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AXISYMMETRIC FILAMENTARY STRUCTURES 

By A.F. Fräser, P.R. Preiswerk, 
M.D. Benton, and O.R. Burggraf 
Astro Research Corporation 

SUMMARY 

The theory of filamentary axisymmetric structures is broad- 
ened to include surface loads other than normal pressure. 
Structures with two sets of symmetrically disposed fiber are 
considered in detail, and force transfer between filaments is 

accounted for in the theory. 

The governing equations are derived, and isotensoid surface 
shapes are determined and classified for a wide range of load 
conditions.  The governing equations are also applied to pro- 
blems where the surface shape and loading are prescribed and the 
filament »geometry and load variation in the surface are to be 

determined. 

The general nature of filamentary structures is discussed 
in depth, and useful qualitative results are obtained for multiple 

layer nets. 

A non-axisymmetric isotensoid (or isocompressoid) is obtained 
as a special limiting case.  The shape is a cylindrical parabo- 
loid, and the load is equivalent to a gravity force field. 
Application in civil engineering structures is indicated. 

VI1 



INTRODUCTION 

The observed strength of many materials is often greatly- 
increased if they are tested in the form of thin filaments.  For 
example, continuous glass filaments can be produced with repro- 
ducible tensile strengths ranging from 200 000 to 700 000 psi. 
Bulk' glass, on the other hand, is usually limited to tensile 
strengths in the order of 10 000 to 50 000 psi. 

The high strength of filaments is being exploited at an 
increasing rate in the aircraft, space, and missile industries. 
The volume of recently published information relating to filament 
materials is a good indication of the current level of effort ex- 
pended in both industrial and Government laboratories determining 
material properties and performing design and stress analyses. 
In the analysis and design areas, there are two different but 
overlapping approaches; one is associated with composite-material 
structures and the other with filament-dominated structures.  By 
way of definition, in the former, the filaments are embedded in 
a structural matrix which to a significant extent affects the 
performance of the material in structural applications.  In the 
latter, whether or not there is a matrix, the stiffness and 
strength of the filaments completely dominate the structural per- 
formance of the material. 

Methods of analysis of composite materials are based on 
anisotropic elasticity or shell theories (see e.g. Ref. 1).  The 
accuracy of these analyses depends on the care taken in obtaining 
the moduli and strength of the composites.  A wealth of published 
information is available in this field (see e.g., Ref. 2).  The 
accuracy of the analysis of filament-dominated structures depends 
on the degree to which the filaments actually dominate the re- 
sponse of the structures analyzed. 

As methods of obtaining composite material properties im- 
prove and as techniques of including effects other than axial 
filament stiffness and strength enter into filament-dominant anal- 
yses, the two methods should coalesce to the point where materials 
that are marginally in one class or another may be treated by 
either method.  The work reported in this paper broadens the anal- 
ysis of structures made of filament-dominated materials to include 
the effect of force transfer between filaments or interfilament 
forces. 



in order to identify the value of accounting for interfila- 
ment forces, it is worthwhile to trace the recent development of 
the analysis of structures in which filament strength and stiff- 
ness play dominent roles.  This research is almost exclusively 
confined to axisymmetric membrane or net structures which are 
subjected to axisymmetric surface and edge loads. 

Examination of the equation for membrane stresses in shells 
of revolution subject to uniform internal pressure,  p , reveals 
one of the major early stimulants to filamentary-structure de- 

sign.  For this loading (see Ref. 3) . 

where  N,  is the circumferential load per inch in the membrane, 
and  n  and  r2  are the principal radii of curvature of the 
surface, as defined in Reference 3.  It is apparent that for_ 
n/r, = 2  throughout the shell, there is no stress m the cir- 
cumferential direction.  This led to the supposition that the 
phenomenal strength of thin filamentary materials could be used 
in engineering applications.  For the surface defined by  rj/r2 
= 2   filaments positioned on meridional lines would carry the 
meridional stresses with uniform filament tension and no load- 
carrying capacity in the circumferential- direction would be re- 
quired except at the edges of the surface. 

This concept was applied in the design of parachutes as 
early as 1923 (Ref. 4), and more recently in the design develop- 
ment of radial cord tires.  In 1959, end closures for filament- 
wound pressure vessels (rocket chambers) were designed (Refs. 5 
14  and 15)   In 1960 a "radial cord" toroidal,.deployable space- 
station model was designed (Ref. 16), and 48-inch and 24-foot 
diameter engineering test models were constructed and subsequent- 
ly evaluated (Refs. 17, 18, and 19).  In 1965 an airlock design 
for space application was proposed (Ref. 6).  In all these appli- 
cations a membrane is required to contain internal pressure and 
to introduce the loads into the filaments. 

With the exception of the airlock and the toroidal configur- 
ations, the disadvantages of filament buildup at the apex of the 
membrane led to examination of other surface shapes in which uni- 
form tension in filaments placed on non-meridional lines would 



contain the internal pressure.  The problem was formulated in 
Reference 5 for the simple case of two sets of filaments sym- 
metrically disposed with respect to meridional lines, and the re- 
sulting shapes were determined in Reference 7 for various edge 
conditions. 

The isotensoid concept, that of placing filaments on sur- 
faces of revolution so that design loads are precisely balanced 
by axial and uniform stresses in the filaments, was then put on 
a firm basis in 1962 with the appearance of Reference 8.  In this 
reference, the complete theory of pressurized filament-wound 
shells was formulated; a systematic study of isotensoid shapes 
was made, and the basis for analysis which includes centrifugal 
loads caused by rotation was explored.  Also, the equations were 
developed for nonuniform pressure and multiple-layer shells, and 
a wide range of isotensoid structures was described in Reference 
20.  The isotensoid shapes determined in Reference 8 made pos- 
sible the solution of the indirect design problem in some cases. 
That is, given a mission objective, if one of the shapes result- 
ing from the analysis would perform the mission, the problem was 
solved. 

The following year, the problem of designing pressurized 
rotating net structures was solved and published in Reference 9. 
The problem was completely defined and all possible shapes 
determined and reported.  It was shown that filament tension of 
necessity varies in a spinning pressurized net provided that 
there is no force transfer between filaments at crossover points. 

Concurrent with this work, another approach to the design of 
pressure containers was taken and reported in Reference 10. 
Here, the direct problem was solved by allowing a continuous dis- 
tribution of filament angles or layers of filaments.  Using the 
results of Reference 10, one can, in principle, specify membrane 
geometry, pressure loading, and isotensoid filament stresses and 
determine the required distribution of filaments in the membrane. 
Practical design considerations dictate the continuous distribu- 
tion be replaced by a finite set, thus approximations are 
required. 

In summary, the principal results of published investiga- 
tions into filament-dominated designs can be found in References 
8, 9, and 10.  Reference 8 identifies the isotensoid shapes pos- 
sible for two-family symmetrically wrapped pressurized shells of 
revolution and presents solutions for single-layer (two-family) 
and multiple-layer (more than two-family) isotensoids.  Reference 



9 identifies shapes for spinning pressurized nets formed by fila- 
ments symmetrically disposed on a shell of revolution and pre- 
sents solutions for these shapes and equations for filament 
tension variation.  Reference 10 gives a method of solution and 
equations defining the filament wrap pattern for isotensoid de- 
signs of pressurized shells of revolution when the shell geometry 

is specified. 

Throughout the research reviewed above, an artificial design 
constraint has been imposed;  that is, force transfer between 
filaments at filament crossover points is neglected.  In nets _ 
this transfer is manifested in knot forces, and in composites it 
is manifested in self-equilibrated matrix stresses.  In both 
cases the interfiber force has the characteristics of shear loads, 
and it has been termed interfiber shear or interlaminar shear, etc. 
Unfortunately, this terminology carries the connotation of shear 
in continuum mechanics and the fundamental nature of the force 
transfer between filaments is obscured.  For this reason, the _ 
term »interfilament force transfer" will be used throughout this 

report. 

The design freedom obtained by employing the interfilament 
force transfer is exemplified in Reference 11 where the solution 
is obtained for an isotensoid spinning filamentary disk.  If the 
interfilament force-transfer capability is ignored in a spinning 
disk, it becomes a degenerate case of the general theory of Ref- 
erence 9 for which isotensoid design is impossible.  Therefore, 
consideration of interfilament force transfer allows isotensoid 
(and minimum weight) design where it was not formerly possible 
Also  as will be indicated in the section entitled "Fundamental 
Nature of Filamentary Structures", the use of interfilament force 
transfer in the design process allows solution of problems where 
the shape is prescribed without resorting to continuous distribu- 
tions of filaments as was necessary in the approach taken in Ref- 

erence 10. 

The work reported in this paper introduces the interfilament 
force transfer developed in Reference 11 into the general ap- 
proach of References 8 and 9.  This is done for arbitrary sym- 
metric loading of axisymmetric nets formed by two families (or 
one layer) of filaments as defined in the section entitled 
"Fundamental Nature of Filamentary Structures".  It is shown that 
isotensoid solutions are possible for many problems in the pres- 
ence of-any axisymmetric-surface load-vector field provided the 



vector field is confined to meridional planes.  Thus pressure, 
centrifugal force, and axial surface load can be accommodated 
with isotensoid minimum-weight design. 

In the section entitled "Fundamental Nature of Filamentary 
Structures", the fundamental nature of string structures is dis- 
cussed qualitatively.  The governing equations for two-family 
nets are derived in the section entitled "Analysis of Single Layer 
Surfaces".  These equations are solved for a number of load and 
design conditions, and the results are reported and discussed as 
they are obtained.  The problem of determining the filament 
orientation in the surface and tension variation along filaments 
when the surface shape is prescribed, is solved.  Four illustra- 
tive examples are given.  Effort is then concentrated on isoten- 
soid design, and the equations are specialized to apply to the 
case of uniform filament tension.  A wide range of load conditions 
is considered and methods of solution, classification of isoten- 
soid surface shapes, and numerous specific examples are given.  A 
summary of the results is given in the section entitled "Closure", 
and possible extensions are discussed. 



SYMBOLS 

a     uniform acceleration in negative  z direction 

b     parameter defined by Equation (87) 

d     parameter defined by Equation (86) 

k.     argument in elliptic integrals defined in Equations (73), 
(77), (81),   and (85) 

I distance measured along filament 

t\l distance measured along a filament between two adjacent 
filament intersections 

m1 mass per unit length of filament 

n total number of filaments in a layer 

p pressure 

p pressure at  r = rQ 

r radial coordinate 

r^, r2 principal radii of curvature of surface (circumferential 
and meridional respectively) 

r     reference radius 

r^    parameter used in allowing radial coordinate to approach 
infinity 

y     resulting cartesian coordinate when  r^ —- °° (r = r» + y) 

z     axial coordinate 

A     axial acceleration load parameter (Equation 12) 

A,B,C,D  solution types defined by Equation (67) 

Ä      A/r 



C^       constants 

D        denominator function (Equation 88) 

E (i|i^,k. ) ,E (kjj  elliptic integrals of the second kind 

F"        vector force field acting on a filament (lb/in) 

F-^       force at filament intersections (lb) 

Fn,F , F  components of F in normal, meridional and circumferen- 
tial directions 

F(tj,k-)  elliptic integral of the first kind 

G        parameter defined by Equation 68 

K        pressure load parameter (Equation 12) 

complete elliptic integral of the first kind 

2 
vector surface load (lb/in ) 

components of  L in normal and meridional directions 
(lb/in2) 

numerator function (Equation 88) 

function defined by Equation (22) 

R = r/rQ 

filament tension 

filament tension at  r = r 

X        X = R2 = (r/rQ)2 

X ,X     roots of Equation (66) given in Equation (67) 

Y (X)     function defined in Equation (66) 

Z Z = z/r 

KCk *> 

L 

Ln' ha 

N 

Q 

R 

T 

To 



a angle between meridional tangent and z  axis 

aQ value of a  at  r = r0 

ß angle between filament and meridian 

ßQ value of  ß  at  r = rQ 

$ longitudinal coordinate 

ih argument in elliptic integrals defined in Equations (72), 

(76), (80), and (84). 

uu angular velocity 

Q spin load parameter (Equation 12) 



FUNDAMENTAL NATURE OF FILAMENTARY STRUCTURES 

In order to discuss the fundamental nature of filamentary 
structures, it is necessary to develop clear and concise defini- 
tions.  In what follows, all discussion is restricted to axisym- 
metric surfaces and axisymmetric-applied surface and edge loads 
both of which have no components normal to the meridional planes, 

The equation of the surface is expressed in the cylindrical 
polar coordinates of Figure 1 as 

z = z (r) 

or  Z = Z(R) 

where  Z = z/rQ  and  R = r/r  , and r 
The external load vector field shown in Figure 1 

is some reference radius, 

L(r) 

has no component normal to meridional planes and is independent of 
the longitude, $ . 

With reference to Figure 2, a filament set or family is a 
collection of filaments which on parallel circles form equal 
angles,  ß , with meridional lines on the surface.  Within a fila- 
ment set  ß = ß(r)  as shown in Figure 2a. To each filament set or 
family at  ß , there corresponds a complementary set at  -ß  as 
shown in Figure 2b.  These two sets together are called a layer 
(Fig. 2c).  It is apparent from the symmetry of the system under 
consideration that filament sets always appear in complementary 
pairs forming a layer.  In some cases a single filament will be- 
long to both sets in a layer, as shown in Figure 2d.  It is 
apparent that filaments in a set do not intersect except on unique 
parallel circles where  ß = TT/2 , and on these circles, each fila- 
ment is leaving one set of a layer and entering the complementary 
set.  Filament sets at ß = n/2  and  ß = 0 are considered to be 
degenerate layers in which complementary sets each include one 
half the filaments in the layer, and both sets are the same. 
Filamentary shells or nets can be designed with one or more 
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layers; the single layer nets will be discussed first. 

Single Layer Nets. - Consider a single layer net as shown in 
Figure 2c and for the moment let the surface load vector be 
directed normal to the surface formed by the net.  Further, assume 
that the filaments in a set are free to slide relative to the 
other set in the layer.  The net will form an axisymmetric surface 
shape which depends on the pressure, the inner and outer radii 
(assuming they are fixed), the length of the filaments, and the 
total angle, $ ,traversed by each filament as it is traced from the 
inner radius to the outer radius.  The filaments will be stressed 
uniformly and will trace out geodesic curves on the surface form- 
ed.  These facts are established in Reference 8.  The net con- 
sidered is clearly a mechanism which assumes different isotensoid 
shapes which will depend on how the surface load vector varies. 

Now relax the condition that the surface load vector be nor- 
mal to the surface and allow, for example, centrifugal surface 
forces.  (This simple terminology is used in place of the more 
exact expression "centrifugal body force per unit area of sur- 
face".)  The surface shape and the filament paths will change. In 
fact, the filament geometry in the new surface will be such that 
the surface-load-vector field can be projected at each point into 
two components; one in the direction of the principal normal of 
the filament and the other in the direction of the tangent to the 
filament.  The latter surface force component causes the tension 
in each filament to vary along its length.  These facts are estab- 
lished in Reference 9 and account for the fact that isotensoid de- 
sign is not possible under the load and net conditions stipulated. 

Now assume that at each junction among filaments in separate 
sets in the layer there is either a knot or a dab of glue.  As a 
consequence, if there is any tendency of the filaments in comple- 
mentary sets to slide relative to one another, a constraining 
force will result in the knot or glue and the sliding motion will 
be arrested.  The axisymmetry of the net and the loading do not 
allow the force transferred from one filament to the other to 
have a component in the meridional direction of the surface.  The 
interfilament force transfer between filaments in complementary 
sets of a layer must, therefore, be in the circumferential direc- 
tion as shown in Figure 3.  It is termed Fk .  Thus, if there is 
any tendency for slip to occur between filament sets in a layer, 
even though the applied load is restricted to lie in meridional 
planes, each filament will experience a load vector with a 

10 



component,  Fk , out of the meridional plane at each of the inter- 
sections with fibers from the complementary set.  These loads, 
Fk , are internal and self equilibrating. 

Now consider the effect of interfilament force transfer on 
the two problems discussed above.  For the case of surface load- 
ing normal to the surface, imagine that a pressure has been 
applied to a system in which sliding can occur and the appropriate 
isotensoid shape has been assumed.  Now imagine that the filaments 
are either knotted or glued at each intersection.  It is clear 
that the surface, the filament geometry in the surface, and the 
stress level in the filaments is undisturbed.  Consequently, the 
presence of knots does not increase the number of design parame- 
ters for the geometry and load considered. 

In the second case where the surface-force-vector field is 
not normal to the surface, filament force transfer can be used to 
much greater advantage.  It has been established (Reference 8) 
that isotensoid design is not possible in the absence of inter- 
filament force transfer when the surface load vector is not nor- 
mal to the surface.  Consider now a design where interfilament 
force transfer exists and non-normal surface load is applied. 
The possibility exists that the filament geometry (and therefore 
the filament intersections) and the surface shape can be deter- 
mined so that the vector sum of external load per filament and the 
interfilament load has its direction along ;the principal normal to 
the filament path in the surface.  The resulting net configuration 
will be isotensoid under the applied loads.  Then the use of fila- 
ment force transfer in the design stage will allow optimum design 
and minimum weight in single layer nets when the surface load vec- 
tor field is not normal to the surface.  The examination of this 
problem is the subject of a large part of the remainder of this 
report. 

Multiple Layer Nets. - Consider a system of two layers form- 
ing an axisymmetric surface and subjected to the type of general 
symmetric loads defined above.  Forces tangent to the surface (in 
addition to bearing forces) can be transferred between layers, 
and in addition to the transfer of a part of the tangential com- 
ponent of the surface load to the inner layer, a self-equilibrated 
system of loads between layers similar to that between sets may 
arise.  Symmetry considerations restrict the self-equilibrated 
load system between layers to be directed along meridians of the 
surface.  The load on a filament is then the vector sum of the 
applied load, a circumferential load due to the self-equilibrated 

11 



forces between complementary sets, and a meridional load due to 
the self-equilibrated forces between layers.  The possibility 
then exists that the shape and surface load be specified and the 
filament paths in both layers determined so that the resultant 
filament loads are directed along the principal normals of the 
filaments.  Under these conditions, isotensoid design is possible 
with a finite number of layers even when the geometry is speci- 
fied.  In the absence of interfilament force transfer, this pro- 
blem has been solved only for normal surface loads, and an 
infinite number of layers was required (Ref. 10). 

A basic difference between single-layer nets and multiple- 
layer nets has implicitly manifested itself in this section. 
That is, single-layer nets, even with pinned intersections, are 
mechanisms and the shape taken by them is strongly load dependent. 
On the contrary, multiple-layer nets, if knotted or glued, are 
redundant structures, and fundamentally different design freedom 
can be achieved. 

12 



ANALYSIS OF SINGLE LAYER NETS 

Consider equilibrium of a net formed by one layer (Fig. 2c) 
of complementary sets as defined in the section entitled "Funda- 
mental Nature of Filamentary Structures".  The filaments making 
up the sets are flexible but essentially inextensible.  Each 
intersection between filaments in complementary sets is pinned 
either by a knot or a dab of glue.  The surface load is a vector 
field with components confined to meridional planes (Fig. 1) and 
is independent of longitudinal position on the surface. 

Let  F be the load vector per unit length acting on a fila- 
ment.  The components of  F  in the normal and meridional direc- 
tions of the surface are related to the similarly directed 
component of surface loading, L ,by 

F. = 2Ttr cosß L. (i) 
n 

where  ß  is the filament angle defined in Figure 4,  n  is the 
total number of filaments in the surface, and the subscript,  i , 
denotes either the meridional or normal direction. 

In order to obtain the component of  F  in the longitudinal 
direction, assume that filament crossover points or intersections 
are sufficiently close that the filament transfer force can be 
averaged between intersections.  Then an interfilament force per 
unit length,  Fc , can be defined where Fc M  =  F^  and M     is 
the distance along a filament between intersections.  The total 
load per unit length of filament is the vector sum of the ortho- 

gonal components. 

Equilibrium of a surface element is enforced by considering 
equilibrium of filaments in one set and accounting for the pre- 
sence of the other set through the filament transfer force,  Fc . 
To this end, consider equilibrium of a filament of length, dl   , 
(Fig. 4) where along a filament, the following differential rela- 

tions hold 
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dr = d-t cosß sina 

d$ = d-t r-1 sinß (2) 

dz = -d-t cosß cosa 

where a  is the angle between a meridian on the surface and the 
z-axis as shown in Figure 4. 

With T = T(r)  the tensile force in the filament, three 
independent equilibrium equations can be written; equilibrium of 
forces parallel to the filament, equilibrium of forces in the z- 
direction, and equilibrium of torques about the z-axis.  These 
equations read respectively: 

dT - F  sinß d-t - F  cosß d-t = 0 
c m    ^ 

d(T cosß cosa) - Fn sina d-t - Fm cosa d-t = 0 ) (3) 

d(rT sinß) - Fcr d-t = 0 

Equation 2 can be used to eliminate  d-t  from Equation (3) . 
With  r chosen as the independent variable, Equations (3) then 
read: 

£*T - F tanß csca - F csca = 0 (4) 
dr   c m 

d(T cosß cosa) _ Fn Secß - Fm secß etna = 0        (5) 
dr 

d(rT sinß) _ F r secß csca = 0 (6) 
dr 

This system of first-order differential equations governs 
the design and analysis of single-layer nets.  The functions, 
ß(r)  and a(r) , can be thought of as the intrinsic coordinates 
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of the filament paths on the surface and the surface shape, re- 
spectively.  They are related to the more practical design func- 
tions,  §(r)  and z(r) , by two first-order differential 
equations obtained by eliminating dl     from Equation (2) . 

d|_ = r-l tanß csca (7) 
dr 

clz = - etna (8) 
dr 

Equations (4) through (8) have been examined in detail for 
the special case of combined pressure and centrifugal loading 
with no force transfer between filaments  (Fc = 0)  in Reference 
9, and for pressure loading  (Fm = Fc = 0)  in Reference 8 where 
an arbitrary number of layers was considered.  In neither case 
could the shape be prescribed.  As pointed out in the section 
entitled "Fundamental Nature of Filamentary Structures", force 
transfer between filaments in separate sets of a layer allows 
specification of the surface shape provided filament tension may 
vary along a filament.  This extends the design freedom in pro- 
blems of the type treated in Reference 9.  Further, the inclusion 
of filament force transfer allows isotensoid design when the sur- 
face load vector is not normal to the surface.  Thus, the results 
of Reference 8 can be extended to determine isotensoid shapes for 
arbitrary symmetric surface loading. 

Two distinct classes of problems are thus identified for 
single layer nets: 

(1) The shape and surface load are prescribed and the fila- 
ment tension,  T(r) , and the filament geometry,  $(r) , are to 
be determined. 

(2) The surface load and uniform filament tension are pre- 
scribed and the surface shape,  z(r) , and the filament geometry, 
§ (r) , are to be determined. 

Both of these problems are treated below.  Under certain condi- 
tions a third type of problem, not considered here, must be 
addressed.  If the interfilament forces become excessive, failure 
can occur between sets in a bonded design or in knots in a knotted 
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design.  Therefore, in any design application, an allowable must 
be established for F  and care taken that it is not exceeded. c 

Before solutions for the two problem types can be developed, 
the explicit dependence of  F  and F   on the independent 
variable,  r , must be stipulated.  Three specific load cases are 
considered; surface pressure,  p , centrifugal surface load 
caused by angular rotation,  uu , about the axis of symmetry, and 
a d'Alembert surface load in the positive g-direction caused by a 
uniform acceleration,  "a" , in the negative z-direction. 

For pressure,  p(r) 

Fn = ^r- cosß P(r) i (9) n   n 

F  = 0 m 

For radial acceleration caused by spin velocity,  Uü 

2 
F  = m1 uu r coscc 
n 

2 
Fm ~ ~ m' w r sina 

For axial acceleration,  "a" , in the negative, z-direction 

F  = m'a sina 

F„, = m'a coscc m 

(10) 

(11) 

where m'  is the filament mass per unit length.  Note that the 
presence of a dense fluid contained within the surface and under- 
going acceleration and rotation may be accounted for through the 
pressure,  p(r) .  It is advantageous at this point to nondimen- 
sionalize the equations.  Let  TQ  and p  be the filament 
tension and pressure load at some reference radius,  r  , and let 
the following dimensionless quantities be defined 
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Pressure parameter 
2rrr 2 

K =  2_ 

Spin parameter 

nT  ^o 

. 2  2 

o 

m1 ar 
Axial acceleration parameter A 

TV 

Radial coordinate R = r/rr 

L- (12) 

y 

The filament loads per unit length,  Fm and Fn , are convenient- 
ly expressed by use of the definitions (12) and summing Equations 
(9) through (11). 

F_ = -2. (-Q R since + A cosa) 
III        y* 

T, 

(13) 

Fn = — (KR p/p^ cosß + Q R cosa + A sina) 

Equation (13) for Fm and Fn can be used in Equations (4) 
through (6) to obtain the nondimensional governing equations for 
single-layer surfaces of revolution loaded by internal pressure, 
axial acceleration, and spin. 

d(T/TQ)   Fc rQ 
dR T, 

tanß csca + Q R - A etna = 0 (14) 

d(cosß cosa T/T  ) 
 : 2_ - KR pA>    - A secß csca  = 0 

dR ° 
(15) 
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fv) d (R sinß T/T0) _ pc 
ro^ R secß csca = 0 (16) 

dR 

For convenience, Equations (7) and (8), which are the differ- 
ential relations among the intrinsic coordinates  (ß  and a) , 
and the more practical design functions  (z  and  $) , are re- 
corded in nondimensional form.  Let  z/rQ = Z in Equations (7) 

and (8), then 

M. = R-1 tanß csca (17^ 
dR 

£Z = _ etna (18) 
dR 

The remainder of this work is devoted to the solution of 
these governing equations for two types of problems: 

(1) Surface shape and loading prescribed, filament tension 

and filament angle to be determined, and 

(2) Uniform tension and loading prescribed and surface 

shape to be determined. 

In problems of the first type, it is possible to apply edge bound- 
ary conditions on loads by use of either Equation (23) or (35) 
below.  However, it is more convenient in the problems treated to 
specify the filament angle at the edge and determine the edge 
filament loads parametrically in terms of the specified angle. 
In problems of the second type, the shape and edge position are 
unknown at the outset, consequently it is convenient again to use 
the filament angle  ßQ  at  R = 1  as a boundary condition and to 
determine the shapes with  ßQ  as a parameter.  The shapes thus 
determined may terminate at edges where  ß £  TT/2 .  Then, with 
the shape and filament angle known at the edge, the edge load 
conditions necessary to support the filament loads may then be 

determined. 

The Direct Problem - Shape Prescribed 

Barring the exceptional case when the prescribed shape is 
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an isotensoid shape for the loads applied, the tension in the 
filaments of a single layer surface will be functions of  r . 
With the loads (K, A, Q)  and shape  (a)  prescribed, Equations 
(14), (15), and (16) must be used to determine the unknown func- 
tions, Fc(r) , ß(r) , and T(r) .  The function, F (r) , is easily 
eliminated from Equations (14) and (16), leaving two governing 
equations 

d(R smß T/T0)     d(T/TQ)      2 
sinß — =  R —— + Q R - AR etna      (19) 

dR dR 

d(cosß cosa T/T ) 

dR 
= KR p/p0 + A secß csca (2 0) 

For A ^ 0 , the appearance of  ß  in the last term in Equa- 
tion (2) precludes its solution by simple integration.  The two 
cases,  A = 0  and A ^ 0 , are therefore treated separately. 

Solution When A = 0. - For A = 0 , solutions when they 
exist can be expressed analytically.  Equation (20) can be 
integrated 

[ — j cosß = K secct  / p/p0 RdR 

As boundary condition, set  ß = ßQ  and  sinßQ = C  at  R = 1  and 
for < 
Then 
for convenience, define the new independent variable,  X = R2 

( —j cosß = seca   Jl - C2 cosaQ - f I t2-)  dx >     (21 

The right side of Equation (21) is a known function of the inde- 
pendent variable, X = R2 = (r/rQ)2 , which depends on the shape 
and prescribed pressure load.  Let it equal Q(X) .  Then 
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= I ^1  - C2  cosa0  - f   / <P/P0>   
dx (   seca Q

<x> 

X 

and Equation (21) reads 

(22! 

— = Q secß (23) 
T ^o 

Equation (23) can be used to eliminate  T/TQ  from Equation (19) 
when A = 0 with the result 

sinß |^ [R Q tanß] = R |^ [Q secß] + Q R2 

If this expression is multiplied by Q secß and the change to 
independent variable, X , completed, the following expression 

results 

^- [x Q2 tan2ß] = X ^- [Q2 sec2ß] + Q X Q secß       (24) 
ClX CLiS. 

Use of the identity tan2ß = sec2ß-l  in (24) and recognition 

that 

^- [X Q2 sec2ß] = X ^ [Q2 sec2ß] + Q2 sec2ß 

results in the following quadratic equation for  secß 

Q2 sec2ß - fi X Q secß - ^ [X Q2] =0 (25) 

from which, 
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secß = — 
2Q 

n x + V n2 x2 + 4 °_ [X CT] 
dX 

(26) 

The sign in (26) is chosen so that  secß > 1 .  With this result 
for the filament geometry, the tension is given by Equation (23), 

T    1  , 
— = T  Ü X 
T^   2 ±v 9  ?     d      ? rf xz + 4 ^- rx Q I 

dX L    J (2 7.) 

where the sign is chosen as for  secß .  The interfilament force 
can now be computed directly from Equation (16).  The filament 
path in terms of the polar coordinates is determined by integra- 
tion of Equation (17) for  ß  given by Equation (26). 

From these results it is apparent that not all the parameters 
can be chosen independently.  For example, if Equation (25) is 
evaluated at X = 1 , the following condition results 

n = i |- [X Q2]l 
dX      J' 

(28) 
(X 

To obtain Equation (28), note that  Q(l)  was determined from 
Equation (22) as 

Qd) = V^ cosß. (29) 

Equation (28) may be regarded as a relation between  ßQ  and TQ 
for geometry, load, and all other parameters fixed.  Thus with 
either  TQ  or  ßQ  specified at  r = rQ , Equations (26) and 
(2 7) determine the unique solution for tension and filament path 
in the specified surface subjected to the specified loads. 

The minimum (maximum) radius to which the solution extends 
on the specified shape occurs at  ß = rr/2  or  ß = 0 .  For the 
filament tension to remain finite, when  ß = TT/2 , Equation (23) 
requires that 
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Q<W> = ° (30) 

For this condition Equation (22) determines Xmax  (or X^n) 

^nax 

(p/Po) dX = | ^1 - C2 coscc0 (3D 

Equation (31) defines the minimum radius for internal pressure 
(K > 0)  and the maximum radius for external pressure  (K < 0) . 

Finally, if the filaments become tangent to the meridians, 
the solution ends.  In this case  ß = 0  and Equation (25) re- 
quires that 

dQ = _ Ü ^or ß = o (32) 
dX    2 

Three examples are given to illustrate the solution method. 

Example 1 - Spherical Pressure Vessel. -  Q = 0 ,  p = pQ 
The shape of the sphere is defined by 

cosa = R = -^X 

Hence 

U Q(X) = {    jl   -   C2 - | (1 - X)| X"3* 

and 

\r- 2. _ „  )   *U        „2 _ K ±-  [X <T] =K {   \1   -  CZ - £ (1 - X) 
dX 

With this result, the boundary condition, Equation (28), gives 
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K = ....    0 = secß VTT c 2       o 

which with the definition of K in Equation (12) determines the 
tension,  T0 , as a function of the pressure,  p , the reference 
radius,  rQ , the number of filaments,  n , and the filament angle, 
ß0 , at the reference radius.  From Equation (31), the minimum 
radius to which the filaments extend is given by 

min   mxn 

where the reference radius is chosen such that aQ = 0 . Also, 
from Equation (32), the filament becomes tangent to the meridian 
plane for 

Xmin = 1 " 2C2 

2 "? Thus for  C < 1/2 , the filament forms a cusp, while for  C 
> 1/2  a smooth loop is formed.  For the special case  ß  = 45° 
(c2 = 1/2), the complete sphere is covered with filaments over- 
lapping severely at the poles.  The filament curve is obtained 
from Equation (26) 

^KX {V1 ~ °2 ~ f (1 - X)}_ 
2* t op2 

secß = -I  \  '   A » = J 2R 
^1 - C2 - £ (1 - X) IT - (2CT - 1) 

and the tension in the filaments by 

T_ =  J1 _   1 ^~R^ 
T„    1 2 (1 - Cz 
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Note that  T vanishes for  R2 = 2C2 - 1 , which corresponds to 
the minimum radius determined above when C2 > 1/2 .  For the 
three distinct cases C2 < 1/2 ,  C2 = 1/2 ,  C2 > 1/2 , the fila- 
ment angle,  ß , and the tension,  T/T0 , are plotted versus the 
radial coordinate,  R , in Figure 5.  Corresponding sketches of 
the net are also shown in Figure 5. 

Example 2 - Spinning Cone With Uniform External Pressure. - 
Take  p to be the uniform surface pressure on the outside of the 

(p < 0) .  Then p/p = 1 ,  a = a0 , and K < 0 . cone 

Hence from Equation (22) 

Q(X) = J 1 - C2 - £ (1 - X) seed 

The boundary condition on  Q  is obtained immediately from Equa- 
tion (28) 

Q = C2 - K seed Wl - C2 V" 
The special case of radial filaments emanating as linear rays 
from the apex along the cone is given by  C = 0 .  Then 

Q = - K seca 

For this case, each filament is in equilibrium with only pressure 
and inertia loading, the interfilament forces vanishing.  For 
C / 0 , the maximum radius is given by Equation (31) and K can 
be eliminated by the use of Equation (28) 

2, 
R2    = x    =1-1  Jl - C2 cosct = 1 + 2(1 " C") 
max   max      K  ' Q - C2 

The condition that the filaments be tangent to the meridian plane 
is given by Equation (32) and merely reproduces the condition for 
radial filaments given above: Q = -  K seca .  The filament 
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geometry and tension are obtained by substituting the expression 
given above for Q(X)  into Equations (26) and (27). 

secß = 

QX  +   ra2X2   + 4(l-C2)-4\/l-C2_Kseca(l-2X)    + K2sec2a (1-4X  +  3X  )Y2 

2 \l-c2  -  Kseca   (1-X) 

T_ 

^  + 1 [G2X2 + 4(1-C2) -4^1-C2 Kseca (1-2X) + K2sec2a(l-4X + 3X ) ] 

These results are shown on Figure 6 for particular values of C , 
a   and  K .  For the parameters chosen,  T/TQ  is maximum at 
X = Xmax .  Because  ß = rr/2  at X = Xmax , there is no edge 
load at the aft end of the cone, however, there is a concentrated 
load at the apex,  D , given by 

D = n T cosct 

where  n  is the total number of filaments. 

Example 3 - Spinning Paraboloid. -  G ^ 0 ,  K = 0 .  The 
meridional curve for a paraboloid with aperture-to-focal-length 

ratio of 2 is 

Z = - R2/4 

By Equations (22) and (28), the angular velocity parameter, Q , 
is related to the boundary condition on ß at the outer edge of 

the surface 

2 
G = 1 - cos2ß0 cos

2aQ = 
4 + c 
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where  C = sinß0 , and the value of cos2oc0 = 1/5  is obtained 
from the equation of the meridian and simple differential 
geometry.  The filament tension and geometry in the surface are 
easily obtained from Equations (27) and (26) respectively. 

T_ = I 1 X 4 + C2 + \x2   4 + C2    + 4 (1 _ c
2) 

T0   2  |    5      '5 5 

cosß "       \5X  5 

h 

4 + Cz\    , .L2/4 + C*\ ,4 (1 _ c2) L)+^RH^H 
These results are shown on Figure 7 where both T/TQ  and  ß 

are plotted versus  R with the square of the sine of the filament 
angle at the outer edge,  ß0 , as a parameter.  The minimum radius 
to which the surface is covered decreases to zero as  ßQ 
approaches  TT/2 .  At this limit, however, the solution is a 
family of disconnected parallel circles. 

Except for the limit case of  ß0 = TT/2 , tensile forces exist 
at both the inner and outer edges of the surface.  These forces 
are obtained from the relation between  fi and  ßQ  above and the 
definition of  Q  in Equation (12). 

Q = 
m w  ro  = 4 + & 

T 

Thus 

9  2 
5 m' \xr r _ 

T =  ^~ o 9 4 + sinzßQ 

This is the tension in the filaments at R = 1 or r = rQ , the 
outer radius of the paraboloid. The edge load at the inner edge 
is obtained from Figure 7 and the value of TQ  above. 
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Solution When A ^ 0 . - For the general loading conditions 
A^O,  0^0,  K ^ 0 , Equations (19) and (20) can be reduced 
to one algebraic equation and one differential equation.  With 
minor modification, Equations (19) and (20) can be written as 

d(T/TQ sinß)
2 = d(T/T0)

2 + ^      R _ ^     ^ _ ,   ,   ginß)2 
dR dR ° R 

d(T/TQ cosß)
2 = 2 T/T0 RK cosß   2 T/T0 A  _ 2 (T/TQ cosß)2 d(cosg) 

dR cosa      sina cosa       cosa      dR 

If these expressions are added together, the terms involving 
derivatives of T/T0  drop out and the resulting expression may be 
solved for T/TQ .  Thus, 

ÜR2 + K R2 cosß + A R tana 
T _  cosa  
T0   sin2ß + cos2£ R djcosa) 

cosa     dR 

(33) 

Equation (33) in conjunction with either of Equations (19) and 
(20) or some combination thereof may be used to numerically 
determine the filament tension,  T/T0 , and the filament angle, 
ß , for the given geometry and load conditions. 

Example 4 - Gravity Loaded Paraboloid. - A ^ 0 ,  Q = K = 0 
As a simple example solution when A ^ 0 , consider a paraboloid 
supported at its outer edge in a gravitational or other accelera- 
tion field.  The meridional curve is again as in Example 3 

z = --52 
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Equation (33) with Q  -  K = 0  reads 

T  _      AR tana 
T^    • 2D _i_ cos2 6 „ d (cosa) o  sirß +  ^ R ——  

cosa     dR 

which for the paraboloidal geometry may be written 

T  = 2A (4 + R2; 
Co T^  4 + R2 sin' 

The second equation used is obtained by eliminating A between 
Equations (19) and (20) and then carrying out the indicated dif- 
ferentations and solving for dß/dR . 

dß = 
dR 

4R2 cosß (4 cscß - 8 sinß - R2 sinß) - (4 + R2) (4 + R2 sin2ß) tanß 
4R [R2 (1 + cos2ß) +4] (4 + Rz) 

A digital computer program was written and used to determine 
T/T0  and  ß  from these two governing equations.  The initial 
condition,  ß0  at  R = 1 , determines the minimum radius to which 
the solution extends.  Thus by trial and error, the value of  ß0 
for which the paraboloid is completely covered may be determined. 
For a value of  ßQ = 15.7172° , the solution extends to  R < 
0.003 .  For values of  ßQ < 15.7172° , ß = 0  at the minimum 
radius to which the solution extends, thus, a force is required 
at the inner edge.  For  ß0 > 15.7172° ,  ß = TT/2  at the inner 
edge, thus, the filaments end only at the outer edge and no force 
is required at the inner edge. 

The tension variation,  T/(T0A) , and filament angle  ß  are 
plotted versus radial position, R ,for  ßQ = 15.7172°  on Figure 
8.  Note that  T/(T0A)  is maximum at the outer radius  R = 1 
and by use of the definition of A  (Equation 12) and Figure 8 
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max  - 2.455 
m' arQ 

This equation can be used to determine the maximum size paraboloid 
that can be made in terms of the filament density and maximum 
stress.  In engineering terminology 

;max   _ 
J. r 

p n 2.455   umax 

where  p  is the weight density,  n  is the number of g's accel- 
eration and  a/p  is termed the specific strength. 

The Indirect Problem - Isotensoid Design 

Return now to the governing Equations (14) through (18) and 
stipulate that the filament tension be uniform. Then T/TQ = 1 

and Equation (14) yields an explicit expression for the inter- 
filament force 

m = Q  R ctnß since - A ctnß cosa (34) 

Equation (34) can be used to eliminate  Fc  from Equation (16) and 
for T/T  = 1 , Equation (15) and (16) read o 

d(cosß cosg) = KR /  + A secß csca (35; 
dR ° 

d(R sinß) = Q R2 cscß _ AR ctna Cscß (36) 
dR 

A convenient form for these equations is obtained by multiply- 
ing Equation (35) by cosß cosa  and Equation (36) by  R sinß . 

Then 
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d(cos ß cos a)= 2(K R /  cosß cosa + A ctna)       (37) 
dR u 

d(R sin ^ =2   (ft R3 - A R2 etna) (38) 
dR 

As with the direct problem, the presence of A ^ 0  compli- 
cates the integration of Equations (37) and (38).  As a conse- 
quence, when A ^ 0 , numerical integration has been employed in 
their solution.  Expressions for doc/dR and dß/dR suitable for 
numerical integration are readily obtained from Equations (37) 
and (38) by carrying out the indicated differentiation.  There 
results 

da 
dR 

9 2 9 -1 
- K p/p„R csca secß - 0 R etna seczß - A sec ß+ tanz ß ctnaR    (39) o 

^ = ft R eseß secß - A etna eseß secß - tanßR (40) 
dR 

and from Equation (18) 

dZ 
dR 

= - etna 

It is clear that as a  approaches zero,Equation (18) becomes 
unsuitable for numerical integration.  This is remedied by chang- 
ing independent variables from R to  Z .  Then Equations (39), 
(40), and (18) read 

^•=K p/p R seca secß + ft R sec2ß+A tanß sec2ß - tan2 ßR~     (41) 
dZ       o 
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^i = -OR tana cscß 
dZ 

secß + A cscß secß + tanß tanaR-      (42) 

#| = - tana                      (43) 
dZ 

Integra tion of Governing Equations 

Solutions to the governing equations are given below in order 

of increasing complexi 
parameter is nonzero a 

ty, starting with cases where only one load 
nd moving on to all load parameters nonzero. 

The following cases are considered: 

Case 1  K 7* 0  fi = 0  A = 0 

Case 2  K = 0  Q^O  A=0 

Case 3  K=0  Q = 0  A ^ 0 

Case 4  K^O  Q > 0  A = 0 

Case 5 K^O n > o A ^ 0 

Case 1 - K £  0. - Pressure load.  This case is treated exten- 
sively in Reference 8. 

Case 2 - fi ^ 0. - Load due to spin.  For this case, Equations 
(37) and (38) read 

/ \            d(cosß cosa)_ n 
i dR 

(b)             d(R2 sin2ß) = 2 n R3 
dR 

Using the previous notation for fiber angle at the reference radius 

i. 
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sinß(R=1) = C 

where 

a(R=l) " ° 

and using an auxiliary parameter 

2C2 
B = ^r- 

expressions (a) and (b) can be readily integrated, yielding 

(c) cosß cosa = ^l-C2 

p =1 Vf [R4 + (B_I)] (d) sin,   R ^ 2 

Substituting (d) into (c) yields an expression for the meridian 
angle 

/ He5 
(e) cosa = ■•*/. ö T— 

111  - M [R2   +   (B-l)   ^2] 

and,   using  Equation   (18) 

(f)   — = <-cotana  = + R 
dR 

V2(l-C2)  
Q   [-R4   +  B   (R2-l)   +  1] 

Expression (f) can be integrated as 
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(g)    z = W l-C^  I d(iT) 
20 J(l-R2) (R2-B+l) 

Other quantities of interest are the fiber azimuth, from Equation 
(7) and from expressions (c) and (d) above: 

(h) d|_ = I       sinß   = 1     J     R4 + (B-l) 
dR  R cosß sina   R }j  (1_R2) (R2_B+1) 

VR4 + (B-l) 
(1-R2)  (R2-] 

The nondimensional fiber length dL = d-t/ro  from Equation (2) 
and (d) becomes 

(i) 
dL = _ R  _       R

2 

d$   s 
ine   VF^^T 

or, with Z  as a variable 

, . x dL 1  1 0 (l) — =   = —, = cscB ,„   n . J -=■"       cosß  cosa        J1_c2 (R=l) dZ 

Expression (c) permits the calculation of fiber lengths 
between fiber intersections, defining the metric properties of the 
two-family fiber net. Expression (j) shows the fiber length incre- 
ment in the axial direction to be dependent only on the parameter, 
C , (i.e. the fiber angle at the equator R = 1 ) and therefore 
relates the fiber length (and consequently the structural mass) 
directly to the axial distance between poles of the spinning struc- 
ture.  Hence, with the boundary condition  Z,  ,>= 0 

(k)      L =  .* 
>/i-c2 
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An examination of (g) and (d) reveals the existence of real 
solutions for either positive or negative values of Q   .     Using 
the boundary conditions  Z = 0 at R = 1 , "(g) becomes for 

positive values of Cl 

Z 
1 J2    /-,   „is   \(   •   -1   B-2R2 \ TT 
2 la (1"c2) |_(sin    -TT-)  ~2 

(44a) 

or 

Z   = if -   (1-C2)   tan ■i   JR
2
-I 

f  B-l-R2 
(44b) 

And for negative values of 0, 

I z = -%/T: (C
2
-D    In 

VR
2
  - l +   VR

2
  + 1  - 

yJ2   -  B 

B (44c) 

or 

Z  = V I   (C2-  1)   tanh' ■'V 
R2-l 

RZ   +   (1-B) 
(44d) 

Meridional shapes and fiber patterns are shown in Figures 9 and 10, 
respectively.  They can be described as follows: 

1   For  0 < C2 <- H  (or  0 < B < 1) , the structure forms a 
2 

barrel open at both ends, symmetrical to the equatorial mid-plane 
at  R = 1 with the fibers terminating at the barrel ends at a 

radius  R = %Jl  -  B and in directions tangential to the meridian. 

2.   For C2 = —  (or  B=l) , the meridian of the structure 

will intersect the Z-axis twice, with a slope, approached in the 
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limit by coscc /p_m 
= j+\l-C = sinß  _   , and the axial distance 

between the two intersections is in nondimensional notation 

<25W "Vipy 
The structure is that of a spindle, symmetrical with respect 

to an equatorial plane, pointed at two ends, covered by fibers that 
form a maximum angle,  ßQ , at the equator and with the fiber angle 
declining to zero at the two apexes.  This structure has the addi- 
tional interesting property that the distances between fiber 
intersections are all equal and given by 

r^  n ' ft AL = 
"O 

This is seen readily from Expression (i) by letting  B = 1  and 
and  A$ = —  .  The fiber pattern, projected into the equatorial 

r 
plane assumes the form of circles with radius  p = _2. tangent to 

the periphery,  R=l , and intersecting the center (see Fig. 11). 

3.   For j <  C2 < ft  (or  1 < B < 2 ), the structure 

describes a periodically "corrugated" tube of radius range 
1 ^ R ^ -WE-!  indefinitely extended along the Z-axis.  The fiber 
angle,  ß , is at a maximum at both radial extremes.  The axial 
distance between two extremes is, in nondimensional notation 

2Z(R-W-"Vä<1-c2> 

9 
4.   For C  = ft , or  (B=2) , Equation (44) yields an 

indefinite value, real only for  R=l .  The corresponding structure 
is a right circular cylinder of radius,  R , covered by fibers 
forming helices of constant pitch. 
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5    For  C2 > Q  or  (B > 2] , the structure is geometrically 
similar to that described in (3), but the radius range is restrict- 
ed to J(B-l) > R > 1 .  It can be readily shown that the two types 
of solutions differ only by a geometrical scale factor of yj (B-l) . 

6. For  C=l , a special case obtains:  (h) yields  Z = 0^ 
for R\  1   The structure is that of a flat annular disk origi- 

nally discovered by Kyser (Ref. 11). 

7. For Q <  0  (B < 0  since  2C2  is positive definite) 
real solutions for the surface exist only for  R > 1^ and real 

solutions for the filament paths exist only for  R< V1.-B__.     Thus 

for 

"iiW   -—     - 4 .  
<   0      (B<0)    ,   solutions  exist  in  the  range     1<R<\1-B   . The 

structure is formed by inward arches tangent to the cylinder R-l. 
At the outer perimeter, the fibers become parallel to the meridian, 
i.e., fiber angle  ß becomes zero.  The slope angle of a meridian 
in the surface at the outer periphery is equal to the fiber angle 

at  R=l , i.e.,  aR=Rmax = ^o 
= ßR=l * 

Case 3-A^O  fi = K = 0. - Uniform acceleration in negative 
Z-direction.  For this case, Equations (37), (38), and (18) read: 

m d(cos2ß cos2a)= 2A ctna 
u; dR 

d(R2 sin2ß)_ _,A R2 
dR 

-2A R^ ctna 

(m) 
dZ 
— = - ctna 
dR 

Eliminating ctna  from (1) by use of (m) and integrating 

cos2ß cos2a = - 2AZ + C. (45) 

where C,  is an integration constant.  Note that the right side 
of Equation (45) is confined to the interval  (0, 1) .  Equation 
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(45) allows the determination of the shape,  Z(R) , once a  and 
ß  are known.  These functions are most conveniently determined 
numerically using Equations (39) and (40) which for  0 = K = 0 
read 

(n)       — = - A sec2ß + tan2ß etna R 1 
dR 

d R —1 (o)       —E = - A etna eseß secß - tanß R 
dR H 

The shape  Z (R)  is determined by Equation (45).  These Equations 
have been numerically integrated and the resulting shapes  Z(R) 
are shown on Figures 11 for various ranges of a  , ß  , r  , and 
A . 

The meridional shapes shown in Figures 11 terminate at both 
peripheral edges when  ß , the filament angle, goes to zero.  The 
direction and magnitude of the edge loads required to support 
these surfaces is determined by the surface angle,  a , at the 
periphery, the number of filaments, and the filament load.  Recall- 
ing the definition of the axial load parameter (Eq. 12),  A is 
the product of the reference radius and the ratio of surface load, 
m'a , to filament tension,  TQ .  Thus, considering  rQ  constant 
as A approaches zero, the filament tension dominates the surface 
load and the shape is determined almost entirely by the edge loads. 
In the limit,  A = 0 , there is no surface load, and the surface 
becomes a hyperboloid of one sheet generated by the now straight 
filaments (See Flügge, Ref. 3, p. 78).  This is indicated in 
Figure 11a where a   and  ß^  are maintained constant and the J o       o 
meridional shapes shown reflect a parametric variation of A . 
For small values of A , Figure lib demonstrates that the effect 
of  ßQ  on the meridional shapes is to change the near-asymptotic 
angle of near-hyperbolic curves.  Figure lie demonstrates that 
the isotensoid generated by these conditions are circularly 
symmetric arches supported on two peripheral lines by forces 
with both axial and vertical components.  If, however, the 
upper portion of tne surface is terminated where a horizontal 
tangent occurs  (a = TT/2) the axial surface of load A is sup- 
ported entirely at the base periphery and the upper periphery 
requires only radial support loads.  A wire model of this con- 
figuration was constructed and is shown in Figure 12.  The 
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intersections of the wires are spot welded to allow interfilament 
force transfer.  Note also that a simultaneous reversal of the 
sense of the acceleration,  "a" , and the filament load, T0 , does 
not affect either the load parameter, "A" , or the solution shapes, 
Thus the surfaces described by the meridional curves in Figures 11 
are, for axial loading conditions, either isotensoid or isocompres- 
soid surfaces depending on the surface orientation with respect to 
the surface load and the edge condition.  The model shown in Fig- 
ure 12 is isotensoid if it is suspended in a gravity or accelera- 
tion field from the smaller internal periphery with the large edge 
down, or an isocompressoid "cantilever dish" if it is supported at 
the inner edge, with the inner edge down.  Application of this 
cantilever dish to civil engineering structures is indicated. 

Figure lid shows the meridians of the isotensoid (or isocom- 
pressoid) shapes generated by axial loading for large values of  rQ . 

An interesting and practical shape is obtained as the radius 
r  approaches infinity.  To take this limit, let  r = rro + y 
where  rro  is a parameter.  Then Equations (n) and (o) read 

da    -   2    tan2ß etna 
(p) — = - A sec ß +  ^  KP' dy rro + y 

(q) 

and Equation (18) becomes 

dß- _ _  A etna  _ tanß 
dy ~~  sinß cosß   r^ + y 

(r) — = - etna V ' dy 

where 

A = A/r  = m'a/T0 

A can also be written as 

Ä = £■ n 
a 
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Now let  To, —» oo .  (y, z)  are now cartesian coordinates and 
Equations (p), (q), and (r) read 

da 
dy 

= - A sec2ß 

d£ 
= 

X etna 
dy sinß cosß 

dz 
dy 

= - etna 

This system of equations is easily integrated with the follow- 
ing result: 

z = 
5in  (ßmax> 

2 A 
1 - /   2 A 

Isin (2 Pmax' 
(46) 

sina cosß = cosß max (47) 

etna = 
\cosßmax  / 

(48) 

cosß = cosß 
max 

1 +/-A   yV 

\cos2ßmax  / 
(49) 
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The integration constants were evaluated such that Z - 0 at the 
maximum value of y , and by Equation (47) ß = ßmax at a = n/2 
The values of maximum z  and y are 

z 
sin2ßmax _ /o\    sin2ß 

(?) max    2A      \ p 7    2g 

sin'2ß     / \  sin2ß 

max (50) 

ymax =     _
ma* = (<L\ ——ä (si) 

2A      U    2g 

Equation (46) defines a strikingly simple isotensoid shape; 
a cylindrical parabola.  This uniform stress shape can be used in 
civil engineering structures.  The acceleration is then the gravi- 
tational field g = 1 , and the internal loads are uniform 
compression. 

The surface shapes determined from Equation (46) are shown in 
Figure 13a.  Here,  zÄ" is plotted versus  yA , thus the complete 
range of shapes is given by parametric variation of  ßmax  only. 
The filament angles determined from Equation (49) are shown in 
Figure 13b.  Here  ß  is plotted versus yA and once again the 
complete range of variations is given by parametric variation of 
ß    .  Because of the way in which the design parameters  ßmax 
and* Ä" enter Equation (46) , the ratio of  zmax to ymax and 
the focal length can be varied independently.  In fact from Equa- 
tions (50) and (51) , 

z     tanß max _    max 

Ymax    2 

and from standard relations between focal length and the coeffi- 
cients in Equation (46), 

cos ß 
-■ ,.   , n        max Focal Length =  -=  
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A model of this structure was made with slotted aluminum 
strips in order to demonstrate the foldability of the configuration. 
Pictures of the model in both the deployed and folded configura- 

tions are shown in Figures 14. 

Case 4 - K /  0, Q ^ 0, A = 0. - In the remainder of this re- 
port the applied pressure is assumed uniform,  p = pQ .  With this 
stipulation and A = 0 , the governing Equations (35) and (36) 

read: 

d(cosB coscc) = KR (52) 
dR 

d(R sinß) =  0 R3 

dR       (R sinß) 
(53) 

Equation (52) can be integrated directly, resulting in 

cosa = [KR2/2 + Cx] [cosß]
-1 (54) 

Equation (53) can be readily integrated, resulting in 

R sinß = ^Q R4/2 + C2 (55) 

where C±     and C2  are constants of integration.  With the con- 
stant,  C2 , evaluated such that  ß = ßQ at  R = 1  (and with the 
notation  sinßQ = C) , and with C^  evaluated such that a = 0 
at  R = 1 , and letting X = R , Equations (55) and (54) are com- 
pactly expressed as 

sinß £ x + (C2 - £) ±1 H (56) 
2  Xj 
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Vi - c2 - f (1 - X) 
cosa = + -=— 2 ___ (57) 

I X - (C2 - f) i 

For 0=0, Equation (56) reduces to the equation for geo- 
desic paths on a surface of revolution and Equation (57) reduces 
to Equation (30b) of Reference 8. 

With the intrinsic filament geometry,  ß , and the intrinsic 
surface shape, a. , known through Equations (56) and (57) as func- 
tions of the radial coordinate,  X , the more practical design 
functions,  Z and  $ , can be determined by integrating Equations 
(17) and (18).  The filament length can also be determined by 
integrating the first of Equations (2).  Changing to the X-nota- 
tion, these equations read 

(58) 

(59) 

(60) 

Solutions of Equations (58) and (60) in terms of elliptic 
integrals of the first and second kind are given below.  Equation 
(59) which determines the longitudinal position of a filament as 
a function of radial position leads in general to hyper-elliptic 
integrals and no attempt is made to record the closed form 
solution. 

In order to integrate Equations (58) and (60) it is convenient 
to define a function,  y , as 

y2 = X cos2ß sin a (61) 
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d$ tanß 
dX 2X  sinoc 
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Use of Equations (56) and (57) to eliminate  ß  and a  from Equa- 
tion (61) yields the following expression for y(X) 

y2 = 

2 3 
K X n + K (VI^-f)]x2

+[i-^-f)2 X - (C2-|)  (62) 

Equations (56), (57), and (61) can be used to eliminate  ß  and 
a  from Equations (58), (59), and (60) with the following result 

§Z  = 
dX 

etna 

2 y[x 
T[(£?-f)+f* 

2y 
(63) 

d$ _   tanß 
dX    2X sina 2Xy ! 

Q fl X + c2  
2 2 

(64) 

dl_ csca secß _ ^ 1_ 
dX Vx" 2y 

(65) 

To integrate these equations, note that y  has the form of 
a cubic in X , which expressed in factored form is 

y2 = K_ (i _ x) (X - X?) (X - X ) 
4. 

(66) 

where 
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X, F |o-V G
2 + K2 (C2 - Q/2) 

X- = _ 2_ | G+ ^G
2
 + K2 (C2 - Q/2) 

(67) 

and 

G = (K ^1 - C2 + f - f") (68) 

Investigation of these roots and Equation (66) shows that for 
real values of y , four types of solutions are possible for 
0 < C2 < 1  and the range of X including X = 1 , 

Type A 

Type B 

Type C 

Type D 

x3 < x2 < X < 1 

x3 < 1 < x < x2 

X < 1 < x3 < x2 

(69) 

X2 , Xo  complex conjugates  X < 1 

The solutions of Equation (63) for the shape  Z(X)  and Equa- 
tion (65) for the filament length, I(X)   ,   are found in Reference 
12 for the four types listed above. 

Type A: 

Z = V1 - x; {(i-i-S^)F(*i-ki) -B(*i-ki)] (70) 
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t = — 
K. 

F(*l'   kl) 

V1   "  X3 

with 

sin\|r     =  ^ 
1   -  X 
1 - x2 

and 

2   =  1   -  X2 
ki        1 - x3 

Type  B: 

Z  = 

( 
-E(i|r2,  k2) + 

xa-1 + K V1"0* Jx2 - x3 jE(k2) [K(k2 
X2   "  X3 

I = 2              1 [K(k2)   - F(\|r2,   k2) ] K   Vx2 - x3 

with 
* 

sin to 
2 

Jx2 - X 
-\x2-i 

ar>d 

2       X2   "   -1 

2          X2   -  X3 

► 
45 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 



Type C: 

Z  = (78) 

Vxl -  1 2 yr~^ c 
i3L(X~^T)F(,|r3'   ks) + E(*3'   k3)  ~tanh V1-k

3
2sin2t3 

F    (i|f3,   k3) 

\/x2  " 
X 

(79) 

with 

sirnjj v: 1   -  X 
3   -%x3   -X 

(80) 

and 

2        X9   -  X 
k_   = 2       "3 

3       X2   -   1 
(81) 

Type  D: 

2 ? 
(1-d)      + b 

1 v' " i V(i-d)2+b2/ 
F    (^   k4)  -E(i|(4,   k4) 

si 

+ 

 ^ 2—" 
1  - k4   sin   ^ 

1    +   COS' 
(82) 

46 



and 

*   =!FU4,   k4} 

]_L. 

(83) 

with 

V 
cosi 

(X-d)2   + b2   -   (1-X) 

4 J(l-d)2   + b2   +   (1-X) 
(84) 

2     I"   +    J(l-d)2   fb2/ 
k"  = -    11  + (85) 

2G (86) 

V^TF^) 2 /   2 /n 2\ 2 (87) 
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Within each solution type are a multitude of isotensoid 
shapes.  For the direct problem where K , Ü , and C  are speci- 
fied, the solution type can be identified by calculating the roots, 
X2  and X3 , from Equations (67) and comparing with Inequalities 

(69).  With the solution type identified, the meridional profile 
is determined by the appropriate equation for  Z(X) (Equation 70, 
74, 78, or 82) with the aid of tabulated elliptic integrals. 
Figures 15 and 16 are generated from Equations (67)-(69) and indi- 
cate the solution type which governs for various values of the 
load parameters,  K , Q  , and the design parameter,  C .  For 
example, in Figure 15, the boundaries between solution types are 
defined by C = constant curves in K, Q  space;  and in Figure 16 
the boundaries between solution types are defined by  fi = constant 
curves in K , C  space.  Note that solution type-C occurs over 
such a limited range of parameters that the thickness of the lines 
in Figure 15 obscures the region, and in Figure 16, the regions 
of solution type-C is barely discernible. 

In order to identify and discuss the isotensoid meridional 
shapes generated by the solution equations over the entire range 
of the parameters  K , Q , and C , it is advantageous to resort 
to a semigraphical technique. 

To this end, consider Equation (57), the equation for  coscc, 
and note that the denominator in the expression is equal to  cosß. 
The expression for  cosa  completely defines the meridional pro- 
files, and the denominator (cosß) completely defines the filament 
geometry within the surfaces generated by the meridians.  Let the 
numerator be called N  and the denominator D-.  Then 

— D  - 
£ 
Jx _ a .,  ,_2  Q, l 

N     .    n - c2 - f <x - x> 
cosa = + - = + ———————  (88) 

X - (C  - -, i 

The +  sign characterizes the symmetry of the meridional profiles 
with respect to an equatorial plane (for convenience, the plane 
Z = 0) and stems from the boundary condition,  a(R = 1) = 0. 
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The meridian profiles depend on the three parameters C , ft , 
and K .  However,  ft  and K  dominate the meridian profile to a 
greater extent than C .  The semigraphical method of identifying 
the solution meridional profiles is facilitated by the fact that 
ft and  C  appear without K  in the denominator of Equation (88), 
and K  and C  appear without  ft  in the numerator.  The method 
is straightforward but its execution is tedious. 

For the moment, let C be a fixed constant.  Then N  and 
D  individually can be plotted versus X on the same graph with 
ft as a parameter in the plot of D , and K as a parameter in 
the plot of N . The ratio of the values of the separate families 
on the graph for fixed X represents the cosa  at the value of 
X . 

A great deal of information is immediately available by 
examination of these plots.  For example, when D > 1 , no real 
solution exists for  ß , thus a bound on the solution profile is 
established.  When N > D , no real solution exists for oc;, thus 
a second bounding condition is apparent from observation of N 
and D .  Further, by setting N = D , there results 

vr^-fu-x,-±vr|rrp_§)i 
(89) 

Equation (89) is the same cubic equation encountered in the 
elliptic integrals for  Z , and its roots (1, X  , X ) are given 

by Equation (67). As a consequence, by observing where N = D 
on the plots of N and D versus X , and comparing with the 
inequalities (69), the solution types can be easily identified. 

Other properties of the solution meridians are also evident. 
When N = 0 , cosa = 0 ; thus a  equals  rr/2  and the meridian 
locally attains a maximum or minimum value in Z .  Further if 
N is everywhere nonzero, the meridional profile has no maxima 
or minima in  Z .  When D = 1 , not only is a boundary in X 
reached, but  ß = 0 at this boundary.  Also, since X = R2 , 
X > 0  is a requirement, and by stipulation, the coordinates 
are nondimensionalized such that X = 1  is always a limiting 
value for the meridional curves.  (One exception,  X 4  1  at 
both boundaries, occurs in what is later termed special case 1 
of region 3). 
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The numerator,  N , is a family of straight lines with slope, 

- tl    ^ 
£ .  All these lines pass through the point  (X = 1 , N - M  -  C ) 

which is also an intersection point for D   This is a conse- 
quence of the boundary condition a = 0  at X = 1 , for then 

coscc = 1  and N = D. 

Solution Types for Pressure and Spin Loading 

The denominator,  D , is sketched in Figures 17a-i.  Examin- 
ation of Equation (88) reveals that the purves always pass 

through the four points  (X = 1 , D = ± V1 ~ c )  and  (X = _1 

D - + VT7~?) .  Changing the value of C  shifts these points 
on"the X = + 1  lines but does not significantly alter the char- 
acter of the~curves.  The sketches identify three naturally sepa- 
rata Regions for values of the parameter,  n , and the two inter- 
esting boundaries separating these regions.  The sketches show how 
Te  distinctive curves for each group smoothly pass through the 
limiting boundary cases and change their basic character.  In 
examining Figured, note that  e  is \™\^£™»f£\ 
introduced only to show that the parameter,  0 , is close to a 
boundary case.  The regions and boundarxes are 

Figures 17a, b 

Figure 17c 

Figures 17d, e 

Figure 17f 

Figures 17g, h, i 

Typical curves for the three regions and two boundary cases 
are sketched superimposed on Figure 18. In order to illustrate 
the conditions under which different solution types are encoun- 
tered, a limited number of N-curves are also shown The inter 
section of the N- and D-curves identifies the roots (1, X3 , X^ 

of the cubic Equation (89), and by comparison to Equation (69), 
the solution type is known.  The region of interest in these 

Region 1 Q < 0 

Boundary Case 1 Q = 0 

Region 2 0 < n < 2C2 

Boundary Case 2 n = 2C2 

Region 3 2C2 < n <  00 
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curves is in the vicinity of X = 1 .  The following facts are 
evident. 

Region 1 Ü < 0 (Figure 17a). - Only solution types A and B 
are possible.  For solution type A,  x   (Equation 67) is always 

the minimum value to which the meridian extends, and a = 0  at 
that limit.  The upper bound is always X = 1  at which a = 0 
also.  For solution type B,  X = 1  is always the minimum value 
to which the meridian extends, and the maximum value is defined 
either by X2  (Equation 67) or the value of X > 0  at which 
D = 1 .  The upper limit will depend on N  in this case. 

Boundary Case 1  fl=0  (Figure 17c). - Only solution types 
A and B are possible.  For solution type A, the bounds are the 
same as when Q <  0 ; however, for solution type B, the maximum 
value to which the surface extends is always X  which can be 
quite large for small values of K . 

Region 2  0 < Q <  2C2 (Figure 17d). - Only solutions of type 
A and B are possible in this region;  x  is always the minimum 

for type A, and X^     is always the maximum for type B. 

Boundary Case 2  Q = 2C  (Figure I7f). - Only solution types 
A and B are possible here.  Note that only under the conditions 

2  . 
ii -  2C       is it possible for the meridians to close in the axis 
of symmetry.  This is illustrated by the N-curve labeled A on 
Figure 17f.  For solution type A , either X  or zero is the 

minimum; and for solution type B,  X2  is always the maximum. 

2 
Re9lon 3 2C < fl (Figure 17h). - In this region, all four 

solution types are possible depending on N .  This region is 
covered in detail.below. 

Meridional Profiles for Pressure and Spin Loading 

In each of Figures 19a-g there are two families of sketches. 
In the upper family are sketched one typical D- versus X-curve 
and a number of N- versus X-curves.  The lower family of curves 
are sketches of the meridional profiles generated by the N-lines 
above.  Note that these meridional profiles are topologically 
equivalent to the physical meridional profiles but are distorted 
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2 
because they are sketched as functions of X = R  , not R . 
Identifying numbers relate the meridians generated by each N- 
line shown.  Number 1 always corresponds to large negative K . 
K  increases as the identifying number increases, and the 
highest number on each figure corresponds to a large positive 
value of K .  The solution type associated with each K-line 
is also recorded in tne upper sketch. 

pnnnrtarv case 1.  0=0, Figure 19a. - The N-line marked 
-I" corresponds to K < < 0 , passes through zero, and intersects 
the D-curve at X = X2 > 1.  Thus the slope of curve 1 in the 

lower sketch goes through zero and then - , forming the meridian 
of closed loops shown.  As K  increases, the loops increase in 
size and X  increases as depicted by curve 2.  In the limit, 

as K-^0  curve 3 is approached.  The surface shape corresponding 
to this meridian is a hyperboloid of one sheet generated by 
straight filaments having edge load but no surface load (K - a  - u, 
see Flügge, Ref. 3 p. 78).  The slope of the D-curves at  X = 1 

are 

/d(D)\ 

Vdx/ 
ic2 

* = i  2ViT7 

md the slope of the N- curves are 

W x = 1 
K 
2 

As can be seen on Figure 19a, when the slope of the N-curve at 
X = 1  is less than the slope of the D-curve, solution type B 

results with X > 1.  Thus for 

0 < K < i ci^JL 
U   2   2 i: 2 

C 
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N-curves typified by number 4 generate meridians which, when 
rotated about the axis of symmetry, generate periodically corru- 
gated tubes with limits on X of  1 < X < X, When 

K 
2 

_1 
2 
^ 

the corrugations pass to the limiting case of a cylinder (curve 5). 
Note that this is also the transition from solution type B to 
solution type A.  N-curve 6 generates corrugations once again; 
however, the limits on X are now X < X < 1.  N-curve 7 is a 

unique boundary between corrugations and loops.  Note that for 
curve 7,  N-+- 0  and N -*- D  at the same time.  Thus  ß -+- rr/2 
and an inward cusp is formed.  N-curve 8 indicates that a  goes 
through TT/2  and then on to n , forming a loop inwards as shown. 
N-curve 9 generates the meridian of a torus which is the boundary 
between the two types of looped meridians shown (8 and 10).  There 
is no closed-form equation for the values of K and C which 
generate this useful shape.  However, the condition for this merid- 
ian is that  Z = 0  at X = X  .  This is solution type A.  Conse- 

quently, the torus conditions are obtained by setting  Z = 0  in 
Equation (7 0) and X = X, In this case, TT/2  (see Equa- 

tion 72 for X = X ) and the incomplete elliptic integrals become 

complete elliptic integrals.  The condition for a torus is there- 
fore. 

(-I CT 
(1 - x3) -) 

K (kx) - E (kx) = 

where k   is given by Equation (73) and X 

(67) with  fi = 0 . 
Figure 19a result. 

For larger values of K 

and  X  by Equation 

loops of type 10 in 

Region 2  0 < Q < 2C  , Figure 19b. - In this region the 
D-curve is closed and D  is always less than 1.  Curve 1 does 
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not differ from the case  fi = 0 ; however, as K  increases from 
large negative values, a value is reached where  Z = 0 at 
X = X  .  This corresponds to curve 2, a toroidal shape with 

X > 1 .  The torus is the boundary between the two types of loops, 
curves 1 and 3.  The torus conditions are obtained by setting 
Z = 0  in Equation (74) and X = X  .  As K increases further, 

the unique case labeled "4" occurs. Here D and N both go to 
zero, thus an outward cusp is formed with ß = rr/2 at the outer 
periphery.  The condition for shape 4 is that N = 0  at X = X^   . 

For higher values of K , corrugated tubes are formed, with the 
limiting case again a cylinder, 6 , at X = 1 .  The higher In- 
curves, 7 through 11, are similar to those discussed under bound- 
ary Case 1 and introduce no new shapes. 

2 
Boundary Case 2, Q  = 2C  , Figure 19c. - N-lines 1-6 

correspond to solution types B and generate meridians already 
discussed:  the two types of closed loops reported by the torus, 
an outward cusp in which  ß = n/2  at the periphery, and a 
corrugated tube degenerating to a cylinder when the slopes of 
the N- and D-curves are equal at X = 1 .  For larger values of 
K  solution type A is encountered, and corrugated tubes inboard 
of X = 1  are generated (curves 7).  The unique character of 

2 
the solutions generated when  Q = 2C   is found by examinxng 
curves 8-12 which are the only solution types which close on 

the axis of symmetry.  When  Q = 2C  , the D-curve is a parabola 
which passes through the three points  (X = X2 , D'= 0) , (X = 1 , 

D = ^1 - C2) , and (X = 0 , D = 1)  N-curve 8 is that N-curve 
which also intersects  (X = 0 , N = 1).  Under these conditions, 
X = X = 0 .  When these conditions obtain, examination of the 
2    3 2 

solution equations for solution type A yields k^ = 1 , ^ = rr/2 

and because F (n/2 , 1) = K (1) = » , the meridional shape gener- 
ated by curve 8 is asymptotic to the X = 0  line.  The surface 
shape is therefore a closed pointed bottle of °°  extent in Z . 
The relationship between K and C  at which this shape is gen- 
erated is obtained by setting N = 1  at X = 0 .  This yields 

K = 2 ( \1 - C2 - 1) 
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Skipping for the moment to N-curve 12, note that N = -1  at 
X = 0 .  It is easy to establish that  Z -*- -co  as  X -*- 0  for 

curve 12, and that K = 2 (1 + \1 - c2)  defines this condition. 
For values of K between these two limits, the meridians close 
on the axis of symmetry and  ß -*• 0 as X -*■ 0 .  Thus in order 
for the solution shapes to close on the axis of symmetry, 

2 ( VT 

fi 2C 

- 1) < K <  2 ( 

and  ß = 0 at X = 0 

i + VT c2) (90) 

Within this range, a distinct value of K generates curve 10 for 
which cosa = 0  at the axis of symmetry.  This occurs when N = 0 
at X = 0 or 

K = 2 £ 
thus for  2 ( vr: 2 2 

C  - 1) < K < 2 \l  - c   shapes typified by 

curve 9 are generated, and for  Z ( ^1 - C  < K < 2 (1 + \l - c2) 
shapes typified by curve 11 are generated.  These surface shapes 
are closed bottles requiring supporting structure at the apices 
while shape 10 is self supporting.  Values of K  above 

2 (1 + yL - c ) generate the close-loop meridians represented 
by curve 13.  It is not likely that closed loops of the other 
type (Curve 9 on Figure 19b) or tori are generated for this 
value of  Q  in combination with positive values of K . 

Region 3  fl > 2c  , Figures 19d, 19e, 19f. - Region 3 is 
complicated by the fact that the D-curve has an inflection point. 
The position of this point relative to X = 1 has a distinctive 
effect on the solution types generated. 

2 
It  can be  shown  chat  for     1  > C     > 1/3     the  inflection point 
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\dX      I 

D = Öl occurs in the range X < 1 .  For C < 1/3 , it 

occurs in the range X > 1 provided 

♦ VT- 2     4 
4C  + 3C (91) 

When Q >  2 ,   the inflection point occurs at values at X where 
D  is greater than 1 (X < X minimum).  Thus three distinct cases 
arise, hereafter referred to as special cases.  In special case 
1 the inflection occurs at X > 1 , Figure 19d.  The conditions 

for this case are C  < 1/3  and 0.    bounded by Equation (91) . 
These are the only conditions under which solution type C is 
encountered where X0  and X  are greater than  1 > X  (N-curve 

7C in Figure 19d).  In the range of  Q for which Figure 19d 
applies,  N-curves 1-5 are similar to those discussed before. 
N-curve 7C typifies the only range of solution type-C. 

Note that a fifth solution type is possible.  It occurs only 
under the same conditions as solution type-C and generates cor- 
rugated tubes (curve 7).  For this solution type I  < X^  < X < X2   , 

This is the exception identified earlier where the solution is 
not bounded by X = 1 .  The solution equations for this rare 
case are not recorded here but can be obtained from Reference 12. 

Of particular interest is the fact that in this range 

of 0,  and C  , the D-curve is concave upward at X = 1 .  As 
a consequence, when the slope of the N-curves is equal to the 
slope of the D-curves at X = 1 , solutions for X > 1  and 
X < 1 occur for the same values of all parameters.  Thus a 
corrugated shape can fare into an inward arch with compatible 
filament patterns at X = 1 .  This is shown by the extension 
to curve 6 in the lower sketch of Figure 19d.  When the inflection 
point is at X = 1 , which is the condition which separates spe- 
cial cases 1 and 2, the corrugated tubes degenerate to a cylinder 
when D  and N have the same slope; thus the interesting merid- 
ian which generates a cylinder with an end cap identified by the 
numbers 6 - 7 on Figure 19d is obtained. 
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Once the slope of N  is greater than the slope of D at 
X = 1 , the lower limit of the solution shapes is reached at the 
value of X where D = 1 and  ß = 0 .  Thus curves 6-11 
generate meridional profiles with central openings requiring 
support of the filaments.  That unique curve corresponding to 

TT 
coscc = 0 (a = —)  at the same value that D = 1  (curve 9) 

requires only hoop constraint while all others require tension 
or compression support. 

The limiting value of K for these solutions is obtained 
by setting N = -1  at X = X2  (curve 11).  For values of K 

larger than this, the closed loops like curve 12 are obtained. 
It is doubtful that tori and the other type of loops exist for 
large values of K and this range of ß . With reference to 
Figure 17h, it is apparent that solution type D is encountered 
whenever the N-lines intersect neither the D-curve for nega- 
tive X nor the D-curve for positive X except at X = 1 . 
This occurs for two ranges of K , one negative and one positive. 

In a second special case, the inflection occurs between the 
value of X where D = 1 and X = 1 .  This is shown on Figure 

2 2 
19e.  The conditions for this are  2C < Cl < 2  and  1 > C > 1/3 

or  2C2 < 0 < 2 , C  < 1/3  and Equation (91) not satisfied.  The 
curves associated with all numbers but 8 are similar to cases 
already covered.  For N-curve 8, the N-line and D-curve are 
tangent at X = X2 = X3 .  This represents a branch or bifur- 

cation point from which two isotensoid meridians are possible as 
shown in the lower sketch 8 in Figure 19e. 

The third special case is obtained when  0 > 2  and is shown 
in Figure 19f.  There the inflection point in D falls outside 
the range of real solutions.  All the profiles except those num- 
bered 8 and 12 have been discussed above.  In cases 8 and 12, 
D = + 1 at X = X  and N = 1.  Thus for case 8, a corrugated 

tube is formed in which  ß = 0  at the inner radius, and for 
case 12 loops are formed for which  ß = 0 at the inner or 
minimum radius. 

In general, Region 3 includes solutions of types A, B, and 
D and for certain special conditions, type C.  The minimum radial 
coordinate to which the solutions extend is bounded by the value 
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of X where D = 1  over most of the range of K  applicable to 
solution types A, D and C. 

In Figure 19g the isocompressoid meridional profiles are 
shown for  Q < 0 .  Recalling the definition of  fi  (Equation 12) 
the filament load,  T  , is necessarily less than zero if  0 < 0. 

o J 

For T < 0 , the sense of p  is reversed in the sign conven- 
o o 3 

tion for K .  The N-lines 1, and 7 through 13 generate merid- 
ional profiles already discussed.  In each case, however, the 
pressure loading is reversed and the internal loads are com- 
pressive.  For N-curves 2 and 6,  N = + 1 respectively and 
D = 1 .  Thus curve 2 generates outward loops tangent to the 
value of X at which X = X  and D = 1  simultaneously.  In 

this case  ß = 0 at the outer periphery.  For curve 6 a corru- 
gated tube is formed tangent to the same X value at its outer 
periphery and with  ß = 0 .  Curves 3, 4, and 5 are inward arches 
with positive, zero, and negative slope at the outer periphery 
defined by D = 1 .  The special case when K = 0 (not shown on 
Figure 19g) was discussed under the general case 2 for which 
K = A = 0H^0 . 

In order to illustrate briefly the design potential, four 
spinning pressurized isotensoid designs are given.  Figure 20 
shows a closed spinning isotensoid pressure vessel.  This design 
closes on the axis of symmetry and is obtained by choosing 

2 
Q = 2C   and determining C by setting N = 0  at X = 0.  This 
corresponds  to N-curve 10 in Figure 19c.  Figures 21 and 22 

2 
are spinning isotensoid "tires" with,  ß = 0° (Ü > 2C )  and 

2 
ß = 90° (Q < 2C )  at the inner periphery, respectively.  They 
correspond to  N-line 8 on Figure 19b for  zero ß  at the hub, 
and N-line 9 on Figure 19d for  ß = 90°  at the hub. 

Figure 23 depicts a design of a spinning net with internal 
(positive) pressure on the upper portion and external (negative) 
pressure on the lower portion, representative of the loading on 
a spinning aerodynamic decelerator. 

Case 5-K^0,^^0,A^0. - An analytic solution was 
not found for this general loading case where all loads are non- 
zero.  The equations suitable for integration by digital computer 
were used.  These are Equations (18), (39), (40) when a  is 
sufficiently far from zero; and Equations (41), (42), and (43) 
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when a  is sufficiently far from TT/2 .  There are five signifi- 
cant parameters in these equations:  the three load parameters 
K , ft , and A , and two boundary parameters,  ß  and a  at 

r = r  .  (The third boundary parameter,  Z  , is unessential 
o ° 

because it serves only to shift the surface with respect to the 
Z-axis.)  This results in a five-dimensional space to explore 
for significant shapes using numerical techniques.  As a conse- 
quence, no attempt to classify shapes was made.  Instead, a 
modest attempt was made to determine the effect of a uniform 
acceleration load,  A , on the shapes determined in the previous 
case treated where only K- and  ft-loads were present.  The 
details of the calculation as well as the computer program used 
are given in the Appendix. 

In order to obtain a reasonably broad coverage,  ß  was 
2   1 

set equal to 45° and held constant so that C  = — .  Shapes were 
2        2 2 

determined for  ft < 2C  , ft = 2C  , and  ft > 2C   for various 
values of K and for A = 0 .  For each one of these shapes 
determined, a second shape was determined for A = 0.25 .  The 
plots of the resulting meridional profiles shown in Figures 24 
illustrate the sensitivity of isotensoid shapes to axial loading 
A ^ 0 . 

In particular, note that none of the isotensoids with the 
A-load present extend to the axis of symmetry.  This leads to 
examination of the governing equations for values of R near 
zero to determine if there are any isotensoid surfaces with 
A ^ 0 which close on the axis of symmetry.  The details of 
this study are included in the Appendix.  The results can be 
summarized as follows: 

In the vicinity of R = 0 , the filament angle,  ß , and 
the meridional angle , a , are governed by the approximate 
relations 

»V^ A' R F—Y   R2        (92) 

10 ̂  A 
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~ TT K  2 
CG=--AR--R (93) 

2 
It is apparent from Equation (92) that  Q > A   is a nec- 

essary condition for closed shapes. 

In order to illustrate surfaces of this type, Equations (92) 
and (63) are used to generate values of a  and  ß  for small r 
which can be used as initial conditions for the governing Equa- 
tions away from the singularity at R = 0 .  The results are 
shown in Figure 25 for Q = 1 , K = 1 , and a range of A ; and 
in Figure 26 for  Ü = 1 , K = 0  for a range of A .  The varia- 
tion of  ß with R  is shown in Figure 27 for one case,  Q = 1 , 
K = 0 , A = 0.1 .  This is representative for all cases shown. 
Note that  ß = 0  at the lower opening in the surface, thus, a 
tension ring (or the load equivalent) and an axial force must be 
supplied for equilibrium.  There is an indication therefore that 
this analysis may be applied to approximate conditions for design 
of a high-altitude (spinning) parachute of the type discussed in 
Reference 13.  The edge condition is then supplied by payload 
weight which is suspended from the filaments. 
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CLOSURE 

The results reported here represent a step toward reducing 
net structure design to standard methods.  Consideration has been 
restricted to axisymmetric nets subject to axisymmetric but, in 
general, non-normal surface loads.  The filament geometry is 
restricted to two families of filaments symmetrically disposed 

within the surface. 

In the problems where the exact surface shape is prescribed, 
the tension variation, filament geometry, and interfilament force 
level are given in terms of load levels and boundary conditions. 
Also, the region of the prescribed shape over which a net struc- 
ture can be used to react the loads is given as a function of the 

design parameter, C = sinßQ • 

The exact shape cannot be prescribed if isotensoid design is 
desired in two-family systems; however, some freedom in design is 
possible.  When the load conditions are pressure and spin  (K *  0 
Cl ^  0  A = 0)  the designer may refer to the classification of 
shapes'in Table I and determine values of the design parameter, 
C = sinß  , which generate Isotensoid shapes best suited for the 

particular design application.  With K , Cl  ,   and C known, the 
surface shape may be determined from the appropriate closed-form 
solutions which require use of elliptic integral tables, or the 
digital computer program given in Appendix A may be employed. 
When the load condition includes A *  0 , use of the digital com- 
puter program is mandatory.  If, in this case, it is desired that 
the surface close on the axis of symmetry, the method for gener- 
ating initial conditions near the apex as outlined in Appendix A, 

may be employed. 

It is clear from the restrictions placed on the solutions 
obtained that a number of problems cannot as yet be handled.  The 
most glaring omission for symmetric loading is the ability to pre- 
scribe structure shape and obtain isotensoid design solutions. 
Two directions can be taken in attacking this problem, both 
requiring an increase in the number of layers of filaments in 
the net.  First, a finite number of layers as treated in Refer- 
ence 8 with the addition of interfilament force transfer between 
families in each layer,  F  , and interfilament force transfer 
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between layers,  F  , will allow isotensoid design when shape is 

prescribed.  Second, passage to a continuum of filament layers, 
as done in Reference 10, may be attempted.  Non-uniform pressure 
and meridional surface loads must be included, however, and the 
non-geodesic nature of the filament paths must be accounted for 
so that the internal meridional and circumferential loads are 
accommodated.  This leads to a pair of integral equations for 
the distribution of filament density as defined in Reference 10. 
As discussed earlier, physical interpretation of the results of 
this method requires approximation by a finite number of layers. 
It, therefore, appears that the assumption of a finite number of 
layers at the onset is the best approach.  If an exact solution 
covering the required region of the prescribed shape is not possi- 
ble, the difference between the resulting shapes and the pre- 
scribed one may be minimized with respect to the boundary values 
of the angles in each layer. 

A second serious omission is the ability to design isotensoid 
filament surfaces in the presence of asymmetric loading.  It is 
apparent that isotensoid design is not possible if the load dis- 
tribution varies with time.  However, for fixed asymmetric loads, 
say of the type which lead to resultant moment, shear and torque 
at the surface edges, the conditions under which isotensoid 
design is possible can be determined.  This could lead to signi- 
ficant weight savings for some design applications. 

Finally, the role of interfilament force level has not been 
exploited as a full design parameter.  The weight of a net will 
be affected by the level of the interfilament forces because 
matrix material or knots are present.  Thus, it may be desirable 
to use the maximum value of interfilament force as a design para- 
meter in much the same way as  C = sinß   is employed.  Methods 

should then be developed to have the interfilament force as a 
design input. Also, isotensoid shapes could be classified in 
terms of this parameter instead of C = sinß 
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L(r 

z = z(r) 

Meridional Plane 

Figure 1.    Coordinates and Surface Load 

2a   Fiber Set at ß 2b Fiber Set at -ß 

2c   Fiber Layer with 
Complimentary Sets 
at ß and -ß 

2d  Single Fiber Be- 
longing to Both 
Sets in a Layer 

Figures 2, Definition of Filament Sets and Filament Layers 
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Glued Intersection 

»- F, 

Knotted Intersection 

Figure 3.    Force Transfer Between Filaments in Complementary 
Sets of One Layer 
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T + dT 

Figure 4       Coordinates and Notation 
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Figure 5.   Uniform Pressure in Spherical Container 
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Figure 6.    Spinning Cone in Supersonic Flight 
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2 

Figure 9.  Meridians of Spinning Isotensoids 
(Isocompressoids)  ß  = 45°  B = 1/9, 
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Figure 10. Fiber Path of Spinning Isotensoids 
(Isocompressoids)  ß = 45°  B = 1/ß 
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A=0.0001 

Figure 11a. Computed Meridional Shapes for Axial 
Load (K = ß = 0, A ^ 0) 
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A = =0.0001 
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ro =1 

ßo=30° 

Figure lib. Computed Meridional Shapes for Axial 
Load (K= ß = 0, A ?   0) 
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A = 0.1 
SI  = 0 
K  = 0 
ao= 45° 

r  = o 1 

RADIUS 

_3 d. 

Figure lie, Computed Meridional Shapes for Axial 
Load (K = SI  = 0, A ?   0) 

74 



Isotensoid Shapes for A^O, Ü=Q,   K=0 

A = 0.1 
n = 0 
K = 0 
ao = 0° 

r o =100 

RADIUS 

100     101 

125 

RADIUS 

102    103 
-i *- 

104 

Figure lid. Computed Meridional Shapes for Axial 
Load (K = R'= 0, A ?  0) 
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Figure 12.  Cantilever Dish, "Isocompressoid" Structure 
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Figure 13a, Parabolic Shape of Isotensoid 
(Isocompressoid) Cylinders 
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Figure 13b.  Variation of Filament Angle ß in the Isotensoid 
(Isocompressoid) Parabolic Cylinders of Figure 12 

78 



13 
CD 

0 

13 
CD 
>t 
O 

CD 
P 

n 
0) 

d 

H 
>i 
u 
u 

■H 

o 
& 
fö 
H 
(0 
CM 

T3 
■a 
0 
in 
to 
CD 
u 

e 
o 
u 
o 
CO 
H 

•H 
O 
to 
c 
CD 
-P 
O 
Cß 
H 

4-f 
O 

CL) 
TS 
O 
£ 

^ 

CD 
M 

tn 
•H 
fa 

79 



2 4 6 

Spin Load Parameter ß = 
T 

Figure 15.    Spinning Isotensoid Network Structures 
Ranges of Solution Types (With 3  as 
Parameters) ° 
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Figure 16.   Spinning Isotensoid Network Structures 
Ranges of Solution Types (With Q  as 
Parameters) 
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Figure 17.  Typical Sketches of  D  for Different Regions of Cl 
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n < o 
n = o 
0   <  0 <   2C' 

a = 2c2 

2c   < a < ° 

Figure   18.      Composite  Sketch  of    D     for All  Regions   of     0 
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X = R 

-X = R 

Figure 19a.  Isotensoid Meridional Profiles for Boundary Case 1 

A = 0  K^O  n=o 
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^ X = R 

X = R 

Figure 19b.  Isotensoid Meridional Profiles for Region 2 
A = 0  K^O  0 < Q < 2C2 
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>- X = R 

>- X = R 

Figure 19c.  Isotensoid Meridional Profiles for bo-adary Case 2 

A = 0  K ^ 0  Q= 2C2 
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^ X = R 

X = R 

Figure 19d.  Isotensoid Mer idional Profiles for Special Case 1 of 

Region 3  2C2 < 0 < 2 , C  < 1/3 

1 - ^1-4C2 + 3C4 < fi < 1 + ^1-4C2 + 3c" 
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X = R 

>■  X = R< 

Figure 19e.  Isotensoid Meridional Profiles for Special Case 2 of 

Region 3    2C2 < 0 <  2,  1 > C2 > 1/3 
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Figure 19f .  Isotensoid Meridional Profiles for Special Case 3 of 

Region 3    A=0    K^O   0 = 2 
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Figure 19g.  Isocompressoid Meridional Profiles for Region 1 

A = 0   K^O   Q<0 
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K=l; C= ~  ; r i =0;  (sinß)r   =1; ß=1.5 
 min  

Figure 20.    Spinning Isotensoid Pressure Vessel 

92 



K-1.12 5; C= ~;   r . 2'  min/ 
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n/r    '      r . mm 

Figure 21.  Spinning Isotensoid "Tire" Fibers 
Radial At Hub 
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K=1.125; C= ^4 ; r . .     =1/3; (sinß)    =1; «=1.313 
mm 

Figure 22.   Spinning Isotensoid "Tire" Fibers 
Tangential  To Hub 
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Figure 23. Spinning Isotensoid Net Loaded with Discontinuous 
Pressure Profile 
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Figures 24.    Computed Meridional Shapes for Cases 4 and 
5.  a = 0°, ß  = 45°, Load Parameters as 

O O   o 
Indicated (Q > 2C ) 

96 



z 

0.3T 

0.2- 

0.1-- 

Z     fi=2 

0.3    K=4-83 

0.2 

0.1 

A-0 

Z 

0.3_ tt=2 
K=9 

0.2- 

o.i- 

0-1- 
0.7 

A=0 

Q,= 2 
°'1l   K=11.8 

0 ..   f + 

-0.1-- 

■0.2 

0.7     0.8 
RADIUS 

A=0 

0.8    0.9 

RADIUS 

Figures 24. Computed Meridional Shapes for Cases 4 and 
5   a _ o°, ß  = 45°, Load Parameters as 

o       o   2 " 
Indicated  (2 > 2C ) 

97 



z 
3.0, 

2.0- 

1.0- 

0-L 
0.8 

RADIUS 

fl ■ 1 
K = 0 

1.5 

1.0 

.5 

A=0.25 

.6 £2=1 
K=1.414 

A=0 

^v 

\          \ 
\        \ 

A=0.25V^ A 

 1 , 1 ,  -1 1 
0  .2  .4  .6  .8  1.0 1.2 

RADIUS 
RADIUS 

Figures 24.    Computed Meridional Shapes for Cases 4 and 
5.  a = 0°, ß = 45°, Load Parameters as 

O Op 
Indicated  (fi = 2C ) 

98 



Q  = 2C 

K = 3.414 

-.1 

2 ■- 

< 2C 

fi=0. 5 
K=1.93 

.2 .. 

04-   + 
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ß = 1,. K = 1, A=as noted 

Figure 25. Computed Jsotensoid Shapes, Closed at 
Center.  Loads as Indicated 
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APPENDIX 

NUMERICAL INTEGRATION OF GOVERNING EQUATIONS 

The most convenient form of the governing equations for 
numerical integration are the equation sets (39), (40), and (18), 
or (41), (42), and (44).  They read (for uniform pressure): 

^ =  -K R csccc secß - n R etna sec2ß - A sec2ß + tan ß etna R~ 
dR 

$$-  = Q R eseß secß - A etna eseß secß - tanß R 
dR 

-1 (A-l) 

dZ 
dR 

= -etna 

— = K R seca secß + ß R sec ß + A tanß sec ß - tan ß R 
dZ 

$& =  -Q R tana eseß secß + A eseß secß + tanß tana R 
dZ 

-1 

dR 
dZ 

= -tana 

(A-2) 

A digital computer program was written for use in xntegrating 
equation sets (A-l) and (A-2) using a second order Runge-Kutta 
method.  The program listing is given at the end of this appendix. 
In using this program to determine the surface profile  Z(R) , 
the load parameters K , Cl  , A and initial values for a , P , 
and R and Z are selected.  The program can be then applied for 
either increasing or decreasing increments of  Z and R .  If 
a  approaches zero, equations (A-2) must be used because of the 
etna  term in (A-l), while if a  approaches  rr/2   Equations 
(A-l) must be used because of the  tana  term in (A-2).In 
transferring from one equation set to another in the middle of 
a run the last print out from the computations using one set 
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of equations is used for initial conditions in the other set of 
equations,  in this manner, surfaces which go through  0, n/2 
and cyclic increases of these angles can be determined. 

For surfaces which approach R = 0 , neither set of equa- 
tions is satisfactory for digital computation near R = 0 

because of the appearance of  R~   in both equation sets.  In 
order to remedy this situation, Equations (A-l) were examined for 
limiting restrictions as  R -*■ 0 .  These were chosen in prefer- 
ence to Equations (A-2) because, as will be shown,  a must 
approach  n/2  and dR/dZ therefore becomes unbounded. 

Limit when R»0 . - From the first two of Equations (A-l) 
it is apparent that  tanß must approach zero with at least the 
first power of R .  For the special case A = 0 , no further 
restrictions are placed on any of the variables because singulari- 
ties due to  ß-*- 0  linearly with R  are always cancelled by the 
appearance of R  in the numerator.  However  if A ^ 0 , a 
second singularity appears in the second of equations (A-l) which 
can only be cancelled if a — n/2  as  ß-*► 0 .  Thus, all isoten- 
soid shapes have zero slope  (dZ/dR =0)  at  R = 0  for A / 0 . 
In order to compute these shapes, it is necessary to determine 
proper initial conditions.  To this end assume 

ß s C±   R + C  R R -*■ 0 (A-3) 

and 

a, = TT/2 - C3 R - C4 R R -*- 0 (A-4) 

The constants c
1 ~ c4  are evaluated by substituting for 

and  a  into Equations (A-l), making appropriate approximations 
for small  R  and matching coefficients of powers of R .  After 
some manipulation, there results 

= #t A R - 
K A 

10 ff 
R (A-5) 
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a = n/2 - AR - I R2 (A-6) 

z s _ M! _ Ksi (A_7) 

Equations (A-5), (A-6), and A-7) can be used to generate initial 
conditions for a , ß , and  Z which generate isotensoid shapes 
closing on the axis of symmetry.  Note that real solutions are 
only possible if 

fl - A2 > 0 (A-8) 

Aside from the restriction of Equation (A-8), one can for 
2 

all combinations of K , Q , A (Q - A >0)  determine initial 
conditions which generate surfaces which close on the axis of 
symmetry. 

Illustrative examples of  Q = 1 , K = 1 , and  Q = 1 , K = 0 
both with parametric variation of A  are demonstrated in Figures 
24 and 25.  Figure 26 shows the fiber angle for a typical loading; 
n=l,K=O.A= 0.1 . 
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