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ABSTRACT 

Relationships between the properties of fibrous composites and 

the properties of their constituents are evaluated.    Bounds and expres- 

sions for the effective elastic moduli of materials reinforced by hollow 

circular fibers are derived by a variational method.    Exact results are 

obtained for hexagonal arrays of identical fibers and approximate results 

for random arrays of fibers,  which may have unequal cross sections. 

Typical numerical    results are obtained for technically important elastic 

moduli.    The tensile strength of composite materials consisting of a 

ductile matrix uniaxially reinforced by high strength,  high stiffness fibers 

are analyzed.    The fibers are treated as having a statistical distribution 

of imperfections which result in fiber failure under applied stress.    The 

statistical accumulation of such flaws results in failure of the composite. 

The application of the analysis is demonstrated by using glass fiber 

strength data in an evaluation of glass fiber reinforced composites. 

Supporting experimental studies are described.   These include measure- 

ments of strength and stiffness of particle reinforced matrix materials 

and the development of an experimental procedure for tensile testing of 

thin fibrous composites containing only a single layer of fibers.    Microscopic 

observation of the latter specimens indicated random fiber fractures at loads 

significantly below the ultimate composite strength level. 
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I.      INTRODUCTION 

The studies described in this report are directed toward the 

attainment of advanced composite structural materials for aerospace 

vehicle applications.    The approach is through the enhancement of 

understanding of the mechanics of deformation and failure of composites, 

and of the influence    thereon of the properties of.   and interactions between, 

the constituents. 

The current availability and development of a variety of high 

strength and high stiffness fibers and the rapidly growing technology of 

filament winding have motivated the initial studies in the area of fiber 

reinforced composites.    The initial tasks of evaluating effective elastic 

constants and ultimate tensile strength of such materials are treated 

herein. I   These problems have been studied previously,   to a certain 

extent,   and the relationship of the previous work to the present studies are 

described.in the appropriate locations in the text. 

The elastic constants are treated using the variational principals 

of elasticity to establish bounds or approximate expressions for the five 

elastic constants of a uniaxially reinforced fibrous composite.    These 

results indicate the relative effects of changes in matrix and fiber 

characteristics and have motivated experimental studies of the effect 

of particulate additives to the matrix and of changing the cross-sectional 

shape of the fiber.    The control of material density and the effect of 

biaxial stiffening are also considered and the elastic constants for 

biaxially oriented voids in place of fibers is studied.    The results of 



these studies are presented in section II. 

The tensile strength of a fibrous composite is treated with a 

statistical failure model,   which is applicable to brittle fibers.    The 

analytical results are applied to glass-plastic composites to determine 

the direction of desired improvement in matrix characteristics.    An 

experimental program was undertaken to qualify the analysis.    The 

test specimens contained a single layer of glass fibers which enabled 

microscopic evaluation, by transmitted light,  of the internal failure 

process.    The results of the tensile strength program are described in 

section III. 

Once the basic relations between the composite and constituent 

properties are established,   it becomes necessary to determine the 

relative importance of the various properties.    Thus,  a structural 

efficiency study which considers generalized structures and load 

environments must be performed.    As examples of this approach,   the 

stability of a flat plate,   containing oriented voids,   under in plane com- 

pressive loads is treated.    As a second problem of this type the shear 

stresses associated with the biaxial stiffening present in laminates are 

studied.    Studies of this type utilizing the previously described analyses 

can provide guidelines for the development of improved composites. 

These structural application studies are described in section IV. / 



II.     ELASTIC CONSTANTS 

One of the initial requirements for the definition of composite 

material characteristics is for the effective elastic constants of the 

material.    In the case of a uniaxial fiber array,   the material may be 

treated as a transversely isotropic medium characterized by five elastic 

constants.    The evaluation of these constants for both solid and hollow 

fibers is presented in section A.    With these constants available,   the 

elastic behavior of laminates of uniaxially stiffened layers can be 

studied in a straight forward fashion.    Elastic constants for plates 

with biaxially oriented voids are described in section B.    The experi- 

mental studies motivated by the results of these analyses   are described 

in section C. 



A.      FIBER REINFORCED MATERIALS 

1.      Introduction 

In continuing search for lightweight materials of great strength 

and stiffness, .considerable effort has been made in recent years in the 

technological development of fiber reinforced materials.    Such materials 

consist of a relatively soft binder in which much stiffer fibers are 

embedded.    The present work is concerned with the theoretical study 

of the elastic properties of such materials containing circular hollow 

or solid fibers which are all oriented in one direction.    It is here assumed 

that the binder and fiber materials are linearly elastic,  Isotropie,  and 

homogeneous.    Because of fiber orientation the reinforced material is 

anisotropic. 

Two cases are here considered.    In the first,  the fibers are of 

identical cross section and form an hexagonal array in the transverse 

plane,  and in the second the fibers may have different diameters,  but with 

same ratio of inner to outer diameter and are randomly located in the 

transverse plane.    In both cases the composite is macroscopically 

homogeneous and transversely Isotropie (these concepts will be discussed 

below) and has five elastic moduli.    The problem then is to find expres- 

sions for the effective elastic moduli of the reinforced materials in terms 

of the elastic moduli and the geometric parameters of its constituents. 

The problem of the prediction of elastic moduli of macroscopically 

Isotropie composites has recently been treated by bounding techniques, 

using variational principles of the theory of elasticity.    Methods suitable 



for arbitrary phase geometry have been given by Paul   Cl] and Hashin 

and Shtrikman    [2,3] and for specified (spherical inclusions) phase 

geometry by Hashin   [4].    Methods for arbitrary phase geometry, 

although in principle applicable,  are of little value for the present 

problem since they cannot distinguish between the present specified 

geometry and an arbitrary mixture of binder,  fiber material and voids, 

possessing the same elastic symmetry as the fiber reinforced material. 

Because of the void phase these methods would give zero lower bounds 

for the effective elastic moduli.    In the present paper a variational 

bounding method closely related to the one employed in   [4 ]   is used. 

The analysis is based on the principles of minimum potential and 

minimum complementary energy and makes use of the present specific 

geometry. 

There has been little previous theoretical work in the present 

specific subject.    It has been assumed by Dietz   [5] and others that the 

Young's modulus in fiber direction can be evaluated by the "law of 

mixtures".    The effect of discontinuous fibers upon this longitudinal 

modulus has been studied in an approximate fashion by Outwater  [6] 

and Rosen,  Ketler & Hashin [7] .    A problem related to the present one 

has been treated by Hill and Crossley   [8]   who investigated the elastic  . 

behavior of an elastic material containing long fibers,  of identical square 

cross sections,  arranged in a square array.    The anisotropic composite 

has in this case six elastic moduli.    Rigorously valid bounds for five of 

these were derived by variational methods,  using piecewise constant 

admissible fields. 
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The five elastic moduli of the reinforced material here considered 

are rigorously bounded (except for the insignificant error involved in 

fulfilment of fiber end conditions in the St.  Venant sense) for the case 

of identical fibers arranged in an hexagonal array.    For random fiber 

arrangement a geometric approximation is involved.    The bounding method 

in this case yields coincident bounds,   and thus approximate expressions, 

for four of the moduli and non-coincident bounds for a remaining modulus. 

First,   the general method of applying variational principles is described and 

then the method is applied to each of the moduli.    Typical numerical 

results are presented for several of the more commonly used moduli. 

Required solutions to certain boundary value problems for composite 

circular cylinders are presented.    The analyses of the transverse plane 

strain bulk and shear moduli originally appeared in [7].    They are 

repeated here for clarity and completeness. 

2.     General Method 

The general definition of effective elastic moduli of heterogeneous 

materials has been discussed in   [8] and   [<?].    For the purpose of self 

consistency a short discussion,   specific to the problem here treated, 

will now be given. 

In fiber reinforced materials the ratio of length to fiber diameter 

is usually very large.    Accordingly,   fiber end conditions will only be 

considered here in the St.   Venant sense.    Consequently it is sufficient 

to consider a very large cylindrical specimen of reinforced material, 

with fibers in the generator direction extending from base to base. 



(In reality the fibers terminate at random heights.)   The specimen 

is referred to a cartesian coordinate system  x x x     whose   x    axis 

points in the fiber direction while  x x   are in the transverse plane. 

Let the specimen be subjected to one of the boundary conditions 

u°.(S)       =        €°..x. (2.1) 
i ij   J 

T°. (S)      =       a°..n. (2.2) 

o o 
over its entire bounding surface S.    Here u  .   and T   .   are displacement o 1 1 

and stress vector components respectively,  x.  are surface coordinates 

and n. the components of the outward normal to S.    The range of sub- 

scripts is 1,  2,   3 and a repeated subscript indicates summation. 

For boundary condition (2. 1) it can be shown that the average 

strains over the specimen are   €   ..  and for (2.2) that the average 

stresses are  a   ...    The specimen is assumed to be macroscopically 
ij  —  

homogeneous by which is meant that for either one of boundary conditions 

(2. 1) or (2.2) strain and stress averages taken over large enough sub- 

regions of the specimen are the same for any such subregion.    Such a 

subregion will be referred to as a representative volume element (RVE) 

and will here be chosen as a cylinder whose generators are in x 

direction and its bases parts of the specimen bases.    For an hexagonal 

array the RVE is an hexagonal prism,   surrounding one central fiber. 

Apart from a narrow specimen boundary layer,   stress and strain 

average invariance in a RVE is then exactly fulfilled.    For random 

placement of fibers the RVE is taken as a cylinder in x    direction,   con- 



taining many fibers and stress and strain average invariance are fulfilled 

in the limit with increasing transverse section size of RVE. 

The effective Hooke's law for the composite is defined as 

aij ijkl     kl 

where the overbar denotes average over RVE,   which by hypothesis is 

* 
also the average over the whole specimen.    The C        ^ are effective 

elastic moduli whose number is determined by elastic symmetry.    When 

(2. 1) is prescribed the average strains are   € and   or    have to be 

found.    Conversely when (2.2) is prescribed the average stresses are 

known and the average strains are sought. 

The definition of effective elastic moduli by (2. 3) is physically 

plausible; it is,   however,  not very useful because,   in order to find 

averages,   a field solution has first to be found,  which in general is a 

hopelessly complex task.    An equivalent and more fruitful approach is 

to define the effective elastic moduli in terms of strain energy and to 

bound the strain energy for simple applied average stress or strain 

fields,  thus also bounding the C .    It can be shown that when either 

(2. 1) or (2. 2) are prescribed the strain energy W stored in a RVE is 

given by: 

w  =  i-ä..7..(+) 
2        ij     ij 

Thus,   when (2. 1) is prescribed,   (2. 3) is equivalent to 

(+} For discussion related to such energy formulae see for example, 
Bishop and Hill   ClO]. 



W      =   —  C   .„ .    €..€,. (2-4) 
2 ljkl        IJ       kl 

and when (2.2) is prescribed,  to 

W .   =    -=-  S   .        or   ..   a , . (2.5) 
2 ljkl       ij        kl 

s"c . * ■ 

where S' are the effective elastic compliances associated with C . 
ijkl 1JK1 

Strictly speaking the equivalence of moduli defined by strain energy or 

by average stress and average strain, for random geometry, holds 

rigorously only for averages taken over the whole specimen,  with (2. 1) 

or (2. 2) prescribed.    For a large RVE the equivalence is approached in 

the limit,  for a statistically homogeneous material.    For the hexagonal 

array the equivalence is rigorous for the RVE used in that case. 

The general elastic features of the material here treated will 

now be discussed.    For the hexagonal fiber array the reinforced material 

has hexagonal symmetry and is thus also transversely isotropic (compare, 

e.g.   Love Cll]   p.   160).    For random fiber arrangement,  transverse 

isotropy is assumed.    The stress-strain relation (2. 3) for a transversely 

isotropic material may be written in terms of five elastic module in the 

form 

#     _ *   ' — *      — 
rll   =   °   11 Cll + C   12 C22+ C   12 C33 
a,,   =   C-, , €,, + C  ,„ €„., + C   ,„ c ,, (2.6) 

*    _ * " — *     — 
J22   ~   C   12€11+ C   22e22   + °  23 * 33 
a.,   =C'_€,,+ C„e„+C,,€3,_ (2.7) 

*33   =   C*12C11+C*23*22   + C\z C 33 (2' 8) 

^12   =   2C*44   C12 (2'9) 



*13   =   2C*44€13 (2-10) 

*23   '   (C*22 " C*23> 723 (2'U) 

where the usual six by six matrix notation has been used for the elastic 

moduli. 

It is possible to select five independent moduli which are com- 

binations of the above elastic moduli,   such that for specified states of 

stress and strain only one of these moduli will appear in the strain 

energy function.    Thus,  the bounds on strain energy can be used directly 

to yield bounds on the elastic moduli.    The moduli so chosen are: 

* 1 * # 
K23   =    -(C22   +   C23> (2'12) 

* 1     ■    * * ■       . 

G23   =    -(C22    "   C23> (2'13) 

# # # 'f 
G   12    =   G13=   G   1    =   C   44 (2'14) 

*     2 
* * 2C   l? 

E   ,    =   C   ,,   -     3 — 3  (2.15) 
111** 

G   22    +   C   23 

and C        .    Here K and G are a bulk and shear modulus, 

respectively,   governing plane strain deformation in the x x    plane; 

* 
G      is a shear modulus governing shear in any plane normal to the 

transverse   x x    plane; E       is the longitudinal Young's modulus and C 

is associated with axial stress or strain in x    direction,   while lateral 

deformation is prevented by a rigid enclosure.    From these five elastic 

10 



moduli any desired elastic constant can be obtained.    Important derived 

constants are: 

„ =   v '        -   v \    =   -L.       I 11_ — (2.16) 
21 31 12 

4G        K 
E*2   =   E*3   =        ,»       2l (2.17) 

K23+*G23 

* K*23^G*23 

where 

23 * ,    * 
23      *      23 

4K „y    , 
*   =    1+   -    23        l 

(2.18) 

* 
E   1 

Here V        is the Poisson's ratio for unaxial stress in x    direction, 

* * 
E       = E        is the transverse Young's modulus in the x

?
x, plane and 

* 
y - the transverse Poisson's ratio in the same plane. 

The variational bounding method used for the hexagonal array- 

will now be outlined.    Let all fibers be surrounded by the largest 

possible non overlapping equal circular cylindrical surfaces.    The 

radii r    of these cylinders are defined by the geometry of the array 

(Fig.   1   ).    Let the volumes enclosed within these cylindrical surfaces 
a 

be denoted by V    and the remaining volume by V  .    The cylinder con- 

sisting of a fiber of radius r. and a concentric binder shell of outer 

radius r    will in the following be referred to as composite cylinder 

11 



(Fig.   2).    Assume that the specimen cylindrical surface is wholly in V 

(it is immaterial whether this condition is really fulfilled as the RVE is 

a very small fraction of the specimen).    For a particular state of strain, 

defining any one of the elastic moduli given above,   the associated linear 

displacement (2. 1) is applied throughout V    and thus also to the boundaries 

of the composite cylinders.    If now the boundary value problem for the 

composite cylinder with (2. 1) prescribed on its surface is solved,   the 

ensuing displacement fields in all composite cylinders which form V 

and the field (2. 1) in V    are an admissible displacement field for the 

principle of minimum potential energy for the whole composite      .    Let 

the "strain energy" for this field be denoted by U    and the actual strain 

energy whose density is given by (2. 4),  by U     .    It follows from minimum 

potential energy that 

Ue    *   U€ (2.19) 

and an upper bound for the effective elastic modulus under consideration 

is thus obtained.    To obtain a lower bound an appropriate homogeneous 

stress field,  which gives stress vectors of form (2.2) is applied through- 

out V    .    Then (2.2) acts on the boundaries of the composite cylinders. 

If the stress boundary value problem is solved,   the ensuing stresses in 

( + ) The specimen boundary displacement (2. 1) is transformed to the local 
coordinate systems of the composite cylinders by addition of rigid body 
translations which do not contribute to the strain energy. 

12 



V    and the homogeneous stresses in V    now form an admissible stress 

field for the principle of minimum complementary energy.    The "stress 

energy"   U     is now calculated while the actual stress energy U    is 

given by (2. 5) multiplied by the composite volume.    It follows from 

minimum complementary energy that 

CT ~fT 
UCT  £   IT (2.20) 

which provides an upper bound on an effective compliance and thus a 

lower bound on an effective elastic modulus. 

For random arrangement of fibers the bounding method has to be 

modified.    The fiber diameters may be different but their r   /r   ratio is 
o     f 

^he same.    The reinforced specimen is here subdivided into composite 

cylinders extending from lower to upper specimen base,  filling its space 

completely (Fig.   1   ).    Each composite cylinder contains one and only 

one fiber and the volume ratio of fiber to binder is the same in all 

composite cylinders.    In this case either (2. 1) or (2.2) is applied to 

all the surfaces of the composite cylinders,  and the displacement or 

stress fields in their interiors form the admissible fields.    Since the 

cross sections of the composite cylinders are of irregular shape the 

interior fields can not be found in general.    In the present work the 

outer cylindrical surfaces are approximated by circular cylinders, 

concentric with the fibers,   so that binder volume is preserved.    Thus, 

the composite cylinder solution needed for the hexagonal array becomes 

immediately applicable in the random case.    In fact the results for the 

latter case are immediately obtained from the former for vanishing V   . 

13 



3.    The Plane Strain Bulk Modulus K 

The strain system associated with (2. 1) is chosen here as the 

plane strain system 

o o o 11   w 
e  22 33 

while all other strain components vanish,  whence (2. 1) assumes the 

form 

o „ o o oo \,,  ,. 
Ul   =   0   ;    u2   =   €  x2    ;    u3   =   €  x3 (3.2) 

From (3.1),  (2. 6-11) and (2. 12), the strain energy density (2. 4) 

simplifies to 

W   =   2K 23   C° (3.3) 

Consider first the hexagonal array.    The displacement field (3.2) is 

applied throughout   V     and thus also to the boundary of the composite 

cylinders.    For any such cylinder,  in cylindrical coordinates (Fig.  2) 

0 o . o ^o o 
i.    =   u      =0;u      =€r;ufl 1 z r ö 

u,    =   u      =0     ;     u      =   €  r     ;     ufl  =   0 (3.4) 

(r=rb) 

The displacement boundary value problem for the composite cylinder 

thus reduces to an elementary axially symmetric plane strain problem. 

The general solution for radial displacement uf and radial stress   arr 

for such a problem may be written in the form 

u     =   Ar  +   — (3.5) 
r r 

a       =   2KA -   2G-5- (3.6) 
rr c .   r 

14 



(compare e. g.   Love Cll] ).    Here  K is the plane strain bulk modulus 

given by 

K   =   X + G 

where X   is a Lame* modulus and G the shear modulus.    A and B are 

arbitrary constants.    Two different solutions of type (3.5),   (3.6) hold 

for fiber region     r      ^ r   s r.   and binder region   r,  -   r -   r, , s o f 6 f b 

respectively,  with the appropriate elastic moduli.    In the following 

quantities defined for fiber region will be given subscripts or super- 

scripts   f and for binder region,   subscripts or superscripts   b.    There 

are altogether four arbitrary constants for which four boundary conditions 

are available.    One of these is the second of (3.4),  and three additional 

ones are provided by u    and   a      continuity at the interface   r   =   r     and 
r rr f 

the vanishing of   a        at the void surface     r   =   r   .    For the present 6 rr o v 

purpose only the radial stress at     r   =   r      is needed which is easily 

found to be 

CTrr(rb)    =   2f°   W <3"7> 

where 

m. 

m 

rf(l-a2)(lf 2vhß
2p + (i+JL-) (i -ß2)^-^ 

k " ~ " 2 " 
4(1-a  )(l-ß ) + (i+fL-)(i8^2i>b) 

Here "'* ' Pf^^^ ^frf^J 

Czt^^J1 

r
f      - ' a   =    -2-   ; ß   =     (3.9) 

r r 
f b 

'  rr  l       ]: 
'f      15 



i-~ (3-10) 

K 
b 

and  V    and   V     are the Poisson's ratios of fiber and binder materials, 
f b 

respectively. 

The strain energy stored in a composite cylinder is given in the 

present case by 

UC   =   ^-ab(r.)   uVb)   2ffr   1 O.ll) c 2      rr    b       r     b D 

where   1 is the length of the cylinder.    Introducing Ur from (3. 4) and 

crb     given by (3. 7) into (3. 11) one obtains 
rr 

U€    =   2Km€°  V (3.12) 
c b    k c 

where 

V    =  rrrjl (3.13) 
c b 

is the gross volume of the composite cylinder.    The "strain energy" 

U € stored in the entire composite is now given by 

2 2 
U€   =   2K m   c°    V,   +   2K,C° V_ (3.14) 

b   k 1 b <£ 

where V    is the sum of the gross volumes of all composite cylinders 

and V     the remaining volume.    From (3. 3) the actual strain energy is 

UC   =   2K*23C°    V (3.15) 

where   V = V    + V    is the total volume.    Substituting (3. 14) and (3. 15) 

*     (+) * 
into inequality (2. 19) the following upper bound K ^       is obtained for K 2; 

16 



K23M=Kb("Vl+V ,3-16) 

where  v.   and v_  are  the fractional volumes of V    and V    relative to V 
1 Z 1 c, 

and the subscript (h) denotes hexagonal array.    From the geometry of 

the hexagonal array 

',    =    -2—   =   0.907 (3.17) 
1 2/i" 

v2   =    1  - v (3.18) 

For lower bound construction the stress system associated with 

(2.2) is chosen as 

»%2    ■  »%3   -   »" <3-19) 

A stress a is needed to prevent   €   }.    Its actual magnitude is 

immaterial for the present analysis since it does no work.    The 

remaining stress components vanish.    The stress system (3.27) is 

applied throughout   V   ,  whence on the composite cylinders a constant 

radial stress   a    is produced.    Composite cylinder analysis can now 

be carried out by the same method as before.    Bound construction 

follows by calculation of the "stress energy"   U    associated with the 

present admissible stress system and use of inequality (2.20).    From 

(3.19),   (2. 6-11) and (2. 12),   the true energy density now has the form 

2 
o 

Wa   =       ° t (3.20) 
ZK'"   „ 23 

17 



The lower bound is found to be 

K*(-}     =     ^  (3.21) 
23(h) vx 

—    +   v m. 2 
k 

where m   ,  v    and v    are given by (3. 8),   (3. 17) and (3. 18) respectively. 
rC 1 & 

If the fractional volume of the composite taken up by gross fiber volume 

a2- (including voids) is denoted by v    then by an elementary calculation p 

in (3. 8) is given by 

2 Vt B      =    — (3.22) 
vl 

2 
and thus from (3. 17)    j8    is here given by 1. 103 v^ 

For the case of random fiber arrangement the general procedure 

has been described above.    It is not difficult to realize that the procedure 

of bound construction is entirely the same as for the hexagonal array 

except that     V      now disappears.    Consequently the bounds are obtained 

by setting v    equal to zero and v    equal to unity in (3. 16) and (3.21), 

whence these bounds coincide. 

Accordingly 

K*   .,   .   =   Km (3.2 3) 
23(r) b    k 

where the subscript (r) denotes random array. In the present case, 

however 

ßZ =  v (3.24) 

so (3.23) can be rewritten in the form 



K 23(r)   = "^b ./        /' ^'2 ,     '   /'      .. 
^(l^T)vb H^iL-.)(vt.+-zub) 

where 

vb   =    1  - vt (3.26) 

is the fractional volume of binder material. 

While the bounds (3. 16) and (3.21) are exact results,  the 

expression (3.25) is in general approximate.    There exists,  however, 

a very special case when (3.25) becomes exact in the limit.    Consider 

a cylindrical specimen of reinforced material which consists of circular 

composite cylinders of varying sizes,  of total volume V   ,  and remaining 

binder volume V_.    In all composite cylinders the ratios r   :   r„   :   r, 
£ o       f b 

are the same.    The volume  V    can be filled out progressively by such 

composite cylinders of smaller and smaller cross sections.    Bound 

expressions for this case are exactly the same as for the hexagonal 

array.    Since v_   in (3. 16) and (3.21) can thus be made as small as  * 

desired by the filling process,  the bounds will in the limit converge 

to (3. 25).    On the basis of this rather artificial case it is to be expected 

that (3.25) will be a better approximation for fibers of varying cross 

sections,  than for equal fibers.    The present discussion also applies 

to subsequent results for elastic moduli of the random array. 

Results for solid fibers are easily obtained by setting   Ci  =   0 

in all of the preceding results. 
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* 
4.    The Shear Modulus G 

For upper bound construction the displacements (2. 1) are chosen as 

o„ o lo o lo . .   ,. 
ul    =   °   '   U2    =    T   y X3     ;     U3   =   T7 X2 {4-1] 

and are thus associated with a pure shear strain 

o o 1        o ,.   _. 
t =    € =        y (4.2) 

23 32 2      / 

and all other strain components vanish. 

For lower bound construction the stress vectors (2.2) are 

chosen as 

T^    =   0     ;     T°2   =    T°n3    ;     T°3   =   T\ (4.3) 

The stress vectors (4.2) are equivalent to a pure shear of magnitude T 

* 
in the transverse plane.    The bounding method is the same as for K       . 

For (4. 1) prescribed the macroscopic strain energy density (2.4) is 

easily found to be 

W«.-^0*„/ <4.4, 

while for (4. 3) prescribed (2. 5) reduces to 

2 

WCT  =    —L.  (4.5) 
2G'23 

For upper bound derivation (4. 1) is applied throughout V    and 

for lower bound derivation (4. 3) is used.    Composite cylinder analysis 

in the present case is however much more complicated.    Solutions for 
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the boundary conditions here applied have been carried out by the method 

of plane harmonics.    The method is outlined in section 8 and the results 

are given by the following expressions.    For random fiber arrangement, 

on the basis of the previously used approximation 

m 2(1"V      -e 
°23    r)   »   Gb   Cl    "    —  VtA4] <4'6> 

' l-2f, 
b 

Gmi)   - Gb/Cl + T^r-vtA4] <4-7> 

where A      and A      have to be found from the systems of linear equations 

(10-17) and (19-20),  (12-17) respectively,   given in section 8.        The 

bounds (4. 6-7) do not in general coincide. 

For the hexagonal array the bounds are given by 

m 2(i-!/) 

G23(h)    =   °b     Cl   -ITIÜ—  VtA4     ] (4'8> 

( ) I        2(1 -V     -< 
G23(h)   =   Gb/[l  +  lT2l7-VtA4     3 <4-9> 

b 

—'c —'a 
where   A       and A     are given by the same systems of equations with 

vt 
v    replaced by   (compare (3.22)). 

Vl 

The necessary modifications for the case of solid fibers are 

stated in section 8. 
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5.    The Shear Modulus G   ., 

The strain system associated with (2. 1) is chosen as a pure shear 

in xx    directions 
1.     £ 

<-> o 1       o .„   , v 
€   12    =   €  21    =    —  y {5'1] 

with all other strains vanish.    With addition of a rigid body rotation dis- 

placements (2. 1) can then be written in the form 

U1° =   °   J     U2°   =   r°Xl     ;     U3°   = ° (5,2) 

Using (5. 1),  (2. 6-11) and (2. 14),  the strain energy density (2. 4) assumes 

the form 

C 1        *        o 
W6   =   -j- G  x   y (5.3) 

The stresses associated with (2.2) are chosen analogously as a 

pure shear in x x    directions: 
J.      & 

COO 
a 12   =  a 21   =  T (5.4) 

and the remaining stress components vanish.    The stress energy density 

(2. 5) then assumes 

wa  = 

the form 

2 

* 
2G   1 

(5.5) 

For upper bound construction,  for the hexagonal array,  (5.2) is 

applied throughout V    and thus to the composite cylinder surfaces.    In 

cylindrical coordinates referred to composite cylinder axis,  (5.2) 

transform to the following displacement boundary conditions 

22 



b o o b.o.Q b /r/.\ u     =   y  z cos o ;     u rt = - y  z sin 9 ;    u      =0 (5.6) 
r Hz 

(r=rb) 

For lower bound construction (5. 6) is applied throughout V   ,   whence on 

the surfaces of the composite cylinders the following stress boundary- 

conditions are obtained in cylindrical coordinates 

CTb     =   0   ;    a\   =   0     ;      CT
b     =   T°   cos   6 (5.7) rr rö rz . . (r=rb) 

The other boundary conditions to be satisfied in both cases are displace- 

ment and stress continuity at fiber-binder interface r=r   and vanishing 

of stresses at void surface  r =r   .    To the authors' knowledge a solution 
o 

to the boundary value problems described above is not to be found in the 

literature.    A closed form solution has been here derived.    The method 

is outlined in section 9.        Here only those quantities required for strain 

energy calculation will be given.    For displacement boundary conditions 

(5. 6) the boundary stresses at r = r    are: 

O        =   0    ;    a..«   =   0     ;     cr _   =   Gum^ y° cos 9        (5.8) 

where 

rr '      r9 *        rz b    G 

T7(i-a2)(i+£2) +(i + a2) (1-/32) , 
m_   =    = = = =— \o, 7) 

n(l-a )(l-ß  ) +(i + a ) (1 + ^  ) 

Here 

Gf 
T?   =   ^- (5.10) 

Gb 
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and a   and  ß   are given by (3.9).    The strain energy stored in a composite 

cylinder is calculable in terms of (5. 6) and (5. 8) and is given by 

2 
U      =    4-G m_ y°   Vr (5.H) 

c. 2      b    G c 

where V    is given by (3. 13).    For stress boundary conditions (5. 7) the 

surface displacements at   r = r    are found to be: 

b               T                                 b                T .    „        b       . 
u      =     z cos 9;    u    = - ■=   z sin 6;   u     = 0 

r GbmG GbmG 

(5.12) 

The strain energy stored in a composite cylinder is then given by 

T    2 

U      =    —-?      V (5.13) 
c 2G,m_        c 

b     G 

All the information necessary for bound construction is now available 

and the method is exactly the one employed above.    For the hexagonal 

array the results are 

,(  (+) 
G"l(h)   =   Gb(mGVl   +   V (5'14) 

G 

1(h)   "     v" 
G*  !;>   =     ±— (5.15) 

1 
    + v mG        2. 

«2 
where v    and v    are given by (3. 17) and (3. 18),  respectively and P 

in (5. 9) is given by (3. 22).    For the random array,  on the basis of the 

previously used approximation,  the bounds coincide and are both given by 
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t T?(l-a )(l+v) + (l+a  ) v 
G.,   .   =   G,     = 5 — (5.16) 

i(r> 77(i-a^)vb + (l+a^)(l + vt) 

where again v   is the fractional volume of gross fiber volume and v 

the fractional volume of binder material given by (3. 26).    For solid 

fibers,   Ci  = 0 in (5. 9) and (5. 14-16). 

* . * 
6.    Longitudinal Young's Modulus E      and Poisson's Ratio  V 

The cylindrical specimen is subjected to uniaxial strain in fiber 

direction.    Accordingly the strain system associated with (2. 1) is 

chosen as: 

o o o o o ,. 
€   11=   €       ;   €22      =   €33      =    "   M€ (6>1) 

12 23 e31 

The displacements (2. 1) are then given by 

(6.2) o            o              o                o o o 
ul    =   e  xl   ;   u2   = "M€  X2 ; u3  = -jU€   x 3 

The lateral surface of the specimen is not loaded,  thus on this boundary 

T2°   =   T3°   =   ° (6*3) 

The constant  ß in (6. 1) and (6. 2) is dependent on (6. 3) and will be 

evaluated below.    The macroscopic strain energy density (2. 4) reduces 

here to 

1 *    o 
W   =   -±-   El    €° (6.4) 

* 
where E        is given by (2. 15). 
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Consider first the case of the random array.    The displacements 

(6.2) are applied to the boundaries of the composite cylinders.    The 

boundary conditions of the axially symmetric composite cylinder problem 

are then given in cylindrical coordinates by 

b ° bo .,     . u=-uer;u=€z (6. 5) 
r z 

(r=rj (z = 0,l) 
b 

A suitable general displacement solution is 

u     =A    +  — (6.6) 
r r r 

u     =   e  z (6. 7) 
z 

Here (6. 6) has different constants in fiber and binder regions and (6. 7) 

is the same throughout both regions.    There are thus four constants 

A , B  , A    and B    to be determined.    The four necessary boundary 

conditions are the first of (6. 5),   u    and cr       continuity at r= r   and 
r rr f 

vanishing of a       at  r=r   .    Furthermore   U   is evaluated by making & rr o 

a       vanish at   r=r, .    For the present purpose only the average axial 
rr b 

stress   cr       is needed,  which is found to be: zz 

ä       =  m„E,   e° (6.8) 
zz E    b 

where 

Here 

E^      N 
E

b(DrD
3V + Ef(D2-Vy 

mE=(VfEb   +V    VDl-D3)+Ef(D2-D4> (6.9) 

2                                          1 + v 
D,   =   i±«      -   V. D--  L   +   v 

1       i-a2        f 2       vb b 
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1Vi • ,       2   Vt 
D3 = "T-T D4 = 2vbT l -a b 

F      =        b    f    f f   b    b (6.10) 
1 ^fvfEf + vbEb 

2 IV 1 

and v   is the fractional volume of gross fibers,  v    is given by (3.26) 

and   v,   =   (1 -a   ) v    is the fractional volume of net fiber material 

(0! is defined by (3.9)). 

Since  a       was made to vanish at  r=r    the strain energy stored 
rr b 

in the composite cylinder is simply 

ue   =   i- mrE, e°2 V (6.11) 
c 2        E   b c 

where (6. 8) has been used.    The displacement fields in all composite 

cylinders are now an admissible field.    Using (2. 19) as previously with 

(6. 11) and (6. 4) adjusted to the whole specimen volume,    mE
E

b 
is 

obtained as an upper bound for E      . 

For lower bound construction the specimen is subjected to 

<r°n  =   cr° (6.12) 

on it's faces and (6. 3) on the lateral surface.    The macroscopic stress 

energy density (2. 5) is now 

o2 

2E 
Wa   =   -2-^- (6.13) 

1 
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The composite cylinder boundary conditions are now 

a     = a°     ;       ah    =  0 (6.14) 
ZZ (s=0,l) rr (r=rb) 

Because of St.  Venant's principle,  at sufficient distance from the fiber 

ends the solution is the same as the previous one with 

C°   =    si. (6.15) 
m„E, 

E   b 

Using (6. 15) in (6. 11) the stress energy stored in the composite cylinder 

becomes 

o2 
UCT   =    ?

a   _      V 
c 2m_E, c 

E   b 

The energy discrepancy due to the St.   Venant approximation is 

insignificant because of the very large length to diameter ratio of the 

composite cylinder.    The stresses in all composite cylinders are now 

admissible.    Using (6. 13) and (6. 16) adjusted to specimen volume in 

* 
(2.20),  m    E,    also becomes a lower bound for E      .    Thus to the order 

E    b i 

of approximation of the random fiber array model 

E*i(r)    =   mEEb (6'1?) 

Unfortunately (6. 17) is a very unwieldy expression.    However,   inspection 

of (6. 9) shows that the fraction on the right side is different from unity 

only because   F    f   F    (see last eq.   (6.10).    For most practical 
1 d 

purposes the fraction seems to be close to unity and it can thus   be 

concluded that the "law of mixtures" 
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E*l = vfEf+ vbBb (6-17a) 

is a good approximation to (6. 17).    For   V    =   V    (6. 17a) is exactly equal 

to (6. 17).    In fact for equal Poisson's ratios (6. 17a) is an exact result 

for any macropcopically homogeneous fiber array regardless of 

transverse section geometry. 

It is evident from the first three strains in (6. 1) that  ß is the 

* Poisson's ratio  V      .    Since for the random array the bounds coincided 

the value of ß   determined to make  <j       vanish on the composite cylinder 
rr 

* 
boundary gives    V to the order of approximation of (6. 17).    The result 

is 

where 

.*.. ffl b    b    2    b ,,,„. 

'i(r) = -wr^w^ (6-18) 

L
I = zvi^-v\^ \+ yb(i+vvb 

L2 = v  [( 1 +v£)a
Z + l -v   - 2uZ

£ ] (6.19) 

L3 = 2(l-v\)vt  +d+l'b)vb 

and the rest of the notation is identical to the one used in (6. 9-10). 

Note that for   V,    -  V, ,  (6. 18) is also equal to   V,    =  V, ,  regardless of 
b i b f 

the values of the phase Young's moduli. 

For hexagonal arrays it can be shown by the same method as 

* 
previously used that the upper and lower bounds for E       are given by 
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E*    (+^    =   E  (m'     v     +  p'vj (6.20) 
1(h) bv       El        F  Z 

E 

1(h)    "   ~V E*    <;>   =     ^  (6.21) 
1 
-   +V2 

Here 

m 
E 

,*2 

1 - \ - 2 V) (6.22) 

and v  , v    are given by (3. 17-18).    The prime on m    and  V  .       in 

(6.20-22) indicates that these quantities have to be computed by replace- 
v v. 

t f 
ment of   v   and   v,    by     and     ,  respectively,  and of v    by 

t     f     v.      v. o 
Vt 1 -  . For V,  = V     the upper bound (6.20) reduces to (6. 17a) and 
v f b 

is an exact result for E      of the hexagonal array.    It is believed that for 

any Poisson's ratios   E       is considerably closer to the upper bound than 

to the lower one. 

* 
For the Poisson's ratio  V       of the hexagonal array the situation 

is more complicated and bounds cannot be directly obtained.    For this 

$ # * # 
case   V        can be bounded by use of bounds on   K       ,  E        and C        , 

using (2. 16).    Bounds for C will be given below.    Because of this 

* 
indirect bounding procedure the bounds on   V are further apart then 

the bounds obtained by direct methods and they may be of little practical 

value. 

30 



7.    The Modulus   C 

The modulus C can be treated by assigning to the specimen a 

uniform macroscopic stress or strain in x    direction and preventing 

lateral deformation in the x x    plane by a rigid enclosure.    For   Cn   = € 

the energy density (2. 4) reduces in this case to 

2 
c 

~2 ll' 
W€    =    ±-   C*       C° (7.D 

wh ile for   o, ■,   =  O      the energy density (2. 5) reduces to 
11 o 

2 

wcr   =       CT° (7.2) 

2C11 

* 
The bounding procedure is completely analogous to the one used for E     . 

For the random array   C can be immediately written down in the form 

2 
* * * * ,-.      ov 

C   ,i,   ,    =   E   ..   .   +   4V   ..   .K       , (7.3) 
ll(r) l(r) l(r)        23(r) 

which follows directly from (2. 16).    Here E is given by (6.9) and 

(6.17),   V* by (6.20) andK*23(r) by (3.25). 

For the hexagonal array the bounds are given by 

C'll(h)   =   Cll(r)'Vl    +     (\+Uh)(l-2Uh)     V2 (7'4) 

C*!")    „     1  (7.5) 
11(h) Vj qv2 

r'* E
K 

CH(r) b 
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Here   v      and v    are given by (3. 17-18),   q is given by the expression 

2 
q    =     1   - 4^-n   +    2(1   - l>  )n 

b b 

where 

2>V K 
„    s "*l     23(r> (7.6) 

CH(r) 

The primes on the elastic constants in (7. 4-6) mean that they are com- 

2 
puted from (3. 25),  (6. 9) and (6. 18) with modified v , vf, a     and vfe as 

listed after (6.22). 

8.    Shear of Composite Cylinder in x x   Plane 

A convenient form of solution is in terms of plane harmonics 

(compare Love   [ll],  p.  270.    Goodier Cl2] ).    Plane harmonics are 

homogeneous polynomials which satisfy the two dimensional Laplace 

equation.    For the present purpose only the following plane harmonics 

are needed: 

42   -   x2x3 (8.1) 

XX 

«S_2 =    -^f- (8.2) 
r 

The displacement vector is given in terms of these by 

A      1             A2      2 A      4      3 2    4 u   =   A  u     +   —=  u     +   A3r  f u    + A4r    u (8. 3) 
r  f 
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where 

u     =    ^4Z (8.4) 

2 2 
u     =    r    Vj>     +   a    «Lr (8.5) 

2 2    2 

-2 

+   rv       „ 
-2 v-2 

u     =    V<*_, (8.6) 

u      =   r    V«i        +   a      «S      r (8.7) 

where y is the gradient operator and   A   , A   , A   ,  A    are arbitrary 
J. Ld J TC 

nondimensional constants.    The parameters   a     and   a      are defined by 

2(3-41/) 
a2   =   "   -T31T- <8'8> 

2(3-4,) 
a-2=        1-2, <8'9> 

where   f   is the Poisson's ratio.    From the displacements,   strains can 

be calculated by differentiation.    The stresses are then found by Hooke's 

law and stress vectors from T.  =   a..n..    The n. are here the components 
1 ij   J i v 

of a unit normal to a circular cylindrical surface and are given by 
x. 

n. =   ,    i = 2, 3.    There are two such displacement solutions,  one for 

binder region   r     ^r^r   and the other for fiber region   r    ^r^r   .    In 

each of these the appropriate elastic constants of the material have to 

be used.    There are thus eight arbitrary constants to be determined, 

four of these for binder region are denoted   by   A    and the remaining 

four for fiber region by   B   ;   k=l,   2,   3,   4.    In addition to the boundary 

conditions on r=r   ,   given by (4. 1) or (4. 3) stress vector and displace- 
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ment continuity at fiber-binder interface r = r   and vanishing of stress- 

vectors at void surface r =_r   ,  must be satisfied.    These boundary con- 
o 

ditions provide exactly eight linear equations for the eight unknowns. 

For boundary conditions (4. 1) these equations are: 

*€i + \Z +v!vvt"A4:i (8-10) 

wV1^-2^"!^^80 (8-U) 

Ä[ + A*   + A* + A*   -B*  -B2
€   -   B3

€- B^ = 0        (8.12) 

3-41/ c , c      3-4iv _ _ 

b b .t. i 

(8.13) 

—t        -3.       —c       —r 1       —e        — £      375      — e — e 
Al+W AZ " 3A 3 +T^T A4 - *B1  -3-^T B 2 +3^B3 

71 —€ 
' B     = 0 (8.14) 

l-Zv 4 

1 äIUI'-TVÜ^B'W^B^» 
3-2i/, 2        ~3        l-2l/,   "4     3-2l/,       2       '    3     l-2y        4 

b b i i 

(8.15) 

2                                _              -2       _ 
tt B* + 2a"4 B! - -A:    B*=0 (8.17) 

3-21/,      2 3      1-21/, 4 

where A,   , 
k K- 2 

k            o 
7 

Ak« 
2 
o 

y 

e 
Bk 

and 
G£ (8.18) 
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OL is given by the first (3.9) and the superscript e denotes displacement 

boundary value problem. 

For boundary conditions (4.3) the solution is analogous.    Equs. 

(8. 10) and (8. 11) have to be replaced by 

xi+ jkr- \ K ~ 3vt x°3 + -rh: *\ ='   <8-19) 

1
 V^Ä'+ZV

2
*'  --T4-   A7=0 (8.20) 3-2w       t 2 t      3      l-Zu       4 

b b 

2G,_ 2G,_ 
—a    —a b     CT b     CT 

Here A,,  B,   =    A , ,   B,   and equs.  (8. 12-17) remain the same. 
kk_o k_ok 

T T 

The constants now have the superscripts (Tto denote stress boundary 

value problem. 

The composite cylinder strain energy can in each case be cal- 

culated from the boundary displacements and stress vectors.    In each 

case the strain energy is expressible in terms of the constant A. only. 

The bounds (4.6-9) then follow immediately. 

For solid fibers the solutions have to be modified.    In this case 

the solution for the fiber region has no singular part at r = 0.    Accordingly 

the constants B    and B . vanish and eqs.   (8. 16) and (8. 17) have to be 

deleted.    The expressions for the bounds remain unchanged. 

9.     Shear of Composite Cylinder in x x    Plane 

The boundary value problems formulated in section 5 can be solved 

in terms of displacement fields for which the volume dilation vanishes. 

In this case the cartesian equations of elasticity reduce to 
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V2u. = 0 (9.1) 
l 

where i = 1,   2,   3 and V    is the three dimensional Laplacian.    For the 

present purpose the following simple displacement solution in cylindrical 

coordinates is sufficient 

u,  = u    = (Ar + —) cos 9 (9.2) 1 z r 

u    = C z cos 6 (9.3) 
r 

u     = -C z sin 9 (9.4) 
9 

where A,  B and C are arbitrary constants.    The stresses associated 

with these solutions are 

a       = G(A + C - -^- ) cos 9 (9.5) 
rz c 

r 

aa    = -G(A + C + -^ ) sin 9 (9.6) 
r 

a     = a     = cr     =a       = 9 (9.7) 
rr        d d       zz r9 

There are two such solutions,   one for binder and one for fiber region. 

The boundary conditions to be satisfied are either (5.6) or (5.8) on 

r = r   ,   displacement and stress continuity at r = r   and zero stresses 
b i 

on r = r   .    All boundary conditions can be satisfied and the unknown 
o 

constants are uniquely determined.    On the terminal sections of the 

cylinder,   conditions are only satisfied in the St.  Venant sense.    Since 

the cylinder is very long this is of consequence.    For (5.6) prescribed 

the surface stresses are given by (5.8) where the first two of (5.8) follow 

from (9.7).    For (5.7) prescribed the surface displacements are given 

by (5. 12).    Note that the last of (5. 12) is a consequence of the elimination 

of a rigid body rotation of the composite cylinder. 
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10.   Numerical Results 

The nature of the results is indicated by the curves of figs.   3-7 

in which the effective elastic constants of glass fiber reinforced plastics 

are plotted as a function of v    ,  the  gross directional volume of fibers. 

Results are presented for a - 0,   solid fibers,   and for a =0.8,  hollow- 

fibers for which the inner radius is 80% of the outer radius.    The com- 

putations are all for random arrays,   except for the case of the shear 

modulus G* ,  where the hexagonal bounds are also presented.    It can be 

seen from fig.   3,  that although the fibers are relatively ineffective in 

the transverse direction as compared to the longitudinal direction,  the 

modulus,  E   ,  is still significantly higher than the modulus of the binder 

* 
material for practical fiber volume fractions.    The variation of v    _ 

shown in fig.  4 indicates that for solid fibers the effective Poisson ratio 

is larger than that of either constituent.    For hollow fibers,  values 

significantly lower than that of either constituent are indicated.    As 

shown in fig.   5 the hexagonal array bounds contain the random array 

* bounds which here coincide.    The variations of E    with v ,   shown in 

fig.  6,   are practically linear and are given with good accuracy by the 

# 
"law of mixtures" (6. 17a).    Also the longitudinal Poissons ratio,  v ^ , 

appears to be well approximated by the "law of mixture" result. 

A second parametric study indicates the interaction of fiber 

geometry and properties upon composite properties.    Fig.  8 shows the 

transverse elastic modulus for hollow fiber composites,   of fixed binder 

volume fraction,   as a fraction of the fiber radius ratio,   a.    The bounds 
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are shown for two values of Poisson's ratio of the fiber material.    It is 

seen that this parameter is of importance for large fiber radius ratio 

values.    A similar comparison is made in fig.   9 for the transverse 

effective Poisson's ratio,   V?r>-     This quantity is extremely sensitive 

to both geometry and individual Poisson ratio values. 

An interesting sidelight is the result for equal fiber and binder 

properties; that is a material with holes.    Transverse properties for 

such a material are shown in figs.  10 and 11. 

For a given geometry the effect of mechanical properties is 

studied by fixing the matrix properties and varying the Young.'s modulus 

of the fiber.    The results for three principal moduli are shown in figs. 

12-14.    As expected,   the longitudinal modulus,  E.,   increases linearly 

with the fiber modulus.    The longitudinal shear modulus and the trans- 

verse Young's modulus increase rapidly for low values of fiber modulus 

and then level off and approach the value for rigid inclusions.    At high 

values of fiber modulus a change in the binder modulus has a far more 

significant effect upon G''" and E'  than a change in fiber modulus.    This 

is shown more clearly in fig.   15 where the reference properties for 

glass reinforced plastic are perturbed and the effect on E'   is indicated. 

It would be of great importance to compare the present theoretical 

results with experimental findings.    To the author's knowledge published 

experimental results are available only for E'.    These agree generally 

very well with the law of mixtures. 

38 



11.     Conclusions 

Results for the elastic moduli of fiber reinforced material have 

been here derived for hexagonal fiber arrays of equal cross sections and 

for random arrays of fibers whose diameters may be unequal.    It is 

not    obvious which of the results apply best to a real fiber reinforced 

material.    While for hexagonal arrays the results are rigorous (except 

for the insignificant effect of non exact fulfillment of fiber end conditions), 

no real material satisfies such stringent symmetry conditions.    On the 

other hand the random array analysis,  which is based on a model which 

is much closer to reality,   is not rigorous because of the geometric 

approximation of irregular shapes by circles.    The special case when 

these results become exact in the limit (see discussion at end of section 

3) seems to be of theoretical interest only. 

However,   the random array results are much to be preferred 

because of their much simpler form and the coincidence of the bounds, 

# 
except for G __,   ,.    It should be noted that the distance between the 

23(r) 

hexagonal array bounds can become quite appreciable for elevated 

ratios   of fiber to binder elastic moduli.    The advantage of the random 

array results is even more predominant when it becomes necessary to 

derive results for the other effective elastic moduli (such as (2. 16-18) 

in terms of the expressions here given.    For such cases the hexagonal 

array bounds may become very far apart and thus of little value.    The 

* case of v    discussed in section 6 is a good example. 
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Finally,   it should be inquired whether the present models of a 

fiber reinforced material include sufficient information for unique de- 

termination of it's effective elastic moduli.    The hexagonal array is 

certainly uniquely determinate in this respect because of its   periodic 

geometry.    However,  for a random array it is to be expected that the 

statistical details (correlation functions) of fiber arrangement will 

enter into the results.    The present method avoids this problem by 

use of the geometrical approximation involved in the random array 

model,   and thus gives one approximate answer for different statistical 

arrangements of fibers. 
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B.     ORIENTED VOID MATERIALS 

1. Introduction 

The study of oriented voids serves a double purpose.    The first 

is to determine whether by the judicious removal of material the effective 

density may be reduced with little or no reduction in mechanical properties. 

The second is to provide a more general insight into the importance of 

angular orientation on load-carrying ability. 

The study made here was a fairly exhaustive one; as will become 

apparent,  to absorb all the implications of the results requires tedious 

study.    In the following discussion every effort will accordingly be made 

to extract only the significant implications,  but the curves calculated to 

yield the results will be presented in toto. 

2. Analytical Model and Method of Analysis 

The model used for analysis is sketched in figure 16.    Starting 

with a regular array of round holes (fig.   16a),  we extracted the repeating 

cross-section (fig.   16b) and then allowed the semi-circular grooves on 

opposite sides to be skewed at equal angles as shown in figure 16c.    Thus 

the model becomes similar to a plate having integral, waffle-like stiffening 

such that the rib height is equal to the fillet radius between ribs and plates. 

Accordingly, the analysis of reference 13 was employed to find the plate 

stiffnesses. 

In the analysis of stretching stiffnesses in reference 13,  two 

undefined constants are employed which are associated with the transverse 

effectiveness of the integral ribbing.    These constants,   labelled ß and ß ', 
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denote the fraction of the rib material active in resisting stretching and 

shearing deformations respectively.    For true waffle plates,  ß' has been 

evaluated (ref.   14).    For the oriented voids considered here,  the fact 

that the tops of all "ribs" are joined integrally with those of the next 

repeating element requires thata somewhat higher value of ß' be used than 

that of reference 14 to take into account the mutual restraints provided 

by these interconnected ribs.    No attempt has been made here to evaluate 

this higher value of ßx,   and no better evaluation of £ has been attempted 

than that suggested in referenced.   Really the exact evaluation of ß and 

ß' is unimportant to the general trends desired by the present study. 

Rather,   it is of greater interest to allow ß  and ß ' to vary over their 

extreme limits and determine the resulting effects on the material 

stiffnesses.    This variation has therefore been made,   and also some 

calculations for ß and ß ' equal to the values derived from reference 14 

as approximately representative of realistic stiffnesses have been in- 

cluded for comparison. 

3.     Ranges of Proportions Considered 

Calculations were made of stiffnesses for five series of con- 

figurations of oriented voids in order to survey systematically the effects 

produced by various characteristic changes.    These five series of cal- 

culations comprised the following: 

(1) Determination of the principal stretching stiffness, E , for 

various angles of orientation, 0, of the holes. Values of ß and 

ß ' between zero and full effectiveness were considered. 
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(2) Evaluation of the  importance of transverse shearing effectiveness 

(as measured by ß') for all angles 9  of the holes,   and for all 

directions of stretching relative to the principal stiffness direction. 

(3) Evaluation of importance of both transverse stretching and 

shearing effectiveness for all angles 8  and all stiffness directions. 

(4) Study of the effects of varying Poisson's ratio for all angles of 

orientation of the voids and "representative" values of transverse 

effectiveness. 

(5) Study of combined effects of variation in angles,  transverse 

effectiveness,   and Poisson's ratio. 

Throughout all calculations a hole size and spacing was used such 

that 40% of the "original" material was "removed" by the holes.    The 

holes were located in square arrays as suggested in figure 1.    Sample 

calculations for greater or lesser void percentage revealed that the 

magnitude of the variations under investigation were simply proportional 

to the percentage of voids,   so that the 40% values may be considered as 

representative.    The use of rectangular arrays instead of square can be 

used to increase the stiffness in one direction at the expense of that at 

right angles thereto.    The effect is again simply proportional to the 

relative amounts of material in the two directions,   and it will not be 

considered further here. 

4.     Results 

The results of the computations are plotted as figures 17 to 21 

inclusive.    The results are all presented as the ratio of stretching stiffness 
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to the stretching stiffness in the principal direction of an element having 

one-way holes aligned in the direction (9=0),   and a Poisson's ratio, 

M,   of 0. 3.    Each Figure contains the results of one of the five sub-in- 

vestigations described in the preceding section,   and the following sum- 

marizations will categorize the results in corresponding sequency. 

(1) Angular orientation - Unless the transverse shearing 

effectiveness (measured by ß' ) is high,  the principal stretching 

stiffness,   E  ,  falls off rapidly as the angle of the holes (e) is 

increased from zero degrees.    If the material is 100% effective 

against shearing,   however (ß' = 1 + M ),   E    increases to a 

maximum at 9   = 22.5   . 

(2) Even with 100% transverse shearing effectiveness,   a material 

with oriented voids is  still highly anisotropic if the transverse 

stretching stiffness is low,   especially for low angles of 9  (i.e. 

holes mostly in the same direction).    Isotropy is improved at 

9 = 30° or 45°. 

(3) As both ß and ß' increase,   as would be expected,   the material 

as a whole becomes more effective and more nearly isotxopic.    The 

The most nearly Isotropie material is achieved,   at angles 9 

somewhat less than 45   ,   but for no angle of the voids or of loading 
EX 

does the material exceed 100% effectiveness (i.e. —         ä   1.0). 
■^l 'max 

(4) For a material with oriented voids,   Poisson's ratio is a 

multiplier of ani sot ropy.   Abnormally high values of M  produce 

greater than normal variations of stiffness with changing hole or 

load angle. 
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(5) As ß,  ß\   and M are varied from one extreme to another,  the 

resulting stretching stiffness and anisotropies vary over a wide 

range.    The upper limits reached are in all cases determined by 

the values of Poisson's ratio while the lower limits appear to be 

primarily a function of the transverse stretching stiffness as 

measured by ß.    Whether or not the removal of 40% of the material 

as holes reduces the stiffness to density ratio by more or less than 

40% depends upon all of the variables.    If both ß  and ß ' are zero, 

the reduction can not be kept below 40% for all load incidence angles, 

but it can for angles up to as much as 60    to the principal stiffness 

direction.    For values of ß  and ß ' which can perhaps be considered 

realistic (refer back to fig.   20),  40% of the material can be removed 

with less than 25% reduction in stiffness/density ratio for all angles 

of load incidence. 

5.      Conclusions and Discussion 

The first and perhaps most important conclusion that may be drawn 

from the many parametric variations considered is that the stiffness-to- 

density ratio of a material can not be increased by drilling holes in it, 

unless by so doing the Poisson's ratio for the material is increased.    Even 

such a hypothetical increase would be small,   and would require a prior 

knowledge of load application direction and/or high transverse material 

effectiveness. 

On the other hand properly oriented holes can be used to reduce 

density with little or no loss in stiffness-to-density ratio,   particularly if 
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a limited range of angles of load application is to be accommodated. 

The fact that a possible increased stiffness-to-density ratio for oriented 

rods was suggested in ref.15 must be simply a result of the assumptions 

employed as a basis for the calculations made therein. 
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C.     EXPERIMENTAL STUDIES 

Studies of elliptical fibers and particle-matrix composites are 

described below. 

1.       Elliptical Fibers 

The evaluation of the transverse modulus,   E"'   ,   for fibrous 

composites indicated that,   for geometry typical of filament wound 

structures,   the transverse modulus is not negligible relative to the 

longitudinal modulus.     Thus,   any improvement in this transverse modulus 

could reflect itself as a significant improvement in the performance of 

biaxially stiffened composites.    Possible techniques for doing this include 

improving the matrix modulus as shown in fig.   15 or changing the fiber 

cross-section-to improve one transverse direction. 

The possibility of using elliptical filaments instead of round ones 

is not new,   but it has never been adequately investigated. Such questions 

as:    What is the transverse effectiveness of elliptical inclusions of various 

aspect ratios? and How long need the ellipse be to permit substantial load 

transmission into it by shear from the binder? have not    been answered. 

In order to evaluate the first,   an experimental approach has been started 

using large,   aluminum inclusions in an epoxy matrix.     Photographs of 

the test specimens are shown in fig.   22.    Strain measurements were 

made with Tuckerman optical gages between interior inclusions as 

identified in the figure.    The effective modulus was defined as the average 

stress over the cross-section divided by the strain in the indicated gage 

length.    The resulting values are shown in fig.   22.    It is seen that ellipses 
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with an aspect ratio of four provide an 80% increase in transverse 

stiffness at a fiber volume fraction of less than 50%.     The potential 

for improved performance of fibrous composites utilizing shaped 

fibers appears to warrant further consideration. 

2.      Particle Composites 

The potential for improving composite performance by adding 

stiff particles to the matrix material has been studied experimentally for 

several applications.    As discussed previously,   an improvement in matrix 

modulus can provide a substantial improvement in the transverse Young's 

modulus of a fibrous composite.    Also an increase in matrix modulus can 

result in an improvement in compressive strength due to the improved 

support stiffness provided for the  fibers.    Further,   the combined varia- 

tion of stiffness and density may lead to a low density material suitable 

for large dimension,   low load,   compression applications.    The experi- 

mental results for various additives to an epoxy plastic matrix are 

described below. 

Glass particles 

Glass particles ranging in characteristic dimension from 10 to 

200 microns were used in an epoxy matrix.     The compression modulus 

was measured on a specimen with volume fractions of 0. 284 of glass, 

0. 660 of epoxy and 0. 056 of void spaces.     The results are given in the 

following; table: 
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Glass Particle-Epoxy Composite 

Epoxy     Glass-Epoxy 

Density (lb/in3) 0.0462 0.0565 

Young-'s Modulus (106 psi) 0.46 1.04 
(compression) 

Modulus/Density Ratio 1.0 1.8 
(arbitrary units) 

a 

(Modulus)1/2/Density Ratio 1.0 1.0, 
(arbitrary units) 

Alumina particles 

The effect of the addition of small solid alumina particles (900 

mesh and smaller) upon the modulus of an epoxy was measured.    The 

test specimens are shown in fig.    23.      The loaded epoxy contained 

40. 9% alumina by volume and the results are shown in the following 

table. 

Powdered Alumina-Epoxy Composites 

Epoxy     Alumina-Epoxy 

Density (lb/in3) 0.0464 0.0746 

Young's Modulus (106 psi) 0.52 1.32 
(compression) 

Modulus/Density Ratio 1.0 1.6 
, (arbitrary units) 

(Modulus)1/2/Density Ratio 1.0 1.6 
(arbitrary units) 
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Hollow alumina particles 

The attainment of a relatively stiff but low density material 

through the introduction of voids was  studied by using hollow alumina 

spheres as a stiffening material in an epoxy matrix.     The average 

specific gravity of the spheres was 0. 73 and the samples contained 57% 

spheres by volume.    The sphere diameters were between 0.065 and 

0. 131 in.    The specimens are shown in fig.   24    and the test results in the 

following table: 

Hollow Alumina-Epoxy Composites 

Epoxy     Alumina-Epoxy 

Density (lb/in3) 0.0464 0.0341 

Young's Modulus (10^ psi) 0.55 0.84 
(compression) 

Modulus/Density Ratio 1.0 2.1 
(arbitrary units) 

(Modulus)1//2/Density Ratio 1.0 1.7 

Further studies of these materials under tensile loads are 

described in section IIIC.    From the above results,   it can be seen that 

the addition of alumina and glass particles produced a significant and 

expected increase in the matrix modulus.    It appears   that a loaded 

plastic may be a useful constituent in a fiber glass composite.     The 

question of proper geometry to achieve both suitable mechanical 

properties and also proper viscosity to permit fabrication remains 

unanswered. 
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The low density alumina material offers improved stiffness at 

reduced density, but has low strength. Failure for the test specimen 

occurred at 7200 psi. 
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III.    TENSILE STRENGTH 

A frequent criterion to be used in the selection of composite 

materials is the ultimate tensile strength of the material.    Section A 

contains an analysis of the tensile strength of uniaxially reinforced 

fibrous composites.     The validity of the analysis is tested by the 

experimental program described in section B.     The modification of 

matrix properties to improve composite strength is treated in section 

C 
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A.     FIBER REINFORCED MATERIALS 

1.     Introduction 

Composite materials consisting of a ductile matrix reinforced 

by high-strength,  high-stiffness fibers are materials of considerable 

engineering practicality.    The strength of such materials under tensile 

loads has been studied theoretically with only limited success.    An 

analytical understanding of the failure of such materials is desirable, 

not only to provide adequate design methods for existing materials,  but 

also to enable the definition of desirable characteristics of constituents 

of composites for future applications.    The problem treated here is the 

failure of a composite,   consisting of a matrix stiffened by uniaxially 

oriented fibers when subjected to a uniaxial tensile load parallel to the 

fiber direction. 

The failure of a uniaxially stiffened matrix has been studied 

previously by several investigators.    Their findings are summarized 

in L 16] .    The simplest failure model treated assumes that a uniform 

strain exists throughout the composite and that fracture occurs at the 

failure strain of the fibers alone (e.g.   L 17]).    The effect of a non- 

uniform strain distribution was studied in  £l8] which suggests the in- 

fluence of fiber flaws on composite failure.    In [ 18] , 'failure occurs 

when the accumulation of fiber fractures resulting from increasing load 

shortens the fiber lengths to the point that further increases in load 

could not be transmitted to the fibers because the maximum matrix shear 

stress was exceeded.    Thus,   composite failure resulted from a shear 

failure of the matrix. 
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In the present paper fibers are treated as having a statistical 

distribution of flaws or imperfections which result in fiber failure at 

various stress levels.    Composite failure occurs when the remaining 

unbroken fibers,   at the weakest cross-section,   are unable to resist 

the applied load.    Thus,   composite failure results from tensile fracture 

of the fibers.    The composite strength is evaluated herein as   a function 

of the statistical strength characteristics of the fiber population and of 

the significant parameters defining composite geometry.    A numerical 

example is presented for fiber-glass reinforced plastic composites 

utilizing the existing data for tensile strength of glass fibers. 

2.      Description of The Model 

The composite treated is shown in Fig.   25 and consists   of 

parallel fibers in an otherwise homogeneous matrix.    The fibers are 

treated as having a statistical distribution of flaws or imperfections 

which result in fiber failure under applied stress.    The statistical ac- 

cumulation of such flaws within a composite material results in com- 

posite failure.    The computation of stress is quite complex when there 

are discontinuous fibers present.    These internal discontinuities result 

in shear stresses which may locally attain very high values.    An exact 

evaluation of this stress distribution for the complex geometry of circular 

cross section fibers arrayed within a matrix and for  inelastic matrix 

stress-strain characteristics appears to be unattainable from a practical 

viewpoint.    Such stresses were evaluated in [ 19]  for idealized fiber 

shape and without the effect of surrounding fibers.    An approximate solution, 

similar to that of [ 20 ] ,   but including the effect of surrounding fibers is 

obtained herein. 
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In the present model, the extensional stresses in the matrix are 

neglected relative to those in the fiber and the shear strains in the fiber 

are neglected relative to those in the matrix.    This approximation of 

the model is considered appropriate for fibers which are very strong and 

stiff relative to the matrix.    In the vicinity of  an internal fiber end,  in 

such a composite,  (fig.  25) the axial load carried by the fiber is trans- 

mitted by shear through the matrix to adjacent fibers.    A portion of the 

fiber at each end is therefore not fully effective in resisting the applied 

stress.    As the fibers are loaded,  failure occurs at points of imperfection 

along the fibers.    Increasing load produces an increasing accumulation 

of fiber fractures until a sufficient number of ineffective fiber lengths 

combine to produce a weak surface and composite fracture.    Basically, 

then,  the model considers fibers which fail as a result of statistically 

distributed flaws or imperfections,   and composites which fail as a result 

of a statistical accumulation of such flaws over a given region. 

At some distance from an internal fiber break the fiber stress 

will be a given fraction,  <P,   of the undisturbed fiber stress cr   .    One 
a 

may define this fraction of the average stress such that the fiber length, 

0,   over which the stress,  a  ,  is less than O   may be considered in- 
a 

effective.    Thus,  this ineffective length,   6  ,   is defined: 

cr ( 6 ) = <pa 
a 

Then, the composite may be considered to be composed of a series of 

layers of dimension, 6 . Any fiber which fractures within this layer, 

in addition to being unable to transmit a load across the layer,   will also 
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not be stressed within that layer to more than the stress,  O  .    The applied 

load is treated as uniformly distributed among the unbroken fibers in each 

layer.    The segment of a fiber within a layer may be considered as a link 

in the chain which constitutes the fiber.    Each layer is then a bundle of 

such links; and the composite is a series of such bundles. 

The treatment of a fiber as a chain of links is appropriate to the 

hypothesis that fracture is a result of local imperfections.    The links may 

be considered to have a    statistical strength distribution which is equivalent 

to the statistical flow distribution along the fibers.    The realism of such 

a model is demonstrated by the length dependence of fiber strength.    That 

is,   longer chains have a high probability of having aweäker link than shorter 

chains and this agrees with experimental data (e.g.   [21 ]) which demonstrate 

that fiber strength is a monotonically decreasing function of fiber length. 

For this model,  the link dimension is defined by a shear lag type 

approximate analysis of the stress distribution in the vicinity of a broken 

end.    The statistical strength distribution of the links is then expressed as 

a function of the fiber strength-length relationship,  which can be experi- 

mentally determined.    Then these results are used in a statistical study 

of a series of bundles of links to define the distribution of bundle strengths. 

(Statistical techniques for a series of bundles have been studied in L 22 ] 

for application to particle reinforced composites.)    The composite fails 

when any bundle fails and the composite strength is thus determined as 

a function of fiber and matrix characteristics.    These aspects of the 

problem are discussed in further detail below. 
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3.     Fiber Strength 

The statistical distribution of link strength is obtained from the 

fiber strength distributions.    Consider links characterized by the dis- 

tribution function f(a) and the associated cumulative distribution function 

F(a) where: 

(a) = j    f(cr F(a) =]    f(a) da (1) 
o 

For n such links forming a chain which fails when the weakest link fails 

the distribution function g(a) for the chain is defined by: 

g(0) = nf(CT)  [1  - F(0)  ]n_1 (2) 

That is,   g (er ) der is the probability that one link fails between o  and 

CT  + da (which is equal to f(a) da ),  multiplied by the probability that all 

n — 1 
remaining (n - 1) links exceed O  + der (which is [ 1 - F ( a ) ] ) and 

failure can occur at any of the n links.    From this,  the cumulative dis- 

tribution function,  G (a ),  for the fibers is obtained: 

G (a ) = jg (a) da (3) 
o 

.".   G (a ) = 1 - C 1 - F (a) ]n (4) 

The solution of the inverse problem is desired.    That is,   given 

the fiber data,   g (a ) and G (a),   define the link data for a link length,   Ö . 

From eq.  (4): 

F(a) = 1 - [1 - G(a)] 1/n (5) 

and thus from (1) and (5): 
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f(ff)=fi42L[i_G(a)](1^n)-1 (6> 
n 

Consider fibers characterized by a strength distribution of the Weibull 

type  [23] : ' 

8  1 ß 
g(a) = L a ßop~    exP(-Laap) (?) 

This form has been shown to characterize the experimental length-strength 

relationship of fibers.    Using equation (7) in (3) and (6) yields: 

R  1 ß 
f(a)=aöScr      exp(-aöcr    ) (8) 

where: L = nö 

The constants a and ß can be evaluated by using experimental 

strength-length data.    To do this,   consider the mean fiber strength,  fff 

for a given length which,   is defined by: 

CO 

äf =    f   ag(<M da (9) 
c 

Substituting eq.   (7) into (9) and integrating yields: 

äf = (Laf1/8 r(i+i) do) 

A logarithmic plot of the available data for a   as a function of L 

will define the constants.    Such a plot is presented in fig.  26 for the 

data of [ 21 ] .    The linearity of the data support the choice of the dis- 

tribution function given by eq.  (7).    The constants are found to be: 

-2 
a = 7.74 x 10 

ß  =7.70 

The constant ß  is an inverse measure of the dispersion of material 

strength.    Values of ß between two and four correspond to brittle ceramics, 
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while a value of twenty is appropriate lor a ductile metal [ 22 ] .    The 

constant a,  as seen from eq.  (10),   defines a characteristic stress level, 

a~   'P.    For this distribution,  a~        is 305 ksi.    A more useful reference 

stress level is mentioned in the discussion section. 

4.      Effective Fiber Length 

The definition of ineffective length,   Ö ,   involves the determination 

of the shear stress distribution along the fiber-matrix interface.    The 

model used is shown in fig.   27 and consists of a fiber surrounded by a 

matrix which in turn is imbedded within a composite material.    The latter 

has the average or effective properties of the composite under consider- 

ation.    This configuration is subject to axial stress and a shear lag type 

analysis is utilized to estimate the stresses. 

Load is applied parallel to the fiber direction.    The fiber is as- 

sumed to carry only extension and the matrix to transmit only shear 

stresses.    No stress is transmitted axially from the fiber end to the 

average material.    Shear stresses in the average material are considered 

to decay in a negligible distance from the inclusion interface. 

For equilibrium of a fiber element in the axial direction: 

r      da 

T +-T- -—-   = 0 (12) 2       dz 

where T  = shear stress in matrix material 

CT  = axial stress in fiber 

For equilibrium of the composite in the axial direction: 

2 2 2 
a b £)v(- 2 

a r 
a    =a (13) 

a 

59 



where a    = axial stress in average material 
a 

a    - applied axial stress 

The displacements in the fiber,  u ,   and in the average material, 

u  ,  define the binder shear strain,  y,  as follows: 
a 

u; - uf= (rb ■ rf>y 
(14) 

Differentiating eq.  (14) twice and using the stress-strain relations 

yields: 

i     dCT 1 a 
da        r    - r ,2 

If b       f      d T (15) 
E      dz       E,    dz G, .2 

a f b dz 

where E    = effective Young's modulus of the composite 
a 

E    = Young's modulus of the fiber 

G,   = shear modulus of the binder 
b 

Differentiating eq.  (13) and substituting the result and eq.  (12) 

into eq.   (15) yields: 

,2 d  T n   T = 0 
dz 

(16) 

where 

2G, 
r\ E£ (rb - rf) (rf) 1 + E- 

a 
2 2 

r        _   ru a b 

(17) 

The solution to eq.   (16) is of the form 

T  = Asin h 77  z + Bcos hi  z 

The boundary conditions are: 

T (o)    =0 

CTf W = 0 

(18) 

(19) 
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B = 0 

A = 

^    -    2 
G    CT r 

b        a 

and 

2       2 
7?E    (r   -r ) (r     -r     )   cosh r\l 

a     b    i       a       b 

G,   CT   r sinh 77 z 
 b a '  

2       2 
7)E    (r   -r.) (r     -r,   )   cosh y\ I 

a     b    f       a       b 

From eqs.  (12) and (20): 

-     2    ^ 
CT   r      E„ 

a    £ 
f [E   (r   2-r   2)+Er 2] 

a    a       b ft 

Consider r    >>  r, 
a b 

. .   r\ 
.2 2G2 

ar E, 

cosh 77z 
cosh Tjt 

(20) 

- 1 (21) 

(22) 

and from eq.  (21): 

CTE. cosh fj z 
cosh 77-t 

The maximum axial stress is 

O E, 
C£ (o) 

I    ->oo 

(23) 

(24) 

Using the results of this elastic analysis,  the stress ratio ,9 is 

evaluated from the ratio of the stress at a distance 6 from the end of a 

given fiber to the stress at the midpoint of a very long fiber.    The stress 

at a point at distance 6 from a fiber end is: 
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<TE 

o£{l-ti) = .— 
cosh 77 (£-6) 
cosh 77 I 

(25) 

The fiber efficiency,  <P ,   at this point is therefore defined by: 

at (1-6) 
<P = 

Of{o) 
1  -  cosh   77 Ö  + tanh   Tjl    sinh 7] 6       (26) 

i-t-*» 

for large -t 

tanh 7H  = 1 

2 1/2 
.*.    <p = 1 - cosh 776   + ( cosh    TJÖ - 1) (27) 

From which 

cosh V  6 

and 

iJT 

1 + (i - <p) 
2 (1  - cp) 

(v-1/2-i)-i 
^   f ' G. 

1/2 

cosh 

(28) 

1 + ( 1 - (p) 
2 (1  - <f> ) 

(29) 

For the purposes of this analysis a value of V - 0.9 is considered,   and 

6 is evaluated for this stress ratio value.    Thus,   effective length is that 

portion of the fiber in which the average axial stress is greater than 90% 

of the stress which would exist for infinite fibers.    Fig.   28 shows the 

variation of ineffective length with constituent moduli for various fiber 

concentrations. 

The stresses upon which these results are based are shown in 

fig.  29.    It is clear that for many composites the matrix shear stresses 

will exceed the elastic limit of the material.    The point at which the elastic 
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limit is reached is indicated on each.curve of fig.  29 for a matrix shear 

yield stress of one tenth the fiber strength.    Since for high concentrations 

most of the curves are above the elastic limit,  further inelastic analysis 

is required.     Note also that the results of this shear lag model differ in 

character from those of ref.   20.    The difference is attributable to the 

addition of the third or average material to the model. 

The elastic analysis of this section has been extended to include 

the effects of an elastic plastic binder.    To do this,  consider a region at 

the fiber end in which the shear stress is equal to the shear yield stress, 

T   , thus: 
y 

IT 

a 2-(l- z) I- b < z £  I (30) z r 
f 

Equation (12) applies for:   0 £  z £  I- b.    The analysis for the elastic 

region is unchanged except that the boundary conditions (19) are replaced 

by: 

T(o) = 0 
(31) 

T(l-b) = T 

Substitution of (31) into (18) yields 

T=T 
sin T?Z  (32) 

y    sinTJ(^-b) <■"' 

From eqs.  (12),  (13) and (32) it can be shown that: 

0   = 1 JL   cosh    ^        (33) 
f      .      v2      „       r       ,      ,2-,       Tjr      Sinh   TJ(^-b)       V     ' r  \       E 

V       Ef ' <i 
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The length b is evaluated by assuring continuity of stress at z = I - b. 

Thus from eqs.   (30) and (33): 

~ 2T 2T   b 
y 

v  a ' f 

For r    > > r,   this reduces to: 
a b 

•M 
Vr 

X- coth T)(t-h) 

CTVf      1 
b = 2FE~-T  coth^-b> 

y  a 

For b << -6 

° Ef rf 1 
b = TF-E ^r coth n* 

y    a 
(34) 

Now the ineffective length can be evaluated,   as defined by eq.   (26) 

by using eq.   (33).    It will be assumed and subsequently confirmed that: 

6  > b.     Large values of fiber length relative to all other fiber dimensions 

will be assumed.    The result is: 

2 
cosh r\ 6 = 1 + X 

2X 

where 

X = cosh 7? 6  - (cosh2 r\ 6 - l)1'2 

(38) 

(36) 

Simultaneous solution  of eqs.   (34)  - (36) defines the inneffective length. 

A limiting case is obtained for a rigid-plastic material.    For a 

uniform shear  stress,   the length,   "   ;   required to obtain the full strength 
P 

of the fiber is: 

p 4T f 
y 

(37) 
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Thus,  for a composite of 400 ksi glass fibers in a 10 ksi plastic 

binder,  the plastic ineffective length is ten fiber diameters.    This value 

is about four times the appropriate elastic value. 

5.      Composite Strength 

With the link length defined,   [by eq.   (29) for the elastic case; 

eqs.   (34) to (36) for the elastic-plastic case; and eq.   (37) for the rigid 

plastic case]   and the link strength characterized by eq.   (8),   the com- 

posite strength can be evaluated.    First the strength of the bundle will 

be determined,  then the composite will be treated as a chain of bundles, 

and weakest link statistical theorems will be applied.    This leads to the 

desired statistical definition of composite strength. 

For a bundle of links,   Daniels  [24]  has shown that for a large 

number, N, of fibers the distribution of bundle strengths approaches a 

normal distribution with expectation: 

a     =a     [l - F (ff    )] 
r5 m m 

(38) 

and standard deviation: 

0     = a 
B m 

F (o-    ) [1 - F (a    )]   1/2   N"1/2 

m m 

The associated density distribution function is 

1 
B v   B' 

exp 
i/)B JZir 

1   /   B       B   \ 

T B 

(39) 

(40) 

The maximum stress is obtained by maximizing the total load. 

Thus: 

da 
a[l  - F (a)  ] (41) 

o = a 
m 
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For links described by eq.   (8): 
o 

F(cr) = 1  - exp (-a  Ö a   ) (42) 

Substitute (42) into (41): 

— [aexP( -a6a   ) ]ff=(y     =0 
m 

/.   a     =(a6/3)" 1//? <43) 
m 

From (38),   (42) and (43): 

ffB = M/3f 2/^ exp(--i-) (44) 

From (39),   (42) and (43): 

[l  - exp (- -=-)]   exp    (--J 4>B = ialß)- Uß 
1,1       /Ml 1/2 M- 1/2 
r)]   exp    (--H N 

(45) 

Layers characterized by eqs.   (40),   (44) and (45) may be con- 

sidered as links in a chain and the weakest link theorems can be applied 

again.    Thus,   applying eq.  (2) to this case 

X (<7 )  = n w (ff  )   [ 1  - fl (ff   )   ] n" (46) 
c c c 

where ff    is the composite failure stress,   and X is the associated dis- 
c 

tribution function. 

The mode of this distribution is found by setting dX /da     = 0. 

This yields: 

*     — 1/2       ,     log log n + log 4ir      ,„.,. 
ac   -a B-0B(21ogn)       +0       S     S        J*2 (47) 

2(2 log n) 

For composite dimensions large compared to fiber cross-section dimen- 

sions,  N>>1.    Therefore: 

66 



and the statistical mode of the composite strength a   #,   is found to be 
c 

ff.* = (a«  ße)  -  Uß (48) 

where a and ß are the constants defining the link strength and are de- 

termined by experimental tests of fiber strength vs.   length as described 

previously.    6 is the ineffective length defined by a fiber shear stress 

analysis and e is the base of natural logarithms. 

The results of section    3 are used in eq.   (48) to compute com- 

posite strength as a function of the effective length.    The predicted 

composite failure stress is plotted in fig.   30 for the range of ineffective 

lengths of one to one hundred fiber diameters.    The range one to ten 

generally corresponds to the elastic predictions and the range ten to one 

hundred to the inelastic predictions. 

Also shown in fig.   30 are the effects of variations in fiber character- 

istics.    Curves are presented to show the effect of an increase in the dis- 

persion,   as measured by a 10% change in ß and of a decrease in the 

reference strength as measured by a 10% change in a"       .    For the 

reference case plotted,  the analysis also indicates that at failure the 

mean number of fractured fibers per layer is less than 10% and that the 

length at which the mean fiber strength equals the fiber stress in the 

composite,   at the most probable composite failure stress,   is on the 

order of ten ineffective lengths. 

For a rigid-plastic representation of the binder material,  failure 

points for two different yield stress values are shown.    Thus,  for the 
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fiber data used,   and for a yield stress of 10 ksi,  the predicted strength 

of a glass-plastic composite of 70% fibers by volume is 290 ksi.    For 

the same conditions binder yield stress of 20 ksi would indicate a com- 

posite failure   stress of 310 ksi.    The effects of matrix characteristics 

are more clearly defined by considering the elastic-plastic results ob- 

tained in the latter part of section 4. 

Mechanically,  the elastic-plastic matrix material is characterized 

by the initial elastic modulus,  the yield stress,   and the total strain to 

failure.    The influence of these three quantities on the tensile strength 

of a composite consisting of an elastic-plastic matrix uniaxially rein- 

forced with glass fibers is shown in fig.   31 in the form of shear yield 

stress vs.   elastic shear modulus required to achieve the specified 

constant values of composite strength. 

These results are obtained by selecting a fixed value of composite 

strength,   6   *,   and determining the corresponding ineffective length ratio 

from fig.   30.    For the elastic case the modulus ratio E   /G    and the 

maximum shear stress,   T ,   are determined from figs.   (28) and (29) 
max 

respectively.    The asymptote for large shear moduli is found from the 

rigid-plastic solution,   eq.  (37).    For the region between the elastic 

range,   represented by the vertical portion of the curve,   and the fully 

plastic range,   represented by the horizontal asymptote,  the combinations 

of values of shear modulus and shear yield stress which result in the 

desired ineffective length are evaluated from eqs.  (34) to (36).    The 

ultimate matrix shear strains required are not shown; however,   they 
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are approximately parallel to the strength curves with decreasing strain 

required for increasing composite strength. 

The stress curves show the nature of property variations re- 

quired to produce the maximum increase in composite strength.    For 

example,   a composite containing an elastic-plastic matrix material 

with a shear modulus of 150 ksi and a shear yield stress of 15 ksi will 

be unaffected in strength by a ±  50% change in shear modulus but would 

improve in strength with increasing shear yield stress and would also 

require lower shear strain at failure; similarly,   a matrix with a modulus 

of 40 ksi and a strength of 30 ksi would be far more sensitive to modulus 

changes than to strength changes.    This is illustrative of the nature of the 

results to be obtained from the existing failure model.    Other types of 

fiber and matrix materials need to be considered to complete the picture. 

Fibers with different strength levels and strength gradients with respect 

to fiber length,   and matrices with monotonically decreasing tangent moduli 

should be included.    In any event,   it appears that the qualitative evaluation 

of the direction of improvement in constituent properties to obtain im- 

proved structural composites can be achieved. 

One of the reasons for the quantitative uncertainties can be seen 

by exploring certain assumptions in the shear stress evaluation.    First 

of all,  the idealization to a rotationally symmetric problem ignores the 

variation due to the hexagonal or nearly-hexagonal array of nearest 

neighbor fibers.    Secondly,  the selection of an average distance between 

fiber and surrounding "average" material is not an obvious one.    Although 
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the magnitude of the former problem cannot be assessed without the 

solution of a complex elasticity problem,  the latter can be studied by- 

varying the average distance and determining the resulting effect upon 

composite strength.    The results of such a study are shown in fig.   32, 

where the ineffective fiber length is plotted as a function of the average 

matrix thickness expressed as a multiple of the fiber radius.    The range 

of abscissa values cover the range obtained by various reasonable idealiza- 

tions for a fiber volume fraction of 0. 7. 

6.     Discussion and Conclusions 

The analysis attempts to simulate what appears to be the physical 

failure mode.    An effort was made to include what were thought to be the 

most important parameters influencing failure.    Obviously,  the model 

will not provide accurate quantitative answers without further refine- 

ments.    It is expected,   however,  that the nature of desirable improve- 

ments in constituent characteristics can be ascertained from the present 

model.    Such preliminary conclusions will be described below.    The 

shortcomings of the model include failure to consider fracture involving 

parts of more than one layer,   variation of ineffective length with stress 

level,   stress concentrations in fibers adjacent to failure areas and the 

initial state of stress.    Further,   as the analysis indicates that short 

fiber lengths may exist at failure,  the shortcomings at short lengths 

of the statistical distribution used for the fibers should be corrected. 

That is,  the limit of fiber strength with decreasing length should be a 

finite value.    Fiber experimentation can provide the data for such a 
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statistical model.    On the positive side,   however,  the model represents 

the constituents in the major functions of fibers carrying extensional 

stress and matrix carrying shear stresses; it includes the effect of fiber 

imperfections on fiber failure; and accounts for-the accumulation of 

internal cracks which combine to produce composite failure.    This latter 

follows the concepts of Parratt [l8 ]  who suggests the influence of flaws 

and ineffective lengths on failure.    The failure mode in the present 

analysis,  however,   results from an accumulation of cracks rather than 

from the existence of fully ineffective fibers.    In fact the present results, 

which indicate typical fiber lengths at failure which are an order of 

magnitude larger than the ineffective length,  perhaps explain the quan- 

titative difference between the ineffective lengths of [18]   and those of 

[20]   and this paper.    The experimental results,   described in the 

following section,   appear to be in qualitative agreement with the analytical 

models. 

The conclusions to be drawn from the analysis for the glass fibers 

considered are as follows:   Composite failure stress will be on the order 

of short fiber failure stress,  where short fibers are on the order of ten 

ineffective lengths.    Fiber strength levels appear to have the most direct 

effect on composite strength.    Fiber strength dispersion influences com- 

posite strength and ineffective length of fibers has a significant effect on 

strength.    The latter is primarily influenced by the matrix characteristics 

and an improvement of matrix strength appears desirable.    The effect of 

such changes upon the mode of failure remains to be considered. 
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The fact that these conclusions are not unexpected for glass re- 

inforced plastics is encouraging,   insofar as the possibility of fruitful 

application of this analysis to consideration of other composites and to 

the definition of "desirable constituent properties.    Further,    the actual 

strength levels predicted for glass-plastic composites are higher than 

those obtained experimentally.    This could well be explained by the 

additional damage incurred in fabrication after the state at which the 

fiber tests of [21 ] were performed. 
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B.     FIBER REINFORCED COMPOSITES - EXPERIMENTAL 

The experimental study of the mode of failure of fiber reinforced 

composites under a tensile load utilized specimens consisting of a single 

layer of parallel glass fibers imbedded in epoxy.    The specimen,   as shown 

in fig.   33,  has a test section which is 1/2" x 1" in size and 0. 006" thick 

and contains 90-100 parallel glass fibers of 0.005" diameter.    The speci- 

men is loaded in tension and observed microscopically during the test. 

The design of the specimen was directed towards making this observation 

possible,   so that the nature of failure of fibrous composites could be 

determined.    In particular,   the validity of the preceding analysis was to be 

tested.    (Similar test specimens appear to have been used with a somewhat 

different goal in (25).) 

Both visual observation and photographic observation were used 

on all test specimens.    A sequence from a typical set of photographic 

data is shown in fig.   34.    The load was applied parallel to the fibers. 

Note again,   that the fiber diameter is on the order of five times the 

minimum distance between fibers.    The first frame shows the specimen 

at zero load.    Polarized transmitted light has been used and at zero load 

the fibers are dark and the plastic between fibers appears light.    As the 

load is increased,   the fibers appear lighter,  although this is not ade- 

quately reflected in the photos since the lens aperture was changed 

during the sequence.    The difference between the unloaded specimen 

photo and the next to the last photo in the sequence is four f stops,   or 

a factor of 16 on the exposure. 
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At less than 50% of the ultimate load,   individual fiber fractures 

are observed.    Since the fractured fiber in the vicinity of the fracture is 

unstressed,   the color returns to the original dark color.    Thus,  breaks 

appear as a short dark rectangular area with a thin white line across the 

center.    The length of this dark area is the ineffective length of the fiber, 

(see section A)As the load increases,   the fibers fracture at random 

locations.    Thus,   although there are stress concentrations in the vicinity 

of the breaks,  the variation in fiber strength generally more than offsets 

the effect of such concentrations.    Hence,  the breaks occur randomly rather 

than cumulatively at the site of the initial break.    The stress concentrations 

cause a relative brightening at the highly stressed points of the fibers and 

this effect appears on the latter photos in the sequence of fig.   34.    Also 

there are examples of breaks which were produced as a result of the 

stress concentrations. 

The specimen is shownin the last frame after fracture.    It is not 

clear that the actual fracture simulates the behavior of a three dimensional 

composite and it therefore appears that the internal fractures prior to com- 

posite failure are the primary data from these tests.    The usefulness of 

the test lies in the potential use of these results in conjunction with the 

preceding analysis to predict and verify the direction of desired constituent 

property improvements to achieve higher tensile strength composites. 

The data for the specimen of fig. 34 are plotted in fig.   35. These results 

are typical of the scatter of data points around the best fit curve.    Such 

curves for the series of test specimens described in table III-l are shown 
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in fig.   36. 

TABLE III-l 

Tensile Strength Tests - Series A 

Spec. Gage Width Thickness Number Ultimate 
Number length of fibers load 

(in.) (in.) (in.) (lb.) 

1 1.10 0.499 0.0066 92 114 

2 0.91 0.498 0.0060 93 84* 

3 1.10 0.500 0.0067 93 111 

4 0.90 0.502 0.0064 94 125 

5 1.05 0.494 0.0061 92 116 

6 1.02 0.500 0.0062 94 117 

7 1.00 0.498 0.0062 93 116 

8 1.07 0.503 0.0061 65* 

9 1.03 0.490 0.0060 93 107 

^Failure in grip section.    Test data not used. 
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C.     PARTICLE REINFORCED MATERIALS 

The merit of a matrix material having enhanced stiffness and 

strength properties compared to presently available plastic resins is 

clearly evident from the analyses of composites.     The first,   most 

directly available method of improving matrix properties appears to 

be to make the matrix itself a composite.    To this end a series of 

specimens were fabricated to investigate the effect of the addition of 

glass and alumina powder to epoxy resin. 

The results bring up more questions than they answer.    While 

the stiffness of the particle-composite specimens were duly increased 

by the additives to maxima of 1, 040, 000 psi for the glass particles 

(10-200 micron characteristic dimensions) and 2,000,000 psi for the 

alumina (325 mesh or finer),   the strength and elongation of the resin 

were degraded.    A curious accompanying phenomenon was a marked 

increase in viscosity of the glass-filled epoxy resin before curing.    This 

increase prevented the fabrication of specimens of greater than 30% 

volume percent glass.    With the alumina particles 48 volume percent 

filler was attained without corresponding difficulties,  but to reach the 

maximum value of 62% a larger particle size (325 mesh) was required 

than for all the other (900 mesh) alumina-filled specimens. 

Increase in viscosity with addition of particles is certainly to be 

expected.    What is peculiar is the difference in character   of the viscosity 

change for the two particles used.    For successful end use the resin 

viscosity must be not substantially changed from the unfilled value,   a 
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criterion that could be met by the alumina particles up to a content of 

approximately 40 volume percent,   but the question raised of the relative 

importance of the many factors affecting viscosity is not answered by 

the present re-sults. 

Of much more interest and eventual importance than viscosity 

(influence of the fillers in the fluid state) is the decrease in elongation 

at failure of the filled specimens (influence of the fillers in the plastic 

state).    The influence in the elastic state is as expected.    The Young's 

modulus of the composite is improved substantially,  just as desired, 

and if this were the only effect the implications would be exciting. 

Accordingly an explanation of the reasons for the poor performance in 

the plastic range could be useful.    Answers are needed to questions like: 

1. Is the reduction of elongation dependent upon the material 

used for the filler, - i« e. would a more compatible or better 

bonding filler be less harmful? 

2. Is the reduction of elongation dependent upon the geometry 

of the filler,   - i. e.  would short,   very fine fibers be better than 

essentially spherical particles? 

3. Is the entire problem a result of poor fabrication,   - i.e. 

were these first-attempt specimens unsound and can improved 

fabrication technique restore the strength lost by adding the 

filler ? 

4. How would even the low elongation filled resins of these 

tests behave as the matrix for a filament reinforced composite, 
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i. e.  would the development of "fractures" in the matrix at these 

elongations lead to premature failure of the composite? 

The actual experimental results which generate all these questions 

are presented in figures 38 and 39 without further discussion.    The end 

objective of an improved matrix material is worthy of continued 

investigation. 
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IV.   STRUCTURAL APPLICATION STUDIES 

Although the bulk of this study has been devoted to determining 

composite properties as a function of constituent properties,   it is 

important to emphasize that this is not an end in itself.    Analysis of 

basic applications must be performed to indicate the nature of desirable 

material properties.    For example,  in the case of elastic constants,  the 

composites are anisotropic and no one simple property of an anisotropic 

material adequately defines the efficiency of a structure using such a 

material.    Thus,   it is necessary to perform a structural efficiency 

type analysis treating generalized structures and loads.    As an example, 

stability of plates with oriented voids,   subjected to in-plane compressive 

loads are treated in section A.    Also,   the effective properties cannot be 

used at the neglect of internal stresses.    In the case of a practical 

fibrous composite structures biaxial stiffening will introduce average 

stresses in individual layers of a laminate which differ    considerably 

from the average laminate stress.    Certain aspects of the internal 

shear stresses are treated in section B as an example of this problem. 
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A.     STABILITY OF PLATES WITH .ORIENTED VOIDS 

A quite different measure of material effectiveness than its 

extensional stiffness is its ability to carry compressive or shear 

stresses without buckling.    This measure must be applied with dis- 

cretion,  because there are many ways of changing the resistance of 

buckling.    For example obviously the least loss in buckling resistance 

as material is removed to reduce the effective density occurs when 

the material is taken from the centroidal plane of the plate,  as in 

sandwich construction.    The problem we are examining here may be 

considered applicable to the case in which a uniform material through 

the entire thickness is desired,   for one reason or another.    We are 

then seeking an answer to the question: Is there some angular direction 

which gives a material uniformly    lightened by oriented voids superior 

resistance to buckling? 

Method of analysis 

Available equations from the literature of the buckling of flat 

plates in compression and shear were used to calculate the variation 

of buckling effectiveness with angle of void.    The elastic constants 

employed in the equations were calculated with the aid of (13) in similar 

fashion to that employed for the stretching and shearing stiffnesses. 

Essentially the result is that the bending stiffnesses are proportional 

to the corresponding stretching stiffnesses,   with account taken for the 

effective Poisson's ratio applicable to the anisotropic plate. 
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Results 

The results are summarized in figure 40,   in which are plotted 

normalized interaction curves for buckling of simply supported,   infinitely- 

long plates having voids longitudinally,  transversely,  and at 45    to the 

edges.    The normalizing factor is the equivalent weight solid plate.    The 

plate with longitudinal holes is shown to have the least buckling resistance, 

that with transverse holes is better in shear and the same in compression, 

and the one with 45° holes is better in compression and between the 0° 

and 90°    cases in shear.    The differences are not substantial. 

Conclusion and Discussion 

While material with oriented voids does exhibit increased elastic 

buckling resistance because of its lower effective density,   the orienta- 

tion of the voids is not important in the elastic range.    Probably if any 

criterion exists it is that the holes should in general be aligned in the 

direction of principal stress,   to delay as long as possible the onset of 

plasticity. 
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B.     LAMINATE SHEAR STRESSES 

A second aspect of the failure problem which has been considered 

is the study of shear stresses in a biaxially stiffened matrix; that is,  a 

material stiffened by parallel fibers in layers which are oriented alter- 

nately in each of two directions.    The case analyzed considers the two 

layer directions to beatequal and opposite angles to the loading direction. 

The stresses were determined using the methods developed in (26).    The 

results are plotted in fig.  41.    The shear stress on planes parallel and 

normal to the loading direction,      T       ,   is shown in fig.   41a,   normalized 

with respect to the applied stress,      O ,   plotted as a function of the lamina 

orientation angle,       9   .    The principal elastic constants of an individual 

lamina are indicated and are typical of glass reinforced plastic construction. 

The directions parallel and normal to the fibers are considered to be the 

weak shear planes and the stress on these planes,   T^ >   is therefore also 

shown in fig.   41a.    The question of failure due to shear stress involves 

both the shear stress and the shear strength distributions.    The maximum 

shear stress, Tmax   ,   is shown as the upper curve of fig.  41a.    The effect 

of material properties on the shear stresses acting in the principal directions 

of each lamina,   T       ,  are shown in fig.   41b.    The shear stresses in the 

fiber direction are seen to constitute a moderately high fraction of the applied 

axial stress and as such warrant further consideration as a mechanism of 

failure. 

82 



V.     CONCLUSIONS 

The present study of the relationship of properties of composite 

materials to properties of their constituents has been primarily concerned 

with the evaluation of elastic constants and ultimate tensile strength of 

fibrous composites.    The effort has been primarily directed towards 

the development of the basic theory governing the behavior of such 

materials.    Thus,  by the use of variational principles of the theory of 

elasticity,  bounds on the elastic constants of fiber reinforced materials 

have been obtained.    For parallel fibers in an hexagonal array,   the 

bounds are exact.    For parallel fibers in a random array,   simpler 

approximate expressions are obtained.    These results can be used to 

study the potential of fibrous composites utilizing any combination of 

constituents. 

The numerical results obtained,   indicate that the effect of the 

matrix upon most of the constants is far from insignificant.    The possible 

means of attaining improved structural composites thus include using an 

improved fiber or modifying the binder material for a given fiber.    Certain 

aspects of the latter approach have been studied experimentally,  with the 

indication that loaded plastics are advantageous.    One type of improved 

fiber considered has been a non-circular fiber.    It was demonstrated that 

the transverse modulus of composites containing elliptical fibers of aspect 

ratio four,   can be almost doubled for only moderate fiber volume fractions. 

These studies of elastic constants have demonstrated potential methods of 

controlling any given elastic constant.    It is now necessary to study certain 
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typical aerospace structural applications to define the desired type of 

improvement of these constants and the relative merits of various 

potential improvements.    Preliminary structural application studies 

have been performed.    Extension of such structural efficiency studies 

would permit the present results to be used to define guidelines for the 

development of improved composite materials. 

The second major aspect of the present work is the study of the 

tensile strength of fibrous composites.    The observed influence of fiber 

imperfections upon fiber strength have been used as the basis of a model 

which hypothesizes composite failure to be the result of a statistical 

accumulation of randomly occuring fiber fractures.     The study of this 

problem involved an approximate treatment of the stress distribution in 

the vicinity of an internal fiber fracture.    These results enable the 

evaluation of alternate possible modes of failure.    An experimental 

study utilizing reinforced plastic film specimens,   observed microscopically 

during loading,   was undertaken to qualify the analysis and provide quanti- 

tative evaluation of parameters in the analysis.    The experimental results 

correlated closely with the failure model utilized in the analysis and it 

appears that the joint use of theoretical and experimental results can 

define the desirable characteristics for improved structural composites. 

Again,   the analysis indicates that significant improvement in composite 

performance can be obtained by variation of matrix properties as well 

as by the obvious changes in fiber characteristics. 

84 



It appears that the proper understanding of the mechanics of 

deformation and failure of composites can indeed contribute  to the 

attainment of the many potential improvements composites have long 

been known to offer 
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a.) HEXAGONAL ARRAY 

b.)  RANDOM ARRAY 

Figure 1.    Fiber Arrays Considered for Elastic Moduli Analysis 
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Figure 2.    Composite Cylinder, Notation for Elastic Moduli Analysis 
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Figure 23.    Experimental Solid Alumina    Particle-Epoxy 
Composites for Young's Modulus Measurement 

Figure 24.     Experimental Hollow Alumina Particle-Epoxy 
Composites for Young's Modulus Measurement 
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Figure 27.     Model for Evaluation of Stresses at Fiber Ends 
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Figure 28.    Ineffective Length of Fibers in Composites 
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FRACTION OF ULTIMATE LOAD 

Figure 35.    Number of Fiber Breaks in Specimen A-7 as a Function of 
Applied Load 
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Figure 36.     Number of Fiber Breaks as a Function of Nominal 
Fiber Stress for Series A Specimens 
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Figure 37.     Experimental Alumina Particle Tensile 
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