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ABSTRACT

Relationships between the properties of fibrous composites and
the properties of their constituents are evaluated. Bounds and expres-
sions for the effective elastic moduli of materials reinforced by hollow
circular fibers are derived by a variational method., Exact results are
obtained for hexagonal arrays of identical fibers and approximate results
for ré,ndom arrays of fibers, which may have unequal cross sections,
Typical numerical results are obtained for technically important elastic
moduli. The tensile strength of composite materials consisting of a
ductile matrix uniaxially reinforced by high strength, high stiffness fibers
are analyzed. The fibers are treatea as having‘ a statistical distribution
of imperfections which result in fiber failure under applied stress. The
statistical accumulation of such flaws results in failure of the composite.
The application of the analysis is demonstrated by using glass fiber
strength data in an evaluation of glass fiber reinforced composites.
Supporting experimental studies are described. These include measure-
ments of strength and stiffness of particle reinforced matri# materials
and the development of an experimental procedure for tensile testing of
thin fibrous coméosites containing only a single layer of fibers. Microscopic
observation of the latter specimens indicated random fiber fractures at loads

significantly below the ultimate composite strength level.
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I, INTRODUCTION

The studies described in this report are directed toward the
attainment of advanced composite structural materials for aerospace
vehicle applications. The approach is through the enhancement of
understanding of the mechanics of deformation and failure of composites,
and of the influence thereon of the properties of, and interactions between,
the constituents.

The current availability and development of a variety of high
strength and high stiffness fibers and the rapidly growing technology of
filament winding have motiyated the initial studies in the area of fiber
reinforced composites. }The initial tasks of evaluating effective elastic
constants and ultimate tensile strength of such materials are treated

U

herein. / These problems have been studied previously, to a certain

extent, and the relationship of the previous work to the present studies are
described.in the appropriate locations in the text.

[The elastic constants are treated using the variational principals
of yelasticity to establish bounds or approximate expressions for the five
elastic constants of a uniaxially reinforced fibrous composite. These
results indicate the relative effects of changes in matrix and fiber
characteristics and have motivated experimental studies of the effect

of particulate additives to the matrix and of changing the cross-sectional
shape of the fiber. The control of material density and the effect of

biaxial stiffening are also considered and the elastic constants for

biaxially oriented voids in place of fibers is studied. The results of



these studies are presented in section II.

The tensile strength of a fibrous composite is treated with a
statistical failure model, which is applicable to brittle fibers., The
analytical results are applied to glass-plastic composites to determine
the direction of desired improvement in matrix characteristics, An
experimental program was undertaken to qualify the analysis. The
test specimens contained a single layer of glass fibers which enabled
microscopic evaluation, by transmitted light, of the internal failure
process, The results of the tensile strength program are described in
section III,

Once the basic relations between the composité and constituent
properties are established, it becomes necessary to determine the
relative importance of the various properties. Thus, a structural
efficieincy study which considers generalized structures and load
environments must be performed. As examples of this approach, the
stability of a flat plate, containing oriented voids, under in plane com-
pressive loads is treated. As a second problem of this type the shear
stresses associated with the biaxial stiffening present in laminates are
studied. Studies of this type utilizing the previously described analyses
can provide guidelines for the developmeni of improved composites.

These structural application studies are described in section IV./

—




II. ELASTIC CONSTANTS

One of the initial requirements for the definition of composite
material characteristics is for the effective elastic constants of the
material. In the case of a uniaxial fiber array, the material may be
treated as a transversely isotropic medium characterized by five elastic
constants. The evaluation of these constants for both solid and hollow
fibers is presented in section A, With these constants available, the
elastic behavior of laminates of uniaxially stiffened layers can be
studied in a straight forward fashion. Elastic constants for plates
with biaxially oriented voids are described in section B. The experi-
mental studies motivated by the results of these analyses are described

in section C,
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A. FIBER REINFORCED MATERIALS
1. Introduction

In continuing search for lightweight materials of great strength
and stiffness, considerable effort has been made in recent years in the
technological development of fiber reinforced materials. Such materials
consist of a relatively soft binder in which much stiffer fibers are
embedded. The present work is concerned with the theoretical study
of the elastic properties of such materials containing circular hollow
or solid fibers which are all oriented in one direction. It is here assumed
that the binder and fiber materials are linearly elastic, isotropic, _and
homogeneous, Because of fiber orientation the reinforced material is

anisotropic.

Two cases are here considered. In the first, the fibers are of
identical cross section and form an hexagonal array in the transverse
plane, and in the second the fibers may have different diameters, but with
same ratio of inner to outer diameter and are randomly located in the
transverse plane. In both cases the composite is macroscopically
homogeneous and transversely isotropic (these concepts will be discussed
below) and has five elastic moduli. The problem then is to find expres-
sions for the effective elastic moduli of the reinforced materials in terms
of the elastic moduli and the geometric parameters of its constituents.

The problem of the prediction of elastic moduli of macroscopically
isotropic composites has recently been treated by bounding techniques,

-

using variational principles of the theory of elasticity. Methods suitable



for arbitrary phase geometry have been given by Paul [1] and Hashin
and Shtrikman [2,3] and for specified (spherical inclusions) phase
geometry by Hashin (4], Methods for arbitrary phase geometry,
although in principle applicable, are of little value for the present
problem since they cannot distinguish between the present specified
geometry and an arbitrary mixture of binder, fiber material and voids,
possessing the same elastic symmetry as the fiber reinforced maferial.
Because of the void phase these methods would give zero lower bounds
for the effective elastic moduli, In the present paper a variational
bounding method closely related to the one employed in [4 ] is used,
The analysis is based on the principles of minimum potential and
minimum complementary energy and makes use of the present specific
geometry,

There has been little previous theoretical work in the present
specific subject. It has been assumed by Dietz [5] and others that the
Young's modulus in fiber direction can be evaluated by the "law of
mixtures'. The effect of discontinuous fibers upon this longitudinal
modulus has been studied in an approximate fashion by Outwater [6]
and Rosen, Ketler & Hashin [7]. A problem related to the present one
has been treated by Hill and Crossley [8] who investigated the elastic .
behavior of an elastic material containing long fibers, of identical square
Ccross sections, arranged in a Square array., The anisotropic composite
has in this case six elastic moduli, Rigorously valid bounds for five of
these were derived by variational methods, using piecewise constant

admissible fields,



The five elastic moduli of the reinforced material here considered
are rigorously bounded (except for the insignificant error involved in
fulfilment of fiber end conditions in the St. Venant sense) for the case
of identical fibers arranged in an hexagonal array, For random fiber
arrangement a geometric approximation is involved. The bounding method
in this case yields coincident bounds, and thus approximate expressions,
for four of the moduli and non-coincident bounds for a remaining modulus.
First, the general method of applying variational principles is described and
then the method is applied to each of the moduli, Typical numerical
results are presented for several of the more commonly used moduli.
Required solutions to certain boundary value problems for composite
circular cylinders are presented. The analyses of the transverse plane
strain bulk and shear moduli originally appeared in [7]. They are
repeated here for clarity and completeness,

2. General Method

The general definition of effective elastic moduli of heterogeneous
materials has been discussed in [8] and [9], For the purpose of self
consistency a short discussion, specific to the problem here treated,
will now be given.

In fiber reinforced materials the ratio of length to fiber diameter
is usually very large. Accordingly, fiber end conditions will only be
considered here in the St, Venant sense. Consequently it is sufficient
to consider a very large cylindrical specimen of reinforced material,

with fibers in the generator direction extending from base to base,
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(In reality the fibers terminate at random heights.) The specimen
is referred to a cartesian coordinate system x x Xq whose x. axis

12 1

points in the fiber direction while x,X3 are in the transverse plane,

3

Let the specimen be subjected to one of the boundary conditions
u . (S) = € ..x (2.1)

Ti(S) = g ..n, (2.2)

over its entire bounding surface S. Here uoi and Toi are displacement
and stress vector components respectively, Xj are surface coordinates
and nj the components of the outward normal to S, The range of sub-
scripts is 1, 2, 3 and a repeated subscript indicates summation.

Fér boundary condition (2. 1) it can be shown that the average

. . o
strains over the specimen are ¢ i and for (2.2) that the average

o X . .
stresses are g ... The specimen is assumed to be macroscopically
1]

homogeneous by which is meant that for either one of boundary conditions

(2.1) or (2.2) strain and stress averages taken over large enough sub-
regions of the specimen are the same for any such subregion, Sucha

subregion will be referred to as a representative volume element (RVE)

and will here be chosen as a cylinder whose generators are in X
direction and its bases parts of the specimen bases, For an héxa.gonal
array the RVE is an hexagonal prism, surrounding one central fiber,
Apart from a narrow specimen boundary layer, stress and strain
average invariance in a RVE is then exactly fulfilled. - For random

placement of fibers the RVE is taken as a cylinder in x, direction, con-

1



taining many fibers and stress and strain average invariance are fulfilled
in the limit with increasing transverse section size of RVE.

The effective Hooke's law for the composite is defined as

— E3 _—
o5 = C ikl x

(2. 3)
where the overbar denotes average over RVE, which by hypothesis is
also the average over the whole specimen. The c*ijkl are effective
elastic moduli whose number is determined by elastic symmetry. When
(2.1) is prescribed the average strains are eoij and Eij have to be
found. Conversely when (2.2) is prescribed the average stresses are
known and the average strains are sought.

The definition of effective elastic moduli by (2. 3) is physically
plausible; it is, however, not very useful because, in order to find
averages, a field solution has first to be found, which in general is a
hopelessly complex task. An equivalent and more fruitful approach is
to define the effective elastic moduli in terms of strain energy and to
bound the strain energy for simple applied average stress or strain
fields, thus also bounding the C*ijk" It can be shown that when either

(2.1) or (2.2) are prescribed the strain energy W stored in a RVE is

given by:

1 — —
W = = 0. e..(+)
2 ij ij

Thus, when (2.1) is prescribed, (2. 3) is equivalent to

(+) For discussion related to such energy formulae see for example,
Bishop and Hill [10].



€ 1 * o] o
W= 5 Ca (2. 4)

and when (2.2) is prescribed, to

o 1 * o (o}
= = 2.
W= 585 55 % 5 T (2.5)
% * R
where S .. . are the effective elastic compliances associated with C ..
ijk1 ijkl

Strictly speaking the equivalence of moduli defined by strain energy or

by average stress and average strain, for random geometry, holds

rigorously only for averages taken over the whole specimen, with (2, 1)

or (2.2) prescribed. For a large RVE the equivalence is approached in
& the limit, for a statistically homogeneous material. For the hexagonal
array the equivalence is rigorous for the RVE used in that case.

The general elastic features of the material here treated will
now be discussed. For the hexagonal fiber array the reinforced material
has hexagonal symmetry and is thus also transversely isotropic (compare,
e.g. Love [11] p. 160). For random fiber arrangement, tra.nsx.rerse
isotropy is assumed, The stress-strain relation (2. 3) for a transversely

isotropic material may be written in terms of five elastic module in the

form
pe c* T ] R 2.6
o = C 1t C 221" 12 €33 (2.6)
—_ C*“ — C>:< R sk —
922 12€111C 2292 ¥ © 2333 (2.7)
5. =c¢ T o+ e+t T
033 12 €11 2322 22 €33 (2.8)
01, = 2C 44 €5 (2.9)



*
2C

Qi

— W ¢ —
0,3 = (C 55 = C 53 €5 (2.11)

where the usual six by six matrix notation has been used for the elastic
moduli, -

It is possible to select five independent moduli which are com-
binations of the above elastic moduli, such that for specified states of
stress and strain only one of these moduli will appear in the strain

energy function. Thus, the bounds on strain energy can be used directly

to yield bounds on the elastic moduli, The moduli so chosen are:

¥*
[
*
*

Koy = 77 (€5 #0539 (2.12)
G>l< ! C* C* 2.13
23 = 7 (C 32 - ©23) (2.13)
% sk Y %
G12 —G13=G1 =C44 (2.14)
* 2
* S K 2¢ 12
E , ¢ C 11 - C* C* (2.15)
22t 23
ac” K" *
an 11° Here 23 and G 23 are a bulk and shear modulus,
respectively, governing plane strain deformation in the X,% 5 plane;

sk

G 1 is a shear modulus governing shear in any plane normal to the

E sk
transverse x_x, plane; E _ is the longitudinal Young's modulus and C

273 11

1

is associated with axial stress or strain in xl direction, while lateral

deformation is prevented by a rigid enclosure. From these five elastic

10



moduli any desired elastic constant can be obtained. Important derived

constants are:

£ bS
L L 1 F (2.16)
21 31 172 e )
23
4G* K*
% % 3 23
g -5 = 2 : (2.17)
2 3 K* IbG*
23t 23
% %
* K3 - va 23
v = (2.18)
23 K+ G
23 23
where
N u*z
Y = 1+ 23 1
= E*
1
*
Here Vv 1 is the Poisson's ratio for unaxial stress in X, direction,
. .
E 5 = E 3 is the transverse Young's modulus in the X, %, plane and
*
v 23 " the transverse Poisson's ratio in the same plane,

The variational bounding method used for the hexagonal array
will now be outlined, Let all fibers be surrounded by the largest
possible non overlapping equal circular cylindrical surfaces, The
radii Ty of these cylinders are defined by the geometry of the array
(Fig. la). Let the Qolumes enclosed within these cylindrical surfaces
be denoted by V1 and the remaining volume by VZ' The cylinder con-
sisting of a fiber of radius Te and a concentric binder shell of outer

radius T will in the following be referred to as composite cylinder

11




(Fig. 2). Assume that the specimen cylindrical surface is wholly in V.2

(it is immaterial whether this condition is really fulfilled as the RVE is

a very small fraction of the specimen). For a particular state of strain,
defining any one of the elastic moduli given above, the associated linear
displacement (2. 1) is applied throughout V2 and thus also to the boundaries
of the composite cylinders, If now the boundary value problem for the
composite cylinder with (2, 1) prescribed on its surface is solved, the
ensuing displacement fields in all composite cylinders which form V1

are an admissible displacement field for the

(+)

principle of minimum potential energy for the whole composite’ ', Let

and the field (2.1) in V2

the "strain energy' for this field be denoted by T€ and the actual strain
energy whose density is given by (2. 4), by U6 . It follows from minimum

potential energy that
Ut = g€ (2.19)

and an upper bound for the effective elastic modulus under consideration
is thus obtained. To obtain a lower bound an appropriate homogeneous
stress field, which gives stress vectors of form (2. 2) is applied through-
out V_. Then (2.2) acts on the boundaries of the composite cylinders.

2

If the stress boundary value problem is solved, the ensuing stresses in

(+) The specimen boundary displacement (2. 1) is transformed to the local
coordinate systems of the composite cylinders by addition of rigid body
translations which do not contribute to the strain energy.

12



V1 and the homogeneous stresses in VZ now form an admissible stress
field for the principle of minimum complem<=ntary energy. The ''stress
energy" [ond is now calculated while the actual stress energy Uo is
given by (2. 5) multiplied by the composite volume. It follows from

minimum complementary energy that

v’ < §° (2.20)
which provides an upper bound on an effective compliance and thus a
lower bound on an effective elastic modulus,

For random arrangement of fibers the bounding method has to be
modified. The fiber diameters may be different but their ro/rf ratio is
the zame., The reinforced specimen is here subdivided into composite
cylinders exiending from lower to upper specimen base, filling its space

completely (Fig. 1 ). Each composite cylinder contains one and only

b
one fiber and the volume ratio of fiber to binder is the same in all
composite cylinders. In this case either (2.1) or (2.2) is applied to

all the surfaces of the composite cylinders, and the displacement or
stress fields in their interiors form the admissible fields. Since the
cross sections of the composite cylinders are of irregular shape the
interior fields can not be found in general. In the present work the
outer cylindrical surfaces are approximated by circular cylinders,
concentric with the fibers, so that binder volume is preserved, Thus,
the composite cylinder solution needed for the hexagonal array becomes

immediately applicable in the random case. In fact the results for the

latter case are immediately obtained from the former for vanishing VZ.

13



3, The Plane Strain Bulk Modulus K2.3

The strain system associated with (2.1) is chosen here as the

plane strain system

(o] (o] (o]
€ 22 € 33 = € (3.1)

while all other strain components vanish, whence (2. 1) assumes the
form

u°=0;u=€x;uo=€°x \(3.2)
From (3.1), (2.6-11) and l(2. 12), the strain energy density (2. 4)
simplifies to

W o= 2K, € (3.3)
Consider first the hexagonal array. The displacement field (3.2) is

applied throughout V2 and thus also to the boundary of the composite

cylinders. For any such cylinder, in cylindrical coordinates (Fig. 2)

u°=uo=0'uo=€°r- ° _ ) (3. 4)

(r=rb)

The displacement boundary value problem for the composite cylinder
thus reduces to an elementary axially symmetric. plane strain problem.
The general solution for radial displacement u_ and radial stress ¢ __

for such a problem may be written in the form
u = Ar + — (3.5)

o = 2KA - 2G— (3.6)

14



(compare e, g. Love [11]). Here E is the plane strain bulk modulus
given by

K = A+G
where A is a Lamé modulus and G the shear modulus. A and B are
arbitrary constants, Two different solutions of type (3.5), (3.6) hold
for fiber region T Sr < T and binder region T S ¢ = T
respectively, with the appropriate elastic moduli, In the following
quantities defined for fiber region will be given subscfipts or super-
scripts f and for binder region, subscripts or superscripts b, There
are altogether four arbitrary constants for which four boundary conditions
are available, One of these is the second of (3. 4), and three additional
ones are provided by u and o'rr continuity at the interface r = T and
the vanishing of 0. at the void surface r = r For the present
purpose only the radial stress at r = r, is needed which is easily

found to be

orr (rb) = 260 R-bmk : (3. 7)

where . 2 Culmeleﬁ/

m. = 2
$(1-a%)(1-8%) + (14 - ) (B ri-zvb)
PLr- 4‘)(/*('*%//«76’32)_]% #-2—)(-8 )0-2/4)

here * POAN1-6T) o4 AT 50 (6% 1-24,)
@ = =2 ; B-= rf (3.9)
f b

1
N

ﬁ;@:(ééx 67/’%«6) /{j V;/
SN 15 ]
B =M randem |



K

4 = —— (3.10)
K
b
and Vf and Vb are the Poisson's ratios of fiber and binder materials,
respectively.

The strain energy stored in a composite cylinder is given in the

present case by

1
U = 2ol
c 2 rr

b
) 1 .
(rb) ur(rb) Z'rrrb (3,11)
where 1 is the length of the cylinder. Introducing u from (3. 4) and

b
o given by (3. 7) into (3.11) one obtains

Uz = 2K.m, €0 V (3.12)

where

Vo= wril | (3.13)

is the gross volume of the composite cylinder, The ''strain energy"

€ . . e .
U " stored in the entire composite is now given by

2 2
~ €

= o = o0
U = ZKbmkE Vl + ZKbE VZ (3.14)

where V. is the sum of the gross volumes of all composite cylinders

and V2 the remaining volume. From (3. 3) the actual strain energy is

€ * o
U = 2K 23€ v (3.15)

where V = V1 + V2 is the total volume. Substituting (3.14) and (3.15)

%* *
into inequality (2. 19) the following upper bound K 23(+) is obtained for K 5

16




=K (mkvl + VZ) (3.16)

where \2 and v, are the fractional volumes of Vl and V2 relative to V

and the subscript (h) denotes hexagonal array. From the geometry of

the hexagonal array

v. = — _ T 0,907 (3.17)

! 2 /3

v = 1 -V (3-18)

For lower bound construction the stress system associated with

(2.2) is chosen as

° - 46°.. = ¢° (3.19)

o . . .
A stress g is needed to prevent € .. Its actual magnitude is

11 11

immaterial for the present analysis since it does no work, The
remaining stress components vanish, The stress system (3.27) is

applied throughout V_, whence on the composite cylinders a constant

X
radial stress Uo is produced. Composite cylinder analysis can now
be carried out by the same method as before, Bound construction

follows by calculation of the ''stress energy" U9 associated with the

present admissible stress system and use of inequality (2,20). From

(3.19), (2.6-11) and (2. 12), the true energy density now has the form

wo - @ (3.20)

17



The lower bound is found to be

K
*(-) b
K23(h) = —V-I——----—-— (3.21)
— + v
mk 2

where m,, v. and v, are given by (3.8), (3.17) and (3. 18) respectively.

k' 1 2
If the fractional volume of the composite taken up by gross fiber volume

2
(including voids) is denoted by \A then by an elementary calculation 8

in (3. 8) is given by

g% - b (3.22)

and thus from (3.17) /32 is here given by 1,103 Vi

For the case of random fiber arrangement the general procedure
has been described above, It is not difficult to realize that the procedure
of bound construction is entirely the same as for the hexagonal array

except that V. now disappears. Consequently the bounds are obtained

2
by setting v, equal to zero and vy equal to unity in (3. 16) and (3,21),
whenee these bounds coincide.
Accordingly
o —
K = Km (3.23)

where the subscript (r) denotes random array. In the present case,

however

B =v ' (3.24)

so (3.23) can be rewritten in the form

18



To W LH+ZV 4/(/+—-4)2v
K" /“//*//vt)/ )O/«b,

v '*'/H/“F ) V +ZV)
f
o plid?) [0+ //-2%}%{ +(”’"”’ )23-5'?»3%

where Fr-07 )y (14,2 zy >[ Ar- ;5,«»27

vy l-vt (3.26)

is the fractional volume of binder material.
While the bounds (3.16) and (3.21) are exact results, the
expression (3,25) is in general approximate. There exists, however,
a very special case when (3.25) becomes exact in the limit. Consider
a cylindrical specimen of reinforced material which consists of circular

composite cylinders of varying sizes, of total volume Vl’ and remaining

binder volume VZ' In all composite cylinders the ratios TP Tyt ory

are the same, The volume V2 can be filled out progressively by such
composite cylinders of smaller and smaller cross sections, Bound
expressions for this case are exactly the same as for the hexagonal
array. Since v, in (3.16) and (3,21) can thus be made as small as -
desired by the filling process, the bounds will in the limit converge

to (3.25). On the basis of this rather artificial case it is to be expected
that (3, 25) will be a better approximation for fibers of varying cross
sections, than for equal fibers, The present discussion also applies

to subsequent results for elastic moduli of the random array.

Results for solid fibers are easily obtained by setting & = 0

in all of the preceding results,

19
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4, The Shear Modulus G23

For upper bound construction the displacements (2.1) are chosen as

o 1 o o 1 o
u:O,u-——‘yx3,u3--£—‘yx2- (4. 1)

and are thus associated with a pure shear strain

o o 1 o
€23 = €3 = 57 (4.2)

and all other strain components vanish,
For lower bound construction the stress vectors (2.2) are

chosen as
™ =90 ; 1° = 7%, ; T° = 7n (4. 3)

The stress vectors (4.2) are equivalent to a pure shear of magnitude °
in the transverse plane. The bounding method is the same as for K 23°
For (4.1) prescribed the macroscopic strain energy density (2. 4) is

easily found to be
€ 1 % o
W o= - G 53 Y (4. 4)
while for (4. 3) prescribed (2. 5) reduces to

2
o

wo o T (4. 5)

e
2G 23

For upper bound derivation (4. 1) is applied throughout V2 and
for lower bound derivation (4. 3) is used, Composite cylinder analysis

in the present case is however much more complicated. Solutions for

20



the boundary conditions here applied have been carried out by the method
of plane harmonics. The method is outlined in section 8 and the results
are given by the following expressions. For random fiber arrangement,

on the basis of the previously used approximation

2(1-v,)
(+) b —€
G,, () = G, (1 - -—-—-—-——vtA4] (4. 6)
1-2v
b
2(1-v.)
-y _ b =0C
G23(1‘) = Gb/l:l + —1—_-2—1}-1:— VtA4 ] (4.7)

where KZ and XZ have to be found from the systems of linear equations
(10-17) and (19-20), (12-17) respectively, given in section 8. The

bounds (4., 6-7) do not in general coincide.

For the hexagonal array the bounds are given by

2(1-v,)
(+) _ b —'¢€
Gasmy < % T Ve ! (4.8)
2(1-v,)
-y _ b —<'o
S23my © Gb/ (1 + Tzo, " Ay (4.9)

-1
where A4€ and A40 are given by the same systems of equations with

Vi

v, replaced by (compare (3, 22)).

Y1
The necessary modifications for the case of solid fibers are

stated in section 8.

21
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5. The Shear Modulus G 1

The strain system associated with (2, 1) is chosen as a pure shear

in XIXZ directions

o o 1 o

€132 5 €21 5 77 (5.1)

with all other strains vanish, With addition of a rigid body rotation dis-

placements (2, 1) can then be written in the form
u, = 0 ; u =Yx ; u =0 (5.2)

Using (5.1), (2.6-11) and (2, 14), the strain energy density (2. 4) assumes
the form

€ 1 %* o
W= Gy (5. 3)

The stresses associated with (2,2) are chosen analogously as a

pure shear in x X, directions:

1

C o o
= = T
o 1, o (5. 4)

and the remaining stress components vanish, The stress energy density

(2.5) then assumes the\form

(5.5)

For upper bound construction, for the hexagonal array, (5.2) is

applied throughout V_ and thus to the composite cylinder surfaces., In

2
cylindrical coordinates referred to composite cylinder axis, (5,2)

transform to the following displacement boundary conditions

22



be:-"yoz sin 0 ; ubZ =0 (5. 6)
)

b o
u = vzcosbB; u
r
(r=rb
For lower bound construction (5. 6) is applied throughout VZ’ whence on
the surfaces of the composite cylinders the following stress boundary
conditions are obtained in cylindrical coordinates
o
o =O;cre=0; o = T cos B (5.7)
(r=r,)
The other boundary conditions to be satisfied in both cases are displace-
ment and stress continuity at fiber -binder interface Tar and vanishing
of stresses at void surface r =r . To the authors' knowledge a solution
to the boundary value problems described above is not to be found in the
literature. A closed form solution has been here derived., The method
is outlined in section 9, Here only those quantities required for strain

energy calculation will be given. For displacement boundary conditions

(5. 6) the boundary stresses at r =r are!

b b _ . b o
o_. = 0 ; 0. = 0 ; 0., = Gme‘y cos B (5.8)
where
nUfaz)(1+32)+(1+a2)(1-32)
e} 3 2 73 7 (5.9)
n1-a")(1-8%) + (1+a°) (1+B7)
Here
G
n= — (5.10)
b
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and @ and B are given by (3.9). The strain energy stored in a composite
cylinder is calculable in terms of (5. 6) and (5. 8) and is given by

2

1 o
UC‘— -—Z—Gme‘y VC (5.11)

where VC is given by (3.13). For stress boundary conditions (5.7) the

surface displacements at r = r, are found to be:

(5.12)

The strain energy stored in a composite cylinder is then given by

U = =—2 Vv (5.13)

All the informauion necessary for bound construction is now available
and the method is exactly the one employed above. For the hexagonal

array the results are

G 1(h) Gb(val + vz) (5.14)
. G

¥ () _ b

G 1(h) = -‘—,—1———— (5.15)
H‘l—(-} +V2.

where v1 and v, are given by (3. 17) and (3. 18), respectively and 132
in (5.9) is given by (3.22). For the random array, on the basis of the

previously used approximation, the bounds coincide and are both given by
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2 2
- n(l-o )(1+vt)+(1+a )Vb
Gl(r) = Gb > 5 (5.16)
n(l -« )vb+(1+a )(1+vt)

where again v, is the fractional volume of gross fiber volume and vy

the fractional volume of binder material given by (3.26). For solid

fibers, @ = 0 in (5.9) and (5. 14-16),

*

%
6. Longitudinal Young's Modulus El and Poisson's Ratio v,

The cylindrical specimen is subjected to uniaxial strain in fiber
direction. Accordingly the strain system associated with (2.1) is
chosen as:

€°11=e°;€°=€°=-ue° (6.1)

0 o o
12 23 31

0
~m
il
m
1]
o

€

The displacements (2. 1) are then given by

u, = € X. ; u® =-u.€ox2 ; uc; = -uiox (6.2)

2 3

The lateral surface of the specimen is not loaded, thus on this boundary

o ‘O i
T, =T, =0 (6. 3) |

The constant W in (6, 1) and (6, 2) is dependent on (6. 3) and will be
evaluated below. The macroscopic strain energy density (2. 4) reduces

here to

1 *¥ o

%
where E1 is given by (2. 15),
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Consider first the case of the random array. The displacements
(6.2) are applied to the boundaries of the composite cylinders. The
boundary conditions of the axially symmetric composite cylinder problem

are then given in cylindrical coordinates by

b o b o
u = -pe€r 5 ou o= € z (6.5)
(r=rb) (z=0,1)

A suitable general displacement solution is

w =A + 2 C(6.6) |
T r r

o
u, = € z (6.7)

Here (6. 6) has different constants in fiber and binder regions and (6. 7)
is the same throughout both regions. There are thus four constants

A,B_,A and B, to be determined. The four necessary boundary

27787 b

conditions are the first of (6. 5), u and L continuity at r= T and

vanishing of O at rar . Furthermore U is evaluated by making
b

0.r vanish at TS . For the present purpose only the average axial

stress Ezz is needed, which is found to be:

- o]
o'zz = mEEbE (6.8)
where 7
W E b Eb(Dl-D3F1)+Ef(D2-D4F2)
TP E b D. - E (D, -D
E Ey E (D) -Dj) + E(D, -D)) (6.9)
Here
2 l+v
1
D, = +a2 e D, = : LN
l-o b
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ZVZ v
D, = f2 154=2Vb2'?;t—
1 -a b

F,= vb fEf+ f}g : (6.10)
N Bt B N
v
Y

and v, is the fractional volume of gross fibers, vy is given by (3.26)
and Ve = (1 -Otz) v, is the fractional volume of net fiber material
(o0 is defined by (3.9)).

Since Grr was made to vanish at r= rb the strain energy stored

in the composite cylinder is simply

€ 1 02 ‘
UC = 5 mEEb € Vc (6.11)

where (6, 8) has been used. The displacement fields in all composite
cylinders are novs./ an admissible field. Using (2.19) as previously with
(6.11) and (6. 4) adjusted to the whole specimen volume, mEEb is
obtained as an upper bound for E*1 .
For lower bound construction the specimen is subjected to

o o
Y (6.12)

on it's faces and (6. 3) on the lateral surface., The macroscopic stress

energy density (2.5) is now

g (o)
wo - : (6.13)
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The composite cylinder boundary conditions are now

o =g’ s° = 0 (6. 14)

(Z:O,l) (1‘=1‘b)

Because of St. Venant's principle, at sufficient distance from the fiber

ends the solution is the same as the previous one with

€ = G (6. 15)

Using (6. 15) in (6, 11) the stress energy stored in the composite cylinder

becomes
o c02
U = e=——— V
c ZmEEb c

The energy discrepancy due to the St, Venant approximation is
insignificant because of the very large length to diameter ratio of the
composite cylinder. The stresses in all composite cylinders are now
admissible. Using (6. 13) and (6. 16) adjusted to specimen volume in
(2.20), m_ E, also becomes a lower bound for E*l . Thus to the order

E b

of approximation of the random fiber array model

E = m_E (6.17)

Unfortunately (6, 17) is a very unwieldy expression, However, inspection
of (6.9) shows that the fraction on the right side is different from unity

_only because F1 # F_ (see last eq. (b.10). For most practical

2
purposes the fraction seems to be close to unity and it can thus be

concluded that the ''law of mixtures"
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E 1 = VfEf + VbBb (6.17a)

is a good approximation to {(6.17). For l/f = Vb {6.17a) is exactly equal

to (6.17). In fact for equal Poisson's ratios (6. 17a) is an exact result

for any macropcopically homogeneous fiber array regardless of

transverse section geometry.

It is evident from the first three strains in (6. 1) that W is the

e
Poisson's ratio Vv 1° Since for the random array the bounds coincided

the value of 4 determined to make O, vanish on the composite cylinder

b3

boundary gives V to the order of approximation of (6.17). The result

1
is
% veEg Ly + v EpLy Yy
voylr) v.E. L. +v. E L (6.18)
£9573 T Ve T2
where
L =2v_(1 v.z) + v, (1+v)
17 VT Yy b b’ b
L =v[(1+v)a2+l—u S 2wl ] 7»(6 19)
2 t £ £ £ .
L =2(1—l/2)v +(1+v))v
3 bVt b’ Vb

and the rest of the notation is identical to the one used in (6,9-10).
Note that for Vb = Vf , (6.18) is also equal to Vb = vf , regardless of
the values of the phase Young's moduli,

For hexagonal arrays it can be shown by the same method as

%
previously used that the uppér and lower bounds for E , 2re given by
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% (+ '
E l(;)) = Eb(m EV1
R
1(h) vy
; + v2
>
Here
. s
1- Vb - Zvl(r)
p = >
1- Vb - ZVb

and Ve Vv are given by (3,17-18).

2

+ pv,) (6.20)
(6.21)
(6.22)
Th i d * i
e prime on mE an Vl(r) in

(6.20-22) indicates that these quantities have to be computed by replace-

v
ment of v, and v
t f v
Vt 1
-, F =V
1 - , or Uf b the upper

%
is an exact result for E1 of the he

any Poisson's ratios El

to the lower one.

£
For the Poisson's ratio Vl

is more complicated and bounds cannot be directly obtained.

sk
case V
1

3
using (2.16). Bounds for C 11

b3
can be bounded by use of bounds on K

will be given below,

v

by _t and ;E— , respectively, and of vy by

1
bound (6.20) reduces to (6.17a) and

xagonal array, It is believed that for

%
is considerably closer to the upper bound than

of the hexagonal array the situation

For this

E’ ac”
23’ ©~ 1 " 11°

Because of this

£

indirect bounding procedure the bounds on V | are further apart then

the bounds obtained by direct methods and they may be of little practical

value.
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*
7. The Modulus C 11

*
The modulus C 11 can be treated by assigning to the specimen a

uniform macroscopic stress or strain in X direction and preventing
L . = o
lateral deformation in the X,%q plane by a rigid enclosure. For €, ° €

the energy density (2, 4) reduces in this case to

€ 1 £ 02

while for Ell =0, the energy density (2.5) reduces to

w? - 9 (7.2)

%
The bounding procedure is completely analogous to the one used for E 1

%

For the random array C .. can be immediately written down in the form

11

b3 %k % E3
Ciir T Fun T A ¥ 23 (7.3)

%
which follows directly from (2.16). Here E is given by (6.9) and

1(r)
y (3.25).

(6.17), v by (6.20) and K

1(r) 23(r) b

For the hexagonal array the bounds are given by

X E (1-v)
* 0 (4) 1k , b b
“nm * Cuw 1t Teg ) 2 (7.4)
£ (o) !
C 11(h) v v, (7.5)
+
T E
Cll(r) b

31




Here v, and v, are given by (3.17-18), q is given by the expression

2
g = 1-4vn + 2(1 -Vb)n
where
2w K
14
n = 1(r')* 23(r) (7. 6)
Cll(r)

The primes on the elastic constants in (7, 4-6) mean that they are com-
puted from (3.25), (6.9) and (6, 18) with modified Ve Ve Otz and v}, a8
listed after (6,22).

8. Shear of Composite Cylinder in X,%g Plane

A convenicnt form of solution is in terms of plane harmonics
(compare Love [11], p. 270. Goodier (12] ). Plane harmonics are
homogeneous polynomials which satisfy the two dimensional Laplace
equation. For the present purpose only the following plane harmonics

are needed:

dz = X,Xg (8.1)
X. X

4., = 24;3 (8.2)
I

The displacement vector is given in terms of these by

2 4 3 2 4
5 u + A3rfu +A4r u (8. 3)
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where

ob = Vg, (8. 4)
o = 2 V¢2 t o, d,r (8.5)
W os Ve, (8. 6)
A I (8.7)

where y is the gradient operator and Al, AZ’ A3, A4 are arbitrary

nondimensional constants. The parameters @, and ® _ are defined by

2 2

O 2(3-4v)
0!2 = - TZD— (8. 8)
a 2(3-4v) (8.9)

27 T122v

where V is the Poisson's ratio. From the displacements, strains can
be calculated by differentiation. The stresses are then found by Hooke's

law and stress vectors from Ti = Gijnj' The ni are here the components

of a unit normal to a circular cylindrical surface and are given by

X, .
i . . .
n, = - i=2,3, There are two such displacement solutions, one for

binder region r, Srsrf and the other for fiber region T srSrb. In

each of these the appropriate elastic constants of the material have to
be used. There are thus eight arbitrary constants to be determined,

four of these for binder region are denoted by A and the remaining

k

four for fiber region by B k=1, 2, 3, 4, In addition to the boundary

k;

conditions on TIT given by (4. 1) or (4, 3) stress vector and displace-
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ment continuity at fiber-binder interface r = rf and vanishing of stress-

vectors at void surface r =.r , must be satisfied. These boundary con-
o

ditions provide exactly eight linear equations for the eight unknowns.

For boundary conditions (4. 1) these equations are:

-1 =€ 2 —€

—€
Al+vt A2 +vt A3 +VtA4 1
3-4yp v
b -1 —€ 2 —¢€ t —€
"3V AR Ay tT A0
b b
A+ A+ RS+ RS LB -Bf-BS-B
172 3 4.7 2 3
3-4p 3.4y
b —€ — € 1 — € f —¢
- AS-2a% 4+ A€+ B
32, T2 3T, ta T3y s
—€ 3 —€ —€ 1 —€ —€
VP 3ap B3Rt Ay By
b b
n_ =€
T 1-2v B,=0
£
1 —€ — € 1 —€ ]
- A. +2A. - A¢y ——
3-2v, 2 3 T Ty, T4 3e2y,
—€ 3a2 —€ 4 —¢ a = =—c¢€
Bi+t35, By -3¢ Byty,- B0
t £
2 -2
¢ —c 4 —€¢  q —c _
-3, By T2 3" T2y, By 70
£ £
—€ =€ 2 € 2 €
whereAk,Bk— 5 Ak’_oBk
y y
and n = Gf
Gy,

(8.17)

(8,18)




& is given by the first (3.9) and the superscript € denotes displacement
boundary wvalue problem.,
For boundary conditions (4. 3) the solution is analogous. Equs.

(8.10) and (8.11) have to be replaced by

-0 3 -1 —0o 2 —~0 t —~C
—_—— - =1 .
Al + 330 vt A2 3vt A 3 + T2 A 4 (8.19)
b b
1 1 =0 2 =0 "t —o
" 33 vt A2+2vtA3— 150 A4=O (8.20)
b b
-0 =0 ZGb o] 2Crb o
Here A, B, =—— A", —— B and equs. (8.12-17) remain the same,
k k To k To k

The constants now have the superscripts 0to denote stress boundary
value problem.,

The composite cylinder strain energy can in each case be cal-
culated from the boundary displacements and stress vectors. In each
case the strain energy is expressible in terms of the constant :‘:4 only.
The bounds (4. 6-9) then follow immediately.

For solid fibers the solutions have to be modified, In this case
the solution for the fiber region has no singular part at r = 0, Accordingly

the constants B, and B

3 4 vanish and eqs. (8. 16) and (8. 17) have to be

deleted. The expressions for the bounds remain unchanged.

9. Shear of Composite Cylinder in X%, Plane

The boundary value problems formulated in section 5 can be solved
in terms of displacement fields for which the volume dilation vanishes.

In this case the cartesian equations of elasticity reduce to
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Vzu =0 (9. 1)

- wherei=1, 2, 3 and VZ is the three dimensional Laplacian. For the
present purpose the following simple displacement solution in cylindrical

coordinates is sufficient

=u = B
u, = Z—(Ar+r ) cos B (9. 2)
ur:Czcose (9. 3)
ue =-C zsin 8§ (9.4)

where A, B and C are arbitrary constants, The stresses associated

with these solutions are

OrZ=G(A+C - } cos B (9. 5)
r
- -GA+C+ 2 )sinb (9. 6)
Uez rz sin .
o =0,,.=0 =0 =8 (9.7)

There are two such solutions, one for binder and one for fiber region,
The boundary conditions to be satisfied are either (5.6) or (5.8) on
r=r, displacement and stress continuity at r = T and zero stresses
onr=r . All boundary conditions can be satisfied and the unknown
constants are uniquely determined. On the terminal sections of the
cylinder, conditions are only satisfied in the St. Venant sense. Since
the cylinder is very long this is of consequence. For (5.6) prescribed
the surface stresses are given by (5. 8) where the first two of (5.8) follow
from (9.7). For (5.7) prescribed the surface displacements are given
by (5.12). Note that the last of (5.12) is a consequence of the elimination

of a rigid body rotation of the composite cylinder.
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10, Numerical Results

The nature of the results is indicated by the curves of figs, 3-7
in which the effective elastic constants of glass fiber reinforced plastics
are plotted as a function of v, o the gross directional volume of fibers.
Results are presented for o = 0, solid fibers, and for a = 0.8, hollow
fibers for which the inner radius is 80% of the outer radius. The com-
putations are all for random arrays, except for the case of the shear
modulus G*l, where the hexagonal bounds are also presented, It can be
seen from fig. 3, that although the fibers are relatively ineffective in
the transverse direction as compared to the longitudinal direction, the
modulus, E*Z, is still significantly higher than the modulus of the binder

. S
material for practical fiber volume fractions, The variation of v

23
shown in fig. 4 indicates that for solid fibers the effective Poisson ratio
is larger than that of either constituent. For hollow fibers, values
significantly lower than that of either constituent are indicated. As
shown in fig.' 5 the hexagonal array bounds contain the random array

£
bounds which here coincide. The variations of E1 with Voo shown in

fig. 6, are practically linear and are given with good accuracy by the
"law of mixtures'' (6.17a). Also the longitudinal Poissons ratio, v 1*,
appears to be well approximated by the‘ "law of mixture'' result,

A second parametric study indicates the interaction of fiber
geometry and properties upon composite properties. Fig. 8 shows the

transverse elastic modulus for hollow fiber composites, of fixed binder

volume fraction, as a fraction of the fiber radius ratio, &, The bounds
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are shown for two values of Poisson's ratio of the fiber material. It is
seen that this parameter is of importance for large fiber radius ratio
values, A similar comparison is made in fig, 9 for the transverse
effective Poisson's ratio, y*23. This quantity is extremely sensitive
to both geometry and individual Poisson ratio values,

An interesting sidelight is the result for equal fiber and binder
properties; that is a material with holes. Transverse properties for
such a material are shown in figs. 10 and 1l.

For a given geometry the effect of mechanical properties is
studied by fixing the matrix properties and varying the Young's modulus
of the fiber, The results for three principal moduli are shown in figs,
12-14. As expected, the longitudinal modulus, El’ increases linearly
with the fiber modulus. The longitudinal shear modulus and the trans-
verse Young's modulus increase rapidly for low values of fiber modulus
and then level off and approach the value for rigid inclusions. At high
values of fiber modulus a change in the binder modulus has a far more
significant effect upon G:; and E2 than a change in fiber modulus. This

is shown more clearly in fig. 15 where the reference properties for

N is indicated.

glass reinforced plastic are perturbed and the effect on E
It would be of great importance to compare the present theoretical
results with experimental findings. To the author's knowledge published

experimental results are available only for El These agree generally

very well with the law of mixtures.
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11, Conclusions

Results for the elastic moduli of fiber reinforced material have
been here derived for hexagonal fiber arrays of equal cross sections and
for random arrays of fibers whose diameters may be unequal. It is
not obvious which of the results apply best to a real fiber reinforced
material., While for hexagonal arrays the results are rigorous (except
for the insignificant effect of non exact fulfillment of fiber end conditions),
no real material satisfies such stringent symmetry conditions, On the
other hand the random array analysis, which is based on a model which
is much closer to reality, is not rigorous because of the geometric
approximation of irregular shapes by circles. The special case when
these results become exact in the limit (see discussion at end of section
3) seems to be of theoretical interest only.

However, the random array results are much to be preferred
because of their much simpler form and the coincidence of the bounds,

%
except for G 23(x)°

It should be noted that the distance between the
hexagonal array bounds can become quite appreciable for elevated
ratios of fiber to binder elastic moduli, The advantage of the random
array results is even more predominant when it becomes necessary to
derive results for the other effective elastic moduli (such as (2. 16-18)
in terms of the expressions here given, For such cases the hexagonal

array bounds may become very far apart and thus of little value. The

*
case of Yy discussed in section 6 is a good example.
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Finally, it should be inquired whether the present models of a

fiber reinforced material include sufficient information for unique de-
termination of it's effective elastic moduli. The hexagonal array is
certainly uniquely determinate in this respect because of its periodic
geometry. However, for a random array it is to be expected that the
statistical details (correlation functions) of fiber arrangement will
enter into the results. The present method avoids this problem by
use of the geometrical approximation involved in the random array
model, and thus gives one approximate answer for different statistical

arrangements of fibers.,
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B. ORIENTED VOID MATERIALS
1. Introduction

The study of oriented voids serves a double purpose., The first
is to determine whether by the judicious removal of material the effective
density may be reduced with little or no reduction in mechanical properties.
The second is to provide a more general insight into the importance of
angular orientation on load-carrying ability.

The study made here was a fairly exhaustive one; as will become
apparent, to absorb all the implications of the results requires tedious
study. In the following discussion every effort will accordingly be made
to extract only the significant implications, but the curves calculated to
yield the results will be presented in toto.

2. Analytical Model and Method of Analysis

The model used for analysis is sketched in figure 16, Starting
with a regular array of round holes (fig. 16a), we extracted the repeating
cross-section (fig. 16b) and then allowed the semi-circular grooves on
opposite sides to be skewed at equal angles as shown in figure 16c., Thus
the model becomes similar to a plate having integral, waffle-like stiffening
such that the rib height is equal to the fillet radius between ribs and plates,
Accordingly, the analysis of reference 13 was employed to find the plate
stiffnesses.

In the analysis of stretching stiffnesses in reference 13, two
undefined constants are employed which are associated with the transverse

effectiveness of the integral ribbing. These constants, labelled 8 and 8°,
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denote the fraction of the rib material active in resisting stretching and
shearing deformations respectively. For true waffle plates, 8' has been
evaluated (ref. 14). For the oriented voids considered here, the fact
that the tops of all '"'ribs" é.re joined integrally with those of the next
repeating element requires thata somewhat higher value of 8' be used than
that of reference 14 to take into account the mutual restraints provided
by these interconnected ribs. No attempt has been made here to evaluate
this higher value of B8', and no better evaluation of § has been attempted
than that suggested in referencel3. Really the exact evaluation of 8 and
B' is unimportant to the general trends desired by the present study.
Rather, it is of greater interest to allow 8 and 8' to vary over their
extreme limits and determine the resulting effects on the material
stiffnesses. This variation has therefore been made, and also some
calculations for Band B' equal to the values derived from reference 14
as approximately representative of realistic stiffnesses have been in-
cluded for comparison.,

3. Ranges of Proportions Considered

Calculations were made of stiffnesses for five series of con-
figurations of oriented voids in order to survey systematically the effects
produced by various characteristic changes. These five series of cal-
culations comprised the following:

(1) Determination of the principal stretching stiffness, El’ for

various angles of orientation, 6, of the holes. Values of 8 and

B! between zero and full effectiveness were considered.
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(2) Evaluation of the importance of transverse shearing effectiveness

(as measured by 8') for all angles § of the holes, and for all

directions of stretching relative to the principal stiffness direction.

(3) Evaluation of ifnportance of both transverse stretching and

shearing effectiveness for all angles 6 and all stiffness directions.

(4) Study of the effects of varying Poisson's ratio for all angles of

orientation of the voids and ''representative'’ values of transverse

effectiveness.

(5) Study of combined effects of variation in angles, transverse

effectiveness, and Poisson's ratio.

Throughout all calculations a hole size and spacing was used such
that 40% of the '"original'' material was ""'removed' by the holes. The
holes were located in square arrays as suggested in figure 1. Sample
calculations for greater or lesser void percentage revealed that the
magnitude of the variations under investigation were simply proportional
to the percentage of voids, so that the 40% values may be considered as
representative. The use of rectangular arrays instead of square can be
used to increase the stiffness in one direction at the expense of that at
right angles thereto. The effect is again simply proportional to the
relative amounts of material in the two directions, and it will not be
considered further here,

4, Results
The results of the computations are plotted as figures 17 to 21

inclusive. The results are all presented as the ratio of stretching stiffness
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to the stretching stiffness in the principal direction of an element having
one-way holes aligned in the direction (8 = OO), and a Poisson's ratio,
K, of 0.3. Each Figure contains the results of one of the five sub-in-
vestigations described in the preceding section, and the following sum=~
marizations will categorize the results in corresponding sequency.
(1) Angular orientation - Unless the transverse shearing
effectiveness (measured by 8') is high, the principal stretching
stiffness, El' falls off rapidly as the angle of the holes (e) is
increased from zero degrees. If the material is 100% effective
against shearing, however (8'=1+H ), E1 increases to a
maximum at 8 = 22.5°.
(2) Even with 100% transverse shearing effectiveness, a material
with oriented voids is still highly anisotropic if the transverse
stretching stiffness is low, especially for low angles of 8 (i.e.
holes mostly in the same direction). Isotropy is improved at
9 =30° or 45°,
(3) As both Sand ' increase, as would be expected, the material
as a whole becomes more effective and more nearly isotropic. The

The most nearly isotropic material is achieved, at angles 6

somewhat less than 450, but for no angle of the voids or of loading
E

does the material exceed 100% effectiveness (i.e. < 1,0).

lmax
(4) For a material with oriented voids, Poisson's ratio is a
multiplier of anisotropy. Abnormally high values of ¥ produce

greater than normal variations of stiffness with changing hole or

load angle. -
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(5) As B, B', and M are varied from one extreme to another, the

} resulting stretching stiffness and anisotropies vary over a wide
range. The upper limits reached are in all cases determined by
the values of Poisson's ratio while the lower limits appear to be
primarily a function of the transverse stretching stiffness as
measured by 8. Whether or not the removal of 40% of the material
as holes reduces the stiffness to density ratio by more or less than
40% depends upon all of the variables. If both B and B' are zero,
the reduction can not be kept below 40% for all load incidence angles,
but it can for angles up to as much as 60° to the principal stiffness
direction. For values of 8 and 8' which can perhaps be considered
realistic (refer back to fig. 20), 40% of the material can be removed
with less than 25% reduction in stiffness/density ratio for all angles
=f load incidence.

5. Conclusions and Discussion

The first and perhaps most important conclusion that may be drawn
from the many parametric variations considered is that the stiffness-to-
density ratio of a material can not be increased by drilling holes in it,
unless by so doing the Poisson's ratio for the material is increased. Even

such a hypothetical increase would be small, and would require a prior

effectiveness.

On the other hand properly oriented holes can be used to reduce

density with little or no loss in stiffness-to-density ratio, particularly if

knowledge of load application direction and/or high transverse material
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a limited range of angles of load application is to be accommodated.
The fact that a possible increased stiffness-to-density ratio for oriented
rods was suggested in ref.15 must be simply a result of the assumptions

employed as a basis for the calculations made therein.
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C. EXPERIMENTAL STUDIES

Studies of elliptical fibers and particle-matrix composites are
described below.

1. Elliptical Fibers

The evaluation of the transverse modulus, E for fibrous

>:<2,
composites indicated that, for geometry typical of filament wound
structures, the transverse modulus is not negligible relative to the
longitudinal modulus. Thus, any improvement in this transverse modulus
could reflect itself as a significant improvement in the performance of
biaxially stiffened composites. Possible techniques for doing this include
improving the matrix modulus as shown in fig. 15 or changing the fiber
cross-section to improve one transverse direction,

The possibility of using elliptical filaments instead of round ones
is not new, but it has never been adequately investigated. Such questions
as: What is the transverse effectiveness of elliptical inclusions of various
aspect ratios? and How long need the ellipse be to permit substantial load
transmission into it by shear from the binder ? have not been answered.
In order to evaluate the first, an experimental approach has been started
using large, aluminum inclusions in an epoxy matrix. Photographs of
the test specimens are shown in fig. 22, Strain measurements were
made with Tuckerman optical gages between interior inclusions as
identified in the figure. The effective modulus was defined as the average
stress over the cross-section divided by the strain in the indicated gage

length. The resulting values are shown in fig. 22. It is seen that ellipses
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with an aspect ratio of four provide an 80% increase in transverse
stiffness at a fiber volume fraction of less than 50%. The potential
for improved performance of fibrous composites utilizing shaped
fibers appears to warrant further consideration,

2, Particle Composites

The potential for improving composite performance by adding
stiff particles to the matrix material has beenstudied experimentally for
several applications, As discussed previously, an improvement in matrix

‘ modulus can provide a substantial improvement in the transverse Young's
modulus of a fibrous compoéite. Also an increase in matrix modulus can
result in an improvement in compressive strength due to the improved
support stiffness provided for the fibers. Further, the combined varia-
tion of stiffness and density may lead to a low density material suitable
for large dimension, low load, compression applications. The experi-
mental results for various additives to an epoxy plastic matrix are
described below.

Glass particles

Glass particles ranging in characteristic dimension from 10 to
200 microns were used in an epoxy matrix, The compression modulus
was measured on a specimen with volume fractions of 0, 284 of glass,

0. 660 of epoxy and 0.056 of void spaces. The results are given in the

following table:
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Glass Particle-Epoxy Composite

Epoxy Glass-Epoxy

Density (1b/in?) 0.0462  0.0565

Young's Modulus (10° psi) 0. 46 1. 04
(compression)

7 Modulus/Density Ratio 1.0 1.8
(arbitrary units)
o
/' (Modulus)!/2/Density Ratio 1.0 1.0 .
. (arbitrary units)

Alumina particles

The effect of the addition of small solid alumina particles (900
mesh and smaller) upon the modulus of an epoxy was measured. The
test specimens are shown in fig, 23, The loaded epoxy contained
40. 9% alumina by volume and the results are shown in the following

table.

Powdered Alumina-Epoxy Composites

Epoxy Alumina-Epoxy

Density (1b/in’) 0.0464 0. 0746
Young's Modulus (10® psi) 0.52 1. 32
(compression)
Modulus/Density Ratio 1.0 1.6
. (arbitrary units)
(Modulus)}/ 2 /Density Ratio 1.0 1. 6

(arbitrary units)
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Hollow alumina particles

The attainment of a relatively stiff but low density material

through the introduction of voids was studied by using hollow alumina

spheres as a stiffening material in an epoxy matrix. The average

specific gravity of the spheres was 0.73 and the samples contained 57%

spheres by volume. The sphere diameters were between 0, 065 and

0.131 in,

The specimens are shown in fig, 24 and the test results in the

following table:

Hollow Alumina-Epoxy Composites

Epoxy Alumina-Epoxy

Density (1b/in3) 0.0464 0. 0341

Young's Modulus (10© psi) 0.55 0.84
(compression)

Modulus /Density Ratio 1.0 2.1

(arbitrary units)

(Modulus)!/2/Density Ratio 1.0 1.7

Further studies of these materials under tensile loads are

described in section IIIC. From the above results, it can be seen that

the addition of alumina and glass particles produced a significant and

expected increase in the matrix modulus. It appears that a loaded

plastic may be a useful constituent in a fiber glass composite. The

question of proper geometry to achieve both suitable mechanical

properties and also proper viscosity to permit fabrication remains

unanswered,
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The low density alumina material offers improved stiffness at

reduced density, but has low strength. Failure for the test specimen

occurred at 7200 psi.
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ITI, TENSILE STRENGTH

A frequent criterion to be used in the selection of composite
materials is the ultimate tensile strength of the material, Section A
contains an analysis of the tensile strength of uniax{ally reinforced
fibrous composites. The validity of the analysis is tested by the
experimental program described in section B, The modification of
matrix properties to improve composite strength is treated in section

C.

52



A. FIBER REINFORCED MATERIALS
1. Introduction

Composite materials consisting of a ductile matrix reinforced
by high-strength, high-stiffness fibers are materials of considerable
engineering practicality, The strength of such materials under tensile
loads has been studied theoretically with only limited success. An
analytical understanding of the failure of such materials is desirable,
not only to provide adequate design methods for existing materials, but
also to enable the definition of desirable characteristics of constituents
of composites for future applications. The problem treated here is the
failure of a composite, consisting of a matrix stiffened by uniaxially
oriented fibers when subjected to a uniaxial tensile load parallel to the
fiber direction.

The failure of a uniaxially stiffened matrix has been studied
previously by several investigators. Their findings are summarized
in [16]. The simplest failure model treated assumes that a uniform
strain exists throughout the composite and that fracture occurs at the
failure strain of the fibers alone (e.g. [ 17]). The effect of a non-
uniform strain distribution was studied in [18] which suggests the in-
fluence of fiber flaws on composite failure. In [ 18], failure occurs
when the accumulation of fiber fractures resulting from increasing load
shortens the fiber lengths to the point that further increases in load
could not be transmitted to the fibers because the maximum matrix shear
sttess was exceeded. Thus, composite failure resulted from a shear
failure of the matrix,
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In the present paper fibers are treated as having a statistical
distribution of flaws or imperfections which result in fiber failure at
various stress levels. Composite failure occurs when the remaining
unbroken fibers, at the weakest cross-section, are unable to resist
the applied load. Thus, composite failure results from tensile fracture
of the fibers. The composite strength is evaluated herein as a function
of the statistical strength characteristics of the fiber population and of
the significant parameters defining composite geometry. A numerical
example is presented for fiber-glass reinforced plastic composites
utilizing the existing data for tensile strength of glass fibers.

2. Description of The Model

The composite treated is shown in Fig. 25 and consists of
parallel fibers in an otherwise homogeneous matrix. The fibers are
treated as having a statistical distribution of flaws or imperfections
which result in fiber failure under applied stress. The statistical ac-
cumulation of such flaws within a composite material results in com-
posite failure. The computation of stress is quite complex when there
are discontinuous fibers present. These internal discontinuities result
in shear stresses which may locally attain very high values. An exact
evaluation of this stress distribution for the complex geometry of circular
cross section fibers arrayed within a matrix and for inelastic matrix
stress-strain characteristics appears to be unattainable from a practical
viewpoint. Such stresses were evaluated in [19] for idealized fiber
shape and without the effect of surrounding fibers. An approximate solﬁtion,
similar to that of [ 20 ], but including the effect of surrounding fibers is

obtained herein.
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In the present model, the extensional stresses in the matrix are
neglected relative to those in the fiber and the shear strains in the fiber
are neglected relative to those in the matrix., This approximation of
the model is considered appropriate for fibers which are very strong and
stiff relative to the matrix. In the vicinity of an internal fiber end, in
such a composite, (fig. 25) the axial load carried by the fiber is trans-
mitted by shear through the matrix to adjacent fibers. A portion of the
fiber at each end is therefore not fully effective in resisting the applied
stress. As the fibers are loaded, failure occurs at points of imperfection
along the fibers. Increasing load produces an increasing accumulation
of fiber fractures until a sufficient number of ineffective fiber lengths
combine to produce a weak surface and composi’ge fracture. Basically,
then, the model considers fibers which fail as a result of statistically
distributed flaws or imperfections, and composites which fail as a result
of a statistical accumulation of such flaws over a given region.

At some distance from an internal fiber break the fiber stress
will be a given fraction, ¥, of the undisturbed fiber stress O'a. One
may define this fraction of the average stress such that the fiber length,
5, over which the stress, ¢ , is less than Oa may be considered in-
effective. Thus, this ineffective length, 6 , is defined:

c(6)-= po_
Then, the composite may be considered to be composed of a series of
layers of dimension, 0 . Any fiber which fractures within this layer,

in addition to being unable to transmit a load across the layer, will also
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not be stressed within that layer to more than the stress, oa. The applied
load is treated as uniformly distributed among the unbroken fibers in each
layer. The segment of a fiber within a layer may be considered as a link
in the chain which constitutes the fiber. Each layer is then a bundle of
such links; and the composite is a series of such bundles.

The treatment of a fiber as a chain of links is appropriate to the
hypothesis that fracture is a result of local imperfections. The links may
be considered to have a statistical strength distribution which is equivalent
to the statistical flow distribution along the fibers. The realism of such
a model is demonstrated by the length dependence of fiber strength. That
is, longer chains have a high probability of having aweaker link than shorter
chains and £his agrees .with experimental data (e.g. [21]) which demonstrate
that fiber strength is a monotonically decreasing function of fiber length.

For this model, the link dimension is defined by a shear lag type
approximate analysis of the stress distribution in the vicinity of a broken
end. The statistical strength distribution of the links is then expressed as
a function of the fiber strength-length relationship, which can be experi-
mentally determined. Then these results are used in a statistical study
of a series of bundles of links to define the distribution of bundle strengths.
(Statistical techniques for a series of bundles have been studied in [22]
for application to particle reinforced composites.) The composite fails
when any bundle fails and the composite strength is thus determined as

a function of fiber and matrix characteristics., These aspects of the

problem are discussed in further detail below.
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3. Fiber Strength

The statistical distribution of link strength is obtained from the
fiber strength distributions., Consider links characterized by the dis-
tribution function f(0) and the associated cumulative distribution function
F(o) where:

F(o) =Sp flo) do (1)
o
For n such links forming a chain which fails when the weakest link fails

the distribution function g(o) for the chain is defined by:

g(@ = nf(c) [ 1 - Fg 177 (2)
That is, g(o ) dO is the probability that one link fails between ¢ and
0 + do(which is equal to £(0) do ), multiplied by the probability that all
remaining (n - 1) links exceed 0 + do (whichis [1 - F (g)] n-l) and
failure can occur at any of the n links., From this, the cumulative dis~

tribution function, G (0 ), for the fibers is obtained:

o .
G(o):jg(c)dc (3)
[e}

J. Go)=1-[1-F (o) 1" (4)

The solution of the inverse problem is desired, That is, given
the fiber data, g (0 ) and G (0), define the link data for a link length, 0,
From eq. (4):
Flo)=1-[1-G(]!/" (5)

and thus from (1) and (5):
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f(o) = 5%'—)— (1 - c;(o)](l/~n)'1 (6)

Cansider fibers characterized by a strength distribution of the Weibull

type (23] : /

B-1 B

g(o) = L aBo exp (-L a0 ") (7)

Tiis form has been shown to characterize the experimental length-strength

relationship of fibers. Using equation (7) in (3) and (6) yields:

B-1

f(o0) =ad 8o exp (-aécB ) (8)

where: L =nb

The constants o and B can be evaluated by using experimental

strength-length data. To do this, consider the mean fiber strength, Uf

for a given length which, is defined by:

[ee]

a'-f = L og(d) do (9

Substituting eq. (7) into (9) and integrating yields:

-1/8 1

I"(1+B

o, = (L&) ) (10)

A logarithmic plot of the available data for -C-Tf as a function of L
will define the constants. Such a plot is presented in fig. 26 for the
data of [21]. The linearity of the data support the choice of the dis~-

tribution function given by eq. (7). The constants are found to be:

o

7.74 x 1072
B =7.70
The constant 8 is an inverse measure of the dispersion of material

strength., Values of B between two and four correspond to brittle ceramics,
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while a value of twenty is appropriate for a ductile metal (22], The

constant &, as seen from eq. (10), defines a characteristic stress level,
-1/8 e tes -1/8, . :

« . For this distribution, & is 305 ksi. A more useful reference

stress level is mentioned in the discussion section.

4, Effective Fiber Length

The definition of ineffective length, 0, involves the determination
of the shear stress distribution along the fiber-matrix interface. The
model used is shown in fig. 27 and consists of a fiber surrounded by a
matrix which in turn is imbedded within a composite material. The latter
has the average or effective properties of the composite under consider-
ation. This configuration is subject to axial stress and a shear lag type
analysis is utilized to estimate the stresses.

Load is applied parallel to the fiber direction. The fiber is as-
sumed to carry only extension and the matrix to transmit only shear
stresses., No stress is transmitted axially from the fiber end to the
average material, Shear stresses in the. average material are considered
to decay in a negligible distance from the inclusion interface.

For equilibrium of a fiber element in the axial direction:

(0}
. T d £ . (12)
2 dz
where T = shear stress in matrix material
O'f = axial stress in fiber

For equilibrium of the composite in the axial direction:
T 2 r 2 r 2
¢ ) ( a " 'b 3 -
(r % L o o) (13)
a r
a
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where o axial stress in average material

a

1l

o applied axial stress

The displacements in the fiber, u_, and in the average material,

f!
ua, define the binder shear strain, ¥, as follows:

ut* - u, = (r
. (

¢ - rf) Y (14)

b

Differentiating eq. (14) twice and using the stress-strain relations

yields:
1 %% 1 Y T &1 (15)
Ea dz Ef dz Gb dzz
where Ea = effective Young's modulus of the composite
Ef = Young's modulus of the fiber
Gb = shear modulus of the binder

Differentiating eq. (13) and substituting the result and eq. (12)

into eq. (15) yields:

2
d > - nr =0 (16)
dz
where
2
T)Z = ZGb 1+ -}E:i <————-rf ) (17)
Ef (rb B rf) (rf) Ea ra2 - rb2

The solution to eq. (16) is of the form

T =Asinhn z+ Bcosh Tz (18)
The boundary conditions are:

T(o) =0

0. (4) =0 (19)
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Gb Erz
A= =
nEav(rb-rf) (r -Ty )} cosh nd
and _
G o r sinh 7 z
r= bt (20)
NE_(r -r) (r_“-r,%) coshnt

From eqgs. {12) and (20):

- 2
o r a Ef cosh Nz
Of = - z 2 2 oshnt ~ 1] 2D
cos
[Ea(ra Ty ) + Efrf ]
Consider r >> r
a b
2G
. 2 2
Sent s —2 (22)
1
and from eq, (21):
CE
_ t cosh Nz
¢ E cosh n4 ! (23)
a
The maximum axial stress is .
52 Ef
(o3 =
£ (o) £ (24)
a
L =

Using the results of this elastic analysis, the stress ratio .® is
evaluated from the ratio of the stress at a distance 0 from the end of a
given fiber to the stress at the midpoint of a very long fiber, The stress

at a point at distance § from a fiber end is:
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OE; cosh 1 (2-0)

hnt
Ea coshn

o, (L-8)= - -1 (25)

The fiber efficiency, ¥ , at this point is therefore defined by:

o (£-9)
¢ = ——— =1-cosh 10 +tanh ML sinh n 0  (26)
o (o)
P
for large 4 :
tanh 74 =1
S, ©=1-coshnd +(cosh2 775-1)1/2 (27)
From which
1+(1 <P)2
h?Mo =t 28
cos 51 - ) (28)
and
1/2
6 _ 1 (v'l/z-l)i— coun) 1+(1-¢)°
d, 23 f G, 2(l-9)

(29)

For the purposes of this analysis a value of ¥ = 0.9 is considered, and
0 is evaluated for this stress r‘atio value. Thus, effective length is that
portion of the fiber in which the average axial stress is greater than 90%
of the stress which would exist for infinite fibers. Fig. 28 shows the
variation of ineffective length with constituent moduli for various fiber
concentrations.

The stresses upon which these results are based are shown in
fig. 29. It is clear that for many composites the matrix shear stresses

will exceed the elastic limit of the material, The point at which the elastic
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} limit is reached is indicated on each curve of fig, 29 for a matrix shear
yield stress of one tenth the fiber strength, Since for high concentrations
most of the curves are above the elastic limit, further inelastic analysis
is required. Note also that the results of this shear lag model differ in
character from those of ref, 20, The difference is attributable to the
addition of the third or average material to the model,

The elastic analysis of this section has been extended to include
the effects of an elastic plastic binder. To do this, consider a region at
the fiber end in which the shear stress is equal to the shear yield stress,
T , thus:

y
2T ’
O‘Z=TL(&-Z) L-b<zs 4 (30)
f
Equation (12) applies for: 0= z < £4- b, The analysis for the elastic

region is unchanged except that the boundary conditions (19) are replaced

by:
T(o) =0
(31)
T(L-b) =T
(£ -b) v
Substitution of (31) into (18) yields
_ sin 7z
T= Ty sin 7M(L - b) (32)
From eqs. (12), (13) and (32) it can be shown that:
- 2T —
o = o _ _Yy cosh Mz (33)

2 Nr_. sinh 4-b
T E T f ! )
f a b
— ) + = |l -\ —
r E r
a f

for0<z< 4 -b
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The length b is evaluated by assuring continuity of stress at z = £ - b,
Thus from eqgs. (30) and (33):

2T b 7 27T
vy -——2L coth n(4-b)

For ra > > r_  this reduces to:

b
_(;—Er
TR E
b = TE T coth {4 - b)
y a
For b<< { :
BEr
f f 1
= - h nt
R T coth m (34)
vy a

Now the ineffective length can be evaluated, as defined by eq. (26)
by using eq. (33). It will be assumed and subsequently confirmed that:
0 >b. Large values of fiber length relative to all other fiber dimensions
will be assumed. The result is:

2
1+ A (38)

coshﬂé:——z—x——

where
A =cosh nd -(cosh2776 -1)1/2 (36)
Simultaneous solution of eqs. (34) - (36) defines the inneffective length.
A limiting case is obtained for a rigid-plastic material. For a

uniform shear stress, the length, 6, required to obtain the full strength
p

of the fiber is:
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is about four times the appropriate elastic value,

5. Composite Strength

With the link length defined, [ by eq. (29) for the elastic case;
eqs. (34) to (36) for the elastic-plastic case; and eq. (37) for the rigid
plastic case] and the link strength characterized by eq. (8), the com-
posite strength can be evaluated. First the strength of the bundle will
be determined, then the composite will be treated as a chain of bundles,
and weakest link statistical theorems will be applied. This leads to the
desired statistical definition of composite strength.

For a bundle of links, Daniels [ 24] has shown that for a large
number, N, of fibers the distribution of bundle strengths approaches a
normal distribution with expectation:

s =om[1-F(0m)J (38)

and standard deviation:

) =0 F(om) (1 -F(om)]‘l/z N'l/2 (39)

B

The associated density distribution function is:

- \2
g_ -0
1 1
wB (O'B) = ———— exp [— > ( B B ] (40)
zpB vam B
The maximum stress is obtained by maximizing the total load.

Thus, for a composite of 400 ksi glass fibers in a 10 ksi plastic
binder, the plastic ineffective length is ten fiber diameters. This value
' Thus:

4 OEI-F(O)]] =0 (41)




For links described by eq. (8}):
F(o) =1 - exp(-a b o’s) . (42)

Substitute (42) into (41):

d
—E;r[O‘exp(-ozﬁoB)]o - 0

1
Q

o =(bg) /P (43)
m

From (38), (42) and (43):

7 =68 VP exp (- (44)

B Ts_)
From (39), (42) and (43):
_ -1/8 1 1 1/2 _-1/2
bgp = («08) [1 - exp (- )] exp (-ﬁ)\ N
(45)
Layers characterized by eqs. (40), (44) and (45) may be con-

sidered as links in a chain and the weakest link theorems can be applied

again. Thus, applying eq. (2) to this case

n-1

X (cc) =nw (cc) [1-8Q (crc) ] (46)

where oc is the composite failure stress, and Xis the associated dis-
tribution function.
The mode of this distribution is found by setting dA /dOC = 0,
This yields:
s 1/2 log log n + log 47

o =o_ -¥_(2logn) "+
c B B B 2(210gn)1/2

(47)

For composite dimensions large compared to fiber cross-section dimen-
sions, N >>1, Therefore:

- 0
d)B
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and the statistical mode of the composite strength o C*, is found to be:

o= (b fe /A (48)

where & and B are the constants defining the link strength and are de-
termined by experimental tests of fiber strength vs. length as described |
previously. 0 is the ineffective length defined by a fiber shear stress
analysis and e is the base of natural logarithms,
The results of section 3 are used in eq. (48) to compute com-
posite strength as a function of the effective length. The predicted
composite failure stress is plotted in fig. 30 for the range of ineffective
lengths of one to one hundred fiber diameters. The range one to ten

generally corresponds to the elastic predictions and the range ten to one

hundred to the inelastic predictions.

Also shown in fig, 30 are the effects of variations in fiber character-
istics. Curves are presented to show the effect of an increase in the dis-
persion, as measured by a 10% change in 8 and of a decrease in the

! /ﬂ. For the

reference strength as measured by a 10% change in a
reference case plotted, the analysis also indicates that at failure the
mean number of fractured fibers per layer is less than 10% and that the
length at which the mean fiber strength equals the fiber stress in the
composite, at the most probable composite failure stress, is on the
order of ten ineffective lengths.

For a rigid-plastic representation of the binder material, failure

points for two different yield stress values are shown. Thus, for the
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fiber data used, and for a yield stress of 10 ksi, the predicted strength
of a glass-plastic composite of 70% fibers by volume is 290 ksi. For
the same conditions binder yield stress of 20 ksi would indicate a com-
posite failure stress of 310 ksi. The effects of matrix characteristics
are more clearly defined by considering the elastic-plastic results ob-
tained in the latter part of section 4.

Mechanically, the elastic-plastic matrix material is characterized
by the initial elastic modulus, the yield stress, and the total strain to
failure. The influence of these three quantities on the tensile strength
of a composite consisting of an elastic-plastic matrix uniaxially rein-
forced with glass fibers is shown in fig. 31 in the form of shear yield
stress vs. elastic shear modulus required to achieve the specified
constant values of composite strength.

These results are obtained by selecting a fixed value of composite
strength, 6 C*, and determining the corresponding ineffective length ratio
from fig. 30. For the elastic case the modulus ratio EI/GZ and the
maximum shear stress, Tmax' are determined from figs. (28) and (29)
respectively., The asymptote for large shear moduli is found from the
rigid-plastic solution, eq. (37). For the region between the elastic
range, r:presented by the vertical portion of the curve, and the fully
plastic range, represented by the horizontal asymptote, the combinations
of values of shear modulus and shear yield stress which result in the
desired ineffective length are evaluated from eqgs. (34) to (36). The

ultimate matrix shear strains required are not shown; however, they
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are approximately parallel to the strength curves with decreasing strain
required for increasing composite strength,

The stress curves show the nature of property variations re-
quired to produce the maximum increase in composite strength. For
example, a composite containing an elastic-plastic matrix material
with a shear modulus of 150 ksi and a shear yield stress of 15 ksi will
be unaffected in strength by a * 50% change in shear modulus but would
improve in strength with increasing shear yield stress and would alsp
require lower shear strain at failure; similarly, a matrix with a modulus
of 40 ksi and a strength of 30 ksi would be far more sensitive to modulus
changes than to strength changes. This is illustrative of the nature of the
results to be obtained from the existing failure model. Other types of
fiber and matrix materials need to be considered to complete the picture.
Fibers with different strength levels and strength gradients with respect
to fiber length, and matrices with monotonically decreasing tangent moduli
should be included. In any event, it appears that the qualitative evaluation
of the direction of improvement in constituent properties to obtain im-
proved structural composites can be achieved.

One of the reasons for the quantitative uncertainties can be seen
by exploring certain assumptions in the shear stress evaluation, Firstv
of all, the idealization to a rotationally symmetric problem ignores the
variation due to the hexagonal or nearly-hexagonal array of nearest
neighbor fibers. Secondly, the selection of an average distance between

fiber and surrounding ""average' material is not an obvious one. Although
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the magnitude of the former problem cannot be assessed without the
solution of a complex elasticity problem, the latter can be studied by
varying the average distance and determining the resulting effect upon
composite strength. The results of such a study are éhown in fig. 32,
where the ineffective fiber length is plotted as a function of the average
matrix thickness expressed as a multiple of the fiber radius, The range

of abscissa values cover the range obtained by various reasonable idealiza-
tions for a fiber volume fraction of 0. 7,

6. Discussion and Conclusions

The analysis attempts to simulate what appe‘ars to be the physical
failure mode. An effort was made to inclﬁde what were thought to be the
most important parameters influencing failure. Obviously, the model
will not provide accurate quantitative answers without further refine-
ments. It is expected, however, that the nature of desirable improve-
ments in constituent characteristics can be ascertained from the present
model, Such preliminary conclusions will be described below. The
shortcomings of the model include failure to consider fracture involving
parts of more than one layer, variation of ineffective length with stress
level, stress concentrations in fibers adjacent to failure areas and the
initial state of stress, Further, as the analysis indicates that short
fiber lengths may exist at failure, the shortcomings at short lengths
of the statistical distribution used for the fibers should be corrected.
That is, the limit of fiber strength with decreasing length should be a

finite value. Fiber experimentation can provide the data for such a
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statistical model. On the positive side, however, the model represents
the constituents in the major functions of fibers carrying extensional
stress and matrix carrying shear stresses; it includes the effect of fiber
imperfections on fiber failure; and accounts for the accumulation of
internal cracks which combine to produce composite failure, This latter
follows the concepts of Parratt [18 ] who suggests the influence of flaws
and ineffective lengths on failure. The failure mode in the present
analysis, however, results from an accumulation of cracks rather than
from the existence of fully ineffective fibers. In fact the present results,
which indicate typical fiber lengths at failure which are an order of
magnitude larger than the ineffective length, perhaps explain the quan-
titative difference between the ineffective lengths of [18] and those of

[ 20] and this paper. The experimental results, described in the
following section, appear to be in qualitative agreement with the analytical
models.

The conclusions to be drawn from the analysis for the glass fibers
considered are as follows: Composite failure stress will be on the order
of short fiber failure stress, where short fibers are on the order of ten
ineffective lengths., Fiber strength levels appear to have the most direct
effect on composite strength, Fiber strength dispersion influences com-
posite strength and ineffective length of fibers has a significant effect on
strength. The latter is primarily influenced by the matrix characteristics
and an improvement of matrix strength appears desirable. The effect of

such changes upon the mode of failure remains to be considered.
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The fact that these conclusions are not unexpected for glass re-
inforced plastics is encouraging, insofar as the possibility of fruitful
application of this analysis to consideration of other composites and to
the definition of desirable constituent properties. Further, the actual
strength levels predicted for glass-plastic composites are higher than
those obtained experimentally. This could well be explained by the
additional damage incurred in fabrication after the state at which the

fiber tests of [21 ]were performed.
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B, FIBER REINFORCED COMPOSITES - EXPERIMENTAL

The experimental study of the mode of failure of fiber reinforced
composites under a tensile load utilized specimens consisting of a single
layer of parallel glass fibers imbedded in epoxy. The specimen, as shown
in fig. 33, has a test section which is 1/2" x 1" in size and 0. 006" thick
and contains 90-100 parallel glass fibers of 0, 005" diameter. The speci-
men is loaded in tension and observed microscopically during the test.
The design of the specimen was directed towards making this observation
possible, so that the nature of failure of fibrous composites could be
determined. In particular, the validity of the preceding analysis was to be
tested. (Similar test specimens appear to have been used with a ‘somewhat
different goal in (25).)

Both visual observation and photographic observation were used
on all test specimens. A sequence from a typical set of photographic
data is shown in fig., 34. The load was applied parallel to the fibers.
Note again, that the fiber diameter is on the order of five timesrthe
minimum distance between fibers. The first frame shows the specimen
at zero load. Polarized transmitted light has been used and at zero load
the fibers are dark and the plastic between fibers appears light, As the
load is increased, the fibers appear lighter, although this is not ade-
quately reflected in the photos since the lens aperture was changed
during the sequence. The difference between the unloaded specimen
photo and the next to the last photo in the sequence is four f stops, or

a factor of 16 on the exposure.

73



At less than 50% of the ultimate load, individual fiber fractures
are observed, Since the fractured fiber in the vicinity of the fracture is
unstressed, the color returns to the original dark color. Thus, breaks
appear as a short dark rectangular area with a thin white line across the
center, The length of this dark area is the ineffective length of the fiber,
(see section A,) As the load increases, the fibers fracture at random
locations. Thus, although there are stress concentrations in the vicinity
of the breaks, the variation in fiber strength generally more than offsets
the effect of such concentrations. Hence, the breaks occur randomly rather
than cumulatively at the site of the initial break. The stress concentrations
cause a relative brightening at the highly stressed points of the fibers and
this effect appears on the latter photos in the sequence of fig, 34, Also
there are examples of breaks which were produced as a result of the
stress concentrations.

The specimen is shownin the last frame after fracture. It is not
clear that the actual fracture simulates the behavior of a three dimensional
composite and it therefore appears that the internal fractures prior to com-
posite failure are the primary data from these tests. The usefulness of
the test lies in the potential use of these results inconjunction with the
preceding analysis to predict and verify the direction of desired constituent
property improvements to achieve higher tensile strength composites,

The data for the specimen of fig. 34 are plotted in fig, 35. These results
are typical of the scatter of data points around the best fit curve. Such -

curves for the series of test specimens described in table III-1 are shown
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in fig. 36,

Spec, Gage
Number length
(in.)

1 1.10
2 0.91
3 1.10
4 0.90
5 1,05
6 1.02
7 1. 00
8 1. 07
9 1.03

*Failure in grip section,

TABLE III-1

Tensile Strength Tests - Series A

Width
(in.)
0.499
0,498
0.500
0.502
0.494
0.500
0.498
0.503

0. 490

75

Thickness
(in.)
0.0066
0. 0060
0.0067
0.0064
0.0061
0.0062
0.0062
0. 0061

0.0060

Test data not used.

Number
of fibers

92

93

93

94

92

94

93

93

Ultimate
load
(1b.)

114
84%
111

125

116

117

116
65%
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C. PARTICLE REINFORCED MATERIALS

The merit of a matrix material having enhanced stiffness and
strength properties compared to presently available plastic resins is
clearly evident‘frorr} the analyses of composites. The first, most
directly available method of improving matrix properties appears to
be to make the matrix itself a composite. To this end a series of

specimens were fabricated to investigate the effect of the addition of

glass and alumina powder to epoxy resin,

The results bring up more questions than they answer. While
the stiffness of the particle-composite specimens were duly increased
by the addifives to maxima of 1, 040, 000 psi for the glass particles
(10-200 micron characteristic dimensions) and 2,000, 000 psi for the
alumina (325 mesh or finer), the strength and elongation of the resin
were degraded, A curious accompanying phenomenon was a marked
increase in viscosity of the glass-filled epoxy resin before curing, This
increase prevented the fabrication of spec¢imens of greater than 30%
volume percent glass. With the alumina particles 48 volume percent
filler was attained without corresponding difficulties, but to reach the
maximum value of 62% a larger particle size (325 mesh) was required
than for all the other (900 mesh) alumina-filled specimens. |

Increase in viscosity with addition of particles is certainly to be
expected. What is peculiar is the difference in character of the viscosity
change for the two particles used. For successful end use the resin

viscosity must be not substantially changed from the unfilled value, a
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criterion that could be met by the alumina particles up to a content of
approximately 40 volume percent, but the question raised of the relative
importance of the many factors affecting viscosity is not answered by
the present results, |

Of much more interest and eventual importance than viscosity
(influence of the fillers in the fluid state) is the decrease in elongation
at failure of the filled specimens (influence of the fillers in the plastic
state). The influence in the elastic state is as expected. The Young's
modulus of the composite is improved substantially, just as desired,
and if this were the only effect the implications would be exciting.
Accordingly an explanation of the reasons for the poor performance in
the plastic range could be useful. Answers are needed to questions like:

1. Is the reduction of elongation dependent upon the material

used for the filler, - i;e. would a more compatible or better

bonding filler be less harmful ?

2, Is the reduction of elongation dependent upon the geometry

of the filler, - i,e. would short, very fine fibers be better than

essentially spherical particles?

3, 1Is the entire problem a result of poor fabrication, - i.e.

were these first-attempt specimens unsound and can improved

fabrication technique restore the strength lost by adding the

filler ?

4, How would even the low elongation filled resins of these

tests behave as the matrix for a filament reinforced composite,

77




i. e. would the development of '"fractures' in the matrix at these

elongations lead to premature failure of the composite?

The actual experimental results which generate all these questions
are presented in figures 38 and 39 without further discussion. The end
objective of an improved matrix material is worthy of continued

investigation.
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IV, STRUCTURAL APPLICATION STUDIES

Although the bulk of this study has been devoted to determining
composite properties as a function of constituent properties, it is
important to emphasize that this is not an end in itself. Analysis of
basic applications must be performed to indicate the nature of desirable
material properties. For example, in the case of elastic constants, the
composites are anisotropic and no one simple property of an anisotropic
material adequately defines the efficiency of a structure using such a
material. Thus, it is necessary to perform a structural efficiency
type analysis treating generalized structures and loads. As an example,
stability of plates with oriented voids, subjected to in-plane compressive
loads are treated in section A, Also, the effective properties cannot be
used at the neglect of internal stresses. In the case of a practical
fibrous composite structures biaxial stiffening will introduce average
stresses in individual layers of a laminate which differ considerably
from the average laminate stress, Certain aspects of the internal

shear stresses are treated in section B as an example of this problem.
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A, STABILITY OF PLATES WITH ORIENTED VOIDS

A quite different measure of material effectiveness than its
extensional stiffness is its ability to carry compressive or shear
stresses without buckling, This measure must be applied with dis-
cretion, because there are many ways of changing the resistance of
buckling, For example obviously the least loss in buckling resistance
as material is removed to reduce the effective density occurs when
the material is taken from the centroidal plane of the plate, as in
sandwich construction, The problem we are examining here may be
considered applicable to the case in which a uniform material through
the entire thickness is desired, for one reason or another, We are
then seeking an answer to the question:Is there some angular direction
which gives a material uniformly lightened by oriented voids superior
resistance to buckling?

Method of analysis

Available equations from the literature of the buckling of flat
plates in compression and shear were used to calculate the variation
of buckling effectiveness with angle of void. The elastic constants
employed in the equations were calculated with the aid of (13) in similar
fashion to that employed for the stretching and shearing stiffnesses.
Essentially the result is that the bending stiffnesses are proportional
to the corresponding stretching stiffnesses, with account taken for the

effective Poisson's ratio applicable to the anisotropic plate.
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Results

The results are summarized in figure 40, in which are plotted
normalized interaction curves for buckling of simply supported, infinitely
long plates having voids longitudinally, transversely, and at 45° to the
edges. The normalizing factor is the equivalent weight solid plate. The
plate with longitudinal holes is shown to have the least buckling resistance,
that with transverse holes is better in shear and the same in compression,
and the one with 45° holes is better in compression and between the 0°
and 90° cases in shear., The differences are not substantial,

Conclusion and Discussion

While material with oriented voids does exhibit increased elastic
buckling resistance because of its lower effective density, the orienta-
tion of the voids is not important in the elastic range. Probably if any
criterion exists it is that the holes should in general be aligned in the
direction of principal stress, to delay as long as possible the onset of

plasticity,
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B, LAMINATE SHEAR STRESSES

A second aspect of the failure problem which has been considered
is the study of shear stresses in a biaxially stiffened matrix; that is, a
material stiffened by parallel fibers in layers which are oriented a.ter-
nately in each of two directions. The case analyzed considers the two
layer directions to be atequal and opposite angles to the loading direction,
The stresses were determined using the methods developed in (26). The
results are plotted in fig. 4l. The shear stress on planes parallel and
normal to the loading direction, TXY , is shown in fig, 4la, normalized
with respect to the applied stress, 0 , plotted as a function of the lamina
orientation angle, 6 . The principal elastic constants of an individual
lamina are indicated and are typical of glass reinforced plastic construction,
The directions parallel and normal to the fibers are considered to be the
weak shear planes and the stress on these planes, T); , is therefore also
shown in fig. 4la. The question of failure du¢ to shear stress involves
both the shear stress and the shear strength distributions., The maximum

shear stress, T , is shown as the upper curve of fig, 4la, The effect

max

of material properties on the shear stresses acting in the principal directions
of each lamina, ‘1'12 , are shown in fig, 4lb. The shear stresses in the

fiber direction are seen to constitute a moderately high fraction of the applied
axial stress and as such warrant further consideration as a mechanism of

failure.
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V. CONCLUSIONS

The present study of the relationship of properties of composite
materials to properties of their constituents has been primarily concerned
with the evaluation of elastic constants and ultimate tensile strength of
fibrous composites, The effort has been primarily directed towards
the development of the basic theory governing the behavior of such
materials. Thus, by the use of variational principles of the theory of
elasticity, bounds on the elastic constants of fiber reinforced materials
have been obtained. For parallel fibers in an hexagonal array, the
bounds are exact., For parallel fibers in a random array, simpler
approximate expressions are obtained. These results can be used to
study the potential of fibrous composites utilizing any combination of
constituents.

The numerical results obtained, indicate that the effect of the
matrix upon most of the constants is far from insignificant. The possible
means of attaining improved structural composites thus include using an
improved fiber or modifying the binder material for a given fiber. Certain
aspects of the latter approach have been studied experimentally, with the
indication that loaded plastics are advantageous, One type of improved
fiber considered has been a non-circular fiber, It was demonstrated that
the transverse modulus of composites containing elliptical fibers of aspect
ratio four, can be almost doubled for only moderate fiber volume fractions,
These studies of elastic constants have demonstrated potential methods of

controlling any given elastic constant, It is now necessary to study certain
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typical aerospace structural applications to define the desired type of
improvement of these constants and the relative merits of various
potential improvements., Preliminary structural application studies
have been performed. Extension of such structural efficiency studies
would permit the present results to be used to define guidelines for the
development of improved composite materials.

The second major aspect of the present work is the study of the
tensile strength of fibrous composites, The observed influence of fiber
imperfections upon fiber strength have been used as the basis of a model
which hypothesizes composite failure to be the result of a statistical
accumulation of randomly occuring fiber fractures. The study of this
problem involved an approximate treatment of the stress distribution in
the vicinity of an internal fiber fracture. These fesults enable the
evaluation of alternate possible modes of failure. An experimental
study utilizing reinforced plastic film specimens, observed microscopically
during loading, was undertaken to qualify the analysis and provide quanti-
tative evaluation of parameters in the analysis. The experimental results
correlated closely with the failure model utilized in the analysis and it
appears that the joint use of theoretical and experimental results can
define the desirable characteristics for improved structural composites,
Again, the analysis indicates that significant improvement in composite
performance can be obtained by variation of matrix properties as well

as by the obvious changes in fiber characteristics.
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It appears that the proper understanding of the mechanics of
deformation and failure of composites can indeed contribute to the
attainment of the many potential improvements composites have long

been known te offer
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a.) HEXAGONAL ARRAY

b.) RANDOM ARRAY

Figure 1. Fiber Arrays Considered for Elastic Moduli Analysis
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Figure 2, Composite Cylinder Notation for Elastic Moduli Analysis
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Figure 22. Test Specimens for Influences of Fiber Shape on the Effective Transverse
Composite Modulus
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Figure 23. Experimental Solid Alumina Particle-Epoxy
Composites for Young's Modulus Measurement

Figure 24. Experimental Hollow Alumina Particle-Epoxy
Composites for Young's Modulus Measurement
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Figure 27. Model for Evaluation of Stresses at Fiber Ends
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Figure 31. Influcnce of the Shear Modulus and Shear Yield Stress
of an Elastic-Plastic Binder Upon the Strength of a
Glass-Fiber Reinforced Composite
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Figure 34b.

Typical Sequence of Photographs of Tensile Failure
Specimen Showing Distribution of Fiber Breaks
Prior to Failure (Specimen A-7)
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Figure 34c.

Typical Sequence of Photographs of Tensile Failure
Specimen Showing Distribution of Fiber Breaks
Prior to Failure (Specimen A-7)
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Figure 34d.

Typical Sequence of Photographs of Tensile Failure
Specimen Showing Distribution of Fiber Breaks
Prior to Failure (Specimen A-7)
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AFTER FAILURE
Figure 34e. Typical Sequence of Photographs of Tensile Failure

Specimen Showing Distribution of Fiber Breaks
Prior to Failure (Specimen A-7)
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Figure 35, Number of Fiber Breaks in Specimen A-7 as a Function of
Applied Load
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b, Epoxy with alumina particleé

Figure 37. Experimental Alumina Particle Tensile
Test Specimens
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Figure 39. Tensile Properties of Glass Particle Reinforced
Plastic Composites
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a. Effect of geometry
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b, Effect of lamina properties
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“The National Aeronautics and Space Administration . . . shall . . .
provide for the widest practical appropriare dissemination of information
concerning its activities and rhe results thereof . . . objectives being rhe
excpansion of buman knowledge of phenomena in rhe atmosphere and space.”

——NaTioNAL AERONAUTICS AND SpacE Act oF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limired distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles or meeting papers.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results of individual
NASA-programmed scientific efforts, Publications include conference

proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtfained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546
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