
Harbor

VRepmilon j

f Pacific >^
Seaport

v Repository^

f Airport
k Repository

Figure 1.1
Network of Information Gathering Agents

a small network of information gathering agents that interact over the Internet. Each
SIMS agent contains a detailed model of its domain of expertise and models of the infor-
mation sources that are available to it. Given an information request, an agent selects an
appropriate set of information sources, generates a plan to retrieve and process the data,
uses knowledge about the information sources to reformulate the plan for efficiency, and
executes the plan. An agent can also learn about other agents to improve both their
efficiency and accuracy. The following sections describe the knowledge representation,
communication, query processing, and learning capabilities of the individual agents.

Agents for Information Gathering

1.3 The Knowledge of an Agent

Each agent contains a model of its domain of expertise and models of the other agents
that can provide relevant information. We will refer to these two types of models as
the domain model and information source models. These models constitute the general
knowledge of an agent and are used to determine how to process an information request.

The domain model is an ontology that represents the domain of interest of the agent
and establishes the terminology for interacting with the agent. The information-source
models describe both the contents of the information sources and their relationship to
the domain model. These models do not need to contain a complete description of the
other agents, but rather only those portions that are directly relevant. They constitute
the resources that are available to an agent to answer information requests when they
cannot be handled locally.

Both the domain and information-source models are expressed in the Loom knowledge
representation language [MacGregor, 1990]. Loom is an AI knowledge representation
system of the KL-ONE family1 [Brachman and Schmölze, 1985]. Loom provides a lan-
guage for representing hierarchies of classes and relations, as well as efficient mechanisms
for classifying instances of classes and reasoning about descriptions of object classes.

1.3.1 The Domain Model of an Agent

Each information agent is specialized to a single application domain and provides access
to the available information sources within that domain. The domain model is intended
to be a description of the application domain from the point of view of users or other
information agents that may need to obtain information about the application domain.

The domain model of an agent defines its area of expertise and the terminology for
communicating with it. That is, it provides an ontology to describe the application
domain. This ontology consists of descriptions of the classes of objects in the domain,
relationships between these classes (including subsumption), and other domain-specific
information. These classes and relationships do not necessarily correspond directly to the
objects described in any particular information source. The model provides a semantic
description of the domain, which is used extensively for processing queries.

The largest application domain that we have to date is a logistics planning domain,
which involves information about the movement of personnel and materiel from one
location to another using aircraft, ships, trucks, etc. Currently, we are building another
network of agents for a trauma care domain.

'These type of languages are also known as description logics, terminological logics or concept
languages.

Chapter 1

Figure 1.2 shows a fragment of the domain model of the Sea_Agent that belongs to
the organization of Figure 1.1. The nodes represent concepts (i.e., classes of objects),
the thick arrows represent subsumption (i.e., subclass relationships), and the thin arrows
represent concept roles (i.e., relationships between classes). Some concepts that specify
the range of roles have been left out of the figure for clarity. Some are simple types, such
as strings or numbers (such as ship-name), while others are defined concepts (such as

geoloc-code).

Figure 1.2
Fragment of the Domain Model of the Sea Agent

1.3.2 Modeling other Agents

An agent will have models of several other agents that provide useful information for its
domain of expertise. Each information-source model has two main parts. First, there is
the description of the contents of the information source. This comprises the concepts
of interest available from that information source in terms of the ontology of that in-
formation source. The terms in the ontology provide the language that the information
source understands (and that will be used to communicate with it, as described in Sec-
tions 1.4 and 1.5). Second, the relationship between these information source concepts
and the concepts in the domain model needs to be stated. These mappings are used for

Agents for Information Gathering

transforming a domain model query into a set of queries to the appropriate information
sources.

Figure 1.3 illustrates how an information source is modeled in Loom and how it is
related to the domain model. All of the concepts and roles in the information-source
model are mapped to concepts and roles in the domain model. A mapping link between
two concepts or roles (dashed lines in the figure) indicates that they represent the same
class of information. More precisely, that their extensions are equivalent. Thus, if the
user (of the Sea Agent) requests all seaports, that information can be retrieved from
the concept Harbor of the Harbor Jlgent. Note that the domain model may include
relationships that involve concepts coming from different agents (like the role docked-at
of the ship concept) but are not explicitly present in any one information source.

range

ship-name

Sea Agent's
Information source model of

Naval Agent

Sea Agent's
Information source model of

Harbor Agent

Figure 1.3
Relating an Information-Source Model to a Domain Model (in the Sea Agent)

Chapter 1

1.4 Communication Language and Protocol

We use a common language and protocol to communicate among agents (in order to avoid
the n2 translation problem). Strictly speaking, there are two different aspects in agent
communication. The content of the communication and the particular communicative
act that is intended. This is reflected, respectively, in the choice of Loom as the language
in which to describe the desired information requested by agents, and the Knowledge
Query and Manipulation Language (KQML)[Finin et ai, 1992, Finin et al, in press] as
the protocol to organize the dialogue among agents.2

Queries to an information agent are expressed in a subset of the Loom query language.
These queries are composed of terms of its domain model, so there is no need for other
agents or a user to know or even be aware of the terms used in the underlying information
sources. Given a query, an information agent identifies the appropriate information
sources and issues queries to those sources to obtain the requisite data for answering the
query. To do this, an information agent translates the domain-level query into a set of
queries to more specialized information agents using the terms appropriate to each of
those agents (by reasoning with the mappings introduced in Section 1.3.2).

Figure 1.4 illustrates a query expressed in the Loom language. This query requests all
seaports and the corresponding ships that can be accommodated within each port. The
first argument to the retrieve expression is the parameter list, which specifies which
parameters of the query to return (analogous to the projection operation in the relational
algebra). The second argument is a description of the information to be retrieved. This
description is expressed as a conjunction of concept and relation expressions, where the
concepts describe the classes of information, and the relations describe the constraints
on these classes. The first clause of the query is an example of a concept expression and
specifies that the variable ?port describes a member of the class seaport. The second
clause is an example of a relation expression and states that the relation port jiame
holds between the values of ?port and ?port_name. More precisely, this query requests
all seaport-name and ship-type pairs where the depth of the port exceeds the draft of
the ship.

In addition to sending queries to other agents, the agents also need the capability
to send back information in response to their queries. We use an implementation of
KQML to handle the interface protocols for transmitting queries, returning the appro-
priate information, and building the appropriate internal structures. Messages among
SIMS agents, and between SIMS agents and the LIM agents, which provide access to
relational databases, are all uniformly expressed in KQML. Recall that in order to make

2However, the use of KQML in our agent network is transparent to the user.

Agents for Information Gathering

(retrieve (?port_name ?ship_type)
(:and (seaport ?port)

(portjiame ?port ?port_name)
(charmeljof ?port ?channel)
(channel-depth ?channel ?depth)
(ship ?ship)
(vehicle-type ?ship ?ship_type)
(maxjdraft ?ship ?draft)
(> ?depth ?draft)))

Figure 1.4
Example Loom Query

an existing database or other application program available to the network of agents
requires building a wrapper around the existing system. This wrapper should include
the capability of handling the relevant KQML performatives and understand the expres-
sions of the common content language, i.e., the Loom query language. Currently, the
operations supported by SIMS are retrieve, update, insert, delete, and notify.

To summarize, the communication among agents proceeds through the following phases.
Once the example of Figure 1.4 has been translated into queries in terms of each infor-
mation source, each subquery (in its Loom query language form) will be enclosed in
a KQML message and transmitted to the appropriate information source. Then, the
wrapper of the receiver will unpack it, translate the Loom expression into the language
originally handled by that agent (for example, SQL in the case of a relational database),
collect the results, and send them back as a KQML reply. Recall also that only one such
wrapper would need to be built for any given type of information source, which reduces
the complexity of the translation among heterogeneous systems from quadratic to linear
in the number of different data description languages.

1.5 Query Processing

A critical capability of an information agent is the ability to flexibly and efficiently
retrieve and process data. The query processing requires developing an ordered set of
operations for obtaining the requested set of data. This includes selecting the information
sources for the data, the operations for processing the data, the sites where the operations
will be performed, and the order in which to perform them. Since data can be moved
around between different sites, processed at different locations, and the operations can
be performed in a variety of orders, the space of possible plans is quite large.

We have developed a flexible planning system to generate and execute query access
plans. The planner is based on an implementation of UCPOP [Barrett et al., 1993].

ig Chapter 1

We augmented this planner with the capability for producing parallel execution plans
[Knoblock, 1994], added the capability of interleaving planning and execution [Ambros-
Ingerson and Steel, 1988, Etzioni et a/., 1994], and added support for run-time variables
[Ambros-Ingerson and Steel, 1988, Etzioni et al., 1992] for gathering information at run
time. This work extends previous work" on interleaving planning, execution, and sensing
with the ability to perform these operations in parallel and applies these ideas to query
processing. In the context of query processing, it allows the system to execute operations
in parallel, augment and replan queries that fail while executing other queries, gather
additional information to aid the query processing, and accept new queries while other

queries are being executed.
This section describes how this planner is used to provide flexible access to the available

information sources. First, we describe how we cast a query as an information goal.
Second, we describe how an agent dynamically selects an appropriate set of information
sources to solve an information goal. Third, we present our approach to producing a
flexible query access plan. Fourth, we describe how the interleaving of the planning and
execution can be used to execute actions in parallel, employ sensing operations to gather
additional information for planning, handle new information requests as they come in,
and replan when actions fail. Finally, we describe how an agent optimizes queries using
semantic knowledge about the contents of other information sources.

1.5.1 An Information Goal

A planning problem consists of a goal, an initial state, and a set of operators that can be
applied to transform the initial state into the goal. In this subsection, we will describe
the goal and initial state and in the following two subsections we present the operators

used in the planning process.
For information gathering, the goal of a problem consists of a description of a set of

data as well as the location where that data is to be sent. For example, Figure 1.5
illustrates a goal which specifies that the set of data be sent to the OUTPUT device of
a sims agent. The data to be retrieved is defined by the query expressed in the Loom
knowledge representation language, as described in Section 1.3.

The initial state of a problem defines the information agents that are available as
well as which server they are running on. The example shown in Figure 1.6 defines
three available agents. Each clause defines the name of the agent and the machine it
is running on. For example, the first clause defines the Naval-Agent, which is running
on the machine isdl2.isi.edu. In addition, there is also the domain and information
models, that are static (for the duration of the query processing) and are accessed directly

from a Loom knowledge base.

Agents for Information Gathering 11

(available output sims
(retrieve (?portJiane ?ship_type)

(:and (seaport ?port)
(portjiame ?port ?portJtiame)
(has-channel ?port ?channel)
(channel.depth ?channel ?depth)
(ship ?ship)
(vehicle-type ?ship ?ship_type)
(range ?ship ?range)
(> Trange 10000)
(maxjdraft ?ship ?draft)
(> ?depth ?draft))))

Figure 1.5
Example Planner Goal

((source-available Naval-Agent isdl2.isi.edu)
(source-available Harbor-Agent isdl4.isi.edu)
(source-available Port_Agent isdl4.isi.edu))

Figure 1.6
Example Initial State

1.5.2 Information Source Selection

An information goal sent to an agent is expressed in terms of the domain model of
that agent. Part of the planning for an information goal requires selecting an appro-
priate set of information sources (other information agents or data repositories). To
select the information sources, a set of reformulation operators are used to transform the
domain-level terms into terms about information that can be retrieved directly from an
information source [Arens et al., 1995]. If a query requests information about ports and
there is a single information source that provides such information, then the mapping is
straightforward. However, in some cases there may be several information sources that
provide access to the same information and in other cases no single information source
can provide the required information and it will need to be drawn from several different
sources.

Consider the fragment of the knowledge base shown in Figure 1.7, which covers the
knowledge relevant to the example query in Figure 1.5. The concepts seaport, channel
and ship have links to information source concepts, shown by the shaded circles, which
correspond to information that can be retrieved from some information agent. Thus,
the Harbor_Agent contains information about both seaports and channels, and the
Port_Agent contains information about seaports.

The system has a number of truth-preserving reformulation operations that can be

12 Chapter 1

range (Vehicle) vehicle-type

Figure 1.7
Fragment of the Domain and Information-Source Models

used for reformulating a domain-level query. The basic operations include:

• Information Source Selection maps a domain-level concept directly to an information-
source-level concept. In many cases this will simply be a direct mapping from a concept
such as seaport to a concept that corresponds to the seaports in some information
source. There may be several information sources that contain the same information,
in which case the domain-level query can be reformulated in terms of any one of the
information source concepts. In general, the choice is made so as to minimize the overall
cost of executing the query.

• Concept Generalization uses knowledge about the relationship between a concept and
a superconcept to reformulate a query in terms of the more general concept. In order to
preserve the semantics of the original request, one or more additional constraints may
need to be added to the query in order to avoid retrieving extraneous data. For example,
if a query requires some information about seaports, but the information sources that
correspond to the seaport concept do not contain the requested information, then it
may be possible to generalize seaport to port and retrieve the information from some
information source that contains port information. In order to ensure that no extraneous
data is returned, the reformulation will include a join between seaport and port.

Agents for Information Gathering 13

• Concept Specialization replaces a concept with a more specific concept by checking
the constraints on the query to see if there is an appropriate specialization of the re-
quested concept that would satisfy it. For example, if a query requests all seaports
with an elevation greater than 300 feet, it can be reformulated into a request for all
inland-waterway seaports using knowledge in the model that only inland-waterway
seaports have an elevation above 300 feet.

• Definition Substitution replaces a relation defined between concepts in the domain
model with equivalent terms that are available in the information-source models. For
example, has.channel is a property of the domain model, but it is not defined in any
information source. Instead, it can be replaced by joining over a key, geoloc-code, that
occurs both in seaport and channel.

For example, consider the query shown in Figure 1.5. There are two concept expres-
sions - one about ships and the other about seaports. In the first step, the system
attempts to translate the seaport expression into a information-source-level expression.
Unfortunately, none of the information sources contain information that corresponds to
has.channel. Thus, the system must reformulate has.channel, using the substitute
definition operator. This expresses the fact that has.channel can be materialized by
performing a join over the keys for the seaport and channel concepts. The resulting
reformulation is shown in Figure 1.8.

(retrieve (?portJiame ?ship_type)
(:and (seaport ?port)

(port-name ?port ?port_name)
(geoloccode ?port ?geocode)
(channel ?channel)
(geoloccode ?channel ?geocode)
(channel-depth ?channel ?depth)
(ship ?ship)
(vehicle.type ?ship ?ship_type)
(range ?ship ?range)
(> ?range 10000)
(max_draft ?ship ?draft)
(> ?depth ?draft)))

Figure 1.8
Result of Applying the Definition Substitution Operator to Eliminate has-channel

Another step in the reformulation process is to select information sources for the in-
formation requested in the query. This can be done using the select-information-source
operator, which selects among the available information sources. Figure 1.9 shows a
reformulation of a query for information about seaports, which could be provided by

14 Chapter 1

either the HarborJtgent or Port_Agent. In this case Harbor Jlgent is selected because

the information on channels is only available in the Harbor Jlgent.

Domain-Level Query:
(retrieve (TportJiame ?depth)

(:and (seaport ?port)
(port-name ?port ?portjiame)
(geoloccode ?port ?geocode)
(channel ?channel)
(geoloccode ?channel ?geocode)
(channel .depth ?channel ?depth)))

Source-Level Query:
(retrieve (?port_name ?depth)

(:and (harbor.agent.harbor ?port)
(harbor.agent.port_nm ?port ?portjname)
(harbor-agent.glcjcd ?port ?glc_cd)
(harbor-agent. channel ?channel)
(harbor-agent. glccd ?channel ?glc^cd)
(harbor.agent. ch-depthJt ?channel ?depth)

Figure 1.9
Result of Selecting Information Sources for Channels and Seaports

1.5.3 Generating a Query Access Plan

In addition to selecting the appropriate information sources to solve an information

goal, the planner must also determine the appropriate data manipulation and ordering

of those operators to generate the requested data. Therefore, besides the operators for

source selection, there are five operators for manipulating the data:

• Move - Moves a set of data from one information agent to another.

• Join - Combines two sets of data using the given join operation.

• Retrieve - Specifies the data to be retrieved from a particular information source.

• Select - Selects a subset of the data using the given constraints.

• Compute - Constructs a new term in the data from some combination of the existing

data.

Each of these operations manipulates one or more sets of data, where the data is specified

in the same terms that are used for specifying the original query.

Consider the operator shown in Figure 1.10 that defines a join performed locally. This

operator is used to achieve the goal of making some information available in the local

Agents for Information Gathering 15

knowledge base of a SIMS agent. It does this by partitioning the request into two subsets
of the requested data, getting that information into the local knowledge base of an agent
and then joining that data together to produce the requested set of data. The operator
states that (1) if a query can be broken down into two subqueries that can be joined
together over some join operator, and (2) the first set of data can be made available
locally, and (3) the second set of data can also be made available locally, then the
requested information can be made available. The predicate join-partition is defined
by a program that produces the possible join partitions of the requested data.

(define (operator join)
:parameters (?join-ops ?data ?data-a ?data-b)
precondition (:and (join-partition ?data ?join-ops

?data-a ?data-b)
(available local sims ?data-a)
(available local sims ?data-b))

:effect (:and (available local sims ?data)})

Figure 1.10
The Join Operator

To search the space of query access plans efficiently, the system uses a simple estimation
function to calculate the expected cost of the various operations. Using this evaluation
function in a branch-and-bound search, the system will produce a plan that has the lowest
overall parallel execution cost. In the example, the planner leaves the join between the
harbor and channel to be performed by the Harbor_Agent since this will be cheaper
than moving the information into the local knowledge base of an agent and joining it
together.

The plan generated for the example query in Figure 1.5 is shown in Figure 1.11. This
plan includes the source selection operations as well as the data manipulation operations
since these operations are interleaved in the planning process. In this example, the system
partitions the given query such that the ship information is retrieved in a single query to
the Naval_Agent and the seaport and channel information is retrieved in a single query
to the Harbor Jlgent. All of the information is brought into the local knowledge base of
the agent originating the query, where the draft of the ships can be compared against
the depth of the seaports. Once the final set of data has been generated, it is returned
to the agent or application that requested the information.

1.5.4 Interleaving Planning sind Execution

The previous two sections described the operators for both selecting an appropriate set
of information sources and for manipulating the data retrieved from those information

16 Chapter 1

(retrieve harbor_agent
(?port_name ?depth)
(and (harbor ?port)

(port_nm ?port ?port_name)
(glc_cd ?port ?glc_cd)
(channel ?channel)
(glc cd ?channel ?glc_cd)
(ch_depth ft ?channel ?depth)))

(select
harbor_agent
isd12.isi.edu)

(move
harbor_agent
local)

(retrieve-data naval_agent
(?ship_type ?draft)
(and (ship ?ship)

(sht_nm vship ?ship_type)
(range ?ship ?range)
(>?range 10000)
(max_drafl ?ship ?draft)))

Figure 1.11
Parallel Query Access Plan

(join
(< ?draft ?depth)) (subst-defn

has-channel)

(select
naval_agent
isd14.isi.edu)

(move
naval_agent
local)

sources. This section describes how this planning is tightly integrated with the execution
to provide the ability to flexibly and efficiently process queries [Knoblock, 1995].

The interleaving of the planning and execution provides a number of important capa-
bilities for the agents:

An agent can run continuously, accepting queries and planning for them while it is
executing other queries.

If a failure occurs, an agent can replan the failed portion of the plan while it continues to
execute queries that are already in progress. After replanning, the system will redirect
the failed subquery to a different agent or information repository.

An agent can issue sensing actions to gather additional information for query processing.
This allows an agent to gather additional information to formulate more efficient queries
to other information sources. Information gathering can also help to select among a
number of potentially relevant information sources [Knoblock and Levy, 1994].

Rather than having a separate execution module, the execution is tightly integrated
in the planner. This is done by treating the execution of each individual action as a
necessary step in completing a plan. Thus, the goal of the planner becomes producing
a complete and executed plan rather than just producing a complete plan. This allows
the planner to interleave the planning process with the execution, which makes it pos-
sible to handle new goals, replan failed goals, and execute actions to gather additional
information.

The execution of an action is viewed as a commitment to the plan in which the action
occurs. This means that the planner will only consider the plan from which the action is
executed and all valid refinements of that plan. Since execution of an action commits to

Agents for Information Gathering 17

the corresponding plan, we would like the planner to be selective in choosing to execute
an action. This is achieved by delaying the execution of any action as long as possible.
The idea is that the planner should find the best complete plan within some time limit
before any action is executed. Then once execution has begun, it would resolve any failed
subplans or new goals before executing the next action.

Execution of an action may take considerable time, so the planner does not execute
an action and wait for the results. Instead the system spawns a new process to execute
the action and then that process notifies the planner once it has completed. At any one
time there may be a number of actions that are all executing simultaneously.

On each cycle of the planner, the system will check if any executing actions have
completed. Once an action is completed then the executing action is removed from the
agenda. If it completes successfully then the action is left in the plan and marked as
completed. Other actions that depend on this action may now be executable if all of
their other dependencies have also been executed. If an action fails, the system produces
a refinement of the executing plan that eliminates the failed portion of the plan. This
replanning can be performed while other actions are still executing.

If a new goal is sent to the planner, the system simply inserts an open condition for
that new top-level goal. The additional open condition will be handled before initiating
execution of any new operators, so the planner will augment the existing plan to solve
this new goal in the context of the existing executing plan.

The planner also supports run-time variables [Ambros-Ingerson and Steel, 1988, Etzioni
et al., 1992], which allow the planner to perform sensing operations in the course of
planning. These variables appear in the effects of operators and essentially serve as place
holders for the value returned by the operator when it is actually executed. Run-time
variables are useful because the result can be incorporated and used in other parts of the
plan.

1.5.5 Semantic Query Optimization

Before executing any actions in the query plan, the system first performs semantic query
optimization to minimize the overall execution cost [Hsu and Knoblock, 1993]. The
semantic query optimizer uses semantic knowledge about the information sources to
reformulate the query plan into a cheaper, but semantically equivalent query plan. The
semantic knowledge is learned by the system as a set of rules (Section 1.6.2).

Consider the example shown in Figure 1.12. The input query retrieves ship types
whose ranges are greater than 10,000 miles. This query could be expensive to evaluate
because there is no index placed on the range attribute. The system must scan all of
the instances of ship and check the values of the range to retrieve the answer.

An example semantic rule is shown in Figure 1.13. This rule states that all ships with

18 Chapter 1

(retrieve (?ship-type ?draft)
(:and (naval-agent. ship ?ship)

(naval-agent .sht_nm ?ship ?ship-type)
(naval-agent, max jdraft ?ship ?draft)
(naval-agent. range ?ship ?range)
(> ?range 10000)))

Figure 1.12
Example Subquery

range greater than 10,000 miles have a draft greater than 12 feet. Based on these rules,
the semantic query optimizer infers a set of additional constraints and merges them with
the input query. The final set of constraints left in the reformulated query is selected
based on two criteria: reducing the total evaluation cost, and retaining the semantic
equivalence. A detailed description of the algorithm is in [Hsu and Knoblock, 1993]. In
this example, the input query is reformulated into a new query where the constraint on
the attribute range is replaced with a constraint on the attribute max_draf t, which turns
out to be cheap to access because of the way the information is indexed. The reformulated
query can therefore be evaluated more efficiently. The system can reformulate a query by
adding, modifying or removing constraints. The resulting query is shown in Figure 1.14.

(:if (:and (naval-agent. ship ?ship)
(naval-agent.range ?ship ?range)
(naval-agent. fuel-cap ?ship ?fuel_cap)
(> ?range 10000))

(:then (> ?draft 12)))

Figure 1.13
An Example Semantic Rule

(retrieve (?sht-type ?draft)
(:and (naval_agent. ship ?ship)

(naval-agent. shtjun ?ship ?ship-type)
(naval-agent.max-draft ?ship ?draft)
(> ?draft 12)))

Figure 1.14
Reformulated Query

We can reformulate each subquery in the query plan with the subquery optimization
algorithm and improve their efficiency. However, the most expensive aspect of queries
to multiple information sources is often processing and transmitting intermediate data.
In the example query plan in Figure 1.11, the constraint on the final subqueries involves
the variables ?draft and ?depth that are bound in the preceding subqueries. If we

Agents for Information Gathering 19

can reformulate these preceding subqueries so that they retrieve only the data instances
possibly satisfying the constraint (< ?draft ?depth) in the final subquery, the inter-
mediate data will be reduced. This requires the query plan optimization algorithm to
be able to propagate the constraints along the data flow paths in the query plan. We
developed a query plan optimization algorithm which achieves this by using the semantic
rules to derive possible constraints and propagating these constraints around the query
plan.

Consider an example of reformulating the query plan shown in Figure 1.11. The
system is given the fact 41 < ?depth < 60. The subquery optimization algorithm can
infer from the constraint (< ?draft ?depth) a new constraint (< ?draft 60) and then
propagate this.constraint to constrain the maximum draft. The algorithm will insert the
new constraint on ?draf t in that subquery.

The resulting query plan is more efficient and returns the same answer as the original
one. The amount of intermediate data is reduced because of the new constraint on the
attribute ?draft. The entire algorithm for query plan optimization is polynomial. Our
experiments show that the overhead of this algorithm is very small compared to the
overall query processing cost. On a set of 26 example queries, the query optimization
yielded significant performance improvements with an overall reduction in execution time
of 59.84% [Hsu and Knoblock, 1995].

1.6 Learning

An intelligent agent for information gathering should be able to improve both its accuracy
and performance over time. To achieve these goals, the information agents currently
support three forms of learning. First, they have the capability to cache frequently
retrieved or difficult to retrieve information. Second, for those cases where caching is
not appropriate, an agent can learn about the contents of the information sources in
order to minimize the costs of retrieval. Finally, an information agent can analyze the
contents of its information sources in order to refine its domain model to better reflect
the currently available information. All these forms of learning can improve the efficiency
of the system, and the last one can also improve its accuracy.

1.6.1 Caching Retrieved Data

Data that is required frequently or is very expensive to retrieve can be cached in the local
agent and then retrieved more efficiently [Arens and Knoblock, 1994]. An elegant feature
of using Loom to model the domain is that cached information can easily be represented
and stored in Loom. The data is currently brought into the local agent for processing,

20 Chapter 1

so caching is simply a matter of retaining the data and recording what data has been

retrieved.
To cache retrieved data into the local agent requires formulating a description of the

data so it can be used to answer future queries. This can be extracted from the initial
query, which is already expressed in the form of a domain-level description of the desired
data. The description defines a new subconcept and it is placed in the appropriate place
in the concept hierarchy. The data then become instances of this concept and can be
accessed by retrieving all the instances of it.

Once the system has defined a new class and stored the data under this class, the cached
information becomes a new information source concept for the agent. The reformulation
operations, which map a domain query into a set of information source queries, will
automatically consider this new information source. Since the system takes the retrieval
costs into account in selecting the information sources, it will naturally gravitate towards
using cached information where appropriate. In those cases where the cached data does
not capture all of the required information, it may still be cheaper to retrieve everything
from the remote site. However, in those cases where the cached information can be
used to avoid an external query, the use of the stored information can provide significant

efficiency gains.
The use of caching raises a number of important questions, such as which information

should be cached and how the cached information is kept up-to-date. We are explor-
ing caching schemes where, rather than caching the answer to a specific query, general
classes of frequently used information are stored. This is especially useful in the Internet
environment where a single query can be very expensive and the same set of data is often
used to answer multiple queries. To avoid problems of information becoming out of date,
we have focused on caching relatively static information.

1.6.2 Learning rules for Semantic Query Optimization

The goal of an information agent is to provide efficient access to a set of information
sources. Since accessing and processing information can be very costly, the system strives
for the best performance that can be provided with the resources available. This means
that when it is not processing queries, it gathers information to aid in future retrieval
requests [Hsu and Knoblock, 1994, Hsu and Knoblock, 1995].

The learning is triggered when an agent detects an expensive query. In this way,
the agent will incrementally gather a set of rules to reformulate expensive queries. The
learning subsystem uses induction on the contents of the information sources to construct
a less expensive specification of the original query. This new query is then compared with
the original to generate a set of rules that describe the relationships between the two
equivalent queries. The learned rules are integrated into the agent's domain model and

Agents for Information Gathering 21

then used for semantic query optimization. These learned rules form an abstract model
of the information provided by other agents or data repositories.

1.6.3 Reconciling Agent Models

So far we have assumed that the domain and information-source models of an agent are
perfectly aligned. That is, the mappings among concepts in these models perfectly cor-
respond to the actual information. In a network of autonomous agents this assumption
will not hold in general. First, the designer of the models might not have had a complete
understanding of the semantics of the information provided by each agent. Second, even
if at design time the models were accurate, the autonomy of the agents will cause some
concepts to drift from their original meaning. The dynamic nature of the information
implies that we need to provide mechanisms to detect inconsistency and/or incomplete-
ness in the agent's knowledge. In this section we describe an approach to automatically
reconcile agent models, which will improve both the accuracy of the represented knowl-
edge and the efficiency of the information gathering. It consists of three phases. First,
an agent checks for misalignments between the domain and source models. Second, it
modifies the domain model to represent the new classes of information detected. Third,
if possible, it learns from the actual data a description that declaratively describes these
new concepts.

We will illustrate the main ideas of this approach through an example from the do-
main of the Sea_Agent (Figure 1.7). Assume that initially both Harbor .Agent. Harbor
and Port -Agent. Port contain the same information about major commercial seaports,
which for the purposes of the application is in agreement with the intended semantics
of the concept Seaport. However, the Port_Agent evolves to contain information about
recreational, small fishing harbors, etc. The Harbor_Agent and Port_Agent are no longer
equivalent providers of Seaport information.

First, analyzing their actual extensions, our agent will notice that Harbor .Agent. Harbor
is now a subset of Port .Agent. Port. Second, the domain model is automatically mod-
ified as shown in Figure 1.15. A new concept Commercial-Seaport is added to the do-
main model as a subconcept of the original seaport. Harbor .Agent. Harbour will map
now into Commercial-Seaport. Third, we apply machine learning algorithms (currently
ID3 [Quinlan, 1986]) in order to obtain a concise description of this new concept. For
example, it might construct a description that distinguishes commercial seaports from
generic seaports by the number of cranes available. With this refined model, a query
like "retrieve all the seaports that have more than 15 cranes and channels more than 70
feet deep", which describes information only satisfied by commercial seaports, could be
appropriately directed to the Harbor .Agent, saving both in communication (less data
transmitted) and processing costs (less data considered in any subsequent join), because

22 Chapter 1

the concept Haxbor has a smaller number of instances. Moreover, a query about a small-
craft harbor will not be incorrectly directed to the Harbor-Agent, but to the Port-Agent
which is the only one that can provide such information.

port-name

Figure 1.15
Reconciled Model

A more detailed explanation of these techniques can be found in [Ambite and Knoblock,
1994], including other cases in which the extensions are overlapping or disjoint, or deal
with more than two information source concepts.

The benefits of the reconciliation are twofold. First, increased accuracy of the knowl-
edge represented in the system. These new concepts provide a more precise picture of the
current information available to an agent system. This mechanism adapts automatically
to the evolution of the information sources, whose contents may semantically drift from
the original domain model mappings. Also, human designers may revise these concepts
to both refine the domain model and detect errors. Second, increased efficiency of query
processing. A SIMS agent will use those concepts that yield a cheaper query plan. These
new concepts provide better options for retrieving the desired data.

Agents for Information Gathering 23

1.7 Related Work

A great deal of work has been done on building agents for various kinds of tasks. This
work is quite diverse and has focused on a variety of issues. First, there has been
work on multi-agent planning and distributed problem solving, (see [Bond and Gasser,
1988]). The body of this work deals with the issues of coordination, synchronization,
and control of multiple autonomous agents. Second, a large body of work has focused
on defining models of beliefs, intentions, capabilities, needs, etc., of an agent. [Shoham,
1993] provides a nice example of this work and a brief overview of the related work on
this topic. Third, there is more closely related work on developing agents for information
gathering.

The problem of information gathering is also quite broad and the related work has
focused on various issues. Kahn and Cerf [Kahn and Cerf, 1988] proposed an architecture
for a set of information-management agents, called Knowbots. The various agents are
hard-coded to perform particular tasks. Etzioni et al. [Etzioni et ah, 1992, Etzioni et
ah, 1994] have built agents for the Unix domain that can perform a variety of Unix
tasks. This work has focused extensively on reasoning and planning with incomplete
information, which arises in many of these tasks. In contrast to this work, the focus of our
work is on flexible and efficient retrieval of information from heterogeneous information
sources. Since these systems have in-memory databases, they assume that the cost of a
database retrieval is small or negligible. One of the critical problems when dealing with
large databases is how to issue the appropriate queries to efficiently access the desired
information. We are focusing on the problems of how to organize, manipulate, and learn
about large quantities of data.

Research in databases has also focused on building integrated or federated systems that
combine information sources [Landers and Rosenberg, 1982, Sheth and Larson, 1990].
The approach taken in these systems is to first define a global schema, which integrates
the information available in the different information sources. However, this approach is
unlikely to scale to the large number of evolving information sources (e.g., the Internet)
since building an integrated schema is labor intensive and difficult to maintain, modify,
and extend.

The Carnot project [Collet et ah, 1991] also integrates heterogeneous databases using
a knowledge representation system. Carnot uses a knowledge base to build a set of
articulation axioms that describe how to map between SQL queries and domain concepts.
After the axioms are built the domain model is no longer used or needed. In contrast, the
domain model of one of our agents is an integral part of the system, and allows an agent
to both combine information stored in the knowledge base and to reformulate queries.

Levy el al. [Levy et ah, 1994] are also working on building agents for information

24 Chapter 1

gathering. The focus of their work has been on developing a framework for selecting a
minimal set of sites to answer a query. In contrast, SIMS integrates the site selection
process in the query planning process in order to provide greater flexibility. This inte-
gration allows SIMS generate a query plan and a corresponding set of sources that will
produce the requested information most efficiently.

1.8 Discussion

This paper described the SIMS architecture for intelligent information agents. This
particular architecture has a number of important features: (1) modularity in terms of
representing an information agent and information sources, (2) extensibility in terms
of adding new information agents and information sources, (3) flexibility in terms of
selecting the most appropriate information sources to answer a query, (4) efficiency in
terms of minimizing the overall execution time for a given query, and (5) adaptability
in terms of being able to track semantic discrepancies among models of different agents.
We will discuss each of these features in turn.

First, the uniform query language and separate models provide a modular architecture
for multiple information agents. An information agent for one domain can serve as an
information source to other information agents. This is can done seamlessly since the
interface to every information source is exactly the same - it takes a query in a uniform
language (i.e., Loom) as input and returns the data requested by the query. The domain
model provides a uniform language for queries about information in any of the sources
to which an agent has access. The contents of each agent is represented as a separate
information source and is mapped to the domain model of an agent. Each information
agent can export some or all of its domain model, which can be incorporated into another
information agent's model. This exported model forms the shared terminology between
agents.

Second, the separate domain and information-source models and the dynamic infor-
mation source selection make the overall architecture easily extensible. Adding a new
information source simply requires building a model of the information source that de-
scribes the contents of the information source as well as how it relates to the domain
model. It does not require integrating the new information-source model with the other
information-source models since the mapping between domain and information-source
models is not fixed. Similarly, changes to the contents of information sources require
only changing the model of the specific information source. Since the selection of the
information sources is performed dynamically, when an information request is received,
the agent will select the most appropriate information source that is currently available.

Agents for Information Gathering 25

Third, the separate domain and information-source models and the dynamic informa-
tion source selection also make the agents very flexible. The agents can choose the
appropriate information sources based on what they contain, how quickly they can an-
swer a given query, and what resources are currently available. If a particular information
source or network goes down or if the data is available elsewhere, the system will retrieve
the data from sources that are currently available. An agent can take into consideration
the rest of the processing of a query, so that the system can take advantage of those cases
where retrieving the data from one source is much cheaper than another source because
the remote system can do more of the processing. This flexibility also makes it possible
to cache and reuse information without extra work or overhead.

Fourth, building parallel query access plans, using semantic knowledge to optimize
the plans, caching retrieved data, and learning about information sources provide ef-
ficient access to large numbers of information sources. The planner generates plans
that minimize the overall execution time by maximizing the parallelism in the plan to
take advantage of the fact that separate information sources can be accessed in parallel.
The semantic query optimization provides a global optimization step that minimizes the
amount of intermediate data that must be processed. The ability to cache retrieved data
allows an agent to store frequently used or expensive-to-retrieve information in order to
provide the requested information more efficiently. And the ability to learn about the
contents of the information sources allows the agent to exploit time when it would not
otherwise be used to improve its performance on future queries.

Fifth, the ability to compare and reconcile models of different agents make the agents
adaptable to changes in the information sources. Using the detailed semantic models
of the information sources, an agent can track changes in the information sources and
update its own models appropriately. This information is critical for both the accuracy
and efficiency of the query processing.

To date, we have built information agents that plan and learn in the logistics planning
domain. These agents contain a detailed model of this domain and extract informa-
tion from a set of relational databases. The agents generate query access plans to the
appropriate information sources, execute the queries in parallel, and learn about the
information sources. Future work will focus on extending the planning and learning
capabilities of these agents.

Acknowledgments

We gratefully acknowledge the contributions of the other members of the SIMS project,
Yigal Arens, Chin Chee, Chunnan Hsu, Wei-Min Shen, and Sheila Tejada for their work

26 Bibliography

on the various components of SIMS. We also thank Don Mckay, Jon Pastor, and Robin
McEntire at Unisys for setting up the LIM agents and providing us with an implemen-
tation of KQML.

The research reported here was supported in part by Rome Laboratory of the Air
Force Systems Command and the Advanced Research Projects Agency under contract no.
F30602-91-C-0081, and in part by the National Science Foundation under grant number
IRI-9313993. J.L. Ambite is supported by a Fulbright/Spanish Ministry of Education
and Science Scholarship. The views and conclusions contained in this report are those of
the authors and should not be interpreted as representing the official opinion or policy
of RL, ARPA, NSF, the U.S. Government, the Fulbright program, the Government of
Spain, or any person or agency connected with them.

Bibliography

[Ambite and Knoblock, 1994] Jose Luis Ambite and Craig A. Knoblock. Reconciling agent models. In
Proceedings of the Workshop on Intelligent Information Agents, Gaithersburg, MD, 1994.

[Ambros-Ingerson and Steel, 1988] Jose Ambros-Ingerson and Sam Steel. Integrating planning, execu-
tion, and monitoring. In Proceedings of the Seventh National Conference on Artificial Intelligence,
pages 83-88, Saint Paul, Minnesota, 1988.

[Arens and Knoblock, 1994] Yigal Arens and Craig A. Knoblock. Intelligent caching: Selecting, rep-
resenting, and reusing data in an information server. In Proceedings of the Third International
Conference on Information and Knowledge Management, Gaithersburg, MD, 1994.

[Arens et al., 1993] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving
and integrating data from multiple information sources. International Journal on Intelligent and
Cooperative Information Systems, 2(2):127-158, 1993.

[Arens et al, 1995] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query reformulation for dy-
namic information integration. In Preparation, 1995.

[Barrett et al., 1993] Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld. UCPOP user's
manual (version 2.0). Technical Report 93-09-06, Department of Computer Science and Engineering,
University of Washington, 1993.

[Bond and Gasser, 1988] Alan H. Bond and Les Gasser. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, 1988.

[Brachman and Schmölze, 1985] R.J. Brachman and J.G. Schmölze. An overview of the KL-ONE knowl-
edge representation system. Cognitive Science, 9(2):171-216,1985.

[Collet et al, 199l] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using
a large knowledge base in carnot. IEEE Computer, pages 55-62, December 1991.

[Etzioni et al, 1992] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incomplete information. In Proceedings of the Third
International Conference on Principles of Knowledge Representation and Reasoning, pages 115-125,
Cambridge, MA, 1992.

[Etzioni et al, 1994] Oren Etzioni, Keith Golden, and Dan Weld. Tractable closed-world reasoning
with updates. In Fourth International Conference on Principles of Knowledge Representation and
Reasoning, Bonn, Germany, 1994.

Bibliography 27

[Finin et al., 1992] Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to support
intelligent agent interoperability. In Proceedings of the CE and CALS, Washington, D.C., June 1992.

[Finin et al, in press] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communi-
cation language. In J. Bradshaw, editor, Software Agents. AAAI/MIT Press, Menlo Park, CA, in
press.

[Hsu and Knoblock, 1993] Chun-Nan Hsu and Craig A. Knoblock. Reformulating query plans for multi-
database systems. In Proceedings of the Second International Conference on Information and Knowl-
edge Management, Washington, D.C., 1993. ACM.

[Hsu and Knoblock, 1994] Chun-Nan Hsu and Craig A. Knoblock. Rule induction for semantic query
optimization. In Proceedings of the Eleventh International Conference on Machine Learning, New
Brunswick, NJ, 1994.

[Hsu and Knoblock, 1995] Chun-Nan Hsu and Craig A. Knoblock. Using inductive learning to generate
rules for semantic query optimization. In Gregory Piatetsky-Shapiro and Usama Fayyad, editors,
Advances in Knowledge Discovery and Data Mining, chapter 17. MIT Press, 1995.

[Kahn and Cerf, 1988] Robert E. Kahn and Vinton G. Cerf. An open architecture for a digital library
system and a plan for its development. Technical report, Corporation for National Research Initia-
tives, March 1988.

[Knoblock and Levy, 1994] Craig A. Knoblock and Alon Levy. Efficient query processing for information
gathering agents. In Proceedings of the Workshop on Intelligent Information Agents, Gaithersburg,
MD, 1994.

[Knoblock et al, 1994] Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu. Cooperating agents for
information retrieval. In Proceedings of the Second International Conference on Cooperative Infor-
mation Systems, Toronto, Canada, 1994.

[Knoblock, 1994] Craig A. Knoblock. Generating parallel execution plans with a partial-order planner.
In Proceedings of the Second International Conference on Artificial Intelligence Planning Systems,
Chicago, IL, 1994.

[Knoblock, 1995] Craig A. Knoblock. Planning, executing, sensing, and replanning for information
gathering. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
Montreal, Canada, 1995.

[Landers and Rosenberg, 1982] Terry Landers and Ronni L. Rosenberg. An overview of Multibase. In
H.J. Schneider, editor, Distributed Data Bases. North-Holland, 1982.

[Levy et al, 1994] Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. Torwards efficient information
gathering agents. In Proceedings of the AAAI Spring Symposium Series on Soßware Agents, Palo
Alto, CA, 1994.

[MacGregor, 1990] Robert MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In John Sowa, editor, Principles of Semantic Networks: Explorations in the
Representation of Knowledge. Morgan Kaufmann, 1990.

[Papazoglou et al, 1992] Mike P. Papazoglou, Steven C. Laufmann, and Timos K. Sellis. An organiza-
tional framework for cooperating intelligent information systems. International Journal of Intelligent
and Cooperative Information Systems, l(l):169-202,1992.

[Pastor et al, 1992] Jon A. Pastor, Donald P. McKay, and Timothy W. Finin. View-concepts:
Knowledge-based access to databases. In Proceedings of the First International Conference on In-
formation and Knowledge Management, pages 84-91, Baltimore, MD, 1992.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[Sheth and Larson, 1990] Amit P. Sheth and James A. Larson. Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183-236,
1990.

[Shoham, 1993] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(l):51-92, 1993.

