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Abstract 

During the past year, we worked on two engineering application 
problems: data smoothing/denoising by wavelets and reverse engineer- 
ing for aircraft design, as well as other optimization problems (such 
as robust regressions, Huber M-estimators, merit functions for con- 
strained minimization problems, stability analysis of feasible systems, 
and constrained best approximations in Euclidean spaces). While the 
engineering applications are obviously beneficial to the advancement 
of science and technology for Air Force, the basic research is also fun- 
damental for potential applications relevant to Air Force. In this final 
report, we will give an overview of what we have accomplished during 
the last one year when our research was supported by Air Force Office 
of Scientific Research. 

The report has five parts: (i) automatic threshold selection for 
wavelet denoising; (ii) reverse engineering for aircraft design; (iii) ro- 
bust regression and Huber M-estimator; (iv) global error bounds for 
quadratic inequalities; (v) merit functions for complementarity prob- 
lems. 



1    Automatic Threshold Selection for Wavelet De- 
noising 

Recently, one major trend in wavelet research is an optimal representation 
of a signal by a library (or dictionary) of basis functions, led by Mallat, 
Coifman, and Donoho [1, 2, 3, 4, 8]. The mathematical objective is to find a 
representation of a signal by a linear combination of as few functions in the 
library as possible within certain error tolerance. The motivation for such 
an optimal representation of a signal is to achieve data compression, since 
one only has to store the coefficients an approximate representation of the 
actual signal. 

However, such an optimal representation is useful not only for data com- 
pression, but also for denoising of signals and feature extraction of speech 
signals, as pointed out by Buckheit and Donoho [1]. Our preliminary re- 
search [5] as well as Buckheit and Donoho's indicates that wavelet packet 
representation may provide better feature extraction than other classical 
classification method, such as linear discriminant analysis. Here we first 
give a brief review on denoising and feature extraction by wavelets. Then 
we report our progress made on Donoho and Johnstone's wavelet denoising 
method for recovering antenna radiation pattern from noisy measurements. 

1.1    Review on Denoising and Feature Extraction 

The wavelet packet transform is generated by a pair of quadratic mirror 
filters which decompose the signal into a series of subbands ("frequency 
slots") by repeated convolution and decimation. The wavelet packet coeffi- 
cients generated by such a transform represent the energy levels of the signal 
at different time locations and various frequency bands. With appropriate 
choice of subbands and and filters, it is possible to "capture" the signal with 
very few significantly large coefficients. 

Let {g(ri)}L=1 (high-frequency filter) and {h(n)}%=1 (g(n) = (-l)n/i(l- 
n)) (low-frequency filter) be a pair of finite impulse response (FIR) quadra- 
ture filters (QF) that correspond the coefficients in the equations that define 
scaling and mother wavelet functions: 

?>(<) = £M»M2*-n), 
n 

^(0 = £>(nM2* - n), 



where (p is the scaling function and ip is the mother wavelet. 
Given a sequence {x{j)}f-i of N samples of a signal, one can separate 

the frequency domain of the signal into two subbands of the same width by 
using the following transformation: 

yi(k) = EnH
n)x(2k-n), () 

Ito(*) = T,nS(n)x(2k - n), 

where yo and y\ contain the information of the signal in the high and low 
frequency subbands, respectively. The coefficients t/o(&)'s and yi(A;)'s are 
called wavelet packet coefficients at the first level. Repeating the same 
operation on a subband, we can get better frequency separation of the signal 
at the cost of lower resolution in time domain for the signal representation. 
This phenomena is dictated by the uncertainty principle in signal processing. 
For speech recognition problems, the design of subbands for the wavelet 
packet transform of signals is a very important issue, since a signal tends to 
have energy concentrated on certain frequency bands. If these subbands are 
used in the wavelet packet transform, then one might be able to use a few 
coefficients in these subbands to represent the signal. As a result, one can 
achieve data compression of the signal (a compressed representation of the 
signal by a few coefficients). This compressed representation can be used 
for either denoising or feature extraction. If one uses these coefficients to 
reconstruct a signal by the inverse wavelet packet transform (the transform 
(1) is invertible), then it will be a smoothed version of the original signal. 
This is the idea behind wavelet shrinkage for denoising. However, if one 
uses these coefficients as the input of a classification program, such as a 
neural network or a multisurface method of pattern separation [20], then 
these coefficients are called features of the signal in speech recognition [1, 
5]. Therefore, the compressed representation of the signal provides a new 
approach for feature extraction in speech recognition. 

For a special wavelet packet transform, we get a set of wavelet packet 
coefficients from the input signal {x(k)}^r^m: 

{wij :  i= 1,••-,«, j = l,---,2ri}, 

where Wij represents the energy concentration at the i-th frequency subband 
and near the time location ^f T. The parameter T is the time duration of 
the signal: T = ^, where S is the sampling rate of the signal. 

For speech recognition problems, instead of finding a best basis for all 
signals [1], we used the averages of wavelet packet coefficients Wij's as fea- 



tures [5]. For isolated stops, the six consonants /b,p,d,t,g,k/ can be auto- 
matically classified with over 93% accuracy based on extracting 83 features 
out of a 75 ms signal interval beginning with the release of the burst. For 
stops extracted from continuous speech samples, we achieve an accuracy of 
71% using 99 features out of an 83 ms signal interval. These relatively poor 
results are still comparable with a method using formant trajectories. How- 
ever, they are not yet as good as results based on smoothed time/frequency 
features [5]. One possible reason is that each class of consonants has certain 
ridge signatures on the time/frequency plane and the features based on ridge 
signatures reflect more of the characteristics of speech signals. 

As for signals received by antenna radiation pattern measurement equip- 
ment, we realized that the radar pattern nulls were mistaken as noisy spikes 
and were suppressed by wavelet shrinkage method for denoising. This con- 
firms Coifman and Donoho's conclusion that pseudo-Gibbs phenomena hap- 
pens in the neighborhood of discontinuities [3]. They attribute this to the 
lack of translation invariance of the wavelet basis. Their strategy to reduce 
the Gibbs phenomena is to average out the translation dependence by shift- 
ing the signal, denoising the shifted signal, and unshifting the smoothed 
signal. The method is called translation-invariant denoising [3]. Whether 
such a method can be used to preserve the radar pattern nulls remains to 
be seen. 

1.2    Progress on Wavelet Denoising 

Given N(= 2 ) samples of a signal, from the statistical theory about the 
optimal minimax rate of convergence established by Donoho and Johnstone, 
we know that it is desirable to choose level-dependent thresholds based on 
the standard deviation of the noise signal. For example, Donoho and John- 
stone proposed to use the following thresholds for thresholding of wavelet 
coefficients: 

Oi = c,-ff, • (2) 

where c,- are some constants. The level-dependent thresholding can be con- 
sidered as a black box that takes a set of wavelet coefficients {w,;j : 1 < j < 
2*-1,1 < i < k} and output another set of wavelet coefficients: 

{wi,j:l<j<2i-1,l<i<k}, 

where Wij = 0 if |iu,j| < CT, and tD,j = w,j (1 - r^-r) otherwise. Then 
one can construct a unique signal x\, • ■ • ,xn corresponding to the modified 



wavelet coefficients ö),j. By the results established by Donoho and John- 
stone, we can consider x as an optimal recovery of the uncontaminated signal 
in the minimax sense. 

However, in a practical situation, the standard deviation of the noise 
signal is generally unknown. This causes a serious problem for engineers 
who would apply the wavelet denoising method in applications. In order to 
derive a practical method for automatic selection of the threshold, we need 
to consider the threshold selection from a different perspective. Suppose 
that we know the standard deviation a of the noise signal e. Then the 
thresholds for various levels defined in (2) yield an optimal recovery x from 
x. Intuitively, we can assume that, with a high probability, x is very close to 
the uncontaminated signal. That is, x - x should be very close to the noise 
signal e. As a result, the standard deviation ä of x — x is approximately 
a. Therefore, one statistical criterion for a good estimate a of the standard 
deviation of the noise is that ä « a. 

To implement such an idea, we use a control parameter 6(> 0) as the 
error tolerance of the threshold estimate. Then we try to find the largest a 
such that |^f-\ <6. 

If one wants the optimal choice of a, then one has to solve the nondif- 
ferentiable global minimization problem: 

mm 
<7>0 

=: 9(a). 

Note that lim^-^ g(a) = Mm(T_>o5(<7') = 1- Therefore, the above minimiza- 
tion has a global solution. 

We implemented the automatic threshold selection for wavelet shrinkage 
denoising. The application of this method to signals received by antenna 
radiation pattern measurement equipment at Airforce Rome Lab shows that 
the method can recover the noise-free signal quite accurately near the main- 
lobe and dominant sidelobes (cf. Figures 8 and 9). Such a denoising tech- 
nique not only provides a smoothed signal, but also gives an empirical esti- 
mate of the standard deviation of the noisy signal. 

A potential application of such a denoising technique is to filter out the 
noise in antenna radiation pattern measurement so that the true antenna 
gain pattern versus orientation angle can be discerned. Antennas that oper- 
ate at 40 GHz and above are being developed that need to be tested against 
their design characteristics. This means that power amplifiers capable of 
operating at these frequencies are also required for far-field antenna pattern 



measurement. These state-of-the-art amplifiers are either costly or nonex- 
istent. Thus, getting the most signal-to-noise ratio is essential for reducing 
measurement costs. 

1.3    Conclusions 

As we pointed out before, the radar pattern nulls can be easily mistaken 
as noise by a nonparametric data smoothing/denoising method. For ex- 
ample, Donoho and Johnstone's wavelet shrinkage denoising method might 
destroy the null structure near the sidelobes (compare the smoothed sig- 
nal and noiseless signal between —40—30 in Figure 9). One approach for 
maintaining the null structure is to set lower thresholds near the nulls for 
wavelet coefficients corresponding to high frequency subbands to preserve 
the null structure. We will continue to explore various denoising approaches 
for processing of signals received by antenna radiation pattern measurement 
equipment and our objective is to make a technology transition of the state- 
of-art wavelet denoising techniques to Airforce. 
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2    Reverse Engineering for Aircraft Design 

Reverse engineering is a relatively new term that emerged in the late 1980's. 
In general, reverse engineering is a process that begins with a physical form 
and ends with a computer representation of the form. With the recent 
developments of advanced laser digitizers and other computer-aided tools, 
reverse engineering has evolved from a research initiative to an industrial 
reality. 

Reverse engineering has multiple applications, including the following: 

• 

• 

manufacturing a mechanical part from a new physical model or pro- 
totype, 

replicating an existing mechanical part that does not have a computer- 
recognizable design, 

• analyzing or modifying a mechanical part that does not have a computer- 
recognizable design, 

• verifying a mechanical part that has a computer-recognizable design 
[3]. 

Reverse engineering consists of four steps: data acquisition, data sepa- 
ration, curve or surface fitting, computer-aided manufacturing. Data acqui- 
sition is the collection of data points from the surface of a object. Normally, 
this is done by using a coordinate measuring machine (CMM) or a laser 
scanner. Because most objects are complicated (i.e., they are the compos- 
ite of multiple geometric shapes), it is difficult to represent the object with 
one matematical surface. Therefore, it is natural to separate the collected 
data into several components with simple geometric shapes. Then, one 
can fit a curve or surface equation to the data of each component. Together 
these equations provide a mathematical surface representation of the object. 
This representation or mathematical surface model can be programmed into 
computer-aided manufacturing (CAM) tools, which are used to manufacture 
a facimile of the original object. 



From a mathematical point of view, the difficulty of the reverse engi- 
neering process is the construction of surface equations from a set of data 
points. There are software packages that were developed recently for the 
reverse engineering process, rather than for engineering design. Examples 
of these packages are "SURFACER" by Imageware, Inc., and "STRIM" 
by Matra Datavision. However, each application imposes different crite- 
ria for goodness-of-fit. For example, the objective of reverse engineering a 
car model is complete different from that of reverse engineering an aircraft 
model. The former has more emphasis on aesthetics and the latter has more 
emphasis on geometric shape and accurary. 

The main purpose of reverse engineering an aircraft surface is to use 
the original model as a starting point to design experimental aircraft. His- 
torically, aircraft design has been divided into three phases: (1) conceptual 
design; (2) preliminary design; and (3) detailed design. A new methodology 
is to use a multi-disciplinary optimization (MDO) approach that combines 
surface geometry design, surface or volume grid generation, and aerody- 
namic optimization based on CFD analysis. With the MDO approach, the 
designer takes an existing surface" design, generates the appropriate grids, 
and performs a CFD analysis of the design. The designer uses the analysis 
to identify aerodynamic features that are not optimal. The designer then 
modifies the design parameters associated with the aerodynamic features. 
This generates a new surface design. The designer repeats this process until 
he achieves the model with the desired aerodynamic features. 

The MDO approach does have some serious difficulties. First, if the 
surface model has too many design parameters, the computational cost to 
optimize with respect to design parameters may be prohibitive. Second, de- 
sign parameters within feasible ranges produce smooth surfaces (i.e., surfaces 
without ripples). When spline control points are used as design parameters, 
it is difficult to determine the relationship between the control points and 
the surface ripples. 

To avoid these difficulties, a practical approach is to use a small set of 
engineering parameters to generate an aircraft model. This is the basic idea 
behind the Rapid Aircraft Parameter Input Design (RAPID) model, devel- 
oped by Bloor, Wilson, and Smith [10]. With respect to the RAPID model, 
the reverse engineering problem is to determine the engineering design pa- 
rameters from a set of aircraft surface data points. Then, one can optimize 
the aerodynamic features of the model by modifying the appropriate param- 
eters. 

In this section, based on Bloor and Wilson's PDE surface model, we use 



a nonlinear least squares method to extract a set of engineering parameters 
from surface grids of an aircraft. 

For more details, see the joint paper written by J. Huband, R. Smith, 
and the principle investigator [4]. 

2.1    Review on Reverse Engineering 

For surface reconstruction in reverse engineering problems, one has to derive 
a parametric surface representation of a set of data points {(xi, Vi, z«)}?=i in 

space R3: 

x = x(u, v), y = y(u, v), z = z(u, v),     for 0<u,v<l. (3) 

The standard procedure for constructing a surface from S = {(x,-, yi, Z{)}f=1 

is a three-step process: 

• selection of 4 sets B\,B2, B3, B4 of ordered boundary points from S; 

• fitting of a spline curve C,- of «ach boundary set B{ such that C\, C2, C3, 
C4 form a closed loop; 

• construction of a surface based on 4 boundary curves Ci^C^C^C^ 
and the data set S. 

There are many papers on construction of a surface from the data set S if 
Zi = f(xi,yi) and (x,-,yt) are in a rectangular region or S is a set of grid 
points on a surface [1, 2, 3, 6, 7, 8]. However, for digitized surface of a 
mechanical part such as a wing of an aircraft, there is no structure pattern 
for S. At NASA Langley Research Center, the surface construction is done 
by using a state-of-art reverse engineering software called SURFACER [9] 
developed by Imageware Inc. The selection of boundary points has to be 
done manually through a point clicking interface. Even though the interface 
is very easy to use, the process is quite tedious and time-consuming. The 
fitting process used by SURFACER is a variation of thin spline fitting, which 
is very sensitive to the results of boundary curve fitting. For example, the 
knots for the final surface are completely predetermined by the knots of 
the boundary curves. As a consequence, a successful surface construction 
relies on the expertise of a designer/modeller who goes though many trials 
of boundary and surface fitting to get a visually satisfactory result. The 
major difficulty in such a surface construction process is how to determine 



the corresponding parameter (ti,-, «,•) of (x,-, j^, 2,) for a given parametric form 
of surfaces (3). There is no mathematical research done so far on this topic. 

For aircraft designs, a spline surface does not make much sense to en- 
gineers. Therefore, surface models based on engineering (or geometric) pa- 
rameters (such as the wing section chord length, the wing section maximum 
thickness, the location of maximum camber, cf. Figures 3-7 by Robert Smith 
at NASA/Langley Research Center) are very important for modification of 
a given design. Smith, Bloor, Wilson, and Thomas [10] developed a RAPID 
prototyping model for airplane design at NASA Langley Research Center. 
However, in order to make the software applicable in practice, one has to 
convert the surface grids of a given airplane to a RAPID model. Then one 
can modify the RAPID model to derive a design with optimal aerodynamic 
characteristics. This often involves a multidisciplinary design optimization 
process. 

2.2    Progress on Surface Reconstruction in Reverse Engi- 
neering 

Our major contribution is to reverse the following PDE model for rapid 
prototyping of an aircraft: 

+ fe)2^)   f,^") = 0'    io*°<^<h (4) (IL 
F(0,t]) = F(l,r,),    for0<7/<l, (5) 

F(£,0) = £o(O,   F(t,l) = B1(Q,    for0<£<l, (6) 

.^,0) = iVo(O,   ^,l) = iV1(0,    for0<f<l, (7) 

where (5) forces the solution to be a periodic function of £ with period T = 1, 
(6) is the Dirichlet boundary condition, and (7) is the Neumann boundary 
condition. 

It is well-known that the fourth-order elliptic PDE (4) with the given 
boundary conditions has a unique solution. This provides a way of generat- 
ing a surface patch with the given Dirichlet and Neumann boundary condi- 
tions, which is the mathematical foundation of Bloor and Wilson's idea for 
rapid prototyping of an aircraft and other rapid prototyping applications. 

For example, in the design of the inboard wing section, one usually speci- 
fies the two airfoils at the two ends of the inboard wing section (which are the 
intersection of the inboard/outboard wing sections and the intersection of 

10 



the inboard wing/fuselage), as well as how smooth the inboard wing section 
blends with the fuselage and the outboard wing section. Note that the two 
airfoils are given as boundary functions .Bo(0 an^ -Bi(£)> while the smooth- 
ness of blending is represented by boundary functions NQ(£) and Ni(£). 
Therefore, construction of the wing section is mathematically equivalent to 
construction of a smooth surface that satisfies the boundary conditions (6) 
and (7). For the inboard wing section, the boundary functions are given as 
follows: 

B0(0=[y = Ro + H1       ,    B1(0= \v = y/r{t)*-z      |,     (8) 

fencer dr) ~    2 

*o(0 = | ft = Si     I,   ivx(0 = 
2z = 0 

(9) 

BS-« ' \ft = -53ain(x0g     / 

where Xc, R0, Hi, Zc, Bw, C,Xw, r(£),Ta, Zw are engineering (or geometric) 
parameters for the inboard wing-x(^) and y(£) are functions determined 
by the engineering parameters (such as wing section cord length, maximum 
camber location, etc), and Si, 52 determine how smooth the inboard wing 
section blends into the outboard wing section and the fuselage, respectively. 

One application of the RAPID prototyping model is to modify the en- 
gineering parameters of an existing design to obtain an optimized design. 
For this purpose, one has to recover the engineering parameters from a sur- 
face grid of an existing design (a REVERSE ENGINEERING PROCESS) 
and then to go through a multidisciplinary design optimization process to 
get a better design. In this case, the reverse engineering process can also 
be thought of as a systems identification or least squares problem involving 
(airplane) geometry. 

In order to make the reverse engineering possible, we first derived the 
canonical basis for the Hermite interpolation problems involved in the pro- 
cess: 

/o,i(i7) = (V- 1)2(1 + 2r?), foM = T?
2
(3 - 27?), 

/O,3(T?) = 7?(T? ~ I)2, /O,4(T?) = 7?
2

(T? - 1), 

/»,i(>?) = (1 - nVnv + :r(l - 7?) sinh(a7i7?) + f-7?sinh(an(l - 7?)), 

UM = Vean{1-v) + f^l - 17) sinh(<m7?) + ^7?sinh(<m(l - 7?)), 
"•n ""n 
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...         arc...       N . , /      \     sinh(an) .     . .. 
fnßiV) = —TK1 ~ ")smh(ann) + — 7;smh(an(l - n)), 

.                 311111(0«).. . .     an    ...     .,       .. 
/M(") = -j (1 - «) smh(an77) + — j/sinh(on(l - 17)), 

where n = 1,2, • • • and 

dn := sinh2(an) — (an)2, 

pn := an(an — 1) — sinh(ara)ean, 

gn := anea™ — (an — 1) sinh(an). 

Then we used the following reverse engineering model for surfaces generated 
by (4)-(7): 

F(t, v) := ffifoM + 42)/o,2(") + 43)/o,3(«) + aj,4)/0)4(n)) 
m     / 

+ £     (41Vna(^ + 42)/n,2(n) + al3)/n,3(7?) + al4)/n,4(7?))cos(2n7rO 
n=l   \ 

+ (bPfnM + b^fnM+t^fnM + 6«/Mft)) on(2n»o) 

+ U,(0 - a™ " £ K1} cos(2njrf) + #> 8in(2rorO) J /m+i,i(i?) 

+ (B^) - aj,2) - f; («#> co8(2i»7rO + 6l2> sin(2n^)) J /m+i,2(n) 

+ f JV0(0 - 43> - £ (al3) COS(2IMT0 + &13) sin(2tMrO)) /m+U?) 

+ UriO - aj,4) - £ (a!4) cos(2n7rO + #> sm(2mr0)) fm+iAl)- 

For example, the corresponding reverse engineering process for the inboard 
wing section can be summarized in the following algorithm. 

Algorithm 1 For a given wing surface grid {Fitj : 1 < i < k, 1 < j < 1} 
with i = 1, k corresponding to the inboard/outborad wing intersection and the 
wing/fuselage intersection, respectively, recover the engineering parameters 
for the inboard wing section as follows. 

Step 1. Use {Fij : 1 < j < 1} to recover -Bo(£) as given in (8) (i.e., 
recover the engineering parameters for the inboard/outboard wing in- 
tersection). 
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Step 2. Use {Fk,j : 1 < j < 1} to recover B\{£) as given in (8) (i.e., recover 
the engineering parameters for the wing/fuselage intersection). 

Step 3. Estimate the parameters £i, • • •, f* and %,•••, ni corresponding to 
the surface grid (i.e., determine the original grid distribution used to 
generate the surface grid). 

Step 4. Recover the Neumann boundary conditions (i.e., Si,S2) by using 
the x-components {x,j} of the surface grid; i.e., find Si, £2 by solving 
the following overdetermined system of linear equations with unknowns 
„(1)    „(2)    _(3)      (4)    .(1)    ,(2)    .(3)    .(4)    c      c. 

m 

"      vi'iSi + ttfs, + £ (rij«£> + g^aW + 9%aP + ,« «M) 
n=0 

m 

+ E (*Ütf} + ^ + *&W + W*) = 7«, 
n=l 

for 1 < i < k, 1 < j < I, 

inhere 7),,J    «'J'    n''-7     //''•'     «''•'     o''J      A''-7      A''-7      A*'
J
      /J*

J
      -V- •   rtf¥> t/viere vx , v2 , gnl, gn2, gn3, gn4, nnX, nn2, nn3, nn4, 7M are 

constants given by the following formulas: 

VY =  2*(6)/m+1.3(»7j)> 

v2'3 = sin(»f,-)y'(6)/™+i,4(*7j). 
ffnfr = (fnAVj) ~ fm+lAVj)) COs(27Tn&), 

^nfr = (fnAVj) ~ fm+lAVj)) sill(2jrnfc), 

7i,i = «JJ - (*(&) + -Src)/m+l,l(»/i) -  ("(f *(&) + X™J /m+l,2(»?i). 

With the above algorithm, we can recover the engineering parameters 
of the inboard wing section with error less than 0.1% for a surface grid 
generated by the PDE model (cf. Figure 1 for original surface grids of the 
fuselage and wingand and Figure 2 for the surface grids generated by the 
recovered engineering parameters). 

2.3    Conclusions 

The current reverse engineering model can be used for the following wing 
configuration: 
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• high wing low aspect ratio short fuselage, 

• double-delta transport with low wing, 

• HSCT type configuration, 

• Delta wing configuration. 

Another direction is to measure an existing wing tunnel model using 
a laser digitizer and apply the reverse engineering model to the digitized 
surface points to recover the engineering parameters according to the RAPID 
model. The mathematical problems involved are the following: 

• automatic identification of boundary points, 

• parametrization of data points based on boundary curves. 

The first problem is to build a mathematical model that can "realize the 
human perception of boundary points of a surface grid". This is more or 
less a mathematical modeling problem in artificial intelligence. We shall use 
concepts and ideas in the projective geometry to find a reasonable solution. 
The second problem is related to accuracy and stability of a free form surface 
fitting of a data cloud. We will study the potential of the inverse of Coons 
mapping for finding a reliable parametrization of data points. This is a very 
difficult issue. Note that, in Algorithm 1, we had to rely on the special 
structure of the underlying model to find £,-, TJJ in Step 3, which is the main 
source of errors in our reverse engineering process. Major progress in this 
direction will be beneficial not only to Air Force, but also to the whole 
aerospace industry. 
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3     Robust Regression and Huber M-Estimator 

Relationships between a linear t\ estimation problem and the Huber M- 
estimator problem can be easily established by their dual formulations. The 
least norm solution of a linear programming problem studied by Mangasar- 
ian and Meyer provides a key link between the dual problems. Based on 
the dual formulations, we establish a local linearity property of the Huber 
M-estimators with respect to the tuning parameter 7 and derive that the so- 
lution set of the Huber M-estimator problem is Lipschitz continuous with re- 
spect to perturbations of the tuning parameter 7. As a consequence, the set 
of the linear i\ estimators is the limit of the set of the Huber M-estimators 
as 7 —» 0+. Thus, the Huber M-estimator problem has many solutions for 
small tuning parameter 7 if the linear l\ estimation problem has multiple 
solutions. A recursive version of Madsen and Nielsen's algorithm based on 
computation of the Huber M-estimator is proposed for finding a linear t\ 
estimator. This part is a summary of a joint paper written by J. Swetits 
and the principle investigator [16]. 
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3.1    Review on t\ Regression and Huber M-estimator 

Consider the following linear t\ estimation problem of finding a vector a;* in 
Rn that solves the following minimization problem: 

min HAx-dlk (10) 
X 

where Ais mxn(m> n) representing the underlying linear model, x in Rn 

is the parameter vector, d 6 K"1 is the data vector, and ||z||i := J3«=i. \z%\ ls 

the £i-norm of z. In general, one might assume that A has rank n so that 
different parameter vectors correspond to different regression functions, even 
though this assumption is not required in our study of (10). 

The linear t\ estimation problem is much more difficult to solve than the 
linear maximum likelihood estimation problem, where the ^2-norm, ||2||2 := 

(££i zi)*>is used instead of the ^-norm. See [1, 2, 3, 7, 18, 25, 27, 29, 30] 
for various algorithms for solving the linear t\ estimation problem. One 
reason for solving (10) instead of the corresponding least squares problem is 
that linear l\ estimators are more robust than linear least squares estimators 
[9, 10] in the presence of outliers. Note that (10) is referred as a nonsmooth 
optimization problem because the objective function (i.e., the expression one 
tries to minimize) is not a differentiable function of parameters x\, ■ ■ -,xn. 
Many robust regression models allow one to get a robust estimator without 
involving nonsmooth optimization problems [10]. The most well-known one 
is the Huber M-estimator problem that combines the robustness of the linear 
t\ regression model with the smoothness of the linear maximum likelihood 
regression model by using the Huber's cost function, depending on a given 
tuning constant 7 > 0, defined by 

f ¥, if 1*1 < 7 
Pi*) 

1  i/i*i  7l*l — \l2i    otherwise. 

The Huber M-estimator problem is to find a vector x* in IRn such that x* 
solves the following minimization problem: 

mm 
X 

5>p3-d)i], (11) 

where (Ax — d)i denotes the ith component of the vector. In general, there 
is a scaling parameter r involved in the Huber M-estimator problem. For 
convenience, we assume that r = 1.   Note that Huber's cost function is 
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a convex differentiable piecewise quadratic polynomial and the objective 
function in (11) is differentiable. The purpose of Huber's cost function is to 
measure (Ax — d)i by (Ax — d)f (as in maximum likelihood estimation) when 
(Ax — d)i is "relatively small" while it measures (Ax — d)i by \(Ax — d),-| (as 
in linear l\ estimation) when d, is an outlier (i.e., \(Ax — d)i\ is "relatively 
large"). 

Recently, there have been many papers devoted to design of numerical al- 
gorithms for solving the Huber M-estimator problem [5, 6, 16,17, 23, 28], as 
well as to relationships between linear t\ estimators and Huber M-estimators 
[4, 18, 19]. Madsen and Nielsen [18], and Madsen, Nielsen, and Pinar [19] 
show that algorithms for computing Huber M-estimators can also be used to 
find linear l\ estimators, by establishing an explicit correspondence between 
linear l\ estimators and Huber M-estimators. The purpose of this section is 
to show that more revealing relationships between linear t\ estimators and 
Huber M-estimators can be easily derived through dual formulations of (10) 
and (11). More specifically, we obtain that the dual solution of the Huber 
M-estimator problem is the least norm solution of the dual linear program- 
ming problem of (10) when the funing parameter 7 > 0 is small enough. 
The proof is based on a characterization of the least norm solution of a lin- 
ear program proved by Mangasarian and Meyer [21, 20]. As consequences, 
we not only recover the known results about linear l\ estimators and Hu- 
ber M-estimators, but also derive new ones. This allows us to explicitly 
verify whether a given parameter 7 is small enough to produce a linear l\ 
estimator. We will propose a recursive version of Madsen and Nielsen's al- 
gorithm for finding a linear l\ estimator by solving the corresponding Huber 
M-estimator problem. 

It is well-known that either (10) or (11) may have infinitely many so- 
lutions. Sufficient conditions for uniqueness of the linear t\ estimator and 
the Huber M-estimator are given in [4, 17, 18, 19]. However, it is not clear 
whether there is a connection between the uniqueness of the linear t\ es- 
timator and the Huber M-estimator. We show that the uniqueness of the 
Huber M-estimator for every small tuning factor 7 implies the uniqueness of 
the linear i\ estimator. However, a counterexample shows that the converse 
does not hold. That is, there exist A and d such that (10) has a unique solu- 
tion, but the corresponding Huber M-estimator problem (11) has infinitely 
many solutions for every 0 < 7 < 6, where 6 is a positive constant. 

The section is organized as follows. Dual problems of (10) and (11) are 
given in Subsection 3.2 and characterizations of solutions of (10) and (11) are 
also given in terms of their dual solutions, respectively. In Subsection 3.3, we 
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first give the Lipschitz stability of X1 with, respect to the perturbations of 7. 
Then, based on the dual characterizations given in the previous subsection, 
we establish a local linearity property of the solution set X1 of (11) as a set- 
valued mapping of the parameter 7 when 7 > 0 is small enough. Moreover, 
we obtain that the uniqueness of the Huber M-estimator for small positive 
tuning parameter 7 implies the uniqueness of the linear i\ estimator. The 
converse is also true under the nondegeneracy assumption on the least norm 
solution of a dual problem of (10). But the converse is not true in general. 
We give an example of the linear l\ estimation problem which has a unique 
solution, but the corresponding Huber M-estimator problem (11) does have 
infinitely many solutions for 0 < 7 < 6 with some positive constant 6. In 
Subsection 3.4, a recursive algorithm for finding a linear l\ estimator is 
proposed. The algorithm allows one to explicitly construct a solution of 
(10) by solving finitely many Huber M-estimator problems. Conclusions are 
included in Subsection 3.5. 

To conclude the subsection we give some notations used in this section. 
If A is a matrix and x is a (column) vector, A,- denotes the Ith row of A and 
Xi denotes the zth component of x~ (Note A,x = (Ax),-.) For a vector x (or 
a matrix A), xT (or AT) is its transpose. For two vectors x and y, x < y 
means x,- < y,- for every index i. For convenience, when x is a vector and a is 
a number, x < a denotes x,- < a for every index i. We use z!_^ to denote the 
vector whose ith component is max{—7,min{7,z,}}. The ^-norm, || • ||oo, 
of a vector z G IRm is ||z||oo = maxi<,<m \z{\. The set of all solutions of (10) 
is denoted by X°, while the set of all solutions of (11) is denoted by X1 for 
any given tuning parameter 7. The null space of a matrix A is defined as 
{x € B" : Ax = 0}. 

3.2    Dual Formulations 

In this subsection we give the dual formulations of (10) and (11) as a linear 
programming problem and a quadratic programming problem, respectively. 
These dual formulations provide characterizations of linear l\ estimators 
and Huber M-estimators in terms of their dual solutions. Then, from Man- 
gasarian and Meyer's characterization of the least norm solution of a linear 
program [21, 20], we know that the unique dual solution of (11) is actually 
the least norm dual solution of (10) when 7 > 0 is small enough. 

Consider the following dual formulation of (10): 

y 

rp rp 

min d y   subject to A y = 0, —l<y<l. (12) 
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The following lemma is essentially known, but the form of the statement 
given here is more convenient for our purposes. For another form of the 
lemma, see [24, 19]. 

Lemma 2 Let x € Rn and y € Et"1. Then x and y are solutions of (10) 
and (12), respectively, if and only if the following conditions hold: 

ATy = 0,   -l<y<l, 

(Ax-d)i>0, ifjji = l, 

(Ax-d)i <0, ifyi = -1, 

(Ax - d)i = 0, if -Kyi < I. 

Note that the standard KKT-conditions for (12) involve a multiplier z 
for the constraints — 1 < y < 1 and an equation d — Ax — z = 0. Here 
we use z := —(Ax — d) to eliminate z in the above lemma. The following 
characterization of linear t\ estimators based on a solution to (12) follows 
immediately from Lemma 2. 

Corollary 3 Let y* be a solution of (12). Then x is a solution of (10) if 
and only if x satisfies the following conditions: 

(Ax-d)i>0, ifyf = l, 

(Ax-d)i<0, ifyt = -l, (14) 

(Ax - d)i = 0, if -\<y*i < 1. 

The classical approximation theoretic characterization of solutions to 
(10) states that x G IRn solves (10) if and only if there exists y e Htm such 
that -1 < y < 1,,ATy - 0, and yT(Ax - d) = \\Ax - d||i (cf. [29, Chapter 
6]). It is easy to see that these conditions are equivalent to (13) or (14). 

Now consider the least norm solution of (12), which is the unique solution 
of the following quadratic program: 

min dTy + U\y\\l    subject to ATy = 0, -1 < y < 1, (15) 
y & 

when e > 0 is sufficiently small, as shown in the following lemma by Man- 
gasarian and Meyer [21, 20]. 

Lemma 4 Let yc be the unique solution of the strictly convex quadratic 
program (15). Then there exists 6 > 0 such that ye is the least norm solution 
of (12) for0<e<6. 
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Here we say that y* is the least norm solution of (12) if y* is the solution 
of the following strictly convex quadratic programming problem: 

min   r-||j/ll?5 

where Y* is the set of all solutions to (12). That is, y* is the least norm 
solution of (12) if y* is the solution of (12) that has the smallest ^-norni. 
The least norm solution of (12) is actually the unique common solution of 
(12) and (15). 

Lemma 5 If the solution y* of (15) is also a solution of (12), then y* is 
the least norm solution of (12). 

Since p'(t) = (i)f_£, the gradient of the objective function in (11) is 
AT(Ax — d)c_e. Since (11) is a convex differentiable optimization problem, 
a;* is a solution of (11) if and only if x* is a zero of the gradient of the 
objective function; i.e., x* is a solution of the following system of piecewise 
linear equations: 

AT(Ax - df_e = 0. (16) 

For easy reference, we give the following lemma for the equivalence of (16) 
and (11). 

Lemma 6 A vector x1 is a solution of (16) if and only if x1 is a solution 
of (11). 

It is known that (16) can be considered as a dual problem of (15) [17, 23]. 
Therefore, (11) and (15) are dual problems. Here is the relation between 
solutions of (15) and (11) [17]. 

Lemma 7 A vector ye is the solution of (15) if and only if ye = -(Axe — 
d)Le, where xe is a solution of (11). 

Therefore, in order to get the solution of (15), one only needs to find a 
Huber M-estimator by solving (11) (or (16)). Many algorithms (including 
Newton methods, matrix splitting methods, conjugate gradient methods) 
were developed for solving the quadratic program (15) by exploring its dual 
structure (16) [17, 23, 14]. 

For a better understanding of the duality between (11) and (15), we 
recast Lemma 7 as follows. 
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Lemma 8 Let x £ WLn and y G JRm. Then x and y are solutions of (11) 
and (15), respectively, if and only if the following conditions hold: 

ATy = 0, -l<y<l, 

(Ax-d)i >7, ifyi = 1, _ 

(Ax - d)i < -7, if & = -1, 

(Ax - d)i = 7j/,-, if -Kyi < 1. 

Note that the standard KKT-conditions for (15) involve a multiplier z 
for the constraints — 1 < y < 1 and an equation d — ey — Ax — z = 0. 
Here we use z := -(Ax — d - ey) to eliminate z in the above lemma. The 
following characterization of the Huber M-estimators based on a solution to 
(12) follows immediately from Lemma 8. 

Corollary 9 Let y* be a solution of (15). Then x is a solution of (11) if 
and only if x satisfies the following conditions: 

(Ax-d)i >7, ifyf = 1, 

(Ax-d)i<-7, ify: = -l, (18) 

(Ax - d)i = 72/?, if -l<yt<l. 

Lemma 5 provides a way to verify whether or not the solution of (15) 
is the least norm solution of (12). By Lemma 4, there exists a positive 
constant 6 such that the solution of (15) is the least norm solution y* of (12) 
for 0 < 7 < 6. But we do not know how small 6 should be. The following 
lemma tells us that if the solution of (15) is the least norm solution y* for 
some 7 = S > 0, then y* is also the solution of (15) for any 0 < 7 < 6. 

Lemma 10 If the solution.ys of (15) is the least norm solution y* of (12) 
for some 7 = 6 > 0, then the solution j/7 of (15) is the least norm solution 
of (12) for any0<-y<6 (i.e., y1 = y* for 0 < 7 < 6). 

The above lemma should be compared with Lemma 3 and Theorem 4 
of [19] wherein results are formulated in terms of a "sign vector" associated 
with solutions to (16). The sign vector s7 is related to y"1 as follows: s"{ = y7 

if \y?\ = 1 and s] = 0 if \y-\ < 1. Madsen, Nielsen, and Pinar [19] proved 
that s7 = ss for 0 < 7 < 6 if 6 > 0 is small enough. 
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3.3    Linear l\ Estimator and Huber M-Estimator 

By Hoffman's error bound for approximate solutions of a system of linear 
equalities and inequalities, we obtain the Lipschitz stability of X1 with 
respect to 7. By using the dual characterizations given in Lemmas 3 and 9, as 
well as Lemma 4, we show that the solution set X1 of (11) is a linear mapping 
of the parameter 7 when 7 > 0 is small enough. Moreover, we obtain that 
the uniqueness of the Huber M-estimator for small positive tuning parameter 
7 implies the uniqueness of the linear t\ estimator. The converse is also true 
under the nondegeneracy assumption on the least norm solution of (12). 
But the converse is not true in general. We give an example of the linear 
l\ problem which has a unique solution, but the corresponding Huber M- 
estimator problem (11) does have infinitely many solutions for 0 < 7 < S 
with some positive constant 6. Our example is based on a new explicit 
characterization of the least norm solution of (12). 

First, we show the Lipschitz stability of Huber M-estimators with respect 
to the perturbations of 7. Let Xc be the solution set of (11) and X° be the 
solution set of (10). 

Theorem 11 Let 6 > 0 be such that the solution of (15) for 7 = 6 is the 
least norm solution y* of (12). Then there exists a positive constant A such 
that 

H(X7,X£)<A-e     for 0<7,7<£, (19) 

where H(X, Y) is the Hausdorff distance between X and Y defined as 

H(X, Y) := maxi maxmin ||x - y||2,maxmin ||y - x\\2 \ . 
(,x€X y£Y yeY xSX ) 

Note that the above theorem shows that, for small e, a Huber M-estimator 
is almost the same as a linear. t\ estimator in the sense that the difference 
is a constant multiple of e. 

Various relations between Xe and X° were given by Madsen, Nielsen, 
and Pinar [19]. However, these relations involve a sign pattern of certain 
vectors. Here we give a pure algebraic relation between X7 and X°. 

Theorem 12 Suppose that the solution of (15) for some 7 = 6 is the least 
norm solution y* of (12). Then 

XT D ^f-^-Xß + ^f^X"       foiO<a<T<ß<6, (20) 
p — a p — a 

where fiX + vY := {fix + vy : x € X, y G Y}. 
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The above theorem shows that X7 is a convex set-valued mapping of 
7 for 0 < 7 < 6. One important technical aspect of the above theorem is 
that we "know" how small 6 should be. However, X7 is actually a linear 
set-valued mapping of 7 for 7 > 0 small enough. The drawback of the next 
theorem is that there is no criterion to identify how small the 7 's should be. 

Theorem 13 If the columns of A are linearly independent (i.e., the rank 
of A is n), then there exists a positive constant e such that 

XT = T-f-^Xß + ^f-^Xa       for 0 < a < r < ß < e. (21) 
ß — a ß — a 

Let a = 0, ß = 6, and 0 < r < 6 in Theorem 12. By (20), we have XT D 
TjX6 + (1 - £) X°. If XT = {xT} has only one element, then X° = {x0} 
and Xs = {x6} are both singletons. Moreover, xT = jxs + (1 — j) x°. That 
is, xT is a linear function of r for 0 < r < 6. Thus, we have the following 
consequence of Theorem 12. 

Theorem 14 Suppose that the solution of (15) for some 7 = 6 is the least 
norm solution of (12). If the Huber M-estimator problem (11) has a unique 
solution x7 for 7 > 0 small enough, then the linear t\ estimation problem 
(10) has a unique solution x°. Moreover, x1 = jxs + (1 — $) x° is a linear 
function of '*/ for 0 < 7 < 6. 

It is interesting to see that a;0 = jzzx1 — jhz%S for 0 < 7 < ^. That 
is, we can find the unique linear l\ estimator by two Huber M-estimators of 
different small tuning parameters. 

The converse of the above theorem about the uniqueness is also true if 
the least norm solution of (12) is nondegenerate. A solution y* of (12) is 
said to be nondegenerate if there exists a solution x of (10) such that 

(Ax - d)i > 0, if yt = 1, 

(Ax - d)i < 0, if y? = -1, (22) 

(Ax - d)i = 0, if - 1< y*i < 1. 

Theorem 15 Suppose that the least norm solution of (12) is nondegenerate 
and the linear l\ estimation problem (10) has a unique solution. Then there 
exists S > 0 such that the Huber M-estimator problem (11) has a unique 
solution x£ for 0 < e < S. Moreover, $(x) is actually a strictly convex 
quadratic function in a neighborhood of a;7 for 0 < 7 < 6 and $(a;) is 

23 



twice differentiable at xe (i.e., the Hessian $"(xc) exists), where $(a;) is the 
objective function in (11); i.e., 

m 

*oo=2>[(iix-(0i]. 

Remark. Let y7 be the solution of (15) and W(j) be the diagonal ma- 
trix whose ith diagonal entry is 1 if -1 < yj < 1 and 0 otherwise. Since 
W(f)Az = 0 has a unique solution z* = 0 whenever ATW(~j)A is nonsin- 
gular, the above proof implies that (11) has a unique solution if ATW(~f)A 
is nonsingular. This sufficient condition for uniqueness of the Huber M- 
estimator was observed by many authors [4, 17, 18, 19]. 

However, the above theorem is not true without the nondegeneracy as- 
sumption. To construct a counterexample, we need the following explicit 
characterization of the least norm solution of (12). 

Theorem 16 Let <p € Etm be such that (pTA = 0, maxi<;<m |y>,-| = 1, and 
there exists a positive constant 6 such that, for 0 < 7 < 6, 

{<Pi(Ax - d){ > 7 if \u>i\ = 1, "I 

(Ax - d)i = ipi-y tf\<pi\<l   ) 

Then ip is the least norm solution of (12) and X1^) = X7 for 0 < 7 < 8. 

One can construct an example showing that the least norm solution </? 
of (12) is degenerate, even though (12) has nondegenerate solutions. In the 
case that a = 0, the Huber M-estimator problem (11) also has a unique 
solution x7 with x~l = 0 and x\ = J for small 7, despite the degeneracy 
of the least norm solution <p. Therefore, the nondegeneracy assumption in 
Theorem 15 is not necessary for the uniqueness of the Huber M-estimator. 

3.4    Computation of A Linear tx Estimator 

In [18], Madsen and Nielsen proposed to compute a sign pattern vector s for 
the linear l\ estimation problem (10) by solving (11) for very small tuning 
parameter 7. Then, by solving a system of linear inequalities and equalities, 
a linear l\ estimator can be obtained. In this subsection we propose a 
recursive version of Madsen and Nielsen's algorithm for finding a linear 
l\ estimator. By the dual relationships given in Subsection 3.2, we know 
exactly how small 7 should be in computation.  Moreover, unlike Madsen 
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and Nielsen's approach, a linear t\ estimator is explicitly constructed by 
using Huber M-estimators. 

First let us explain Madsen and Nielsen's method for computing a linear 
i\ estimator by solving Huber M-estimator problems. Suppose that we 
have a solution x7 of (16) (or (11)) for some very small 7. By Lemma 7, 
yi = MAx"1 — d)7_7 is a solution of (15). Then, by Lemma 4, y7 is the least 
norm solution of (12). By Corollary 3, one can get a linear l\ estimator 
by solving the feasibility problem (14), a system of linear inequalities and 
equalities with y* = y1. 

In general, a system of linear inequalities and equalities is not trivial to 
solve. However, under the assumption of nonsingularity of a certain matrix, 
(14) is reduced to a system of linear equations. More specifically, let W(e) 
be the mxm diagonal matrix whose i'th diagonal entry is 1 if \yf | < 1 and 0 
if |y?| = 1. By Lemma 4, there exists a positive number 6 such that ye = y°, 
the least norm solution of (12), for 0 < € < 6. As a result, W(e) = W(0) 
is a constant matrix for 0 < e < 6. If ATW{e)A is nonsingular, then the 
unique solution of (14) can be found by solving a system of linear equations 
as shown in the following theorem^ 

Lemma 17 Let 6 > 0 be such that the solution ys of (15) (with 7 = 6) is 
the least norm solution of (12), and let W(6) be the mxm diagonal matrix 
whose ith diagonal entry is 1 if \yf\ < 1 and 0 if \yf \ = 1. If ATW(S)A is 
nonsingular, then the Huber M-estimator problem (11) has a unique solution 
xc for 0 < e < 6 and 

x< = xs + (e - 6)z°, (23) 

where z° is the unique solution of the following linear system: 

W(S)Az = W(S)ys. (24) 

Moreover, the linear l\ estimation problem (10) has a unique solution x° — 
xs — 8z°, which is also the unique solution of the following linear system: 

W(S)Ax = W(6)d. (25) 

In general, from (14), we know that all solutions of (10) are in the set 

X(j/7) := {x € Hn : (Ax - d){ = 0 if |y7| < 1}. 

Therefore, we consider the following minimization problem: 
m 

i^1,, I>P*-<0,], (26) 
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which is equivalent to a system of piecewise linear equations similar to (16): 

ÄT(Äx - d)l7 = 0, (27) 

where x = x1+Tx, T is a transformation matrix with appropriate order, and 
x € TR,n with n < n. Now we consider that (27) is the Huber M-estimator 
problem (cf. (16)) corresponding to a "simpler" linear t\ estimation problem 
and try to find a solution of the new linear i\ estimation problem. One 
important relation between these two t\ estimation problems is that if x* is 
a solution of the new l\ estimation problem, then x* = x^+Tx* is a solution 
of the original l\ estimation problem. Therefore, the problem is reduced to 
finding a solution of a "simpler" problem. After repeating this process a few 
times, we see that the condition in Lemma 17 will be satisfied for the final 
Huber M-estimator problem and then we can get a solution of the final linear 
t\ estimation problem by solving a system of linear equations. By doing so, 
we can explicitly construct a linear l\ estimator of (10) by using the Huber 
M-estimators and transformation matrices obtained in the process. 

The above recursive method of computing a linear t\ estimator is for- 
mulated in the following algorithm. 

Algorithm 18 Let k = 0, T° = I (the n x n identity matrix), d° = d, 
x° — 0, and A0 = A. Compute a solution of (10) as follows: 

Step 1. find € > 0 and a solution uk of 

{Akf (Aku-dky_  =0 (28) 

such that vk := \{Akuk — dky_e is a solution of 

min (dk)Tv    subject to    (Ak)Tv = 0, -1 < v < 1; (29) 

Step 2. let Wk be the diagonal matrix whose ith diagonal entry is 1 if 
\vk\ < 1 and 0 otherwise; 

Step 3. if k > 0 and Wk = W*-1,. let xk+1 := xk + Tkuk and go to Step 9; 

Step 4. find a solution zk of the linear system 

WkAkz = Wkdk; (30) 

Step 5. let xk+1 := xk + Tkzk; 
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Step 6. if(Ak)TWkAk is nonsingular, then go to Step 9; 

Step 7. let the columns of Bk be a basis of the null space ofWkAk; 

Step 8. set Ak+1 := AkBk, Tk+1 = TkBk, dk+\ := dk - Akzk, k:=k+l, 
and go to Step 1; 

Step 9. output xk+1 as a solution of (10). 

This algorithm finds a linear £\ estimator in finitely many iterations as 
shown in the following theorem. 

Theorem 19 For any A and d, Algorithm 18 finds a solution of the linear 
l\ regression problem (10) in finitely many iterations. 

3.5    Conclusions 

We show that many new relationships between the linear l\ estimators and 
the Huber M-estimators can be derived once one understands that the dual 
solution of the Huber M-estimator problem (11) with a small tuning pa- 
rameter 7 is the least norm solution of the dual problem of the linear l\ 
estimation problem (10). The dual connection between (11) and (10) allows 
us to establish a set-valued version of the linearity property of the Huber 
M-estimator with respect to the tuning parameter 7, as well as the Lipschitz 
stability of the Huber M-estimators with respect to perturbations of 7. It 
also allows us to identify how small the tuning parameter should be in the 
computation of the Huber M-estimators for finding a linear l\ estimator. 
By exploiting the dual connection, we have an almost complete understand- 
ing of how the uniqueness of the Huber M-estimator with a small tuning 
parameter is related to the uniqueness of the linear t\ estimator. 

Our study also provides a new interpretation of the role of the Huber 
M-estimator in Madsen and Nielsen's method for computing a linear l\ es- 
timator. In the case that the least norm solution of (12) is nondegenerate, 
all common zero indices of the error vectors (Ax° — b) (with x° in the so- 
lution set of (10)) can be identified by the Huber M-estimator with a small 
tuning parameter 7 and a linear i\ estimator can be explicitly constructed 
by solving another Huber M-estimator problem. However, when the least 
norm solution of (12) is degenerate, we have to repeatedly solve Huber M- 
estimator problems in order to find the common zero indices. Therefore, we 
propose a recursive version of Madsen and Nielsen's method for computing a 
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linear t\ estimator by repeatedly solving Huber M-estimator problems. The 
new algorithm explicitly constructs a linear l\ estimator based on Huber M- 
estimators, without Madsen and Nielsen's assumption that guarantees the 
uniqueness of both the Huber M-estimator and the linear l\ estimator. 
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4 Global Error Bounds for Quadratic Inequali- 
ties 

In this section we report our study on convex differentiable inequalities and 
show that metric regularity and Abadie's constraint qualification are equiv- 
alent for such inequalities. For convex quadratic inequalities, we show that 
metric regularity, the existence of a global error bound, and Abadie's con- 
straint qualification are mutually equivalent. As a consequence, we derive 
two new characterizations of weak sharp minima of a convex quadratic pro- 
gramming problem. This is a summary of a paper written by the principle 
investigator [16]. 

4.1    Review on Global Error Bounds 

Consider a nonempty convex subset 5 of IRn defined by the following convex 
inequalities: 

g{x) < 0, (31) 

where g(x) is a mapping from Etn to Rm and each component <7,(x) of g(x) 
is a convex function on Etn. Most likely one has to resort to some iterative 
method for finding an approximate solution of (31). One important crite- 
rion for accuracy of an approximate solution x is the amount of constraint 
violation: ||(<jf(a:))+||. Here z+ is a vector whose ith component is max{0, z{\ 
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and II • II denotes the 2-norm on WLm (i.e., \\x\\2 = £?=1 |x,|2). There are 
both practical and theoretical reasons for studying the following estimate of 
the distance from any point x in Rn to the feasible set S: 

6ist(x,S)<1-\\(g(x))+l (32) 

where 7 is a positive constant and dist(a;, 5) := minyes ||x — y\\. When g(x) 
is linear, (32) is Hoffman's error estimate for approximate solutions of a 
system of linear inequalities [8]. Error estimate was crucial for establish- 
ing linear convergence of various descent methods for solving linearly con- 
strained optimization problems [19, 20, 21, 22, 23, 24, 26,17,11, 13, 14, 15]. 
From a practical point of view, (32) guarantees that the distance from an 
approximate solution x to S is bounded by a multiple of ||((5r(i))+||, an ex- 
plicit measurement of infeasibility. Roughly speaking, one might expect that 
dist(a;, S) decreases proportionally as ||(5(a;))+||. However, the proportional 
constant 7 might be large and result in an undesirable situation: ||(5(a;))+|| 
is quite small but x might be far away from the feasible set S. This is similar 
to the ill-conditioning of a system of linear equations. Therefore, in order to 
know the accuracy of an approximate solution in terms of its distance to the 
feasible set, it is important to know what is the exact value of 7 in estimation 
(32). Mangasarian defined the conditioning number of the inequality system 
(31) as the smallest 7 for which estimation (32) holds for all x [25]. There 
are quite a few papers devoted to the study of the conditioning number of 
a system of linear equalities and inequalities [6, 27, 4, 12, 5, 9, 10]. 

Generally, (32) does not hold if g(x) is not linear. Robinson proved 
that (32) holds if S is bounded and has a nonempty interior [28]. For 
an unbounded feasible set S, Mangasarian [25] established (32) under the 
assumption that gi(x) are differentiable convex functions and (31) satisfies 
Slater's condition (i.e., there exists a point x* such that g(x*) < 0) as well 
as an asymptotic constraint qualification. Auslender and Crouzeix extended 
both Robinson and Mangasarian's results by introducing a more general 
asymptotic constraint qualification that can be applied to nondifferentiable 
convex functions gi(x). They derived (32) under Slater's condition and 
their asymptotic constraint qualification [2]. However, asymptotic constraint 
qualifications are difficult to verify. It was not clear from Auslender and 
Crouzeix's result whether or not (32) holds if gi(x) are convex quadratic 
functions. It was proved recently by Luo and Luo [18] that (32) holds if 
gi(x) are convex linear/quadratic functions and there exists a feasible point 
x* of (31) such that gi(x*) < 0 whenever gi(x) is not linear. That is, for 
convex linear/quadratic functions, (32) holds when Slater's condition holds 
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for nonlinear constraints. Shortly after, Pang and Wang showed that (32) 
might not hold for convex quadratic inequalities if Slater's condition fails 
[32]. They introduced an interesting concept called the degree of singularity 
of an inequality system and proved that, if gi(x) are convex linear/quadratic 
functions and the degree of singularity of (31) is d, then 

dist(x,S)<p- (||(ff(x))+|| + ||(<K*))+ird)        for x € IRn. (33) 

They also showed by examples that the above estimate is sharp in the sense 
that there is a convex quadratic inequality system for each d = 0,1, • • • such 
that [32] 

djst(a;, 5) 

5? \\(g(x))+\\ + \\(g(x))+\rd > • 
Note that the degree of singularity of (31) is always bounded by (m + 1). 
Therefore, (33) always holds with d = m + 1 [32]. This provides a gen- 
eral error bound for approximate solutions of a convex quadratic inequality 
system, even though it might not be as sharp as one expects. 

From Luo-Luo and Pang-Wang's works we can appreciate the impor- 
tance of Slater's condition in error estimate (32) for approximate solutions 
of a convex quadratic inequality system. However, one can easily construct 
a convex quadratic inequality system that satisfies (32) but does not sat- 
isfy Slater's condition: 171(2:1,2:2) = £1 + 2:2, «72(2:1, £2) = — (2:1 + 2:2), and 
(73(2:1, X2) = (xi + xi)2- (It is a trivial case since the nonlinear constraint 
is superfluous. For nontrivial examples, see Subsection 4.4.) This simple 
example raises a natural question: what is the characterization of a convex 
quadratic inequality system that satisfies (32)? It was this question that led 
us to the discovery of some intrinsic connections among several seemingly un- 
related concepts: Abadie's constraint qualification, metric regularity, global 
error bounds, and weak sharp minimum property. 

The section is organized as follows. In Subsection 4.2, we give a de- 
tailed discussion of Abadie's constraint qualification, since it plays a key 
role in this section. The main result in Subsection 4.3 is the equivalence 
of Abadie'constraint qualification and metric regularity for a differentiable 
convex inequality system. In Subsection 4.4, we apply this characterization 
of metric regularity to derive a characterization of a convex quadratic in- 
equality system that satisfies (32): error estimate (32) holds if and only if 
Abadie's constraint qualification is satisfied at every feasible point. Since we 
can reformulate a constrained minimization problem as an inequality sys- 
tem, weak sharp minimum property may be considered as a weaker form of 
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error estimate (32). From this point of view, we establish two new charac- 
terizations of weak sharp minimum property of a convex quadratic program. 
Finally, conclusion is included in Subsection 4.5. 

4.2    Abadie's Constraint Qualification 

In this subsection, we review constraint qualifications for (31), especially, 
Abadie's constraint qualification. First, Abadie's constraint qualification is 
a representation of the tangent cone by the gradients of active constraints, 
which can also be described by a representation of the normal cone by the 
gradients of active constraints. For convex differentiable optimization prob- 
lems, Abadie's constraint qualification is the weakest condition that ensures 
the characterization of an optimal solution by Karush-Kuhn-Tucker condi- 
tions. 

For a point x in a convex set 5", the normal cone of S at x is defined by 

N(x) := {z € K" : zT(y - x) < 0   for y € S}. 

The tangent cone T(x) of S at x is the polar of the normal cone N(x). That 
is, y € T(x) if and only if yTz < 0 for every z € N(x). The tangent cone 
T(x) can also be defined as the closed convex cone generated by the elements 
in S — x. 

Definition 20 We say that the system (31) satisfies Abadie's constraint 
qualification (Abadie's CQj x 6 S ifT(x) = {y G Rn : g'i(x)Ty < 0 for i € 
/}, where I := {i : gi{x) = 0} is the set of indices of active constraints at 
x. If Abadie's CQ holds at every point in S, then we say that (31) satisfies 
Abadie's CQ. 

By duality, we can also use the normal cone to describe Abadie's con- 
straint qualification. 

Lemma 21 For the inequality system (31), Abadie's constraint qualification 
is satisfied at a point x £ S if and only if the normal cone of S at x is 

l^2^9i(x):Xi>0    for i€ij, 

where I := {i : gi(x) = 0} is the index set of active constraints at x. 
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The following relation about various constraint qualifications is well- 
known, which implies that Abadie's constraint qualification is the weakest 
one among them. 

Lemma 22 Consider the following constraint qualifications at a point x € 
S: . 

(LICQ): {g'i(x) : i € /} is linearly independent, 

(SCQ): there exists x* such that gi(x*) < 0 for i = 1, • • •, m, 

(MFCQ): there exists a vector u such that g\{x)Tu > 0 for i € I, 

(ACQ): the tangent cone of S at x is ly € K,n : g'i(x)Ty < 0   for i £ l\ , 

where I := {i : fir,(x) = 0} is the index set of active constraints at x. Then 

(LICQ) =» (SCQ) <s> (MFCQ) =► (ACQ). 

Now we show that Abadie's constraint qualification is the weakest con- 
dition that ensures the characterisation of an optimal solution of a convex 
differentiable optimization problem. 

Consider the inequality system (31) and the following convex program: 

min f(x)    subject to <7,(x) < 0   for i = 1, • • •, TO. (34) 

where f(x) is a differentiable convex function on Rn. We say that x* is a 
Karush-Kuhn-Tucker point (KKT point) of (34) if there exist nonnegative 
scalars A,- such that 

/'(**)+ £A«<7.V) = (), 
iei 

where I := {i : gi(x) = 0} is the index set of active constraints at x*. 

Lemma 23  The following two statements are equivalent. 

(23.1) The system (31) satisfies Abadie's constraint qualification. 

(23.2) For any strictly convex quadratic function f(x) on ]Rn, x* is the 
optimal solution of (34) if and only if x* is a KKT point of (34). 

Remark. In a sense, the above lemma shows that Abadie's constraint 
qualification is the weakest CQ to guarantee that KKT conditions hold for 
optimal solutions. 

Finally we show that a commonly used Slater-type constraint qualifica- 
tion implies Abadie's constraint qualification. 
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Lemma 24 [31, Theorem 28.2] Suppose that there exists a point x* such 
that gi(x*) < 0 for i = 1, •••,m and gi(x*) < 0 if gi(x) is not a linear 
function of x. Then x* is the optimal solution of (34) if and only if x* is a 
KKT point of (34). 

Lemma 25 Suppose that there exists a point x* such that gi(x*) < 0 for 
i = 1, • ■ •, m and gi{x*) < 0 if g%{x) is not a linear polynomial of x. Then 
(31) satisfies Abadie's constraint qualification. 

4.3    Metric Regularity and Abadie's Constraint Qualification 

It is well-known that metric regularity is related to Slater condition and 
MFCQ [28, 29, 30]. In this subsection we prove that Abadie's CQ is equiv- 
alent to metric regularity for a convex differentiable inequality system. 

Definition 26 We say that the system (31) is metrically regular at a point 
x € S if there exist positive constants 7 and 6 such that 

m 

dist(x, S) < 7 • ^2(äi(x))+    when \\x — x\ < 8. 
i=l 

We say that the system (31) is metrically regular if it is metrically regular 
at every point in S. 

Note that we are interested in metric regularity of (31) at every point in 
S. In general, one needs Slater condition to ensure such a metric regularity, 
as shown in the following lemma first proved by Robinson [28]. 

Lemma 27 If there exists x* G Hn such that gi(x*) < 0 for i — 1, • ■ -,m, 
then (31) is metrically regular. 

Metric regularity is closely related to error bounds. In fact, metric reg- 
ularity of (31) is equivalent to error bounds for infeasible solutions of (31) 
on bounded subset of ]Rn. 

Lemma 28 The system (31) is metrically regular if and only if, for any 
number r > 0, there exists a positive constant f(r) such that 

m 

dist(x, S) < 7(r) • ^(<7;(a:))+    when ||a;|| < r. 

Now we state the main theorem in this subsection. 

Theorem 29 The system (31) is metrically regular if and only if (31) sat- 
isfies Abadie's constraint qualification. 
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4.4    Error Bounds 

We want to apply the main theorem in the previous subsection (Theorem 
29) to a special case: (31) with convex linear/quadratic functions gi(x). In 
this case, the metric regularity is equivalent to the existence of a global 
error bound for infeasible solutions of (31). As a consequence, we obtain 
that Abadie's constraint qualification is a necessary and sufficient condition 
for a global error bound given in (32). Our result complements the study 
done by Luo and Luo [18], Pang and Wang [32] on error bounds for convex 
quadratic inequalities. 

Consider the following system of convex quadratic inequalities: 

9i(x) < 0       for i = 1,- • -,m, (35) 

where (ft(x) are either linear or convex quadratic functions on Etn. 
The essence of our proof is to reduce the problem to the case that Slater 

condition holds. Then we can use the following result by Luo and Luo [18] 
to get (32). 

Lemma 30 If the system (35) satisfies the Slater condition, then there ex- 
ists a positive constant 7 such that 

iei(x) 
>7^Ai       for x € ffi",A,- > 0, (36) 

iei(x) 

where I(x) := {i: gi(x) = 0}. 

It is obvious that (32) implies metric regularity. Therefore, the main 
effort in proving the equivalence of (32) and metric regularity is to show 
that metric regularity implies (32) for convex quadratic inequalities. 

Theorem 31 The convex quadratic inequality system (35) satisfies Abadie's 
constraint qualification if and only if there exists a positive constant 7 such 
that 

771 

dist(z, S) < 7 £(fl,(x))+       for x G K.B, (37) 
1=1 

where S := {x G Hn : gi(x) < 0    for i = 1, • • •, m}. 

Note that Luo and Luo [18] proved a special case of Theorem 31: (36) 
holds if there exists a vector x* such that g(x*) < 0 and <7,(x*) < 0 whenever 
gi(x) is not a linear function. 
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Theorem 31 not only gives a characterization of the existence of global 
error bound (32) for convex quadratic inequalities, but also reveals why there 
exist weak sharp minima for convex quadratic programming problems [7], 
as shown in the following theorem. 

Theorem 32 Assume that f(x) is a convex quadratic function bounded be- 
low on {x € Etn : Ax < b}. Let /mm := min^x^fc f(x) and S := {x G W1 : 
Ax < b,f(x) = /min}. Then the following statements are equivalent. 

(32.1) Abadie's constraint qualification is satisfied at every feasible point of 
the following inequality system: 

/(*) - /min < 0 and Ax - b < 0. (38) 

(32.2) The convex quadratic programming problem minAx<b f(x) has weak 
sharp minima. That is, there exists a positive constant 7 such that 

f(x) > /„an +_7 • dist(a;, S) when Ax < b. (39) 

(32.3) There exists a positive constant A such that 

dist(x,S)<\((f(x)-fI0in)+ + \\(Ax-b)+\\)     forzeIR".    (40) 

Note that various characterizations of weak sharp minima of a convex 
quadratic programming problem were given by Ferris and Mangasarian [7]. 
Theorem 31 leads us to two new characterizations (32.1) and (32.3) in The- 
orem 32. Weak sharp minimum inequality (39) estimates how far away 
a feasible solution is from the solution set. The inequality (40) actually 
provides an estimate of the distance from any approximate solution of the 
quadratic programming problem to its solution set, which is more desirable 
when infeasible approximate solutions are involved. Even though (40) fails 
to be true if (38) does not satisfy Abadie's constraint qualification, one could 
still have the following inequality [15]: 

dist(x, S) < 7 (f(x) - /^ + yjf{x) - f^      for Ax - b < 0. 
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4.5    Conclusion 

We have shown that the concepts of metric regularity, error bounds, and 
weak sharp minimum are closely related. The essence of these concepts 
is to estimate the distance from an approximate solution to the solution 
set of the underlying problem, locally or globally. For metric regularity of 
parametric systems, MFCQ was proven to be a necessary and sufficient con- 
dition [29, 30]. However, for the non-parametric version of metric regularity 
defined here. Abadie's constraint qualification is a necessary and sufficient 
condition. As applications, we show that Abadie's constraint qualification is 
a characterization for the existence of a global error bound (32) for convex 
quadratic inequalities, which leads to a global error bound (40) for approxi- 
mate solutions of a convex quadratic programming problem with weak sharp 
minima. 
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5    Merit Functions for Complementarity Problems 

We introduce a new merit function Pa(x) for a symmetric linear complemen- 
tarity problem (symmetric LCP). The merit function Pa(x) is derived from 
Hestenes-Powell-Rockafellar's quadratic augmented Lagrangian function for 
a quadratic programming problem with simple bound constraints. The sta- 
tionary points of Pa(x) are the solutions of the original LCP. We study 
various properties of Pa(x), including existence of global minimizers, error 
bounds, boundedness of level sets, and convexity of Pa{x). A relation be- 
tween Pa(x) and Mangasarian and Solodov's implicit Lagrangian Ma(x) [27] 
is established. As a consequence, we recover Peng's result [30] about strict 
convexity of Ma(x) for large a and strongly monotone LCP. A Newton-type 
method is proposed to compute a solution of the original LCP by finding a 
stationary point of Pa{x). If Pa(x) is bounded below and the matrix in LCP 
is symmetric and nondegenerate, then the algorithm finds a solution of LCP 
in finitely many iterations. We also discuss possible extension to symmetric 
nonlinear complementarity problem. This is a summary of a paper written 
by the principle investigator [17]." 

5.1    Review on Merit Functions 

Consider the following quadratic program with simple bound constraints: 

min    -x   Qx + q  x, (41) 
l<x<u   2 

where Q is an n X n symmetric matrix, q € Etn (a vector of n components), 
and /, u are vectors of n components with / < u. Some components of / or 
u may be — oo or +oo. The corresponding augmented Lagrangian function 
L(x,y,a) introduced independently by Hestenes [10, 11] and Powell [32] for 
equality constraints and by Rockafellar [33, 34] for inequality constraints 
can be written in the following unified way [15]: 

L(x,y,a)= ±xTQx + qTx + % 

+- (i('-*) + y)+ 

(£(*-t0-v)+ 

- f llyll2, 
(42) 

where y is the Lagrangian multiplier corresponding to two-sided inequal- 
ity constraints and a is a penalty parameter. Note that the Lagrangian 
multiplier y in (42) should satisfy the following equation: 

y = -(Qx + q). (43) 
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By substituting (43) into (42), we get a piecewise quadratic penalty function 
of (41) [15]: 

L(x, -(q + Qx), a) = (\xTQx + qTx) - <$\\(Qx + q)\\\ 

+ 2a ((l-x) + a(Qx + q))+     +±   ((* - u) - a(Qx + q)) + 

For quadratic programs with nonnegative constraints (/,• = 0, u; = +oo), we 
have the following penalty function: 

v«) = Q x Qx + q x |II««+rill2+1 (a(Qx + q)-x) + 

where z+ is the vector whose ith component is max{0,z,}.  An equivalent 
form of Pa(x) was first introduced by Li and Swetits [18, 15]. 

In this section, we show that the augmented Lagrangian Pa(x) can be 
used as a merit function for the symmetric linear complementarity problem: 

x > 0, (Qx + q) > 0, xT(Qx + q) = 0. (44) 

Let the penalty parameter a be such that 0 < a||Q|| < 1. Then x* is 
a stationary point of Pa(x) if and only if x* is a solution of LCP (44). 
Moreover, we give characterizations for the existence of a global rninimizer 
of Pa(x), boundedness of level sets of Pa{x), and the convexity of Pa(x). 
We also derive local/global error bounds in terms of Pa(x). 

One very interesting property of Pa(x) is its connection with Mangasar- 
ian and Solodov's implicit Lagrangian: Ma(x) = PL(X) — Pa(z) for LCP. 

a 
Based on convexity analysis of Pa(x), we obtain that Ma(x) is strictly con- 
vex if a is large and Q is positive definite, recovering a result by Peng [30]. 

Since Pa(x) is a differentiable piecewise quadratic function and its gra- 
dient VPQ(x) = ~(I — aQ)(x — (x — a(Qx + q))+) has a simple struc- 
ture, it is very easy to design an iterative method that finds a stationary 
point of Pa(x) (or a solution of (44)) in finitely many iterations. Such 
an algorithm is very interesting, since almost all algorithms for quadratic 
programs and linear complementarity problems can be classified as either 
iterative or finite methods [29, 20, 1]. The most interesting property of 
Pa(x) is that, for any xk, the Newton method starting at xk produces an 
iterate xk+1 that is the approximate solution of (44) by using the index set 
J(xk) = {i : (xk — a(Qxk + q))i > 0} as the working active set for constraints 
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(Qx + q) > 0. That is, xfc+1 is the solution of the following system of linear 
equations: 

(Qx + q)i = 0 for i € J(xk), xt = 0 for t £ /(a;'1), 

whenever the above system has a unique solution. Therefore, the New- 
ton method for finding a zero of VPa(x) actually corresponds to a pivotal 
method that allows swapping of many indices of working active sets in each 
step. However, it requires a strategy that makes "intelligent" index swap- 
ping to identify the active index set of a solution of (44). We show that 
reduction of function value of Pa(x) can be used for this purpose. Consider 
the partition of Htn as a union of following polyhedral sets: 

ton = \JWj, 
J 

where 

Wj = {xeBn    :   [xr a(Qx + q))i > 0 for i £ J, 
(45) 

(x - a(Qx + q))i < 0 for i $ J} . 

Note that Wj contains a solution x* of (44) if and only if 

x*{ > 0, (Qx* + q)i = 0,   for i £ J, 

(Qx* + q)i > 0, x* = 0,   for i <£ J. 

Therefore, our objective of using Pa(x) for solving (44) is to find an iterate xk 

such that Wjixk\ contains a stationary point or a local minimizer of PQ(x). 
This can be achieved by using any descent method for a local minimizer of 
Pa(x). In general, we would like to use the Newton direction as the search 
direction. However, due to nonconvexity of Pa(x) (when Q is not positive 
semidefinite), the Newton method with a line search might get stuck at 
a nonstationary point. In such a case, we switch to a gradient direction 
and continue the search for a region Wj that contains a solution of (44). 
H the linear systems for the Newton directions are nonsingular, then our 
method is a natural combination of a descent method and a pivotal method. 
Geometrically, our method makes the iterates move toward a local minimizer 
of PQ(x); and algebraically, the iterates facilitate index swapping to make 
the current working active sets more and more accurate. Once the current 
iterate lands in a region Wj containing a stationary point of Pa(x) (which 
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is guaranteed by the descending nature of our method), the Newton method 
finds a stationary point of Pa(x) (or a solution of (44)) in one step. See 
Subsection 5.4 for further explanation. 

Recently, there are many papers on merit functions of nonlinear comple- 
mentarity problems and variational inequality problems [3, 4, 5, 9, 12, 13, 
22, 25,27, 30, 31, 35, 36]. See a survey by Fukushima [8] for more references. 

The section is organized as follows. Subsection 5.2 is devoted to the 
discussion of properties of the merit function Pa(x). In Subsection 5.3, we 
derive new error bounds for approximate solutions of (44) in terms of Pa(x). 
In Subsection 5.4, we propose a Newton-type method for finding a solution of 
(44) and establish its finite termination under some mild conditions. Possible 
extension to symmetric nonlinear complementarity problems is discussed in 
Subsection 5.5. Final comments and conclusions are given in Subsection 5.6. 

We conclude this subsection by introducing the notations and terminol- 
ogy used in this section. Let I be the n x n identity matrix. For an n x n 
matrix Q, Q is said to be copositive if xTQx > 0 for all vectors x > 0, and Q 
is said to be strictly copositive if xTQx > 0 for all vectors i>0,i^0. For 
other matrix classes mentioned in this section, we refer the reader to [1]. For 

x e 1R", ||z|| = (£?=!*?)» and IIQII = sup{||Qx|| : x € 3R",||x|| = 1}. Let 
xT (or QT) denote the transpose of a; (or Q). For an index set «7, xj denotes 
the vector obtained from deleting the components of x whose indices are not 
in J. DJ denotes the diagonal matrix whose ith diagonal entry is 1 if i £ J 
and 0 otherwise. We use Jc = {i : i g J} to denote the complement of J. 
For index sets Ji,Ji, Qh J2 

1S the matrix obtained from deleting the rows of 
Q whose indices are not in J\ and the columns of Q whose indices are not 
in J2. For a vector x e IR" and a subset K of Rn, the distance from x to 
K is defined as follows: 

&st(x,K) = hd{\\x-y\\:y<EK}. 

If K is closed and convex, the orthogonal projection of x to K is the unique 
vector x* in K such that ||x - x*|| = dist(x,uf). In the case that K is 
a union of finitely many polyhedral sets, such as the set of local/global 
minimizers of Pa(x), there might be several x*'s in K such that ||x - x*|| = 
dist(x,üf). In such a case, let us assume that T\.K{%) is a vector in K such 
that ||x - ntf(x)|| = dist(x, K). The sign of a real number t is denoted by 
sign(<). 
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5.2    Properties of Merit Function Pa(x) 

Recently, there are much attention given to merit functions for the following 
nonlinear complementarity problem [3, 4, 5, 9, 12, 13, 22, 25, 27, 30, 31, 35, 
36]: 

x > 0, F(x) > 0, xTF{x) = 0, (46) 

where F(x): Rn -► Rn is differentiable. 
One standard approach of constructing a merit function for (46) is to 

find a function M(x) > 0 such that x* is a solution of (46) if and only if 
M(x*) = 0. As a result, (46) can be reformulated as as an unconstrained 
(global) minimization of M(x). (For merit functions with constraints or 
reformulations of (46) as a constrained minimization problem, see a survey 
by Fukushima [8].) Such approaches lead to Mangasarian and Solodov's 
implicit Lagrangian [27]: 

Ma(x) = xTF(x) + i-(||(z - aF(x))+f 

-\\x\\2*\\(F(z)-ax)+\\*-\\F(z)\\2), 

and Bermeister and Fischer's NCP-function [4, 5]: 

*w = ^E (7*2 + ^(*)2 - *.• - *K*)) 2 • 
However, it is difficult to design an algorithm for computing a zero (or a 
global minimizer) of a nonnegative function M(x). Most numerical meth- 
ods can only find a stationary point or a local minimizer of M(x), which 
might not be a solution of (46). Therefore, it is important to know when 
the stationary points of a merit function M(x) are actually solutions of 
(46). Another issue about a merit function is whether or not its level sets 
are bounded. In general, it is not easy to ensure the convergence of iterates 
generated by a descent method for minimizing a nonconvex function. How- 
ever, if a merit function M(x) has bounded level sets, then a minimizing 
sequence for M(x) is bounded and has at least one cluster point. 

Unlike Ma(x) and *(x), the merit function PQ(x) exploits linearity of 
F(x) = Qx + q and symmetry of Q. As a result, it preserves the structure 
of original LCP (44) and has many properties that Ma(x) and *(x) do 
not have. In this subsection, we give complete characterizations for various 
properties of Pa(x), including equivalence of stationary points of Pa{x) and 

45 



solutions of (44), existence of global minimizers, boundedness of level sets, 
and convexity of Pa(x). We also discuss the convexity of Ma(x) by using 
the relation Ma(x) = P±(x) — Pa(x). 

a 

5.3    Stationary Points and Convexity 

In general, stationary points of Ma(x)/^(x) are not necessarily solutions of 
(46) and there is no known relation between the convexity of Ma(x)/iS(x) 
and the monotonicity of F(x), even if F(x) = Qx + q. Recently, Peng [30] 
proved the strict convexity of Ma(x) for large a and strongly monotone 
LCP. In this subsection, we obtain the equivalence of stationary points of 
Pa(x) and the solutions of (44), as well as the equivalence of the convexity of 
Pa(x) and the monotonicity of (44). For a positive definite Q, we show that 
PQ(x) is strictly convex for small a and strictly concave for large a. We also 
establish a relation between Ma(x) and Pa(x): Ma(x) = P±(x) — Pa(x). As 

a 

a consequence, we recover Peng's result [30] on strict convexity of Ma(x). 
Note that definition of Pa(x) does not require the symmetry of Pa(x). 

Therefore, some properties of Pa(x) m this subsection are given for an ar- 
bitrary n x n matrix Q. 

Theorem 33 For any n X n matrix Q, 

VPa(x) = 1(7 - aQT) (x-(x- a(Qx + ,))+) + \(QT - Q)x. (47) 

If Q is symmetric, then 

.  VPQ(x) = i(I - aQ) (x-(x- a(Qx + qf)  V (48) 

Theorem 34 Suppose that Q is symmetric and 0 < a||Q|| < 1. Then x* is 
a stationary point of PQ(x) if and only if x* is a solution of (44)- 

Remark. Stronger conditions are required for the equivalence of stationary 
points of Ma(x)/i&(x) and the solutions of (46). Yamashita and Fukushima 
[36] proved that a; is a stationary point of Ma(x) (a > 1) if and only if 
x solves (46), under the assumption that VF(x) is positive definite for ev- 
ery x £ Rn. Independently, Jiang [12] proved the same result under the 
assumption that VF(x) is a P-matrix for every x £ Rn. Yamashita and 
Fukushima [36] also showed that there exists a (nonlinear) strictiy monotone 
function F(x) such that some stationary point of Ma(x) is not a solution of 
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(46). For the merit function $(x), Geiger and Kanzow [9] proved that a; is a 
stationary point of $ if and only if x solves (46), under the assumption that 
VF(x) is positive semidefinite for every x € !Rn. Independently, Facchinei 
and Soares [3] proved the same result under the assumption that F(x) is 
Po-function. 

In the case that F(x) = Qx + q and Q is symmetric, these results lead to 
the equivalence of stationary points of ty(x) (or Ma(x)) and the solutions of 
(46) under the assumption that Q is positive semidefinite (or Q is positive 
definite). However, for positive semidefinite Q, the augmented Lagrangian 
Pa(x) is actually convex. 

For convexity analysis of Pa(x), we need the following lemma about 
convexity of a differentiable piecewise quadratic function. 

Lemma 35 [19, Lemma 2.1] Letg(x) be a differentiable piecewise quadratic 
function and Vg{x) = Bx + b + ßCT{Cx + c)+. If B and (B + ßCTC) are 
positive semidefinite (or positive definite), then g(x) is a convex (or strictly 
convex) function. 

Theorem 36 Suppose that Q is symmetric and 0 < ct\\Q\\ < 1. Then 
Pa(x) is convex (or strictly convex) if and only if Q is positive semidefinite 
(or positive definite). 

For nonsymmetric Q, we can still characterize the strict convexity of 
PQ(x). 

Theorem 37 Suppose that Q is annxn matrix. Then the following state- 
ments are equivalent. 

1°. Q is positive definite. 

2°.  There is e > 0 such that Pa(x) is strictly convex for 0 < a < e. 

3°.  There is A > 0 such that Pa(x) is strictly concave for a > A. 

Remark. The above proof also shows that Pa(x) is convex for small a 
if and only if Q is positive semidefinite and Qx = 0 whenever xTQx = 0. 
Moreover, Pa(x) can not be concave for large a if Q is not positive definite. 

With Theorem 37, we can derive the strict convexity of Ma{x) for affine 
and strongly monotone F(x) by using the following representation of Ma(x) 
by Pa(x). 
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Theorem 38 Suppose that F(x) = Qx + q and a > 0.   Then, Ma(x) = 
Px.(x) - Pa{x) and Ma{x) = -ML{x). 

a a 

With Theorem 37 and Theorem 38, we recover the following corollary 
about the strict convexity/concavity of Ma(x) for affine and strongly mono- 
tone F(x), which was first proved by Peng [30, Theorem 3.1]. 

Corollary 39 Suppose that F(x) = Qx + q andQ is positive definite. Then 
Ma(x) is a strictly convex function if 

a>max|||g||,||Q-1||,2|(Q-1+(Q-1)r)"1|,2|(Q + QT)"1|}.   (49) 

Moreover, Ma{x) is a strictly concave function if 

11 1 1 
a < mm 

\\Q\\' HO"1!!' 2 |(Q-i + (Q-^r'W' 2 \\(Q + QT)-1 (50) 

Remark. Note that the lower bound of a for the strict convexity of Ma(x) 
given by Peng [30, Theorem 3.1] is 

a > max 
1 + xTQTQx 

IMI=i      2xTQx 

In the case that Q is symmetric, then 

oft 1 *2xTQQxQX - lillQ~111 + m) - max^ie!l' II^U}- 

Thus, Peng's lower bound for a is sharper than (49). 
So far, we are not aware of any result on convexity of $(x). Luo and 

Tseng [25] introduced another class of differentiable merit functions related 
to $(x) that are convex if F(x) is monotone. 

5.4    Global Minimizers and Bounded Level Sets 

Unlike Ma{x) and *(x), which are based on the equivalence of the global 
minimizers of the merit function and the solutions of (46), Pa(x) might not 
have a global minimizer. This is undesirable. However, we show that Pa(x) 
is bounded below and has bounded level sets if Q is strictly copositive. We 
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also give characterizations for the existence of a global minimizer of Pa(x) 
and for boundedness of level sets of Pa(x). 

The existence of global minimizers of Pa(x) and boundedness of level 
sets of Pa(x) are closely related to the behavior of the following quadratic 
programming problem: 

min -xTQx + qTx. (51) 

Lemma 40 [15] Suppose that Q is symmetric and 0 < 2||Q|| < 1. Then 
the quadratic programming problem (51) has a global solution if and only 
if Pa(x) has a global minimizer. Moreover, x* is a local (or isolated local) 
solution of (41) if and only if x* is a local (or isolated local) minimizer of 
Pa(x). 

The above lemma shows that the the reformulation of (51) as uncon- 
strained minimization of Pa(x) does not change any intrinsic characteristics 
of (51). The above lemma reduces the existence of a global minimizer of 
PQ(x) to the problem of the existence of a global solution of (51). Eaves [2] 
proved that the existence of a global solution of a quadratic programming 
problem is equivalent to the lower boundedness of the objective function on 
any ray in the feasible set. 

Lemma 41 [2, Corollary 8] The quadratic programming problem (51) has 
a global solution if and only if Q is copositive and qTx > 0, whenever x > 0 
and xTQx = 0. 

Putting all these results together, we have the following characterizations 
for the existence of a global minimizer of Pa{x). 

Theorem 42 Suppose that Q is symmetric and 0 < 2a||Q|| < 1. Then the 
following statements are equivalent: 

1°. Pa(x) has a global minimizer. 

2°. Pa{x) is bounded below. 

3°. The quadratic program (51) has a global solution. 

4°. Q is copositive and qTx > 0, whenever x > 0 and xTQx = 0. 

In order to give a characterization for boundedness of level sets of Pa(x), 
we need the following two lemmas about the connection between Pa(x) and 
the objective function of (51). 

49 



Lemma 43 [15] Suppose that a > 0. Then Pa(x) < \xTQx + qTx if x > 0. 

Lemma 44 Let f(x) = \xTQx + qTx, E = (I - aQ), and x° = aE~lq. 
Then, for any index set J and x € Wj, 

Pa(x) > Pa(x°) + 9J (D
J
\X - x°), DJQDJ(x - x°j) + f (DJ

(EX - aqj) , 

where Wj is defined as in (45), gj(y,z) is a strictly convex quadratic func- 
tion of (y, z), Jc — {i : i £ J}, and DJ denotes the diagonal matrix whose 
ith diagonal entry is 1 if i € J and 0 otherwise. 

In the following theorem, we give two characterizations for boundedness 
of level sets of Pa(x): one in terms of boundedness of level sets for (51) and 
another in terms of Q and q. 

Theorem 45 Suppose that Q is symmetric and 0 < 2a||Q|| < 1. Then the 
following statements are equivalent: 

1°. Pa(x) has bounded level sets.' 

2°.  The level set for (51), {x e ]Rn : x > 0, \xTQx + qTx < 7}, is bounded 
for every 7 < 00. 

3°. Q is copositive and qTx > 0, whenever x > 0, x ^ 0, and xTQx = 0. 

Corollary 46 Suppose that Q is symmetric and strictly copositive. Then 
the level sets of Pa(x) are bounded ifO<2a\\Q\\<l. 

Remark. Yamashita and Fukushima [36] proved that Ma(x) (a > 1) has 
bounded level sets if F(x) is strongly monotone and Lipschitz continuous. 
For merit function *(x), Geiger and Kanzow [9] proved that the level sets of 
* are bounded if F(x) is strongly monotone. Independently, Facchinei and 
Soares [3] proved that the level sets of * are bounded if F(x) is a uniformly 
P-function. 

5.5    Local and Global Error Bounds 

Let 5* be the solutions of (44), L* be the set of local minimizers of Pa(x), 
and G* be the set of global minimizers of Pa(x). Then, for 0 < a||Q|| < 1, we 
have G*CI'C S*. In general, G* / L*, L* ± S*, and G* / S*. However, 
if Q is positive semidefmite, then Pa(x) is convex for 0 < a\\Q\\ < 1 (cf. 
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Theorem 36) and G* = L* = S*. There are many results about error 
estimates for dist(z, S*), the distance from x to S*. See [23, 24, 28, 26, 14, 
22, 21] and references therein. For 0 < a||Q|| < 1, (J - aQ) is a positive 
definite matrix and, by Theorem 33, we have || VPa(x)|| » ||x - (x - a(Qx + 
q)+\\- Thus, known error bounds in terms of ||x - (x - a(Qx + q)+\\ can be 
rewritten in terms of ||VPa(x)||. In this subsection, we derive local/global 
error estimates of dist(x,L*) and dist(x,G*) in terms of Pa(x). 

5.6    Local Error Bounds 

Since Pa(x) can not distinguish stationary points of Pa(x) from nonsta- 
tionary points of Pa(x), we can not use expressions of Pa(x) to estimate 
dist(x, S*). However, we can use Pa(x) to estimate the distance from x to 
the set of local/global minimizers of Pa(x). 

First we need the following lemma about the structure of X* and G*. 

Lemma 47 Suppose that Q is symmetric, a > 0, and WnS* is a polyhedral 
set. Then WnS* = WnL* ifWnL* / 0 and Wf)S* = WnG* ifWf\G* ^ 0. 

The next lemma gives error bounds on each polyhedral set Wj. 

Lemma 48 Suppose that Q is symmetric and 0 < 2a||Q|| < 1. Then there 
exists a positive constant 7 such that 

^Pa(x)-PQ(JlWjnL.(x)) < dist(x, WjHL*) < JyJPa(x) - P0(UWjnL.(X)) 

for x € Wj with Wj D L* ^ 0. 

In order to replace dist(x, WjDL*) by dist(x, L*), we need the following 
lemma for lower bound of dist(x, L*) or dist(x, G*). 

Lemma 49  There exists a positive constant e such that 

\\x-x*\\>ey/\Pa(x)-PQ(x*)\    ioTx£WLn,x*eS*. (52) 

Theorem 50 Suppose that Q is symmetric and 0 < 2a\\Q\\ < 1. Let L* be 
the (nonempty) set of local minimizers of Pa(x). Then there exist positive 
constants 6,T) such that, for x £ IR,n with dist(x,i*) < 6, 

-\JPa{x) - P«(nL.(x)) < dist(x,i;*) < 7?x/pa(a;)-pa(nL.(x)).   (53) 
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Theorem 51 Suppose that Q is symmetric and 0 < 2a||Q|| < 1. Let G* be 
the (nonempty) set of global minimizers of Pa(x). Then (here exist positive 
constants 6,n such that, for x € Rn with dist(a;,G*) < 6, 

-y/Pa(x) - PQMQ < dist(x, G*) < T]y/PQ(X) - Paimin, (54) 

where Pa,min = in${Pa(x) • % € E"}. . 

5.7    Global Error Bounds 

In general, (53) and (54) do not hold if a; is an arbitrary vector in Etn. In 
this subsection, we give characterizations for the existence of global error 
bounds for dist(x,G*). Note that we can not use \/Pa(x) — Pa(IIi«(x)) as 
a global measure of dist(a;,X*), since it is likely to have some x € Hn \ L* 
such that Pa(x) = Pa(IlL.(x)). 

Theorem 52 Suppose that Q is symmetric and 0 < 2a||Q|| < 1. Then the 
following statements are equivalent. 

1°. Pa(x) is bounded below for every q 6 ]Rn. 

2°. Pa(x) has bounded level sets for every q G Rn. 

3°. Q is strictly copositive. 

4°. For any q, Palmin = v&i{Pa{x) : x € K,n} > -oo and there exists a 
positive constant 7 = "y(Q,q) such that 

-yjPa{x) - Pa.min < dist(a!, GT) < ly/Paix) - PQ,min     for X € Mn. 

Note that G* C L* C S*. In general, G* # L*, L* # 5*, and G* ± S*. 
However, if Q is positive semidefinite, then Pa(x) is convex for 0 < a||Q|| < 1 
(cf. Theorem 36) and G* = L* = S*. In this case, we have the follow- 
ing global error bound for symmetric and monotone linear complementarity 
problems (cf. Corollary 2.8 in [14]). 

Theorem 53 Suppose that Q is symmetric and positive semidefinite, 0 < 
a\\Q\\ < 1, and the solution set S* of (44) is not empty. Then there exists 
a positive constant 7 such that 

dist(x, S*) < 7 ((Pa(x) - Paimin) + yjpa(x) - Paimin)    for x € En. 
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5.8    A Newton-Type Method 

By exploiting the structure of VPa(x), we can get an iterative algorithm for 
finding a solution of (44) in finitely many iterations. 

Algorithm 54 Suppose that Q is symmetric and the principle submatrices 
of Q are nonsingular (i.e., Q is nondegenerate). Then generate a sequence 
of iterates as follows: 

Step 0. choose positive constants S > 0, 0</?<7<l, 0< 2a||Q|| < 1; 
set b = -aq and E = (I - aQ); let k - 0 and x° e Etn; 

Step 1. compute rk = xk — (Exk + b)+; 

Step 2. ifrk = 0, then output the solution xk and stop; 

Step 3. let Jk = {i: (Exk + 6),- > 0} and Jk = {i: (Exk + 6),- < 0}; 

Step 4. let uk
Jk = Q?^ (QjkjJ%- Mk) «* 4t = -fy 

Step 5. if xk + uk = {E(xk + uk) + b)+, then output the solution xk and 
stop; 

Step 6. if \(rkfuk  > S\\rk\\2, zk = uk; else, zk = -rk; 

Step 7. let ß < rjk < 7 and find the stepsize ifc 7^ 0 such that 

- sign(tk)(z
k)TVPQ(x

k + tkz
k) = Vk |(^)TVPQ(x

fc)|       (55) 

and, for t between 0 and tk, 

- sign(tk)(z
k)TVPa(x

k + tzk) > Vk (zk)TVPa(x
k) ;       (56) 

Step 8. set xk+1 = xk + tkz
k; 

Step 9. update k by k + 1 and go back to Step 1. 

Remark. The algorithm is very much like a Newton method for solving the 
piecewise linear equation: x — (x - a(Qx + q))+ = 0. Note that the Newton 
direction uk for Pa{x) at xk is the solution of the following linear system: 

-(/ - aQ)(I - DJ"{I - aQ))u = -VPa(x
k) = --(I - aQ)rk, 
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or equivalently, 
(I-DJk(I-aQ))u = -rk. (57) 

That is, the Newton direction for Pa(x) is the Newton direction for the 
equation: x — (x — a(Qx + q))+ = 0. 

We can rewrite (57) as follows: 

Ui = -rk   for i £ Jk,    a(Qu)i = -rk   for i € Jk- (58) 

Using matrix and vector partition, we can write the second set of equations 
in (58) as 

aQjkJkujk + aQJkjkujk = -rk
Jk. (59) 

Thus, by (58) and (59), we get that Uj  = —rkj  and 

A = Q-JL {QJ.JA - \A 
Therefore, it is possible to use matrix updating techniques for computing 
the inverse of Qjkjk. If Q is a sparse matrix, then (58) is also a sparse 
linear system. If Qjkjk is nonsingular and Wjk contains a stationary point 
of Pa(x), then (xk + uk) is the stationary point of the quadratic function 
Pa{x) on WJk. 

The line search can be done in at most 0(n2) operations. Note that 

n 

h(t) = a(zk)TVPa{x
k + tzk) = a0 + ait-J2 c,(ci* - d,-)+, 

«=i 

where a0 = (zk)TExk, a2 = (zk)TEzk, d{ = -{Exk + 6),-, and c,- = (£**),-. 
Without loss of generality, we assume that c, ^ 0. (If c,- = 0, delete C{(cit + 
di)+ from the summation.) Let t/t- = j±. After a sorting of {i/i, • • -,yn} and 
relabeling (with ö(nlogn) operations), we may assume 

2/1 < J/2 < • • ■ < Vn- 

If h(0) < 0, we can evaluate /i(y,) for T/, > 0 and find yr > 0 such that 
%r) > r)kh(0) and /i(y,) < 17*^(0) for 0 < y, < yr. If yT_x > 0, let 
yr_i = yr-\; else, j/r_i = 0. Then there exists a unique tk 6 [yr-i,yr] 
that can be used as our stepsize. Note that tk is the unique solution of the 
following linear equation: 

a0 + oi< -       Yl       c«(c«* ~ di) ~       J2       Ci(Cit ~ d0 ~ Vkh(0). 
ci>0,vi>j/r_i cj<0,y;<2/r-i 
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Similarly, if h(0) > 0, then we can find a stepsize tk < 0 such that (55) and 
(56) hold. 

We can use any descent method for minimization of Pa(x) to identify 
an active index set of a solution of (44). The above algorithm tries to take 
advantage of the Newton directions in minimization process. 

Now we state the finite termination of Algorithm 54. 

Theorem 55 Suppose that Q is symmetric, the principle submatrices of 
Q are nonsingular, and (51) is bounded below. Then, for any given initial 
guess x° and 0 < ß < 7 < 1, Algorithm 54 always finds a solution of (44) 
in finitely many iterations. 

Remark. The assumption that principle submatrices of Q is nonsingular 
is not essential. It is possible not to use this assumption in the design of an 
iterative algorithm that terminates in finite iterations (cf. [18]). 

5.9    Extension 

Consider the nonlinear complementarity problem (46). Assume that F(x) 
is a conservative field or VF(x) is symmetric; i.e., 

dFj _ 
dxi 

8Fi 

dxi for 1 < i,j < n. 

Then there exists a potential function f(x) of F(x) such that 

dxi 
= Fi, for 1 < i < n. 

We use the following notation to denote such a potential function: 

/(*)= fXF{y)dy = Yjj Fi(y)dyu 
JO i-iJC t=l 

where the integration is the line integral in differential form and C is any 
smooth curve starting at 0 and ending at x. Using the potential function 
f(x) of F(x), we can define the following merit function for (46): 

P*{*) = [ F(y) dy - Z\\F(x)\\2 + ±   (aF(x) - x) + 
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Note that 

VPa(x) = -(l- aVF(xj) (x-(x- aF(xf)  \ . 

Therefore, if 0 < a||VF(a;)|| < 1 for x G It", then the stationary points of 
Pa(x) are the solutions of the symmetric nonlinear complementarity problem 
(46). 

However, if VF(x) is not bounded, then we can not use a fixed a for 
all x. One possible remedy is to adjust the values dynamically. That is, we 
choose ctk such that 0 < a^||VF(a;fc)|| < 1 and generate xk+1 by minimizing 
Pak(x) with starting point xk. 

5.10    Conclusions 

We have studied many properties of the augmented Lagrangian Pa{x) for 
symmetric linear complementarity problems. Unlike merit functions Ma(x) 
and \P(x), stationary points of PQ(x) are always solutions of (44) if 0 < 
a||Q|| < 1. Also the merit function Pa(x) is convex if the original LCP (44) 
is monotone. However, Pa(x) is not always bounded below. We have derived 
characterizations for the existence of global minimizers and the boundedness 
of level sets of Pa(x). In particular, if Q is strictly copositive, then Pa(x) 
has bounded level sets. 

One interesting result is the connection between Pa(x) and Mangasar- 
ian and Solodov's implicit Lagrangian Ma(x):  Ma(x) = Pi_(x) - Pa(x). 

a 
Based on the convexity analysis of Pa(x), we have recovered a result by 
Peng [30] about strict convexity of Ma(x) for large a and strongly mono- 
tone LCP. Since Ma(x) = —Mi_(x), Ma(x) is a strictly concave function for 

a 
small a, if F(x) = Qx + q and Q is positive definite. This sheds new light 
on the fact that Mangasarian and Solodov [27] reformulate (46) as uncon- 
strained (global) minimization of Ma(x) for a > 1 and Tseng, Yamashita, 
and Fukushima [35] reformulate (46) as unconstrained (global) maximiza- 
tion of Ma(x) for 0 < a < 1. 

A convenient choice of a is by using the supremum norm of Q: 

a 

3 max £^1 
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Then 0 < 2ä||Q|| < 1. Let 

PQM = (\*TQ* + <iTx) - f IKQ* + <?)ll2 + ^ (*(Q* + ?) - *)+ 

Then it is very easy to verify that PeQ,6q(x) = PQ,q(x) for 0 > 0. That is, 
the augmented Lagrangian PQ)9(X) is invariant with respect to the scaling 
of (44). Since the scaling of (44) does not change the characteristics of 
(44), it is natural to require that merit functions for (46) keep the intrinsic 
characteristics of (46) and be invariant with respect to scaling of the original 
complementarity problem, as pointed out by J. More during his talk at the 
International Conference on Complementarity Problems. 

Even though PQ(x) has many desirable properties, it requires the sym- 
metry of VF(x) and linearity of F(x). For nonlinear F(x) with symmetric 
Jacobian VF(i), Pa(x) can be denned by using a potential function of 
F(x) and the stationary points of Pa(x) are solutions of (46) if ||VF(a;)|| is 
bounded and a is small enough. Further study is necessary to understand 
the behavior of Pa(x) for symmetric nonlinear complementarity problems. 

Since Ma(x) is also a differentiable piecewise quadratic function, it is 
possible to use a Newton-type method for finding a stationary point of Ma(x) 
in finitely many steps. However, the equations for Newton directions of 
Ma(x) are not as easy to solve as those for Newton directions of Pa(x). 
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Figure 2: Surface Fitting 
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