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ABSTRACT

The thermal degradation of two aliphatic polyamides, polyhexamethylene
adipamide (nylon 6.6) and polyhexamethylene sebacamide (nylon 6.10) have been
studied. Molecular weight changes, weight loss, and volatile product analysis

were used to help elucidate the reaction mechanisms.

The presence of low molecular weight material and polymerizable end groups
in these polymers complicated the interpretation of molecular weight changes
during degradation. The weight loss data obtained allowed the calculation of
rate data. Nylon 6.6 degradation gave an activation energy of 45 keal/mole
while nylon 6. 10 degradation was characterized by an activation energy of 55
kcal/mole. Both polymers gave evidence of random scission kinetics. The
volatile products were consistent with the occurrence of further condensation,

scission, and cross-linking reactions.
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SECTION I

INTRODUCTION

A wealth of information is available in the literature concerning the degrada-
tion of vinyl polymers (References 1 and 2) and in some cases complete analyses
of mechanism are well established. However, there seems to be a deficit of
similar information for polycondensates except perhaps for some polyesters
(e.g., polyethylene terephthalate). In view of the considerable current interest
in polymers of this type, this is somewhat surprising, especially since the more
exotic polycondensates (e.g., polybenzimidazoles, poly(bis-benzimidazobenzo-
phenanthroline) have shown considerable promise as thermally stable materials

of improved useful service life.

A large number of polyamides containing the repeating unit

_RLN
H

~-C-R-C—
il il
0) o

-2

are available where R and R' range from short aliphatic hydrocarbon chains to
aromatic and heterocyclic rings. Many of these polymers have useful physical
and chemical properties and have achieved commercial importance as textiles

and molding compounds.

One source of such a diversified range of structures has been the recent
interest in increasing the useful life of polymeric materials at high temperature,
particularly by the incorporation of aromatic rings into the backbone of the
polymer. Russian research on polyamides has been particularly active (Refer-
ences 3 and 4) as has the work being carried out at Chemstrand Research

Center (References 5 and 6).

Information is available on the composition of the evolved gases during
degradation (Reference 7) but there has been relatively little interest in the
rates of the various processes or the thermodynamic parameters which control

the degradation of these compounds.
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The work described here has been an attempt to correlate polyamide struc-
ture with the mechanism and kinetics of the degradation reactions., Early studies
were devoted to molecular weight changes which were expected to take place at
temperatures below those required for the onset of drastic weight loss of the
polymer. Temperatures not far above the sample melting point were used but
1 to 2% weight loss was often evident. In this way, it was hoped to be able to
follow molecular weight changes as a function of the exposure time, temperature,
and polymer structure. Since undesirable changes in physical properties often
accompany molecular weight changes, knowledge of the kinetics which govern
molecular weight changes could be of use in predicting polymer lifetimes under
various conditions. The main objective here, however, was a determination of

the types of reaction (scission, etc.) responsible for molecular weight degradation.

The studies were extended to follow the kinetic laws involved in weight loss
processes. This included evaluation of methods employed for the determination
of kinetic parameters involved in weight loss processes (Reference 8). Mea-
surements were made under both isothermal and linearly increasing temperature
conditions, and machine methods for calculation of the results were devised
(References 8 and 9). Some of the results of this work have been reported pre-
viously (Reference 10), but since a better method has been devised for the cal-

culations they are repeated here,

This report is concerned with the weight loss, molecular weight changes,
production of volatiles, etc., of poly(hexamethylene adipamide) and poly(hexa-
methylene sebacamide) designated as nylon 6.6 and nylon 6, 10, respectively.
The numbers represent, in order, the number of carbon atoms in the diamine

and the diacid constituents of the polymer chain.
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SECTION II
PREVIOUS INVESTIGATIONS

In several of the early investigations into the degradation of polyamides
(Reference 11), copolymers, e.g., of nylon 6.6 and nylon 6.10, were used. The
use of such materials complicates the interpretation of the results of degradation
particularly if the possibility of the formation of new structures by transamidation

exists.

Achhammer, et al. (Reference 12) described a considerable amount of
information on the degradation of a series of copolyamides, Changes in mechan-
ical, electrical, and other properties were measured as a function of the time
of exposure to artificial weather, etc. The gaseous products detected during
exposure to high temperatures were water, carbon dioxide, carbon monoxide,
hydrocarbons and ethanol (solvent), The source of water was suggested to be a
cross-linking reaction and it was proposed that carbon monoxide and hydro-

carbons were evolved during a series of scission reactions:

0o
Il Il
=NH-CO-(CH,)g—CO-NH —= + C—(CH,), —C- —= 2CO + hydrocarbons

A significant quantity of cyclopentanone was detected in the pyrolysis gases,

a possible mechanism for its formation being

0 0
I i
~NH-CO-(CHp)y-CO-NH-—= -C—-(CHp)q-C- —= { ) +co
o
I
0

and —NH-CO—(CH,), -COOH ““’Kc} + CO,
I
0

Sufficient CO and CO2 were present in the gaseous products to account for
the formation of cyclopentanone by both of these mechanisms. When the polymer
contained sebacic acid units, no CO was evolved and no cyclic hydrocarbons
were detected, The 10 carbon cyclic ketone would not be stable under degrada-

tion conditions.
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The quantity of CO2 produced was 10 times in excess of that expected on the
basis of end groups alone, showing its source to be either absorbed CO‘2 or that
produced by some unknown mechanism from parts of the polymer chain other

than end groups.

Goodman (Reference 13) investigated the decomposition products of a series
of N, N'-di-n-butylamides as model compounds for nylon polymers. Dibutyladip-
amide decomposed almost completely giving n-butylamine, minor amounts of
CO and hydrocarbons and substantial quantities of C02. No cyclic ketone was
detected in conflict with expectations based on Achhammer's work (Reference 12),
Goodman claimed to have established a unique reaction of N-substituted adipamides
in which CO2 is produced on heating without the formation of equivalent quantities
of hydrocarbons. The composition of the residue was examined and shown to
contain nitrogen. It was postulated that the nitrogen was present in a 5-membered
heterocyclic ring. It was later shown (Reference 14) that residues from the
degradation of both dibutyladipamide and nylon 6,6 contained 5- and 6-membered

rings as well as a pyrrole derivative.

Kammerbeek, Kroes, and Grolle (Reference 15) published a considerable
body of information on the gellation and the thermai degradation of nylon 6 and
nylon 6.6 and postulated a series of possible reactions to account for the cross-
linking and for the composition of the gaseous products. Some information on
the changes in molecular weight during heat treatment were also presented. To
back up the postulated mechanisms, authentic specimens of the residue struc-

tures were prepared and examined,

For nylon 6, the reactions suggested by these authors are given below.

(A) Primary Reaction

Scission of the bond in the 3 position to the carbonyl group.

=CO-NH=(CH,)y=CH,~CO—NH = CH,-(CH,)g ~CO-NH - - - - T
I —= -CO-NH-CH,—(CHy)y-CO-NH, - - - - II
+CH, = CH—-CH,~CH, -CH,-CO~NH-
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The amide (II) may then split off water to leave the nitrile.

Also scission of the —NH-CHZ- bond may occur:

I -CO-NH-(CHy)g = CO-NI + CHy-(CH,), -~CO-NH -

l Rearranges
—CO—NH—(CH2)5 -N=C=0

(B) Secondary Reactions
Chain end hydrolysis
R—NH-CO-R'+ H,0 —= RNH, + R'COOH

Condensation

R-COOH + HOOC-R'——= R-CO-R'+ H,0 +CO,
R-NH, + R'-NH,— R-NH-R'+ NH,

Several other processes which modify the chain were also proposed.

Straus and Wall (Reference 11) examined the effects of the deliberate addi-
tion of impurities, e.g., phosphoric acid, to nylon 6. A threefold increase in
the maximum rate of weight loss was observed with this acid, probably because
of the greater importance of ionic processes. The same authors (Reference 16)
also showed that purification of the polymer decreased the rates of degradation
and of production of 002 and increased the activation energy of the overall
weight loss, Their sample of nylon 6 was extensively purified by extraction
with solvents and dried well since it was claimed that the presence of moisture
could cause hydrolytic decomposition, with the production of COZ’ which over-
shadows the normal free radical thermal decomposition. However, it was shown
that the quantity of CO2 evolved could never be reduced to that expected on the
basis of end groups alone and it was suggested that even after being dried care-
fully the polymer still contained absorbed water capable of causing hydrolysis
of the polymer. Cyclopentanone was detected in the gaseous products the quan-
tity of which decreased after the polymer was treated with acid. Thus the pro-
duction of the cyclic ketone is essentially a free radical process but not occurring

at adipic end units.
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The authors determined an activation energy of 43 kcal/mole for the weight
loss of nylon 6.6 from the maximum rates of weight loss but suggested the true
value for the pure free radical reaction with no hydrolysis component should be

between 50 and 60 kcal/mole,

An early attempt at the determination of kinetic parameters for the pyrolysis
of polyamides was made by Straus and Wall (Reference 11) using nylon 6 and
mixtures of copolyamides. A wide range of activation energies (14 to 42 kcal/
mole) was determined from isothermal weight losses but their highest value
was considered to be more representative of the pure, free radical decomposition.
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SECTION III

EXPERIMENTAL

1. PREPARATION OF POLYMERS

Nylon 6.6 and nylon 6,10 were received from Chemstrand Research Center
in the form of fiber and chopped ribbon. Both materials were prepared from
high purity intermediates without the addition of stabilizers or other additives
(Reference 17). Both the polymers were reduced to a finely divided form by
precipitation with water from formic acid solution following the procedure de-
scribed in Reference 10, Traces of unreacted material and low molecular weight

polymer were removed by extraction with hot water for a minimum of 8 hours.
2, INTRINSIC VISCOSITY MEASUREMENTS

All measurements were made using standard or Semi-Micro Cannon-
Ubbelohde dilution viscometers. Formic acid solutions required a number

75 viscometer and a number 150 or 200 was used for m-cresol solutions.
3. END GROUP TITRATIONS

End group titrations were carried out on m-cresol solutions of the polymer
using 0, 01N alcoholic HC1 and NaOH solutions. The polymer solution was con-
tained in a small cell through which nitrogen could be passed to prevent oxidation
of the solvent. The end point was determined by the inflection in the curve of
conductivity versus volume of titrant added. Conductivity was measured using
platinum electrodes and the Thomas SERFASS conductivity bridge Model
RCM 15B1,

4, VAPOR PRESSURE OSMOMETRY (VPO)

Measurements of number average molecular weight were made using the
Mechrolab Vapor Pressure Osmometer Model 302, The auxilliary high temper-
ature chamber was used at 130°C for a limited number of measurements but

normally 37°C and 65°C were used when fluoroalcohols were employed as
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solvents, Early in this work, difficulty was encountered in obtaining reproducible
results and the cause was traced to variations of sample drop size, a previously
unreported phenomenon., References 18 and 19 describe in detail the techniques
used for correction of time and drop size effects and Reference 20 describes the
modification made to the instrument to permit recorder plotting of the VPO out-

put.

5. WEIGHT LOSS MEASUREMENTS

Ainsworth Thermobalances, Models AV and RV, were used throughout this
work, the former giving a full scale recorder pen deflection equivalent to a
100 mg weight change, the latter to a 10 mg change. A complete description of
the apparatus and experimental technique is given in Reference 10,
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SECTION IV

CHARACTERIZATION AND MOLECULAR WEIGHT
DETERMINATION OF POLYAMIDES

1, SOLUBILITY

The literature is replete with descriptions of the determination of the molec-
ular weight of polyamides, in most cases nylon 6.6. One of the major difficulties

is the choice of a solvent suitable for the particular technique being employed.

Formic acid solution (85-97%) readily dissolves aliphatic polyamides but
protonation of the NH group causes complications in the determination of vis-
cosity (References 21 and 22). Meta cresol is a useful solvent but the solutions
readily become colored by oxidation of the m-cresol. Purification of nylon by

precipitation from m-cresol is not recommended since the color contaminates

the precipitate.

Stronger acids, trifluoroacetic, sulfuric and methane-sulfonic, readily
dissolve aromatic polyamides but the possibility exists for hydrolysis of aliphatic

materials.

It has been reported (Reference 23) that a saturated solution of calcium

chloride in methanol will dissolve some polyamides but nylon 6,10 is not included.

Recently several fluorinated alcohols have become readily available; they
are especially useful in the determination of molecular weight by VPO (Refer-
ence 24) because of their compatibility with the materials of construction of the
VPO and they have been used in the measurement of other solution properties
(References 25 and 26). Nylon 6,10 dissolves readily in 2, 2, 2-trifluoroethanol
on warming but at room temperature some solutions tend to be unstable (see

Section IV.4).

No single solvent could be employed in this work since several different

measuring techniques were used each having certain unique solvent requirements.
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2, VISCOMETRY

The intrinsic viscosities (I.V,) of nylon 6.10 in m-cresol and in 85% formic
acid have been measured using various samples of polymer. Identical I,V,
values were obtained using several batches of purified polymer but material
which had not received the water extraction process had a distinctly lower 1.V,

than extracted polymer. A composite of the viscosities of the extracted material

is shown in Figure 1.

In formic acid, at concentrations between 0.2 and 0,8 g/dl, the data may be
represented by a straight line which gives an intrinsic viscosity of 0,74 dl/g.
It is well known that polyamides exhibit polyelectrolyte effect manifested by
anomalously high values of 7 Sp/c at low concentrations (References 21 and 22)

but this was not observed in the concentration range used here,

In m-cresol anomalously low values of 7 Sp/c were observed at concen-
trations below 0,1 g/dl. The intrinsic viscosity determined from the linear
part of the curve is 1,15 dl/g. Viscosity data for nylon 6.6 (Reference 27) shows

[77] formic acid/ [77] m-cresol = 0,9, but we find the ratio to be 0, 64
for nylon 6, 10,

In order to convert I, V, into viscosity average molecular weight, the con-
stants K and a on the Mark Houwink equation ['r)] = KMa are necessary. These
apparently have not been determined for nylon 6. 10 but data is available for
nylon 6.6 (References 28 and 29). For nylon 6,6 in 90% formic acid (Reference
29), K =11 x 10"4 and @ = 0,72 in the molecular weight range between 5000
and 25,000, The value of K for nylon 6. 10 should be larger because of the
greater molecular size. Using these constants for the nylon 6.10 data gives an
estimate for —Mv of 8500, |

6

For a mixed polyamide in m-cresol (Reference 30), K = 0.29 x 10"~ and

a=1.3, Lf[n] = 1.15 then M = 1.2 x 10°,

10
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Ohama and Ozawa (Reference 24) have quoted figures for several nylons:
Nylon 6, ¥ = 10,400 [17]1'61; Nylon 7, I, = 17,000[7;]1'4 and Nylon 9,
M, = 18,600 17]1‘4 in m-cresol at 25°C. It has been shown that K and a are
the same for nylon 6.6 and nylon 6 (Reference 31), so the constants seem to
depend mainly on the number of carbon atoms in the chain. If this is so, the
constants for nylon 6. 10 might be similar to those for nylon 8. Using the rela-
tionship M = 18,000 [77 ]1' 4 interpolated from the nylon 6, 7, and 9 data,

1\_-/1V = 21, 900 for the nylon 6,10 used here.

The nylon 6,6 used here has an intrinsic viscosity of 0,63 dl/g in m-cresol
at 25°C. The molecular weight ﬁv varies depending on which literature values

of K and Q@ are used.

Thus, it can be seen that no reliable estimate of the molecular weights of
the starting polymers could be arrived at using published K and a data. Mea-
surements of I, V, should still be a reliable indication of changes in molecular
weight if it can be assumed that the reaction causing the molecular weight change
does not alter the residue structure (e.g., degree of cross-linking) significantly.
This implies that the constants K and @ apply to both the starting material and
the degraded polymer,

To test the effect of the purification procedure on the thermal behavior of
nylon 6.10, several series of degradations were carried out at 289°C for varying
times and intrinsic viscosities were measured. The results, plotted in Figure 2
show that considerable variations in I, V. of the degraded material are caused by
batch changes. All batches were derived from the same original material.,

Batches B and C had both been freeze dried and extracted with water in a
Soxhlet but had slightly differing I, V.'s (1.15 and 1,17, respectively). Batch E
was similarly prepared but was not extracted to remove low molecular weight
materials, The I,V, of this batch was 0.92 which reflects the presence of low
molecular weight components. The amount of material extracted during the
Soxhlet treatment was only 1.3%. The thermal behavior of Batch E is in keeping
with this, There is a rapid rise in I,V,, probably due to continuation of poly-
merization but after 200 minutes exposure at 289°C, the I,V, falls as the

importance of scission increases.

12
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Figure 2. Intrinsic Viscosity Changes in Nylon 6.10 at 289 + 1°C

Figure 3 shows the effects of exposure at a lower temperature, 280°C. In
this case, the I,V, increases with time for all the batches. In 100 minutes, the
1.V. of batch E increases to 1,41 as opposed to 1,67 at 289°C. It would seem
that at the lower temperature and up to at least 300 minutes, further condensation
is the predominant process, scission not occurring to any appreciable extent.

The data shown in Figure 4 would seem to conflict with this however. Here, the
variation of I, V., with time is shown for three temperatures for batch X, and in
all cases the I, V,'s are significantly above their original values. A predrying
cycle of 30 minutes at 220°C under high vacuum was carried out for all the
experiments shown in Figure 4 in an attempt to remove the last traces of water

from the polymer. No change in I.V. was noted for polymer subjected to this

treatment alone,
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Figure 3. Viscosity Changes of Nylon 6. 10 at 280°C

These data show, if nothing else, that it is essential to use a single stan-
dardized batch of polymer for all experiments in order to be able to compare
results of viscosity studies. Further, the possible occurrence of further con-
densation, distillation of low molecular weight volatiles, branching and cross-

linking will complicate interpretation of results.
3. END GROUP TITRATIONS ON NYLON 6.10

To determine unambiguously the molecular weight of a material a method
which requires no calibration and which measures a colligative property is
needed. End group titrations offer this possibility by counting, in the case of
polyamides, the numbers of active-NH2 and ~-COOH end groups. This method
obviously requires that there be no end groups other than -COOH or -NH2.

14
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299°
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Figure 4. Viscosity Changes of Nylon 6, 10

Since it was believed that the nylon 6. 10 used here was prepared without the
addition of end capping reagents (e.g., acetic acid) titration of m-cresol solu-
tions of the polymer with dilute alcoholic HC1 and NaOH solutions was attempted.
The end point was determined by the break in the curve of conductivity against
volume of titrant added. The results obtained were

M (NH,) = 18.6 and 19.2 x 10°  Average = 18,9 x 10°

_ 3
M, (COOH) = 11,8 and 12.2 x 10°  Average = 12.0 x 10°

15
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Differences in the numbers of each type of end group might be expected in low

molecular weight polymers,

4, VAPOR PRESSURE OSMOMETRY

Several types of fluoroalcohols have been used for VPO measurements on
polyamides (Reference 24). Both trifluoroethanol (TFE) and heptafluorobutanol
were tried here and both were found to be suitable, the former at 37° and the

latter at 65°C.

Meta-cresol was tried using the high temperature VPO chamber but the
solvent attacked the insulation material around the chamber. It has been re-
ported (Reference 32) that formic acid may be used if the chamber is gold plated.

Using TFE, solutions of nylon 6. 10 up to a concentration of about 20 g/1
may be prepared and used. Solutions above this concentration may also be
prepared but separation tends to occur after several hours producing gel-like

material which readily clears on being heated.

Figure 5 shows a plot of the reduced resistance against the concentration
for solutions of nylon 6. 10 in TFE at 37°C. An upswing in the curve is apparent
at low concentrations but the linear part of the curve, when extrapolated to zero

concentration yields a number average molecular weight of 7100,
The molecular weight of the nylon 6,6 used (Figure 6) is 4900.

The number average molecular weights of the degraded polymers referred
to in Figure 4 were measured in heptafluorobutanol at 65 °C. The results are

summarized in Table I.

Inspection of this data allows no apparent correlation between the I,V, and
Mn of the degraded materials; increases in I.V, are not always accompanied by
increases in Mn' If branching is taking place during degradation comparison
of I,V,'s and Mn would not be valid since a single relationship between the two
(the Mark Houwink equation) would not apply. A clue to this is given by the fact
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TABLE 1
INTRINSIC VISCOSITIES AND NUMBER AVERAGE
MOLECULAR WEIGHTS OF NYLON 6.10
Exposure Exposure Intrinsic My, by VPO
Time Temperature Viscosity (Heptafluorobutanol
(min) (°C) (d1/g) at 65°C)
Original Material 1.15 7100%
100 299 1.28 8900
200 299 1,13 5600
300 299 1,22 10,700
100 310 1,62 5400
200 310 1.82 15,700
300 310 1.25 —_—
300 325 2.38 9300

* Determined in both heptafluorobutanol at 65° and trifluoroethanol at 37°C

that a plot of log I. V. versus log Mn using the data given in Table I is extremely

scattered so it is not possible to derive a Mark-Houwink equation to fit the data.

5. MOLECULAR WEIGHT DISTRIBUTION BY GEL PERMEATION
CHROMATOGRAPHY

Measurements of molecular weight distribution by Gel Permeation Chroma-
tography (GPC) were made at Battelle Memorial Institute using 2, 2, 2-
trifluoroethanol as solvent (Reference 33). Initially three columns designated
105, 104, and 104 were used for the GPC analysis. Figure 7 shows the distri-
bution curves obtained for nylon 6. 10 both undegraded and after exposure at
various temperatures for differing times. The curves for the undegraded and
for several of the degraded polymers exhibit single maxima but the sample
exposed at 317°C for 500 minutes shows a pronounced double peak, The sample

exposed at 327°C for 100 minutes shows slight evidence for a binodal distribution.
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Figure 7. GPC Curves for Nylon 6, 10
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When nylon 6. 10 was exposed to the mildest degradation (100 minutes at 311°C)
there is a pronounced increase in the position and the height of the maximum,
This may be attributed to either both sublimation of low molecular weight

material,and further condensation of reactive end groups.

Similar data for nylon 6.6 is given in Figures 8 and 9. In Figure 8 the
curve for the undegraded polymer is somewhat irregular and the various thermal

exposures in all cases increase the molecular weight of the peak maximum.

The second series of distributions of nylon 6.6 (Figure 9) was conducted
after one of the 104 GPC columns had been replaced by a 106 column, The
undegraded material was then clearly demonstrated to be of binodal distribution,
Exposure at 259°C for 100 minutes (polymer did not melt) caused a dramatic
change in distribution. A single maximum was observed at i\—/In = 50,000, the
curve having a slight shoulder at a lower molecular weight. The distributions
for samples held at 280° and 285°C for 100 minutes also had single maxima but
at 'Mn = 19, 000,

Number average molecular weights of several of the nylon 6.6 polymers
were measured by VPO in TFE solvent but there were inconsistencies between
the values obtained and the positions of the maxima in the GPC traces.

The GPC data show that large changes in molecular weight distribution

occur during thermal exposure of both nylon 6.6 and nylon 6.10 even under mild
conditions, Normally an increase in the position of the maximum is evident but
increased thermal exposure or higher temperatures cause gradual decreases in
the molecular weight of the residues. The GPC data give a clue to the difficulties
encountered in measuring number average molecular weights of degraded poly-
mers espeéially using different batches of original polymer. Slight differences
from batch to batch in the content of low molecular weight components will cause

large differences in the molecular weight after thermal exposure.
Better removal of the low molecular weight material and end capping of

residual reactive end groups from the original polymer is indicated for further

‘studies of molecular weight changes.
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Figure 8. GPC Curves for Nylon 6,6
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SECTION V

WEIGHT LOSS STUDIES

A previous report (Reference 10) describes determinations of the activation
energy (Ea) for the thermal, vacuum weight loss of 500 mg samples of nylon 6.6
and nylon 6, 10 under isothermal conditions. In our weight loss studies much
importance has recently been placed on the determination of thermodynamic
parameters from thermogravimetric experiments conducted under linearly in-
creasing temperature profiles. It was deemed worthwhile, therefore, to compare
the results obtained by the two methods. Since programmed temperature thermo-
gravimetric experiments are more easily conducted (no temperature control
problems such as those encountered in isothermal thermogravimetry), and since
useful data may be obtained from the onset of degradation, it was hoped that the
comparison would prove the worth of programmed thermogravimetry for the
elucidation of mechanism and the determination of thermodynamic parameters

involved in weight loss processes.

In other reports (References 8 and 9), we have described computer methods
for the calculation of Arrhenius parameters from both isothermal and programmed
temperature thermogravimetry data. The computational methods described were

used for the results reported here.

To investigate the importance of diffusion controlled processes further

isothermal experiments were carried out using various sample sizes.

1. NYLON 6.6

Some of the isothermal data presented in Reference 10 obtained using 500 mg
samples has been recalculated using the computer method (Reference 9). The
rate of weight loss data for this and other sample weights is collected in Appen-
dix I, Figure 10 shows the variation of activation energy with percent weight
loss using the recalculated 500 mg results. The original results quoted in
Reference 10 are also shown for comparison. The differences may be attributed
to the fact that only the higher temperature data was recalculated. Figure 10
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also shows results obtained using 100 mg samples, The differences between the
Ea values for 100 mg and 500 mg samples are small indicating that diffusion
controlled weight losses eithér are unimportant or do not have significant effect
on the activation energy. There is a small dependence of rate of weight loss

(% per minute) on sample size (Figure 11). The rates for the small samples are

slightly higher so some diffusion is occurring.

Programmed temperature rates of weight loss of 100 mg samples of nylon
6.6 were measured using heating rates ranging from 75°/hr to 450°C/hr and E,
was again determined as a function of the percent weight loss. Some of the rate
data is given in Figure 12 and in Appendix II, The activation energy results
obtained are plotted in Figure 13 where the isothermal 100 mg data is replotted
for comparison. There is excellent agreement between the two sets of data for
most of the degradation range, The maximum difference is about 8 kcal/mole at
30% weight loss. It would be difficult to specify the cause of the differences
observed but it is probable that the programmed temperature data is more repre-
sentative of the "true' activation energy for the weight loss process since there

are no temperature stabilization difficulties.

In a pure single step chemical reaction the activation energy for a chemical
change should remain constant throughout the reaction, Any change in Ea during
the reaction is indicative of a change in the mechanism of that reaction. The
significant changes in Ea with extent of weight loss observed here must therefore
give an insight into the mechanism of the weight loss process. Up to 25% con-
version E rises slowly. It then remains approximately constant until about
60% weight loss, and then increases continuously until the end of the reaction.

The early rise is probably due to early weight loss from evaporation of
water either absorbed in the polymer or produced during condensation of the
reactive end groups on the polymer chains. As condensation continues and the
temperature rises, the importance of a higher activation energy process, namely,
random chain scission, increases with consequent increase in Ea' At about 25%
weight loss, condensation has been completed and the weight loss is due solely
to loss of low molecular weight units produced during scission. The activation

energy then remains constant until the rate of a third reaction becomes
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appreciable. During degradation, nylon 6,6 readily cross-links forming a dark
insoluble material, The activation energy required to remove a small volatile
unit from a cross-linked material will be greater than for the corresponding
straight chain material. Thus Ea would be expected to rise as the quantity of
cross-linked polymer increases. This is shown up by the increase in Ea from
46 to 67 kcal/mole for the last 40% of the weight loss reaction.

Besides a change in Ea’ there exists the possibility for a change in the
apparent order of reaction for the weight loss. In Reference 8, it has been
stressed that apparent order of reaction may not be the same as "order of re-

action" in its classical definition but the term will still be used here.

The computer technique used here allows the determination of order of
reaction from the slope of a plot of log A F(W) against log (percent weight re-
maining). Such a plot for the programmed temperature TG data for nylon 6.6
is shown in Figure 14. A good straight line having a slope of 1.16 may be drawn
through the data representing weight loss from 25% to 80%. Thus, there is no
significant change in the weight functionality of the rate of weight loss. The
slight drop in the curve at low conversions tends to indicate that the process
obeys random rather than "order" type kinetics. It has already been shown that
the weight loss of this polymer obeys random kinetics since a true maximum can
be observed in the rate of weight loss against weight loss curve during low tem-
perature isothermal weight loss. The maximum isothermal rate of weight loss
occurs in the range 20 to 30% weight loss compared with 25% (depending on the
chain length of the evaporating molecule) predicted for random kinetics (Refer-

ence 34).
2, NYLON 6,10

Figure 15 shows the variation of activation energy with conversion for the
isothermal weight loss of nylon 6,10, Line A represents the data originally
given in Reference 10 using 500 mg samples., Lines B and C show data obtained
with 250 mg and 100 mg samples, respectively., Here there are rather large
differences in the E, values at any given conversion and there does not seem to

be a smooth trend in the value of Ea with change in sample size, Activation
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energies for the smaller samples agree reasonably well above 50% conversion,
Any discrepancy in the low conversion region (up to about 20%) may be due to the
failure to achieve temperature equilibrium until this amount of weight loss had
occurred, The large differences between the 500 mg data and the smaller data
show that diffusion controlled weight loss processes are taking place, For all
further experiments with nylon 6.10, 100 mg was chosen as the standard sample

size. For convenience the same weight of nylon 6.6 was also used.

Figure 16 shows the programmed temperature rate of weight loss data for
100 mg samples of nylon 6.10, The original data is given in Appendix II, The
corresponding activation energies are given in Figure 17. Comparison with the
isothermal data also shown in Figure 17 shows there are large differences
between activation energies determined by the two different methods. The
reasons for these differences are not known but they may be associated with the

diffusion effects noted previously.

A further complication is that the programmed temperature data is gathered
over a wider range of temperatures than is the isothermal data. This complica-
tion is inherent in the methods used and causes difficulties in interpretation of
the results if the weight loss is not a simple process, e.g., if Ea varies with

conversion or with temperature.

Below 20% weight loss the programmed temperature Ea increases rapidly
and it then remains fairly constant at about 57 keal/mole until total weight loss
has occurred., The isothermal Ea’ however, increases continuously during
weight loss. Significantly, nylon 6,10 cross-links less readily than does nylon
6.6 so any increase in Ea due to cross-linking might be delayed until high weight

losses have taken place.

Figure 18 shows the log A F(W) curve for nylon 6.10., The data represent-
ing 20 to 80% weight loss is represented by a good straight line having a slope
of 0.98. A slight drop in the curve at low conversions is apparent showing the

reaction is probably a random weight loss process.
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SECTION VI

MASS SPECTROMETRIC THERMAL ANALYSIS

Small samples (usually about 1 mg) of both polymers were subjected to mass
spectrometric thermal analysis (MTA) by the General Electric Company and a
brief descriptioh of the results is given in Reference 35. A description of the
experimental procedure is given in that reference. The method consists essen-
tially of heating the sample from room temperature to 1000°C at a rate of 10°C
per minute in a high vacuum. The effluent gases are pumped into the time-of-
flight mass spectrometer and 200 preselected masses are scanned repetitively
every 108 seconds. Computer data processing is used to obtain curves of ion
intensity against temperature for each of the masses. It is hoped eventually,
after suitable standard materials have been run, to be able to obtain complete

quantitative analyses of the products of degradation,
1. NYLON 6.6

Examples of the original mass spectra are given in Reference 35. At about
425°C a peak is evident for many of the masses scanned and in most cases the
peaks are well defined, dropping back rapidly to the base line. However, in
some cases (e.g., mass 2,13,14,24) a gradual increase in ion signal takes
place above 600°C. At this temperature complete sample weight loss should have
occurred so it is likely these are spurious signals caused by reevaporation of

material which had condensed in the vacuum system, and can be ignored.

Figure 19 shows a bar graph of the peak intensities of all of the masses
observed during MTA of Nylon 6,6. The compounds responsible for most of
these peaks include NH3, HZO’ co, COz, cyclopentanone, and several hydro-
carbons. It is difficult to obtain a quantitative analysis of all the compounds

responsible for all of these peaks especially those present in small amounts,
Mass spectrometric data obtained from gases evolved from nylon 6.6 held

isothermally were given in Reference 10, The same major components were

present except for CO which was not trapped.
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2, NYLON 6,10

The bar graph for ion intensities of evolved gases is shown in Figure 20, and
the major products were H20, co, COZ’ 1, 5-hexadiene and other hydrocarbons.
The temperature for the maximum intensity is 450°C for this polymer and there
is no evidence for significant gaseous evolution at lower temperatures. In con-
trast with the nylon 6.6 gaseous products, no ammonia was produced from nylon
6. 10.

An obvious feature of these results is the presence of large quantities of
water and CO2 and CO in the gaseous products from both polymers. It is well
known that water is strongly held by polyamides (probably by hydrogen bonding);
some of the water detected probably was due to this effect, but further condensa-
tion would also give rise to water evolution, The source of CO2 is probably

decarboxylation of acid end groups.

Hydrocarbon fragments are derived from the aliphatic CH2 chains and often
occur as unsaturated compounds. The presence of cyclic ketones in the MTA
data has not been confirmed but quantitative analysis of the data has yet to be

attempted.

39



sjonpodg
uoljepea8a( SNoasey (O °9 UOIAN X0} SONISUSIU] VIIA WNWIXBN °0Z 2anS1 g

438WNN SSVYW

00l 06 (0] (672 0s 0s ot oge 0¢
J

o

AFML-TR-68-347

Part1

) ) 8
L _________

. . o_
___7__:..__ __ T I __._ T

G32ZITYNYON

40

(OW/S110A ) ALISNILNI NOI



AFML-TR-68-347
Part I

SECTION VII

CONCLUSIONS

The molecular weight data presented in this report exemplify the difficulties
in obtaining reproducible data from polyamides. The erratic behavior of poly-
amides has previously been attributed to the inability to obtain completely dry
polymer samples (Reference 36). However, the present work indicates that the
presence of low molecular weight material and polymerizable end groups in the
polymer also contribute to the difficulties. The first of these has a profound
effect on colligative solution properties of the polymers and the second compli-
cates the interpretation of the molecular weight changes which take place during
thermal exposure of these polymers, since polymerization takes place before
scission or cross-linking. Attempts at removal of low molecular weight residues
by extracting the polymer with solvents were evidently not successful, For
further studies it would be desirable to employ narrow molecular weight range

fractionated polyamides whose reactive end groups had been end capped.

These factors have, however, far less effect on the gathering of weight loss
data. Obviously, polymers containing large amounts of low molecular weight
fragments would not be desirable; small amounts would show up as slight early
"bleeding" during weight loss experiments.

The removal of polymerizable end groups might also clarify some of the
interpretation of mass spectral data, and could give further insight into the
source or sources of water which is a major product. There are several
possible sources for its production (desorption, further condensation, etc.) so

removal of one of these would be useful.
The GPC data quoted demonstrates rather dramatically the large changes

in molecular weight distribution of polymers which had been subjected even to

mild thermal exposure.
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The weight loss data obtained allows determinations of activation energy as
a function of the amount of weight loss. This relationship combined with the
A F(W) data permits mechanistic interpretation of the processes responsible for

the overall weight loss.

Figure 13 which shows the activation energy data for nylon 6.6 weight loss
indicates as explained previously, that Ea increases considerably during the
weight loss but a plateau of 45 kcal/mole is evident in the range of weight loss
from 30 to 60%. The early rise in Ea probably reflects further condensation of
reactive end groups. The plateau region reflects the chain scission process
which is apparent after the completion of further condensation. Finally the
increase in Ea after 60% weight loss is caused by the various cross-linking

reactions. These three processes may be summarized:

Further Condensation

R---*NH, + HOOC:----R'——= R ---- NHCO---- R' + H,0 (1)
R.-*NH, + H,N ----R'—=R:--- NH----R' + NH, (2)
R----COOH + HOOC - -*R'—= R ---- CO---- R' + H,0 + CO, (3)

Scission Reactions

R---CONH(CHp)g---- R'"—=R----CONH, + CH, = CH(CH,),----R' (4

R---CONH; — R---- C= N + H,0 (5)
Re---CONH(CHyg -+ R —=R:---- CON + CHy(CHy)g - --- R’ (6)
R-+N=C=z0
1 H,0

R"'NH2+ C02

Other reactions which break the hydrocarbon chains. (7)
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Cross-Linking

R--+- CO--- R (from Equation3) + R----NHp —= R----C-oo R'+ H,0 (8)

All these reactions have been suggested by Kamerbeek, et al, (Reference 15)
who also detected several of the suggested intermediates by infrared spectropho-
tometry. The present mass spectrometric data confirms the evolution of NH3,
CO,, and H O. Carbon monoxide production can be explained on the basis of

2
homolysis of polymer chains on either side of a carbonyl group. The free radical

V produced will readily split out the stable CO molecule leaving hydrocarbon frag-

ments. The mass spectra of both nylons are rather complex, the peaks occurring
in clusters. The various hydrocarbon fragments are mainly responsible for
these clusters but the homologous series of aliphatic nitriles is probably also

present. These compounds might be produced in reactions of the type:

2R CH,CONH, —= RCH,COOH + NH; + RCH,CN t Reference 37).

The mechanism of this reaction involves the formation of a six-centered inter-

mediate.

The changes in chemical reactions which are responsible for the changes in
E as weight loss of nylon 6.6 proceeds are not reflected in the log A F(W) curve
(F1gure 14), The weight loss appears to be a random process even up to about

80% weight loss.

In the case of nylon 6,10, similar reactions may be postulated; however,
the absence of NH3 in the MTA data, if real, would obviously rule out reaction
(2). The programmed temperature activation energy data for nylon 6,10 (Figure
17) shows E remains fairly constant above 20% weight loss. The slope of the
log A F(W) curve is 0.98 and the downward curvature at low conversion tends

to indicate a random weight loss is taking place.
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In some cases, the weight loss data obtained under isothermal and under
programmed temperature conditions did not agree. This is attributed to the
interference of diffusion controlled processes, particularly in the case of nylon
6.10, showing the importance of using small sample sizes for study. Difficulties
in isothermal temperature control and rapid heating of the sample to the degra-
dation temperature may also have been involved.
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