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Preface 

The ever-increasing rate of scientific research throughout the world, and 
particularly in the United States, is a well-known fact. This increase is partly 
evidenced by the growing number of books, papers, and reports published 
every year. Indeed, we are faced with an information retrieval problem. If 
the results of a piece of scientific work are to provide useful knowledge, the 
expository technical papers or reports must be generally known and available, 
and they must be capable of being understood and evaluated by the reader 
(the problem of language is included here). The present monograph attempts to 
bridge these gaps in one field—the vibration of plates. 

From the beginning, two objectives were intrinsic in this work: 
(1) A comprehensive set of available results for the frequencies and mode 

shapes of free vibration of plates would be provided for the design or develop- 
ment engineer. 

(2) A summary of all known results would be provided for the researcher 
in the field of plate vibrations. 

These objectives will be elaborated upon below. 
Several years ago I observed the following incident at a major aerospace 

company. An engineer needed to know the first three frequencies and mode 
shapes of a rectangular plate of a certain aspect ratio and with certain simple 
restraint conditions along its edges. A literature search was conducted by 
the engineer for 2 weeks, during which only the first two frequencies and no 
accurate mode shapes were found. Since he had neither the analytical capa- 
bility of solving the problem nor the money and time needed for an experimental 
program, the engineer was forced to drop the problem at this point. 

In the present study all direct results which are known for the aforemen- 
tioned problem are presented. Furthermore, from a brief comparison among 
the known results for other boundary conditions, estimates of additional 
frequencies and mode shapes can be made. This is one way in which the 
engineer can develop a qualitative understanding of plate vibrational behavior. 
For the aforementioned problem, at least two approximate formulas are given 
for estimates of frequencies. Finally, the mathematical techniques used in 
the literature to solve the problem or related ones are pointed out in case more 
accurate results are needed. 

It is my hope that this monograph will reduce duplication of research effort 
in plate vibrations in the future (a very pointed example is that of the square 
plate clamped all around). In addition, the researcher is provided accurate 
numerical results for the testing of new methods (this is the reason that results 
are given to eight significant figures in some cases). Finally, it is hoped that 
this work will give added perspective to the merits and complexities of applying 
analytical techniques to eigenvalue problems. 

in 
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Gaps in knowledge are made implicitly obvious by examining this work. 
For example, analytical results have been found for a clamped elliptical plate, 
and experimental results for the free case, but no results whatsoever have been 
found for the simply supported case. 

The scope of this study was limited by several considerations. Only the 
analytical results from plate theories were considered; that is, the governing 
equations are two-dimensional, not three-dimensional. Materials were re- 
stricted to those which are linearly elastic. Structures were not included m 
the study; for example, a rectangular plate supported by one or more edge 
beams was considered to be a structure. 

The primary logical division of this work is by the complexity of the 
governing differential equations. Thus, the first eight chapters deal with the 
simplest "classical theory" of plates. The next three chapters mtroduce the 
complications of anisotropy, in-plane force, and variable thickness. Other 
complications are discussed in the twelfth chapter. The first subdivision is 
by geometrical shape; that is, circles, ellipses, rectangles, parallelograms, and 
so forth. Further subdivision accounts for holes, boundary conditions, added 
masses or springs, and so forth. 

It is presupposed that the user of this monograph will have at least an 
elementary understanding of plate theory. In order to increase understanding 
and to define notation and assumptions more clearly, a reasonably rigorous 
derivation of the plate equations is made in the appendix. 

Some statements about the format of presentation will be useful in under- 
standing this work. It will be seen that the majority of results available are 
for the natural frequencies of free vibration and quite often only the funda- 
mental (lowest) frequency. Patterns showing node lines are frequently 
available for the higher modes. Mode shapes (deflection surfaces in two 
dimensions) are usually not completely specified in the literature. It should 
be remarked here that the mode shapes (eigenfunctions) cannot be completely 
determined until the frequencies (eigenvalues) are found. The mode shapes 
are generally known less accurately than the frequencies. 

Virtually no one in the literature evaluates the bending stresses due to a 
unit amplitude of motion. This information is obviously important, particu- 
larly for fatigue studies. The lack of results is undoubtedly due to the fact 
that the stresses must be obtained from second derivatives of the mode shapes. 
Not only does this require additional computational work, but also the mode 
shapes usually are not known with sufficient accuracy to give meaningful 
results for stresses. 

Frequency data were converted to the angular frequency w (radians/umt 
time) or to a corresponding nondimensional frequency parameter, where 
possible. Almost always the number of significant figures was kept the same 
as that in the original publication. In no case were significant figures added. 
In some few cases the number of significant figures was reduced because the 
accuracy of the calculations in the publication did not justify the numbers 
given. Curves were not replotted but were photographically enlarged and 
traced to maximize accuracy. Quite often, when they are available, both 
tabular and graphical results are given for a problem. Tabular results are 
particularly important for measuring the accuracy of an analytical method, 
whereas curves are valuable for interpolation, extrapolation, and qualitative 
studies.    In some cases many sets of results are given for the same problem. 



PREFACE 

In these cases each set was derived by a different theoretical or experimental 
technique; this permits a comparison of techniques. 

Two of the major goals of the project were accuracy and completeness. 
Some of the efforts made to maintain accuracy have been described in the 
foregoing paragraphs. Reasonable completeness of results published through 
the end of the year 1965 is claimed. Writing of the manuscript began in the 
summer of that year. In addition to the well-known abstracting journals, 
several special-purpose bibliographies were used in order to procure pertinent 
technical papers and reports. Further references were obtained from the 
discussion and reference lists within those already procured. Approximately 
150 letters were sent to people throughout the world who were known to be 
active in the field of continuum vibrations. These letters listed their publica- 
tions already in hand and asked for copies of any others which they deemed 
applicable. Through these efforts I have come to possess a reasonably com- 
plete set of literature in the field of plate vibrations. However, in spite of this, 
I am convinced that some significant publications are not included, particularly 
some which are known to exist but have been thus far unobtainable, especially 
books by Soviet researchers. 

In light of the preceding paragraph, I expect—indeed, hope—to receive 
considerable valuable criticism pointing out errors or omissions. In addition, I 
would appreciate receiving copies of recent or forthcoming publications and 
reports which are pertinent. It is my intention to write a supplement to this 
volume after a few years have elapsed; such a document will correct any 
major mistakes or omissions in this work and will report on further advances 
in the field. 

For historical record and recognition it should be pointed out that, ap- 
proximately 6 months after this project began, I discovered a notable work 
entitled "Free Vibrations of Plates and Shells," by V. S. Gontkevich, published 
(in Russian) in 1964. A subsequent complete translation into English was 
made under the sponsorship of the Lockheed Missiles & Space Co. This 
book purports to do what the present monograph does and, in addition to plates 
and shells, covers the fields of membranes and stiffened plates. I do not 
wish to criticize the work of Mr. Gontkevich. Indeed, if used with great care, 
his work can be used to supplement this monograph. Nevertheless, two 
objective comments concerning Gontkevich's work must be made for the record: 

(1) The number of references on plate vibrations included is less than half 
of those in the present monograph. 

(2) The large number of typographical mistakes made and the difficulty 
in interpreting the work (in either the original Russian or in the English 
translation) decrease its usefulness enormously. 

The present monograph, sponsored by the National Aeronautics and 
Space Administration, is my first major undertaking in the area of continuum 
vibrations. It is to be continued by a 2-year project which is currently in 
progress and summarizes the field of vibrations of shells. I would appreciate 
receiving technical papers and reports related to that field from the readers 
of this work. 

The support of the National Aeronautics and Space Administration is 
gratefully acknowledged. In particular, I am indebted to Mr. Douglas Michel 
of NASA, who not only recognized the potential value of this work, but 
was thinking of it before my proposal ever reached him.    His technical com- 
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ments and advice during the course of the work were also greatly appreciated. 
I particularly wish to thank Messrs. Milton Vagins and S. G. Sampath, who 
did all the necessary work so that I could be free for the actual summarization 
and writing. Without their efforts in supervising the procurement of papers, 
in manuscript editing, and in providing technical criticism, this work would 
not have been possible. I wish to recognize the contributions of the project 
advisory panel, which consisted of Mr. Michel, Drs. Robert Fulton, W. H. 
Hoppmann, T. C. Huang, Eric Reissner, and Howard Wolko, who generously 
met with me twice during the course of the project and offered their comments. 
I also thank my colleagues, Drs. C. T. West and F. W. Niedenfuhr, for their 
technical advice. Finally, the enormous editorial assistance of Mr. Chester 
Ball, Mrs. Ada Simon, and Miss Doris Byrd of The Ohio State University is 
gratefully acknowledged. 

ARTHUR W. LEISSA 
The Ohio State University 
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Chapter 1 

Fundamental Equations of Classical Plate Theory 

The classical differential equation of motion 
for the transverse displacement w of a plate is 
given by (see app. A): 

ö2w 
(1.1) 

where D is the flexural rigidity and is denned by 

Eh3 

D- 
'12(1-V) 

(1.2) 

E is Young's modulus, h is the plate thickness, 
v is Poisson's ratio, p is mass density per unit 
area of the plate, t is time, and V4=V2V2, where 
V2 is the Laplacian operator. 

When free vibrations are assumed, the mo- 
tion is expressed as 

w= W cos ot (1.3) 

where u is the circular frequency (expressed in 
radians/unit time) and W is a function only of 
the position coordinates. Substituting equa- 
tion (1.3) into equation (1.1) yields 

(V*-**)TP=0 (1.4) 

where k is a parameter of convenience defined as 

¥-- 
par 

(1.5) 

It is usually convenient to factor equation (1.4) 
into 

(V2+F)(V2-P)W=0 (1.6) 

whence, by the theory of linear differential 
equations, the complete solution to equation 
(1.6) can be obtained by superimposing the 
solutions to the equations 

VWi+JWi=0 

o} (1.7) 

In the case of a plate supported by (or 
embedded in) a massless elastic medium (or 
foundation), equation (1.1) becomes 

DV*w+Kw+p^=0 (1.8) 

where K is the stiffness of the foundation 
measured in units of force per unit length of 
deflection per unit area of contact. If the 
foundation has significant mass, then its differ- 
ential equation must also be written and a 
coupled system of differential equations solved, 
which is beyond the scope of the present work. 

Assuming the deflection form (eq. (1.3)) and 
substituting into equation (1.8) again results in 
equation (1.4), where now 

w_ PU
2-K 
D 

(1.9) 

Thus, all results presented in this section as 
pertaining to the classical plate equation (eq. 
(1.1)) can also apply to the case of elastic 
foundations by the simple use of equation (1.9) 
.in place of equation (1.5). 

1.1   POLAR COORDINATES 

The location of a point P in polar coordinates 
is shown in figure 1.1. 

FIGURE 1.1.—Polar coordinate system. 
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1.1.1    Classical Equations 
The Laplacian operator expressed in polar 

coordinates is 

_2    d
2    1 ö    1 d2 ,      , 

V = d?+r är+rW2 (L10) 

Bending and twisting moments are related to 
the displacements by 

nrö!ro,   (\ öw , 1 d2w\~|' 

(LID 

Transverse shearing forces are given by 

(1.12) 

and the Kelvin-Kirchhoff edge reactions are 

ldM,0 

(1.13) 
Vr=Qr + r   00 

üMrS 
dr 

The strain energy of bending and twisting of 
a plate expressed in polar coordinates is 

TT-Q CffVw\ id^i i ^M2 

2jA\ör2+7-örVöeV 

-^l-v>\W\f Or +t*Wj 

-[1(^)1»" «•'« 
where d.A=r dr dö. 

1.1.2   Solutions 

When Fourier components in 0 are assumed, 

W(r,e)=J}Wn(r) cosnd+^W*(r)sinn9 

(1.15) 

substituting equation (1.15) into equation (1.7) 
yields 

dr2 

dr 

r   dr 

«s   ldW, 
2      r   dr ' %2~ 0 

-(1.16) 

and two identical equations for W*. Equa- 
tions (1.16) are recognized as forms of Bessel's 
equation having solutions (cf. work of McLach- 
lan, ref. 1.1) 

Wn=AnJn(kr)+BnYn(kr) 

Wn2=CJn(kr)+DnKn(kr) 
(1.17) 

respectively, where J„ and Yn are the Bessel 
functions of the first and second kinds, respec- 
tively, and In and Kn are modified Bessel 
functions of the first and second kinds, respec- 
tively. The coefficients An, . . ., Dn determine 
the mode shape and are solved for from the 
boundary conditions. Thus, the general solu- 
tion to equation (1.4) in polar coordinates is 

W(r, B)= S [AnJn(kr)+BnYn(kr) 
71 = 0 

+CJn(kr)+DRKn(kr)} cos no 

+T,[A*Jn(kr)+B*Yn(kr) 
«=i 

+C*In(kr)+DtKn(kr)]$mn0   (1.18) 

1.2   ELLIPTICAL COORDINATES 
Elliptical coordinates £, TJ are shown in figure 

1.2 and are related to rectangular coordinates 
x, y by the relation 

x+iy=c cosh (£+?'ij)       (t=V—1)    (1-19) 

where 2c is the interfocal distance.   Separating 
real and imaginary parts of equation  (1.19) 
yields 

x=c cosh £ cos t\ *\ .j 2Q. 
y=c sinh £ sin r\) 

1.2.1    Classical Equations 
The Laplacian operator in elliptical co- 

ordinates is (refs. 1.2 to 1.4) 

V2= (1L rfÄ c2(cosh 2£-cos 2v)\de   i>n i)    (1-21) 
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Bending and twisting moments are related to the displacements by 

Mf. 2D 
c2(cosh2£—cos2?7) 

rd2w     d2w      (1—p)sinh2£   bw       (1—y)sin2??    dwl' 
L i>f      or,2    (cosh 21-cos 2V) d£ +(cosh 2£-cos 2V) br, J 

M= 2£> r b2w   b2w      (l-y)sinh2g    bw       (1—y)sin2i|    dw~| , n 90s 
c2(cosh2£-cos2»7)L'' i>^^dv

2 +(cosh2|-cos27;) d£    (cosh2f-cos2i,) bv J ^ U""' 

„.         2Z>(l-jr)        Tow .   _   . bw . , 0>     d2w,     , _„ „ ,H 
M^==-c2(cOSh2^cos2T,)

2Ldfsm27?+^-smh2^-ö^(c0sh2^COs2^J 

and the transverse shearing  forces are given by (ref. 1.4) 

^=c'(cosh2?-cos2r,)^42smh2fW+^)"(COSh2?~COS2^^W+v)J 

Toc^o /ö2w , d2w\    ,     , _ _ , Ö /d2w . b2w\l 
JJ2|_2 sin2, ^+_j-(cosh 2?-cos 2,) ^ {W+W)\ 

2V2Z> 
~c3(cosh2£—cos2??)5 

(1.23) 

1.2.2   Solutions 

It has been shown (ref. 1.5) that equations 
(1.7) have solutions composed of two parts: 

Wi=f: [CmCeM, <L)+FmFeyM, q))cem(r,, q) 
m=0 

00 

+ S [SmSem(%, q) + QmGeym(£, q)]sem{n, q) 
m=\ 

771 = 0 

+FlFekm(l - q)]cem(v- q) 

771=1 

+ G£Gekm(S,—q)]8em(fi,—q)^ 

(1.24) 

where Cem, cem, Sem, sem, Feym, Fekm, Geym, 
and Gekm are ordinary and modified Mathieu 
functions of order m; Cm, <?*, Sm, S*, Fm> 

Fm) Gm, and (r* are constants of integration; 
and 

q=k2=^J/D (1.25) 

The complete solution to equation (1.4) is then 

W=W1+Wi (1.26) 

For a solid region containing the origin, regular- 
ity conditions require that half of the "terms in 

equations (1.24) be discarded, and the complete 
solution becomes: 

CO 

W=J2 [CmCem{£, q)cem(v, q) 
m=0 

+ <7*Cera(£, q)cem(v— 2)] 
CO 

+Z) [SmSem(t, g)sem(v, q) 
771 = 1 

+SlSem(S-2)sem(v,-q)]       (1.27) 

IJ=I80 
* X 

FIGURE 1.2.—Elliptical coordinate system. 



1.3   RECTANGULAR COORDINATES 
The rectangular coordinates of a point P are 

shown in figure 1.3. 
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 r 

FIGURE 1.3.—Rectangular coordinate system. 

1.3.1    Classical Equations 
The Laplacian operator in rectangular co- 

ordinates is 
ö2     a2 

H?+|? (L28) 

Bending and twisting moments are related to 
the displacements by 

Mxv=-D(l-v) 
ö2w 

(1.29) 

dxdy 

Transverse shearing forces are given by 

(1.30) 

and the Kelvin-Kirchhoff edge reactions are 

(1.31) 

bx  „ 

The strain energy of bending and twisting of a 
plate expressed in rectangular coordinates is 

DC f/b2w aw 
==2jAw+ö2/v 

where dA=dx dy. 

1.3.2   Solutions 
General solutions to equation (1.4) in rec- 

tangular coordinates may be obtained by 
assuming Fourier series in one of the variables, 
say x; that is, 

W(x, y)=&m(y) sinax+S F* (y) cos ax (1.33) 
m=l m=Q 

Substituting equation (1.33) into equation (1.7) 
yields 

d2F„ 

dy' 

d2F, 

Ü+(F_a2)7   _ -1 
7»2 

dy2 -(F+a2)Fm=0 

(1.34) 

and two similar equations for F*, With the 
assumption that &2>a2, solutions to equations 
(1.34) are well known as 

Fmi =Am sin ^-a2y+Bm cos -yjk2-o?y 

Ym=Cm sinh -JF+rfy+Dn cosh VF+ a2y ) 

(1.35) 

where Am, . . ., Dm are arbitrary coefficients 
determining the mode shape and are obtained 
from the boundary conditions. If &2<a2, it is 
necessary to rewrite Ym as 

Ym=Amsmh-y[aJ=F2y+Bmcosh^a2-k2y   (1.36) 

Thus the complete solution to equation (1.4) 
may be written as 

W(x,y)=J2 Um sin jk2-a2y+Bm cos jk2-a2y 

+ Cmsmh^k2+a2y 

+Dm cosh ^k2+a2y) sin ax 

+S(4S sinV&2-a22/+3* cosVF=«22/ 

+ <7*sinhVF+^/ 
-D* cosh ViP+ofy) cos «B   (1.37) 
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1.4   SKEW COORDINATES 

The skew coordinates £, 97 of a point P are 
shown in figure 1.4. The skew coordinates are 
related to rectangular coordinates by 

=x—ytana'\ 

cos a J 
(1.38) 

1.4.1    Classical Equations 

The Laplacian operator in skew coordinates 
is (ref. 1.6) 

V2= 1 
cos2a\d£ 

I ^-^—2 sin a 
d£Ö7?    Ö17 i)   (1-39) 

Bending and twisting moments are related to 
the displacements by 

l_d£2    cos2a\ 
b2w 
d£2 

—2 sine 
(j2w    b2w 

Mv=-D[^(sm2a^ v Leos2 a V Of2 

i>2w  . ö2w\      Ö2W~\ —2 sin a 

Mi fcr cos a \ö£07j d£2/ 

(1.40) 

-f P 

FIGURE 1.4.—Skew coordinate system. 

■X.f 

Transverse shearing forces are (ref. 1.7): 

n D \~b3w b3w 

+(1+2 cos2 j8) 

Qv=—^~rz\ 5TT-3cos0 
'       sm3/3|_d»r 

d3w 

_Ö3W_ 

Ö^2 

Ö3W 

-Ö3W 

brj1 '] 

+ (1 + 2C0B«/I)5^-00B^]^ i)3w 

(1.41) 

where ß= (ir/2)—a.    The edge reactions are (ref. 
1.7): 

Vr- 
D  p3w 

sin30|_d£3 4COS/3öFö, 

-(2+3 cos2/?—vsha.2ß) 
b3w 

0        d3w~] 
-2cos/Vj 

Vr 
D  rZ)3w    .       n ö3w 

^~TB 5TT-4cosß sm .öi?3 d£d,?2 

-(2+3 cos2 ß-v sin2 ß)^ 

„       „ d3iif| -2cos^JJ 

(1.42) 

The strain energy of bending and twisting of 
a plate expressed in skew coordinates is 

U-- 
2JA\cOSia\ 

b2w       b2w . (i2w 

2(l-y) fb2W Ö2W     /i>2w\n\,.      „   . 0. 

where d^l=cos a d£ d»?. 

1.4.2   Solutions 

There are no known general solutions to 
equation (1.4) in skew coordinates which allow 
a separation of variables. 
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Circular Plates 

Chapter 2 

2.1   SOLID CIRCULAR PLATES 
When the origin of a polar coordinate system 

is taken to coincide with the center of the 
circular plate and plates having no internal holes 
are considered, the terms of equation (1.18) 
involving Yn(kr) and Kn(kr) must be discarded 
in order to avoid infinite deflections and stresses 
at r=0. If the boundary conditions possess 
symmetry with respect to one or more diameters 
of the circle, then the terms involving sin rid 
are not needed. When these simplifications 
are employed, equation (1.18) becomes for a 
typical mode: 

Wn=[AnJn(kr)+OnIn(kr)] cos nd    (2.1) 

where it will be understood in what follows that 
ft. can take on all values from 0 to ». The 
subscript n will also correspond to the number 
of nodal diameters. 

2.1.1    Plates Clamped All Around 
Let the outside radius of the plate clamped 

all around be a (see fig. 2.1). The boundary 
conditions are: 

W(a)=0 
i>W(a) 

or :} (2.2) 

When equation (2.1) is substituted into equa- 
tions (2.2), the existence of a nontrivial solution 
yields the characteristic determinant 

Jn(X) 
J'nW 

/n(X) 

/;(x) (2.3) 

where \=ka and the primes are used to indicate 
differentiation with respect to the argument, in 
this case kr. Using the recursion relationships 
(ref. 2.1) 

\J'n(\)=nJn{\)-\Jn+l(\) \ 
X/;(X)-n/»(X)+X/»+1(X) /        {2A> 

FIGURE 2.1.—Clamped circular plate, 

and expanding equation (2.3) gives 

JnWIn+lW +/n(X) J„+,(X) = 0 (2.5) 

The eigenvalues X determining the frequencies « 
are the roots of equation (2.5). 

The Bessel functions are widely tabulated for 
small values of n. The Harvard tables (ref. 2.2) 
are available for n ^ 120. Otherwise, the recur- 
sion relationships 

2 
In+2 = -Z;(n+l)InH+In 

(2.6) 

or various forms of series expansions for the 
Bessel functions may be used. 

Values of X2 taken from references 2.3 to 2.5 
are tabulated in table 2.1, where n refers to the 
number of nodal diameters and s is the number 
of nodal circles, not including the boundary 

7 
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TABLE 2.1.—Values of X2=wa2 TJP/D for a Clamped Circular Plate 

t 
X2 for values of n of— 

0 1 2 3 4 6 6 7 8 9 10 11 12 13 14 

0 
1  

10.2158 

39.771 

89.104 

158.183 

247.005 

356.568 

483.872 

631.914 

799.702 

987.216 

21.26 

60.82 

120.08 

199.06 

297.77 

416.20 

564.37 

712.30 

889.96 
1087.4 

34.88 

84.68 

153.81 

242.71 

361.38 

479.65 

627.75 

795.52 

983.07 

1190.4 

51.04 

111.01 

190.30 

289.17 

407.72 

645.97 

703.95 

881.67 

1079.0 

1296.2 

69.6659 

140.1079 

229.5186 

338.4113 

90.7390 

171.8029 

271.4283 

390.3896 

114.2126 

206.0706 

316.0015 

140.0561 

242.8782 

363.2097 

168.2445 

282.1977 

198.7561 

324.0036 

231.5732 

368.2734 

266.6790 304.0601 343.7038 385.5996 

2 
3    
4  
5   - 
6 
7 .  ... 
8 
9  

circle. It is seen from equations (2.2) that the 
frequency does not depend upon Poisson's ratio 
in the clamped case. An accurate transcen- 
dental approximating equation for additional 
roots of equation (2.5) is given in reference 2.5. 

The mode shapes of equation (2.1) are 
determined from either of equations (2.2). 
Using the first of equations (2.2) 

/.(A) 
o. Jn(\) 

(2.7) 

where the X values are taken from table 2.1. 
The radii of nodal circles p=r/a are determined 
from the equation 

Jn(\p)^Tn(\p) 
Jn(\)     i»(X) 

(2.8) 

and are presented in table 2.2 as taken from 
reference 2.6. 

The procedure for determining the motion 
of a plate subjected to arbitrary initial dis- 
placement and velocity conditions is given in 
reference 2.7. 

The problem of finding stresses in a vibrating 
clamped circular plate was discussed by Ungar 
(ref. 2.8). The problem was also discussed 
in references 2.9 to 2.18. 

For more information concerning this prob- 
lem, see the section in the present work on 
in-plane forces in clamped circular plates 
(10.1.1). 

2.1.2   Plates Simply Supported All Around 

Let the outside radius of the simply supported 

plate   be   a   (see   fig.   2.2).    The   boundary 
conditions are 

^(a)=0\ 
(r(a)=0j 

W(a)=0' 
MA (2.9) 

Substituting equation (2.1) and equation (1.11) 
into equations (2.9) and noting that d2w/d02=O 
on the boundary give the equations 

M(x)+tt(x)=o 

A[J;'(A)+^;(X)]+(7„[/;'(X)+^/;(\)]=O 

(2.10) 

FIGURE 2.2.—Simply supported circular plate. 
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TABLE 2.2.—Radii of Nodal Circles p=r/&for Clamped Circular Plate 

1 

2 

3 

4. 

5. 

p for values of n of- 

1.0 1.0 
.379 .4899 

1.0 1.0 
.583 .640 
.255 .350 

1.0 1.0 
.688 .721 
.439 .497 
.191 .272 

1.0 1.0 
.749 .767 
.550 .589 
.351 .407 
.153 .222 

1.0 1.0 
.791 .807 
.625 .653 
.459 .499 
.293 .344 
.127 .188 

1.0 1.0 
.822 .833 
.678 .699 
.535 .566 
.393 .432 
.251 .298 
.109 .163 

1.0 1.0 
.844 .853 
.720 .735 
.593 .617 
.469 .499 
.344 .381 
.220 .263 
.096 .144 

where the notation of the previous section is 
used. It has been shown (ref. 2.11) that equa- 
tions (2.10) lead to the frequency equation 

Jn+1(\) , In+1(\)     2\ 
JnW  T /,(X)   ~1- 

(2.11) 

Roots of equation (2.11) and radii of nodal 
circles for «=0.3 are taken from reference 2.6 
and presented in tables 2.3 and 2.4, respectively. 
Poisson, in an early paper (ref. 2.12), and 
Prescott (ref. 2.11) give X=2.204 for x=0.25. 
Bodine (ref. 2.19) (see section entitled "Plates 

308-337 0^70 2 

1.0 
.559 

1.0 
.679 
.414 

1.0 
.746 
.540 
.330 

1.0 
.789 
.620 
.449 
.274 

1.0 
.606 

1.0 
.708 
.462 

1.0 
.765 
.574 
.375 

1.0 
.803 
.645 
.488 
.316 

1.0 
.641 

1.0 
.730 
.501 

1.0 
.781 
.601 
.412 

1.0 
.669 

1.0 
.749 
.532 

1.0 
.787 
.618 
.439 

TABLE   2.3.—Values   of   X2=wa2Vp/D   for   a 
Simply Supported Circular Plate; v^O.S 

8 
X2 for values of n of— 

0 1 2 

0  4.977 
29.76 
74.20 

138. 34 

13.94 
48.51 

102. 80 
176. 84 

25.65 
70 14 1  

2  134 33 
3  218 24 
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TABLE 2 A.—Radii of Nodal Circles p=r/a/or a 
Simply Supported Circular Plate; v=0.3 

p for values of n of— 

0 1 2 

0  1 
1 
.441 

1 
.644 
.279 

1 
.736 
.469 
.204 

1 
1 
.550 

1 
.692 
.378 

1 
.765 
.528 
.288 

1 

]  1 

2         . 

.613 
1 

3  

.726 

.443 
1 
.787 
.570 
.348 

Supported   on   Circle  of  Arbitrary   Radius" 
(2.1.7)) gives X=2.228 for v=0.333. 

The mode shapes are most conveniently 
determined from the first of equations (2.10) 
by use of the roots of table 2.3; that is, 

InW 
Cm Jn(x) 

(2.12) 

The procedure for determining the motion of 
a plate subjected to arbitrary initial displace- 
ment and velocity conditions is given in 
reference 2.7. 

The simply supported case is also solved in 
reference 2.20. 

For more information concerning this prob- 
lem, see section entitled "Simply Supported 
Circular Plates" (10.1.2). 

2.1.3    Completely Free Plates 

Let the outside radius of the completely 
free plate be a (see fig. 2.3). The boundary 
conditions are 

W=0\ 
r(a)=0 f Vr(a) 

(2.13) 

Using equations (1.11), (1.12), (1.13), it has 
been shown (ref. 2.3) that equations (2.13) 
yield the frequency equation 

FIGURE 2.3.—Free circular plate. 

X2J„(X)+(l-v) [Xj;(X)-n2J„(X)] 
X2/„(X)-(l-x) WnM-tflrMl 

_X3/;(X)+(I-XK[XJ„(X)-J„(X)] 
~ x3/;(x)-(i-.K[x/;(x)-7„(X)j 

(2.14) 

It has also been shown (ref. 2.20) that, when 
X>>n, one can replace equation (2.14) by the 
approximate formula 

JnW. [X2+2(1-,K][/„(X)//;(X)]-2X(1-,) 
= X2-2(l- -v)n2 

(2.15) 

According to reference 2.20, the roots of 
equation (2.14) are located between the zeroes 
of the functions J'n(X) and J„(X) and the 
larger roots may be calculated from the series 
expansion 

m+1   4(7m2+22m+H) 
8a 3(8a)3 (2.16) 

wherem=4ri2 and a= (ir/2) (n+2s).   The asymp- 
totic value is 

X^|(ri+2s) (2.17) 

Using equations (2.15) and (2.16), values of 
X2 are computed in reference 2.20 for ^=0.33, 
and in reference 2.3, for ^=0.25. These are 
presented in tables 2.5 and 2.6, respectively. 
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TABLE 2.5.—Values of X2= waVp/D for a 

PLATES                                                                             11 

, Completely Free Circular Plate; v=0,88 

s 
X2 for values of n of— 

0 1 2 3 4 5 6 

0  5.253 
35.25 
83.9 

154.0 
242.7 
350.8 
479.2 
627.0 
794.7 
981.6 

1188 

12.23 
52.91 

111.3 
192. 1 
290.7 
408.4 
546.2 
703. 3 
880. 3 

1076 
1292 

»21.6 
»73. 1 
142.8 
232. 3 
340.4 
467.9 
615.0 
781.8 
968.5 

1175 
1401 

»33. 1 
»95.8 
175.0 
274.6 
392.4 
529.5 
686.4 
864.4 

1061 
1277 
1513 

»46.2 
» 121. 0 

210.3 
319.7 
447.3 
593.9 
760. 1 
952.3 

1158. 7 
1384 
1631 

1  9.084 
38.55 
87.80 

157.0 
245.9 
354.6 
483. 1 
631.0 
798.6 
986.0 

20.52 
59.86 

119.0 
198.2 
296.9 
415.3 
651.8 
711.3 
888.6 

1086 

2  
3  
4.  
5  
6  
7  
8    _    
9  
10  

• Values true within 2 percent (ref. 2.20). 

TABLE 2.6.—Values of X2=coaV^/D for a Com- 
pletely Free Circular Plate; v=0.25 

TABLE 2.7.—Radii of Nodal Circles 
Completely Free Circular Plate; 

p=r/a for a 
v=0.33 

s 
X2 for values of n of— 

0 1 2 3 

0  5.513 
35.28 
84.38 

153. 29 
241. 99 
350. 48 
478. 73 
626. 75 
794. 51 
982. 01 

12.75 
53.16 

112. 36 
191. 02 
289. 51 
408. 16 
545. 83 
703. 63 
881.20 

1078. 5 

1  8.892 
38.34 
87.65 

156. 73 
245. 52 
354. 08 
482. 37 
630. 41 
798. 23 

20.41 
59.74 

118.88 
196. 67 
296. 46 
414. 86 
553. 00 
710. 92 
888. 58 

2  
3   
4  
5  
6  
7  
8   
9  

The radii p=r/a of the nodal circles may 
be found from reference 2.20: 

j (v)_ (i-O[^;(x)-nV„(x)]+x2J„(x) 

s 
p for values of n of— 

0 1 2 3 4 5 

1  
2  

3  

4  

5  

0.680 
.841 
.391 
.893 
.591 
.257 
.941 
.691 
.441 
.192 
.952 
.752 
.   52 
.352 
.154 

0.781 
.871 
.4972 
.932 
.643 
.351 
.946 
.723 
.498 
.272 
.956 
.773 
.590 
.407 
.222 

0.822 
.8897 
.562 
.936 
.678 
.414 
.950 
.746 
.540 
.330 
.959 
.790 
.620 
.449 
.274 

0.847 
.925 
.605 
.939 
.704 
.460 
.951 
.763 
.572 
.374 
.960 
.803 
.644 
.483 
.316 

0.863 
.926 
.635 
.943 
.726 
.498 
.955 
.779 
.600 
.411 
.963 
.814 
.644 
.512 
.351 

0.881 
.993 
.663 
.947 
.745 
.529 
.958 
.793 
.623 
.443 
.966 
.825 
.682 
.536 
.381 

(lAxi (x) 
(Xp) ninCKp)J 

,2/»(x) 
/n(Xp) 

(2.18) 

Xp 

(2.19) 

Table 2.7 gives values of p=r/a for K=0.33 

computed from equation (2.18). 
For large values of n and s it has been shown 

(ref. 2.20) that the radii of nodal circles can be 
computed from the approximate formula 

where  X*  is  the pth. root of   the   equation 
</»(X)=0. 

Experimental results were obtained for a free 
circular brass plate (ref. 2.21). The ratios of 
frequencies of free vibration « to the funda- 
mental frequency w0 are presented in table 2.8 
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0      I      2     3     4     5     6     7     8     9     10    II     12     13    14 
Number of Diameters, n 

FIGURE 2.4.—Experimental values of frequency ratios 
W/OJO for a completely free circular brass plate. (After 
ref. 2.21) 

and figure 2.4 taken from reference 2.21. Radii 
of nodal circles p=r/a are given in table 2.9. 
Other experimental data are presented in 
references 2.20 and 2.22 to 2.28. Further dis- 
cussion of this problem is given in references 
2.10, 2.11, 2.12, 2.15, 2.17, 2.29, 2.30, and 2.31. 

2.1.4   Plates With Elastic Edge Supports 

Consider a circular plate of radius a sup- 
ported elastically by springs uniformly dis- 
tributed about its contour as shown in figure 
2.5. Translation in the direction of w is op- 
posed by springs having distributed stiffness 
Kw (force/(unit length)2). Edge rotation ^ is 
opposed by spiral springs having distributed 
stiffness K# (moment/unit length). 

J_ 

tr 

7-7-777- // /// 
FIGURE 2.5.—Elastically supported circular plate. 

TABLE 2.9. -Experimentally Determined Radii of Nodal Circles p=r/a for a Completely Free 
Circular Brass Plate 

Circles s 
P for values of n of— 

0 1 2 3 4 5 6 7 8 9 10 11 

1  0.680 
.391 
.843 
.257 
.591 
.895 
. 190 
.441 
.692 
.918 
. 154 
.351 
.548 
.753 
.956 
. 131 
.292 
.456 
.624 
.794 
.958 

0.781 
.497 
.867 
.349 
.643 
.902 
.269 
.495 
.726 
.928 

0.823 
.562 
.887 
.415 
.681 
.913 
.328 
.540 
.748 
.934 

0.843 
.604 
.898 
.461 
.706 
.919 
. 374 
.571 
.764 
.938 

0.859 
.635 
.906 
.505 
.728 
.925 
.411 
.596 
.779 
.941 

0.871 
.662 
.915 
.531 
.745 
.933 
.443 
.623 
.794 
.944 

0.880 
.681 
.922 

0.889 
.702 
.927 

0.897 
.715 
.932 

0.903 0.909 0.912 
2  

3_-_  

4  

5  

6...  
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The boundary conditions are 

bw. Mr(a,6)=K^(a,e) 

Vr(a,6)=-KwW(a,d)i 
(2.20) 

Substituting equation (2.1) into equations 
(2.20) and using recursion formulas of the type 
of equations (2.4) and (2.6), it can be shown 
that equations (2.20) become 

/iB/[JB+2(X)+J»-2(X)] 

-?(,+^)[Jfi(X)-J.-i(X)] 

-(2+^)jB(X)} 

+ .BB/[/B+2(X)+/B_2(X)] 

+?(,+^)[/fi(X)+/»-.(X)] 

+(2-^f)/B(X)}=0     (2.21) 

and 

A [JB+3(X)-JB_3(X)]-f^[JB+2(X)+JB+1(X)] 

+[3+^+^=^-2][Jn+1(X)-Jn_1(X)] 

+i[2(3-,y-X'-^]jB(X)} 

+Bn{ [/B+3(X)+/B_3(X)] 

+?[7B+2(X)+/B_2(X)] 

+[3-~-^=2^][/B+1(X)+7B-1(X)] 

^-2|/B(x)=o 

(2.22) 

+i2(2-3,K+X2-^ 

Formulation of the second-order characteristic de- 
terminant for the frequencies from equations 
(2.21) and (2.22) is a trivial operation. In the 
case n=0, the frequency equation simplifies to 

where 

and 

t/o(X)+pJ1(X) 
Ji(X)-<zJo(X)~ 

(2.23) 

Xf-^-d-r) D 

X3g= 
g„a3 

The problem was formulated in a similar 
manner in reference 2.32 for the special case 
when only an elastic moment edge constraint 
is allowed; that is, the boundary conditions are 

MT{a,B)=K^{a,B) 

W(a,e)=0 
(2.24) 

This case is obtained by setting Kw=<* in 
equation (2.22). Numerical results for the 
first four frequencies for equations (2.24) for 
varying amounts of rotational constraint are 
given in table 2.10. Poisson's ratio is not 
given in reference 2.32, but it appears to be 
0.3 for table 2.10. 

TABLE 2.10.—Values of X2=wa2Vp/D for a 
Circular Plate With No Edge Deflections and 
Elastic Moment Constraint; v—0.3 

x2 for values of n of— 

K+D 
a 0 

1 2 

s=0 s=l 

—>co  10.2 
10.2 
10.0 
8.76 
6.05 
4.93 

39.7 
39.7 
39.1 
35.2 
30.8 
29.7 

21.2 
21.2 
20.9 
18.6 
15.0 
13.9 

34.8 
10° . _. - 34.8 
10-»  34.2 

10~2    -   30.8 

10-3      - ---    - 26.7 
-*0_      25.6 

2.1.5    Plates Clamped Along Part of Boundary 
and Simply Supported Along Remainder 

Figure 2.6 shows a circular plate which is 
clamped along its edge for the interval — y<6 
<7 and simply supported on 7<0<2«— y. 
This problem was solved by Bartlett (ref. 2.33) 
by an interesting variational approach to give 
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3.5 i  

15 

FIGURE  2.6.—Circular  plate  partially  clamped  and 
partially simply supported. 

upper and lower bounds for the eigenvalues. 
The method is based upon two perturbations. 
One is a perturbation of the problem when the 
plate is clamped all around (y=ir) and yields 
upper bounds for X; the other is a perturbation 
of the simply supported case (7=0) and yields 
lower bounds. Upper and lower bounds for 
X2 for the case v= 1/4 are presented in table 2.11 
as taken from reference 2.33. 

An approximate solution to this problem was 
given by Noble (ref. 2.34), who showed that a 
good approximation of the frequency parameter 
X is given by the roots of the equation 

|V,(X) ,/,(X)T»   ( 2X 1 
In (sin 7/2) 

(2.25) 

A comparison of the values of X obtained from 
equation (2.25) and the more accurate results of 
reference 2.33 is given in figure 2.7. 

This problem was also discussed in references 

3.0 

2.5 

2.0 

[from reference 2.33 

> 
[from reference 2.34 I 

t» 

FIGURE 2.7.—Comparison of frequency parameters 
obtained by two methods for a circular plate with 
mixed boundary conditions; y=l/4. (After ref. 2.34) 

2.35 and 2.36 wherein a method superimposing 
concentrated moments along parts of the bound- 
ary to be clamped was proposed. A numerical 
solution X=(pw2/Z))1/4a=3.98 is given for the 
case when one-fourth of the boundary is 
clamped, but this is clearly erroneous because 
it is greater than the value for a completely 
clamped plate. 

2.1.6   Plates  Clamped at Center With  Various 
Conditions on Contour 

In the case of plates clamped at the center 
that have various conditions on contour, it is 
obvious that for two or more nodal diameters 
(n.^2)   the  resultant  frequencies   and   mode 

TABLE 2.11.—Values of X2=wa2Vp/B for a Circular Plate Clamped Along the Boundary Through 
an Angle 2y and Simply Supported Along the Rest of the Boundary; v—1/4 

Bound 
x2 for values of 7 of— 

0 ir/8 2ir/8 3ir/8 4TT/8 5*r/8 6x/8 7*78 ir 

Upper  5.871 
5.842 

6.350 
6.335 

6.880 
6.864 

7.508 
7.480 

8.231 
8. 162 

9. 120 
8.880 

9.885 
9. 126 

10.21 
Lower  4.862 
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shapes are identical to those obtained in the 
previous sections when no constraint was 
applied at the center. This can be seen be- 
cause at the intersection of two node lines the 
slopes in all directions, as well as the deflection, 
are zero. 

Southwell (ref. 2.37) discussed the problem 
of a free disk clamped at the center as a special 
case of an annulus free on the outside and 
clamped on the inner edge (see section entitled 
"Annular Plates Free on Outside and Clamped 
on Inside" (2.2.7)). It is necessary to evaluate 
the fourth-order characteristic determinant by 
a careful limit process as the inner radius ap- 
proaches zero. He showed that in the case of 
one nodal diameter (n= 1) the set of frequencies 
is identical to those for the completely free 
plate. For the axisymmetric case (n=0), the 
first four roots for v=0.3 are given as: 

X2=wa2Vp/#=3.752 

=20.91 

=60.68 

=119.7 

Colwell and Hardy (ref. 2.20) showed that 
the frequency equation for the axisymmetric 
case can be approximated accurately by 

EM\)-Y0(\)    2{l-y)    io(X) 
EJtW-Yifrr /i(X) 

(2.26) 

where E=(\n 2)—Euler's constant^0.11593. 
The first 11 roots of equation (2.26) for v= 1/3 
are given in table 2.12. It is seen that higher 
roots of X are separated by ir. 

The equation determining nodal radii p—r/a 
is (ref. 2.20) 

EJ0(Xp)=Y0(\p) (2.27) 

and has roots given in table 2.13 for v=l/3. 
Reference 2.11 gives wa2^p/D=3-717 for v= 

0.25. 
The axisymmetric cases for the plates having 

simply supported or clamped edges in addition 
to a point support at the center are discussed in 
reference 2.38. The frequency equation for the 
simply supported plate becomes 

(i-y)^[/o(x)-Jo(x)][ri(x)+^1(x)] 

+ [JI(X)+/1(X)][F0(X)+?K0(X)]^ 

-2x[/0(X)7o(X)+^Jo(X)tfo(X)]=0    (2.28) 

which has as its first two roots (v is not given, 
but apparently is 0.3): 

X2=14.8 
=49.4 

TABLE 2.12.—Values of X2=a>a%/p/D for Axisymmetric Vibrations of a Free Circular Plate Fixed 
at the Center; v=l/8 

s 0 1 2 3 4 5 6 7 8 9 10 

X2 3.752 20.91 61.2 120.6 199.9 298.2 416.6 555. 1 712.9 890.4 1088 

TABLE 2.13.—Roots for Determining Relative Radii p=r/a for a Free Circular Plate Fixed at the 
Center; v=l/S 

[Values of p are determined by dividing each of successive roots by value of X of desired mode] 

s 1 2 3 4 5 6 7 8 9 10 

Xp  3.97 7.08 10.20 13.33 16.49 19.61 22.75 25.90 29.04 32.18 
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The frequency equation for the clamped plate is 

[J0(X)-/O(X)][FI(X)+^1(X)] 

-[Ji(X)+/,(X)][r0(X)+^(X)]=O    (2.29) 

which has as its first two roots: 

X2=22.7 
=61.9 

2.1.7    Plates  Supported  on  Circle  of  Arbitrary 
Radius 

A circular plate having a free outside edge of 
radius a is supported on a concentric ring 
having a radius b as shown in figure 2.8. The 
solution of this problem is very straightforward. 
One can recognize symmetry and take 

Wn=AniJn(kr)+BniYn(kr)+CntIn(kr) 

+D„tKn(kr)       (*=1,2)    (2.30) 

from equation (1.18), where the subscript 1 
refers to the region 0<r<6 and the subscript 2 
refers to &<?•<>; Bnt and Dni are discarded 
to satisfy regularity conditions at 7"=0. 
The remaining six boundary and continuity 
conditions 

wl(b)=w2(b)=Q   •) 

\(b)    \(b) 
or dr 

b2w1(6)_d2w2(6) 
ör2 ör2 

MrJia)=Vra(a)=Q, 

(2.31) 

are satisfied by substituting equation (2.30) into 
equations (2.31) and forming a sixth-order char- 

3f±L 
J& 

^6^ 
7^7 

FIGURE 2.8.—Circular plate supported on a concentric 
circle. 

acteristic determinant equation. The roots of 
the determinant are found by evaluating it 
by computer for many values of X for a given 
b/a ratio. 

The numerical solution of this problem is 
reported in reference 2.19 for the fundamental 
mode. The frequency parameter X2 is plotted 
in figure 2.9 and mode shapes for three repre- 
sentative b/a ratios are shown in figure 2.10, 
both for »-=1/3. 

2.1.8   Plates With Concentrated Mass at Center 

The problems of free and clamped circular 
plates having a concentrated mass m at the 
center were solved by Koberson (refs. 2.39 and 
2.40) for the case of axisymmetric modes. The 
concentrated mass was treated as an impulse in 
the mass density function. The impulsive 
change in density makes it convenient to solve 
the problem by Laplace transform methods. 

In the case of the plate having free edges, it 
is shown (ref. 2.39) that the frequency equation 
takes the form 

<fo M (2.32) 
X2(</>i+&)   4 

where 

^1(X)=|[F1(X)7o(X)+F0(X)71(X) 

-^(l-^X^wj-i 

02(X)=[j1(X)Ko(X)-Jo(X)K1(X) 

«s(X)=[jo(X)/i(X)+Ji(X)/o(X) 

-|(1-IO«7I(X)/.(X)] 

(2.33) 

and /i is the ratio of the concentrated mass at 
the center to the mass of the plate; that is, 

m 
irpa2 (2.34) 

The first four roots of equation (2.32) are shown 
graphically in figure 2.11 (for p=0.3) as func- 
tions  of the  mass  ratio  p.  An  asymptotic- 
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lü 

9 

8 

7 

6 

5 

4 
"■"* 

"0      0.1      0.2    0.3    0.4    0.5    0.6    0.7     0.8    0.9     1.0 
b/a 

FIGURE 2.9.—Values of X2=<oa2Vp7Z> for » circular 
plate of radius a supported on a concentric circle 
of radius 6 (for fundamental mode); v= 1/3. (After 
ref. 2.19) 

FIGURE 2.10.—Fundamental mode shapes for a circular 
plate supported on a concentric circle; »=1/3. 
(a) 6/a=0.392; X2=6.502. (&) b/a=0.699; X2=9.024. 
(c) 6/0=0.814; X2=7.301.    (After ref. 2.19) 

X* VALUES 

s—-I     2    3    4 
il58 9T 

8 

7 

6 

5- 

4 

40 

36' 

32 

28 

24 

20 

66 

60J 

150 

78' 142 

72 134 

1 \ v s 

\ 
K 
V V. s=l 
\ s\ . s=2 
T ■* ^s 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 f- 

FIGURE 2.11.—Values of X2=wa2Vp,'D for various mass 
ratios for a free circular plate having a concentrated 
mass at the center; »=0.3.    (After ref. 2.39) 

expansion estimate of the higher roots for the 
above problem can be obtained from the 
frequency equation 

tanX =-(?)> (2.35) 

The accuracy of equation (2.35) is shown by 
table 2.14 for the extreme mass ratios of M=<» 
and /i=0. The first mode shape is shown in 
figure 2.12 for three values of mass ratio. 

For the clamped plate (ref. 2.40) the fre- 
quency equation is also given by equation (2.32) 
where, in this case, 

<t>iW =1 [IiWYoW +/o(X)F1(X)]+ 

^(X)=J.(X)K0(X)-Jo(X)2f1(X)+i 

^(X)=/0(X)J1(X)+/i(X)Jo(X) 

n 

►    (2.36) 

The first four roots of equation (2.32) are shown 
graphically in figure 2.13 as functions of the 
mass ratio p. It is noted that in the case of 
clamped edges the frequencies are independent 
of Poisson's ratio. More precise values of X2 

for M=0, 0.05, and 0.10 are given in table 2.15. 
It should be noted that for both types of edge 

conditions (free or clamped) the frequency 
changes rapidly with the addition of a small 
amount of mass at the center, particularly for 
the higher modes. 
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TABLE 2.14.—Comparison of Roots X2 From Asymptotic-Expansion Estimate With Exact Values; 
v=0.3 

X2 for values of n of— 

s 
oo 0 

Value from 
eq. (2.32) 

Estimate from 
eq. (2.35) 

[(2«-l)(r/2)p 

Error of 
estimate, 
percent 

Value from 
eq. (2.32) 

Estimate from 
eq. (2.35) 

Error of 
estimate, 
percent 

1  3.73 
20.9 
60.5 

119.7 

2.47 
22.20 
61.69 

120. 91 
199. 85 
298. 56 
416. 98 

-33.8 
6.2 
1.9 
1.0 

9.006 
38.44 
87.76 

156. 75 

9.87 
39.48 
88.83 

157. 90 
246. 74 
355. 32 
483. 60 

9 6 
2  2 7 
3  1 2 
4  7 
5  
6  
7  

1.0 

hz O 

o M= 4 
5 o a. £i 
< 

V 

1.0 

0      O.I      0.2    0.3     0.4     0.5     0.6     0.7     0.8     0.9      1.0 
x_ 
a 

FIGURE 2.12.—First mode shape for a free plate having 
a concentrated mass at its center; »=0.3. (After 
ref. 2.39) 
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— 12    3    4 
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22- 
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66- 
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152 

V 
8- 
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136 

128 

l?0 

\ 
4- \\ 

\ V S = 1 

2- V ̂  S 
> SN 

s=: 
6 = ? 

0- 
s =4 

0      0.2     0.4     0.6     0.8      1.0      1.2      1.4 

FIGURE 2.13.—Values of \*=wa?y[jj~D for various mass 
ratios for a clamped circular plate having a con- 
centrated mass at the center.    (After ref. 2.40) 

TABLE 2.15.—Precise Values of X2=wa2Vp/D for 
a Clamped Circular Plate Having a Concen- 
trated Mass at the Center 

s 
X2 for values of M of— 

0 0.05 0.10 

1  10. 214 
39. 766 
89.114 

158.18 

9. 0120 
32. 833 
72. 012 

129.39 

8.1111 
2  29. 681 
3   67. 733 
4  125. 69 

The clamped case having a general concen- 
trated impedance at the center was discussed 
in reference 2.41, though no numerical results 
were presented therein. 

2.2   ANNULAR PLATES 
An annular plate consists of a circular outer 

boundary and a concentric circular inner bound- 
ary. Throughout this work the radii a and b 
will define the outer and inner boundaries, 
respectively. 

There exist nine possible combinations of sim- 
ple boundary conditions (i.e., clamped, simply 
supported, or free) for the two boundaries. An 
outstanding set of results was given by Raju 
(ref. 2.42) for all nine combinations of boundary 
conditions for a Poisson's ratio of 1/3, and the 
results which follow draw heavily from his work. 
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Joga-Rao and Pickett (ref. 2.43) also evaluated 
the exact characteristic determinants in the 
axisymmetric case when the outside boundary 
is clamped, simply supported, or free and the 
inside boundary is free. Their results closely 
match those of Raju and will not be repeated 
here. They also analyzed these cases for 
a/b=0.5 by the Rayleigh-Ritz method and 
obtained confirming results. 

Two-term Rayleigh-Ritz solutions were used 
in reference 2.44 to obtain approximate axi- 
symmetric frequency parameters for all but the 
free-free cases. These results are summarized 
in table 2.16 for i/=l/3 and are compared with 
exact solutions. The b/a ratio is 0.5 throughout 
the table. 

Sakharov (ref. 2.45) solved the cases for 
plates with the outside clamped or simply sup- 
ported and the inside free, and Gontkevich 
(ref. 2.6) presented results for four additional 
cases but omitted those for the simply supported 
inside boundary. Vogel and Skinner (ref. 2.46) 
in a recent paper also obtained exact solutions 
for all nine cases. 

In addition, Southwell (ref. 2.37) presented 
results for the outside-free, inside-clamped case; 
Hort and Koenig (ref. 2.47) and Kumai (ref. 
2.48) gave theoretical and experimental results 
for annular plates of given dimensions; reference 
2.47 deals with the free-free case and reference 
2.48, with the case for both edges either clamped 
or simply supported. 

2.2.1    Annular Plates Clamped on Outside and 
Inside 

Substituting the complete solution (eq. 
(1.18)) for the cos nd terms into the boundary 
conditions W=dW/dr=0 at r=a and r=b 
yields four homogeneous equations in A„, Bn, 
Cn, and D„ for which a nontrivial solution can 
exist only if the determinant of coefficients is 
zero. Using recursion relationships of the types 
in equations (2.4) and equations (2.6), deriva- 
tives of the Bessel functions can be expressed 
in terms of functions of the zeroth and first 
orders. The frequency determinants for n=0 
(axisymmetric), n=l (one diametral node), and 
n=2 (two diametral nodes) are given below 
(ref. 2.6). 

TABLE 2.16.—Axisymmetric Frequency Parameters for Annular Plates; v—l/S; b/a=0.5 

Boundary 
conditions " 

r=a r=b 

C C 
C SS 
c F 
ss c 
ss ss 
ss F 
p c 
F ss 

Deflection function W(r) 

A[l-(r/&)2P[l-(r/a)2] In (r/a) + B[l-()7&)2]2[l-(»-/a)2]2 

.A[l-(r/&)2][l-(r/a)2] In (r/a)+£[l-(r/&)2][l-(r/a)2]2. 
4[l-(r/a)2]ln (r/a) + B[l-(r/a)2]2  
A{1-(r/h)*]* In (r/a) + J3[l-(r/&)2]2[l-(r/a)2]  
^[l-(r/6)2]ln (r/a) + J3[l-(r/b)2][l-(r/a)2]  
A In (r/a) + B[l-(r/a)2] + C(r/o)2[l-(r/a)2]  
4[l-(r/&)2] In (r/&)+B[l-(r/&)2]2.   
A In (r/6)+B[l-(r/&)2]+C(r/a)2[l-(r/&)2]  

C, clamped; SS, simply supported; P, free. 

For n=0, 
Jo(x)      r„(x) /o(X) 
Ji(X)          Ft(X) -7x(X) 
Mdk)         Y0(a\) /o(aX) 
Ji(«X)         Y1(a\) -/i(«X) 

#i(X) 
K0(a\) 

Ki(«X) 

=0 

where a=b/a. 

wa?Vp]D 

Exact 
solution 

89. 30 
64.06 
17. 51 
59.91 
40.01 
5.040 

13.05 
4.060 

Rayleigh- 
Ritz 

solution 

89.42 
65.17 
17.56 
61.81 
43.19 
5.062 

13.59 
4.084 

i 
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For n=l, 

For n=2, 

Jo(X) 

«MX) 

Jo(X) 
Ji(aX) 
Jo(«X) 

To(X) 

Ti(X) 

Jo(aX)        F0(aX) 

•MaX)        r,(a\) 

Fx(X) 7t(X) 
Y0(\) /o(X) 
FiCaX) 7,(aX) 
F0(aX) io(aX) 

-7o(X)+=/,(X) 

7(x) 

-7o(aX)+^71(aX) 

7(aX) 

Xi(X) 
-7Co(X) 

ifi(aX) 

-Xo(aX) 

-Äo(X)-^Äi(X) 

-Äi(X) 

-Ko(«X)-4-^i(«X) 
aX 

-Äi(aX) 

=0 

Fundamental roots for these three frequency equations are given in table 2.17. 

TABLE 2.17.—Values o/X2=a>a%/p/D/or a damped, Clamped Annulus 

n 
X2 for values of b/a of— 

0.1 0.2 0.3 0.4 0.5 0.6 

0 -   27.25 
28.84 
36. 609 

45.36 62.33 
62.92 
66. 406 

89.30 
1  36.23 

41. 796 
108 16 

2   123. 766 

These results are plotted in figure 2.14, along 
with the eigenvalues for the second mode of 
n=0 taken from reference 2.6. Extrapolations 
are shown as dashed lines as they were proposed 
in reference 2.42. Note that for b/a=0 accurate 
values are given in the section entitled "Plates 
Clamped at Center With Various Conditions 
on Contour" (2.1.6). 

A more comprehensive set of results is given 
in table 2.18 (see ref. 2.46). 

Theoretical and experimental results for 
0^b/a^0.5 are given for the first three mode 
shapes in reference 2.48. Additional informa- 
tion is given in table 2.16. 

2.2.2   Annular Plates Clamped on Outside and 
Simply Supported on Inside 

The case of plates clamped on the outside 
and simply supported on the inside is not dis- 
cussed in reference 2.6. Fundamental eigen- 
values from reference 2.42 are given in table 
2.19 and are plotted in figure 2.15.   Accurate 

n=0/ s / 

n=2 
s=0^ Jfc L_U   

/n=0 
s=0 ^Z!^ 

>' 

0.1 0.2 0.3 0.4 0.5 

FIGURE 2.14.—Values of X=(pw2/D)1/4a for a clamped, 
clamped annulus.    (After refs. 2.6 and 2.42) 

values for b/a=0 are given in the section en- 
titled "Plates Clamped at Center With Various 
Conditions on Contour" (2.1.6). Additional 
information is given in table 2.16. 
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x 7 

FIGURE 2.15.—Values of \=(pu,1/D)1'4a for a clamped, 
simply supported annulus; v= 1/3.    (After ref. 2.42) 

TABLE   2.18.—Frequency Parameters  coa%/p/D 
for a Clamped, Clamped Annular Plate 

n 5 
w<x2Vp/ß for values of bja of— 

0.1 0.3 0.5 0.7 0.9 

0  
1  
2  
3  
0  
1  
2—-.- 
3  

0 
0 
0 
0 
1 
1 
1 
1 

27.3 
28.4 
36.7 
51.2 
75.3 
78.6 
90.5 

112 

45.2 
46.6 
51.0 
60.0 

125 
127 
134 
145 

89.2 
90.2 
93.3 
99.0 

246 
248 
253 
259 

248 
249 
251 
256 
686 
686 
689 
694 

2237 
2238 

2243 
6167 
6167 

6174 

TABLE   2.19.—Values   of   X2=wa2Vp/S  far   a 
Clamped, Simply Supported Annulus; v=lj3 

n 
x2 for values of bja of—• 

0.1 0.2 0.3 0.4 0.5 0.6 

0-_. 
1— 
2— 

22.61 
25.20 
35.39 

26.57 
29.11 
37.54 

33.66 44.89 
47.09 
51.81 

64.06 99.16 
98.01 

104. 45 

A more comprehensive set of results is given 
in table 2.20 (see ref. 2.46). 

TABLE  2.20.—Frequency  Parameters   «a2Vp/D 
for a Clamped, Simply Supported Annular Plate 

n 8 
UCPTJP/D for values of b/a of— 

0.1 0.3 0.5 0.7 0.9 

0 
1 
2 
3 
0 
1 
2 
3 

0 
0 
0 
0 
1 
1 
1 
1 

22.6 
25.1 
35.4 
51.0 
65.6 
70.5 
86.7 

111.0 

33. V 
35.8 
42.8 
54.7 

104 
107 
116 
130 

63.9 
65.4 
70.0 
78.1 

202 
203 
210 
218 

175 
175 
178 
185 
558 
560 
563 
570 

1550 
1551 
1553 
1558 
5004 
5004 
5007 
5012 

2.2.3    Annular Plates Clamped on Outside and Free on Inside 

The frequency determinants for n=0, 1, and 2 taken from reference 2.45 for plates clamped 
on the outside and free on the inside are as follows: 

For n=0, 

where 

For n=l, 

Jo(X) 
^i(X) 
Ji(«X) 
Jo(aX) 

Fo(X) 
-Yr(\) 

-Y0(aX) 

/o(X)                                K0(\) 
/i(X)                            -Ki(X) 
/i(«X)                          -KAcik) 

70(«X)+^71(aX)         KoiaXj+BKiiaX) 

A= 
2(1-*)        fi_2(l-i0 

^o(X) 
</i(X) 
</i(«X) 

Jo(«X) 

Fo(X) 
Fi(X) 

-Fx(aX) 
F„(«X) 

/o(X)                                HTo(X) 
/i(X)                             -ifi(X) 

CJo(aX)+I>/1(aX)                  -Xi(aX) 
£Jo(«X)+4/1(aX)        Koia^+BK^a X) 

=0 



CIRCULAR  PLATES 23 

where 
8(1-*) 
(a\y 

B = -1+^       (^-^       D=l+^ß 

For n=2, 

Jo(X) 

Jo(«X) 
«7i(«X) 

where 

A*=l-.4<7,       ^L= 

Fi(X) 

Fo(X) 

Fo(«X) 
ri(aX) 

aX    3+i> 

(aX) 

/x(X) 

^(Xj-ZoM 

<7/0(aX)-Z>/1(aX) 

a\ (a\y 

-^i(X) 

—-Xi(x)—ä-0(X) 

4*Ä'o(oX)+5*Ä'1(aX) 
GKo(aX)+#£i(aX) 

2aX 
B*=B-AD, R_aX    3+r 

5-T+2äx' 

48(l-y)aX n 12(l-„)[(7+,Q + (aX)2]-(aX)* 
12(l-*)2-(aX)4 " 12(l-y)2-(aX)4 

Eigenvalues from reference 2.42 are given in table 2.21 and figure 2.16.   Results for b/a=0 
are also given in the section entitled "Completely Free Plates" (2.1.3). 

TABLE 2.21.—Values of X2= wa^p/D/or a Clamped, Free Annulus; v—1/3 

n 
X2 for values of b/a of— 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0  10.24 
21.25 
34.88 

10.18 
21.17 
34.52 

10.34 
20.48 
33.86 

11.37 13.54 
19.80 
31.34 

17.51 
21.76 

25.60 
28.52 
36.60 

42.38 
51.12 

85.32 
1   
2  72.17 

Numerical problems make it difficult to evaluate the frequency determinant as b/a—»1. 
Reference 2.43 gives an approximate value of X=15 for b/a=0.9. Additional information appears 
in table 2.16. 

A more comprehensive set of results is given in table 2.22 (see ref. 2.46). 

TABLE 2.22.—Frequency Parameters wa2-y/p/D for a Clamped, Free Annular Plate 

ua2 s/piß for values of ft/a of— 
n s 

0.1 0.3 0.5 0.7 0.9 

0 0 10.2 11.4 17.7 43.1 360 
1 0 21.1 19.5 22.0 45.3 362 
2 0 34.5 32.5 32.0 51.5 365 
3 0 51.0 49.1 45.8 61.3 370 
0 1 39.5 51.7 93.8 253 2219 
1 1 60.0 59.8 97.3 254 2220 
2 1 83.4 79.0 108.0 259 2225 
0 2 90.4 132.0 253.0 692 6183 
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TABLE 2.23.- —Values o/ X2=wa2V 'p/D for a Simply Supported, Clamped Annulus; v=l/8 

n 
X2 for values of bja of— 

0.1 0.2 0.3 0.4 0.5 0.6 

0      - - --  17.85 
19.44 
28.25 

22.79 
24.32 
31.08 

30.05 41.23 
42.56 
46.81 

59.91 95. 16 
1 96.67 
2 98.84 

2.2.4   Annular, Plates Simply Supported on Outside and Clamped on Inside 

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for plates simply 
supported on the outside and clamped on the inside are as follows: 

For n=0, 

For«=l, 

Jo(X) 

</i(X) 

Jo(«X) 

Ji(«X) 

Ji(X) 

Jo(X) 

Jo(«X) 

«7i(«X) 

Fo(X) 

Ti(X) 

F„(«X) 

Fi(X) 

Fo(X) 

Fo(«X) 

r,(ox) 

2X 
1-* 

Io(X) 

/o(X)-Ji(X) 
2X 

Ko(X) 

Z0(X)-E:1(X) 

/o(«X) 

-Ii(oX) 

Ko(aX) 

Ä.(«X) 

=0 

io(X)- 

/i(X) 

2X 

Io(«X) 

Ji(oX) 

Ii(X) -ifo(X) 

#i(X) 

2X 
1—* 

-Ko(aX) 

X,(aX) 

#i(X) 
=0 

For n=2, 

Ji(x)      r,(x) 

Jo(X) 

Ji(aX) 

Jo(aX) 

F0(X) 

F.CaX) 

F0(«X) 

^i(X)-^Io(X) 
1—c 

^BJ1(X)-^Jo(X) 

Ii(«X) 

-Io(aX)+^J,(aX) 

-AK^X)- 
2X 
l-i 

Ko(\) 

-|5X,(X)-ilKo(X) 
A 

-X,(aX) 

-Äi(aX)-^X,(aX) 

=0 

where 
5-x 

"1—K 
5= 

3-v 

Eigenvalues from reference 2.42 are given in table 2.23 and figure 2.17. Eigenvalues for the 
second mode of n=0, taken from reference 2.6, are also given in figure 2.17. Additional infor- 
mation appears in table 2.16. 
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FIGTJBE 2.16.—Values of \=(pai/D)t'*a (ora, clamped, 
free annulus; v= 1/3.    (After ref. 2.42) 
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FIGURE 2.17.—Values of X=(p«2/Z))1/4a for a simply 
supported, clamped annulus; v=l/3. (After ref. 
2.42) 

A more comprehensive set of results is given in table 2.24 (see ref. 2.46). 

TABLE 2.24.—Frequency Parameters waVp/D for a Simply Supported, Clamped Annular Plate 

WO
2
VP/D for values of bja of— 

n s 

0.1 0.3 0.5 0.7 0.9 

0 0 17.8 29.9 59.8 168 1535 
1 0 19.0 31.4 61.0 170 1536 
2 0 26.8 36.2 64.6 172 1538 
3 0 40.0 45.4 71.0 177 1541 
0 1 60. 1 100 198 552 4989 
1 1 62.8 102 200 553 4989 
2 1 74.7 109 205 557 4992 
3 1 95.3 120 211 563 4997 

2.2.5    Annular Plates Simply Supported on Both Edges 

The case of annular plates simply supported on both edges is not discussed in reference 2.6. 
Eigenvalues from reference 2.42 are given in table 2.25 and figure 2.18. 

TABLE 2.25.—Values qf\2=co&yjp5for an Annular Plate Simply Supported on Both Edges; v=l/S 

n 
X2 for values of bja of— 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0  14.44 
16.77 
25.97 

17.39 
19. 19 
27.55 

21.31 28.25 
30.00 
36. 14 

40.01 62.09 
62.41 
68.41 

110. 67 
1   
2  

308-337 O—70—3 
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A more comprehensive set of results is given in table 2.26 (see ref. 2.46). 

TABLE 2.26.—Frequency Parameters ua^p/D for a Simply Supported, Simply Supported Annular 
Plate 

«a2Vp/D for values of b/a of— 
n s 

0.1 0.3 0.5 0.7 0.9 

0 0 14.5 21. 1 40.0 110 988 
1 0 16.7 23.3 41.8 112 988 
2 0 25.9 30.2 47. 1 116 993 
3 0 40.0 42.0 56.0 122 998 
0 1 51.7 81.8 159 439 3948 
1 1 56.5 84.6 161 441 3948 
2 1 71.7 933 167 444 3952 

3 1 94.7 108 177 453 3958 

Theoretical   and   experimental   results   for 
0^b/a^0.5 are given for the first three mode 

shapes in reference 2.48.    Additional informa- 
tion appears in table 2.16. 

2.2.6    Annular Plates Simply Supported on Outside and Free on Inside 

The frequency determinants for n=0, 1, and 2 taken from reference 2.45 are as follows: 

Forri=0, 

Jo(X)              Fo(X) h(\) 

-J,(X) -F,(X) 71(X)+^/o(X) 

J^aX)              Fx(aX) ^(aX) 

-Jo(aX) -Fo(aX) /0(aX)-5/,(aX) 

#o(X) 

-Ki(aX) 

Xo(«X)+BX1(aX) 
where 

A=- 2X 
1—v 

B- 2(1—0 
aX 

Forn=l, 

where 

A=- 

J.(X) 

Jo(aX) 

8(1-,) 
(aX)3 

Toft) 

F(X) 

-ri(aX) 

Fo(aX) 

B=-l-\ 

IoW-EUX) 

ii(X) 

C/0(aX)+Z)71(aX) 

B70(aX)+47,(aX) 

4(1-0        „_    2(1-,) 
(aX)2 <7= 

-KoW-EKM 

#i(X) 

-CKoia^+DKriaX) 

-BKoiaV+AKiidk) 

4(1-0 

=0 

aX 
Z>=1- 

(«X)2 S= 2X 

1—v 

For »i=2, 

Jx(X) 

Jo(X) 

Jo(«X) 

Ji(oX) 

Fi(X) 

Fo(X) 

Fo(aX) 

Fx(aX) 

EU\)-FI0(\) 

<Hi(X)--EJ0(X) 

4*/o(aX)-B*/i(«X) 

<7/0(aX)-i>/1(aX) 

-^M-T^X) 
-G^W-z^x) 

4*Z0(aX)+5*if1(aX) 

CK0(aX)+Z?ii:i(aX) 
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where 

B*=B-AB 

D- 

3+v . a\ B- 
2a   ' 4 "2a 

I2(l-v)[(7+v)+(aky]-(a\y 
12(l-y)2-(aX)4 

■Z+v^ak        0_    48(1 —y)a\ 

12(l-,;)2-(aX)4 

#=6=ü       ^=,2X_       ö= 4 3- 
1— p        *     1—v        "    X 1—v 

Eigenvalues from reference 2.42 are given in table 2.27 and figure 2.19.   Values for b/a=0 
are also given in section 2.1.3.    Additional information appears in table 2.16.    A more compre- 
hensive set of results is given in table 2.28 (from ref. 2.46). 

TABLE 2.27.—Values of X2=&>a2Vp/D/or a Simply Supported, Free Annulus; v=l/8 

n 
X2 for values of b/a of— 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ' 0.8 0.9 

0   4.933 
13.91 
25.43 

4.726 
12.60 
24.97 

4.654 4.752 
11.66 
23.09 

5.040 5.664 
12.27 
22.20 

6.864 9.431 
17.05 
29.92 

17.81 
1...   13.93 

25.65 2   

TABLE 2.28.—Frequency Parameters wa%/p/D for a Simply Supported, Free Annular Plate 

n s 
«a2Vp/.D for values of b/a of— 

0.1 0.3 0.5 0.7 0.9 

0 0 4 86 4.66 5.07 6.93 17.7 
1 0 13.9 12.8 11.6 13.3 29.7 
2 0 25.4 24. 1 22.3 24.3 51.2 
3 0 40.0 38.8 35.7 37.2 74.5 
0 1 29.4 37.0 65.8 175 1550 
1 1 48.0 45.8 69.9 178 1553 
2 1 69.2 65. 1 81. 1 185 1558 
0 2 74.8 107 203 558 5004 

i 
it 
ii 
ii 
ii ii 

ii 

n=2^ 

Hbh 
«77    /"T^/TT"    fPz 

.-•''^ 
* ^^ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

a 

FIGURE 2.18.—Values of \= (Pco2/#)1/4a for a simply sup- 
ported, simply supported annulus; »=1/3. (After 
ref. 2.42) 
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FIGURE 2.19.—Values of X=(pw2/D)1/4a for a simply 
supported, free annulus; v=\ß.    (After ref. 2.42) 
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2.2.7    Annular Plates Free on Outside and Clamped on Inside 

The frequency determinants for n=0, 1, 2 taken from reference 2.6 are as follows: 

For 7i=0, 

For 7i=l, 

j0(x)      F„(X)      -/oM+^-^/iW 

J.(X)          Fx(X) Ii(X) 

Jo(aX)        Fo(aX) J0(«\) 

Jiidk)       F,(cA) -Ji(«X) 

J0(X)         F0(X) A/o(X)-B/,(X) 

j,(x)      r,(\) ^ii(x) 

J0(aX)        Y0(a\) /o(«X) 

«MaiX)         F(aX) /i(aX) 

-X.(X) 

X"o(aX) 

Xi(a\) 

-^(X)-?^^) 

-Kt(X) 

Äo(aX) 

X,(aX) 

=0 

where 

A=-l- 
4(1-,) 

For 7i=2, 

Jo(X) 

JiO) 

Jo(aK) 

Ji(«X) 

Fo(X) 

F(X) 

Fo(aX) 

F(aX) 

(l-4AB\)Jo(X)-ZMi(A) 

45X/0(X)-(7/1(X) 

-I0(a\)+;|li(aX) 

/i(aX) 

(l-4ABX)Äi(X)+I?Xi(X) 

-Äo(«\)-^X,(a\) 

-X,(aX) 

where 

,X    3+K „        12(1-,) 12(l-„)(7+y+X2)-X*        n_KZ±I_AC 
5==12(l-„2)-X*        C"        12(l-,2)-X* 4+ 2X 

Eigenvalues from reference 2.42 are given in table 2.29 and figure 2.20. Accurate values for 
b/a=0 are given in the section entitled "Plates Clamped at Center With Various Conditions 
on Contour" (2.1.6). 

TABLE 2.29.—Values of X2= «a^p/D for a Free, Clamped Annulus; v=l/8 

n 
X2 for values of bja of— 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0  4.235 
3.482 
5.499 

5.244 
4.814 
6.345 

6.739 7.036 
9.096 

10.37 

13.05 20.63 
20.93 
21.63 

36.60 81.45 
1 45. 09 
2 67.65 



CIRCULAR  PLATES 

A more comprehensive set of results is given in table 2.30 (see ref. 2.46). 

TABLE 2.30.—Frequency Parameters coaVp/D/o^ a Free, Clamped Annular Plate 

29 

waP-Jp/D for values of 6/o of— 
n s 

0.1 0.3 0.5 0.7 0.9 

1 0 3.14 6.33 13.3 37.5 345 
0 0 4.23 6.66 13.0 37.0 51.5 
2 0 5.62 7.96 14.7 39.3 347 
3 0 12.4 13.27 18.5 42.6 352 
0 1 25.3 42.6 85. 1 239 970 
1 1 27.3 44.6 86.7 241 2189 
2 1 37.0 50.9 91.7 246 2194 
3 1 53.2 62. 1 100 253 2200 

Additional data for this case are available from the work of Southwell (ref. 2.37), who saved 
considerable effort in computation of the Bessel functions by assuming arguments of X and then 
finding the b/a ratios to which these correspond. These additional data are presented in table 2.31 
for K=0.3. Kesults appear also in table 2.16. This problem was also discussed in reference 2.15. 

TABLE 2.31.—Additional Values q/X2=wa2-v/p/D/or a Free, Clar^ped Annulus; v=0.S 

n=0 «=1 n=2 n=3 

b/a X2 b/a X2 b/a X2 6/o X2 

0.276 
.642 
.840 

6.25 
25.0 
81.0 

0.060 
.397 
.603 
.634 
.771 
.827 

2.82 
9.00 

21.2 
25.0 
64.0 

121.0 

0. 186 
.349 
.522 
.769 
.81 

6.25 
9.00 

16.0 
64.0 

100 

0.43 
.59 
.71 
.82 

16.0 
25 
49 

100 

2.2.8   Annular Plates Free on Outside and Simply Supported on Inside 

The case of annular plates free on the outside and simply supported on the inside is not discussed 
in reference 2.6. Eigenvalues from reference 2.42 are given in table 2.32 and figure 2.21. Additional 
information appears in table 2.16. 

TABLE 2.32.—Values qfk2=aa?-yftfDfor a Free, Simply Supported Annulus; v=lj3 

n 
X2 for values of 6/o of— 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0  3.516 
2.403 
5.313 

3.312 
2.816 
5.513 

3.378 3.610 
3.940 
6.620 

4.060 4.951 
6.027 
9.653 

6. 101 8.779 
12.55 
19.95 

18.92 
1  
2  
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FIGURE 2.20.—Values   of   X=(pw2/-D)1/4a   for  a  free, 
clamped annulus; v= 1/3.    (After ref. 2.42) 

FIGURE 2.21.—Values of \= (pco2/ö)1/4a for a free, simply 
supported annulus; v= 1/3.    (After ref. 2.42) 

A more comprehensive set of results is given in table 2.33 (see ref. 2.46). 

TABLE 2.33.—Frequency Parameters wa%/p/D/or 
a Free, Simply Supported Annular Plate 

n s 
wat^pID for values of 6/o of— 

0.1 0.3 0.5 0.7 0.9 

1 
0 
2 
3 
0 
1 
2 
3 

0 
0 
0 
0 
1 
1 
1 
1 

2.30 
3.45 
5.42 

12.4 
20.8 
24.1 
35.8 
53.0 

3.32 
3.42 
6.08 

12.6 
31.6 
34.5 
43.0 
56.7 

4.86 
4.11 
7.98 

14.0 
61.0 
63.3 
69.7 
80.3 

8.34 
6.18 

13.4 
20.5 

170 
172 
177 
185 

25.9 
17.2 
42.6 
61.4 

1535 
1536 
1541 
1548 

2.2.9   Annular Plates Free on Both Edges 

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for annular plates free 
on both edges are as follows: 

For rc=0, 

where 

</O(A) y«(x) 

Ji(X) FifX) 

Jo(«X) F0(aX) 

JxCaX) YJaX) 

-I0(X)+AU\) 

/i(A) 

-/„(aXHSJ^aX) 

/i(«X) 

-Ko(X)-AK1(\) 

-tfi(X) 

-i?0(«X)-Biü:i(aX) 

-K^aX) 

= 0 

A- 
2(1-,) B- 2(1-»Q 

aX 
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For»=l, 

M\)        F0(X) (-l+^)/o(X)-AT(X) 

Ji(X)        F,(X) ^/„(^-(l+^/^X) 

J0(aX)       Fo(aX) (-1+f Byo(a\)-BUa\) 

J^ciK)       F^aX) (-^2S7o(aX)-(l+f5)j1(aX) 

-(-I+^KOM-^X) 

-^^•„(^-(I+I^KKX) 

-(-1+f 5) ^0(aX) - JSK.CaX) 

[-^fBK0(a\)-(l+^B)K1(a\)] 

where 
80-0 5= 8(1-,) 

For «.=2, 
(aX)3 

where 

4=1- 

MX) 

Jo(«X) 

«/i(«X) 

y0(x) 

F(X) 

Fo(aX) 

FxCaX) 

470(X)-5/1(X) 

CIoW-DI^X) 

4*/0(aX)-5*71(aX) 

^KoW+SJ^X) 

OT:0(x)+z>ii:i(x) 

A*Z0(aX)+5*Ä-1(«X) 

c*E:0(ax) +z>*js:1(ax) 

/X   3+A„       R^IS+V   A   3+An       „_  48(l-y)X 
V~~2x7c   ^~4+~2T~U_2äx/     G_i2(i-„2)-x 
n_12(l-„)(7+H-X2)-X* , /aX   3+A aX   3+,    /aX    3+A„* 
"~      i2(i-,2)-x* ^ -1_VT~^x~;     B -^+2^~\J~2Ö\)lJ 

c*= 48(l-y)(aX) 

Eigenvalues from reference 2.42 are given in 
table 2.34 for the lowest root of n=2. The 
lowest roots of n—0 and n=l are rigid body 
translation and rotation modes, respectively. 
Other eigenvalues are plotted in figure 2.22 as 
taken from reference 2.6. Labels near the 
ordinate identify roots for b/a=0 given in the 
section entitled "Completely Free Plates" 
(2.1.3). 

12(l-„2)-(aX)4 

IOr 

9 

2«X, 

12(l-y)[7+y+(aX)2]-(«X)« 
U ~ 12(l-,2)-(X)4 

8 

7 

6 

X 5 

4 

3 

2 

I 

0, 

ÜH J               1 
H 1—a- 

♦1 y // 

/ 
■s=n, , S; U^2 

'1 

j'0.n=4  
s=l, '=!   . 

•s=0 n=3 Jf- 
£^n=2 

0.|      0.2    0.3     0.4    0.5    0.6    0.7     0.8    0.9     1.0 
b 
a 

FIGURE 2.22.—Values of \=(pw2ID)1'ia for a free, free 
annulus; v= 1/3.    (After ref. 2.6) 
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TABLE 2.34.—Values of X2= «a%/p/D for an Annular Plate Free on Both Edges; v=ljS 

n 
X2 for values of 6/0 of— 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2__.       5.203 5. 053 4.822 4.567 4.203 3.865 3.519 3.200 2.890 

TABLE  2.35.—Frequency   Parameters   coa%/p/D 
for a Free, Free Annular Plate 

n s 
«o2Vp/-D for values of 6/0 of— 

0.1 0.3 0.5 0.7 0.9 

2 
3 
0 
1 
2 
3 
0 
1 

0 
0 
1 
1 
1 
1 
2 
2 

5.30 
12.4 
8.77 

20.5 
34.9 
53.0 
38.2 
59.0 

4.91 
12.26 
8.36 

18.3 
33.0 
51.0 
50.4 
58.8 

4.28 
11.4 
9.32 

17.2 
31.1 
47.4 
92.3 
96.3 

3.57 
9.86 

13.2 
22.0 
37.8 
55.7 

251 
253 

2.94 
8.14 

34.9 
55.7 
93.8 

135 
2238 
2240 

A more comprehensive set of results is given in 
table 2.35 (see ref. 2.46). 

2.2.10   Annular Plates Clamped on Outside With 
Rigid Mass on Inside 

Considering only axisymmetric vibrations 
the boundary conditions for annular plates 
clamped on the outside with a rigid mass on the 
inside (fig. 2.23) are 

w(a,e,t)=^(a,e,t)=^(b,e,t)^:0 

2«bVr(b,e,t)=M^(b,6,t) 
(2.37) 

where M is the total mass of the rigid insert. In 
the general case the condition of zero slope at 
the junction with the rigid mass would be 
replaced by an equation of motion relating the 
integral of the components of torque along the 
edge r=b about a diametral axis to the product 
of the mass moment of inertia and the rotational 
acceleration about the axis. 

Letting n=0 in equation (1.18) and substi- 
tuting into equation (2.37) result in a fourth- 
order frequency determinant. Expanding this 
by making use of the recursion formulas for 
derivatives of Bessel functions yields a char- 
acteristic equation which was given by 
Handelman and Cohen (ref. 2.49): 

([Jo(X)/1(X)+Ji(X)/o(X)]{4XF1(X«) 

+ a\*y[Y1(\a)K0(\a)-K1(\a)Y0(\a)]}) 

+ ([JoWi^X) -K0(\) J1(X)]{4X/1(Xa) F(X«) 

-aX27[/1(X«)Fo(Xa)+/o(X«)F1(X«)]}) 

+ ([FoW/^X) +/0(X)F1(X)]{4XJ1(X)ü:I(X) 

+a\*y[J1(ha)K0{\a)-Kl(\a)J0(\a)]}) 

+ ([Y0(\)K1(\)-K0(\)Yl(K)] 

{-4XJ1(Xa)/1(Xa)+«X27[J1(Xa)70(Xa) 

+/1(Xa)Jo(X«)]})=^    (2.38) 

I V7777>W7Z^. 
J 

FIGURE 2.23.—Annular plate clamped on outside, rigid 
mass on inside. 

where 

and 
X=(w2p/^)1/4a 

a=b/a       7=p'/P 

(2.39) 

where p' is the mass per unit area of the rigid, 
inner mass. 

Equation (2.38) was solved for the funda- 
mental root X for two values of a and 7=2 and 
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10. These results are shown as small circles 
in figure 2.24. Because of the complexity of 
equation (2.38) its numerical evaluation was 
limited in reference 2.49 and, in its place, a 
minimal principle was used to obtain approxi- 
mate eigenvalues which are upper bounds. 
These results appear as curves in figure 2.24. 

In figure 2.24 it is seen that for high mass- 
density ratio 7 there exists a ratio of radii a 
for which the frequency is identical to that for 
the clamped solid circular plate without central 
mass. The critical values of y for which this 
occurs are shown in figure 2.25 as a function 
of a Cseeref. 2.49). 
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Elliptical Plates 

Chapter 3 

The eDiptical boundary will be taken to be 
one of the confocal ellipses of an elliptical co- 
ordinate system. The semimajor and semi- 
minor axes of the ellipse will be taken as a and 
b, respectively (see fig. 3.1). The eccentricity 
« of the ellipse is related to a and b by 

e=jl-(b/a)2 
(3.1) 

For a mode shape having symmetry with 
respect to both axes of the ellipse (m even) or 
with respect to the minor axis (m odd), equation 
(1.27) reduces to 

W=X) [CmOeM, Z)cem(v, q) 
m-0 

+ 0*CeM,-i)cem(v,-q)]   (3.2) 

For mode shapes which are antisymmetric 
about both axes (m even) or with respect to the 
major axis of the ellipse (m odd), equation 
(1.27) reduces to 

W=^2 [SmSem(£, q)sem(v, q) 
m=l 

+S*Sem(Z,—q)sem(v,—q)]   (3.3) 

FIGURE 3.1.—Elliptical plate. 

3.1   CLAMPED PLATES 

When equation (3.2) is used and the condi- 
tions of zero deflection and slope around the 
boundary are applied, a characteristic de- 
terminant of unbounded order is obtained. 
Shibaoka (ref. 3.1) solved the problem of 
clamped elliptical plates by beginning with the 
element in the upper left-hand corner and tak- 
ing a series of finite determinants containing 
that element. As successive determinants were 
taken, convergence to a lowest root was es- 
tablished. Table 3.1 shows the fundamental 
roots obtained for three values of a/b and 
corresponding eccentricities. The convergence 
is slower for large values of a/b. Only third- 
order determinants were required to establish 
the convergence to the number of figures given 
for a/b=1.25 and 2.00, but a fourth-order 
determinant was required for a/6=3.00. 

TABLE   3.1.—Values   of   X2=«a2V/>7D   for   a 
Clamped Elliptical Plate 

a/b t \1=oia2T/P/D 

1.25  0.600 
.866 
.943 

13.1 
2.00  27.5 
3.00  56.9 

In reference 3.1 an expansion formula is also 
derived for elliptical plates of small eccentricity. 
It is 

A=(pa)7#)1/*a=3.1961+0.7991e2+0.7892e4 

(3.4) 

where 3.1961 is the fundamental eigenvalue for 
a clamped circular plate of radius a. 

The problem was also solved by using the 
Eayleigh technique (ref. 3.1).    A function 
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W=^°(1~S~F)2        (3-5) 

was chosen to satisfy the boundary conditions 
exactly. The Rayleigh quotient gives the 
approximate frequency formula 

The Galerkin method and a two-term de- 
flection function 

^.(^-O'+^+F-1)' (3-7) 
were also used to solve the problem (ref. 3.2). 
By use of equation (3.7), the eigenvalues are 
found to be 

M=pco?aVÖ=39.218 [l+|(£)'+(!)*]   (3-8) 

and 

^=Pa)^/ö=129.18[l+|(|)2+(f)4]   (3.9) 

Values of X2 from equation (3.8) for various 
ratios of a/6 are given in table 3.2. 

TABLE 3.2.—Approximate Values o/X2=coa2Vp/D 
for a Clamped Elliptical Plato 

aß \2 

1.0                               --   10. 217 
1.1                          11. 314 
1.2                                --- 12. 566 
1.5                                 .       17. 025 
2.0                             -       ---  -- 27. 746 
3.0                       -       58. 693 
5.0                                   158. 85 

Comparing equations (3.8) and (3.6) with table 
3.1, it is seen that equation (3.8) gives results 
only slightly more accurate than those of equa- 
tion (3.6) and the ratio of frequencies obtained 
from equations (3.6) and (3.8) does not vary 
with a/b. 

In reference 3.3 the differential equation 
(eq. (1.4)) expressed in terms of elliptical co- 
ordinates (eq. (1.20)) is transformed into a 
form yielding a solution in "epicycloidal tran- 
scendental functions." The characteristic de- 
terminant for the clamped case is presented, 
but not evaluated. 

In reference 3.4 a minimal energy method is 
used with a deflection function of the form 

W(r,d)=(l-p2)2[A1+AlP
2+A2p

i+(Ap2+Aip
i) 

cos20+^45p
4cos40]    (3.10) 

where p and 0 are related to rectangular co- 
ordinates by the parametric equations 

a:=pcos0 

y=-psm6 
(3.11) 

to obtain fundamental frequency parameters. 
Kesults are given in table 3.3. 

The problem was also formulated in terms of 
Mathieu functions and discussed in reference 
3.5.   It is also discussed in reference 3.6. 

3.2   FREE PLATES 

Experimental results for free elliptical brass 
plates having a/b ratios of 2 and 1.25 were ob- 
tained by Waller (ref. 3.7). Table 3.4 gives 
ratios of frequencies for a/6=1.98 relative to 
the fundamental frequency. The fundamental 
frequency upon which the table is based is 
given in reference 3.7 as 438 cycles per second 

TABLE 3.3- —Approximate Frequency Parameters X2=&>a%/p/D for a Clamped Elliptical Plate 

b/a 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

\2  10. 216 11. 443 13. 229 15. 928 20. 195 27. 378 40. 649 69. 163 149. 89 583. 10 
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TABLE 3.4.—Experimentally Determined Rela- 
tive Frequencies for a Free Elliptical Brass 
Plate; a/b=1.98 

s 
Frequency for value of n of— 

0 1 2 3 4 5 6 

0  1 
3.27 
9.43 

2. 58 
5.68 

12.6 

4.7 
8.29 

7.3 
11 

10 
1  1.77 

6.57 
14 
22 

2  
3  

4.25 
10.6 
17 

  

4  

for a brass plate with a major axis of 4.99 
inches, a minor axis of 2.52 inches, and a thick- 
ness of 0.0638 inch. The mode indicators s 
and n indicate the number of nodal lines run- 
ning approximately in the directions of the 
major and minor axes, respectively. This is 
illustrated in figure 3.2, where node patterns 
corresponding to some of the frequencies in 
table 3.4 are shown. 

Frequency ratios for a/6 =1.24 are given in 
table 3.5. The fundamental frequency for a 
brass plate having a major axis of 4.96 inches, 
a minor axis of 4.00 inches, and a thickness of 
0.0638 inch was found (ref. 3.7) to be 414 cps. 

This problem is also discussed in reference 
3.8. 

S    1 
0 1 

n 
2 3 4 

0 <o> CD <£D 
1 Q5 (&> €B> <EEB> 
*o> CD <SD> o> 
= ©> Ö 

TABLE 3.5.—Experimentally Determined Rela- 
tive Frequencies for a Free Elliptical Brass 
Plate; a/b=1.24 

s 
Frequency for value of n of— 

0 1 2 3 4 5 6 7 

0 1 
2.59 
6.71 

10.7 

2.45 
4.34 

10 
14 

4.28 
6.8 

6.66 
9.6 

9.39 13 
1 1.07 

3.99 
7.41 

12 

2.. 2.03 
4.42 
9.01 

14 

3_. 
4__ 
S... 

FIGTJRK  3.2.—Nodal lines for a free elliptical brass 
plate with a/6= 1.98.    (After ref. 3.7) 
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Rectangular Plates 

Chapter 4 

Altogether there are 21 combinations of 
simple boundary conditions (i.e., either clamped 
(C), simply supported (SS), or free (F)) for 
rectangular plates. Frequency parameters are 
expressed in terms of ua^^/D, where a is a 
length dimension, and do not depend upon 
Poisson's ratio unless at least one of the edges 
of the plate is free. However, because D 
contains v, the frequencies themselves depend 
upon v for all cases. 

Warburton (ref. 4.1) presented the first com- 
prehensive collection of solutions for rectangular 
plates. He used the Rayleigh method with 
deflection functions as the product of beam 
functions; that is, 

W(x,y)=X(x)Y(y) (4.1) 

where X(x) and Y(y) are chosen as the funda- 
mental mode shapes of beams having the 
boundary conditions of the plate. This choice 
of functions then exactly satisfies all boundary 
conditions for the plate, except in the case of 
the free edge, where the shear condition is 
approximately satisfied. The six possible dis- 
tinct sets of boundary conditions along the 
edges z=0 and x=a are satisfied by the 
following mode shapes: 

(a) Simply Supported at a:=0 and x=a: 

X(z)=sin^=^      («=2,3,4,...)   (4.2) 

(6) Clamped at z=0 and x=a: 

(m=2,4,6,...)    (4.3) 

where the values of YJ are obtained as roots of 

tan (<h/2)+tanh (7i/2)=0 (4.4) 

308-337 O—70 i 

and 

(»1=3,5,7,...)   (4.5) 

where the values of y2 are obtained as roots of 

tan (Yü/2) -tanh (T2/2)=0 (4.6) 

(c) Free at x=0 and x=a: 

X{x)=l       (ro=0) (4.7) 

X(x)=l-f       (m=l) (4.8) 

^)=cos7l(?-i)-4^^,cosh7/?-n 
\a   2/   sinb.Oyj/2) n\a   2/ 

(m=2,4,6,...)    (4.9) 
and 

(m=3,5,7,...)    (4.10) 

with 7i and y2 as defined in equations (4.4) 
and (4.6). 

(d) Clamped at a;=0 and Free at x=a: 

„73Z 73X X(x)=cos —— cosh 
a a 

where 

/sin73-sinhT3ysinM_silihT3g\ 
\cos73—cosh73/\      a aj 

(m=l,2,3,...)    (4.11) 

cos 73 cosh 73= — 1 (4.12) 

(e) Clamped at x=0 and Simply Supported 
at x=a: 

■vi \     •      (x     1\    sm (72/2) 

Sinh7i(^~0     («1=2,3,4,--.)    (4.13) 
41 
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with 72 as defined in equation (4.6). 
(/)  Free   at  x=0   and   Simply  Supported 

at x=a: 

aries as nodal lines, except when the boundary 
is free. 

The frequency w is given by reference 4.1 as 

*(*)=!-»       (m=l) (4.14)       W»=^{öi+ö»0)4 

v/ x     •      /»    1\ ,  sin (72, 
Z(x)=sm72^-2;+^h(7V2) 

sinh 

sin (72/2) 

*(lrs)   (m==2'3'4''-° (4-15) 

with 72 as defined in equation (4.6). 
The functions Y(y) are similarly chosen by 

the conditions at y=0 and y=a by replacing 
xbjy,aby 6, andm by n in equations (4.2) to 
(4.15). The indicators n and m are seen to be 
the number of nodal lines lying in the x- and 
^-directions, respectively, including the bound- 

+2(jj[vHxHv+(l-v)JxJv]}     (4.16) 

where Qx, Hx, and Jx are functions determined 
from table 4.1 according to the conditions at 
£=0 and x=a. 

The quantities Gv, Hv, and Jv are obtained 
from table 4.1 by replacing x by y and m by n. 

Another comprehensive set of solutions was 
later given by Janich (ref. 4.2). Fundamental 
frequencies were obtained for 18 combinations 
of boundary  conditions.   He,   too, used the 

TABLE 4.1.—Frequency Coeficients in Equation (4-.16) 

Boundary 
conditions at— 

SS». 
SSb. 
O- 

o. 

}  2, 3, 4, 
2 

3, 4, 5, 

Fb. 

0-. 
SSb. 

F"-- 

SSb. 

Fb. 

3, 4, 5, 

} 2, 3, 4, 

2, 3, 4, 

3, 4, 5, 

Gx 

m—1 
1.506 

1 

0 
0 

1.506 

1 
m~2 

0.597 
1.494 

ff* 

(TO-1)2 

1.248 

HJ[<-(^)-J 
0 
0 

1.248 

H) ■] 
(• 

(m4) 
»yn 4_i 
V |_      (»-§)*J 

Hlf-^] 

(m-1)2 

1.248 

HJp-^J 
0 

12/TT
2 

5.017 

-0. 0870 
1.347 

(-O'p-FS;] 

3/7T2 

1+ ("-0'['+(^>] 
0.471 
3.284 

H)Ti+f%J 
aa;=0. 
bx=a. 
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Rayleigh method, but used simple trigono- 
metric functions which satisfied only the geo- 
metric boundary conditions. The mode shapes 
used in reference 4.2 are given in table 4.2. 

The frequency <o is given in reference 4.2 for 
c=0.25 by 

w'DK 
N 

9       T . 
W  =-7- (4.17) 

with K and N given in table 4.2. 
The results of references 4.1 and 4.2 are both 

obtained by the Rayleigh method and, hence, 
yield upper bounds on the frequency values. 
However, it must be pointed out that both sets 
of results have limitations in accuracy. The 
three cases not included in table 4.2 (F-F-F-F, 

SS-F-F-F, and SS-SS-F-F) yield such poor 
results with mode shapes of the same type that 
they were not included in reference 4.2. The 
force-type boundary conditions as well as the 
geometric are satisfied in reference 4.1; this 
usually improves the accuracy of the solution, 
but occasionally makes it worse. The results 
determined from table 4.1 will decrease in 
accuracy for higher mode shapes (increasing 
values of m and n). 

A partial summary of vibration frequencies 
for rectangular plates was given in reference 4.3. 

4.1    SS-SS-SS-SS 

The problem of plates with all sides SS is the 
most simple to solve for the rectangular plate. 

TABLE 4.2.-Frequency Coefficients for Equation (4.17) and Different Mode Shapes; v=0.25 

Boundary conditions 

frlb 
S7TT77T7 
"'■"' 

i     o 

1 J 

Deflection function or mode shape 

/ 
/ 
/ 
7/////} 

(l-co-gXco-^-l) 

(cos ^-l) sin: Try 

b 

N 

2.25 

1.50 

.340 

.75 

2TTX    , cos 1 
a 

(-£— SX-3?—I) 

(-E—SX'—I) 

.50 

li50 

1.00 

.227 

K 

*+8G),+-iaG)4 

3.85+5(!)2
+8(C> 

0.0468+0.340 (|) +1.814 (£) 

4+2g)2+0.75g)4 

I) 

2.56+3.12 (g) +2.56 (J) 

0.581+0.213 dj +0.031 (j) 
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Boundary conditions 

A  
/ 
/ 
'7777777' 

 1 

 I 

cz 

Deflection function or mode shape 

(.-co.gX-.osl) 

3TTX TTX\      .      TV 
00B__0OB_lBm_ 

/        3irX TX\ (™s___cos_) 

ZTVX VX 
C08-JT-—COSjr- 

2a 2a 

' irx\ T2   .   vy 
}-C0S2a)v8mT 

/ 
/ 
4 

/,           vx\ y 

r 

/ 
/ H             irX 

1—cos s- 2a / 

1 1 
1                    1 
1 I 

.    TX   .   vy 
sin — sin — a         o 

1                    1 

L___J / .    TTX\ y 

1             1 

i      ! .      TX 
sin — 

a 

JV 

0.0514 

.50 

.333 

1.00 

.1134 

.0756 

.2268 

.25 

.1667 

.50 

K 

/ v 0.0071 + 0.024 (|J 

+ 0.0071 (J)4 

1.28+1.25 (j) + 0.50 (|) 

0.853+0.190 

2.56 

0.0156+C 

(92 

0.0852 (j) 

+ 0.1134 (j)* 

0.0104+0.0190 (J) 

0.0313 

0.25+0.50 (I) +0.25 (Jj 

0.1667+0.0760 

0.50 

©' 

The boundary conditions are 

w=0, Mx=0       (for z=0, a) 0,a)\ 

0,6)/ 
(4.18) 

w=0,-M„=0       (fory= 

When equations (1.29) are used it is seen that 

Ti7       A      •   mitt • nirV (A m\ Wmn=^Lmnsm-^-sin-^ (4.19) 

satisfies the boundary conditions, where Amn is 
an amplitude coefficient determined from the 
initial conditions of the problem and m and n 
are integers. Substituting equation (4.19) into 
equation (1.4) gives the frequency 

W!KT')+(T)*] (4.20) 
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A plot of four frequency parameters as a func- 
tion of the b/a ratio was made by Vet (ref. 4.4) 
and is shown in figure 4.1. 

S 0.8 

0.6 

> '^ 
y 

sfi 
*»' 

-'' f* s -.'> 
' / ..■? 

T ^ 

,     ' 
11 
/ ss        ] -- 

S                SS   0   .. 
ss         1 ^ 

1 —b—^ 

1  1 1 1 II 
60    80 100 200 

0.90   cubzv(57D 
400    600 8001000 

FIGURE   4.1.—Frequency   parameter   0.90W6
2
VP/D   for 

SS-SS-SS-SS rectangular plate.    (After ref. 4.4) 

The node lines for a general rectangle are 
simply straight lines parallel to the edges as 
shown in figure 4.2. For square plates, how- 
ever, two mode shapes may have the same 
frequency and exist simultaneously, their rela- 
tive amplitudes depending upon the initial con- 
ditions. Sequences of nodal patterns obtain- 
able for a given frequency are shown for three 
cases from reference 4.5 in figure 4.3. The 
problem was also solved in reference 4.6 by 
replacing the plate by an assemblage of beams 
and concentrated masses. 

ül|4=üJ4l   < 

W|5=U5| 

\ 

A2|=I.02A|2 

A4I=-I.02AI4 
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1 \ i 
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A„=-3.57Au A4|=-IOAu 

A 2I=2A 12 
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I      I      1 
I      I      1 
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>     /     I 
!  >   ' 1 

! i '. 
1 
1 

/ V \ \ 
1 

A5,=-5A|5 

FIGURE   4.3.—Combined   nodal   patterns   for   a   SS 
square plate.    (After ref. 4.5) 

lern (eq. (1.4)), are exactly satisfied by using 
the first half of equation (1.37) with a=mir/a; 
that is, 

W(x, y)=2 [An sin VF=^2/ 
m~l 

+Bm cosVF-afy+O, sinh VF+^i/ 

FIGURE 4.2.—Nodal patterns for SS rectangular plate 
with a>6.. 

4.2   TWO OPPOSITE SIDES SS 

There are six combinations of boundary con- 
ditions for which two opposite sides are SS. 
One of these (for the plate with all sides SS 
which has a simple, exact solution) has already 
been discussed. The remaining five cases also 
have exact (although more difficult) solutions. 
When the edges x=0 and x=a are SS, it is 
seen that the conditions at these boundaries, 
as well as the differential equation of the prob- 

+Dm cosh V^2+a22/] sin ax    (4.21) 

Applying the remaining four homogeneous 
boundary conditions results in a set of fourth- 
order characteristic determinants, one for each 
value of a. Each determinant has an infinity 
of solutions for the eigenvalues k. Any of the 
four edges being free is a necessary and suffi- 
cient condition for the frequency parameter to 
depend upon Poisson's ratio. 

The first straightforward, comprehensive 
solution of these five cases by the method out- 
lined above was given by Fletcher, Woodfield, 
and Larsen in reference 4.7 and in reference 4.8. 
In reference 4.7 an excellent analysis is made of 
the conditions which lead to &2<a2 requiring 
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that sin ■yjk2—a2y and cos ^k2—o?y be replaced 
in equation (1.36) by sinh -Ja2—k2y and cosh 
■^o?—¥y, respectively. They formulated the 
characteristic determinants and solved for the 
eigenfunctions for all five cases and published 
the first six frequencies of a square plate in each 
case. 

Iguchi (ref. 4.9) solved the problems involving 
one edge C and the opposite either C or SS and 
presented extensive numerical results for them. 
Das (ref. 4.10) formulated characteristic equa- 
tions and eigenfunctions for the two cases of 
opposite edges either F or C. Pertinent dis- 
cussion can also be found in reference 4.11. 

It has been shown (e.g., refs. 4.9 and 4.12) 
that a useful analogy exists between the vibra- 
tion and buckling of rectangular plates having 
two opposite sides SS. The deflection of a 
rectangular plate loaded by compressive inplane 
forces is given by (see the appendix) 

7-WW AT    Ö2'W   .    „,T i>2W 
DViw=-N*W2+2N*"Zxöy- ■K 

Ö2W 
"cfy2 (4.22) 

where Nx=Nx(x,y) and Ny are compressive 
forces per unit length acting in the x- and y- 
directions, respectively, and Nxy is the inplane 
shearing force per unit length. Taking the case 
Nxy=Ny=0   and   assuming   that   w(x, y) = 

lLjYm(y) sin  (where m=l, 2, . . .) satisfy 
m a> 
the SS boundary conditions at a:=0 and x—a 
and reduce equation (4.22) to the two homo- 
geneous equations 

d?Yn 

dy2 

d2Y, 

dy2 

-,+(aV§"a2)rm'=o 

-2-(«VI+*2) Ym_=0 

►     (4.23) 

where a=m^\a, as before. When equations 
(4.23) are compared with equations (1.34), it is 
seen that the solution for buckling also solves 
the vibration problem if N^/D is replaced by 

FIGURE 4.4.—SS-C-SS-C plate. 

pu?/D and the boundary conditions on the re- 
maining two edges are the same. Thus the 
critical buckling load Nx gives vibration fre- 
quencies according to 

Ns 
pw 

(4.24) 

4.2.1    SS-C-SS-C 
Recognizing that the solution for SS-C-SS-C 

plates (fig. 4.4) given by equation (1.37) must 
be valid for all independent values of x and sub- 
stituting into the boundary conditions 

W(x, 0)=^(x, 0)=W(x, b)=™(x, 6)=0 

(4.25) 

results in the four homogeneous equations 

Bm+Dm=0 

-AmAi+<7mX2=0 

Am sin \J>+Bm cos \J)+Gm sinh \2b 

-\-Dm cosh X2& = 0 

Am\i cos 'Kib—Bmki sin \ib+Om\2 cosh \J> 

+Dm\2 sinh X2&=0- 

(4.26) 
where 

x^VF= 

\2= VF+ 

F-aO 
(4.27) 

For a nontrivial solution the determinant of the coefficients of equations (4.26) must vanish; that is, 

0 1 0 1 
Xi 0 x2 0 

sin X^ cos Xi& sinh X26 cosh X26 
i cos \ib —Xi sin Xi& X2 cosh X2ft X2 sinh Xa6 

=0 (4.28) 
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TABLE 4.3.—First- 6 Frequency Parameters X= coa%/p/D for SS-C-SS-C Square Plate 

X  28. 946 54. 743 69. 320 94. 584 102. 213 129. 086 

Mode . . . . . wu «si «12 «22 «31 «13 

which, when expanded, yields the characteristic 
equation 

2X1X2(cos Xi& cosh \2b— 1) 

+ (X?-X|) sin X,6 sinh X26=0    (4.29) 

Iguchi (ref. 4.9) solved this problem in essen- 
tially the same manner and obtained the first 
six frequency parameters for the case of the 
square.   They are presented in table 4.3. 

For the frequency comM, the subscript m identifies 
the number of half-sine waves in the z-direction 
and the subscript n identifies the nth lowest root 
for a fixed value of m. The results of table 4.3 
are also verified in references 4.7 and 4.13. 

TABLE 4.4.—12 Higher Frequency Parameters 
X=wa2(Vp/D) {not a Complete Set) jor SS- 
C-SS-C Square Plate 

X Mode X Mode 

140.189  «32 

«23 

«33 

»14 

»24 

«34 

307.300  
154.765  
199.797  
208.373  
234.578  
279.627  

333.926. __  ... 
379.274. 
425.885  
452.877  
498.501  

»25 

«35 

«18 

»26 

»36 

&j5i) which would separate some of the values in 
table 4.4 if a complete, sequential list were 
available. These can be obtained from the 
work of ödman (ref. 4.13) who solved equation 
(4.29) with less accuracy than did Iguchi but 
extracted the first six roots for m=l, 2, . . ., 6. 
The corresponding frequency parameters are 
listed in table 4.5. 

Nishimura (ref. 4.14) achieved accurate results 
for the square using relatively coarse finite dif- 
ference grids. He obtained coa%/p/D=28.974 
for the fundamental mode by solving only third- 
order finite-difference determinants. 

For nonsquare plates, fundamental frequen- 
cies are available for various aspect ratios. 
These are listed in table 4.6 (see also ref. 4.9). 
Hamada (ref. 4.15) used a variational approach 
and Kanazawa and Kawai (ref. 4.16) used an 

TABLE 4.5.—Frequency Parameters coa%/p/D for 
SS-C-SS-C Square Plate 

In addition, reference 4.9 gives 12 more roots 
as listed in table 4.4. It must be emphasized 
that other frequencies exist (e.g., 041, «42, and 

TABLE 4.6.—Fundamental Frequency Parameters for a SS-C-SS-C Rectangular Plate 

m 
aa? yp/D for values of n of— 

1 2 3 4 5 6 

1 —. 28.9 69.2 129.1 208.6 307.4 426.1 
2  54.8 94.6 154.8 234.5 333.9 452.9 
3  102. 2 140.2 199.9 279.5 379. 1 498.4 
4  170. 3 206.6 265.2 344.6 443.8 563.5 
5..__ 258.5 293.8 351. 1 429.8 529.0 647.9 
6.... 366.8 400.9 457.4 535. 1 633. 7 752.2 

Parameter 

X=UO
2
(VP7D)-- 

X for values of b/a and X* for values of a/b of— 

28. 946 
28. 946 

1.5 

17. 369 
24. 047 

13. 688 
23. 814 

2.5 

12. 129 
23. 271 

11. 359 
22. 985 

9.869 
22. 373 
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TABLE 4.7.—Frequency Parameter cob2(Vp/I>) far the Second Antisymmetric Mode of a SS-C-SS-C 
Rectangular Plate 

Boundary conditions 
a)62(Vp/ß) for value of a/6 of— 

r 1.5 2 2.5 3 00 

68. 181 65. 118 63. 641 62. 967 62. 602 £        1 
1 .,9,.J 

b 61. 178 

7777777 

integral formulation to obtain confirming results 
for several a/b ratios. In reference 4.16, results 
are also obtained for the mode antisymmetric 
about y=0, for a/b^l. Unfortunately, this is 
the second antisymmetric mode shape of the 
plate. These frequency parameters are given 
in table 4.7. 

The first six roots of equation (4.29) for 
m=l, 2, . . ., 6 and for a/6=0.5, 1.5, and 2.0 
were found in reference 4.13. The correspond- 
ing frequency parameters are listed in table 
4.8. 

By using equation (4.24), one can apply 
stability results to this problem. Fundamental 
frequencies are listed in table 4.9 for various 
a/b ratios as given on page 367 of reference 4.17. 

Eliminating three of the constants (e.g., 
Bn, Cn, and Dn) in equations (4.26) in favor of 
a fourth (e.g., A„) leaves one equation giving 
the eigenfunctions, or mode shapes, for this 
case. From reference 4.7 it is known to be: 

w(x, y) = [(cosh X26—cos Xi&) (Xi sinh X2y 
—X2 sin \y) 

— (Xj sinh X2 sin Xiö) (cosh X2y—cos Xii/)] sin ax 

(4.30) 

Substitution of Xi and X2 determined from 
equations (4.27) into equation (4.30), using the 
frequencies from the tables of this section, 
completely determines the mode shapes.    Mode 

TABLE 4.8.—Frequency Parameters cob2Vp/D far SS-C-SS-C Rectangular Pia te 

a 
o)62Vp/-D for values of n of— 

b 
m 

1 2 3 4 5 6 

1 54.8 94.6 154.8 234.5 333.9 452.9 
2 170.3 206. 6 265.2 344.6 443.8 563.5 

0.5 3 366.8 400.9 457.4 535. 1 633.7 752.2 

4 642.8 675.9 730.5 806.9 904.2 1021 

5 997.7 1030 1084 1159 1257 1375 

6 1432 1464 1517 1592 1686 1802 

1 25.0 64.9 124.5 203.7 302.4 420.9 

2 35. 1 75.6 135.7 215. 1 314. 1 432.8 

3 54.8 94.6 154.8 234.5 333.9 452.9 
1.5 4 84. 1 122.3 182. 6 262.5 362: 0 481. 1 

5 122.6 160.0 219.3 298.9 398.5 518.0 

6 170. 3 206. 6 265.2 344. 6 443.8 563.5 

1 23.8 63.4 123.0 202. 1 300.7 419.0 

2 28.9 69.2 129. 1 208.6 307.4 426. 1 

3 39.0 79.5 139.7 219. 3 318.2 437. 1 
2.0 4 54.8 94. 6 154.8 234.5 333.9 452.9 

5 75.9 114.7 174.6 254.7 354. 1 473.3 

6 102.2 140.2 199.9 279.5 379. 1 498.4 
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0 b 

FIGUBE 4.5.—Mode shapes Wmn{$, V)=Xm(x)Yn(y) for 36 modes of a SS-C-SS-C square plate, m, n=l, 2, . . . 6. 
(After ref. 4.13) 

TABLE 4.9.—Fundamental Frequency Parameters for SS-C-SS-C Rectangular Plate 

alb 0.4 0.5 0.6 0.7 0.8 0.9 

wa2-y/p/D 12. 139 13. 718 15. 692 18. 258 20. 824 24. 080 



50 VIBRATION  OF PLATES 

°'b 

FIGURE 4.6.—Variation in Yn(y) with a/b for the mode 
m=6, n=5 for a SS-C-SS-C rectangular plate. 
(After ref. 4.13) 

shapes were computed and plotted in reference 
4.13 for the first six roots of equation (4.29) 
for m=l, 2, . . ., 6. Plots were made for 
a/b=0.5, 1.0, 1.5, and 2.0. These are repro- 
duced in figure 4.5 for a/b=1.0 alone. The 
mode shapes are represented as the products 
Wmn(x,y)=Xm(x)Yn(y). Each of the six parts 
of figure 4.5 corresponds to one value of m. 
The first six modes having that value of m 
are then determined from the separate curves 
Yn{y). The curves for YJy) do not change mark- 
edly for variation of a/b in the range 0.5<a/& 
<2.0. The maximum variations for the 36 modes 
shown in reference 4.13 are illustrated by 
figure 4.6, which is for the mode m=6, n=5. 

When F+a2»l, then cosh -yjk2+a2b-^ 
sinh iJW+tfb and equation (4.29) reduces to 
the following asymptotic formula (ref. 4.7): 

(m,n integers)    (4.31) 

Other approximate formulas are given pre- 
viously in equations (4.16) and (4.17). Fre- 
quency parameters obtained from equation 
(4.16) are given in reference 4.4 and are re- 
produced as figure 4.7. 

The problem was also studied in references 
4.18 to 4.21. 

0.6 

0.4 

J 
/ 
' SS            T     ' 

C   a -■ 
SS            I 

- 
1  1 111 

20 40     60   8OIO0 200 400   600 8001000 
0.90  (i>b2v^7D 

FIGURE 4.7.—Frequency parameter 0.90wb2Vp/D for a 
SS-C-SS-C rectangular plate.    (After ref. 4.4) 

4.2.2   SS-C-SS-SS 
The boundary conditions for SS-C-SS-SS 

rectangular  plates   (fig.   4.8)   at  y=0, b   are 

W(x, 0)=Mv(x, 0)=W(x, b)=^ (x, 6)=0 

(4.32) 

Substituting equation (1.37) into equation 
(4.32) as in the previous section yields the 
characteristic equation (ref. 4.7) 

X2 cosh X2& sin Xi6=Xi sinh X26 cos Xj6   (4.33) 

FIGURE 4.8.—SS-C-SS-SS plate. 

TABLE 4.10—First 6 Frequency Parameters X=coa2Vp/D/<w SS-C-SS-SS Square Plate 

X   23. 646 51. 674 58. 641 86. 126 100. 259 113. 217 

Mode. .-  wii "21 0)12 0>22 "31 G>13 
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where Xx and X2 are defined in equations (4.27). 
Iguchi (ref. 4.9) also obtained equation (4.33) 

and presented the first six frequencies, for the 
case of the square. They are given in table 
4.10. These results are verified in reference 
4.7. Three additional frequencies listed in 
reference 4.9 are given in table 4.11. Explana- 
tion of the significance of these roots appears 
in the preceding section (4.2.1). 

TABLE   4.JJL—8   High-Frequency   Parameters 
X=wa2Vp/D for SS-C-SS-SS Square Plate 

SS-SS-SS-SS plate when a=b. This is given 
here as table 4.12, where m denotes the number 
of half-sine waves in the z-direction (fig. 4.8) 
and n denotes the mode number for a given 
value of m. 

TABLE 4.12.—-Ratio of Frequencies of a SS-C- 
SS-SS Plate to Those of SS-SS-SS-SS 
Plate When a=b 

X  133. 784 140. 840 188. 102 

Mode  <">32 &>23 "33 

m 
Frequency ratio for value of n— 

1 2 3 4 5 6 

1  1. 19 
1.21 
1. 14 
1. 11 
1. 10 
1.08 

1.06 
1.09 
1.09 
1.09 
1.08 
1. 07 

1.02 
1.05 
1.06 
1.06 
1.06 
1.06 

1.01 
1.02 
1.03 
1.04 
1.05 
1.05 

1.00 
1.02 
1.02 
1.03 
1.03 
1. 04 

1.00 
1.01 
1.02 
1 02 

2  
3  
4  
5  
6  

1.02 
1.02 

Ungar (ref. 4.22) presented an interesting 
table which shows the ratio of the frequencies 
of   the   SS-C-SS-SS  plate   to   those   of   the 

For nonsquare plates, fundamental frequencies are available for various aspect ratios as listed 
in table 4.13 (ref. 4.9). Hamada (ref. 4.15) used a variational approach and Kanazawa and Kawai 
(ref. 4.16) used an integral equation formulation to obtain confirming results for several a/b ratios. 

TABLE 4.13—Fundamental Frequency Parameters for SS-C-SS-SS Rectangular Plate 

Frequency parameter 
X for values of b/a or X* for values of a/b of— 

1 1.5 2 2.5 3 OO 

\=wa2(Vp75)  23. 646 
23. 646 

15. 573 
18. 899 

12. 918 
17. 330 

11. 754 
16. 629 

11. 142 
16. 254 

9.869 
15. 425 X*=u&2(V^D)  

The mode shapes are (ref. 4.7) 

W(x, y)=(sin \xb sinh \2y—sinh \2b sin Xij/) sin ax 

(4.34) 

When P+a2>>l, equation (4.33) reduces 
to (ref. 4.7) 

(m, n integers)   (4.35) 

Other   approximate   formulas   are   given   in 
equations (4.16) and (4.17).    Frequency param- 

eters obtained from equation (4.16) are given 
in figure 4.9 (ref. 4.4). The problem was also 
discussed in references 4.23 and 4.24. 

4.2.3   SS-C-SS-F 

The  boundary  conditions  for  SS-C-SS-F 
rectangular plates (fig. 4.10) at y=0, b are 

bW 
W(x, 0)=^(x, 0)=Mw(x, b)=Vv(x, b)=0 

(4.36) 

All results reported in this section are from 
reference 4.7. 
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FIGURE 4.9.—Frequency parameter O.QOaW-ifpID for a 
SS-C-SS-SS rectangular plate.    (After ref. 4.4) 

FIGUEB 4.10.—SS-C-SS-F plate. 

Substituting equation (1.37)  into equation 
(4.36) yields the characteristic equation 

2X1X2[0-(l-^)2]+2XiX2[g)+(l-v)2] 

cosX,6 cosh X26+(X1-X?) [(D^1"-2') 

_(l_y)2"]smXi&smhX26=0    (4.37) 

where Xi and X2 are defined in equations (4.27). 
The first six frequencies for the case of the 

square and J/=0.3 are listed in table 4.14, 
with umn as described in the section covering 
SS-C-SS-C plates (sec. 4.2.1). The mode 
shapes are 

W(x, y)=(/[^y+(l-iO]coah\,& 

+[®,-U->)]«»M} 

(X2 sin Xi?/—Xi sinh \2y) 

+ / [(^Y+ (1 -")~k sinh X26 

+[(|y-(l-v)]x2sinX16j- 

(cosh X2j/—cos Xi?/)j sin ax   (4.38) 

TABLE 4.14—First 6 Frequency Parameters X=wa2Vp/D for SS-C-SS-F Square Plate; v=O.S 

\__    _      --- 12.69 33.06 41.70 63.01 72.40 90.61 

Mode       -    -   «n «»12 "21 6)22 W13 <>>81 

When F=a2»l, equation (4.37) reduces to 

^{(?)+CT}v! 
(m,n integers)    (4.39) 

Another   approximate   formula   is   given   by 
equation (4.17). 

By using  equation  (4.24),  one  can  apply 
stability results to this problem.    Fundamental 

frequencies given in reference 4.17 (p. 364) 
and reference 4.25 (p. 298) are listed in table 
4.15 for various a/b ratios for y=0.25. 

4.2.4   SS-SS-SS-F 

The boundary conditions for SS-SS-SS-F 
rectangular plates (fig. 4.11) at y=0, b are 

W(x, 0)=M,(z, 0)=Mv(x, b)=Vv(x, 6)=0 
(4.40) 



FIGURE 4.11.—SS-SS-SS-F plate. 

TABLE 4.15.—Fundamental Frequency Param- 
eters for 8S-C-SS-F Rectangular Plate; v=0.25 

alb üio2Vp/ß alb ua^p/D 

1.0  12. 859 1.6  18. 258 
1.1  13. 520 1.7  19. 343 
1.2  14. 310 1.8  20. 527 
1.3  15. 198 1.9  21. 910 
1.4  16. 086 2.0  23. 192 
1.5  17. 172 2.2  26. 153 

All results reported in  this section  are from 
reference 4.7. 

Substituting equation  (1.37)  into equation 
(4.40) yields the characteristic equation 

X2   (-) — (1—c)    coshX26sinXx6 

=XlIW +(1-"M smnX2&cosX!6    (4.41) 

where Xi and X2 are defined in equations (4.27). 
The first six frequencies for the case of the 

square and v=0.3 are listed in table 4.16, with 
wmn as described in the section covering 
SS-C-SS-C plates (sec. 4.2.1). 
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The mode shapes are 

W(x, 2/)=|^y_(i_i;)Jsi11x22/ 

+ (-)+(l—v)   sinhX26 sin Xi?/ fsinaa; 

(4.42) 

When F+a2>>l, equation (4.41) reduces to 

^{(?)+m'}V! 
(m,n integers)   (4.43) 

Other   approximate   formulas   are   given   by 
equations (4.16) and (4.17). 

By using equation (4.24), one can apply 
stability results to this problem. Fundamental 
frequencies given in reference 4.17 (p. 362) and 
reference 4.25 (p. 297) are listed in table 4.17 
for various a/b ratios for i>=0.25. 

4.2.5   SS-F-SS-F 

The boundary conditions for SS-F-SS-F 
rectangular plates (fig. 4.12) at y=0, b are 

Mv(x, 0)=Vv(x, 0)=Mv(x, b)=Vv{x, b)=0 

(4.44) 

Substituting   equation   (1.37)   into equations 
(4.44) yields the characteristic equation 

{4©-<->]-40+<->]} 
XsinX,6sinhX26=2X1X2[~p) -(l-v)2l 

X(cosX2&coshX26-l)    (4.45) 

where Xi and X2 are defined in equation (4.27). 

TABLE 4.16.—First 6 Frequency Parameters X=ua2(Vp/D) jor SS-SS-SS-F Square Plate; v=0.S 

X  11.68 27.76 41.20 59.07 61.86 90.29 

Mode  .._  "ii «12 «21 «22 «13 
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FIGURE 4.12.—SS-F-SS-F plate. 

TABLE 4.17.—Fundamental Frequency Param- 
eters for SS-SS-SS-F Rectangular Plate; v= 
0.25 

a/b wa?-\p/D a/6 OWPAD 

0 50 10. 362 
11. 349 
11. 547 
11. 843 
12. 632 
13. 520 
14. 409 

1.8  15. 396 
0 60 2.0  16. 481 
0 80 2.5  19. 244 
1 0 3.0  22. 205 
1 2 4.0  28. 324 
1 4 5.0  35. 133 
1.6        

The first exact solution to this problem was 
achieved by Voigt (ref. 4.26) in 1893. The first 
six frequencies for the case of the square and 
y=0.3 are taken from reference 4.7 and listed 
in table 4.18, with wmn as described in the sec- 
tion covering SS-C-SS-C plates (sec. 4.2.1). 
The frequencies «n and «21 are the only fre- 
quencies among the first six frequencies for each 
of the six cases of plates having two opposite 
edges simply supported for which P<«2. 

For non-square plates, a complete set of lowest 
frequencies formV<«a2Vp/D<160 has been cal- 
culated by Jankovic (ref. 4.27) for various 
aspect ratios and for p=0.3 and v=0.16.    These 

are given in tables 4.19 and 4.20. In these tables 
the notation umn is the same as before; that is, 
m gives the number of half-sine waves in the 
z-direction, and n is the nth lowest frequency 
for a given value of m. ödman (ref. 4.13) also 
obtained frequency parameters for j»=l/6 and 
a/b=0.5, 1.0, 1.5, and 2.0. He gave 36 values, 
but he assumed that for n= 1 the plate behaves 
exactly like a beam. His results, where appli- 
cable, are essentially verified in table 4.19. 
Roots obtained from reference 4.13 which sup- 
plement those of reference 4.27 are also shown 
in the column for a/6=1.0 in table 4.19. It 
must be remembered that the frequencies o>ml are 
omitted in these portions of the table. 

When the results of table 4.20, when a/b=l, 
are compared with those of table 4.18, it can 
be seen that disagreement exists for values of 
wn and ü>2i. The problem appears to be the 
assumption in reference 4.27 that k2>a2 for 
all roots. In reference 4.7 it is shown that 
k2<a2 if 

<i)<fe-o!   <«•> m 

This gives critical constants for various values 
of Poisson's ratio as listed in table 4.21. Thus, 
for a square plate, if i/=0.3, negative values 
of k2-o? exist for m<15. Even though the 
roots for which F<a2 are not handled correctly 
in reference 4.27, the frequencies arising from 
these roots should not differ markedly from 
those given in tables 4.19 and 4.20. 

Zeissig in an early piece of work (ref. 4.28, 
published in 1898) also set up the frequency 
determinant for an exact solution and achieved 
a comprehensive set of solutions which are 
shown in figure 4.13. In this figure, solid 
curves identify symmetric modes in y and 
broken curves identify antisymmetric modes 
in y. The 10 numbered points indicate in- 
teresting intersections or  "transition points" 

TABLE 4.18.—First 6 Frequency Parameters X=coa2(Vp/D) far SS-F-SS-F Square Plate; v=0.8 

X   _ 9.631 16.13 36.72 38.94 46.74 70.75 

Mode               -  con 0)12 W13 "21 &>22 0>23 
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TABLE 4.21.—Critical Constants Determining When k2<a2/or SS-F-SS-F Plate 

57 

V 0 0.1 0.2 0.3 0.4 0.5 

/b\  00 162. 507 36. 463 14. 455 7.202 4. 051 ww 

- symmetric modes in y ■ antisymmetric modes in y 

FIGURE 4.13.—Frequency parameters u;a2/ir2Vp/jD for 
various a/b ratios of a rectangular SS-F-SS-F plate. 
Numbered points are intersections where two modes 
can exist simultaneously.    (After ref. 4.28) 

where two modes can exist simultaneously. 
For example, at point 1 the fifth root for 
m=l (called 1/4 mode) and the third root for 
m=3 (3/2 mode) can exist simultaneously for 
a plate having an a/b ratio of approximately 
0.9. Figures 4.14(a) and 4.14(6) (reprinted 
from ref. 4.28) show the nodal patterns for 
these two modes. The areas denoted by plus 
signs can be taken as positive (upward) dis- 
placements and the others, as negative. If 
the initial conditions are chosen so as to excite 
each   mode   with   the   same   amplitude,   the 

308-337 0—70^—5 

(b) (c) 

+ / / - 
\ \ + 

I + 

+ \ 
1 

- 
/'+ 

lb') (c'l 

FIGURE 4.14.—Superposition of two modes having the 
same frequency, (a) Nodal pattern for 3/2 mode. 
(6) Nodal pattern for 1/4 mode, (c) Nodal pattern 
for (a) superimposed on (6). (ft1) Nodal pattern 
when initial amplitude of 1/4 mode is 180° out of 
phase, (c1) Nodal pattern for (a) superimposed 
on (61). (After ref. 4.28) 

resulting nodal pattern of the superimposed 
modes is shown in figure 4.14(c). If the initial 
amplitude of the 1/4 mode is taken 180° out of 
phase as in figure 4.14(6'), the superimposed 
motion is as in figure 4.14(c')- Stepwise 
superposition of varying ratios of the modes 
3/2 and 1/4 yields nodal patterns as shown 
in figure 4.15 (from ref. 4.13). 

1   1 

-i-T" 
44- 

"t"f" 

:—": ::;-_-_-_-_• 

. \J J > / 
'"N f'~ 

,—» 
>c "**._*' 

,''"*^- 

£»_-' "<D" u. -tt- •tt- •- 

i 
— T — 

1 -+- 

FIGURE 4.15.—Stepwise superposition of two modes 
having the same frequency. (After ref. 4.28) 
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The detailed mode shapes are (ref. 4.7): 

W(x,y)=(- (cosh X26-cos X^) [(£)*- (1 -")2] 

-fx,r(^y+(l-i')]sinhX8y+Xa 

[©2-(l-)>^} 
+ i Xl Ka)2+ (1 ~"^T Slnh X'6 
-^[(^-(l-oJfflnX.ftV 

/[(^)2-(l-v)]coshX22/ 

+ (-j +(1—1»)   cosXi?/ > j sin ax 

(4.47) 

Mode shapes were computed and plotted in 
reference 4.13 for the six roots of equation 
(4.45) for m=l, 2, . . ., 6 and »<=l/6. Unfor- 
tunately, it was assumed that for the lowest root 
(symmetry about y=0) for each value of m, the 
plate behaves exactly like a beam and, conse- 
quently, these cases were omitted in the results. 
Thus, the plotted mode shapes begin with those 
antisymmetrical about y=0. Plots are given 
in reference 4.13 for a/b=0.5, 1.0, 1.5, and 2.0 
and those for afb= 1.0 reproduced in figure 4.16. 
The mode shapes are represented as the products 
Wmn(x, y) =Xm(x)Yn(y), where x and y are 
measured with the point at the center of 
the plate taken as origin (see fig. 4.12). 
Each of the six parts of figure 4.16 corre- 
sponds to one value of m. The first six modes 
having that value of m are then determined 
from the separate curves Yn(y). The curves 
for Yn(y) do not change markedly for 
variations in a/b in the range 0.5<a/6<2.0. 
The maximum variations for the 36 modes 
shown are illustrated in figure 4.17, which cor- 
responds to m=5 and n=5. 

When k2/a2^>^>l, equation (4.45) reduces to 
(ref. 4.7) 

—{(?M*TOV? 
(m,n integers)   (4.48) 

Other approximate formulas are given in equa- 
tions (4.16) and (4.17). 

Zeissig (ref. 4.28) reported many experimen- 
tal results which essentially substantiated his 
analytical calculations. The problem was also 
formulated in references 4.10 and 4.24. 

4.3   OTHER SIMPLE EDGE CONDITIONS 

4.3.1    All Sides Clamped (C-C-C-Q 

The problem of C-C-C-C rectangular plates 
(fig. 4.18) has received a voluminous treatment 
in the literature, especially for the case of the 
square plate. The first reasonably accurate 
results for the square plate were given in 1931 by 
Sezawa (ref. 4.21), who used the series method. 
He used functions which exactly satisfied the 
differential equation (eq. (1.1)) and the bound- 
ary condition of zero deflection along all edges 
and required the slope to be zero only at the 
midpoints of the edges. This initial work has 
been followed by a host of Japanese publica- 
tions on the problem; for example, see references 
4.9, 4.15, 4.16, 4.20, and 4.29 to 4.33. 

Some variation of the series method was used 
in references 4.9, 4.20, 4.21, 4.29, 4.30, 4.32, and 
4.34 to 4.40. Particularly notable is Tomotika's 
work (refs. 4.30 and 4.41); he determined 
the fundamental frequency for the square plate 
with extreme accuracy. Like Sezawa, he chose 
functions which satisfied the deflection condi- 
tions exactly and set up an infinite characteris- 
tic determinant for the slope conditions. 
Convergence of results from a sequence of deter- 
minants obtained by truncating the infinite case 
was used to get extreme accuracy. He also 
used the Rayleigh and Weinstein methods to ob- 
tain the frequency bounds 35.9855<(<oa2Vp/D) 
<36.09 for a square of dimension ax a. 

Finite difference techniques were used in 
references 4.14, 4.38, 4.42, and 4.43; the Galer- 
kin technique, in references 4.13, 4.33, 4.44, 
4.45, and 4.46; the Rayleigh or Rayleigh-Ritz 
method, in references 4.1, 4.2, 4.47, and 4.48; 
Weinstein's method, in reference 4.49; integral 
equations, in reference 4.16; and a variational 
approach, in reference 4.15. Other publica- 
tions include references 4.18, 4.31, and 4.50 to 
4.56. A notable lack of experimental results 
exists. 
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FIGUBE 4.16.—Mode shapes Wmn(x, y) = Xm(x) Yn(y) for 36 modes of a SS-F-SS-F square plate.    n=2, 3, ... 7. 
(After ref. 4.13) 

Table 4.22 summarizes the first six sets of 
frequencies, nodal lines, and amplitude coeffi- 
cients for a square plate having side length a. 
Iguchi (ref. 4.9) did not find the fourth mode in 
his work. Young (ref. 4.47) used the products 
of beam functions (i.e., eigenfunctions for C-C 
beams) and the Kayleigh-Ritz method to ob- 
tain accurate upper bounds. The resulting 
mode shapes are of the form 

W(x,y)=jt S;lmJcosh^-cos^ 
m=l»=l L * Q> 

-am(sinh^-sin^)][coshf 

-cosM_are(sinh?_sin^]    (4.49) 

where the values of Amn are given in table 4.22, 
those of a and e are given in table 4.23, and 
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FIGURE 4.18.—C-C-C-C rectangular plate. 

TABLE 4.23.—Eigenfunction Parameters for a 
C-G Beam 

FIGURE 4.17.—Variation in Yn(y) with a/6 for the 
mode m=b, ra=5 for a SS-F-SS-F rectangular plate. 
(After ref. 4.13) 

the origin of the ^-coordinate system is taken 
at one corner of the plate as shown in figure 
4.18. 

Further results were obtained by Bolotin 
(ref. 4.57), who used a variation of the series 
method to obtain approximate results for the 
square. These are summarized in table 4.24. 
In table 4.24 odd values of m yield modes sym- 
metric about the y-axis, even values of m yield 
modes antisymmetric about the y-axis, and simi- 
larly for n with respect to the x-axis.   It is 

TABLE 4.22.—First 6 Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for 
a C-C-C-0 Square Plate 

m, n Cm,  «n Gut)  Cn 

1   .. _ ... - 0. 98250222 
1. 00077731 
0. 99996645 
1. 00000145 
0. 99999994 
1. 00000000 
1. 0 

4. 7300408 
2    7. 8532046 
3   .. -_- ... 10. 9956078 
4     14. 1371655 
5   -. _ 17. 2787596 
6 _   ... 20. 4203522 
r>6-_  (2r+l)ir/2 

Mode 

Vi- » 35. 9866 
b 35. 99 

° 73. 40 
b 73. 41 

• 108. 22 
b 108. 27 b 131. 64 

° 132. 18 
b 132. 25 

° 164. 99 
b 165.15 

Nodal 
lines. i 

///// 

7Z722L 

/ZZZ<7 1,-—', 
77777, 

77721 

/, 

9777, 

ZZZ7. 

/, 

Ampli- 
tude co- 
efficient b 

Au= 1.0000 
Ai3=0.0142 
Ai5= 0.0020 
A3l= 0.0142 
A33= -0.0031 
A36=-0.0009 
Aa = 0.0020 
A53=-0.0009 
A55=-0.0004 

A12= 1.0000 
Au=0.0101 
Au= 0.0020 
A32=0.0406 
A34=-0.0022 
A36=-0.0007 
A62= 0.0070 
Au= -0.0011 
AM= -0.0005 

A22= 1.0000 
Au=0.0326 
A29= 0.0073 
A42= 0.0326 
Aa= -0.0019 
A46=-0.0010 
A62=0.0073 
A64=- 0.0010 
A66=-0.0006 

Aa= 1.0000 
Ai5= 0.0085 
AM=-1.0000 
A35=-0.0141 
AH= -0.0085 
A53 = 0.0141 

An=-0.0280 
A i3= 1.0000 
A ,5= 0.0055 
A31= 1.0000 
A33=0.1267 
A35=0.0118 
A5i=0.0055 
A53=0.0118 
A65=-0.0018 

A12=-0.0406 
A i4= -0.0105 
A18=-0.0017 
A32= 1.0000 
A34= 0.0560 
A36= 0.0141 
A52=0.0238 
A54=-0.0011 
A58=- 0.0009 

» Work of Tomotika (ref. 4.30). 
b Work of Young (ref. 4.47). 
c Work of Iguchi (ref. 4.9). 



RECTANGULAR  PLATES 61 

TABLE  4.24.—Approximate Frequencies for a 
C-C-C-C Square Plate 

m n «0
2
VP7D 

1 1 35.10 
2 1 72.90 
2 2 107. 47 
3 1 131. 63 
3 2 164. 39 
4 1 210. 35 
3 3 219. 32 
4 2 242. 20 
4 3 295. 69 
4 4 370. 66 

TABLE 4.25.—Bounds on Frequency Parameters 
W&VP/D for Fourfold Symmetric Modes of a 
C-C-C-C Square Plate 

noted that only one root is given in this table 
in the vicinity of 132. The general formula 
for frequency for a square when m=n is (ref. 
4.57) _ 

w-=2(w+D^V?   (4-5o) 

Bazley, Fox, and Stadter (ref. 4.58) used a 
method developed in reference 4.59 to compute 
lower bounds for the first 15 frequencies of the 
following symmetry class of a square: With an 
5y-coordinate system having its origin at the 
plate center and axes parallel to the edges, the 
modes are symmetric with respect to both x 
and y and are unaltered by interchange of x 
and y (fourfold symmetry). (Thus, the first 
and fifth modes of table 4.22 would be the only 
modes shown which would fall into this sym- 
metry class.) They also obtained extremely 
accurate upper bounds by the Rayleigh-Ritz 
method by taking the first 50 admissible prod- 
ucts of C-C beam functions. Double-precision 
arithmetic (16 significant figures) was used in 
the computations where necessary. Results 
are listed in table 4.25. In this table results 
from the Rayleigh-Ritz method are given using 
both 25 and 50 admissible functions to show 
the rate of convergence. 

Another significant contribution was made 
by Aronszajn (ref. 4.49), who used Weinstein's 
method to obtain accurate lower bounds for 
the first 10 frequencies of a square plate. The 
Rayleigh-Ritz method was used to obtain 
upper bounds. These results are summarized 
in table 4.26. 

aa^pjD 

Mode 
Lower 
bound 

Upper bound 

25 terms 50 terms 

1  35. 982 35. 986 35. 986 
2  132.18 132. 21 132. 21 
3  219. 73 220. 06 220. 04 
4  309. 08 309. 17 309. 17 
5  393. 00 393. 98 393. 92 
6  558. 58 562. 38 562. 18 
7  565. 39 565. 56 565. 54 
8  646. 62 648. 58 648. 46 
9  806. 51 814. 84 814. 48 
10  900. 70 901. 00 900. 97 
11 979. 55 

1017. 5 
1127. 4 
1235. 1, 
1314. 9 

982. 93 
12  1062. 5 
13- 1147. 1 
14 __ 1315. 4 
15  1393. 4 

Ödman (ref. 4.13) used a variation of the 
Galerkin method and mode shapes of the form 
W(x,y)=X(x)Y(y), where 

X(x)=Ai cosh fnx-\-A2 sinh pß 

+A3 cosh mx+Ai sinh p.jx 

Y{y)=Bi cosh n3y+B2 sinh p3y 

+B3 cosh niy+Bi sinh my ^ 

(4.51) 

and where m,. . ., /u4 are determined by applying 
the Galerkin formula to the differential equation 
of motion for the plate. The 36 frequencies 
ii)m(m, n=l, . . ., 6) computed by this method 
in reference 4.13 are upper bounds and are 
given in table 4.27. It is interesting to note 
that, in spite of apparent numerical precision, 
ödman did not detect two separate frequencies 
for «i3, as did Young (table 4.22). 

For computing fundamental frequencies of 
clamped rectangular plates of arbitrary a/b ratio, 
there exists, in addition, Warburton's (ref. 4.1) 
and Janich's (ref. 4.2) formulas, equations (4.16) 
and (4.17). Frequencies obtained from War- 
burton's formula were plotted in reference 4.4. 
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TABLE 4.26.—Frequency Parameters for a C-C-O-G Square Plate 

WWPAD 

Mode symmetry 
Lower bound Upper bound Mean value Maximum 

error, percent 

35. 9693 
131. 55 
131.8 
218 

73. 354 
164. 39 
210 
108. 119 
241. 924 
242. 071 

36. 1074 
133. 20 
134. 1 
231 

74. 226 
171. 39 
216 
109. 936 
246. 118 
251. 033 

36. 0384 
132. 38 
132.9 
224.5 

73. 790 
167. 89 
213 
109. 027 
244. 021 
246. 552 

0. 19 

Symmetric about x, antisymmetric about y (or 

.63 

.87 
2.98 

.59 

Antisymmetric about both x and y   _    

2. 13 
1.43 
.84 
.87 

1. 85 

TABLE 4.27.—Frequency Parameters coaVp/D/or a C-C-O-0 Square Plate 
[Values in parentheses were obtained by interpolation; table is symmetric] 

m 
WCPT/PID for values of re of— 

1 2 3 4 5 6 

1  35. 998965 73. 405 
108. 237 

131. 902 
165. 023 
220. 06 

210. 526 
242. 66 
296. 35 
371. 38 

309. 038 
340. 59 
393. 36 
467. 29 
562. 18 

(428) 
2. 458. 27 
3      .    - 509.9 
4 583. 83 
.5 (676) 

792.5 

A simple formula derived by Galin (ref. 4.45) 
for this case is 

ID 
"=I2VIö+OT+F)V7 (4-52) 

For a square this reduces to o}a2^p/D=S6, which 
compares favorably with the accurate value of 
35.9866 from table 4.22. 

A summary of the literature for frequencies 
of nonsquare C-C-C-C rectangular plates is 
presented in table 4.28. Neither Iguchi (ref. 
4.9) nor Kanazawa and Kawai (ref. 4.16) recog- 
nized the existence of the other mode having 
one symmetry axis and one antisymmetry axis 
which is not shown in the table. 

Sixteen frequency parameters for a/b=0.25 
and 0.50 are computed in reference 4.60. These 
are given in table 4.29, with m and n as ex- 

plained previously. More extensive results are 
obtained in reference 4.13 and are also listed in 
table 4.29. 

Mode shapes in the form Wmn(x, y) = 
Xm(x)Yn(y) corresponding to comB were found in 
reference 4.13. The components Xm(x)^a and 
Yn(y)^b are shown in figure 4.19 for a/b= 1.0. 
Variation in these curves with a/b is very small 
for the range 0.5 ^ a/b ^ 2.0. The magnitude of 
this variation is shown by figure 4.20 for the 
components XS)4a and F4(y)V&- Figure 
4.21,   taken  from reference  4.60,  shows  the 

frequency parameter -i=ua2(^p/D)/ir2 plotted 

as a function of a/b and b/a. For <z/6=0, the 
frequencies are given by reference 4.60: 

,=^(m+r 2? (4.53) 



Source 

Iguchi  (ref. 4.9)  

Kanazawa and Kawai 
(ref. 4.16). 

Kanazawa and Kawai 
(ref. 4.16). 
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TABLE 4.28.—uVjrfD for C-C-C-C Rectangular Plates 

63 

Mode (o>6) 

'AX,* / / ////// 

/'" ' '/ 
3----» 

A- 
a 

/ / / s / 
I 

I *b 

XjlülVÖ or 

FIGURE 4.19.—Mode shape components Xm(x)Vo or 
Yn(y)^b for a C-C-C-C rectangular plate. (After ref. 
4.13) 

FIGURE 4.20.—Variation in mode shape components 
X,(x)Va and K4(#)V& with a/b for a C-C-C-C 
rectangular plate. (After ref. 4.13) 

ab^pjD for values of ajb of— 

1.5 

27.00 

67.58 

81.57 

24.56 

65.41 

72.66 

2.5 

23.76 

64.49 

68.89 

23. 19 

64.02 

66.96 

22.37 

61.78 

61.78 

FIGURE 4:.21.—\/v'=aay^^p/D) for a C-C-C-C rec- 
tangular plate. 

Claassen and Thorne (refs. 4.35 and 4.36) 
used a most straightforward application of the 
series method which represented the deflection 
form as a double Fourier sine series; that is, 

^(z,2/)=SZMmBsin^sin^   (4.54) 

When the homogeneous boundary conditions 
are written for all edges, they result in an in- 
finite determinant, the zeros of which are the 
desired   eigenvalues.    Numerical   convergence 
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TABLE   4.29.—Frequency   Parameters coa2Vp/D 
for a C-C-C-C Rectangular Plate 

[Values in parentheses are interpolated^ 

n 

aa?-Jp/D for value of o/& of— 

m 
0.25 
(ref. 

4.60) 

0.50 
0.667 

Ref. 
4.60 

Ref. 
4.13 

(ref. 
4.13) 

1 1 23. 19 24.09 24.58 27.01 
2 23.94 31.40 31.83 41. 72 
3 26.32 44.35 44.78 66. 53 
4 30.01 63.00 63.34 100. 81 
5 
6 

87.26 
(117) 

144. 21 
(195) 

2 1 62. 17 63.93 (64. 1) (65. 5) 
2 63.70 70.90 71.08 79.81 
3 66.23 82.90 (83. 2) (103) 
4 69.97 100. 18 100. 80 136. 10 
5 (124.2) (178) 
6 
1 

151. 91 
(124) 

230. 04 
3 121. 59 123. 07 (126) 

2 122. 98 130. 13 130. 35 138. 64 
3 125. 74 142. 12 142. 38 161. 23 
4 129. 81 156. 47 159. 49 193. 24 
5 
6 

181. 79 
(209. 6) 

234. 65 
(285. 4) 

4 1 200. 33 202. 02 (204) (206) 
2 202. 00 209. 18 (210) (218) 
3 204. 72 231. 02 (221) (241) 
4 208. 83 238.01 238. 35 271. 17 
5 
6 
1 

(261) 
287. 54 

(302) 

(312) 
361. 90 

5 (303) 
2 
3 
4 
5 
6 

308. 12 
(320) 
337. 08 
358.0 

(382) 

316. 11 
(339) 
369. 34 

(409) 
(456) 

6 1 (421) (422) 
2 
3 

(427) 
(439) 

(436) 
(457) 

4 
5 

(456) 
(478) 

(488) 
(529) 

6 504.3 576.6 1 
is established by successive truncation of the 
infinite determinant. The method is also dis- 
cussed in reference 4.39. 

The frequency as a fuDction of the a/b ratio 
for the 10 lowest modes is plotted in reference 
4.35. These curves are reproduced as figures 
4.22 to 4.25.    In table 4.30 the accurate values 

\_ 8.0 
»2 

^ 
r" 

0.4 0.6 
o/b 

FIGURE 4.22.—Frequency parameters X/ir2=&>a2/ir3(Vp/I>) 
for modes symmetric about both x- and y- axes for 
a. C-C-C-C rectangular plate.    (After ref. 4.35) 

/ 

■/- 

0.2 0.4 0.6 0.8 

FIGURE 4.23.—Frequency parameter X/ir2 = wa2/T2(Vp/ö) 
for modes symmetric about x= 0 and antisymmetric 
about y=0 for a C-C-C-C rectangular plate. (After 
ref. 4.35) 

x 
10.0 

0 0.2 0.4 0.6 0.8 1.0 
o/b 

FIGURE 4.24.—Frequency parameters X/x2= ü)02/ir2(Vp/ß) 
for modes antisymmetric about x=0 and symmetric 
about y = 0 for a C-C-C-C rectangular plate. (After 
ref. 4.35) 

of frequency used in the preceding plots are 
displayed for a/b increments of 0.02 in the 
range 1.00 a: a/b ^0 (ref. 4.36). 

When one looks, for example, at figure 4.23, 
it appears that the curves for the second and 
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21.0 

_X_I6.0 
»2 

6.0 

/ 

 tit 

0.4 0.6 

o/b 

0.8 

FIGURE 4.25.—Frequency parameters X/TT
2
=wo2/jr2(VpÄD) 

for modes antisymmetric about both x- and y-axes 
for a C-C-C-C rectangular plate. (After ref. 4.35) 

third symmetric-antisymmetric frequencies 
cross in the vicinity of a/b=0.84. Such an 
intersection point is termed a "transition 
point." It is the contention of Claassen and 
Thorne that these curves do not actually cross 
at transition points but only approach each 
other closely before "veering away" or being 
"repelled." Very small increments of a/b are 
taken in reference 4.36 in the vicinity of these 
transition points and corresponding values of 
frequency parameter X are computed which 
appear to substantiate this. The details of 
this phenomenon can be seen in table 4.31. 
From the table it is seen that the two curves 
approach each other most closely at a/& = 0.834. 
It is the opinion of the writer that, although 
extremely precise work was performed in refer- 
ence 4.36, certain questions of convergence of 
the series approach used need to be answered 
before the transition-point phenomena de- 
scribed above can be accepted. 

In figure 4.26 are shown nodal lines for one 
quadrant of the plate for various a/b ratios in 
the vicinity of transition points (ref. 4.36). 
In these figures the center of the plate is at 
(0,0) and the x and y coordinates have been 
nondimensionalized to x/a and y/b, respectively. 
The rapid change from one mode form to 
another with small variation in a/b is interest- 
ing. Precise node-line coordinates used for 
figure 4.26 and other nodal patterns are given 
in reference 4.36. 

Accurate upper and lower bounds for the 
doubly symmetric modes of a rectangle (see 
discussion earlier in this section) are reported 

in reference 4.58. These results are given in 
table 4.32. Upper bounds were computed 
using 50 admissible beam modes. It is note- 
worthy that the second and third doubly sym- 
metric modes for the square are for distinct 
frequencies, as reported earlier in references 
4.36 and 4.47. 

4.3.2 C-O-C-SS 

Three sources of numerical data are available 
for the problem of the C-C-C-SS plate (fig. 
4.27). Results are listed in table 4.33 for the 
case of the square. 

Some higher frequencies for the square were 
obtained by Kaul and Cadambe (ref. 4.61) as a 
special case of the parallelogram plate by using 
the Rayleigh-Ritz method and beam functions 
(see sec. 5.1.1). Frequencies for four higher 
modes are presented in table 4.34. 

For a general rectangle, a spectrum of funda- 
mental frequency parameters is given in 
table 4.35. 

Frequencies for the first antisymmetric mode 
with respect to x=a/2 are given in table 4.36 
(ref. 4.16). However, it is obvious that this 
is at least the third mode of all mode shapes of 
a plate for a/b ^ 1. No detailed mode shapes 
are available in the literature, but for a/b ^ 1 
the second mode clearly must have a nodal line 
essentially parallel to the x-axis and located 
above y=6/2. 

Approximate formulas for frequencies are 
given previously in equations (4.16) and (4.17). 
Frequency parameters obtained from equation 
(4.6) are plotted in figure 4.28 (from ref. 4.4). 

For more information on this problem, see 
the discussion of the antisymmetric modes of a 
C-C-C-C rectangular plate in the preceding 
section (sec. 4.3.1). Straight nodal lines of anti- 
symmetry duplicate SS boundary conditions. 

4.3.3 C-C-C-F 

The only known results for the problem of the 
C-C-C-F plate (fig. 4.29) are the approximate 
formulas, equations (4.16) and (4.17). 

4.3.4 C-C-SS-SS 

Four sources of numerical data are available 
for fundamental frequencies of C-C-SS-SS rec- 
tangular plates   (fig.  4.30).    The results  are 
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TABLE 4.31.—Frequency Parameters o>a2Vp/D for the Second and Third Modes Symmetric About 
x=0 and Antisymmetric About y=0 in Vicinity of a Transition Point 

Mode 
aaP-jp/D for values of 0/6 of— 

0.837 0.836 0.835 0.834 0.833 0.832 0.831 

Second--         .  _  __ 150. 2685 
151. 2909 

150. 1544 
150. 9951 

150. 0184 
150. 7217 

149. 8461 
150. 4853 

149. 6269 
150. 2963 

149. 3663 
150. 1492 

149. 0791 
Third.-     150. 0029 

Difference   __ 1. 0224 . 8407 .7033 .6392 .6694 .7829 .9238 

0.4 

0.3 

0.2 

0.1 

■ ■ ■ V. 

0.9999 

"■"09995 

0.996 

0.9 
0.9 

3-996^»-- 

0.9995>^ 

^/0.9999 

0.5 

0.4 

0.3 

0.2 

O.I 

M 

O.I 0.2 0.3 0.4 

x/o 

0.7 /O.6I6 
0.615, 

' 
' 

0.614 
' 

0.6 
0.6 

0.614 

O.6I5V .0.6 6l 0.7 1 

0.614 
< ' 

rn 
0.6 

0.7 w 15 «»0614 0.6 
■ 

0.816- 
> 

\ ' 

(c) 

0.2 0.3 0.4 0.5 

x/o 

0.3 

0.2 

0.1 

0.9921 0.9 
•■■v 

V).996 

. 

' 

-^  
10s 

n   A 1.0 
1 tt \ ■ 

0.992 -110.993 
0 O.I 0.2 0.3 0.4 0.5 

(b) x/a 

U.0 

0.9 
——1 

( '   \  '   '  I 
3.835           / 

I0.834/ 
0.833J 

1 

0.4 

0.832 

0.3 
' 

0.8 
0.8 

0.2 

s^-^y 
0.834 S 

0.1 
Sosaz 

0.9 

n 
0 0.1 0.2 0.3 0.4 0.5 

<d) 
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u.o 

0.4 

0.8 

0.3 

 a833 

""■"■""•CN ).835 . 
' 

0.836 ^*= 0.9 

0.2 0.9 
•       I     ■ 

\ i 

0.1 
0.836    , 

n 

0.8 
\o.834' 

0.8331 

\0.835 

0.1 
(e) 

0.2 0.3 
x/a 

0.5 

0.4 

0.3 

0.2 

0.1 

0.538    J 

O.537/ 

0.5 

0.536 

0.5 

0.536 

0.537V 

0.6 

-0.538 

_ 9536 

0.5 

-£S5 
0.5 

1 

0.6 

-«- 

\^>.537 

0.538 \ .   .  . \ 

0.5 

0.4 

0.3 

0.2 

0.1 

0.9999 

0.9995 

0.9 

0.996 
0.9 

^ 1 

0.996 
0.9995^^ 

0.9999 

1 

1 

0.1 

(g) 

0.2 0.3 
x/a 

0.4 0.5 

FIGURE 4.26.—Nodal patterns for various a/6 ratios 
in the vicinity of transition points, (a) Second 
symmetric-symmetric mode; 0/6= 0.9 to 0.9999. 
(b) Third symmetric-symmetric mode; a/6=0.9 to 
1.0. (c) Third symmetric-symmetric mode; ajb— 
0.6 to 0.7. (d) Second symmetric-antisymmetric 
mode; a/6=0.8 to 0.9. (e) Third symmetric- 
antisymmetric mode; ajb— 0.8 to 0.9. (/) Third 
symmetric-antisymmetric mode; 0/6= 0.5 to 0.6. 
(g) Second antisymmetric-antisymmetric mode; a/b= 
0.9 to 0.9999. 

(f) 
O.l 0.2 0.3 

x/a 
0.4 

summarized in table 4.37. Kanazawa and 
Kawai (ref. 4.16) used an integral equation 
formulation. Hamada (ref. 4.15) used a varia- 
tional approach. Iwato (ref. 4.62) used the 
Rayleigh-Kitz method and mode shapes of the 
form 

m    n \ M 

— COS 
3mTrx\/     nry 
2^ACOS26 COS-prv—cos 

3niry\ 
(4.55) 

and retained Cn, C13, Cn, and C33. Nishimura 
(ref. 4.14) used finite difference equations. Ap- 
proximate formulas, equations (4.16) and (4.17), 
may also be used. Frequency parameters ob- 
tained from equation (4.16) are plotted in figure 
4.31 (from ref. 4.4) for four modes. 

For more information on this problem, see 
the discussion of the doubly antisymmetric 
modes of a C-C-C-C rectangular plate (sec. 
4.3.1). Straight node lines of antisymmetry 
duplicate simply supported boundary conditions. 
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TABLE 4.33.—Frequency Parameters coa2-^p/D for      TABLE 4.34.—Frequency Parameters for Higher 
a G-C-C-SS Square Plate 

Source 
UO

2
VPÄ& for mode— 

1 2 3 4 5 

Dill and Pister 
(ref. 4.24)  

Kanazawa and 
Kawai (ref. 
4.16) 

31.83 

31.88 

31.83 

63.33 71.08 

71.26 

100.8 116.4 

Hamada (ref. 
4.15) 

Mode Shapes of a C-C-C-SS Square Plate 

Mode 6 7 8 9 

aa2^p/D  130. 84 152. 75 160. 00 209. 97 

4.3.5   C-C-SS-F 

The only known results for the problem of 
the C-C-SS-F plate (fig. 4.32) are the approxi- 
mate formulas, equations (4.16) and (4.17). 

TABLE 4.35.—Fundamental Frequency Parameters «aVp/D for a C-C-C-SS Rectangular Plate 

Source 
uatVpfD for values of ajb of— 

0 0.333 0.4 0.5 0.667 1 1.5 2 

Dill and Pister (ref. 4.24)   .   .    24.49 
24.48 26.23 

25.85 

31. 83 
31.87 
31.83 

73.07 
22.39 23.40 23.76 

48. 1 

TABLE 4.36.—Fundamental Frequency Parameters coa2Vp/D for the First Antisymmetric Mode of a 
C-C-C-SS Rectangular Plate 

Mode shape 
wa2Vp/D for values of ajb of— 

0 0.333 0.4 0.5 0.667 1 

/ 

61. 781 63. 947 64.366 65. 161 66. 971 
/ 
/ 
 ,_ — 

I 71. 259 
/ / / / / 

a 

TABLE 4.37.—Fundamental Frequency Parameters wa2yp/D for a C-C-SS-SS Rectangular Plate 

Source 
wo2Vp/fl for values of ajb of— 

0 0.333 0.4 0.5 0.667 1 1.5 

Kanazawa and Kawai (ref. 4.16) _-   
Hamada (ref. 4.15)   

15.45 16.74 17.22 18. 16 20.39 27. 10 
27.00 
28. 357 
27. 234 

44.90 
Iwato (ref. 4.62)   
Nishimura (ref. 4.14)    
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y 

FIGURE 4.27.—C-O-C-SS plate. 

4.0 

2.0 

1.0 
0.8 

0.6 

0.4 
C 

C                SS 
C 

1  -' 
a _. 
\ ] 

. b » 

1       I     1    1 1 0.2, 
0 2 0 4 0 6 0  81 3100 21 DO 41 30 60 0 8OOI 

0.90   wb*v£7D 

FIGURE 4.28.—Frequency parameter  0.90o>62Vp/D  for 
a C-C-C-SS rectangular plate. (After ref. 4.4) 

0.2 

/ 
/ ss        T "" 

C            SS  a .. 
c         1 / 

/ 1   
40      60   80100 200 

0.90 u.b2v£7D 

400   600 8001000 

FIGURE 4.31.—Frequency parameters 0.90ub2Vp/I> f°r 

a C-C-SS-SS rectangular plate. (After ref. 4.4) 

/ / / / / / 
/ / / / / / 

FIGUBE 4.29.—C-C-C-F plate. 
FIGURE 4.32.—C-C-SS-F plate. 

4.3.6   C-C-F-F 
The problem of the C-C-F-F rectangular 

plate (fig. 4.33) was investigated by Young 
(ref. 4.47), who used the products of beam 
functions and the Kayleigh-Eitz method to 
obtain accurate upper bounds for frequencies 

in the case of the square plate for p = 0.3. 
These results are summarized in table 4.38. 
The resulting mode shapes are of the form of 
equation (4.49) where the values of Amn are 
given in table 4.38 and a and e are given in 
table 4.39 (from ref. 4.47). 
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FIGURE 4.33.—C-C-F-F plate. 

A fundamental frequency of large error is 
also computed in reference 4.48 by use of the 
Rayleigh-Ritz method. 

Results from using the Galerkin method are 
given in reference 4.46; these results also appear 
to have considerable error, particularly for the 
fundamental mode. Approximate formulas, 
equations (4.16) and (4.17), may also be used. 

4.3.7   C-SS-C-F 

The approximate formulas, equations (4.16) 
and (4.17), may be used for the problem of a 
C-SS-C-F rectangular plate (fig. 4.34). Addi- 
tional information can be obtained from an 
antisymmetric mode of the case of the C-F- 
C-F plate (sec. 4.3.10).    Straight node lines of 

antisymmetry   duplicate   SS   boundary   con- 
ditions. 

TABLE 4.39.—Eigenfunction  Parameters for a 
C-FBeam 

Til, n am, an €mj  ^n 

1 . 0. 7340955 
1. 01846644 

. 99922450 
1. 00003355 

. 99999855 
1.0 

1. 8751041 
2.-  4. 6940911 
3.     7. 8547574 
4   10. 9955407 
5  14. 1371684 
r>5  (2r- 1)TT/2 

FIGURE 4.34.—C-SS-C-F plate. 

TABLE 4.38.- -First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for 
a C-C-F-F Square Plate; v=0.S 

Mode    ___   1 2 3 4 5 

ua'^^/D  6.958 24.80 26.80 48.05 63.14 

/ / * / \ / —>r /  X 7 

Nodal lines          / 
/ 
/ / 
• 

/ 
/ 

*». / 
/ 

1 
\ 
1 

/ 
/ /- 

V V "/'"/ *~/ S / S / / / / / ' s / // / /   / / / 

Amplitude coeffi- in=     1.0000 4u=    0 An-- = -0.1172 An=    0.0286 An=    0 

cients. Ai2=    0.0604 A12=    1.0000 An =     1.0000 A12= -0.1566 A,2=    0.0030 

Aa= — 0.0030 Aa=    0.00003 An =    0.0553 Ai3=-0.0825 Ai3=    1.0000 

A ,i=    0.0604 A2l= —1.0000 A 21 =    1.0000 ^2i= -0.1566 A2i=-0.0030 

An= -0.0101 A22=    0 An =    0.3223 A22 =     1.0000 An=    0 

An= — 0.0003 A 23= -0.0221 An =    0.0111 A23=  -.1458 A23=    0.1350 

Aji= — 0.0030 A 3i =-0.00003 An =    0.0553 A3i=-0.0825 A3i=-1-0000 

A32= -0.0003 .4.32=    0.0221 A 32 =    0.0111 A32=    0.1458 A32= -0.1350 

A33=-0.0017 A33=    0 A33 =    0.0022 A33= -0.0019 A33=    0 

308-337 O—70- 
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4.3.8 C-SS-SS-F 
The only known results for the problem of 

the C-SS-SS-F rectangular plate (fig. 4.35) 
are the approximate formulas, equations (4.16) 
and (4.17). Additional information can be 
obtained from the doubly antisymmetric modes 
of the C-F-C-F plate (sec. 4.3.10). Straight 
node lines of antisymmetry duplicate SS 
boundary conditions. 

4.3.9 C-SS-F-F 
The only known results for the problem of 

the C-SS-F-F rectangular plate (fig. 4.36) are 
the approximate formulas, equations (4.16) 
and (4.17). Additional results can be obtained 
from the antisymmetric modes of the C-F- 
F-F plate (sec. 4.3.12). Straight node lines 
of antisymmetry duplicate SS boundary 
conditions. 

4.3.10 C-F-C-F 

Claassen and Thorne (ref. 4.36) used the 
series   method   described   in   the   section   for 

FIGURE 4.35.—C-SS-SS-F plate. 

the C-C-C-C rectangular plate (sec. 4.3.1) 
to obtain frequencies for 11 modes and varying 
alb ratios for the C-F-C-F rectangular plate 
(fig. 4.37). These modes will be classified 
as symmetric-symmetric, symmetric-antisym- 
metric, antisymmetric-symmetric, and anti- 
symmetric-antisymmetric, according to the 
symmetry or antisymmetry exhibited about 
the axes x=0 and y=0, respectively, as shown 
in figure 4.37. The first mode of each class is 
illustrated in figure 4.38. Frequency results are 
summarized in tables 4.40 to 4.43. Poisson's 
ratio is not known, but is assumed to be 0.3 
as in reference 4.63. 

A question arises about the foregoing results 
in one of the limiting cases.    It would appear 

y                           y 

a/2 
/ / 
/ / / / b/2 
/ / / / / b / 

i 
V / / 
/ 

/ / 
/ / 
'< a ' 

FIGURE 4.37.—C-F-C-F plate. 

(b) 

/ 
/ 
/ 
/ 

FIGURE 4.36.—C-SS-F-F plate. 

(d) 

FIGURE 4.38.—Lowest nodal patterns in the four 
classes of symmetry for a C-F-C-F plate, (a) First 
symmetric-symmetric mode. (6) First symmetric- 
antisymmetric mode, (c) First antisymmetric-sym- 
metric mode, (d) First antisymmetric-antisym- 
metric mode. 
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from table 4.40 that the doubly symmetric 
frequencies all vanish as b/a—>0. However, as 
b is held fixed and a becomes infinite, it is 
obvious that the boundary conditions at x=0 
and x— °° are no longer significant, and the 
fundamental frequency becomes that of an 
infinite strip having two node lines parallel to 
the x-axis. Additional frequency parameters in 
the vicinity of "transition points" (see sec. 
4.3.1) and detailed coordinates of nodal lines 
are given in reference 4.36. 

Approximate values of frequency parameters 
are given by equations (4.16) and (4.17). 

TABLE 4.40.—Frequency     Parameters     X= 
coa2Vp/D and \*=wb\lp/B for the Doubly 
Symmetric Modes of a C-F-C-F Rectangular 
Plate 

Ratio a/6 

1.0 
0.9 
0.8. 
0.7. 
0.6. 
0.5. 
0.4. 
0.3. 
0.2. 
0.1. 
0__ 

bja 

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0-. 

Mode 

22. 17 
22. 19 
22.20 
22.22 
22.24 
22.26 
22.28 
22.3 
22.3 
22.3 
22.4 

43.6 120. 1 136.9 
39.5 114.2 120. 1 
35.8 94. 1 120.2 
32.6 76.3 120.3 
29.8 61. 1 120.4 
27.5 48.6 90.3 
25.6 38.5 64.3 
24. 1 31.0 44.6 
23. 1 26.0 31.4 
22.5 23. 1 24.3 
22.4 22.4 22.4 

149.3 
143.9 
139. 1 
134.8 
122.5 
120.4 
103.6 
65.9 
40.0 
26. 1 
22.4 

22. 17 
18.93 
14. 16 
10.83 
7.95 
5.51 
3.51 
1.97 
.87 
.217 
.00 

43.6 
39. 5 
35.7 
32. 5 
29.7 
27.3 
19.0 
10.7 
4.7 
1.2 
.0 

120. 1 
97.2 
76.8 
58. 
43. 
29. 
25. 
24. 
11. 

2. 
.0 

136.9 
126. 1 
105.5 
87.0 
70.9 
56.9 
45.3 
26. 5 
21.9 
5.4 
.0 

149.3 
133.6 
130.8 
128.3 
106.7 
74.0 
47.3 
35.7 
23. 1 
8.7 

TABLE 4.41.—Frequency Parameters X=way ^/D 

and X*=cob%/p/D for the Symmetric-Antisym- 
metric Modes of a C-F-C-F Rectangular Pl-ate 

Mode 

a/b for X, 
6/a for X* 1 2 

X X* X X* 

1.0  26.40 
25.67 
24.99 
24.38 
23.84 
23.36 
23.0 
22.7 
22.5 
22.3 
22.4 

26.40 
22. 10 
18.22 
14.75 
11.68 
8.99 
6.65 
4.63 
2.88 
1.36 
.0 

79.8 
68.4 
58.2 
49.3 
41. 8 
35.5 
30.6 
26.8 
24.2 
22.7 
22. 4 

79 8 
0.9  76 1 
0.8  72 9 
0.7  65 2 
0.6  49 5 
0.5  36 2 
0.4  25 1 
0.3  16 3 
0.2  9 4 
0.1  4 1 
0  0 

TABLE 4.42.—Frequency Parameters X=coaVp/D 
and X*=cobVp/D for the Antisymmetric-Sym- 
metric Modes of a C-F-C-F Rectangular Plate 

Mode 

a/b for X, 
6/a for X* 1 2 

X X* X X* 

1.0  61.2 
61.2 
61.3 
61.3 
61.4 
61.4 
61.4 
61.5 
61.2 

61.2 
49. 5 
39. 1 
29.9 
21. 9 
15.2 
9.7 
5.4 
2.3 
.6 
.0 

87.5 
82.8 
78.4 
74.5 
71. 1 
68.2 
65.7 
63.9 
62.6 
61.8 
61.7 

87 5 
0.9  75 7 
0.8  64 9 
0.7  55 4 
0.6  47 0 
0.5  39 8 
0.4  31 6 
0.3  17 7 
0.2  7 8 
0.1  2 0 
0  0 

4.3.11    C-F-SS-F 

The first four frequencies for the C-F-SS-F 
rectangular plate (fig. 4.39) in the case of the 
square for j<=0.3 are given in table 4.44 (refs. 
4.24   and  4.64).    Additional  results  for   this 
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TABLE 4.43.—Frequency Parameters X=a>a%/p/D 
and X*=o)b%/p/D for the Doubly Antisym- 
metric Modes of a O-F-C-F Rectangular Plate 

Mode 

ajb for X, 
b/a for X* 

1 2 

X X* X X* 

1.0  67.2 
66. 1 
65. 1 
64.3 
63.5 
62.9 
62.4 
62.0 
61.2 

67.2 
55.5 
45.0 
35.7 
27.5 
20.5 
14.7 
9.87 
5.90 
2.80 
.0 

124. 5 
112.6 
102.0 

92. 5 
84.3 
77.4 
71.7 
67.2 
64. 1 
62. 1 
61.7 

124.5 
0.9  
0.8  
0.7  

112.6 
102.0 
92.6 

0.6  78.3 
0.5  56.3 
0.4  
0.3  

38.2 
24.0 

0.2  13. 3 
0.1  5.6 
0  .0 

TABLE 4.44.—Frequency Parameters for a C-F- 
SS-F Square Plate; v=0.S 

Mode 1 2 3 4 

uat-jpjb  15. 16 20.50 50.21 56.38 

problem are given by the approximate formulas, 
equations (4.16) and (4.17). 

Further information on this problem can be 
obtained by considering antisymmetric modes 
of the C-F-C-F plate (see preceding section). 
Straight node lines of antisymmetry duplicate 
SS boundary conditions. 

4.3.12    C-F-F-F    (Cantilever) 

Young (ref. 4.47) in his investigation of 
rectangular C-F-F-F plates (fig. 4.40) used the 
products of beam functions and the Rayleigh- 
Ritz method to obtain accurate upper bounds 
for frequencies in the case of the square canti- 

FIGUHB 4.39.—C-F-SS-F plate. 

TABLE 4.45.- -First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for 
a Square Cantilever Plate; v=0.S 

Mode           1 2 3 4 5 

aaPyp/D..  _     3.494 8.547 21.44 27.46 31.17 

/ 4 
/ 
/ 
/ 

1 
I 
1 
\ / / 

1 
 J- 

i 

\ 
Nodal lines.-     _ 

/ / A \ / / 

Amplitude coeffi- An=    1.0000 An=    1.0000 A„= -    0.0054 A«=    0. 0090 A12= -0.1201 

cients. A«= -0.0087 Au= -0.0134 Axi= =    0.2731 Aa=     1.0000 An=    0.0627 

Au= -0.0008 A]6=-0.0011 ii« = =    0.0092 Ai5=-0.0120 Aie=    0.0080 

An= -0.0026 A22=    0. 1212 Aii= =    1.0000 A2i= -0.2866 A22=    1.0000 

A23= -0.0050 A24=    0.0044 An= =    0.0713 An=    0. 1786 Au= -0.0388 

A25=-0.0011 A26=    0.0006 Aa= =    0.0079 A25=    0.0009 A26=-0.0013 

.4si=    0. 0001 432=-0.0020 -431 = = -0.0118 A31=-0.0451 AS2=    0.0776 

An=- 0.0014 434=-0.0011 A33= =    0.0050 Asi=    0.0125 A34=    0.0086 

435=-0.0006 ^36=-0.0006 ^35 = = -0.0003 ^35=-0.0023 A36=    0.0024 
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TABLE 4.46.—Eigenfunction Parameters for 0-F and F-F Beams 

77 

m, n am OCn ^m Cn 

1  0. 7340955 
1. 01846644 

. 99922450 
1. 00003355 

. 99999855 
1.0 

1. 8751041 

4. 6940911 
7. 8547574 

10. 9955407 
14. 1371684 

(2w-l)ir/2 

2  
3  0. 98250222 

1. 00077731 
. 99996645 

1. 00000145 

4. 7300408 
7. 8532046 

10. 9956078 
14. 1371655 

4  
5  
6  

lever for v=0.3.    These results are summarized 
in table 4.45.    The mode shapes are given by 

m=l V. \        a/ 

,«»y InV +22Amn\ cosh-p+cos , 

~an (sinh ^+sin^l \ [cosh ^ 

-cos^-^fsinh^-sin^Yl (4.56) 
a \ a a / J 

where the values of Amn are given in table 
4.45 and those of a and e are given in table 
4.46. 

In references 4.65 to 4.68, Keissner's varia- 
tional principle (ref. 4.69) is modified and 
applied to the square plate. As in the Rayleigh- 
Ritz method, generalized force boundary con- 
ditions may or not be satisfied here. In reference 
4.66, moment boundary conditions were satis- 
fied at discrete points and four degrees of 
satisfaction of shear boundary conditions were 
considered; the best results were obtained when 
the transverse shear conditions on the free 
edges were ignored. Theoretical frequencies 
for the first three modes, along with experi- 
mental data from reference 4.66, are presented 
in table 4.47. Mode shapes corresponding to 
these frequencies are shown in figure 4.41. 

Electrical analogies were developed in ref- 
erence 4.70 for solution of the problem on a 
passive element analog computer. Five sets of 
frequencies and mode shapes for a square are 
given. In reference 4.71, simple difference and 
higher order difference equations were written 
and solved by means of electronic, analog 
computer  for   the  first  six  frequencies   of   a 

TABLE  4.47.—Frequency  Parameters  coa2-v/p/D 
for a Square Cantilever Plate 

Type of data 
wa^yp/D for mode— 

1 2 3 

Theoretical      3.44 
3.33 

8.21 
8. 17 

21. 09 
Experimental.  19. 97 

y y 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

b / 

1 
b/2 

/ 
/ 

/ 1 
/ 
/ J 

FIGURE 4.40.—C-F-F-F plate. 

square. The problem is also discussed in 
references 4.48 and 4.72. 

Barton (refs. 4.73 and 4.74) extended the 
Rayleigh-Ritz analysis of reference 4.47 to 
obtain results for the nonsquare cantilever. 
Five sets of mode shapes and frequencies for 
dlo — )i, 2, and 5 are reproduced as table 4.48. 
The amplitude coefficients Amn refer to equation 
(4.56). These frequencies are approximately 
plotted as solid lines in figure 4.42. 

Bazley, Fox, and Stadter (ref. 4.75) used a 
method developed in reference 4.61 to compute 
frequency lower bounds for the first 10 symmet- 
ric modes.    They also obtained accurate upper 
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TABLE 4.48.—Frequency Parameters,  Mode  Shapes  and Amplitude   Coefficients  of Rectangular 
Cantilever Plates; v=0.3 

First mode 

a/b  1/2 2 5 
Mode 

COWPTÖ-- 3.508 3.472 3.450 
shape 

A„  
Au  
An  
A2i  
A23  
A2!,  

1. 0000 
-. 0151 
-. 0028 
-.0011 
-.0040 
-.0023 
.0001 

-.0005 
-.0008 

1. 0000 
-. 0027 
-. 0002 
-.0040 
-.0032 
-.0004 
-.0003 
-.0015 
-.0003 

1. 0000 
-. 0004 
.0000 

-.0048 
-.0008 
-. 0001 
-.0010 
-.0005 
-. 0001 

0 

i b 

A3i  
A33  
.A35  

> 

Second mode 

0/6  1/2 2 5 
Mode 

too2Vp/ö--- 5.372 14.93 34.73 
shape 

A12-   .. .. 

Au  
1. 0000 
-. 0509 
-.0056 
.0436 
.0045 
.0007 

-. 0012 
-. 0014 
-.0010 

1. 0000 
-. 0027 
-.0001 
.2040 
.0011 
.0002 
.0059 

-.0005 
-.0002 

1. 0000 
-.0004 
.0000 

.2555 

.0001 

.0000 

.0215 
-.0001 
.0000 

Au  
A22  
A2i  

AS2  
A3i  
^36  

/ 

Third mode 

a/b. 

NP/D. 

An. 
An. 
An 
An. 
A2S 

An 
An. 
A3% 

Au. 

1/2 

21.96 

0. 0008 
-. 0465 

.0725 
1. 0000 
.0271 
. 0196 

-. 0011 
.0001 
.0024 

21.61 

0. 0042 
.0346 
.0027 

1. 0000 
.0206 
.0024 

-. 0058 
.0010 

-. 0003 

21.52 

0. 0048 
.0054 
.0004 

1. 0000 
.0050 
.0005 

-. 0068 
-. 0007 
-. 0001 

Mode 
shape 

Fourth mode 

0/6  1/2 2 5 
Mode 
shape 

«a'VpAD— 10.26 94.49 563.9 

An  0. 0155 0. 0034 0. 0006 

Aa  1. 0000 1. 0000 1. 0000 

An  -. 0357 
.0459 

-. 0031 
-. 0389 

-. 0004 

-. 0065 * An  
An..-  ... . 1120 .2359 .2469 < 
A2i  .0088 

-. 0091 
.0009 
. 1025 

.0001 

.0104 

/ 

An  / 

^33  .0020 .0351 .0381 

AK...  ... -. 001s -.0003 -.0002 

Fifth mode 

a/b  1/2 2      5 
Mode 

o>a2yplD  24.85 48.71 105.9 
shape 

^4.12  
An  
Au.  ... _ 

-0.0529 
-.1989 
.0448 

1. 0000 
-. 1069 
.0000 
.0261 
.0001 
.0040 

-0. 2053 
.0128 
.0017 

1. 0000 
-.0168 
-.0005 
.2222 
.0048 
.0012 

-0. 2639 
.0016 
.0002 

1. 0000 
-.0028 
-.0001 
.3893 
.0004 
.0002 

A22  
A2i  
An  

; 
* 

2 
A12  

An  
A3S  

bounds by the Bayleigh-Kitz method by taking 
the first 50 admissible products of beam func- 
tions. Double-precision arithmetic (16 signifi- 
cant figures) was used in the computations 
where necessary. Results are listed in table 
4.49 for seven a/b ratios. Sigillito (ref. 4.76) 
showed that even more precise upper bounds 
can be obtained with the Rayleigh-Ritz pro- 
cedure by using deflection functions which are 
products of beam functions and Legendre 
functions. Results obtained using 30 admis- 
sible functions constructed in this manner are 
also listed in table 4.49. All values in table 
4.49 are for i>=0.3. 

Gontkevich    (ref.   4.55)    used   Southwell's 
method to get lower bounds of frequency param- 
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-0.4     -0 2 

-0.5-- 

-1.0 J- 

=*==fix/a=0.5 

fTheo=74lcPs 

f Exp -7I.7CP. 

MODE I 

^x/a=0.3 
^oa^ x/a = 0.l| t 
0.2       0.4       -0.4     -0. 

y/a 

-1.0-L 

x/a=0.9 

x/a=0.5 

x/a=0.5 

0.2       0.4      -0.4     -0.2 

A   Experimental 
o   Theoretical 

fTheo=l780cPs 

fExp =l760cps 

MODE 2 

-1.0 J- 

W 454.0cps 
fExp = 430-0cPs 

MODE 3 

FIGUBE 4.41.—Theoretical and experimental mode shapes for a square cantilever plate. 

x/a=0.9 

45 

40 

35 

30 

25 

I 
20 

/ 

/—r 

y 
/ f / 

I f 
. 

y 
/ . / ■ 

/ 

-1—"— Theor 
•      Test 

y 

y 

a/b 

FIGURE  4.42.—Frequency  parameter  wa?^p/D   for   a 
rectangular cantilever plate; j>=0.3. (After ref. 4.73) 

eters for the first five modes. These are sum- 
marized in table 4.50 for i>=0.3. The mode 
numbers agree with those of table 4.48. 

Claassen and Thorne (refs. 4.63 and 4.77) 
used the series method described in the discus- 
sion of the C-C-C-C plate (sec. 4.3.1) to obtain 
precise frequencies for small variations in a/b 
ratio. Figure 4.43 gives the lowest five sym- 
metric frequencies and the lowest four antisym- 
metric frequencies as functions of a/b, with 
a<Cb. Figure 4.44 shows the variation with b/a 
for a>&.    Poisson's ratio ^=0.3 was used. 

Detailed tabular data for the above curves 
are given in tables 4.51 and 4.52. Additional 
frequencies in the vicinity of "transition points" 
(see discussion of the C-C-C-C plate, sec. 
4.3.1) and the detailed coordinates of nodal lines 
are given in reference 4.63. 

Martin (ref. 4.78) devised a variational pro- 
cedure similar to the Eayleigh-Eitz method and 
used it to compute the frequencies of a mild 
steel plate of dimensions a=5.12 inches, 
6=2.76 inches, and A=0.053 inch. These are 
compared with experimental data found by 
Grinsted (ref. 4.79) in table 4.53. The upper 
values are taken from reference 4.78 and the 
lower, from reference 4.79, and the percent dif- 
ference is given. The indicators m and n cor- 
respond to the number of nodal lines running 
"parallel" to the y- and z-axes, respectively; 
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TABLE 4.49.—Bounds on Frequency Parameter «a2-y/p/D for Symmetric Modes of a Rectangular 
Cantilever Plate; v—0.3 

UO?TJP/D 

Mode 
Lower 
bounds 

Upper bounds 
Lower 
bounds 

Upper bounds 

Ref. 4.75 Ref. 4.76 Ref. 4.75 Ref. 4.76 

o/6= 0.125 o/6=0.250 

1  3. 4926 
3. 9425 
5. 3402 
7. 6439 

11. 050 
15. 576 
20. 827 
21. 869 
22. 381 
24. 067 

3. 5134 

4. 0448 
5. 6095 
8. 2204 

11. 995 
17. 008 
21. 977 . 

22. 618 
23. 431 
24. 909 

3. 5113 
4. 0406 
5. 6076 
8. 2204 

11. 996 
17. 018 
21. 955 
22. 606 
23. 599 
24. 901 

3. 4835 
5. 2559 

10. 583 
20. 106 
21. 900 

24. 040 
30. 755 
35. 142 

41. 738 
53. 987 

3. 5094 
5. 5171 

11. 313 
21. 465 
22. 309 
24. 857 
32. 500 

37. 669 
44. 481 
58. 218 

3. 5059 

2  5. 5141 

3  
4  
5  
6  
7  
8  

11. 318 
21. 455 
22. 308 

24. 816 
32. 489 

37. 890 

9  
10  

44. 520 
60. 738 

o/6= 0.500 a/6= 1.000 

1  
2  

3. 4608 
9. 7605 

21. 529 
29. 927 
32. 906 
55. 061 
60. 256 
68. 292 
74. 355 
93. 740 

3. 5001 
10. 210 
21. 891 
31. 522 
34. 160 
58. 195 
61. 560 
71. 346 
77. 717 
99. 722 

3. 4944 
10. 208 
21. 848 
31. 491 
34. 180 
58. 184 
61. 440 
71. 217 

78. 936 
99. 925 

3. 4305 
20. 874 
26. 501 
51. 502 

60. 249 
92. 143 

115. 68 
121. 11 

143. 98 
149. 47 

3. 4823 
21. 367 
27. 278 
54. 301 
61. 450 
97. 321 

119. 51 
124. 63 
150. 24 
158. 25 

3. 4729 
21. 304 

3  27. 291 

4  
5  

54. 262 

61. 276 

6  97. 208 

7  119. 24 

8—  125. 14 

9  156. 67 

10  161. 13 

o/6=2.000 a/6=4.000 

1  
2  
3  
4  

3. 3856 
21. 062 
58. 946 
91. 165 

115. 77 
122. 53 
170. 71 
193. 19 
234. 60 
287. 76 

3. 4575 
21. 550 
60. 477 
93. 390 

119. 00 
127. 22 
179. 29 
198. 94 
294. 00 
297. 09 

3. 4415 
21. 447 
60. 191 
94. 245 

118. 67 
128. 44 
181. 56 
198. 20 
252. 59 
296. 00 

3. 3306 
20. 822 
58. 356 

114. 57 
189. 63 
283. 02 
354. 30 
384. 46 
401. 04 
443. 26 

3. 4332 
21. 475 
60. 292 

118. 59 
196. 62 
293. 96 
361. 12 
394. 02 
415. 19 
459. 58 

3. 4131 
21. 340 
59. 937 

117. 98 

5  
6  . 

195. 80 
293. 03 

7  
8  
9  

364. 43 
400. 44 
416. 66 

10  ... 520. 04 

o/6=8.000 

1  3. 3025 
20. 683 
57. 940 

113. 67 
188. 20 
281. 60 
393. 91 
525. 11 
675. 15 
842. 90 

3. 4297 
21. 481 
60. 208 

118. 20 
195. 83 
293. 22 
410. 42 
547. 45 
704. 29 
880. 88 

3. 3885 
21. 220 
59. 472 

116. 79 
193. 60 
290. 08 
406. 38 
542. 54 

698. 58 
874. 46 

2  
3  
4  
5  
6  
7  
8  
9   
10  
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TABLE 4.50.—Lower  Bounds of  wa2VP/D for 

Rectangular Cantilever Plates; v=0.S 

Mode 

1 
2 
3 
4 
5 

Lower bounds of aa^p/D for values of 
a/b of— 

0.5 

3. 35407 
4. 6490 

21. 0195 
9. 0096 

23. 110 

1.0 

3. 35407 
7. 2595 

21. 0195 
25. 151 
28. 546 

2.0 

3. 35407 
13. 3064 
21. 0195 
86. 402 
43. 977 

5.0 

3. 35407 
32. 3660 
21. 0195 

534. 55 
98. 836 

thus, n must be even for symmetric modes and 
odd for antisymmetric modes. 

Forsyth and Warburton (ref. 4.80) used the 
Rayleigh-Ritz method with a deflection func- 
tion having two terms involving the products of 
beam functions to obtain the frequencies of a 
rectangular steel plate having a=16 inches, 
6=7.5 inches, and A=0.282 inch and compared 
them with experimental results. These results 
are listed in table 4.54. 

Much experimental information is available 
on this problem. Dalley and Ripperger (refs. 
4.81  and 4.82) gave results determined from 

8.0 
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X 4.0 
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-Ü 
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1.0 

8.0 

6.0 

X 4.0 

2.0 

Anti-Symmetric 

^ 

7^ 

^: 

/" 

02        0.4        0.6        0.8 10 
a/b 

FIGURE 4.43.—Frequency parameter */**=<oa*jp/D(**) for a rectangular cantilever plate- ,= 03 
(After ref. 4.77) 
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TABLE 4.51.—Frequency Parameters \ = aia?-yJp/D 
and X*=wb2Vp/D for Symmetric Modes of a 
Rectangular Cantilever Plate; v= 0.8 

X and X* for mode— 
Aspect 
ratio 

1 2 3 4 5 

a/b X 

1.00  3.472 21.29 27.2 54.3 61.3 
0.95  3.474 21. 13 25.3 51.8 61.2 
0.90  3.476 20.74 23.7 49.2 61.2 
0.85  3.477 19.85 22.7 46.9 61. 1 
0.80  3.479 18.49 22.2 44.5 61.1 
0.75  3.481 16.98 22. 1 42. 1 61.0 
0.70  3.484 15.48 22.0 40.0 60.3 
0.65  3.486 14.06 21.9 37.9 54.0 
0.60  3.488 12.68 21.9 35.7 46.7 
0.55  3.491 11.41 21.9 33.7 40. 1 
0.50  3.493 10.22 21.9 31.5 34. 1 
0.45  3.496 9. 13 21.8 27.6 30.7 
0.40  3.498 8. 11 21.5 22. 0 28.8 
0.35  3.501 7. 18 18.3 21.9 27.2 
0.30  3.503 6.32 14.52 21.4 25.8 
0.25  3. 506 5.57 11.31 15.3 
0 20 3 508 4. 85 8. 65 
0 15 3 511 4. 28 6. 5 
0 10 

0 00 3. 5160 

6/o X* 

1.00  3.472 21.29 27.2 54.3 61.3 
0.95  3. 132 19.30 26.6 51.5 55.5 
0.90  2.809 17.36 26. 1 48.3 50.4 
0.85  2.504 15.51 25.6 43.8 47.0 
0.80  2.217 13.75 25.2 39.0 44.3 
0.75  1.946 12. 09 24.7 34.3 41.8 
0.70  1.694 10.53 24.2 30.0 39.6 
0.65  1. 459 9.08 23.5 26.3 37.3 
0.60  1.242 7.73 21.4 24.3 35.2 
0.55  1.042 6.49 18.2 23.7 33.2 
0.50  .861 5.37 15.03 23.3 29.6 
0.45  .696 4.34 12. 18 22.7 24. 5 
0.40  .549 3.42 9.61 18.9 23.0 
0.35  .419 2.63 7.35 14.47 22.5 
0.30  .307 1.92 5.39 10.63 17.6 
0.25  .213 1.33 3.73 7.36 12.20 
0.20  . 135 .85 2.39 4.70 7.79 
0. 15  .076 .47 1.34 2.64 4.36 
0. 10  .034 .21 .59 1. 16 1.92 
0.05  .008 .05 . 15 .29 .47 
0.00  .000 .00 .00 .00 .00 

TABLE 4.52.—Frequency Parameters X = wa%/p/D 
and X*=cob2Vp/D/or Antisymmetric Modes of 
a Rectangular Cantilever Plate; v=0.S 

Aspect ratio 

1.00- 
0.95. 
0.90- 
0.85. 
0.80- 
0.75- 
0.70- 
0.65- 
0.60- 
0.55- 
0.50- 
0.45. 
0.40- 
0.35- 
0.30- 
0.25- 
0.20. 
0.15- 
0.10- 
0.05- 
0—_ 

1.00. 
0.95. 
0.90. 
0.85. 
0.80. 
0.75. 
0.70. 
0.65- 
0.60- 
0.55- 
0.50- 
0.45- 
0.40- 
0.35. 
0.30. 
0.25- 
0.20. 
0.15. 
0.10. 
0.05. 
0.00- 

a/6 

6/a 

X and X* for mode— 

8.55 
8.23 
7.92 
7.60 
7.27 
6.96 
6.63 
6.32 
6.00 
5.68 
5.38 
5.07 
4.79 

51 
26 
04 
85 
70 

3.64 

31. 1 
30.3 
29.5 
28.7 
28.0 
27.2 
26.5 
25.7 
24.4 
22.0 
19.0 
16.4 
13.8 
11.5 
9.62 
7.91 
6.42 
5.20 

64.2 
58.6 
53.2 
48.0 
43.0 
38.5 
34. 1 
30.3 
27.2 
25.6 
24.8 
24. 1 
23.6 
23. 1 
21.0 
15.8 
11.58 

X* 

8.55 
8.01 
7.49 
6.98 
6.47 
5.99 
5. 51 
5.04 
4.59 
4. 15 
3.71 
3.29 
2.87 
2.48 
2.09 
1.72 
1.35 
.997 
.66 
.33 
.00 

31. 1 64.2 
28.8 62.3 
26. 6 57.9 
24.6 52.8 
22.5 47.9 
20.6 43.0 
18.8 38.6 
17.0 34.3 
15.3 30.4 
13.7 26.6 
12. 1 23.2 
10.7 19.9 
9.21 17.0 
7.86 14.2 
6.56 11.7 
5.34 9.36 
4. 16 7. 19 
3.06 5.20 
1.99 3.36 
.98 1. 64 
.00 .00 

71. 1 
69.8 
68.7 
67.7 
66.6 
64. 1 
59.8 
55.4 
51. 1 
47.1 
43.2 
39.6 
34.6 
27.7 
23.2 

71. 1 
66.6 
64. 8 
64.2 
63.7 
63.2 
62.5 
58.7 
51.7 
44.7 
38.3 
32.5 
27.0 
22.3 
18.0 
14.05 
10.60 

7. 52 
4.78 
2.30 
.00 
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TABLE 4.53.—Theoretical and Experimental Frequencies (cps) for a Mild Steel Cantilever Plate; 
&=5.12 inches, b=2.76 inches, and h=0.058 inch 

n Type 
Frequency, cps, for values of m of— 

0 1 2 3 4 5 

0 Theoretical  69.5 
64 

8. 6 
276 
260 
6.2 

1,610 
1,606 

0.2 
4,250 
4,235 

0.4 
8,260 
8,238 

0. 3 

436 
405 
7.7 
905 

1,220 
1, 120 

8.9 
1,743 
1,676 

4. 0 
3, 280 
3, 160 

3.8 
5,950 
5,739 

3.7 
9,750 
9,651 

1. 0 

2,390 
2,233 

7.0 
2,970 
2, 804 

5.9 
4,660 
4,428 

5.3 
7,450 
7,069 

-      5.4 
10, 620 

3,940 
3,736 

5.5 
4,530 
4,335 

4.5 
6,350 
6,009 

5.7 
9,200 

5,900 
5,573 

5.9 

Experimental  
Percent difference  

1 Theoretical  
Experimental   
Percent difference  

2 Theoretical-     2,260 8,350 
7,859 

5.9 
11, 280 

Experimental.       .  
Percent difference .    

4,810 
4,773 

0.8 
8,870 
8,685 

2. 1 

3 Theoretical--     -  _   
Experimental  
Percent difference-- _          

4 Theoretical  __    _ .  13, 150 15, 300 
Experimental         _    
Percent difference  _    

TABLE 4.54.—Theoretical and Experimental 
Cyclic Frequencies for a Rectangular Canti- 
lever Steel Plate Having &/b=2.18 

TABLE 4.55.—Experimentally Determined Fre- 
quency Parameters uaVp/D for a Rectangular 
Cantilever Aluminum Plate 

m Type 

Frequency, cps, for 
values of n of— 

1 2 3 

1 

2 

3 

4 

Theoretical 
Experimental . 
Theoretical.  
Experimental. _ 
Theoretical-     
Experimental.  
Theoretical  
Experimental-.  __ 

37.7 
35.6 

236.3 
219 
662.3 
618 

1298 
1216 

169.8 
162 
542.9 
529 

1030. 5 
996 

1166 
1115 
1563 
1451 
2149 
1996 

aß 
coo2Vp/I> for mode— 

1 2 3 4 5 

y2  3.34 
3.37 
3.36 
3.32 

5.38 
8.26 

14.43 
20. 84 

10.31 
20. 55 
20.86 
32.40 

i  27. 15 29 75 
2 
5 

aluminum plates as listed in table 4.55. The 
foregoing results are also shown as circles in 
figure 4.42. Photographs showing nodal lines 
formed by the soap powder used in the experi- 
ment are shown for a square plate in figure 
4.45. 

Heiba (ref. 4.83) tested a series of %-inch- 
thick mild steel plates of width 6=10 inches 
and a/b=1.0, 0.8, 0.6, and 0.4, and obtained the 
frequencies and nodal patterns shown in 
figure 4.46. 

Plunkett and Wilson (refs. 4.84 and 4.85) 
measured the frequencies of steel plates with 
a=5.00 inches, A=0.100 inch, and a/b=2.00, 
2.50, 3.33, and 5.00. Results are listed in 
table 4.56. The significance of m and n is the 
same as it is in table 4.53. 

Craig, Plass, and Caughfield (ref. 4.86) ex- 
perimentally obtained the first four frequencies 
and mode shapes of a 6061-T6 aluminum 
cantilever plate 7.5 inches by 7.5 inches by 
0.125 inch. Frequencies and corresponding 
frequency parameters are listed in table 4.57. 
Mode shapes are also given in reference 4.86 
but are inaccurate, apparently because of the 
influence  of  the  shaker  position.    Neverthe- 
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FIGURE 4.45.—Photographs of nodal patterns on a square cantilever plate.    (From ref. 4.81) 
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h- 

39.8 cps 
MODES   1(0/0) 

104.5 cps 
2(1/0) 

249.5 cps 
3(0/1) 

324 cps 
4(2/0) 

►  

r —--N   ^-J 

367 cps 
5(1/1) 

646 cps 
6(2/1) 

(a) 

y—~' 

h- 

40.6 cps 
MODES   1(0/0) 

95 cps 
2(1/0) 

229.5 cps 
3(2/0) 

254.5 cps 
4(0/1) 

336 cps 
5(1/1) 

518.5 cps 
6(3/0) 

(b) 

/ 
i 

\ 
\ 

V 

    /  / / 
/ "* "*-•.., 

/ t                      ~ \ / 
/ I 
/ 1 

I V 
/ r" / 
/ 1 » -x / i \ / i \ 
/ \ 

\ 
\ ^" 

/ \ \ ,' / 
i 

\ s 
40.2 cps                    7lcps                     I47cps                   245.6cps                  293cps                    3l4cps 

MOE )ES   1(0/0) 2(1/0) 3(2/0) 4(0/1) 5(1/1-3/0) 6(3/0+1/1) 

(c) 

/ \ V 
/ \ \ / 1 \ / 1 / 
/ 1 
/ | / 1 1 / / 
/ 

/ 
J 
/ 

/ 
/ / 

/ < 1 
/ 

f 
I / / i 1 / \ 1 / I 1 / 1 1 / 

/ : 
/ 1 1 \ 
/ / 

/ \ / / V 
/ / \ 

40.4 cps 60.5cps 105.4 cps 170.2 cps 251cps 274.5 cps 
MO DES 1(0/0) 2(1/0) 3(2/0) 4(3/0) 5(0/1) 6(1/1) 

(d) 

FIGURE 4.46.—Experimentally determined cyclic frequencies and nodal patterns for rectangular cantilever plates. 
(a) a/6=1.0.    (6) a/6 = 0.8.    (c) o/6=0.6.    (d) o/6 = 0.4. 
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TABLE 4.56—Experimental Values of wa%/p/D 
for a Rectangular Cantilever Steel Plate 

n/m 
wo2Vp/ß for values of a/6 of— 

2.00 2.50 3.33 5.00 

0/0  3.50 
21.7 
60.5 

118.7 
196.0 
292.0 

3.50 
21.6 
60.4 

117.5 

3.50 
21.5 
59.8 

116.5 
195.0 

3.45 
0/1  21.1 
0/2  59.3 
0/3  115.2 
0/4  190.0 
0/5 281.0 

1/0  14.5 
48.1 
92.3 

154.0 
228.0 
319-324 

17.3 
54.8 

101.5 

22.5 
69.6 

125.0 
187.0 

32.0 
1/1  98.0 
1/2  169. 0 
1/3  248.0 
1/4 
1/5        

2/0  92.8 
125. 1 
176.0 
244.0 

139. 1 246.0 
2/1  
2/2 
2/3        

3/0  246.0 
274.0 
319-324 

3/1 
3/2 

less, figure 4.47 showing the nodal lines is 
reproduced, partly as an estimate of accuracy 
for further results on parallelogram and tri- 
angular plates. 

Gustafson, Stokey, and Zorowski (ref. 4.87) 
experimentally determined the first five fre- 
quencies of a square steel plate having dimen- 
sions 10 inches by 10 inches by 0.0627 inch 
and the following material properties: 

Modulus of elasticity in ^-direction: 29.3X 
106 psi 

Modulus of elasticity in y-direction: 31.5 X 
106 psi 

Weight density: 0.282 16/in.3 

Poisson's ratio (assumed): 0.29 

Frequency parameters ua^p/D are listed in 
table 4.58. The arithmetic mean of the two 
moduli given above was used as E in the 
flexural rigidity D. 

Grinsted (ref. 4.79) obtained considerable ex- 
perimental data. Frequencies and nodal patterns 

TABLE 4.57.—Experimentally Determined Fre- 
quency Parameters and Cyclic Frequencies for 
a C-F-F-F Square Plate 

Mode 

Frequency, cps_. 
WOVP/-D  

1 2 3 

71.9 175 437 
3.34 8.23 20.56 

552 
25.97 

TABLE 4.58.—Experimentally Determined Fre- 
quency Parameters for a Square Cantilever 
Plate 

Mode 1 2 3 4 5 

ad'^pjD  3.35 8.53 20.90 26.72 30.61 

for a mild steel plate having a/6=1.86 are shown 
in figure 4.48. 

Walton (ref. 4.88) used the method developed 
by Houbolt (ref. 4.89) to determine the first 
five frequencies for the cantilevered square. 
This method is a numerical development of 
the Kayleigh-Ritz method in which deriva- 
tives are replaced by finite differences and 
area integrals are replaced by double summa- 
tions. In table 4.59 are given the first five 
cyclic frequencies for an aluminum-alloy plate 
as determined: (1) Experimentally, (2) by the 
method of reference 4.89, using 30 internal 
grid points in the finite-difference mesh, and 
(3) by using Warburton's formula (eq. (4.16)). 
No plate dimensions are given in reference 4.88. 

TABLE 4.59.—Theoretical and Experimental 
Cyclic Frequencies for a Square Aluminum- 
Alloy Cantilever Plate; v=0.28 

Frequency, cps 

Mode 
Experimental Method of 

ref. 4.89 
Eq. (4.16) 

1  23 21 21 
2  48 50 56 
3  118 121 132 
4  162 163 171 
5  173 177 190 
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For a comparison of frequencies of a rectan- 
gular cantilever plate in air, water, or vacuum, 
see the chapter entitled "Other Considerations" 
(ch. 12). 

The problem was also discussed in references 
4.90 to 4.94. 

4.3.13 SS-SS-F-F 

The only specific result directly available for 
the problem of the SS-SS-F-F plate (fig. 4.49) 
is the approximate formula, equation (4.16). 
For more information on this problem, see the 
discussion of the doubly antisymmetric modes 
of a completely free rectangular plate (sec. 
4.3.15). Straight node lines of antisymmetry 
duplicate SS boundary conditions. 

4.3.14 SS-F-F-F 

The only specific result directly available for 
the problem of the SS-F-F-F plate (fig. 4.50) 
is the approximate formula, equation  (4.16). 

were used, where Xm(x) and Ym(y) are the F-F 
beam functions expressed in terms of a nor- 
malized (i.e., x=x/a, where a=l) xy coordi- 
nate system having the origin at the plate 
center (fig. 4.51); that is, 

v ,_.    cosh km cos kmx-\-coskm cosh kmx 

ij cosh2 km+cos2 kn, 
(m even) 

v ,_.    sinh km sin kmx-{-sm km sinh kmx 

Vsinh2Ä;m—sin2A;m 

(modd), 

(4.58) 

The function Yn(y) is obtained from equations 
(4.58) by replacing x by y and m by n. The 
values km are the roots of the equations 

tanZ;m+tanh&m=0       (meven) 

tan&m—tanh&m=0       (modd) } (4.59) 

4.3.15   F-F-F-F and are listed in table 4.60. 
The problem of the completely free plate (fig. Results were obtained in reference 4.110 by 

4.51) has a rich history.    The first significant using six or more  terms  of  equation  (4.57) 
work examining nodal patterns on rectangular and four different values of Poisson's ratio, 
plates of any kind was produced by Chladni These data are given in table 4.61. 
in 1787 (ref. 4.95) for completely free bound- Ritz   (ref-  4.108)   himself  computed  many 
aries and extended in references 4.96 to 4.98. more frequencies for the square.    Table 4.62 
Other early experimental work on this problem lists   frequency   parameters,   nodal   patterns, 
was   performed   by  Strehlke   (refs.   4.99   to and tüe approximate mode shapes used, again 
4.103), König  (ref. 4.104),  and Tanaka  (ref in terms of equations (4.57) and (4.58).    All the 

4.105).    Wheatstone (ref. 4.106) in 1833 made nodal Patterns in fcable 4-62 are either doubly 
an attempt to explain the Chladni patterns ^^tric or doubly antisymmetric about the 
•    .nmn     , ,,         j       „ „ „ ,                n   , bisectors or the square x=0, w=0. 
in terms of the modes of F-F beams, and these v            •         A       i     il                          + A ..-,,,. Frequencies and mode shapes are computed 
geometrical studies were extended by Eayleigh for „=0 225> using the number of tmns listed 

'   ' for  W(x, y).   Small variations in  v from  the 
Kitz (ref. 4.108) in 1909 used the problem 

to   demonstrate  his  famous  method  for  ex- TABLE 4M.—Eigenvalues of a F-F Beam 
tending the Eayleigh principle for obtaining 
upper bounds on vibration frequencies. This 
innovation resulted in several following papers 
(e.g., refs. 4.109 to 4.112) which used the 
method to solve the problem in great detail. 

Lemke (ref. 4.110) computed frequencies 
and mode shapes for the six modes of a square. 
Functions of the type 

W(x, y)=52 AmnXm(x)Yn(y)      (4.57) 

m n-m m Km 

0  0 
2. 36502 
5. 49780 
8. 63938 

11. 78096 
14. 92255 

(2m-l)a-/4 

1  0 
2  3  

5  
7  
9  
m..  

3. 92660 
4  7. 06858 
6  10. 21017 
8  13. 35175 
10  (2m-l)ir/4 
m  .   
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value of 0.225 can be taken into account by 
the terms Sv, where given. It must ..be re- 
membered that these are upper bounds on the 
exact frequencies and that the higher frequen- 
cies and mode shapes may be quite inaccurate. 
In reference 4.108 frequencies and mode shapes 
are also listed for modes symmetric about one 
axis and antisymmetric about the other. Some 
interesting superpositions of these modes are 
also presented. These are given in table 4.63. 

ödman (ref. 4.13) used a variation of the 
Galerkin method to obtain extensive results 
for this problem. Unfortunately, his results 
for the cases when nodal lines lie in only one 

CLAMPED EDGE 

V=-0A      V--02       V=0 ^=+0.2 /1?-+0,4 

\ | 

\ 
4 

yNODE .INE 1 
: 

/ 

4 

A ^-3 — 

/ 
/ 

C=o.i 

i-O.3 

£ = 0.5 

£=0.7 

£ = 0.9 

(o) 

-0.4 =£L p   "n 

(■0.3A 

{-054 

««17, 

{■09, 

,., «SHAKER POSITION- 
*' NO DEFLECTION DATA 

+ 04 
—A 

W) 
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SHAKER POSITION- 
NO DEFLECTION DATA 

FIGURE 4.47.—Experimentally determined nodal pat- 
terns for the first four modes of a C-F-F-F square 
plate; material, 6061-T6 aluminum %-inch thick, 
(a) Experimental node lines and data points. 
(6) Mode l;/i=7l.9 cps. (c) Mode 2;/2=175 cps. 
(d) Mode 3;/3=437 cps.    (e) Mode 4; /4=552 cps. 

direction are those of a F-F beam and do 
not consider anticlastic bending effects. The 
numerical error in these frequencies is not large, 
however. Results for comn (m, n=0, 1, . . ., 
6) are given in table 4.64, where m and n 
denote the number of nodal lines approxi- 
mately parallel to the y- and z-directions, 
respectively. The cases when m=0 or n=0 are 
then the beam modes just described. Values in 
parentheses were obtained by interpolation. 
Poisson's ratio is 1/6. 

Iguchi (ref. 4.113) used the series method to 
solve the problem. He formulated the problem 
for the general rectangle with solutions to 
equation (1.4) in the form 

W&,y) = T, Xncosmr] (i 
71 = 0 [GH 

+är-M"»'[G)+<] (4.60) 

in terms of figure 4.51, where £=x/a, ri=y/b, and 

-A»—An 
coshirXaK? ,  ^cosb-TrA*^ 

sinh|xa„ 
A* 

sinh|\*„ 

,,(** sinli7r\o.rag | A *** smh 7rXj„g 
-A* 

cosh|xa„ cosh|x*a 

X m      Jjr 

cosh Tr\ßmV 

sinh|x^m 

B „.coshxX^ 

sinh|x|m 

_|_ _g** sinh7rXgmr;    s„** sinh TTXJLT; 

cosh|x3ffl cosh | \*m 

(4.61) 

with 

Kn, X*B = V«V±/i 

/     coa2   /p        a\ 

^ßm, X*ra = V(32TO2±M* 

(4.62) 

dz2 

The boundary conditions are 

(on5=±|) (4.63(a)) 

(ony=±|) (4.63(b)) 

(onz=±f) (4.63(c)) 

ö r&w. .„   , own n 

(ony=±^ (4.63(d)) 

^=^==0    (at the corners) (4.63(e)) 

308-337 O—70 
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10 

0/6 

77777 
4/0     4/1      4/2    0/3±2/l  1/4+3/0 2/7±4/4 

8,238 8,685 9,651 2,278 2,1154,335 12,590 
12,840 

Fundamental 64 cps - 2 3 4 5 
Number of Nodal Lines.n 

FIGURE 4.48.—Experimental frequencies and nodal patterns for a rectangular cantilever 
plate; a/6=1.86. (After ref. 4.79) 

FIGURE 4.49.—SS-SS-F-F plate. FIGURE 4.50.—SS-F-F-F plate. 



The last of these is identically satisfied by 
equation (4.60). Applying equations (4.63(c)) 
and (4.63(d)) gives 

Xn=anu„a(t)+alv„n(Z) 

Ym=bmußm(,rj)+btlt>ßm(v) 

«„(?)=^-<K»-vctW) C0Sh TXa"f 

A<*» 
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sinh|x„K 

1_ 
-^-(XS-wAi») 

cosh xXj„? 

sinh|x2„ 

C0sh7rXra 

Aß; 

1  /"\ *2        2 2\Sinh7rXan§ -^T (Xfre-raV) ^^ 
cosh|x*„ 

.^-^m2)COsh,rX'« 
sinh^X^ 

-(X*/m-,/3
2m2) 

cosh ffX*m7; 

sinh|x^ 

"M~ mm-vß*m*) S^W 
ßm cosh | X^ 

1 
x*  ,KZ-Vß^)SinhfU 

ßm
 cosh|x^m 

«ao(£) = VM 

M««O(I?) = VM* 

0O(V)=TJH* 

cosh xyVg      cosh TTVM£ 

sinh^-VM sin 2 VM 

coshx-y^*?; _ cosxV/i*?? 

sinh|VJü*       sin^VM* 

r  -N 
sinh 7rV^*?7     sin?rV/**>? 

cosh-VJü*      cos ^VM* 

where   aB,  a*,  6m,  and  6*   are   undetermined 
constants. 

Applying equations (4.63(a))  and (4.63(b)) 
results in an infinite characteristic determinant 

FIQUHE 4.51.—F-F-F-F plate. 

for the frequencies. When the determinant is 
truncated to a finite order of terms, the eigen- 
values are found to converge rapidly with in- 
creasing order of determinant. Frequencies, 
nodal patterns, and numerical constants for 
mode shapes are given in table 4.65 (from ref. 
4.113) for the case of the square having J/=0.3. 

For modes having symmetry about both co- 
ordinate axes and both diagonals, the mode 
shapes are 

W(x, y)=ab[t/0(f)+«o(i»)] 

+    S   (-l)n,2an[un(H)cosnirV 
»=2,4,.. . 

+un(r)) cos 7i7r£] (4.65) 

For mode shapes symmetric about the co- 
ordinate axes and antisymmetric about the 
diagonals: 

W(x,y)=a0[uo^)-uo(7i)] 

+      S     (-^«»[«„(«COSTWnj 
Ji=2,4,... 

—un(i}) cos nir£]    (4.66) 

For mode shapes antisymmetric about the 
coordinate axes and symmetric about the 
diagonals: 

n-l 

W(x,y)=   2  «»(-1) 2  K(f)flinninj 
«=1,3, ... 

+vn(Ti)sw.nir%]    (4.67) 

For mode shapes antisymmetric about the 
coordinate axes and the diagonals: 

(4.64)      W(x,y)-- 
n-l 

2 
=    S   «n(—1) 2  [»»(£) sin mrn 
n=l,3,... 

—vn(v) sin mr%\    (4.68) 

where «„• and v„ are given in equation (4.64) 
and an, X„, X*, and so forth are given in 
table 4.65. 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate 

(a) Firstmode: W(x, 
+ Ali(XiYl+XsY1)+A3(,X3Yi+XsYs) + AeiX,Yi+ 

0.225 0.343 0.360 0.390 

No. terms  6 6 15 6 15 15 

14.14 13.10 13.086 12.94 12.927 12.64 

Amplitude coefficients: 
An    _   1. 0000 

.0378 
-. 00435 
-. 0034 

. 00118 
-. 00045 

1. 0000 
.0328 

-. 00541 
-. 00265 

. 00139 
-. 000474 

1. 0000 
.0325 

-. 0050 
-. 00257 

. 00121 
-. 000365 

. 000413 
-. 000431 

. 000148 
-. 0000703 
-. 0000767 

. 000196 

. 0000720 

. 0000382 
-. 000023 

1. 0000 
.0320 

-. 00555 
-. 00255 

. 00141 
-. 00048 

1. 0000 
.0318 

-. 00514 
-.00246 

. 001235 
-. 000366 

. 000382 
-. 000440 

. 000149 
-. 0000701 
-. 0000638 

. 000201 
-. 0000727 

. 0000382 
-.0000230 

1. 0000 

Ai3_  - .0306 
-.00537 

A15  __    -.002285 

A35    „         . 001276 
-. 000370 

. 000328 
-. 000456 

An . 000150 
-. 000070 
-. 0000413 

. 0002086 

. 0000733 

. 00003805 
-. 0000228 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con. 

(b) Second mode: W(x, y)=Ao2(X0Y2-X2Y(l)+Aoi(X0Yi-XlY<)) 

+A2i(X2Yi-XiY1) +Ao6(X„F6-ZeFo) +A2i(X2Yt-X6Y2) + 

0.225 0 343 0 360 0.390 

No. terms  3 4 11 4 11 IX 

oja2Vp/D  20.49 19. 306 19. 231 19. 129 19. 045 18 707 

Amplitude coefficients: 
Am    1. 0000 

-. 131 
-. 0043 

1. 0000 
-. 0204 
-. 00643 

. 00522 

1. 0000 
-. 02042 
-. 006105 

. 00518 

. 00207 

. 000098 
-. 002042 
-. 000929 
-.0000613 
.0000080 
. 001008 

1. 0000 
-. 02142 
-.00675 

. 00549 

1. 0000 
-.02146 
-.00642 
.00545 
. 00217 
.0001006 

-.00215 
-. 000975 
-. 0000631 

. 0000083 

. 00106 

1. 0000 
-. 023312 
-. 006976 

005927 

Am  _ ._   
An-  
A06    _ 

. 00235 

. 000105 
—. 002337 
—. 001054 
—. 0000658 

. 0000087 

. 001154 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con. 

(c) Third mode: W(x, £)=Ao2(XoF2+X2Fo)+A22X2F2 

+Aol(X0Yi+XiY0) +AM(XiYi+XiYi) +AiiXiYi+ 

\ 
\ 
1 

\ / 
\ / 
N», „• 

0.225 0.343 0.360 0.390 

No. terms  __ _- 5 6 15 6 15 15 

aa?yp/D  23.97 24.64 24.58 24.73 24.66 24.80 

Amplitude coefficients: 
AM-       
A22-     - 

1. 0000 
-. 0236 

. 00132 

. 0022 

. 00166 

1. 0000 
-. 0447 

. 02011 

. 00384 

. 00282 
-. 00503 

1. 0000 
-. 0449 
.0202 
. 00363 
. 00252 

-. 00505 
-. 00194 

. 00199 
-. 000822 

. 000987 
-. 000976 

. 000293 

. 000355 
-. 000138 

. 000069 

1. 0000 
-. 0484 

. 02115 

. 00409 

. 00302 
-. 00529 

1. 0000 
-. 0488 
.0213 
. 00385 
. 00271 

-. 00531 
-. 00206 

. 00209 
-. 000884 

. 00105 
-. 00103 

. 000316 

. 000382 
-. 000146 

. 000073 

1. 0000 
-. 0563 

AM-     -   
A21-       __ 
An      __   

. 02324 
. 00426 
. 00306 

Am  _   -. 00580 
-. 00229 

. 00228 
-. 000994 

. 001166 
-. 001121 

. 000353 
A48 . 0004303 

-. 000163 

-4.88 . 000081 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con. 

 ! 
1 

i 
I 

\ i 
\ 1 
» i 
/ \ 

•» ^—- 
i 

1 
• 

i 

(d) Fourth mode: W(x, y) -- --Ao2(XoY2-\- X2Y0) -^-AMXIYI 

+Aoi(XoYi+XiYo) +A2i(X2Yi+XiY2) +A 44X4^4+ 

0.225 0.343 0.360 0.390 

No. terms.. _  5 6 15 6 15 15 

wa?-Jp/D.  66.402 63.160 62.676 62.664 62.196 61.329 

Amplitude coefficients: 
A02 - 0. 0118 

1. 0000 
-.020 
.0876 

-. 0047 

0. 02266 
1. 0000 
-. 0288 
.0730 

-. 00951 
. 00529 

0. 0228 
1. 0000 
-. 0275 
.0690 

-.00674 
. 00540 

-. 00971 
. 00314 

-. 00148 
-. 00211 

. 00204 
-. 00153 

. 00076 
-. 000435 

. 001006 

0. 0246 
1. 0000 
-. 03005 
.0709 

-.01015 
. 00556 

0. 0248 
1. 0000 
-. 02875 

. 06704 
-. 007355 

. 00568 
-. 00921 
.00330 

-. 00151 
-.00222 
.00183 

-. 00160 
. 000778 

-. 000441 
. 00106 

0. 02864 
A22      1. 0000 
A 04 - -- -.0310 
A2i    . 06350 
An    -. 00841 
AQU          . 00619 
.4 26  -. 00830 
Aw.      . . . . 003574 

Am  -      -. 00158 
Am    -.002425 
.A28  . 00147 
^48- -- - -. 00172 
^■68-- . 000808 
.4.88 -. 000452 

. 00116 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—-Con. 

7I\ 
(e)  Fifth mode: W(x 

■ 

y)=Aa(X1Ys -XtY1)+Au(XiYl-X,Yd 
+AM(XzYt-XlYi) +A„(X1Y1- X7Y1)+ .  .  . 

0.225 0.343 0.360 0.390 

No. terms  3 3 10 3 10 10 

uaH~p/D       71.830 68.50 68.346 67.993 67.804 66.820 

Amplitude coefficients: 
1. 0000 

. 00024 

. 00216 

1.0000 
-. 01394 
-.005895 

1. 0000 
-. 01423 
-. 00511 

.00643 

. 004255 
,   . 00031 
-. 00338 
-.002713 
-. 000232 

. 000415 

1. 0000 
-. 0160 
-. 00707 

1. 0000 
-.01634 
-. 00623 

. 00709 

. 00470 

. 000315 
-. 00367 
-.002934 
-.000236 

. 0000421 

1. 0000 
-. 02008 

.435  -. 008235 
. 00826 
. 005495 
. 000322 

-. 00419 
-.00333 
-. 000241 

. 000043 
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con. 

(f) Sixth mode: W(x,y)=A11XlY1+A13(XiY3+X3Yi) 
+ A33X3Y3+A15(XiYi+X,Yi) + A3i(X3Y6+XsY3) + 

—I—1—I— 

V .1 i— 

0.225 0.343 0.360 0.390 

6 6 15 6 15 15 

(jia24pjT>  77.881 77.730 77.380 77.683 77.309 77.162 

Amplitude coefficients: 
An           -0.0746 

1. 0000 
. 171 
.0431 

-. 0084 
. 00546 

-0. 06456 
1. 0000 

. 1295 

. 05066 
-. 00480 

. 00814 

-0.0641 
1. 0000 

. 1252 

.0489 
-. 00347 

. 00645 
-. 01286 
-. 001936 
-.00290 

. 00139 

. 00515 

. 00184 

. 00150 
-. 000766 

. 000448 

-0. 0631 
1. 0000 

. 1227 

.0518 
-. 00419 

. 00856 

-0.0627 
1. 0000 

. 1184 

.0500 
-.00285 

. 00684 
-. 01321 
-. 00229 
-. 003052 

. 00146 

. 00531 

. 002046 

. 00158 
-. 000798 

. 000466 

-0.06035 

A\%                -  1. 0000 
.10562 

A\5          _____      . 05194 

^35^-        
-. 00172 

A55     . 00755 
-. 01384 
-. 00295 
-.00334 

. 001575 

. 00560 
. 00242 
. 001724 

-. 000858 
. 000497 
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TABLE 4.62.—Doubly Symmetric and Doubly Antisymmetric Frequencies and Mode Shapes for a 
Completely Free Square Plate; v=0.225 

Nodal pattern o)2a4p/16fl W(x, y) 

Doubly antisymmetric modes 

I 
I 
I 

■r 
i 
i 
i 

_L_ 

1 x— 
* ■ 

i « 
- —— 

i 
— *•- 

i \ * 
N i s 

V i s 
i i t 

-r— •-»- —i- 
i 
1 i ■ 
I i i T"T -IT 

I 
i i 1 

.i  ■ L --1- 
.1 1 <_ 

V !^ 

N \     I     / t 

r~*\—r ¥ iV 
CA 1 L2s 

_7_r_ 

'/TV 
-1 1 \- 
\\    I    /. 

Ill r     _- 

{~J-I~I--L 
J.J  I  I  ' 

12. 43-18. 0 8» X,F1+0.0394(X1F3+X3r1)-0.0040Z3F3-0. 0034(X1r6+X57I) 
+ 0.0011 (Z3F6+Z5F3) - 0.0019Z5F6 

316. 1-270 Sv       (X,y,-Z,r,) + 0. 0002(Z,F5-Z6F1)+0.0033(Z3F5-Z5F3) 

378-57 8x 

1554 

2713 

2945 

5570 

6303 

13 674 

-0.075Z1F1+(Z1F3+X3F1) + 0.173Z3F3+0.045(Z1F6+ZliF1) 
-0.015(Z3F5+Z6F3)-0.029Z6F5 

0.009*^- 0.075(Z1F,+X3F,) + Z3F3-0.057(Z,FB+Z5Fi) 
+ 0.121 (Z3F6+Z5F3) - 0.007Z5F5 

ZiF6— Z5F1 

XtYs+XsYt 

X3Y5-* Z5F3 

Z3F5+Z5F3 

Z5F5 
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TABLE 4.62.—Doubly Symmetric and Doubly' Antisymmetric Frequencies and Mods Shapes for a 
Completely Free Square Plate; v=0.225—Continued 

Nodal pattern 6>2a4p/16ö W(x, y) 

—1  
\ 

1— 
/ 

■*N     ^-"* --* ^~ 
\ t 
1 1 
/ V -v- "\"" 

k t \  N 

.;._ j. " 1 -;- 

tt I 
i 

"1 

1   1 
-t—1- 

I 
"i- 1 

Doubly symmetric modes 

26.40 

35. 73 + 20. 8 hv 

266. 0-274 «x 

941 

1702 

2020 

5480 

(X0F2- X2F0) - 0.0129(X0F4- XiYo) - 0.0045(X2F4- XtY2) 

(ZoF2-X2Fo)-0.0238X2y2+0.0130(Z0y4+X4Fo)+0.0026 
(z2y4+x4r2)+0.0016X4F4 

0.0122(X0F2 + Z2Fo) + Z2F2-0.0188(ZoF4 + X4Fo) + 0.0880 
(X2F4+XtYs) - O.OO44X4F4 

Xo F4 — X4 FQ 

X0F4+X4F0 

X2F4+X4F2 

X2F4+X4F2 

X4F4 
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TABLE 4.62.—Doubly Symmetric and Doubly Antisymmetric Frequencies and Mode Shapes for a 
Completely Free Square Plate; v=0.22B—Continued 

Nodal pattern 

X 
/Q 

I  V 

N i /■  xi' 

.'iV|lH 

IK    >■I I. 
< V»*-. 

..... 
^\  \ •   • 

»   V- -"/ w\ />-r 
1     IVI    I 
t."'' \-"»\. 
J ' *' "*»N V 
/-'-. -^ N f It Jir« \ 

A.  •„-O, 

i   i    i   x   • 
1 1 1 \'_J 

r-t-1-|-!- 
-t-t-j -r -'■ 

u«a4p/16D W(x, y) 

Doubly symmetric modes—Continued 

5500 

5640 

7310 

7840 

13 840 

15 120 

28 740 

XQY6— Agio 

XoYt, + X$Y o 

A2/ g — .A6-t2 

^2^64" Xj^ 

.XiYj—X1Y4 

XiYe-^XoYt 

XeYe 
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TABLE 4.63.—Symmetric-Antisymmetric Frequencies and Mode Shapes for a Completely Free Square 
Plate; v = O.i 

16D 

W&, y) 

80.8-73 Sv_ 

237.1- 

Mode shape 

746 _ 

1131- 

2497. 

324 0_ 

ZIF2-0.0682Z3ro+0.0760X3F2 

+0.0260ZiF4+0.0073X5Fo-0.0027X3F4 
-O.0112Z5F2 + 0.O030X5F4 

0.0G78X1Y2 + X,Y0-0.0150X3Y2 

+ 0.0355X1F4 + O.OOOOX5Fo+0.0100X3F4 
- 0.0007X5F2+O.OOI6X5F4 

-0.0709XiF2 + 0.0214ZsF0+Z3F2 

-0.1260X1F4-0.0038X5F0+0.1234Z3F4 
-0.0095 XSY2- 0.0100 Z5F4 

X,F4 

Nodal pattern 

Z5F0 

XtYt 

3927- 

6036_ 

X5F2 

XjFe 

LL_ 

^.J. 

 I 

4  

j  

J l_ 

v, 
1 t 
■ 1 
1 1 
1 1 

1 
_ I 

1 
1 I 

-i-r 
1 
1 
1 

j_4- 

J  

 L— 
1 

W(.x,y)-W(y,x) 
nodal pattern 

1 / / 

/   / /    • '   / /   • / / ; 

Yf 1 

7Ti— 

V- 

K7~- 
\     -'s.      **> Vx ) 
"T~ ~~\—1 1 *• ** ■ -■-« / 

1 ( f 
»    / 

r 

•     V / j ) 
r'V -i_ 

r-j—1-1 1—: 

-"/-. •r- 

\»  vX 
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TABLE 4.63.- - Symmetric-Antisymmetric Frequencies and Mode Shapes for a Completely Free Square 
Plate: v = 0.225—Contineud 

wWp 
W(x, y) 

W(x,v)-W(v. x) 
16Z> 

Mode shape Nodal pattern 
nodal pattern 

X5F4 

■3^5 ^6 

9030  

l    lit'    1 T__          _ 

I '  1   LJ |—r~i—pi 

/ //'r T 

10 380  -t—■{— ->- 

1    1    1 
■7— T— T" 
"t 1 T- 

■■1 v^: v ■ r 3 

^_/ A». 
-'A*-'/ 

20 400   

iii! m-i—1-} 
<--t- + - + -r 

1     I     '       •    J 
i—1  1—>~r 
t-1—+—l~h 

*'■' JjJ- 
'/ '"J' i > 

TABLE 4.64.—Frequency Parameters «a2Vp/D/or F-F-F-F Square Plate; i>=l/6 
[Table is symmetric; values in parentheses are interpolated] 

m 
wa2Vp/S for values of n of— 

0 1 2 3 4 5 6 

0  22. 373 
37. 284 

67. 591 

61. 673 
75. 948 

110. 599 
159. 324 

120. 903 
134. 107 

169. 998 
222. 700 

290. 427 

199. 860 
214. 138 

248. 064 
302. 831 

373. 952 
460. 964 

298. 556 
1.     14. 920 (292. 4) 

(309. 06) 
345 669 2__     

3            (399. 2) 
(396. 8) 
474. 596 4            

5           (562. 6) 
(565. 5) 
670 958 6_         

For modes symmetric with respect to x=0 
(fig. 4.51) and antisymmetric about l/=0 (asym- 
metric with respect to the diagonals): 

w-l 
2 W{x,y)=    2_    -„«»({X-l) 2 smnwn+ßMv) 

11 = 1,3, . . . 

+    __:    Ä»m(ij)(-l)"flcoBnwr£    (4.69) 
m=2,4,.. . 

The first four of these frequencies and the 
amplitude parameters are listed in table 4.66 
(ref. 4.113). 

The four nodal patterns corresponding to 
table 4.66 are shown in figure 4.52; also shown 
are interesting patterns which arise by taking 
the linear combinations: 

W(x,y)-KW(y,x) 
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wa2v/£7D = 35.1564 wa2v^7D= 105.4632 

1 
 

1 
 

1 

 1— 
1 
1 
1 
1 —J— 

1 
t 
\ 
\ 

(I-l) 

ü>a2v£7ü= 61.0931 

IH-I) 

wa2V5ö7D = 131.4695 
—1  

\ 
\ 

/ 
1 —r— 

1 
1 

I 
\ 

(n-i) 

T"    1 -1—r 
1      I I     1 
/      1 I     » 
/       1 l     \ 
i__L- 
1       1 ~M- 
\      1 1      1 
\      1 1     f 
1      1 J     1 
1      1 »     » 

(12-1) 

(1-2) (H-2) 

~I  

i 

* 

■•* «*- 

-I— 

V 
/ 

J. 

CO 

d 
i 
ii 

(m-2) 

/ j ,< ~r —*  / 
i / 
/ y   r s *           ! *              1 
/          1 
/ 1 

y 

(Et-2) 

(1-3) (1-3) (H-3) (32-3) 

^ (1-4) 

r ^ s \       x 

/ 

(n-4) 

~"i 7—> 
-'.—'   •' 

/        • 

J <''' 
y '—'H 
v. l i 

(3E-4) 

J Y ""»«»^ / / 
• 

s   ■> N • i 

A 
(32-4) 

FIGURE 4.52.—Superposition of mode shapes for a completely free square plate; r=0.3. (After ref. 4.113) 
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TABLE 4.65.—Frequency Parameters and Mode Shapes for a Completely Free Square Plate; v=0.S 

Nodal pattern           b>a2sjp[D n «n x„ A* 

Modes symmetric about'coordinate axes, s ymmetric about diagonals 

X\ C 0 
2 

8. 51935 
»1. 00000 2. 54147 1. 24133 

/    \ 24. 2702 \      4 . 04225 4. 29641 3. 67990 
\         / 6 . 01173 6. 20154 5. 79145 
N~' I  8 

(    o 

. 00494 

— 11966 

8. 15225 7. 84480 

i  i 

■  i 63. 6870 

2 
4 

1. 0000 
. 03422 

3. 23309 
4. 73844 

»1. 56615i 
3. 08985 

i  i 
._>»,— «V— 6 . 01065 6. 51558 5. 43573 

i  I 
■  > 

I  8 

f  ° 
2 

. 00473 

-8. 81714 
1. 00000 

8. 39362 7. 58598 

4. 05046 2. 89935i 

C / \ ) 122. 4449 1  4 -1. 19356 5. 32975 1. 89572 

f \ ''*) 6 -. 08213 6. 95746 4. 85734 
\   \ /   / \       K       S I  8 

'  0 
2 

-. 02402 

-. 07482 
1. 00000 

8. 74107 7. 18288 

W 4. 59037 3. 61545i 

\ L ,' / 
168. 4888 4 . 44885 5. 75078 1. 03513* 

6 . 03590 7. 28502 4. 35069 
\  / I  8 . 01347 9. 00397 6. 85044 

"\    W    / 

299. 9325 

'  0 
2 
4 

-8. 90424 
1. 00000 
-. 59521 

5. 86426 
6. 81099 

5. 13707i 
3. 79335i 

6 -1.39192 8. 14998 2. 36864 

(W/' I  8 -. 13703 9. 71543 5. 79745 
N.-'».-'-^ 

a i= V-T- 

Detailed mode shapes showing contour lines 
for 16 of the modes described in the foregoing 
paragraphs are shown in figure 4.53 (ref. 4.113). 

Grauers (ref. 4.114) in an early work also 
attempted to solve the problem using solutions 
to the differential equation but obtained in- 
accurate results. 

Upper and lower bounds for the fundamental 
frequency were obtained in references 4.115 
and 4.116 and were improved to extreme 
accuracy in reference 4.117. For v=0.225, 
these bounds are 

14.1028<waVp/Z><14.1165 

Bazley, Fox, and Stadter (ref. 4.118) used 
a method developed in reference 4.59 to com- 
pute lower bounds for the first 10 frequencies 
of the following symmetry class of a square: 

Taking a coordinate system as in figure 4.51, 
the modes are antisymmetric with respect to 
both x and y and are unaltered by interchange 
of x and y (symmetric about the diagonals). 
Five nodal patterns of this type are shown 
in the third part of table 4.65. They also 
obtained extremely accurate upper bounds by 
the Kayleigh-Ritz method, using the first 50 
admissible products of free-free beam functions. 
Double precision arithmetic was used in the 
computations where necessary. Results are 
listed in table 4.67 for ?»=0.225 and J/=0.3. 

Herein results from the Rayleigh-Ritz pro- 
cedure are given; both 25 and 50 admissi- 
ble functions are used to show the rate of 
convergence. 

Sigillito (ref. 4.76) showed that more precise 
upper bounds can be obtained with the Ray- 
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TABLE 4.65.—FrequencyParameters andMode Shapes for a Completely Free Square Plate; v=0.3—Con. 

Nodal pattern ucP-y/p/D n «n *n K 

Modes symmetric about coordinate axes, antisymmetric about diagonals 

19. 5961 

65. 3680 

117.1093 

161. 5049 

293.7190  < 

(     ° 
2 

1      4 

6 
I     8 

f     ° 
2 
4 
6 

I      8 

(! 

'     0 
2 
4 
6 

I      8 

6 
I     8 

-19.46060 
1. 00000 
.00264 

-. 00487 
-.00290 

3. 93698 
1. 00000 

-.09935 
-.01507 
-.00451 

3. 84826 
1. 00000 

-.48091 
-.02845 
-.00453 

-.02833 
1. 00000 

-.24428 
-.01363 
-.00297 

5. 79354 
1. 00000 

. 66331 
-.61699 
-.05732 

2. 44653 
4. 24093 
6. 16324 
8.12315 

1.41933 
3. 74359 
5. 83219 
7. 87493 

' V J 
s\          A. 

3. 25932 
4. 75638 
6. 52864 
8. 40376 

a1.61926i 
3. 06216 
5. 42004 
7. 57475 

V7 
3. 98317 
5. 27879 
6. 91850 
8.71009 

2.80458* 
2.03331 
4. 91267 
7. 22041 

4. 51264 
5. 68893 
7. 23629 
8. 96459 

3. 51623Ü 
.60322i 

4. 43127 
6. 90189 

xvx 
5. 81033 
6. 76461 
8.10925 
9. 68297 

5. 07543* 
3. 70944* 
2. 49801 
5. 85150 

leigh-Ritz procedure by using Legendre func- 
tions rather than beam functions. Results 
from this approach are also listed in table 4.67. 

Waller (ref. 4.119) obtained experimental 
frequencies and mode shapes for square brass 
plates (v=%). Consider the mode shapes as 
being approximated by free membrane mode 
shapes; for example, 

wcz f,\    n    
mir*      n7ry ,       nT&      miry W(x, y)—cos, cos—-±cos— cos—- 

a a a a 

(4.70) 

in   terms  of  figure  4.51.    Theratio   of   fre- 
quencies relative to the fundamental are given 
in table 4.68 for various m/n ratios.    The plus 
or minus signs after m/n in the table correspond 

308-337 O—70 8 

to plus or minus signs in equation (4.70)- 
Values given above the main diagonal of the 
array are for the minus sign, and values below 
the diagonal are for the plus sign. Numbers on 
the diagonal of the table are then for m=n. 
In reference 4.79 are plotted the experimental 
frequency ratios of reference 4.119. This plot 
is reproduced as figure 4.54. Experimentally 
observed mode shapes corresponding to many 
of these frequencies are shown in figure 4.55 
(ref. 4.119). Other experimental results for 
the square are given in references 4.110, 
4.113,4.120, and 4.121. 

Waller (ref. 4.122) observed the transition 
points in sudden nodal pattern change in the 
fundamental mode as a/b varies for the com- 
pletely free plate.    This had been  observed 
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TABLE 4.65.—Frequency Parameters and Mode Shapes for a Completely Free Square Plate; v=0.S- 
Concluded 

Nodal pattern aa2TjplD 

Modes antisymmetric about coordinate axes, symmetric about diagonals 

i 

 I 

/ 

PC7" 
•  t" 

i 

3J 

K M 

t ( 

13. 4728 

77. 5897 

156. 2387 

214. 1914 

301. 5724 

1. 00000 
. 00766 
. 00100 
. 00041 

1. 00000 
. 23339 
. 00888 
. 00178 

1. 00000 
-4.56065 
-. 05491 
-. 01457 

1. 00000 
-. 07613 

. 17938 

. 01181 

1. 00000 
-6. 10581 
-2. 80175 
-. 12231 

1. 53788 
3. 21949 
5. 13469 
7. 09684 

2. 97685 
4. 10632 
5. 73251 
7. 54066 

4. 10247 
4. 98299 
6. 38986 
8. 05176 

4. 76468 
5. 54095 
6. 83389 
8. 40846 

5. 61744 
6. 28933 
7. 45357 
8. 91940 

x: 

» 0. 060422t 
2. 76314 
4. 86158 
6. 90181 

2. 61947* 
1. 06694 
4. 13985 
6. 41392 

3. 85101* 
2. 61348» 
3. 02815 
5. 75931 

54996* 
56400* 
81600 
22474 

5. 43651* 
4. 64281* 
2. 35705* 
4. 29469 

Modes antisymmetric about coordinate axes and diagonals 

' ! \ 

V 77* 

i-MC-ir 

r~r~r\— 

^ T*s. 

69. 5020 

173. 6954 

204. 6527 

294. 9247 

1. 00000 
—. 12827 
—. 00557 
—. 00101 

1. 00000 
2. 68336 
—. 13566 
— 02103 

1 00000 
15411 

— 13841 
— 01080 

1 00000 
1275 527 
-346.402 
-20 133 

2. 83585 
4. 00525 
5. 66057 
7. 48612 

4. 31266 
5. 15742 
6. 52679 
8. 16082 

4. 66215 
5. 45304 
6. 76282 
8. 35079 

5. 55717 
6. 23555 
7. 40825 
8. 88156 

2. 45805* 
1. 39928 
4. 23769 
6. 47750 

4. 07419* 
2. 93241* 
2. 72047 
5. 60366 

44248* 
42573* 
06503 
31642 

37421* 
56970* 
20955* 
37240 

*=V-i. 
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<ua2v£7D = 35.l564   (*=0) 

<oa2V^7T3 = 34.8010  (K=-0.I) 

.a^7ü.65.3678U.O) ua
2^= ,05.4632 (*.-0.2)        «a«^7ü-161.5046   (.= 0) 

<üa2v^7Ü= 61.0931     U=-0.5)      <oa2,/£7D = 105.4632 (K=-|) üja2v£7ü = 204.6523 (<c = 0) 

a,a2^7ü= 35.1564    (*=-|) a,a2,/£7rJ = 77.5896 («- = 0) 
wa2v£7ü = l3l.4695    («-=-0.7)        wa2v^7ü = 294.9242 U=0) 

ü>a2v^7ü=63.6869  (<c=0) wa2v^ö7ü = 105.4632  (*=0) wa2v^7ü = 156.2384 (* = 0) o»a2^7Ü= 299.9320  (*=0) 

FIGOEE 4.53.-Contour lines for 16 modes of a completely free square plate; v=0.3. (After ref. 4.113) 
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TABLE AM.-Frequencies and Amplitude Parameters for a Completely Freejquare Plate; v-0.8; 
Modes Symmetric to x=0; antisymmetric to y=0; ^=V-1   

uaPyp/D 

34.8011- 

61.0932_ 

105.4634. 

131.4697_ 

-1.00000 
.01182 
. 00430 
. 00183 

1. 00000 
-.86028 
-.04348 
-.00974 

1. 00000 
-1.43311 
-.07788 
-.02391 

1 00000 
09333 
00250 
00245 

2. 12746 
3. 53922 

5. 34098 
7. 24749 

2. 68145 

3. 89746 
5.58482 

7. 42901 

3. 41843 
4. 43685 

5. 97375 
7. 72565 

3. 78427 
3. 72448 
6. 19037 
7. 89434 

An 

1. 58937i 
2. 33964 
4. 63399 
6. 74343 

2.27819 
1. 67626 

4. 33703 
6. 54292 

3. 11218t 
1. 29834» 

3. 78343 
6.18986 

3. 51008i 
2. 07863; 
3. 41750 
5. 97322 

-0.18568 
.29218 
.01218 
.00321 

.00133 
-7. 62932 
-.56588 
-.01392 

-.01076 
-.00595 
.14106 

-3.03882 

-.01973 
-.02166 
-.01136 
-. 07630 
-.07815 
.17972 
. 01323 
. 00382 

2.74337 
4.41884 
6. 28698 
8.21743 

3. 19221 
4. 71065 
6. 49540 
8. 37796 

3. 83219 
5.16582 

6. 83269 
8. 64209 

0. 68841 
3. 53184 
5. 69859 
7. 77650 

1.47992; 

3.13207 
5. 45984 
7.60328 

4.16181 
5. 41486 
7.02287 
8. 79322 

2. 58567; 
2. 30528 
5.03133 
7. 30167 

3. 05298; 
1. 63687; 
4.76227 
7.11894 

theoretically for other boundary conditions 
(see sees. 4.3.1 and 4.3.12). In figures 4.56(a) 
and 4.56(6) are shown the nodal patterns of 
two brass plates having the same width, but 
the length in figure 4.56(a) is slightly greater. 
The a/b ratio is approximately 1.93. The cyclic 
frequencies in figures 4.56(a) and 4.56(6) were 
548.8 and 558 cps, respectively. It was found 
that by gradually filing down the longer side 
the nodal patterns in figures 4.56(c), 4.56(d), 
and 4.56(e) could be produced. It is esti- 
mated that the transition between figures 
4.56(6) and 4.56(f) occurs at a/6=3.9. 

Pavlik (refs. 4.111 and 4.112) extended Kitz' 
work to nonsquare rectangular plates. Fre- 
quencies and mode shapes for three aspect 
ratios are presented in tables 4.69 to 4.71 for 
^=0.25. The functions Xm and Yn are as 
defined previously in equation (4.58). 

In reference 4.13, extensive results are 
obtained for a/b=% and % and v=%. These 
are listed in table 4.72. Values in parentheses 
are interpolated. 

Mode shapes in the form Wmn(x, y)=Xm(x) 
Yn(y) corresponding to wmn were found in ref- 
erence 4.13.    The  shape  of  the  components 

Xm(x) and Yn(y) are shown in figure 4.57 for 
a/6=1.0. The curves of figure 4.57 do change 
slightly between the different modes and with 
varying a/6 ratio. Thirty-six precise sets of 
curves for Wmn(x, y) are plotted in reference 
4.13, but is is not felt that the variations are 
sufficient to justify their detailed repetition here. 
An estimate of this variation can be obtained by 
looking at the edges where the variation is 
usually the greatest. One of the mode compo- 
nents having relatively large change in shape 
due to change in the other component or 
a/6 is X2(x). Deflection values to be used at 
x/a=0.5 in figure 4.57 for varying values of 
Yn(y) are given in table 4.73 for a/6=1.0. 
Increasing n also increases the magnitude of 
the negative curvature in the range 
0.3<z/a<0.5. 

Variation in edge deflection of X2(x) with 
a/b ratio is shown in table 4.74 for Y2(y). 

Accurate upper and lower bounds for the 
doubly antisymmetric modes of a rectangle 
(see discussion earlier in this section) are re- 
ported in reference 4.118. These results are 
given in table 4.75 for */=0.3. Upper bounds 
from reference 4.78 for doubly antisymmetric 
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120 

2     3     4    5     6    7     8     9     10    II     12    13 
Number of Nodal Lines,n 

FIGURE 4.54.—Experimentally determined frequency 
ratios for a completely free square plate; x=}i 
(After ref. 4.79) 

modes for  b/a=4.0  are given  in  table 4.76 
for »<=0.3. 

"Waller (ref. 4.123) measured experimental 
frequencies and mode shapes for brass plates 
having several aspect ratios. Eelative frequen- 
cies for three aspect ratios are given in table 
4.77. The letter m indicates the number of 
nodal lines approximately parallel to the pr- 
axis (or width), and, similarly, n indicates 
those for the x axis. 

TABLE 4.67.—Bounds on Frequency Parameters 
«a%/p/D for Modes of a Completely Free 
Square Plate Which Are Antisymmetric About 
the Coordinate Axes and Symmetric About the 
Diagonals 

ua?-ifp/D 

Mode 
Lower 
bounds 

Upper bounds 

25 terms 
(ref. 4.118) 

50 terms 
(ref. 4.118) 

50 terms 
(ref. 4.76) 

v= 0.225 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  

13. 851 
76. 245 

151. 54 
210. 90 
293. 27 
421. 26 
438. 47 
504. 41 
654. 62 
710. 70 

14. 119 
77. 621 

156. 41 
214. 79 
302. 49 
430. 94 
456. 82 
519. 43 
683. 94 
727. 35 

14. 118 
77. 576 

156. 36 
214. 67 
302. 24 
430. 76 
456. 37 
519. 03 
682. 76 
726. 97 

14. Ill 
77. 154 

156. 26 
214. 29 
301. 94 
430. 03 
456. 05 
518. 40 
682. 03 

725. 85 

»=0.300 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  

13. 201 
75. 735 

147. 71 
209. 46 
288. 72 
416. 00 
432. 13 
498. 77 
645. 60 
701. 20 

13. 474 
77. 430 

153. 13 
214. 85 
299. 31 
430. 68 
451. 06 
516. 68 
677. 35 
727. 79 

13. 473 
77.354 

153. 07 
214. 62 
299. 05 
430. 33 
450. 71 

516. 19 
676. 35 
727. 08 

13. 464 
76. 904 

152. 80 
213. 94 
298. 51 
428. 96 
450. 19 
515. 01 
675. 27 
724. 92 

Nodal patterns (ref. 4.123) are shown in figure 
4.58 for a/ö=4.0, 2.0, 1.5, and 1.09. Other ex- 
perimental results for free rectangular plates 
are given in references 4.111 and 4.112. Other 
approximate analytical results for the problem 
are in references 4.109, 4.114, and 4.124 to 
4.126. 
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FIGURE 4.55.—Experimentally determined mode shapes for a completely free square plate. (From 
ref. 4.119) 

(a) 

(c) 

(e) 

1 —r— 
1 1 
1 1 
1 i 

; / 
/ / 
/ / 
/ ' 

/ • 
/ / 

/ 

T 1 r 
I I I 
I I I 
i      i L 

(b) 

(d) 

(f) 

FIGUEB 4.56.—Nodal patterns in the vicinity of a 
transition point for a completely free rectangular 
plate. (After ref. 4.122) 
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TABLE 4.68.—Experimentally Determined Relative Frequencies for a Completely Free Square Brass 
Plate; v=% 

m/n 
Relative frequency for values of m/n minus— 

+ 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0  1.52 
2.71 
4.81 
8.52 
13.2 
19.0 
27.1 
34.0 
46.6 
59 
73 
89 
105 
124 

5.10 
5.30 
8.52 
11.8 
16.6 
23.3 
30.0 
39.8 
50.5 
63.4 
77.5 
92.4 
110 
128 

9.14 
10.3 
12.4 
16.6 
21.5 
28.7 
35.9 
45.4 
57.2 
69.7 
82.9 
99 
116 
132 

15.8 
15.8 
19.0 
22.6 
28.7 
35 
43 
53 
64.5 
76.2 
90 
106 
122 
136 

23.0 
23.9 
26.4 
30.0 
35.5 
43 
51 
61.7 
73 
84 
99 
115 
130 
147 

32.5 
32.2 
34 
39.5 
45.4 
52.1 
61.7 
70.3 
84 
93.2 
108 
124 

43 
43 
46.6 
50.5 
55.9 
64.5 
73 
84 
94.4 
106 
120 
136 

55.2 
55.8 
59 
63.4 
69.7 
75.9 
84 
93 
106 
120 
133 

70 
71 
73 
77.5 
82.9 
90 
99 
108 
120 
133 

84 
86.1 
89 
92.4 
99 
106 
115 
124 
136 

101 
102 
105 
110 
116 
122 
130 

119 
121 
124 
128 
132 
136 

141 
1  1 

2.71 
6.00 

10.3 
16.6 
23.9 
32.4 
43.0 
55.8 
71.0 
86.1 
102 
121 

2  
3  
4 
5 
6  

1.94 
5.10 
9.9 
15.8 
23.8 
32.5 
43.0 
55.2 
70.0 
84.0 
101 
119 
141 

--- 

7  
8  
9  
10  
11  
12  
13  
14  

1 

Xs(x)v^orl 

a'b 

Ys(y)VB Y,(y),/b 

FIGURE 4.57.—Mode shape components Zm(x)Vä or 
Yn(y)^Jb for a F-F-F-F rectangular plate of dimen- 
sions a and b, (After ref. 4.13) 
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TABLE 4.69.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; &/b=1.041; 

MO
2
VP/JD 

189.6 
280.6 
343.9 
494.9 

511.9 
832.0 
902.6 
909.2 

987.5. 
1098- 
1502- 
1552- 
1624, 
1772- 
1824- 

1951. 
2165- 
2306. 
2484. 

2698. 

W(x,] 

ZIF1 + 0.050Z3F1 + 0.045X1F3-0.012Z3F3-0.0064Z5F1-0.0055Z1F5+0.0034ZSF3 + 0.0032Z3F5 

Z2F0-0.66XoF2-0.0043X2F2-0.011Z4F0+0.013ZoF4-0.0034Z4F2+0.0045Z2F4+0.00077Z4F4 
0.66Z2F0+ Z0F2- 0.022Z2F2 + 0.016X4F0+ 0.0090Z0F4 + 0.0046Z4F2 + 0.0027Z2 F4 + 0.00038Z4F4 

Z2F1-0.066ZoF3 + 0.083Z2F3 + 0.042Z4F1 + 0.0094ZoF5-0.016Z4F3 
Z1F2-0.088Z3FO+0.082Z3F2+0.036ZF4+0.011Z5FO-0.015Z3F, 
0.094Z1F2+Z3F0-0.024Z3F2+0.028ZiF4 + 0.010Z3F4 

0.070Z2F1 + Z0F3-0.024Z2F3 + 0.035Z4F1+0.011Z4F3 
0.016Z2Fo-0.016ZoF2+X2F2-0.026Z4Fo-0.021ZoF4 + 0.10Z4F2+0.096X2F4-0.024X4F4 

-0.020Z1F1 + Z3F1-0.64ZiF3+0.029Z3F3+0.010Z5F1+0.0099Z1F5-0.0047Z5F3-0.0053Z3F5 
-0.074ZIF1 + 0.65Z3F, + ZIF3+0.15Z3F3+0.052Z5FI + 0.043ZIF6-0.025Z5F3-0.023Z3F6 

-0.094ZiF2+0.028Z3F0+Z3F2-0.16ZiF4-0.010Z5Fo+0.13Z3F4+0.085Z5F2-0.024Z5F4 

-0.091Z2F, + 0.027ZoF3+Z2F3-0.28Z4FI-0.0084Z0Fs+0.14Z4F3 
-0.016ZoF2+0.029Z2F2+Z4F0-0.19ZoF4-0.030Z4F2+0.032Z2F4+0.015X4F4 

-0.013Z2F0+0.022Z2F2+0.20Z4Fo+Z0F4+0.044Z4F2-0.031Z2F4+0.015Z4F4 

-0.042Z2F1-0.038ZoF3 + 0.35Z2F3+Z4F1-0.035Z0F5+0.0016Z4F3 
-0.037Z1F2-0.028Z3F0+0.19Z3F2+ZiF4-0.053Z5F0+0.0018Z3F4 

0.013Z1F1-0.098Z3F1-0.10ZIF3+Z3F3-0.097Z5F1-0.071ZiF5+0.15Z5F3+0.14Z3F5 
X4F2-0.65Z2F4 
0.65Z4F2+Z2F4 

Z5F0 

TABLE 4.70.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=1.078; 

&>O2VP/-D 

174.1 
255.4. 
320.3. 
449.2. 

475.3 
742.1 
840.2 
853.1 
887.4 
1028- 
1370. 
1432- 
1450. 
1637. 
1676- 
1836. 
1991. 
2084. 
2314. 

2405. 

WQe,y) 

Z1F1+0.052Z3F1 + 0.043Z1F3-0.012Z3F3-0.0067Z5F1-0.0052Z1F5+0.0034Z5F3 + 0.0031Z3FS 

Z2F0-0.44Z„F2-0.013Z2F2+0.0075Z4Fo+0.013ZoF4-0.00030Z4F2 + 0.0043Z2F4 + 0.00023Z4F4 

0.50Z2F0+ZoF2-0.028Z2F2 + 0.017Z4Fo+0.0064ZoF4 + 0.0051Z4F2 + 0.0019Z2F4-0.000097Z4F4 
XzYi- O.O6IZ0F3 + 0.081Z2F3 + 0.044Z4 Y,+ 0.0089Z0F5- 0.016Z4F3 

Z1F2-0.098Z3F0+0.084Z3F2+0.034Z1F4+0.012Z5F()-0.014Ä*3F4 
0.11Z1F2+Z3F0-0.024Z3F2 + 0.026ZJF4+0.010Z3F, 
0.015Z2Fo+0.016Z0F2+Z2F2-0.029Z4Fo-0.019ZoF4+0.11Z4F2+0.095Z2F4-0.024Z4F4 
0.064Z2F!+Z0F3- 0.024Z2F3+0.038Z4Ft+0.011Z4F3 
-0.059ZIF1+Z3FI-0.44Z1F3+0.083Z3F3+0.032Z6F1+0.025Z1F6-0.015Z5F3-0.014Z3F5 

-0.074Z1F1+0.65Z3F1+Z1F3+0.15Z3F3+0.056Z6F1+0.041Z1F5-0.025Z5F3-0.022Z3F5 

-0.095ZIF2+0.027Z3F0+Z3F2-0.14ZIF4-0.011Z5FO+0.13Z3F4+0.088ZBF2-0.024Z5F4 

-0.090Z2F1 + 0.027Z0F3+Z2F3-0.34Z4F1-0.0078ZOF5+0.14Z4F3 
-0.017Z0F2+0.031Z2F2+Z4Fo-0.11ZoF4-0.030Z4F2+0.029Z2F4+0.015Z4F4 

-0.044Z2F1-0.039ZoF3 + 0.48Z2F3 + Z4F,-0.031ZoF6 + 0.0015Z4F3 
-0.013Z2Fo+0.020Z2F2 + 0.12Z4F0+Z0F4 + 0.051Z4F2-0.031Z2F4 + 0.016Z4F4 

-0.035Z,F2-0.026Z3Fo+0.16Z3F2+Z1F4-0.064Z5F0+0.0016Z3F4 

0.013Z,F1-0.098Z3F1-0.10Z1F3 + Z3F3-0.11Z5F1-0.064Z1F5+0.15Z5F3 + 0.14Z3F5 
+ Z4F2-0.44Z2F4 

+ 0.65Z4F2+Z2F4 

+ Z5F0 
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TABLE 4.71.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; &/b=1.499; 

NPID W(x, 

498.7 
525.7 
1208. 
1212. 
1434. 
1623. 
2160. 
2611. 
2904. 
3332. 

Ziy1 + 0.072X3Fi + 0.024Zir3 

X2F0- 0.098X0F2- 0.011X2F2 

0.085X2F0 + XoF2-0.014X2F2 + 0.039X4Fo 
Z2F1-0.026X0y3 

X3F0- 0.42X^2 
0.55X3Fo + XIF2 + 0.1X3F2 + 0.025X5Fo-0.020X5F2 

-0.074X1F1+X3FI-0.10X1F3 

0.012X2Fo + 0.014X0F2 + X2F2-0.20X4F0 

-0.039XoF2 + 0.20X2F2+X4Fo-0.03X4F2-0.019XoF4 + 0.014X2F4 + 0.0039X0F6 

0.026X2F!+XoF3-0.025X2F3 

TABLE 4.72.—Frequency Parameters wa2Vp/D for a F-F-F-F Rectangular Plate; v- 

[Values in parentheses are interpolated] 

a m 
aa^pjD for values of n of— 

b 
0 1 2 3 4 5 6 

XA 0 
1 
2 
3 
4 
5 
6 

5.593 
(17.61) 
37. 585 

(75. 05) 
(132.94) 
(210. 02) 
(307. 30) 

15. 418 
27. 032 

(51. 70) 
91. 963 

(149.57) 
(226. 41) 
(324. 72) 

30. 223 
(42. 25) 
70. 007 

(111.58) 
170. 974 
248. 876 

(345. 96) 

49. 965 
61. 628 

(91.78) 
135. 794 

(196.56) 
274. 639 

(372. 88) 

74. 639 
7.374 

(26. 52) 
(65. 17) 

(123.34) 
(200. 70) 
(298. 94) 

(85. 56) 
(117. 29) 
(162. 56) 
(223. 50) 
(303. 18) 
402. 968 

22. 373 
61. 673 

120. 903 
199. 860 
298. 556 

2A 0 
1 
2 
3 
4 
5 
6 

9.944 
22. 245 
46. 654 
86. 028 

(145.2) 
222. 088 

(320. 4) 

27. 410 
40. 339 

(68. 39) 
111. 510 

(160. 5) 
(250. 0) 
(347. 8) 

53. 735 
66. 309 
97. 822 

143. 532 
204. 804 
283. 715 

(382. 6) 

88. 826 
100. 928 

(133.40) 
.  182. 204 
(245. 9) 
326. 580 

(425. 6) 

132 691 
9.905 

(30. 36) 
(69. 56) 

(127.7) 
(205. 1) 
(302. 1) 

(144.5) 
177. 606 

(226. 20) 
294. 258 

(374. 8) 
476. 853 

22. 373 
61. 673 

120. 903 
199. 860 
298. 556 

TABLE 4.73.—Variation in Edge Deflection of a 
Mode Component Due to Change in the Other 
Component; v=% 

n 1 2 3 4 5 6 

Edge deflection  1.95 1.81 1.71 1.66 1. 62 1.60 

TABLE 4.74—Variation in Edge Deflection of a 
Mode Component Due to Change in a/b; v=% 

aß 1 % H 

Edge deflection    _     1.81 1.72 1. 67 
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TABLE 4.75.—Bounds on 

VIBRATION OF PLATES 

Frequency Parameters «a2Vp/D for 
Completely Free Rectangular Plate 

the Doubly Antisymmetric Modes of a 
; v=0J8 

ma1 -fpjD 

Mode Lower bound Upper bound Lowerbound Upperbound Lowerbound Upper bound 

b/o= 1.00 6/a=1.25 b/a= 1.50 

1 . ._. . 13. 092 
66. 508 
75. 146 

145. 57 
196. 46 
207. 87 
277. 72 
285. 47 
393. 93 
410. 74 

13. 474 
69. 576 
77. 411 

153. 12 
205. 17 
214. 81 
292. 37 
299. 27 
420. 99 
430. 66 

10. 479 
48. 352 
67. 665 

117. 68 
132. 77 
197. 36 
208. 75 
249. 46 
264. 27 
339. 96 

10.761 
50. 487 
69. 746 

124. 15 
138. 41 
205. 77 
220. 03 
262. 66 
277. 23 
358. 87 

8. 6667 
36. 651 
64. 844 
94. 147 

103. 32 
166. 83 
184. 44 
198. 62 
234. 75 
261. 14 

8. 9351 
38. 294 
66. 965 
98. 648 

108.18 
176. 56 
193. 73 
205. 35 
244. 80 
275. 96 

2 -  
3    .  
4 ...       
5  
6  
7   .   
8  
9    .    
10 _      . .   

6/a=2.00 6/a=4.00 6/a=8.00 

1  6. 4563 
24. 417 
56. 151 
63. 726 
85. 647 

107. 66 
125. 15 
174. 88 
178. 26 
195. 26 

6. 6464 
25. 455 
59. 051 
65. 392 
89. 263 

113. 81 
131. 73 
186. 73 
190. 04 
202. 79 

3. 1463 
10. 284 
19. 809 
32. 952 
49. 920 
60. 830 
67. 133 
71. 408 
78. 658 
94. 076 

3. 2604 
10. 728 
20. 821 
34. 783 
53. 194 
62. 394 
69. 099 
76. 824 
82. 051 
99. 291 

1. 5330 
4. 7291 
8. 2953 

12. 436 
17. 323 
23. 095 
29. 845 
37. 617 
46. 410 
56. 017 

1. 6158 
4. 9941 
8. 7915 

13. 237 
18. 514 
24. 766 
32. 089 
40. 542 
50. 150 
60. 602 

2  
3...  _  
4  
5  
6     _.     ...  . 
7  
8  
9  
10  

TABLE 4.76.—Frequencies for Doubly Antisymmetric  Modes of a Completely Free Rectangular Plate; 
b/a= 4.0; v=0.8 

Mode 1 2 3 4 5 6 7 8 9 10 

ucP-irfD .. . 3. 2597 10.711 20. 749 34. 622 53. 092 64. 080 71. 048 77. 232 84. 532 102. 87 

4.4   ELASTIC, DISCONTINUOUS, AND POINT 
SUPPORTS 

4.4.1    Elastic Edge Supports 

Consider first the rectangular plate simply 
supported (SS) along the sides x=0 and x=a 
and elastically restrained (ES) against both 
translation and rotation along the other sides 
as shown in figure 4.59. The solution equa- 
tion (eq. (1.37))  satisfies the boundary condi- 

tions  along  x=0  and  x=a.    The remaining 
boundary conditions are 

My(x,0)=-K^(x,0) 

Mv(x,b)=K2^(x,b) 

V,(x,0)=KlW(*,0) 

Vy{x,b)=-KiW{x,b) 

(4.71) 
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3|0 4|0 6(0 

115 

m jfl few & 

FIGURE 4.58.—Experimentally observed nodal patterns for 
completely free rectangular brass plates, (a) a/b=4. (6) 
a/6=2.    (c) a/6=1.5.    (d) a/b= 1.09. (From ref. 4.123) 
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TABLE 4.77.—Experimentally Determined Frequency Ratios for Completely Free Rectangular Brass 
Plates 

n 
Frequency ratio for values of m of— 

0 1 2 3 4 5 

o/6=1.09 

o 1.53 
2.67 
5. 1 
8.8 

14 

4.55 
5.16 
8 

11.5 
17 

9.3 
10 
13 
16 
21 

I »1 
2.78 
6.4 

11.8 

2 2.23 
5.35 

10.8 
3                   
4 

o/6=1.5 

0 __  ._ 1.08 
2.49 
5 
9.6 

16.5 

2.93 
4.47 
7.60 

12.3 
19.3 

5.53 
7.09 

10.5 
15.5 
22.7 

9.96 
1                    .  _  .            n 

3.42 
7.9 

14.4 

11 
2         _-_  2. 62 

7.5 
13.6 

14.9 
3         _____ ___ 20 
4         _  _ 27 

o/6=2.0 

o "1 
2. 30 
6.7 

2.88 
3.62 
8.2 

5.42 
6.2 

10.8 
1                                  - - _ 1.20 

4.87 2 4.37 

»Fundamental frequency of a 3.94- by 3.62- by 0.720-in. plate was 423 cps. For a 6.15- by 5.67- by 0.0906-in. 
plate, it was 220 cps. 

bFundamental frequency of a 9.81- by 6.38- by 0.934-in. plate was 134 cps. 
° Fundamental frequency of a 2.36- by 1.172- by 0.0807-in. plate was 1730 cps. For a 5.55- by 2.78- by 0.1240-in. 

plate, it was 482 cps. 

a/2 a/2 
1 

1           Elastic 

i 

Supports 

1 

b/2 

b/2 

FIGURE 4.59—SS-ES-SS-ES plate. 
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where .Ki, 2,3,4 are the stiffness coefficients of 
distributed translational and rotational springs 
acting along the edges y=0 and y=b. For 
simplicity it will be assumed that these co- 
efficients do not vary with x. The constants 
Ki and K2 have dimensions of moment/(unit 
length) and K% and 2f4 have dimensions of 
force/(unit length)2. Substituting equation 
(1.37) into equations (4.71) results in a char- 
acteristic determinant, the zeros of which yield 
the vibration frequencies. 

Das (ref. 4.10) showed that the characteristic 
equation for the case Ki=K2=K, Ks=Ki=co 
becomes 

cosXi6coshX26—1    X|—Xj* 
sinX16sinhX2&       2XiX2 

(X?+X|)ZArcothX2& +(<™)f cotX^ 
X, 

(4.72) 

with Xi and X2 as defined in equations (4.27) 
and that the mode shapes are given by 

W(x, y) = |(coshX22/-cos Xl2/)+|_ (#/Z?)(X2 sin M-M sinh X26)J Smh XiV 

(X?+Xjj) sinh X26+(gX2/Z>)(cosh X26-cos Xt6) 

'} sin Xi?/ >-sin ax    (4.73) 
(K/D)(\2 sin Xi6—Xi sinh X26) 

In reference 4.10 the characteristic equation for K1=K2=
a>, Ki=Ki=Kis, given as 

cosXi6coshX26—1    (gA)2—(gM2 , (K /z   , z ^fcothb   cothX26 
sin Xi& sinh \2b 

with gfi, 2 and hit 2 defined as 

^f+(f<^«)[! 
gjti gih2 

/K\ h,+h2 "I 
\DJ 2g1g2h1h2J 

(4.74) 

(7i=X1[X?+(2-,)«2] 

gr2=X2[Xl-(2-,)a2] 

A!=Xi(Xf+m2) 

h2=X2(\l—va2) 
and the mode shapes are 

W(x, y)=[cosh ^+(g/g)(^+y™M+g^eoBX16-coBhX.6) ginh A,ms 
v ' yj   L 5fiA2sinhX2o—02Ai sin Xi& Ai 

(4.75) 

(K/D)h2(hi+h2) sinh X26—g2/tiA2(cosh X26—cos Xt6) 
h>i(gih2 sinh ~K2b—g2hi sinXift 

smX *] sin ax 

The buckling results obtained by Lundquist 
and Stowell (ref. 4.127) can be applied here by 
use of equation (4.24). For the case given by 
equation (4.71) when Ks=Ki=a> and Ki and 
K2 are separate and distinct, the characteristic 
equation is given as 

<[(X? X (x?+x?)+(ffi/z?) 

(X2coth ——XiCot-5-1 

(4.76) 

(4.77) 

[(X? +XI) + (K/D) (x2 tanh^+X, tan-^)] 

x[(X?+Xf.)+(#2/Z)) 

(x2coth^-XlCot^)] 

= -[(X?+Xi)+(2f2/Z?) 

X2 tanh -|-+Xi tan -|- J 

It is apparent that for KX=K2=K, equation 
(4.77) reduces to one of its sides set equal 
to zero. Furthermore, for Ki=K2=K, modes 
symmetric with respect to x (fig. 4.59) give 
rise to the characteristic equation 

\l+\l+(K/D)(\2 tanh^+Xi tan^)=0 

(4.78) 
and the antisymmetric modes 

\l+\2
2+(K/D) (x2 coth^-X! cot^)=0 

(4.79) 
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FIGURE 4.60.—Frequency parameters tfaWplmWD for a SS-ES-SS-ES rectangular plate with symmetrical slope 
restraints. 

In reference 4.127 the problem is also solved 
by the Rayleigh method. A mode shape is 
chosen as 

which gives A= (irKb/&D)B. Formulating the 
Rayleigh quotient yields the frequency param- 
eter 

*RW-[£(F-£) D 
-m 

+( —-fSjcos^r Icosasr 
\ W b J 

(4.80) 

where A and B are arbitrary amplitude co- 
efficients. The coefficients A and B are chosen 
so that .4=0 represents the condition of 
simply supported edges at y=±b/2, and 5=0 
represents the condition of clamped edges. 
The ratio A/B is then a measure of edge re- 
straint and is determined from 

2DA 

■262 

120 ~r  2t2~r a 0 !)(§)' 
<^){^m Kb 

2Kb 
120D2 

+K1+ 

2 ' 4D 

J]} 

4Kb\ 
■K2

D) 

f**K2b2   4Kb{   , Kfr 

2D, 
(4.82) 

W, -Ki '  OF /jM/2~ 
(4.81) 

Results obtained from equation (4.82) are 
given in table 4.78 in the columns denoted 
by (a). Realizing that these values must be 
upper bounds, correction factors were estab- 
lished based upon exact solutions of equation 
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(4.78) for fundamental roots at selected points. 
Column (b) lists the corrected values. Values 
marked by an asterisk identify the exact values 
obtained. The values of column (b) are 
plotted as figure 4.60. 

Figure 4.60 gives valuable design information 
if properly used. The fundamental frequency 
is obtained by letting m= 1. While frequencies 
higher than the fundamental can be obtained 
from it by increasing m, it must be remembered 
that all higher mode shapes considered have 
nodal lines parallel to only the y-axis. Other 
mode shapes are not considered in figure 4.60. 
The dashed line locates the minima of the 
various curves. 

It is suggested in reference 4.127 that, when 
the two side moment restraints are unequal, 
a reasonably good approximation to the true 
frequency value can be obtained by averaging 
the results obtained from the separate sym- 
metric problems by considering first one 
magnitude of edge restraint and then the other. 
If the frequency parameter r is defined by 

Values of em, Am, and Bm are given in table 4.79 
for varying spring constant parameters £, with 

w'a- Vp 
'mWD (4.83) 

then the average used may be either the arith- 
metic mean, (ri+r2)/2, or the geometric mean, 
Vriiv 

Carmichael (ref. 4.128) used the Kayleigh- 
Ritz method to compute frequencies for a 
rectangular plate having w=0 and uniform 
slope restraint along pairs of opposite edges. 
Mode shapes of the type 

W(x,y)=TtXm(x)T%(y) 

were used, where Xm(x) and Y„(y) are the 
characteristic functions of a vibrating beam 
having zero deflection and rotational restraint 
at its ends; that is, 

Xm=Am ("cosh ^-cos ^) ■ \ a a / 

+5msinh^+sin^   (4.84) a a 

and similarly for Y„, by replacing m, x, and a 
in equation (4.84) by n, y,   and b, respectively. 

ti=-p-      (iorXJ 

ifB=§      (forFn) 
(4.85) 

and K defined as in equation 4.81. 
The strain energy of the system is (fig. 4.59) 

v-2 J„ J0 LU?v +KWJ +2vwW 

2|_Jo \dy2  by Jo 

+JT(^£)>] <-» 
where the second term represents the energy 
stored in the rotational springs along the edges. 

Calculations were based upon a 36-term 
series for the deflection function taking m, 
n=l, 2, 3, 4, 5, 6. Because the diagonal 
terms of the resulting frequency determinant 
are much greater than the others, an approxi- 
mate solution for the (mn)th mode can be ob- 
tained by taking only the (mn)th term of 
W(x, y). The approximate frequency can then 
be written as 

^=^Vf[(ä) 4,+4+2(|y<M>n] (4.87) 

where 
A _ *Uem(K+l)+2Am(Bm-l)] 
^   em(2All-Bll+l)+2An(Bm+l)    ^V 

and similarly for <j>n by replacing m by n in 
equation (4.88). Values of <£m,„ are given in 
table 4.79. 

Frequencies and approximate nodal patterns 
are shown in table 4.80 for ranges of b/a and 
£a=£&=£- Values in parentheses are those 
found from equation (4.87). Other results 
for |=20 and °° are obtained from the 36- 
term series. Values for £=0 found from equa- 
tion (4.20) are included for comparison. It is 
seen that the approximate solution in the table 
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TABLE A.7Q.—Eigenfunction Parameters for a Beam With 

1 
m, n=l m, n = 2 m, w=3 

«i A, -Si <#>! «2 A, -B2 02 «3 Az=-B3 <fa 

0  3. 1416 0 0 9. 8697 6. 2832 0 0 39. 479 9. 4248 0 88. 827 

0.25  3. 2166 .0375 .0346 9. 8710 6. 3220 .0194 .0195 39. 482 9. 4909 .0131 88. 827 

0.5  3. 2836 .0711 .0668 9. 8750 6. 3588 .0378 .0380 39. 485 9. 4762 .0257 88. 830 

0.75  3. 3440 . 1015 .0946 9. 8806 6. 3939 . 0554 .0556 39. 495 9. 5007 .0380 88. 833 

1  3. 3988 . 1293 . 1210 9. 8880 6. 4273 .0722 .0724 39. 505 9. 5245 .0499 88. 839 

1.5  3. 4949 . 1785 . 1680 9. 9074 6. 4896 . 1036 . 1039 39. 534 9. 5699 .0727 88. 853 

2  3. 5768 .2211 .2091 9. 9320 6. 5466 . 1325 . 1328 39. 572 9. 6127 .0942 88. 874 

2.5  3. 6477 .2586 .2454 9. 9604 6. 5989 . 1592 . 1596 39. 614 9. 6531 . 1146 88. 901 

3  3. 7097 .2919 .2780 9. 9908 6. 6472 . 1840 . 1845 39. 652 9. 6913 .1340 88. 934 

3.5  3. 7646 .3220 .3074 10. 023 6. 6918 .2072 .2077 39. 718 9. 7274 . 1525 88. 971 

4  3. 8135 .3492 .3341 10. 057 6. 7332 . 2289 .2294 39. 775 9. 7617 . 1700 89. 022 

5  3. 8974 .3970 . 3812 10. 126 6. 8077 .2684 .2690 39. 900 9. 8250 .2028 89. 108 

6  3. 9666 .4376 .4214 10. 196 6. 8728 .3037 .3043 40. 028 9. 8824 .2329 89. 218 

7  4. 0250 .4729 .4563 10. 265 6. 9303 .3353 .3360 40. 162 9. 9345 .2605 89. 257 

8  4. 0748 .5037 .4869 10. 332 6. 9814 .3640 .3647 40. 297 9. 9821 .2861 89. 466 

10  4. 1557 .5555 .5383 10. 459 7. 0683 .4140 .4147 40. 564 10. 066 . 3322 89. 729 

12  4. 2185 .5973 .5800 10. 573 7. 1394 .4563 .4570 40. 819 10. 137 .3718 90. 021 

15  4. 2905 .6472 .6297 10. 726 7. 2248 .5090 .5097 41. 176 10. 225 .4231 90. 447 

20  4. 3737 .7080 .6904 10. 932 7. 3293 .5766 .5774 41. 695 10. 339 .4917 91. 123 

25  4. 4304 .7514 .7337 11. 095 7. 4040 .6275 .6283 42. 097 10. 423 .5453 91. 735 

30  4. 4714 .7840 .7663 11. 223 7. 4601 .6673 .6681 42. 486 10. 489 .5885 92. 358 

45  4. 5467 .8467 .8289 11. 487 7. 5673 .7477 .7485 43. 268 10. 618 .6794 93. 539 

60  4. 5880 .8828 .8650 11. 648 7. 6286 .7966 .7974 43. 775 10. 695 .7372 94. 418 

80  4. 6208 .9124 .8946 11. 785 7. 6735 .8460 .8467 44. 185 10. 760 .7880 95. 233 

100 -.- 4. 6413 .9313 .9135 11. 875 7. 7103 .8657 .8665 44. 523 10. 801 .8224 95. 802 

150  4. 6697 .9582 . 9404 12. 005 7. 7550 .9056 .9064 44. 970 10. 861 .8735 96. 671 

200- . - 4. 6843 .9723 .9544 12. 074 7. 7784 .9271 .9279 45.214 10. 892 .9184 97. 092 

300  4. 6992 .9869 .9691 12. 146 7. 8025 .9498 .9506 45. 475 10. 925 .9320 97. 693 

500. --- 4. 7114 .9990 .9812 12. 207 7. 8224 .9689 .9697 45. 696 10. 953 .9581 98. 152 

1000  . 4. 7207 1. 0083 .9905 12. 254 7. 8377 .9838 .9846 45. 870 10. 974 .9785 98. 515 

OD 4. 7300 1. 0178 1. 0000 12. 302 7. 8532 .9992 1. 0000 46. 050 10. 996 1.000 98. 905 

nowhere differs from the series solution by more 
than 0.7 percent. It must be noted from equa- 
tions (4.81) and (4.85) that choosing equal 
values of £n and £& does not give equal slope 
restraint along all edges except for the case 
of the square. 

The case of uniform slope. restraint and 
W=0 along all edges was studied by Bolotin 
et al. (ref. 4.60), who used a variation of the 
series method to obtain frequencies for the 
first 10 modes of a square having variable 
restraint. These results are shown in figure 
4.61. Results for this problem were also pre- 
sented in reference 4.129 for the case of the 

square by using the same procedure as in refer- 
ence 4.128.    These are shown in figure 4.62. 

In reference 4.130, the problem is also solved 
by using the Rayleigh-Bitz method and alge- 
braic polynomials. 

In reference 4.131, the typical electronic 
chassis which is formed by bending the edges 
of a plate down is treated as a plate with elastic 
edge supports. An eigenfunction is used to 
solve the problem which is an average of the 
eigenfunctions for plates with simply supported 
edges and those having clamped edges. The 
Rayleigh-Bltz method is employed. Theo- 
retical and experimental results are obtained 
for particular chassis. 
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m, n=4 m, n=5 TO, n=6 

u At=-Bi <t>t «5 A5=-ßs 4>h «6 At=-B« $6 

12. 566 0 157. 91 15. 708 0 246. 74 18. 850 0 355. 31 

12. 566 .0098 157. 92 15. 724 .0079 246. 74 18. 863 .0066 355. 31 

12. 605 .0194 157. 92 15. 739 .0156 246. 74 18. 876 .0131 355. 31 
12. 624 . 0288 157. 92 15. 755 .0232 246. 74 18. 889 .0195 355. 31 
12. 642 .0380 157. 92 15. 769 .0307 246. 74 18. 901 .0258 355. 31 

12. 678 .0558 157. 93 15. 799 .0454 246. 75 18. 926 .0381 355. 32 

12. 712 .0729 157. 94 15. 827 .0594 246. 76 18. 950 .0501 355. 32 

12. 745 .0893 157. 96 15. 854 .0731 246. 78 18. 973 .0618 355. 34 

12. 776 . 1051 157. 99 15. 880 .0863 246. 79 18. 996 .0732 355. 34 

12. 806 . 1202 158. 01 15. 906 .0991 246. 82 19. 018 .0842 355. 36 
12. 834 . 1348 158. 04 15. 930 . 1115 246. 83 19. 039 .0951 355. 38 
12. 889 . 1625 158. 12 15. 977 . 1353 246. 89 19. 080 . 1158 355. 42 

12. 939 . 1882 158. 21 16. 021 .1577 246. 96 19. 119 . 1356 355. 48 

12. 985 .2123 158. 31 16. 062 . 1788 247. 05 19. 156 . 1545 355. 55 

13. 028 .2349 158. 42 16. 101 . 1990 247. 14 19. 191 . 1724 355. 63 

13. 105 .2762 158. 84 16. 172 .2362 247. 36 19. 256 .2061 355. 81 

13. 173 .3129 158. 94 16. 235 .2698 247. 61 19. 315 .2370 356. 04 

13. 260 .3613 159. 38 16. 318 .3149 248. 02 19. 394 .2789 356. 41 

13. 375 .4278 160. 12 16. 431 .3783 248.77 19. 503 .3393 357. 15 
13. 464 .4814 160. 84 16. 521 .4307 249. 54 19. 592 .3895 357. 91 
13. 534 .5257 161. 51 16. 595 .4748 250. 28 19. 666 .4327 358. 68 
13. 679 .6219 163. 17 16. 749 .5733 252. 25 19. 827 .5316 360. 86 

13. 768 .6854 164. 41 16. 847 .6404 253. 80 19. 932 .6008 362. 68 

13. 844 .7428 165. 62 16. 933 .7026 255. 38 20. 025 .6664 364. 61 

13. 894 .7825 166. 48 16. 990 .7464 256. 55 20. 089 .7134 366. 08 

13. 967 .8430 167. 85 17. 075 .8145 258. 47 20. 184 .7880 368. 55 
14. 007 .8771 168. 65 17. 121 .8538 259. 10 20. 237 .8317 370. 07 

14. 048 .9144 169. 53 17. 171 .8973 260. 89 20. 294 .8808 371. 84 
14. 082 .9476 170. 29 17. 212 .9356 262. 04 20. 342 .9248 373. 40 

14. 109 .9726 170. 92 17. 254 .9667 262. 98 20. 380 .9608 374. 71 

14. 137 1. 0000 171. 59 17. 279 1. 0000 264. 00 20. 240 1. 0000 376. 15 

Hoppmann and Greenspon (ref. 4.132) pre- 
sented a method for experimentally simulating 
elastic edge supports by means of sharp V- 
grooves machined along the edges of a clamped 
plate, the degree of slope restraint being deter- 
mined by the depth of the grooves. A curve 
showing the frequency parameter for a clamped 
square plate as a function of the notch ratio R 
is shown in figure 4.63; R is the ratio of the 
depth of the notch to the thickness of the plate. 
Experimentally determined points are shown 
as circles. The curve was drawn through end- 
points determined by the theoretical results of 
Iguchi (ref. 4.9) and fitted to the four experi- 
mental points. 

4.4.2    Discontinuous Edge Conditions 

Some interesting results are available for the 
case of a square plate which is simply supported 
but clamped along segments of its edges. 

Consider first the square which is clamped 
along four symmetrically located segments of 
length lu and simply supported along the re- 
mainder of the boundary as in figure 4.64. Ota 
and Hamada (refs. 4.133 and 4.134) solved thö 
problem by assuming a deflection function 
which satisfies the simply supported boundary 
conditions everywhere (eq. (4.19)), and applying 
distributed edge moments of the type, for 
example, 

W,=o=(&« sin mirx) cos cot   (4.89) 
\m=l 
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TABLE 4.80. 

VIBRATION  OF PLATES 

-Frequency Parameters cob%/p/5 and Approximate Nodal Patterns for a Rectangular 
Plate Elastically Restrained Against Rotation Along All Edges 

[Values in parentheses are found from eq. (4.87)] 

W6
2
VP/5 for mode— 

b/a £ ■ 

i 2 3 4 5 6 

1.0 0 19.74 49.35 78.96 98.70 98.70 128.3 

20 31.09 64.31 95.85 117.3 116.8 147.6 

(31. 16) (64. 52) (96. 17) (117.8) (116.9) (148.0) 
00 35.99 73.41 108.3 131.6 132.3 165.2 

(36. 11) (73. 74) (108.9) (131.7) (132.4) (165.4) 

1 
1 
1 
1 

 
1 1 i   ■ X o Fffl 

0.9 0 17.86 41.85 47.47 71.46 81.82 111.4 

20 28.21 54.57 61.97 86.85 97.03 123.0 

(28. 28) (54. 77) (62. 17) (87. 15) (97. 34) (123.3) 
CO 32. 67 62.29 70.76 98. 14 109.4 143.5 

(32. 78) 

1               1 
(62.71) (71. 06) (98. 66) (109.8) (144.1) 

1 
| 1 +- — 

1   1 
1   1 

■    1 
~-4-t~ 1               1 1 1 1   1 1    1 

0.8 0 16. 19 35. 14 45.79 64.74 66.72 96.33 

20 25.80 46.02 59.98 79.06 79.24 111.2 

(25. 86) (46. 17) (60. 16) (79. 32) (79. 50) (111.5), 
CO 29.08 52.52 68.52 89.40 89.29 124.5 

(29. 18) (52. 76) (68. 80) (89. 86) (89. 69) (125.0) 

L    J 1 
1 
i 

  
1 

— 4- — 
l 

1   1 
1   1 
1   1 

i    i 

—»~ h- 
l    1 

0.6 0 13.42 24.08 41.85 43.03 53. 69 

20 22.30 32.58 50.48 56.97 66.96 

(22. 34) (32. 68) (50. 63) (57. 11) (67. 17) 
CO 25.90 37. 28                  56. 93 65. 18 75.94 

v25. 97) 

1        1 
(37.43) 

1   i   1 
(57. 20) 

(III 

III 

(65. 39) (76. 31) 

  
1 ~  h_- 
i 

0.4 0 11.45 16. 19 24.08 
20 20.30 24.15 31.20 

(20. 33) (24. 20) (31.26) 
00 23.65 27.81 35.45 

(23. 70) (27. 91) 
"I  

1 
i 

(35. 56) 
1     1 
1     1 
i     i 

0.2 0 10.26 11.45 13.42 
20 19.38 20. 15 21.52 

(19.39) (20. 17) (21. 54) 
00 22.64 23.45 24.89 

(22. 66) (23. 49) (24. 92) 
1 
1 
I 

i      1 
1      1 
1      1 
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FIGURE 4.61.—Frequency parameters for a square 
plate having uniform slope restraint along all edges 
derived by Bolotin (ref. 4.60) 

II 

O.OI 0.1 I 
Et3/l2ko 

FIGURE 4.62.—Frequency parameters for a square 
plate having uniform slope restraint along air edges 
derived by procedure of reference 4.128. (After ref. 
4.129) 

The coefficients Km are then chosen for each 
edge such that the normal moments are zero 
along the simply supported segments and the 
normal slopes are zero along the clamped 
segments. These conditions, along with the 
principle of stationary total energy, are used to 
formulate a characteristic determinant for the 
problem, the roots of which yield the vibration 
frequencies.    The accuracy of the results de- 

^ 

0 Experimental Data 

0.1 0.2       0.3       0.4       0.5        0.6       0.7       0.8       0.9        1.0 
R 

FIGURE 4.63.—Variation in frequency parameter with 
notch ratio for a square plate. (After ref. 4.132) 

FIGURE   4.64.—SS-SS-SS-SS   square   plate   clamped 
along four symmetrically located segments. 

pends upon the number of terms kept in the 
summations and, hence, the orders of the 
characteristic determinants used. The problem 
was solved at essentially the same time by 
Kurata and Okamura (ref. 4.135), who used a 
very similar method. 

Fundamental frequency parameters for 
several values of k are shown in figure 4.65 
(ref. 4.133) and tabulated in table 4.81. Ex- 
perimental data shown in figure 4.65 were 
obtained   on   mild   steel   plates   having   edge 
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a Experimental Data (h = 0.063") 
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1             1             1      i 
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r   3 
2        3 

>                3       4 

FIGURE 4.65.—Frequency parameters for SS-SS-SS-SS 
square plate clamped along four symmetrically 
located segments. (After ref. 4.133) 

lengths of 6.50 inches and thicknesses of 0.063 
and 0.091 inch. 

Experimental frequencies and nodal patterns 
for the first three modes for an aluminum 
plate 11.8 inches long, 0.012 inch thick, and 
having l1/a=% were obtained in reference 4.135 
and are presented as table 4.82. 

The cases when only two opposite edges have 
symmetrically located clamped segments as 
shown in figure 4.66 were also studied in 
references 4.133 and 4.135. Fundamental fre- 
quency parameters for several values of l2 are 
shown in figure 4.67 (ref. 4.133) and tabulated 
in   table  4.83.    Additional  experimental  fre- 

TABLE 4.81.—Fundamental Frequency Param- 
eters o)a2-^/p/D for a Simply Supported Square 
Plate Clamped Along 4 Symmetrically Located 
Segments, v=0.S 

Source 
ü)O

2
VP/ö for values of li/a of— 

0 H H 1 

Ref. 4.133  
Ref. 4.135  

19.74 
19.74 

33.9 
33.97 

35. 5 35.98 
35.98 

quencies are given in table 4.84 (ref. 4.135) for 
hla—%. Experimental results shown in figure 
4.67 and table 4.84 were obtained on the same 
plates described earlier in this section. 

The case when two unsymmetrically located 
segments of opposite edges are clamped is 
shown in figure 4.68 and was discussed in 
reference 4.133. Fundamental frequency pa- 
rameters for several values of l3 are shown in 
figure 4.69 and tabulated in table 4.85. EX- 

TABLE 4.82.—Experimental Cyclic Frequencies 
and Nodal Patterns for a Simply Supported 
Square Plate Clamped Along 4 Symmetrically 
Located Segments 

Nodal pattern 

Frequency, cps. 

_k2L 

izr 

280 

i 
i 

535 725 

FIGURE 4.66.—SS-SS-SS-SS square plate clamped 
along two symmetrically located segments of opposite 
edges. 
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V 

FIGURE 4.67.—Frequency parameters for SS-SS-SS-SS 
square plate clamped along two symmetrically 
located segments of opposite edges. (After ref. 4.133) 

perimental data shown in figure 4.69 were ob- 
tained on the plates described earlier in this 
section. 

The case when one symmetrically located 
segment of an edge is clamped is shown in 
figure 4.70.    The numerical solution  to  this 

FIGURE 4.68.—SS-SS-SS-SS square plate clamped 
along two unsymmetrically located segments of 
opposite edges. 

problem was obtained in reference 4.133 and 
is given in figure 4.71 and table 4.86. Experi- 
mental frequencies and approximate nodal pat- 

TABLE 4.83.—Fundamental Frequency Parameters wa2Vp/D for a Simply Supported Square Plate 
damped Along 2 Symmetrically Located Segments of Opposite Edges, v=0.S 

Source 
wa'-^p/D for values of l2ja of— 

0 Yz X % 1 

Ref. 4.133      19.74 
19.74 

27. 1 
27.31 

28.3 28.8 28. 95 
Ref. 4.135  

TABLE 4.84.—Experimental Cyclic Frequencies and Nodal Patterns for a Simply Supported Square 
Plate Clamped Along 2 Symmetrically Located Segments of Opposite Edges 

Y/A Y/A Y/A Y/A X/A Y/A 
Nodal pattern 

i 
i 
i 
i 

■ 
i 

 4  
1 
1 

t   ■ 

I \/>A \/A Y/A Y/A Y/A Y/A 

Frequency, cps _.  225 420 500 660 785 955 
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1^ 

1 > ■"* 

□ Experimental Data (h = 0.063") 
0  "          "           " (h = 0.09l") 

I            ,      I 

S,/a 

FIGURE 4.69.—Frequency parameters for SS-SS-SS-SS 
square plate clamped along two unsymmetrically 
located segments of opposite edges. (After ref. 4.133) 

FIGURE   4.70.—SS-SS-SS-SS   square   plate   clamped 
along one symmetrically located segment of an edge. 

terns obtained in reference 4.135 are given in 
table 4.87 for li/a=%. Experimental results 
shown in figure 4.71 and table 4.87 were ob- 

TABLE 4.85.—Fundamental Frequency Param- 
eters for a Simply Supported Square Plate 
Clamped Along 2 Unsymmetrically Located 
Segments of Opposite Edges; J<=0.3 

hla 0 % }i % 1 

aa^p/D-- 19.74 22.2 25.5 27.8 28.95 

TABLE 4.86.—Fundamental Frequency Param- 
eters for a Simply Supported Square Plate 
Clamped Along 1 Symmetrically Located Seg- 
ment of an Edge; p=0.3 

U/a 0 % }i % 1 

wa2V' pjD  19.74 23.0 23.4 23. 6 23.65 

tained on the same plates as those described 
earlier in this section. 

The case when the plate is clamped along 
one segment at the end of one edge is shown in 
figure 4.72. Nowacki (refs. 4.136 and 4.137) 
expressed a unit moment acting at a point 
along the clamped interval in terms of a trigo- 

I cP        I <; ? 

1 

a Experimental Data (h = 0.063") 
O (h = 0.09l") 

I             1             I      1 

3    t ■ 
I 

5      3 
2 

I                3 
3 
1 

Va 

FIGURE 4.71.—Frequency parameters for SS-SS-SS-SS 
square plate clamped along one symmetrically 
located segment of an edge. (After ref. 4.133) 
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FIGURE   4.72.—SS-SS-SS-SS   square   plate   clamped 
along one segment at the end of an edge. 

nometric series and formulated an integral 
equation involving a Green's function along 
the clamped interval. The integral equation 
was replaced by a finite summation carried out 

over discrete segments of the interval, which 
resulted in a system of equations, each term 
of which is an infinite series of transcendental 
functions containing the eigenvalues. Trun- 
cating the series and solving the resulting 
characteristic determinant yielded the vibration 
frequencies. 

Numerical results from reference 4.133 are 
given in figure 4.73. Data from references 
4.133 and 4.136 are also given in table 4.88. 
By looking at the results of reference 4.136 
in table 4.88, it is seen that they are clearly 
inaccurate, the frequency parameter listed for 
the case when k/a=% being greater than the 
well-known result for the case when ls/a=l 
(see discussion on SS-C-SS-SS plate, sec. 4.2.2). 

The solution is also given in reference 4.136 
for the case when the interval 0<a;<Z5 is 
clamped along the edge y=0 (fig. 4.72), the 
interval Z5<a:<a is free, and the remaining 
edges are simply supported. It was found 
for l6/a=% that M2

^JJD= 14.8. 
The case obtained when the simply sup- 

ported portions of the edges of the plate shown 
in figure 4.72 are replaced by clamped edge 
conditions and the remaining portion has zero 
slope and shear is included in reference 4.138. 

TABLE 4.87.—Experimental Cyclic Frequencies and Nodal Patterns jor a Simply Supported Square 
Plate damped Along 1 Symmetrically Located Segment of an Edge 

Nodal pattern 

TZT 

I 

77J Y7J V77 

TT 
i   l 

U Y7X 
fF 
J. 
K* 

Frequency, cps_ 200 425 480 680 835 900 1000 

TABLE 4.88.—Frequency Parameters coa2Vp/D jor a Simply Supported Square Plate Clamped Along 
1 Segment at the End of an Edge 

Source 
ua'-Jp/D for values of k/a of— 

0 % H a % 1 

Ref. 133  19.74 21. 1 
23. 2 

22.4 
23.8 

23. 3 23.65 
Ref. 136.   .    21. 0 
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y 

V° 
FIGURE 4.73.—Frequency parameters for SS-SS-SS-SS 

square plate clamped along one segment at the end 
of an edge. (After ref. 4.133) 

The necessary integral equations are completely 
formulated but no numerical results are 
obtained. 

4.4.3    Point Supports 

Throughout this section the term "point 
support" will be used to denote a constraint 
of zero deflection at a point. Unless otherwise 
stated, there will be no constraint on the 
slopes at such points. 

Consider first the problem of the rectangular 
plate free along all edges and supported at 
the four corner points (fig. 4.74). Cox and 
Boxer (ref. 4.139) solved the problem by 
means of finite difference equations. Funda- 
mental frequencies for a/b=l, 1.5, 2, and 3 
for v=0.3 are listed in table 4.89 and plotted 
in figure 4.75.    The mesh widths Aa and Ab 

FIGURE 4.74.—Free rectangular plate point supported 
at the four corners. 

are shown in figure 4.76. The extrapolated 
values of table 4.89 were obtained from the 
extrapolation formula 

(6Xa)2-(4X4)
2 

A„2=- (6)2-(4)2 (4.90) 

where X = wa2Vp/ö and the subscripts 4 and 6 
identify the two meshes used. 

The mode shapes W(x,y) corresponding to 
the fundamental frequencies are given in 
table 4.90, where the grid locations are those 
shown in figure 4.76. 

Higher frequencies for the square supported 
at the corners were also given in reference 
4.139. These are listed in table 4.91 for two 
mesh widths. Extrapolated values using equa- 
tion (4.90) are also given. 

Mode shapes corresponding to these frequen- 
cies are shown in figure 4.77, and the amplitudes 
of W(x, y) at the grid locations shown in figure 
4.78 are listed in table 4.92 for ^=0.3. Two 
independent mode shapes corresponding to the 
second frequency were found. They are iden- 
tified as 2a and 2b.    As can be seen from figure 

TABLE 4.89.-Frequency Parameters coa2Vp/D for a Free Rectangular Plate Point Supported at the 
Jf. Corners; v=0.S  

Mesh width 

Aa=A6=fc/4_ 
Aa=Afc = b/6_ 

aa?iJplD for values of a/b of— 

6. 97939 
7. 05598 

»7. 117 

1.5 

8. 78632 
8. 86492 

»8. 927 

9. 18688 
9. 24590 

■ 9. 293 

9. 35971 
9. 39803 

»9. 429 

•Extrapolated value from eq. (4.90). 
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FIGURE 4.75.—Frequency parameters aa2-iJplD for a 
free rectangular plate point supported at the four 
corners; c=0.3. (After ref. 4.139) 

4.77, the third mode shape and frequency are 
identical to those of the fundamental mode of a 
completely free square plate (sec. 4.3.15) 

Variation in the frequency parameter a>a%/p/Z> 
with Poisson's ratio is shown in figure 4.79. 
However, it must be remembered that D de- 
pends upon v. Substituting equation (1.2) 
for D into the frequency parameters permits the 

variation of the frequency itself with Poisson's 
ratio to be seen.    This is shown in figure 4.80. 

Nishimura (ref. 4.14) used the finite-differ- 
ence method and a relatively coarse grid (char- 
acteristic determinants of order no larger than 
six) to obtain the first 10 frequencies and nodal 
patterns of a free square plate point supported 
at the four corners. He also obtained experi- 
mental results on a steel plate 10.1 by 10.1 
inches by 0.087 inch. These results are shown 
in figure 4.81, with experimental values given 
in parentheses. It is noted that the third, 
sixth, and ninth mode shapes and frequencies 
also exist for the completely free square plate. 

Reed (ref. 4.140) obtained extensive analyti- 
cal and experimental results for the rectangular 
plate supported at its four corners. Analyti- 
cal results were achieved by two methods— 
the Rayleigh-Ritz and series methods. The 
deflection function 

Tire     \    -^-v/      •  nTtV i i     •  nr. -jp      W(x,y)=^la0nsm-jj-+bo„sm — 
nirx\ 

+ 2J 2J ( «m« «os —- sin -jf 

. , mry .  mrx\    ,. .,. + 6m„cos-^sin—)    (4.91) 

rl i. 5 d I 1 I  

I I I I I I I 
I 4—5 — 6 — 5 — 4 I 

I        I        I        I        I         I        I 
2 7 8 9 — 8 7 2 

I        I         I         I        I         I        I 
3 6 9 10—9 6 3 

I        I         I         I         I         1        I 
2 7 9 — 9 — 8 7 2 

I        I         I         I        I         I        I 
-5 6 5 4 I 

I        I         I         I         I         II          [_ I         I 
I 1 2—3 2 1 1 I 1 2  

I 2 3 4 5 6 7  

I I I I I        I I 
10—II —12 —13 —14 —15 —16 —17— 

I I I I        I I        I I 
20 — 21 — 22—23 — 24—25—26 — 27- 

I I I I        I I        I I 
30 31—32—33—34—35—36—37- 

I I I I I I I I 
20—21 — 22—23—24 — 25 — 26 — 27- 

I I I I I I I I 
10 II —12—13 —14—15 —16—17- 

•2—3 2 

a/b=l 

I         I         I         I I 
3—4 5 6 7- 

8—9 8- 

I I I 
18 — 19—18- 

I        I        I 
28—29 — 28 

I        I        I 
38—39—38 

I        I        I 
28—29—28 

I I I 
18—19 —18 

I         I I 
■8 9 8 

a/b=3 

-7 6 5 4 3 2 I 1 

I        I I I        I I        I        I 
-17—16 —15—14 — 13—12—II—10 

I        I        I        I        I        I        I        I 
-27—26—25—24—23—22—21 — 20 

I        I        I        I        I I        I        I 
■ 37—36—35—34—33—32 — 31—30 

I        I I I I I I I 
-27—26—25—24—23—22—21 — 20 

I        I I        I I I        I        I 
-17 —16 —15 — 14 — 13 —12— II —10 

I        I I        I I I        I        I 
 7 6 5 4 3 2 1 ' 

5 — 6- 

I        I I 
10 — II- 

I        I 
15 —16- 

I        I 
10 — II- 

I        I 
5 6- 

2 3 4 — 4 3- 

I I I I I 
7— 8 — 9—9 — 8- 

I I I I 
12 —13 —14 — 14—13- 

I I I I I 
17 18 —19 —19 —18- 

I I I I        I 
12—13—14—14 — 13- 

~l 
■*—.  I ? 7, 4 5 fi  

U- 
-7 8 — 9 9 — 8 — 

-7 6 5 

I I I 
-12—II —10 

I        I        I 
-17 —16 —15 

I I        I 
-12—11 — 10 

I        I        I 
7—6 — 5 

Abi      I 
-7 8' 

I I 
14 — 15- 

I I 
21—22 

2 I 1 

I M 

■2— 3 — 4 — 4—3 

a/b=l.5 

1  l_l  2— I 1 

14—15- 

I I 
7 8- 

-9 — 10—11 

I        I 
-16—17—18 

I        I I 
-23 — 24—25 

I        I I 
■ 16—17 —18 

I        I I 
■9 —10—II 

I        I I 
-2 — 3 4 

—| Aa |— 
6 5—4 — 3— 

I        I        I 
—12— 13 —12— II —10— 9 8 7 

I I I I I        I        I 
—19—20—19 — 18—17— 16—15—14 

I I I I I I        I 
27—26—25 — 24—23 — 22—21 

I I I I I        I 
19— 18— 17— 16 — 15 — 14 

I I I I I        I 
12—II—10—9—8 — 7 

-26 

I 
-19' 

I 
•12 

I 
-5 

20- 

I 
13- 

I 
6- 

I         I         I        I         I         I         I         I         I         I         I         I        I 
I I 2 — 3 4 — 5 — 6 — 5—4 — 3 — 2 I ' 

a/b=2 

FIGURE 4.76.—Finite difference meshes. (After ref. 4.139) 
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TABLE 4.90.—Fundamental Mode Shapes 
W(x, y) for Free Rectangular Plates Point 
Supported at the 4 Corners; v=0.3 

Grid 
W(x, y) for values of a/b of— 

location 
1.0 1.5 2.0 3.0 

1  
2  
3  

0. 34407 
. 58825 
. 67600 

. 58026 

. 75981 

. 82616 

. 75981 

. 89905 

. 95183 
1.0 

0. 35177 
. 65713 
. 88141 
1.0 

. 11297 

. 41240 

. 67951 

. 87885 

. 98513 

. 19186 

. 45973 

. 70293 
. 88653 
. 98502 
. 21992 
. 47731 
. 71244 
. 89066 
. 98649 

0. 26141 
. 50327 
. 70970 

. 86743 

. 96631 

1.0 

. 04188 

. 28042 

. 50445 

. 69753 
. 84592 
. 93928 
.97113 
. 07094 
. 29562 
. 50849 
. 69315 
. 83569 
. 92561 
. 95632 
. 08124 
. 30131 
. 51040 
. 69218 
. 83274 

. 92148 

. 95181 

0. 17474 
. 34364 

. 50168 
4    . 64423 

5    . 76711 

6  . 86668 

7  . 94000 

8   . 98489 

9  1.0 
10  .01135 
11  .17900 
12  . 34210 
13  . 49540 
14  . 63408 
15  . 75387 
16   . 85106 

17  . 92268 
18  . 96655 
19  . 98132 
20  . 01919 
21  . 18251 
22  . 34197 
23  . 49228 
24  . 62855 
25  . 74642 
26  . 84216 
27  . 91275 
28  . 95600 
29  . 97057 

30  . 02196 
31  . 18384 
32  . 34205 
33  . 49135 
34  . 62681 
35  . 74403 
36  . 83927 
37  . 90952 

38    . 95257 
39  . 96707 

was used with the Rayleigh-Ritz method. Pois- 
son's ratio was taken to be 0.3. Frequency 
parameters, nodal patterns, and normalized 
mode shape coefficients are shown in table 
4.93 for the first seven modes of plates having 
a/b ratios of 1.0, 1.5, 2.0, and 2.5. 

The second analytical method in reference 
4.140 used the series given in equation (4.21) 
as half of the solution, the other half being a 
similar series obtained by interchanging x and 
y. Frequency parameters obtained in keeping 
24 terms of the series are listed in parentheses 
in table4.93.    In table 4.94 the theoretical cyclic 

FIGURE 4.77.—Higher mode shapes for the free square 
plate point supported at the four corners. (After ref. 
4.139) 

-10- -12 

14- -16- ■17- -18- -19 

20- -21- 22- -23- 24- •25- -26 

27- 28- -29- -30- -32- -33 

34- -35- -36- -37- -38- -39- 40 

•41- ■42- -43- -44- ■45- 

FIGITEE   4.78.—General  finite  difference  mesh  for  a 
square. (After ref. 4.139) 
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TABLE 4.91.—Higher Frequency Parameters wa2Vp/D for a Free Square Plate Point Supported at 
the 4 Corners; v=O.S 

Mesh width 
«a2V pjD for mode- 

Ac^ A6 = o/5_ 
Aa = A6 = a/6_ 

15. 0541 
15. 2650 

» 15. 73 

16. 8311 
17. 5659 
19. 13 

35. 5951 
36. 4827 

» 38. 42 

38. 7292 
40. 2638 

» 43. 55 

Extrapolated values. 

I 

_. 5 

~—~ 

< > 

4 

>■ 

3 

'       ? 
~~ 

> 
1 

S 
t» 

O.I 0.2 

Poisson's Ratio, v 
0.3 

FIGURE 4-79.—Variation of frequency parameter with 
Poisson's ratio for a free square plate point supported 
at the four corners. (After ref. 4.139) 

frequencies determined by the series method 
and by adapting the results of reference 4.139 
are compared with experimental results ob- 
tained with two aluminum plates. 

T  

45 

411 
a. 

39 

1   22 
UJ 

1     20 

18 

* 

i. 

16 

8^ 
i. 

  

Poisson s Ratio,v 

FIGURE 4.80.—Variation in the modified frequency- 
parameter with Poisson's ratio for a free square 
plate point supported at the four corners. (After ref. 
4.139) 

Kirk   (ref.   4.141)   used  the  Rayleigh-Ritz 
method and a mode shape 

W(x, y)=A(sm"+sm1f) 

■KX iry +(1-2A) sin^sin^    (4.92) 

to obtain a fundamental frequency for the 
problem when p=0.3. Minimizing the Ray- 
leigh quotient with respect to A yields A= 
0.6956 and wa^~p\B=7.224. 

The Rayleigh method and a mode shape of 
the form 

W(x,y)=Asm—+Bsm^        (4.93) 
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TABLE 4.92.—Higher Mode Shapes W(x, y) for a Free Square Plate Point Supported at the 4 Corners; 
v=0.S 

Grid location 
W(x, y) for mode— 

2o 2& 3 4 5 

1            . ... . 0. 42800 
. 79707 
1.0 
.93765 
. 57804 

-. 42800 

0 
.39652 

. 69381 

. 82122 

.75841 

. 57804 
-. 79707 
-.39652 

0 
.36438 
. 64592 
. 82122 

. 93765 
-1.0 
-. 69381 
-.36438 
0 
.36438 
.69381 
1.0 
-.93765 
-. 82122 
-. 64592 

-. 36438 
0 
.39652 
. 79707 

-. 57804 
-. 75841 
-.82122 

-.69381 
-.39652 

0 
. 42800 

-. 57804 
-.93765 

-1.0 
-. 79707 
-.42800 

0. 50302 
.86736 
1.0 

. 86736 

. 50302 

. 07502 

. 37920 

. 60887 

. 69381 

. 60887 

. 37920 

. 07502 

. 07029 

. 21235 

. 32296 

. 36438 

. 32296 

. 21235 

. 07029 
0 
0 
0 
0 
0 
0 
0 
-.07029 
-. 21235 
-. 32296 
-.36438 
-. 32296 
-. 21235 
-. 07029 
-. 07502 

-.37920 
-. 60887 
-. 69381 
-.60887 
-. 37920 
-.07502 
-.50302 
-. 86736 
-1.0 
-.86736 
-. 50302 

0. 48159 
. 85688 
1.0 

. 85688 

. 48159 
-. 48159 

0 
.36362 

. 50055 

. 36362 

0 
-.48159 
-. 85688 
-. 36362 
0 

. 13585 
0 
-. 36362 

-. 85688 
-1.0 
-. 50055 
-.13585 
0 
-.13585 
-. 50055 
-1.0 
-. 85688 
-.36362 

0 
. 13585 

0 
-.36362 

-.85688 
-. 48159 
0 
.36362 
. 50055 
. 36362 

0 
-. 48159 

. 48159 

. 85688 
1.0 

. 85688 

. 48159 

0. 82466 
. 79791 

0 
-. 79791 
-. 82466 

. 82466 
1.0 

. 73369 
0 
-. 73369 

-1.0 
-. 82466 
.79791 
.73369 
. 47978 

0 

-. 47978 
-. 73369 
-.79791 
0 
0 
0 
0 
0 
0 
0 
-.79791 
-.73369 
-. 47978 
0 

. 47978 

. 73369 

. 79791 
-. 82466 
-1.0 
-. 73369 
0 
.73369 
1.0 

. 82466 
-. 82466 
-. 79791 
0 

. 79791 

. 82466 

-0. 49310 

2  ... _-__._  -. 73475 

3     -.     -.78861 

4   _     -.73475 

5   _   -. 49310 

6 .. .......  .   -. 49310 

7   -. 35047 

8 .. ...     -. 13858 

9 -. ... ... .   .-- -.02813 

10  -.13858 

11     _.      -. 35047 

12  -.49310 

13  -. 73475 

14   -. 13858 

15    . 44086 

16      .  . 69261 

17      . 44086 

18     . -.   ... -. 13858 

19 ------- .  -   -. 73475 

20    ---   .  -.78861 

21     _            -.02813 

22    . 69261 

23  1.0 
24    _.   . 69261 

25     -. . -.   -. 02813 

26 . -. 78861 

27  -.73475 

28...  -. 13858 

29  . 44086 

30  . 69261 

31-.  . 44086 

32  
33-.   

-. 13858 
-.73475 

34  -.49310 

35.   .-     -.35047 

36  -. 13858 

37  -. 02813 

38  -. 13858 

39  -.35047 

40  -. 49310 

41--   -. 49310 

42-...  -.73475 

43  __ -.78861 

44  
45  

-. 73475 
-. 49310 
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7.442 
(7.8) 

16.74 
(16.8) 

20.17 
(20.6) 

40.62 
(40.7) 

42.76 
(43.1) 

46.07 
(50.8) 

67.88 
(67.5) 

71.94 
(78.4) 

95.42 
(95.6) 

119.29 
(120.6) 

FIGURE 4.81.—Theoretical and experimental frequency parameters and nodal patterns for a free steel square plate 
point supported at the four corners.    Experimental values are given in parentheses. (After ref. 4.14) 

TABLE 4.93.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a Rectangular 
Plate Supported at Its 4 Corners; v=0.S 

[Values in parentheses are obtained by keeping 24 terms of the series] 

Mode 1: Mode 2: 

a/6 
aWp/D Normalized mode-shape 

coefficients 
wcfi^pID Normalized mode-shape 

coefficients 

1.0 
7.46 

(7.12) 

«oi= 1.000 
ao3=-.0663 
«to =.1737 
o23=.0329 
a4i=-.0267 

6oi=1.000 
603=-.0663 
62l=.1737 
&23=.0329 
641=-.0267 

16.80 
(15.77) 

002=-0.1248 
Oo4=-.0075 
o22 =.1695 
024=-.0055 
O42=-.0146 

6n=1.000 
613=-.0671 
&31=-.0574 
633=.0348 
66i=-.0083 

1.5 9.21 
(8.92) 

o01=.0869 
«03=-.0150 
«21 =.0950 
o23=.0056 
o4i=-.0102 

6oi=1.000 
603=-.0320 
62i=.0281 
623=.0161 
641=-.0068 

22.78 
(21.53) 

oo2= —.1753 
Oo4=.0002 
a22=.1530 
a24=-.0059 
O42=.0012 
Oo6= .0009 

6„= 1.000 
613=-.0499 
631=-.0748 
633 =.0205 
651 = .0052 
6,6=-.0065 

2.0 
9.46 

(9.29) 

OQI=-.0054 

o03=-.0052 
o2i=.570 
a23=.0013 
a4i=-.0035 

6oi=1.000 
603=-.0179 
621 =.0046 
623=.0080 
641=-.0025 

29.03 
(27.50) 

002= —.1915 
a04=.0067 
o22=. 1537 
a24=-.0088 
a42=.0080 
a06=.0007 

6n=1.000 
613=-.0460 
&31=-.0893 
633 = .0159 
661=-.0028 
&is=-.0093 

2.5 
9.48 

(9.39) 

o0i=-.0197 
o03=-.0020 
a2i =.0372 
o23=.0002 
O4i=-.0007 

6oi=1.000 
603=-.0108 
621=-.0014 
623=.0042 
641=-.0011 

35.5 

o02=-.1984 
a04=.0100 
a22=.1550 
024= -.0103 
a42=.0120 
«06= .0005 

6n=1.000 
613=-.0451 
631 =-.0967 
633=.0135 
651=-.0009 
&i5=-.0113 
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TABLE 4.93.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a Rectangular 
Plate Supported a} Its 4 Corners; v=0.8—Continued 

[Values in parentheses are obtained by keeping 24 terms of the series 

Mode Mode 3: 
i 
1 
\ 

4: 
>    * A \             * 

1             1 
1             \ 

X—                   i 

a/b 
wa2yp/D Normalized mode-shape 

coefficients 

.  
o>a?^jp!D Normalized mode-shape 

coefficients 

1.0 
16.80 

(15.77) 

an=1.000 
Oi3=-.0671 
O3i=-.0574 
033=. 0348 
a5i=-.0083 

b02=-0. 1248 
6o4=-.0075 
622=. 1695 
b24=-.0055 
642=-. 0146 

19.60 
(19.60) 

Ooi=1.000 
oo3=-.0244 
021=-. 0802 
o23=. 0112 
041=. 0049 

601=-1.000 
603=.0244 
b2i=.0802 
623=-. 0112 
b4i=-.0049 

1.5 
27.74 

(25. 82) 

a„ = 1.000 
o13=-.0817 
Osi=. 0205 
033=. 0428 
o5i=-. 0209 

602=0. 1539 
604=-.0380 
b22 = . 1850 
b24=. 0115 
b42=-.0230 

34.8 
(33. 69) 

ooi=1.000 
o„3=-.0536 
02i = . 0756 
023 = . 0255 
041=-. 0107 

601=-0.8108 
b03=.0002 
b21=. 1693 
b23=. 0171 
b4i=-.0191 

2.0 
34.7 

(32. 83) 

a„ = 0. 7924 
ai3=-.0877 
a31 = . 1496 
033=. 0426 
a5i=-. 0304 

602= 1. 000 
b04=-.0808 
b22 = . 1713 
624 = . 0334 
b42=-.0272 

56.2 
(52. 0) 

aoi=1.000 
aos=-.0726 
021 = . 2048 
023=. 0322 
04l = . 0011 

&0l=-O. 742- 
603 = -0903 
b2i = . 2277 
b23 = .0341 
b4i=-.0277 

2.5 3.72 

Ou = 0. 1928 
ai3=-.0337 
o3i = . 1130 
033 = . 0150 
a5i=-. 0109 

b02= 1.000 
&„*=-. 0479 
b22 = . 0536 
b24=. 0191 
642=-.0112 

101.7 

Ooi = 0. 8438 
Oo3=-.3091 
021=-. 8536 
o23=.2419 
041=. 0530 

601 =-0. 8072 
b03=. 1068 
621= 1.000 
b23=-.1570 
6«=-. 1440 

were used in reference 4.2 to obtain approximate 
fundamental frequencies for general values of 
a/b and *<=0.25. The frequency may be com- 
puted from equation (4.17) with 

K-- 

N= 

2W    67 
2+~ab+b') 

(4.94) 

Cox (ref. 4.142) also used the finite-difference 
method to solve the problem of the free square 
plate supported at the midpoints of its sides 
(see fig. 4.82). Frequencies obtained from two 
mesh widths and from the extrapolation formula 
equation (4.90) are listed in table 4.95 for 
„=0.3. 

Plass (ref. 4.143) used a variational method 
described later in this section to solve the prob- 

lem of a free square plate clamped at one mid- 
point as shown in figure 4.83. A deflection 
function 

TF(5, y)=^(D"-|Q*[ck+^(D]    (4-95) 

was used to yield a fundamental frequency 
parameter oja.%/p/D=2.580. In this case the 
point clamp at (0, 0) permits rotation about 
the 2:-axis, but not about the y-axis. 

The square plate having two adjacent edges 
both either clamped or simply supported and 
a point support at the opposite corner (see 
fig. 4.84) was also analyzed by Cox (ref. 4.144). 
The finite difference method and y=0.3 was 
used. Frequency parameters for both prob- 
lems  are listed in  table 4.96  for  two  mesh 
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TABLE 4M.—Frequency Parameters, Nodal Patterns, and Amplitude Coeßcients for a Bectangul, 
Plate Supported at Its 4 Corners; v=0.8—Continued 

137 

ar 

a/b 

Mode 5: 

i 
i 

.- + -.. 
..   i 

Mode 6: 

aa^p/D Normalized mode-shape 
coefficients 

<oa2Vp/£> Normalized mode-shape 
coefficients 

1.0 41.5 
(38. 44) 

oi2=1.000 
on=-. 1458 
032 = . 2107 
a34=. 0645 
052=-.0433 
Oi6=-. 0053 

&i2= 1. 000 
&i4=-. 1458 
632=. 2107 
634=. 0645 
652=-. 0433 
&i6=-.0053 

51.6 
(50. 3) 

aii=1.000 
013=-. 0629 
o3i=-.2789 
033=-.0007 
o5i=. 0318 

602=-0.9796 
&oi=. 0944 
622=. 0337 
624=-.0492 
642=-.0000 

1.5 
56.0 

(52. 7) 

oi2=-. 0666 
ai4=-.0342 
o32=. 1809 
o34=.0119 
os2=-. 0049 
Oi6=. 0014 

612= 1. 000 
614=-.0797 
632=-. 0153 
634=. 0326 
652=-. 0190 
&16=-.0101 

57.7 
(57. 7) 

0n= 1. 000 
Oi3=-.0446 
o3i=-. 1487 
o33=. 0225 
o5i=. 0084 

602 =-0.8072 
604=.0477 
622=. 1222 
624=-. 0232 
642=-. 0078 

2.0 
67. 1 

(63. 8) 

Oi2=-. 1869 
oi4=—. 0122 
a32=. 1764 
034=. 0011 
a62=.0068 
o]6=. 0015 

6i2=1.000 
614=-.0671 
632=-.0548 
634=. 0238 
652=-. 0114 
6i6=-.0134 

73.0 
(71.3) 

on=l. 000 
o,3=-.0597 
o3i=-. 0626 
o33 = . 0316 
a5i=-. 0013 

602 =-0. 6479 
604=. 0324 
622=. 1557 
624=-. 0051 
642=-. 0151 

2.5 78.5 

ai2=-. 2238 
ai4=-.0021 
o32=. 1772 
034=-.0038 
a52=. 0134 
ai8=. 0013 

6,2= 1. 000 
&i4=-. 0630 
&32=-.0717 
b34=. 0195 
652=-.0074 
6i6=-.0160 

97.5 

o„= 1. 000 
Oi3=-.0705 
031=-. 0104 
033=. 0364 
o6i=. 0059 

602=-0.5687 
604=.0720 
622=. 1772 
624=. 0027 
642=-. 0195 

.'"s 
Mode 7: u 

a/b 

<M2yp/£) Normalized mode-shape 
coefficients 

aoi=0.1555 601=0.1555 

1 0 48.3 o03=-.1950 603=-.1950 
(44. 4) a2J= 1.000 62, = 1.000 

o23=.1088 623=.1088 
041= -.0988 641=-.0988 

a0i=-0.4491 601= 0.6498 

1.5 
75.4 

(70. 1) 

a03=-.1209 
a2i= 1.000 
o23=.0468 

603=-.0355 
62i=.5491 
623=.1078 

O4i=-.0658 641=-.0590 

308-337 O - 70 - 
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TABLE 4M—Comparison Between Experimental and Theoretical Results for Cyclic Frequencies of 
Rectangular Plates Point Supported in the Corners 

Cyclic frequen ;ies, cps, for— 

Mode 
Plate 1: 12- by 12- by 0.129-in. 2024 aluminum 

E= 10.6X 10» psi (book value) 
Plate 2: 10- by 20- by 0.173-in. 2024 aluminum 

B=10.6X103 psi (book value) 

Solution 
from ref. 

4.139 
Experiment 

Series 
solution 

Solution 
from ref. 

4.139 
Experiment 

Series 
solution 

1        61.4 
136 
136 
166 
333 

62 
134 
134 
169 
330 
434 
383 

61.4 
136 
136 
170 
333 
436 
385 

38.8 38.3 
113 
136 
214 
261 
294 

38.8 
115 

Q 
137 

A 218 

K 267 

fi 298 

375 

-a/2- 

:{-T 

a/2 

FIGUKE  4.82.—Free  square  plate  supported  at  the 
midpoints of its sides. 

widths.    Extrapolated values are derived from 
equation (4.90). 

The second mode shapes for these two prob- 
lems have node lines y=x, and thereby dupli- 
cate the second modes that exist when the 
corner point is not supported. (See sees. 
4.3.6 and 4.3.13 for relevant information.) 
First and second mode shapes and frequencies 
can also be obtained directly from the results 

/ 
Clamped Point 

a/2 

— x 

a/2 

FIGURE   4.83— Free   square   plate   clamped   at   one 
midpoint. 

of the free square plate point supported at its 
four corners given earlier in this section. 
Straight node lines duplicate simply supported 
boundary conditions. 

Consider next the problem of the rectangular 
plate simply supported on all edges and sup- 
ported at a point located at the coordinates 
|, n (fig. 4.85).    Nowacki (refs. 4.137 and4.145) 
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TABLE 4.95.—Fundamental Frequency Param- 

eter coa%/p/D for a Free Square Plate Sup- 
ported at the Midpoints of Its Sides; v=OS 

Mesh width 
Extrapolated 

a/8 a/10 
value 

17. 129 17. 443 18. 002 

TABLE 4.96.—Frequency Parameters coa2Vp/D 
for a Square Plate Simply Supported or 
Clamped on 2 Adjacent Edges and Supported 
at the Opposite Comer; v=0.S 

aaPjpJD 

Adjacent edge 
conditions Mesh width Extrap- 

olated 

a/4 a/5 a/6 
value 

Simply supported  
Clamped-- _ 

8.22 8.50 
12.55 12.90 

9.00 
13.68 

solved the problem by dividing the plate into 
two sections by the line y=%, assuming a solu- 
tion of the form 

W(x, y)=2 (Am sinh \3y+ Bm sinh \iV) sin — 
m a 

where 
(4.96) 

for each section, and satisfying the boundary 
conditions along y=0 and y=b and the con- 
tinuity conditions along y=v exactly. Con- 
tinuity of transverse shear along y=v requires 
expanding the point load at £, v into a Fourier 
sine series. These conditions lead to the char- 
acteristic equation 

^\      sin2a£ 
m=l,2,...(Xi 

n2a£ p 
-XI) L" 

'sinh X4r; sinh X4(6—v) 
X4 sinh X46 

sinh X37? sinh X3(6—?;)"[ 
X3 sinh X36        J =0    (4.98) 

Simply Supported 
or Clamped 

FIGURE 4.84.—Square plate simply supported or 
clamped on two adjacent edges and supported at the 
opposite corner. 

FIGURE  4.85.—SS-SS-SS-SS  rectangular plate  with 
point support along one symmetry axis. 

where   a=mir/a.    The   roots   X3   and    X4   of 
equation (4.98) yield the frequencies. 

The fundamental frequency parameters for 
three a/b ratios and with the point support at 
the center (£=a/2, v=b/2) are listed in table 4.97. 
Frequencies were also determined (ref. 4.137) 
for the case of the square when the support 
point was allowed to relocate along the line 
y=a/2=b/2. Eesults are given in table 4.98. 
It is noted that corresponding values (£/a= %, 
a/b=l) of tables 4.97 and 4.98 show consider- 
able disagreement. 
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TABLE 4.97.—Fundamental Frequency Param- 
eters for a SS-SS-SS-SS Rectangular Plate 
Having a Point Support at the Center 

alb 1.0 1.5 2.0 

UO?TJPID           —  52.6 73. 1 91. 1 

TABLE 4.98.—Fundamental Frequency Param- 
eters for a SS-SS-SS-SS Square Plate Having 
a Point Support Along a Symmetry Axis 

Ha 0 Vs M % 14 

ucP^pID --  19.7 25.5 30.4 38.9 49.3 

The case when the plate is supported at a 
point by a spring, with or without added mass, 
is discussed in the section entitled "Point 
Masses" (sec. 4.5.2). 

The square hub-pin plate (fig. 4.86) consists 
of a hub support attached to the edge of a 
plate and having an axis of rotation parallel 
to the adjacent edges and a pin support at 
another point along the same edge. For the 
particular locations shown in figure 4.87, the 
boundary conditions at the hub are for W(x,y) 

and at the pin 

w(o,^a)=Mx(o,^a)=0       (4.100) 

Free-edge boundary  conditions  apply  every- 
where else. 

This problem was treated in references 4.66 
and 4.143 by using a modification of Reissner's 
variational method (ref. 4.71) and a deflection 
function 

^4©-!©'] 
+4©*-^©*] 
+4©"-"©"+l©l 
+4i-s[©'-i(D']} 

+«GXD[(IH(D'] 
+<l)©"[©-5©'] <«°» 

Moment boundary conditions were exactly 
satisfied at discrete points and four degrees 
of approximate satisfaction of the- shear bound- 
ary conditions were considered; the best results 
were obtained when the transverse shear con- 
ditions on the free edges were ignored. Fre- 
quency parameters from reference 4.66 com- 
pared with the experimental data of reference 
4.72 are presented in table 4.99 for an aluminum 
plate 7.5 by 7.5 inches by 0.25 inch. Experi- 
mental methods used to get these results are 
described in reference 4.146. 

Mode shapes corresponding to the first three 
frequencies  are shown in figure 4.87,  where 

TABLE  4.99.—Frequency   Parameters  wa2Vp/D 
and Nodal Patterns for a Square Hub-Pin Plate 

FIGURE 4.86.—Square hub-pin plate. 

Type 
wa?4plD for mode— 

1 2 3 4 5 

Theoretical  
Experimental- _ 

2.67 
2.76 

5.86 
5.59 

15.87 
15.95 21.73 26.81 
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1.0 T 
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E 
b z 

WI53CPS 

fExp =H9.6cps 

MODE I 

fExp =243.0cps 

MODE 2 

FIGURE 4.87.—Theoretical and experimental mode shapes for a square hub-pin plate. 

i=x/a and it—y/a. Further experimental re- 
sults (ref. 4.86) for a thinner plate are shown 
in figure 4.88. More work on point-supported 
plates is contained in reference 4.147. 

4.5   ADDED MASS 
4.5.1    Rigid Strip Mass 

The problem of the rectangular plate, simply 
supported on two opposite edges, free on the 
other two, and carrying a rigid mass of finite 
width I running across the center of the plate 
(fig. 4.89) was studied by Cohen and Handel- 

man (ref. 4.148). In reference 4.148, the 
Rayleigh-Ritz method is used with a funda- 
mental mode shape 

(4.102) 

where A is an undetermined coefficient to be 
found from the minimization process. An ex- 
plicit formula for the frequency parameter is 
found to be 

where 

v_Cf»Cr«-2(Cr,Cr«+ g1C
r.)+2Vrg,C«-q<?6)

2-g2<75«73C4+ 0,0,)+ 010,0,+dCM    ,A ino, 

01= 

(4.104) 
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k^H 
ROTATIONAL 
CONSTRAINT POINT 

£=0.30A_ 

£=0.50£- 

£=0.70A- 

£=0.90A- 

£ = 0.90 

-0.2 
—i H 

+0 2 +0.4 
_, 1 1 1 

(b) 
•  SHAKER POSITION - 

NO DEFLECTION DATA 

-0.801 
SHAKER POSITION- 
NO DEFLECTION DATA 

(d) 
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f=0.90, 
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• SHAKER POSITION- 
NO DEFLECTION DATA 

• SHAKER POSITION - 
NO DEFLECTION DATA 

FIGURE 4.88.—Experimental node lines and normalized deflection of a square hub-pin plate; 
material, 6061-T6 aluminum l/% inch thick, (o) Experimental node lines and data points. 
(6) First mode; /i = 58.8 cps. (c) Second mode; f2= 119 cps. (d) Third mode; /3 = 339 
cps.  (e) Fourth mode;/4 = 462 cps.  (/) Fifth mode; /5 = 570 cps. 

FIGURE 4.89.—SS-F-SS-F plate carrying a rigid mass. 
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and where p' is the mass density per unit area 
of the plate plus the additional mass in the 
region     [(a/2)-(Z/2)|<a<[(a/2) + (Z/2)].     For 

large values of alb, equation (4.104) can be 
simplified by retaining terms of order (b/a)2, 
but no higher powers, giving: 

^-^--HytH)*^)'] 
4TT

2 

15 

Numerical results were evaluated in reference 
4.148 for p=0.25. For the square, equation 
(4.103) was used. Frequency variation with 
l/a ratio for several values of p'/p is shown in 
figure 4.90. For a/b=10, equation (4.105) was 
used. Results are shown in figure 4.91. It is 
interesting to note that in both figures for 
p'/p<2 the frequency always increases as 
l/a increases, whereas for p'/p^>2 there exist 
crossover points where the frequency of the 
plate with the added strip is the same as that of 
the unloaded plate. 

In reference 4.149 the technique of reference 
4.148 was extended to the lowest antisym- 
metrical mode.    A function 

W(x,y)= sin^+A^ x(x-a+iy sinf 

(4.105) 

(4.106) 

is used where ß is the fundamental root of the 
equation 

tan/3(l-|)+/3^=0 (4.107) 

The explicit form for the frequency parameter 
is found to be 

D1-2D2+2^Dl+DiD5 (4.108) 

where 

D1=E2 

wa2-Jp/D 

-\-EzEi 

Dz=D2-2EzEi(^j 

•©' 

D5=E. [0'+*©]-**" 
D -©'« -AEiEt. 

(4.109) 

FIGURE 4.90.—Fundamental frequency variation for a 
SS-F-SS-F square plate carrying a rigid strip mass; 
«=0.25. (After ref. 4.148) 

E^  4 

*'■* 

-|ftl 4* 

I/o 

FIGURE 4.91.—Frequency variation for a SS-F-SS-F 
rectangular plate (a/6=10) carrying a rigid strip 
mass; x=0.25. (After ref. 4.148) 
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and where 

^© 
E2=E5/(P 

^4=^ 

7T ■0-0 
1+2 © 

v^©. 
Ei=ZJ?E* 

«-«0-0' 
*-S0-0" 

(4.110) 

For   large   values   of   a/b,   equation   (4.108) 
simplifies to 

AE^ED—El .    Ei 
ffeG) VEW'P* 

-ÜEiEd-E-AEi-iEtg,)]    (4.111) 

Numerical results were evaluated in refer- 
ence 4.149. For the square, equation (4.108) 
was used. Frequency variation with l/a ratio 
for several values of p'/p is shown in figure 4.92. 
For a/ö=10, equation (4.111) was used. 
Results are shown in figure 4.93. 

4.5.2   Point Masses 

A rectangular plate simply supported all 
around and having a concentrated mass M 
attached at the coordinates £, t\ is shown in 

5000 

2000 

1000 

500 

200 

100 

50 

20 

10 

.\ 
fc/ 

II f 

m=p IP f/ 

Svt/ 
Sr 

■ $/- 

0.2 0.4 0.6 
i/o 

0.8 1.0 

FIGURE 4.92.—Variation of the first antisymmetric 
frequency for a SS-F-SS-F square plate carrying a 
rigid strip mass. (After ref. 4.149) 

figure 4.94. Gershgorin (ref. 4.150) solved 
the problem by dividing the plate into two 
regions 0<j/<r? and n<y<b and assuming a 
solution (eq. (1.37)) for each region. Eight 
homogeneous equations are written, four for 
the boundary conditions at y=0 and y=b, 
and four for the continuity conditions across 
the line y=y. The continuity condition for 
transverse shear takes into account the con- 
centrated mass by expanding a point load 
into a Fourier sine series. This procedure 
leads to a characteristic equation, the roots of 
which are the desired eigenvalues. 

Numerical results are presented in implicit 
form in reference 4.150 for the doubly symmet- 



146 VIBRATION  OF  PLATES 

ouuu 

2000 

1000 1 III III II III 
500 I 

/// 
si /// 

200 

100 

" t el 7/ 
/// 

m-p' >P 

/ ' / '/ 

50 //] 7/ 
^/•^ 

Ay // 

20 

10 

I 
Y 

// 
« 

* / 
V 
— ii% 

" v~ 

5 

2 

0.2 0.4 o.e 
i/o 

0.8 1.0 

FIGURE 4.93.—Variation of the first antisymmetric 
frequency for a SS-F-SS-F rectangular plate carrying 
a rigid strip mass; ajb = 10. (After ref. 4.149) 

FIGURE 4.94.—SS-SS-SS-SS rectangular plate with a 
point mass M. 

ric modes of a square (a=b) when the mass 
is at the center (£=«/&, i?=a/2). It is obvious 
that for modes having an axis of antisymmetry 
the mass M will fall on a node line and, hence, 
will not affect the plate. The frequencies may 
be obtained from the characteristic equation 

/iW=xS 
tanh|V(2m+l)2-X 

5^0     V(2m+1)2-X 

tanh£V(2m+l)2+X 

V(2m+1)2+X 
where 

P/D 

HS   <4-112) 

(4.113) 

The function /i(X) is given in table 4.100 and 
plotted in figure 4.95. 

TABLE  4.100.—Characteristic  Functions for a SS-SS-SS-SS Square Plate Having a Mass  at 
the Center 

X /i(X) X /i(X) X /i(X) 

0  
0.2  
0.4_      

0 
.0289 
. 1197 
.2818 
.5382 
.9323 

1. 3698 
2. 6115 
4. 7415 
7. 4900 

11. 1529 
24. 3803 

CO 

2.0      
2.1  
2.2  

  CO 

-26.9900 
-13.9576 
-6. 5248 
-3.7910 
-1. 7000 
-. 5124 

-1. 2861 
3. 7948 
8. 5774 

22. 0731 
45. 3092 

124. 2640 
CO 

10  
10.1  
10.2  
10.5 - 

   CO 

-264.8749 
-129. 7239 

0 6 2.5  
3.0  
4.0                   -  -  _ 

-61. 1816 

0 8 11.0      -    -  - -33.3897 

1.0 12.0  -13. 6614 

1.2 5.0                       -  - 13.0  -7.6301 

1.4  
1.6  

6.0  
7.0  

14.0  
15.0  
16.0-     - 

-3.5239 
.6548 

1 7 8.0  
9.0 

6. 4283 

1 8 17.0  19. 7349 

1 9 9 5 17.5  42. 6325 

2.0 9.8                     -  -  - 17.8  113. 0580 

10.0  18.0  CO 
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The method of obtaining frequencies is 
shown in figure 4.95. For a given problem, the 
right-hand side of equation (4.112) is computed. 
This is represented by the broken line in 
figure 4.95. The intersections of this line with 
the curves _/i(X) yield the values of X on the 
abscissa. The frequency is then determined 
from equation (4.113). It is seen that /i(X) 
becomes infinite at values of X corresponding 
to the natural frequencies of the unloaded 
plate. Also, as the mass is increased, /i(X) 
always remains positive. Thus, for infinite 
mass M the higher frequencies are not zero. 

The doubly symmetric mode shapes are 
given by 

FIGURE 4.95.—Characteristic functions for a SS-SS- 
SS-SS square plate having a mass at the center. 

W(x,y)=T,{-l)n 
m = 0 

sinh(^V(2m+l)2-At-) 

V(2m+1)2-Xi cosh (| V(2m+l)2-xA 

sinh fa V(2m+1)2+X^ 

V(2m+1)2+X4 cosh (JV(2m+l)2+X,) 
sin [(2m + l)^]    (4.114) 

where    \t    are    the    associated    frequency 
parameters. 

Wah (ref. 4.151) and Amba-Rao (ref. 4.152) 
solved the problem by using a solution for the 
plate without an added mass (eq. (4.19)) and 
representing the concentrated force resulting 
from the point mass by a Dirac delta function. 
In reference 4.152, the frequencies for modes 
which do not have nodes at (£, r?) are determined 
from the characteristic equation 

^^(h+h) 
M+ pab 

(4.116) 

and an independently derived approximation 
for the square of the fundamental frequency 
of a massless plate having the point mass is 

ab 
\a2+b2) 
M (4.117) 

•   , Wlirf   ■   , nirri 
sin —- sin —r- 

(4.115) 

Frequency parameters for doubly symmetric 
modes of a square having the mass M=pa2/4 
at the center are listed in table 4.101. 

In reference 4.151, an approximate formula 
for the square of the fundamental frequency 
of the simply supported rectangle having a 
point mass M at the center is given as 

Thus the practical rule results that the funda- 
mental frequency of the plate-mass system in 
this case may be approximated by adding 
one-fourth of the mass of the plate to the 
central concentrated mass and calculating the 
frequency by equation (4.117) as if the plate 
itself were massless. 

Stokey and Zorowski (refs. 4.153 and 4.131) 
and Lee (ref. 4.154) developed a general 
method for determining the frequencies of a 
rectangular plate with arbitrary edge condi- 
tions and any number of arbitrarily located 
masses having both translational and rotational 
inertia.    Deflections are expressed in terms of 
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TABLE 4.101.—Frequency Parameters wa%/p/D 
for a SS-SS-SS-SS Square Plate Having a 
Point Mass M=pa2/4 at the Center 

Mode No. 
Number of terms in eq. (4.115)— 

1 2 3 4 

1  13.96 13.89 
80. 999 

13.81 
70. 511 

13.79 
2 68. 996 
3 162. 65 

the eigenfunctions of the plate without masses, 
and the equations of motion of the plate-mass 
system are determined from Lagrange's 
equation 

dtyb^qj   dg,    dq( 

where T is the kinetic energy of the plate- 
mass system, U is the potential energy of the 
system, q{ are the generalized coordinates cor- 
responding to the eigenfunctions used, and t 
is time. The resulting infinite set of ordinary 
differential equations in the qt are solved for 
the frequencies of the system in the usual 
manner. 

Numerical results were obtained for a simply 
supported aluminum plate 20 by 20 inches by 
0.091 inch with a concentrated mass having 
negligible rotational inertia at the center. By 
assuming a specific weight of 0.0955 pound per 
cubic inch for aluminum, this gives the weight 
of the plate as 3.48 pounds. Theoretical and 
experimental fundamental cyclic frequencies 
were obtained and are given in table 4.102. 
Only the first four eigenfunctions of the SS- 
SS-SS-SS plate were used in the calculation of 
the frequencies. 

Table 4.103 (ref. 4.153) lists the results for 
the effect of adding various numbers of cylin- 
drical masses having equal rotational inertias 
about all axes in the xy plane at different loca- 
tions (the axis of the cylinder is perpendicular 
to the plate). Moments of inertia listed are 
relative to axes lying in the middle plane of 
the plate. 

The case when an externally connected 
translational spring of stiffness k (force/length) 
is attached to the plate at the same location 
as that of a concentrated mass is studied in 

TABLE 4.102.—Fundamental Cyclic Frequencies 
for a SS-SS-SS-SS Square Plate With Vary- 
ing Point Mass at the Center 

Concentrated 
weight, lb 

Cyclic frequency, cps 

Theoretical Experimental 

2.   .     23.5 
18.0 
15. 1 
13.2 
11.9 
11.0 

23. 4 
4  17. 5 
6_     15. 0 
8  13. 2 
10._.     12. 0 
12  11.0 

reference 4.155. The characteristic equation 
for the simply supported square having a mass 
and a spring at its center is equation (4.112) 
with the right-hand side modified to become 

/i(X)=- 
2Pa2 

*(M-S) 
(4.119) 

for doubly symmetric modes. Again, values 
of/i(X) may be taken directly from table 4.100 
and figure 4.95. From equation (4.119) and 
figure 4.95 it is seen that for <a=~Jk/M the 
vibrations of the spring-mass system and the 
plate become uncoupled. As k—>», /i(X)—»0 
and the solution is that of a rigid point support 
at the center. 

Consider next the simply supported square 
plate having four equal masses symmetrically 
located along its diagonals as shown in figure 
4.96. For modes symmetric with respect to 
x=a/2 and antisymmetric with respect to 
y—a/2, the frequencies may be determined 
from the characteristic equation (ref. 4.150) 

ys(x)=xs 
.«• r tanhjV(2m+l)2-X 

V(2m+1)2-X 

7T n tanhJV(2m+l)2+X 

2Pa2 

V(2m+1)2+X     . 

(4.120) 

with X given in equation (4.113). The function 
/2(X) is given in table 4.104 and plotted in 
figure 4.97. 
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TABLE 4.103.—Fundamental Cyclic Frequencies for a SS-SS-SS-SS Square Plate Having Various 
Numbers and Locations of Added Masses 

Location 

Weight, lb /, lb in. sec2 

Cyclic frequency, cps 

£ V Theoretical Experimental 

2.75 0.021 25. 1 26.0 
a/4 a/2 2.75 .021 28.7 28.5 
a/4 
a/2 

a/4 
a/2 

2.70 
2.75 

.020 

.021 ) 
17.9 15.5 

a/4 
a/2 

a/2 
a/4 

2.70 
2.75 

.020 

.021 \ 
20. 1 18.0 

a/4 a/2 

FIGURE 4.96.—Simply supported plate with four sym- 
metrical masses. 

FIGURE 4.97.—Characteristic functions for a SS-SS- 
SS-SS square plate having four symmetrically 
located masses. 

TABLE 4.104.—Characteristic Functions for a SS-SS-SS-SS Square Plate Having 4 Symmetrically 
Located Masses 

X /.(A) X /i(X) X /i(X) 

0 0 
.2650 

1. 1836 
3. 3561 
9. 9930 

22. 5453 
61. 1634 

125. 1397 
CO 

5.0    _        CO 

-153. 5112 
-66. 4149 
-27. 5738 
-14. 4680 
-7. 1951 
-1. 5711 

2. 9591 
8. 9760 

26. 6930 
60. 2381 

159. 6640 
211. 6283 

CO 

13.0    CO 

1.0 5.1    ...  ._ 13.5  -71. 4574 
2.0  5.2  14.0  

15.0  
-37. 8496 

3.0 . 5.5.  _    -20. 3772 
4.0  6.0.    __    16.5  -11.7206 

4.5 - 7.0      18.0  -7. 0385 
4.8  8.5    -  .  -_    . 20.0  -2. 2286 

4.9  10.0 _ 23.0  6. 5164 
5.0  11.0 . 25.0  15. 8490 

12.0 . 26.5  29. 6535 

12.5 28.0  77. 1999 

12.8  
12.9- 

28.5             152. 1900 
29.0     CO 

13.0  
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The mode shapes corresponding to these frequencies are given by 

W{x,y)=T,- [ (-l)mcos 
(2m+iy .   (2m+l)wx -sin ] 

sinh 
7ryV(2m+l)2-X s.nhW(2m+l)-+X 

V(2 m- 
,,.   ,      , W(2m+1)2-X     ,-n:—,..,,,      , W(2m + 1)2+X -l)2—Xcosh—— j—-     V(2m+l)2-fXcosh —— —-  

(4.121) 

In references 4.156 and 4.157, Solecki gives 
the fundamental frequency of a square plate 
clamped all around and having a point mass at 
the center of twice its own mass. The fre- 
quency is found to be 

0.997T2 

a2 V? (4.122) 

The problem of the rectangular plate having 
three sides simply supported and the other 
clamped and having a mass M and a spring of 
stiffness k attached at a given point (fig. 4.98) 
was solved in reference 4.158. The method 
used was essentially that given in reference 
4.153 and discussed previously in this section. 
Ratios of the fundamental frequency of the 
system to that of the plate alone as functions 
of the stiffness ratio k/kc and the mass ratio 
M/pab are shown in figure 4.99 for the case of 
the square, and £=77=0.2a. The quantity 
kc may be thought of as a generalized spring 
constant corresponding to a uniformly loaded 
SS-SS-SS-C square plate of negligible mass; 
that is, kc=D/0.00279a2. 

FIGURE 4.98.—SS-SS-SS-C plate with a point mass 
and point spring. 

The problem of the SS-SS-SS-C square plate 
having two point masses, one at £i=?ji=0.2a 
and the other at £2='?2=0.4a, was also solved 
by Das and Navaratna (ref. 4.158). Frequency 
ratios are shown in figure 4.100. 

A method for determining frequencies of 
rectangular plates having added masses and 
elastic edge constraints is given in reference 
4.131. Theoretical and experimental fre- 
quencies are given for specific plates used as 
electronic chassis. 

For a specific case of a rectangular cantilever 
plate having added mass at the tip (x=a), 
see the discussion under parallelogram plates 
entitled "Other Supports and Conditions" 
(sec. 5.2). 
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FIGURE 4.99.—Ratio of the fundamental frequency of a 
SS-SS-SS-C square plate having a point mass and a 
spring at £=»;=0.2a to that of the plate alone. 
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FIGURE 4.100.—Ratio of the fundamental frequency of 
a SS-SS-SS-C square plate having point masses 
Mi and M2 at £i=iji=0.2a and f2='!2=0.4a, respec- 
tively, to that of the plate alone. 

4.6   INTERNAL CUTOUTS 

4.6.1    Circular Holes 

A rectangular plate either clamped or simply- 
supported on the outer edges and having a 
centrally located circular hole is shown in fig- 
ure 4.101. Takahashi (ref. 4.159) solved the 
problem in the case when all edges are clamped 
by using the Rayleigh-Ritz method and deflec- 
tion functions which are products of beam func- 
tions. Variation in fundamental frequency 
parameter as a function of R/a ratio is given in 
figure 4.102 for several a/b ratios and v=0.3. 
The frequency scale is amplified in figure 4.103 
and theoretical and experimental values are 
given for the case when a/b=0.5. 

Kumai (ref. 4.160) used the point-matching 
method to find the first three frequencies for 

'///////////////////////// 

FIGURE 4.101.—Rectangular plate having a centrally 
located circular hole. 
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FIGURE 4.102.—Frequency parameters uPa4plD for a 
rectangular plate clamped all around having a 
central circular hole. (After ref. 4.159) 

the previous problem when a/b=0.5. Theoret- 
ical and experimental cyclic frequencies were 
obtained for celluloid plates 2.75 by 2.75 
inches by 0.020 inch having various R/a ratios 
and are shown in figure 4.104. In table 4.105 
are listed the ratios of the frequencies of clamped 
square plates having central circular holes to 
those of plates without holes. 

The case when the outer boundary is simply 
supported was also studied in reference 4.160 
and cyclic frequency variations are shown in 
figure 4.105. Frequency ratios for this prob- 
lem are also shown in table 4.105. 

Joga-Rao and Pickett (ref. 4.37) used the 
Rayleigh-Ritz method with algebraic poly- 
nomials and a biharmonic singular function to 
obtain 

coa2Vp/#=5.6148 (4.123) 
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FIGURE 4.103.—Theoretical and experimental frequency 
parameters o>2a4p/D for a clamped rectangular plate 
having a central circular hole. (After ref. 4.159) 

for a SS-SS-SS-SS square plate having a 
central circular hole, R/a=0.5, and v=0.3. 
The function used was (see fig. 4.101) 

iFÄP)-(i-D(i-5) 

[A + A^ + At In -1 (4.124) 

Frequency parameters for various numbers 
and combinations of coefficients retained in 
equation (4.124) are listed in table 4.106. 
Because all results are upper bounds, the 
lowest value is the most accurate one. 

The  frequency   parameter  for   the   square 
plate  having  a  central  circular hole  in  the 

TABLE 4.105.—Frequency Ratios and Nodal 
Patterns jor Square Plates With Central 
Circular Holes 

Nodal pattern B 
a 

Frequency ratio 

Clamped edge SS edge 

0 
.2 
.4 

0 
.2 
.4 

0 
.2 
.4 

1.000 
.986 

1. 118 

1. 000 
.916 
.876 

1.000 
1.040 
1. 195 

0* a 
1. 000 
.985 
.965 

o 1.000 
.913 
.804 

© 1. 000 
1.024 
1.228 

case when the outer edge is completely free 
was given in reference 4.37 as 

coa2VP/I>=2.8963 (4.125) 

when R/a=0.5 and v=0.3. The Rayleigh- 
Ritz method and the function 

W(r,6) = (A1r
2+A2ri+A3+Air-2) sin 20 (4.126) 

(see fig. 4.101) was used. Frequency param- 
eters for various numbers and combinations of 
coefficients retained in equation (4.126) are 
listed in table 4.107. 

4.6.2    Other Cutouts 

The case of the completely free square plate 
(fig. 4.106) having a centrally located square 
hole was investigated in reference 4.37. The 
Rayleigh-Ritz method and functions given in 
equation (4.126) were used for c/a=0.5. Fre- 
quency parameters for various numbers and 
combinations of coefficients retained in equa- 

TABLE 4.106.—Frequency Parameters  wa2Vp/D for a SS-SS-SS-SS Square Plate Having a Central 
Circular Hole; v=0.S 

Coefficients retained Ai A2 As AtA2 A,A3 A1A2AZ 

coa2VpZD -- - -- - 6.743 24.21 20. 003 5. 955 5.629 5.615 
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FIGURE 4.104.—Cyclic frequencies for C-C-C-C 
square plate having a central circular hole. (After 
ref. 4.160) 
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FIGURE 4.105— Cyclic frequencies for SS-SS-SS-SS 
square plate having a central circular hole. (After 
ref. 4.160) 
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TABLE 4.107'.—Frequency Parameters coaVp/E) for a F-F-F-F Square Plate Having a Central 
Circular Hole 

Coefficients retained A, A, A3 A, AiA3 AiA2A3 AiA3At AiAzAzAi 

3. 189 9.478 7.617 25.45 3.026 2.914 2.962 2. 896 

TABLE 4.108.—Frequency Parameters coa2Vp/D for a F-F-F-F Square Plate Having a Central 
Square Hole; v=0.S 

Coefficients retained Ai A2 A3 A, AiA3 AiA2A3 AiA3A4 AiAiA3Ai 

3. 1 10.21 6.754 17. 13 2.931 2.845 2. 887 2.845 

FIGURE 4.106.- -F-F-F-F square plate with a central 
square hole. 

The tion   (4.126)   are listed  in  table 4.108. 
lowest value is the most accurate. 

Consider next the rectangular plate simply 
supported on all external edges and having a 
narrow slit of length c along one axis of sym- 
metry as shown in figure 4.107. This problem is 
studied in reference 4.136. One numerical 
result is given but it is highly inaccurate. The 
case when the slit is completely internal is 
formulated in reference 4.161, but no numerical 
results for vibration are given. 

•a/2- -a/2- 

i—x 

FIGURE 4.107.—SS-SS-SS-SS rectangular plate with a 
symmetrically located slit. 
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Parallelogram Plates 

Chapter 5 

Because no exact solutions to equation (1.4) 
expressed in skew coordinates by equation 
(1.39) are known to exist in variables separable 
form, no significant exact solutions exist for 
parallelogram plates. Even the case when all 
edges are simply supported requires an intricate 
solution, unlike the case of the rectangle (sec. 
4.1). Some solutions have been obtained by 
approximate methods for a few of the many 
possible combinations of boundary conditions. 
Particular emphasis exists in the literature for 
the case of the cantilevered parallelogram 
because of its importance as an aerodynamic 
lifting or stabilizing surface. 

5.1    SIMPLE EDGE CONDITIONS 
Results for plates with clamped (C), simply 

supported (SS), and free (F) edges are given 
in the following subsections. 

5.1.1    C-C-C-C 
Kaul and Cadambe (ref. 5.1) proposed a 

solution to the problem of the C-C-C-C 
parallelogram plate which used the Rayleigh- 
Ritz method and the products of characteristic 
beam functions; that is, 

W& TJ)=S T,Amn(t>m^)Uv)        (5.1) 

where 

■yja \     sin (kma/2) 

sinh{fcm[S-(a/2)]}\      2 mi 
sinh(Jfcmo/2)      yJC0S   2 

1 /cos{frJ£-(a/2)]} 
^V     cos(kma/2) 

cosh {&„[$—(ffl/2)] }\  . 2 mir 
cosh(kma/2)      JSm   2 

m=l,2, 3,...    (5.2) 

where kma is the mth positive root of the tran- 
scendental equation 

tan (kma/2)=(-l)m tanh (kma/2)      (5.3) 

The functions ^B(i?) are obtained by replacing 
£, a, and m in equation (5.2) by rj, b, and n, 
respectively. 

Results were obtained in reference 5.1 by 
using only one term of equation (5.1) and the 
Rayleigh method to obtain upper bounds for 
frequency parameters for the case of the rhom- 
bus (a=b). These results are given in table 5.1; 
the notation m/n is used to indicate the number 
of approximate half sine waves in the £/?; 
directions, respectively (at least for small 
values of a). Combined modes of the form 
(m/n±n/m) having nearly equal frequencies 
exist, as in the case of the square. (See sec. 
4.3.1.) 

Lower bounds were obtained in reference 5.1 
for some of the modes by use of the Kato- 

TABLE   5.1.—Frequency   Parameters   wa2Vp/D 
cos2 a jor a C-C-C-C Rhombic Plate 

Mode type 

1/1- - 
1/2  
2/2 
(1/3)"—(3/1)11" 
(1/3)+ (3/1).... 
3/2  
3/3 
(2/4)"- (4/2)---. 
(2/4)+ (4/2).... 

ucP^pID COS
2
 a for values of skew 

angle, a, deg, of— 

0 

36. 11 
73.74 

108. 85 
131. 77 
133. 20 
165. 92 
220.91 
242. 82 
245. 23 

15 

36.67 
74.76 

111. 43 
132. 90 
133. 71 
169. 56 
226. 76 
246. 91 
249. 67 

30 

38. 
77. 

118. 
135. 
138. 
179. 
242. 
258. 
261. 

15 
48 
19 
96 
03 
12 
04 
02 
40 

45 

40.08 
81.06 

126. 84 
140. 02 
142. 70 
191. 41 
261. 46 
272. 36 
276. 64 

161 
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TABLE 5.2.—Upper and Lower Bounds of coaVp/D cos2 a for a O-O-C-0 Rhombic Plate 

Mode type 

ci>02Vp/D COS2 a 

Skew angle, a, deg 
Lower bound Upper bound Mean value 

Maximum 
possible 

percentage 
deviation from 

mean value 

0   1/1 
1/2 
2/2 
1/1 
1/2 
1/1 
1/1 

35. 333 
71. 768 

104. 988 
34. 690 
63. 686 
32. 959 
30. 638 

36. 109 
73. 737 

108. 850 
36. 666 
74. 759 
38. 147 
40. 082 

35. 721 
72. 752 

106. 919 
35. 678 
69. 222 
35.55 
35.36 

1.07 

15   

1.33 
1.77 
2. 69 

30  _ 
7.41 
6. 80 

45   11. 36 

TABLE 5.3.—-Fundamental Frequency Parameters uaVp/D cos2 a for a  C-O-C-C Parallelogram 
Plate 

a 
b 

Source 
uo2Vp/.D cos2 a for values of skew angle, a, deg, of— 

15 20 30 35 45 60 

1 Ref. 5.5 35. 636 
35. 625 
24. 484 

35. 376 34. 624 
34. 788 
24. 196 

34. 172 
Ref. 5.2     32. 795 30. 323 

0.5-  Ref. 5.5  24. 388 24. 096 

Temple method. These are given in table 5.2 
along with a mean value of frequency parameter 
determined from the lower and upper bounds 
and a computation of the maximum possible 
error which can arise from using the mean 
value. 

It is clear from table 5.2 that the accuracies 
of the solutions decrease as (1) the mode 
number increases and (2) the skew angle 
increases. 

Further results for this problem were obtained 
by Hamada (refs. 5.2 and 5.3) who used the 
method of Trefftz (ref. 5.4) and deflection 
functions 

W(£,?7)=S ZJ( ^4mrecos—^cos 
n-Kt) 

.  7-, mir?   .   men .   ,-,      .    m:r£       nirri 
+Bmn cos —-— sin -j- + Cmn sin —-— cos —r~ 

a o ab 

+Z?mBsin-^sin-j-')    (5.4) 

and by Hasegawa (ref. 5.5) who used the 
Rayleigh-Kitz method and deflection functions 
(see fig. 5.1) 

W(i, v)=ie-(a/2YY [?-(cV2)T(Ao 

+Au&+A201
2+A02y

2+A31?v 

+Al&+A*?nr)   (5.5) 

These results are summarized in table 5.3 for 
a/b=l and a/b=0.5. The problem is also 
discussed in reference 5.6. 

In references 5.2 and 5.3, experimental results 
for the rhombic plate were also given. Mild 
steel plates with a=&=2.36 inches and h=0.035 
inch were used. Figure 5.2 shows the ratio of 
the frequency of the rhombic plate to that of 
the square as a function of the skew angle. 
The curve shown is from the theoretical results. 
Plotted points are experimental data. 

Conway and Farnham  (ref.  5.7)  analyzed 
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TABLE 5.4.—Frequency Parameters for a C-C-C-CRhombic Plate 

163 

Ö, dee  _ -_. 45 40 37.5 35 30 27.5 25 22.5 20 15 

U&TJP/D  18.00 21.70 24. 05 26.90 34.66 40.03 47.05 56.02 67.91 107. 27 

\\\\\\\\\\\\\\\\\\\\\\\\\\Vs 

FIGURE 5.1.—C-C-C-C parallelogram plate. 

the case of the rhombus by the point-matching 
method. In terms of the coordinate system 
shown in figure 5.3, the deflection functions 

W(r,$)= S [AnJn(kr)+BJn(kr)]cosnd   (5.6) 
»=0,4,8 

P     2 

i 

' 

o Expe iment 

I ) 

.»-"■"""f t 

30° 
a 

60° 

FIGURE 5.2.—Ratio of the frequency of a C-C-C-C 
rhombic plate to that of a square. (After ref. 5.2) 

which exactly satisfy the differential equation 
(1.4) were taken. Boundary conditions of 
w=dw/dr=0 at 0=0°, 30°, 60°, and 90° were 
matched, thus giving an eighth-order charac- 
teristic determinant. Frequency parameters for 
various values of ß are listed in table 5.4. 

FIGURE 5.3.—C-C-C-C rhombic plate. 

TABLE   5.5.—Frequency   Parameters   wa2Vp/D 
cos2 a for a C-C-C-SS Rhombic Plate 

Mode type 

1/1. 
1/2. 
2/1. 
2/2. 
1/3. 
3/1. 
2/3 
3/2 
3/3 

wo2Vp/fl cos2 a for values of 
skew angle, a, deg, of— 

31.95 
63.66 
71.43 

101. 26 
116. 97 
130. 84 
152. 75 
160. 00 
209. 97 

15 

32.54 
64. 76 
72.40 

103. 83 
118. 29 
132. 03 
156. 50 
163. 51 
215. 82 

30 

34.09 
67.68 
75. 04 

110. 58 
121. 81 
135. 11 
166. 32 
172. 75 
231. 06 

45 

36. 11 
71.47 
78.46 

119. 18 
126r 47 
139. 25 
178. 87 
184. 62 
250. 37 
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TABLE 5.6.—Upper and Lower Bounds of coa2Vp/D cos2 ajor a C-C-C-SS Rhombic Plate 

Mode type 

ua?4pjD cos2 a 

Skew angle, a, deg 

Lower bound Upper bound Mean value 

Maximum 
possible 

percentage 
deviation from 

mean value 

0__ -  1/1 
1/2 
1/1 
1/2 
1/1 
1/1 

31. 460 
62. 227 
31. 467 
60. 881 
30. 351 
29. 464 

31. 953 
63. 659 
32. 541 
64. 761 
34. 094 
36. 108 

31. 707 
62. 943 
32. 004 
62. 821 
32. 222 
32. 786 

0.77 

15 . . - _ 
1. 13 
1.65 

30    
2.99 
5.49 

45  9.20 

5.1.2   C-C-C-SS 

The problem of the C-C-C-SS parallelogram 
plate (fig. 5.4) is solved in reference 5.1 by 
using the Rayleigh method and a single term 
which is the product of beam functions ex- 
pressed in terms of the skew coordinates. (See 
preceding sec. 5.1.1.) Frequency parameters 
for the case a=b are given in table 5.5. Lower 
bounds from reference 5.1 are given in table 
5.6 along with a mean value of frequency pa- 
rameter determined from its lower and upper 
bounds. Also given is the maximum possible 
error which can arise from using the mean 
value. Accuracies of the solutions decrease as 
(1) the mode number increases and (2) the 
skew angle increases. 

\w\\w\\\\\\\\\\v\\\\\www\ —x,e 

FIGURE 5.4.—C-C-C-SS parallelogram plate. 

TABLE   5.7.—Frequency   Parameters   toa27p/D 
cos" a for a O-C-SS-SS Rhombic Plate 

Mode type 

1/1  
a/2)- (2/i).._. 
(1/2) + (2/1).... 
2/2 
(l/3)-(3/l) —- 
(1/3)+ (3/1)... . 
(2/3)-(3/2).... 
(2/3)+ (3/2)... 
3/3  

ü>a2Sp/D cos2 a for values of skew 
angle, a, deg, of— 

27. 19 
60.69 
61.29 
93. 13 

115. 06 
115. 31 
145. 98 
146. 81 
198. 55 

15 

27.84 
61.73 
62.40 
95.74 

116. 29 
116. 57 
149. 58 
150. 50 
204.43 

30 

29. 
64. 
65. 

102. 
119. 
119. 
159. 
160. 
219. 

52 
48 
33 
33 
60 
96 
00 
15 
69 

45 

31.68 
68.06 
69. 13 

111. 15 
124. 44 
124. 44 
171. 04 
172. 46 
238. 97 

5.1.3 C-C-SS-SS 
The problem of the C-C-SS-SS parallelo- 

gram plate (fig. 5.5) is solved in reference 5.1 
by using the Rayleigh method and a single 
term which is the product of beam functions 
expressed in terms of skew coordinates. (See 
sec. 5.1.1.) Frequency parameters for the case 
a=b are given in table 5.7. Lower bounds 
from reference 5.1 are given in table 5.8 along 
with a mean value of frequency parameter 
determined from its lower and upper bounds. 
Also given is the maximum possible error that 
can arise from using the mean value.   Accu- 
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TABLE 5.8.—Upper and Lower Bounds oj wa2Vp/D cos2 ajor a C-Ö-SS-SS Rhombic Plate 

Mode type 

M02Vp/.D COS2 a 

Skew angle, a, deg 

Lower bound Upper bound Mean value 

Maximum 
possible 

percentage 
deviation from 

mean value 

0   . . 1/1 
(1/2)-(2/1) 

1/1 
1/1 

26. 225 
59. 407 
24. 913 
21.450 

27. 195 
60. 690 
27. 838 
29. 523 

26. 710 
60. 048 
26. 375 
25. 487 

1. 78 

15   
1.06 
5. 25 

30 -  13. 67 

FIGURE 5.5.—C-C-SS-SS parallelogram plate. 

racies of the solutions decrease as (1) the mode 
number increases and (2) the skew angle 
increases. 

5.1.4   SS-SS-SS-SS 
Tsydzik (ref. 5.8) solved the problem of the 

SS-SS-SS-SS parallelogram plate (fig. 5.6) by 
using the perturbation method. Equation (1.4) 
can be expressed as 

VW-\W=dn(W)-**L*<W) + *I*<W)-*AI>*<W) 

(5.7) 

where e=tan a, \=u2p/D, W=W(%,rj), 

T _« ÖW 4-2ÖW 

£3=4 
bfrva 

(5.8) 

r _ÖW 

and € may be considered as a perturbation 
parameter. Solutions for W and X are then 
assumed in the form 

'* mn—"msTt''»iÄTt   ''mnT 

\      =\(0)4-/:Xa)+e2X(2) + 

,..} 
(5.9) 

Substituting equations  (5.9)  into  equation 
(5.7) and equating powers of e yield 

v   V' mn     *^mn ** mn     u 

VW(1> —X(0) Wa) = L,(Wi0) )+\m W (l) m/m 
mn 

(5.10) 

(5.11) 

+ \mW%n+^nWml     (5.12) 

Thus WZ and X™ are taken to be (0) 

*mn 

TI,,m      2    .   mw% .   nirq 

FIGURE 5.6.—SS-SS-SS-SS parallelogram plate. >-(£*)■ 
(5.13) 
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TABLE 5.9.—Frequency Parameters, Nodal Patterns, and Mode Shape Coefficients for a SS-SS-SS-SS 
Rhombic Plate; tan a=0.1 

Mode. 2(a) 2(6) 

2V/>/2>- 19.87 49.27 49.27 78.67 

Nodal pattern. 
>*_ 

Amplitude coefficients. 4,t= 1. 00000 
422=-. 00963 
Au= -. 00058 
426=-. 00019 

442=-. 00058 
444=-. 00009 
446=-. 00004 
4M=-. 00019 
Au= -.00004 
4»6=-. 00001 

4,2=1.00000 

421 = 0 
423=-. 09020 
425=-. 00126 
44l=. 00219 
443=-. 00173 
^45=-. 00025 
^61=. 00028 

4W=—. 00033 
4«=-. 00007 

An= 1.00000 
4,2=0 
4,4=. 00219 
4W=. 00028 
AB2=—. 09020 
434=-. 00173 
436=-. 00033 
452=-. 00126 
4M=-. 00025 
458=-. 00007 

422=1.00000 
4,,=. 03850 
4,3=. 11540 
4,5=. 00269 
43i=. 11540 
An= — . 02880 
435=-. 00274 
46i = . 00269 
468=-. 00274 
455=-. 00048 

and the solution to equation (5.11) is assumed to 
be 

W»=±±Ajr»       p*m,a*n    (5.14) 

This is substituted in equation (5.11) to yield 
APq and X^", and the procedure is continued. 

Results for the first three independent modes 
of a rhombus (a=b) are given in reference 5.8 
for e=tan a=0.1. Frequency parameters and 
mode shapes for this plate are given in table 
5.9. Fundamental frequencies «n may be ob- 
tained for other skew angles a and other a/b 
ratios from the curves of figure 5.7, where 

$„= unab 
2TT 

ö=- COS a 
a 

(5.15) 

Seth (ref. 5.9) gave an exact solution for the 
parallelogram bounded by the sides x=0, x=a, 
y=xl^S, and y=(a;/V3) + (2a/V3) as shown in 
figure 5.8.    Frequencies are given by 

4as (m
2+mn+n2) V? m, 71=1, 2,., 

(5.16) 

FIGURE 5.7.—Fundamental frequency parameters *,,= 
uiio6Vp/2)/27r as a function of skew angle a and 
aspect ratio parameter (b/a) cos a for a SS-SS-SS- 
SS parallelogram plate. 
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and the mode shapes by 

„,   .     .    .  .   (m—ri)TX      (m+n)ir^y 
Wmn(x, y)=2 sin *—-^— cos * ^-^ 

_ .   (2m+n)TX      rnrj&y 
—2 sm - !—-— cos —y—ä- 

a a 

+2 sin- !—-—cos y—^-   (5.17) 
a a 

Conway and Farnham (ref. 5.7) solved the 
problem by using the point-matching method. 

FIGURE 5.9.—SS-SS-SS-SS rhombic plate. 

Fundamental frequencies for the rhombus (fig. 
5.9) were derived by choosing a solution for the 
bending moment M in the form 

M=   X)    AnJiikr) cos qd 
71=1,3,... 

where ([=nir/ß and Mis defined by 

M^M£K=DV2w 

(5.18) 

(5.19) 

The function in equation (5.18) satisfies exactly 
the differential equation (eq. (1.4)) and the 
boundary conditions along the edges 6=±ß. 
Symmetry conditions require that the trans- 
verse shear Qx be zero along the line x=c. 
Satisfying this boundary condition at N discrete 
points along x=c in the interval 0<y<c tan 9 
results in an N-bj-N characteristic determinant 
for frequencies. Frequency parameters ob- 
tained by using various numbers of points are 
given in table 5.10. 

In reference 5.7 the case of the general 
parallelogram (fig. 5.6) was also studied. In 
this case the functions 

M=    S    4.J,(*r) sin g0 (5.20) 
«=1,2,... 

FIGURE 5.8.-SS-SS-SS-SS parallelogram plate having      were chosen and a characteristic determinant 
an exact solution. was derived by satisfying symmetry conditions 
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along the diagonal AC having the length c. 
Pointwise symmetry conditions employed were 

W|r=< /3=W|r=5c/3 

w\r=M3=w\r-*c/3 

low 
r be 

low 
r=c/3_    r be 

low 
r be 

low 
r=2C/3~    r be 

r=6e/3 

r = 4c/3 

(5.21) 

Solutions of the resulting fourth-order character- 
istic determinants are given in table 5.11 for 
various angles ß and a/6 ratios. 

Accuracy of the results can be estimated by 
comparing values for /3=90° with the known 
exact ones (section entitled "All Sides SS" under 
"Rectangular Plates" (4.1)) and the parameters 
for a/b=l with those of table 5.10. 

TABLE 5.10.—Frequency Parameters wc^p/D/or 
SS-SS-SS-SS Rhombic Plates 

ß, deg 

bK?4pii> for determinant of 
size— 

3 by 3 6 by 6 

10  116. 92 
58.06 
35.87 
24 95 
18.65 
14 62 
11.87 
9.872 

15  58. 14 
20...  
25_.....  
30  18. 654 
35 __  
40   
45  

TABLE   5.11.—Frequency  Parameters  «b2Vp/D 
jor SS-SS-SS-SS Parallelogram Plates 

ft deg 
wi)2Vp/ö for values of a/b of— 

1 1.5 2 

90  .    . . 19.8 
20.4 
23.7 
31.9 

14.2 
14.3 
16. 1 
21.2 

11. 97 
75  12.0 
60   13.3 
45  16. 6 

Analogies which permit one to obtain fre- 
quencies for polygonal plates simply supported 
all around from the problems of either (a) 
membrane vibration or (6) plate buckling due 
to hydrostatic pressure are discussed in the 
chapter entitled "Plates of Other Shapes" (ch. 8). 

5.1.5   C-F-F-F 
Barton (ref. 5.10) obtained the first compre- 

hensive set of results for the problem of C-F- 
F-F parallelograms (fig. 5.10) by using the 
Rayleigh-Ritz method with deflection functions 
which are products of characteristic beam 
functions; that is, 

W(^r,)=±±Amn<t>M)Uri)    (5.22) 

where 

6m=cosh cos— ^ a a 

amy sinh em£ •sin 
a ) 

=V3(1—2n/6) 

^re=cosh^ + cos^ 

— an(s\ sinh^ + sin^) n>2   (5.23) 

and where em, 
table 4.46. 

e», am, and a„ are found from 

FIGURE 5.10.—C-F-F-F parallelogram plate. 
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45 
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/< 
S" 

• • • 

,; 
• 

^* ■' L 2? ^ 

m •^ <"» 
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• ^J • 
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_*•■' 

<S? 
o --4--' 
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i 

■"■"' ^r? 
—i"W /? 
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0 
c 

i 
"■x 

^ 
V 
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Angle of Skew (Degrees) 

60 

FIGURE 5.11.—Experimental and theoretical frequency 
parameters WO

2
VPÄD for a C-F-F-F parallelogram; 

a/b=l; material, 24 S-T aluminum alloy. 

FIGURE 5.12.—Nodal patterns on a C-F-F-F parallelogram; «=30°; material, 24 S-T aluminum alloy. 

308-337 O—70 12 
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Kesults were computed by using 18 terms in 
equation (5.22), and frequency parameters, 
nodal lines, and mode shape amplitude coeffi- 
cients are given in table 5.12 for a=15°, 30°, 
and 45°, a/b=l, and »=0.3. 

Experimental frequency parameters for the 
first five modes were also determined in refer- 
ences 5.10, 5.11, and 5.12. Test results and 
corrected results are shown and compared with 
theoretical results in table 5.13. Corrected 
results include an approximation of the effect 
of air-mass in order to estimate the equivalent 
frequency in a vacuum. (See chapter entitled 
"Other Considerations" (ch. 12).) A plot of 
the foregoing results, including approximate 
nodal patterns, is shown in figure 5.11.    Photo- 

graphs of nodal patterns obtained when a=30° 
are shown in figure 5.12. 

Claassen (refs. 5.13 and 5.14) extended the 
work of reference 5.10 by using the same ana- 
lytical procedure. A detailed Fortran pro- 
gram statement listing for the procedure is also 
given in reference 5.13. The first nine fre- 
quency parameters for a=0°, 5°, 10°, . . ., 
35°, and a/b=l are given in table 5.14. In 
reference 5.13, extensive frequency and node 
line data are given in the vicinity of "transition 
curves"; i.e., the frequencies at which the basic 
form of the nodal pattern changes into another. 
This phenomenon is discussed in the section on 
rectangular plates entitled "All Sides Clamped" 
(4.3.1).   In this case the mode shapes vary 

TABLE 5.12.—Frequency Parameters, Nodal Lines, and Amplitude Coefficients for O-F-F-F 
Parallelograms; &fb=l; v=0.S 

a, deg- 

Mode. 

;
2
VP/JD- 

Nodal lines. 

Amplitude coefficients 
An   
A12 --- 
Ai3  

An   
Au --  
Aa  
An  
A 23  

A2i  
Ats  
•431   

•432    
A33   
Au--.-  
An  
Ai2  
Ai3   
4 51 -■ 

15 

3.601 

1. 0000 
-. 1134 
-. 0041 
-. 0007 
-. 0006 
-. 0102 
-. 0223 
-. 0016 
-. 0015 
-. 0006 
-. 0001 
-. 0011 
-. 0006 
-. 0003 
-. 0005 
-. 0007 
-. 0001 

.0001 

8.872 

0. 1162 
1. 0000 
-. 0721 
-. 0145 
-. 0049 
.0892 
. 1035 

-. 0384 
.0057 

-. 0035 
-. 0043 
-. 0081 
-. 0074 
-. 0005 
-. 0034 
.0032 

-. 0020 
-. 0010 

30 

3.961 

1. 0000 
-. 2288 
.0089 

-. 0006 
.0001 

-. 0339 
-. 0399 
.0074 

-. 0028 
.0002 

-. 0006 
.0010 
.0017 

-. 0008 
-. 0014 
-. 0010 
.0002 
.0002 

10.190 

0. 2387 
1. 0000 
-. 1447 
-. 0179 
-. 0093 

. 1785 

.0489 
-. 0708 
.0103 

-. 0049 
-.0138 
-. 0254 
-. 0078 
.0024 
.0057 
.0020 

-. 0009 
-. 0026 

45 

4.824 

1. 0000 
-. 3302 
.023i 
.0013 
.0010 

-. 0704 
-. 0488 
.0197 

-. 0038 
.0007 

-. 0003 
.0082 

.0036 
-. 0021 
-. 0021 
-. 0008 
-. 0007 
.0005 

13.75 

0. 3534 
1. 0000 
-. 2173 
-. 0237 
-.0116 
.2685 

-. 0411 
-. 0970 
.0203 

-. 0040 
-. 0337 
-. 0511 
.0027 
.0074 
.0064 
.0046 
.0039 

-. 0044 
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with skew angle a as well as with the a/b ratio, 
and the "transition points" of section 4.3.1 
consequently hecome "transition curves" in a 
three-dimensional plot. 

Plass, Gaines, and Newsom (refs. 5.15 and 
5.16) used a variational method (see the section 
for C-F-F-F cantilever rectangular plates 
(4.3.12)) to obtain the first three frequencies 
and mode shapes for the case when a=45° and 
a=b. Theoretical and experimental frequency 
parameters are listed in table 5.15. Mode shapes 
are shown in figure 5.13. Experimental results 
are taken from reference 5.12. 

Hall, Pinckney, and Tulloch (ref. 5.17 used) 
statically determined influence functions to 
obtain frequencies and mode shapes for three 
cantilevered skew plates. The plates were 
given six degrees of freedom—three points 
along 97=6/2 were allowed transverse displace- 
ment, and the corresponding three stations 
were allowed to rotate about an axis normal 
to the ^-direction. The first three cyclic 
frequencies for a=30°, 45°, and 60° are given 
in table 5.16 for aluminum-alloy plates 0.613 
inch thick (p=0.0001561 lb-sec2/in.3) having 
varying dimensions as indicated.    The experi- 

ments were conducted with accelerometers, 
each with a mass of 0.0005135 lb-sec2/in. Five 
accelerometers were equally spaced along the 
leading edge (J?=0) and five along the trailing 
edge (r)=b). The effects of the accelerometer 
masses were included in the theoretical cal- 
culations. In figure 5.14 are shown the mode 
shapes corresponding to the frequencies of 
table 5.16. The deflections W* are defined as 
the mean of the leading and trailing edge 
deflections measured at points intersecting 
^=constant (see fig. 5.10); the angles 6 refer 
to rotations about axes parallel to the ^-axis. 
The quantity 6 is defined as the difference 
between the deflections at the leading and trail- 
ing edges divided by b. 

Extensive numerical results for frequencies 
and mode shapes are obtained and presented in 
reference 5.18 by use of the same theoretical 
procedure as that in reference 5.17. Sweep 
angles are taken as 0°, 15°, 30°, 37H°, 45°, 50°, 
55°, and 60°. Ratios c/a of 1.5, 2.0, 2.5, 3.0, 
4.0, 5.0, 6.0, 10.0, and 20.0 were used. Ratios 
EI/GJ of Yi, 1, and \Yi were taken, where 
El and OJ are the flexural and torsional moduli 
of rigidity, respectively, in a plane normal to 

TABLE 5.13.—Experimental and Theoretical Frequency Parameters «a2vVD for a C-F-F-F 
Parallelogram; &[b=l; Material, 24 S-T Aluminum Alloy 

Mode 

wasyp/I) 

a, deg 

Test results 
Corrected 

test results 
Theoretical 

results 
Uncorrected 

percent 
difference 

Corrected 
percent 

difference 

15  1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 

3.38 
8.63 

21.49 
26.04 
33.01 
3.82 
9.23 

24.51 
25.54 
40.64 
4.26 

11.07 
26.52 
30. 13 
50. 19 

3.44 
8.68 

3.60 
8.87 

6.2 
2.7 

4.6 
2. 1 

30  3.88 
9.33 

3.96 
10. 19 

3.6 
9.4 

2.0 
8.4 

45....   4.33 
11.21 

4.82 
13.75 

11.8 
19.5 

10. 3 
18.5 
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the swept centerline (or normal to the ^axis). 
Cyclic frequency parameters fa^mo/EI cos a, 
where m0 is mass (slugs) per unit length meas- 
ured along the ^-direction, are shown in figure 
5.15. Translational and rotational mode shape 
deflections are listed in reference 5.18 for 12 
values of ^ and the sweep angle, c/a, and 
EIjQJ variations just described. The volume of 
these results (47 pages of tables) is too great 
to be included here. 

Craig, Plass, and Caughfield (ref. 5.19) 
measured the first four frequencies and mode 
shapes on aluminum rhombic plates having 
sweep angles a of 15°, 30°, 45°, and 60°. Cyclic 
frequencies, nodal patterns, and mode shapes 
for these four configurations are shown in fig- 
ures 5.16 to 5.19, respectively. An estimate 
of the accuracy of the nodal patterns can be 
obtained from figure 4.47. 

TABLE 5.14.—Frequency Parameters wa2Vp/B cos2 a for a C-F-F-F Parallelogram •a/b=i ; v=0.S 

aWp/X> cos2 a for mode— 

l 2 3 4 5 6 7 8 9 

0           __  - - 3.48 
3.46 
3.42 
3.36 
3.25 
3. 12 
2.96 
2.76 

8.52 
8.48 
8.36 
8.16 
7.91 
7.60 
7.24 
6.87 

21.3 
21.3 
21. 1 
20.8 
20.4 
19.8 
19. 1 
17.8 

27.2 
26.8 
26.0 
24.7 
23. 1 
21.4 
19.6 
18.4 

31. 1 
31.2 
31.6 
31.9 
32. 1 
32. 1 
31.8 
31.2 

54.3 
53.6 
51.6 
48.8 
45.6 
42. 1 
38.7 
35.3 

61.4 
61.3 
60.9 
60.3 
59.2 
57.7 
55.2 
51.2 

64.3 
64.3 
64.0 
63.0 
61.4 
59.2 
56.3 
53.4 

71.3 

5  - - 71.6 

10  -    - 72.3 

15       .      -  73.4 

20        74.0 

25            70.5 

30             --- 66.5 

35        --- 63.7 

TABLE 5.16.—Theoretical and Experimental Cyclic Frequencies far C-F-F-F Parallelogram Plates; 
Material, 65 S Aluminum Alloy 

a, deg- 

c, in. 

/i, cps. 

h, cps- 

U, cps- 

Theory. 
Test.... 

Test/theory. 

Theory- 
Test.-. 

Test/theory. 

Theory. 
Test.— 

Test/theory. 

30 

29.00 

10.00 

25.38 
24.2 

0.954 

114.0 
116 

1.02 

156.8 
162 

1.03 

45 

36.55 

10.00 

17.56 
16.5 

0.940 

85.59 
83.3 

0.970 

113.8 
127.6 

1.12 

60 

28.70 

10.00 

37. 79 
32.6 

0.853 

126.8 
122 

0.962 

224.0 
227 

1.01 
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TABLE 5.15.—Frequency Parameters waVp/D 
for a G-F-F-F Parallelogram Plate; a=45°; 
a=b; v=0.S 

Mode 
UO

2
VP/5 

Theoretical Experimental 

1...  4.12 
11.26 
27.72 

4.26 
2  11.07 
3..  26.52 

' .+ 0.161 

FIRST MODE 

^Experimental Node Line 

SECOND MODE 

* Theoretical Node Line 

-0.263\ 

"Theoretical Node Line 

THIRD MODE 

"Experimental Node Line 

FIGURE 5.13.—Mode shapes for a C-F-F-F parallelo- 
gram plate; a=45°; a=&; e=0.3. (After refs. 5.15 
and 5.16) 

Span Posillon f/i 

1.6 

\Z 
D 

0.12 
D 

""—- Rotation B D 

0.08 D               S 

*     0.4 0.04 

1 
£ 

1  o 0 

Displacement W* 

«-0.4 

-0.8 

-0.04 

 Th« •oretical 
-1.2 -0.12 a   } Eiptrimental 

FIGURE 5.14.—Theoretical and experimental mode 
shapes for G-F-F-F parallelogram plates; material, 
65 S aluminum alloy, (a) Fundamental mode; 
a =30°. (b) First overtone mode; a =30°. (c) 
Second overtone mode; «=30°. (d) Fundamental 
mode; <*=45°. (e) First overtone mode; a=45°. 
(/) Second overtone mode; «=45°. (g) Fundamen- 
tal mode; <*=60°. (h) First overtone mode; <*=60°. 
(i) Second overtone mode; <*=60°. 
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(-05 FIGUEB 5.16.-—Experimentally determined cyclic fre- 
quencies, nodal patterns, and mode shapes for a 
C-F-F-F rhombic plate; a=15°; material, 6061- 
T6 aluminum alloy Y% inch thick, (a) Experimental 
node lines and data points. (6) Mode 1; /i=76.6 
cps. (c) Mode 2;/2=179 cps. (d) Mode 3;/3=469 
cps.    (e) Mode 4;/,=566 cps. 
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FIGTJEE 5.17.—Experimentally determined cyclic fre- 
quencies, nodal patterns, and mode shapes for a 
C-F-F-F rhombic plate; «=30°; material, 6061-T6 
aluminum alloy Y% inch thick, (a) Experimental 
node lines and data points. (6) Mode 1; /i=83.5 cps. 
(c) Mode 2;/2=195 cps. (d) Mode 3; /3=521 cps. 
(e) Mode4;/4=556cps. 
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FIGURE 5.18.—Experimentally determined cyclic fre- 
quencies, nodal patterns, and mode shapes for a 
C-F-F-F rhombic plate; a=45°; material, 6061-T6 
aluminum alloy y8 inch thick, (a) Experimental 
node lines and data points. (6) Mode 1; ^ = 97.4 
cps. (c) Mode 2;/2=231 cps. (d) Mode 3;/3=560 
cps.    (e) Mode 4; /4=669 cps. 
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CLAMPED EDGE 

/, Tjr-0.3     ,»7=-O.I5    r)=0   i)=+O.I5   i7=+0.3 

FIGURE 5.19.—Experimentally determined cyclic frequencies, nodal patterns, and mode shapes for a C-F-F-F 
rhombic plate; a=60"; material, 6061-T6 aluminum alloy Y% inch thick, (a) Experimental node lines and 
data points,    (b) Mode 1; /i=97 cps.    (c) Mode 2; /2=305 cps.    (d) Mode 3; /3=570 cps. 
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Hanson   and   Tuovila   (ref.   5.20)   used   a      5.1.6   F-F-F-F 
method "called the 1-g method" to determine Very  little  information  is  known  on   the 
experimental mode shapes.    In this method the      problem of the F-F-F-F parallelogram plate 
plate is  sprinkled  with sand,  and  the sand       (see fig. 5.24).    Waller (ref. 5.21) obtained the 
particles themselves are used as accelerometers.      nodal patterns shown in figure 5.25. 
At any given frequency, particles having equal 
accelerations will also have equal amplitudes.       5.2   OTHER SUPPORTS AND CONDITIONS 
An   acceleration   corresponding   to   that   of N0 results  are available for parallelogram 
gravity occurs when a particle placed on a plates having elastic or discontinuous edge 
vibrating plate just begins to rise from the conditions, or being supported at discrete 
surface. In this way "1-g lines" of constant points. Some results for plates with added 
amplitude may be located, in addition to the mass were discussed earlier for the cantilever 
nodal lines. Varying the magnitude of the (sec. 5.1.5) as obtained in reference 5.17. The 
exciting force allows one to find other 1-g lines.      accelerometer masses added there were small 

Experimental results were obtained on four      and well distributed and so had small effect 
plate configurations made of 0.041-inch-thick      upon the problem, 
magnesium having a weight density of 0.064 
lb/in.3   The plate dimensions in terms of figure 
5.10 are given in table 5.17. TABLE   5.17.—Dimensions   of 4  Experimental 

Frequencies and mode shapes for the first Plate Specimens 
three modes of each plate are shown in figures 
5.20 to 5.23 and the deflections are given in 
tables 5.18 to 5.21, respectively. In these 
figures the heavy solid lines indicate the posi- 
tion of the plate at rest. The broken lines 
indicate the deflected shape in its mode of 
vibration. Vertical lines measure the relative 
amplitudes of points on the plate surface. 

Plate no. s, in. 6, in. a, deg 

1           5.52 
4.80 
3.90 
2.77 

2.05 
2.28 
2.93 
4. 10 

15 
2  30 
3        45 
4  60 

TABLE 5.18.— Deflections for First 8 Modes of Plate 1 

Normalized deflection at £/a of— 
Mode nib 

0.1 0.3 0.5 0.7 0.9 1.0 

0.00 0.039 0. 160 0.316 0.547 0.800 
.25 .043 .175 .338 .569 .817 0.952 

1» .50 .048 .185 .360 .569 .840 .966 
.75 .053 .200 .383 .608 .856 .983 

1.00 .056 .225 .406 .631 .875 1.000 

.00 -.088 -.361 -.579 -.485 -.207 -.055 

.25 -.080 -.289 -.407 -.297 -.008 . 117 
2" .50 -.069 -.210 -.260 -. 106 . 180 .310 

.75 -.044 -.135 -. 120 . 100 .386 .524 
1.00 -.014 -.062 .014 .331 .758 1.000 

.00 .099 . 106 . 162 .401 .788 1.000 

.25 .021 -.035 -.021 . 176 .472 .654 
3« .50 -.042 -. 190 -.225 -.085 .190 .352 

.75 -.099 -.345 -.451 -.338 -.099 .085 
1.00 -. 155 -.556 -.831 -.746 -.373 -.. 162 

>/j=36cps. °/3=238 cps. 
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TABLE 5.19.—Deflections for First 3 Modes of Plate 2 

185 

Mode nib 
Normalized deflection at {/a of— 

0.1 0.3 0.5 0.7 0.9 1.0 

0.00 0.011 0.052 0. 126 0.233 0.383 0.472 
.25 .015 .067 . 148 .267 .420 .509 

1» .50 .018 .080 . 170 .296 .461 .635 
.75 . 025, .098 . 195 .328 .518 .778 

1.00 .030 .118 .226 .370 .604 1.000 

.00 -.025 -.264 -.494 -.563 -.500 -.361 

.25 -.031 -.264 -.405 -.400 -.228 -.028 
2b .50 -.033 -.228 -.295 -.160 . 110 .300 

.75 -.028 -. 125 -.117 .147 .458 .630 
1.00 -.011 -.022 .111 .458 .818 1.000 

.00 .010 .028 .071 .361 .787 1.000 

.25 -.006 -.061 -. 123 . 150 .600 .830 
3° .50 -.019 -.232 -.335 -.110 .380 .613 

.75 -.074 -.445 -.600 -.380 .070 .355 
1.00 -. 168 -.677 -.910 -.658 -. 193 .097 

»/i=39 cps.       b/2=212 cps. °/3=272 cps. 

TABLE 5.20.—Deflections for First 3 Modes of Plate 3 

Mode n/b 
Normalized deflection at {/a of— 

0.1 0.3 0.5 0.7 0.9 1.0 

0.00 0.007 0.054 0. 124 0.210 0.350 0.467 
.25 .017 .070 .155 .259 .418 .557 

1» .50 .021 .091 .191 .313 .510 .673 
.75 .028 .117 .238 .395 .640 .810 

1.00 .039 . 159 .307 .500 .812 1.000 

.00 .007 .132 .578 .872 .904 .857 

.25 .021 .286 .625 .718 .668 .607 
2b .50 .046 .300 .471 .403 .014 -. 143 

.75 .050 . 179 .057 -.282 -.678 -.786 
1.00 -.036 -. 196 -.518 -.793 -.947 -1.000 

.00 .000 -.017 -.071 .063 .622 1.000 

.25 -.004 -.059 -. 185 -.029 .520 .840 
3« .50 -.008 -.201 -.374 -.200 .416 .735 

.75 -.050 -.470 -.676 -.412 .310 .681 
1.00 -.214 -1.000 -1. 000 -.504 .250 .651 

•/i=38 cps. 
308^337 a—7( 

b/2= 184 cps. 
 13 

0/3=263 cps. 
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TABLE 5.21.—Deflections for First 8 Modes of Plate 4 

Normalized deflection at £/a of— 
Mode nib 

0.1 0.3 0.5 0.7 0.9 1.0 

0.00 0.012 0.040 0.085 0. 164 0.286 0.380 
.25 .015 .058 . 116 .215 .376 .475 

1» .50 .022 .091 .171 .315 .510 .620 
.75 .040 . 135 .272 .458 .665 .800 

1.00 .062 .211 .400 .618 .830 1.000 

.00 -.008 -.039 -.156 -.383 -.495 -.515 

.25 -.016 -.078 -.258 -.433 -.445 -.390 
2b .50 -.022 -.133 -.312 -.328 -. 156 .047 

.75 -.034 -. 159 -.180 .019 .350 .515 
1.00 -.055 -.089 . 109 .484 .867 1.000 

.00 -.024 -. Ill -.347 -.606 -.667 -.650 

.25 -.045 -. 125 -.202 -.303 -.505 -.707 
3° .50 -.071 .000 .238 .216 -.252 -.666 

.75 .101 .545 .808 .657 -.162 -.656 
1.00 .465 .980 1.000 .657 -.353 -1.000 

»/1=47cps.       V2=207cps.       °/3=380cps. 

The case of a cantilevered parallelogram 
with an added mass at the tip is discussed in 
reference 5.22. An aluminum-alloy plate hav- 
ing dimensions a=30 inches, c=10 inches, 
h= Y% inch and having a total mass of 0.0468 
lb-sec2/in. is loaded by a mass at the tip 
(£=<z, r?=&/2, in terms of fig. 5.10) which has 
the following inertial properties: mass=0.0330 
lb-secVin., J.=6.483 lb-in.-sec2, 7^=0.1242 lb-in.- 
sec2. The mass moments of inertia Ie and 1$ 
are about axes in the \p- and ^-directions, re- 
spectively. These axes pass through £=a and 
r?=&/2. The first three theoretical frequencies 
for a=0°, 30°, 45°, and 60° are given in table 
5.22. In figure 5.26 are shown the nodal lines 
for   the  fundamental   and  second  modes   of 

vibration for «=30°, 45°,  and 60° with and 
without the tip mass. 

TABLE 5.22.—Cyclic Frequencies for a C-F- 
F-F Parallelogram Plate With Added Tip 
Mass; Material, 65 S Aluminum Alloy 

Mode 

Cyclic frequency, cps, for values of 
skew angle, a, deg, of— 

0 30 45 60 

1  11.33 12.40 
23.07 

114.9 

10.91 
27.39 

111. 1 

15.35 
2   40.83 
3   101.7 153.5 
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FIGURE 5.20.—First three mode shapes 
and frequencies for a C-F-F-F plate; 
a=15°; material, magnesium, (o) 
Mode 1; /i=36 cps. (6) Mode 2; 
fa= 205 cps.    (c) Mode 3; /3= 238 cps. 
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(a) (b) 

FIGURE 5.21.—First three mode shapes and frequencies 
for a C-F-F-F plate; a=30°; material, magnesium, 
(a) Model;/i=39cps. (b) Mode 2;/2=212 cps. (c) 
Mode 3;/3=272 cps. 
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(a) 

(c) 

FIGURE 5.22.—First three mode shapes and frequencies for a C-F-F-F plate; a=45°; 
material, magnesium, (a) Mode 1; /i=38 cps. (&) Mode 2; /2=184 cps. (c) Mode 3; 
/3=263 cps. 
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{a 

(c) 

FIGURE 5.23.—First three mode shapes and frequencies for a C-F-F-F plate; «=60°; material, magne- 
sium,    (o) Model ;/,=47cps.    (6) Mode 2: /ä=207 cps.    (c) Mode 3;/3=380 cps. 
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a=30° a =45° a =60° 

FIGURE 5.24.—F-F-F-F parallelogram plate. 

Fundamental 

First Overtone 

FIGURE 5.26.—Nodal lines for C-F-F-F parallelogram 
plates with and without tip mass; material. 65 S 
aluminum alloy. 

FIGURE 5.25.—Nodal patterns of F-F-F-F parallelo- 
gram plates. (After ref. 5.21) 
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Other Quadrilateral Plates 

Chapter 6 

6.1    TRAPEZOIDS 

6.1.1    All Edges Simply Supported 
The problem of the trapezoidal plate simply- 

supported all around (SS-SS-SS-SS) (see 
fig. 6.1) was solved by Klein (ref. 6.1) by using 
the collocation method for the case ax=^a2=a. 
A function 

W(x,y)=\ ^sin — -+^42sin— ' 
L Q>    . a 

+^sinMpOJ(cosgcofc^   (61) 

was used.    This function guarantees that—■ 
(1) The deflections are zero on all edges 
(2) The bending moment Mx is zero at 

(c,  0)   and  (c+a, 0). 
(3) The bending moment M„ is zero at some 

point in the region h/3Sx^2h/3 along the 
edges y=±x tan a 

(4) Symmetry exists about y=0 

The differential equation (eq. (1.4)) is satisfied 
at the three points along the line y=0 given by 
(x-c)/a= 1/3,1/2, 2/3. This leads to a third-order 
characteristic determinant for the frequencies, 
the elements of which are listed in reference 6.1. 

Fundamental frequencies for varying values 
of a and average width 6= (6i+62)/2 are shown 
in figures 6.2 and 6.3. 

FIGUEE 6.1.—SS-SS-SS-SS trapezoidal plate. 

FIGURE     6^2.—Fundamental    frequency    parameter 
-=o>b^p/Di where 5=(6l+62)/2)  against a for an 

TT2 

isosceles SS-SS-SS-SS trapezoidal plate. (After ref. 
6.1) 

A method of perturbing the solution for the 
rectangle simply supported all around in order 
to solve this problem is discussed in reference 
6.2. 

Eeipert (ref. 6.3) formulated a solution in 
terms of functions (eq. (1.37)) which satisfy 
the differential equation (eq. (1.4)) and the 
parallel edge boundary conditions exactly. 
Satisfaction of the remaining boundary con- 
ditions yielded a characteristic determinant 
for the frequencies. A first approximation 
yields the following formula for fundamental fre- 

193 
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'  0  / w 
w 

2 iA 

i 

s& 
i 

0.2 0.4     0.6 
b/a 

0.8 1.0 

FIGURE    6.3.- 
-    COWP/J, 

-Fundamental    frequency     parameter 

where  &=(6i+62)/2,   against  bja  for 
ir- 

an isosceles SS-SS-SS-SS trapezoidal plate. (After 
ref. 6.1) 

quency parameters of isosceles trapezoids («i= 
<X2=a): 

(6.2) tM !Vö=T2 
(-£+ctmaJ 

Numerical values for a=45° are given in table 
6.1 as determined from equation (6.2) and 
from a second approximation. 

6.1.2   Cantilever (C-F-F-F) 
The problem of the C-F-F-F trapezoidal 

plate is depicted in figure 6.4. Nagaraja 
(ref. 6.4) used the Rayleigh-Ritz method and 
the nonorthogonal right triangular coordinates 
shown in figure 6.5 to solve the problem in the 
special case when a2—0. The coordinates 
u, v are related  to  the x, y coordinates by: 

u= -V-cota x (6.3) 

TABLE 6.1.—Fundamental Frequency Parameters 
coaVp/D/or a SS-SS-SS-SS Isosceles Trape- 
zoidal Plate; 0.-45° 

&2 

1/8. 
1/4. 
3/8. 
1/2 

PID 

First approxi- 
mation 

10. 11 
10.96 
13.4 
19.7 

Second 
approximation 

10.09 
11. 177 
14. 311 
24.7 

FIGURE 6.4.—C-F-F-F trapezoidal plate. 

x,u 

FIGURE 6.5.—Right triangular coordinates. 

Using the chain rule of differentiation and 
substituting equation (6.3) into equation (1.32) 
yield the following expression for the strain 
energy of the plate (ref. 6.4): 

V= Dtan 
2V -"jjKsy 

+-(*■+* cot'«) ä^ä?- ■4v 
d2w d2w 
du2 bu i>v 



OTHER   QUADRILATERAL  PLATES 195 

V Ö W   "Ö IV 
—4 —s (v2 + cot2 a) <-s- >,   ^ 

Ul 0!T OU OV 

+ ^[2,2+(l-,)cot2«](^)2 

d2wdw 
'MOW

2
 bv +4r^^+4f2(ü2 + cot2a) d

2wdw 
i)v2 i>v 

d2w öw --2[2ü2+(l+J.)cot2a]>>   .   , u2 v       ' J öw ö« ö» 

+|3[2«2-(l-,)cot^](^J^d^d«    (6.4) 

The kinetic energy of translation is 

2 I I uw2 du dv 
rp_ l2p tan a  2 

Deflection functions of the form 

W(u, v)=2 2 A™ <j>m(u)^n(v) 

(6.5) 

(6.6) 

were used, where <£m(it) and ^„(z>) are the char- 
acteristic beam functions deduced from equation 
(5.23). Because the limits of integration of 
equation (6.4) give considerable algebraic com- 
plication, the integration was performed numer- 
ically. Kesults for the first two modes for tan a 
= 1/2 and for various c/l ratios are given in 
table 6.2. 

TABLE 6.2.—Frequency Parameters «1%/p/D jor 
a Ö-F-F-F Trapezoidal Plate; v=0.S 

W/
2
VP/JD for— 

c 
Mode 1 

Mode 2 
I 

Upper bound 
Lower 
bound 

upper 
bound 
(beam 

Beam 
functions 

Polyno- 
mial 

functions) 

0  
0.2  
0.4  
0.6  

7. 152 
8.465 

13. 121 
18. 397 

7. 163 
8. 150 

12. 291 

6.880 
8.042 

11. 160 

21. 209 
23. 996 
26. 625 
30. 965 

In order to determine another set of upper 
bounds for the problem, the polynomial 

W(u, v)={l-u2)\Aaa+Awu+A2luh)   (6.7) 

was also used in reference 6.4 with the Rayleigh- 
Ritz method. Resulting fundamental fre- 
quency parameters are tabulated in table 6.2. 
Lower bounds appearing in the table are ob- 
tained by application of the Kato-Temple 
method (refs. 6.5 and 6.6). 

Rather extensive experimental results are 
available for this problem. Gustafson, Stokey, 
and Zorowski (ref. 6.7) took three series of 
steel plates obtained by cutting the tips off of 
cantilevered triangles. These series are shown 
in figure 6.6. Measured material properties for 
the three series are given in table 6.3. The 
weight density for all series was pg= 0.281 
pound per cubic inch and v was taken as 0.29. 
Experimentally measured cyclic frequencies for 
the three series of plates are given in table 6.4. 

c     l0 8" 7.5" 7" 6.5" 6" 
0.2 0.25 0.3 0.35 0.4 
1-2 1-3 1-4 1-5 1-6 

(b) 

9 
0.1 
I- 

8" 7.5" 7" 6.5" 6" 
0.2 0.25 0.3 0.35 0.4 
1-2 1-3 1-4 1-5 1-6 

10" 9" 8" 7.5" 7" 6.5" 6" 
0 0.1 0.2 0.25 0.3 0.35 0.4 

t-0 a-i B-2 1-3 1-4 1-5 1-6 
(c) 

FIGURE 6.6.—C-F-F-F trapezoidal plate configura- 
tions, (a) Series I plates. (6) Series II plates, 
(c) Series III plates. (After ref. 6.7) 

TABLE 6.3.—Material Properties for 8 Series of 
Trapezoidal Cantilever Plates; v—0.29 

Series 
Modulus of elasticity, psi 

Thickness, 

»-direction y-direction 
in. 

I  
II   
III  

29. 3X10« 
29.2 
29.0 

31.5X10« 
27.8 
27.8 

0. 0622 
.0613 
.0613 
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TABLE 6 A.—Experimentally Measured Cyclic Frequencies far C-F-F-F Trapezoidal Plates; v=0.29 

Cyclic frequencies , cps, for mode— 
c 

a-\-c 
1 2 3 4 5 6 

I  0 
. 1 

32.8 
34 

91 
93 

164 
179 

181 
181 

283 
293 

348 
352 

.2 38.5 97.6 184 212 302 362 

.25 41.9 99.4 186 235 304 366 

.3 48.3 103.4 190 266 308 379 

.35 53.7 107.4 196 299 314 404 

.4 60 112 202 350 312 436 

II  0 
. 1 

34.5 
37 

136 
142 

190 

198 

325 
335 

441 
482 

578 
583 

.2 42 153 223 364 561 598 

.25 46 157 243 374 596 621 

.3 50.5 161 268 385 606 660 

.35 56 169 300 410 629 695 

.4 64 175 339 434 639 718 

III  0 
. 1 

26.3 
27.9 

101 
110 

171 
184 

259 
274 

346 
376 

522 
525 

.2 31.5 122 198 289 438 542 

.25 34.8 130 215 300 476 567 

.3 38.5 136 243 312 505 623 

.35 44. 9 143 277 327 540 674 

.4 51.7 151 314 347 573 699 

Nodal patterns corresponding to most of the 
frequencies of table 6.4 are shown in figures 
6.7, 6.8, and 6.9. Plate designations are 
shown on the fundamental modes and refer to 
those of figure 6.6. 

Heiba (ref. 6.8) experimentally determined 
frequencies and mode shapes for 12 trapezoidal 
plates of various aspect ratios and having 
«1=15°, 30°, and 45° and a2=0 (fig. 6.10). 
Aspect ratios of 2.0, 1.6, 1.2, and 0.8 were used, 
where the aspect ratio = 4a/(6i+62)- The plates 
were made of }£-inch-thick steel. Cyclic fre- 
quencies and nodal patterns for the first six 
modes of each plate are shown in figure 6.10. 
Planform dimensions are given on the funda- 
mental mode in each case.    The mode labels 

(m/ri) identify the number of nodal lines ap- 
proximately parallel to the x- and y-directions, 
respectively. Modes having double labels (e.g., 
(0/1)+ (2/0)) can be thought of as being the 
superposition of two simple modes, each of the 
designated label. The variation in frequency 
with tan ax is shown in figure 6.11. It is seen 
that this choice of parameters yields small 
variations. Frequencies for ax=0 for the rec- 
tangle, as well as nodal patterns, are listed in 
section 4.3.12. 

6.2   OTHER  QUADRILATERALS  OF   GEN- 
ERAL SHAPE 

No published results exist for quadrilaterals 
of general shape. 
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FIGURE 6.7.—Nodal patterns for series I plates; x=0.3. (From ref. 6.7) 
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FIGURE 6.8.—Nodal patterns forgeries II plates; v=0.3. (From ref. 6.7) 
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;MO0E NO.-*- 

6      PLATE   NO 

FIGURE 6.9.—Nodal patterns for series III plates; c=0.3. (From ref. 6.7) 



/ -\ T  / \ \ 

A \ 
\ \ > 

/ V 

/ i 1 
in !L! 

(0 

ao 

0J 

X \ \ 

/ 1 1 

UN ID | 
uio 

10 

L S  
I !2 

ro o 
<\j — 

IO 

o o 
s 

/    / \  1— - 

// 

\ \ \ 
1 

/ 
1 
1 

Vt  

01— 
OOJ 

/I 
1            1— 

1    ', 
i  1 
1          1 
1      1 
t 

"V 

fO"> 

C03 

\ 



< \   - 
\ I 
I I 

A 1  

in i 

4 
S    t /   / / 

i 

/ 
i 

JL 

A 1 
1 

/ \    ' 
/        \       / /           \     / 
/ 1 

Q. — 

Ss's 
15- m 

Q.O 

59«- 

/f 
\ \ 

N 

> 
1 
1 

.1 

\ \ \ \ > 

/    1            1 
/       1 
/            1 

1 
1 

01 P 

S2 

X     / 1 
1 
1 
1 

/ 1 
1 

CO S 

C3 ft 

L —      d 

ÖO «5 n • 
CO   CO 0 IO TfH in 

II It 
IN      « 

II 
|| II 

II 
Ö    3 a a 

c3 
. -   • - N a ■ ~ ft 

10 00 Ö • .. 1^ 
JH 10 CO . - 10 CD 

Oi J> LO r~ t—I O 
c3 r-l   <N 1—1 r-t <N co 
ti II      II II II II || . - e a s 0 e 
W 

+» -0 -o rO rO* rO rO 

p. 'S S" •«» ^ 2? 0 

IS 
0 
N 
O 
P- 
C3 

; J 0 
c3 > 

■g d 
0 

tfn ti 0 
* ^ tH 

S? SJ 
Ctf ft (H 
X O 

W «+-( 

1 
0 0 0 

oe 
i-i 

co 
sf. « H 

10 M 

0 
0 
O 

2 -?£x. 

>o 10 10 >ooo 
H H H HCO m 

O       N       W       N       W       « 
a  a  a  a  a  a 

■* Tt< 4-T ■* 00 00 
CO   00   O   CO   00   CO 
*H co 00 to IN >a 
H   H   H   N   H   rt 

II      II      II      II      II      II 
-S. -3. e -5. ö -2. 
r-©   rO   rCt*  "©   -cS*  -O 

f§ S"t? ^ 'S" Ci 

S08-S37 0—70- -14 



202 VIBRATION  OF  PLATES 

0.2   0.4    0.6    0.8      1.0 tana, 

(I/O) 

(0/0) 

0.2    0.4    0.6    0.8      1.0 tan a, 
(a) (b) 

(I/O) 
(0/0) 

1.0 tan ai 0.2    0.4    0.6    0.8 

(2/0) 
(I/O) 
(0/0) 

1.0 tana. 

FIGURE 6.11.—Variation of frequency (cps) with tangent of sweep angle for a trapezoidal C-F-F-F plate; material, 
steel,    (a) Aspect ratio= 2.0.    (b) Aspect ratio= 1.6.    (c) Aspect ratio= 1.2.    (d) Aspect ratio= 0.8. 
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Triangular Plates 

Chapter 7 

7.1   SIMPLE EDGE CONDITIONS 
Ten combinations of simple (i.e., clamped 

(C), simply supported (SS), or free (F)) bound- 
ary conditions exist for a triangular plate. Of 
tbese, only six have a significant amount of 
results. One, the case when one edge is 
simply supported and the others free, has 
absolutely no results in the published literature 
and will not be discussed herein. 

7.1.1    C-C-C 
In terms of the £, t\ skew coordinates for the 

C-C-C triangular plate shown in figure 7.1, 
the differential equation (eq. (1.4)) for the 
region becomes 

v" -2(1+2 trinV) 
öW , öW 

—4sin^>( 
ÖT)3d£ 

1   d£4 

D 
(7.1) 

Cox  and  Klein   (ref.   7.1)   took  a  deflection 
function 

\ C C C   / 

V      62l2/ 
cos mcrjT 

bt (m=l,3...)    (7.2) 

where At and At are undetermined constants. 
Equation (7.2) satisfies the boundary condi- 
tions exactly. Equation (7.1) was satisfied at 
the two points £=c/2 and 2c/3 and »?=0; this 
yielded a second-order characteristic determi- 
nant. Fundamental frequency parameters are 
shown in figure 7.2 for 0=0° and 25°. As dis- 
cussed later in this section, the limiting case as 
2c/b—»0 is wc2-v/p/Z>=22.4, an exact solution, 
which indicates a lack of accuracy for small 
values of 2c/b in figure 7.2. According to 
reference 7.1, the results are not sufficiently 
accurate for use when <£>25°, but, by suitable 

FIGURE 7.1.—C-C-C triangular plate. 

choice of coordinates, <j> can almost always be 
kept less than 25°. The mode shape compo- 
nents arising from equation (7.2) are shown in 
figure 7.3. 

The results were also checked in reference 
7.2 for the case when $=0 and the triangle is 
equilateral by using the finite difference method. 
The two triangular meshes shown in figure 7.4 
were used. For the fundamental mode, only 
one sextile of the triangle is required; this 
results in independent deflections of one point 
in figure 7.4(a) and eight points in figure 
7.4(6). Kesults from using these two meshes 
and the extrapolation formula (eq. 4.90)) are 
given in table 7.1. 

In reference 7.3 the solution for the rhombus 
given in reference 7.4 (see discussion on the 
C-C-C-C rhombic plate, sec. 5.1.1) is extended 
to yield the solution for the isosceles triangle 
clamped all around. Fundamental frequency 
parameters  wl^p/D for ai=at=oc, where I is 

205 
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<t> =25° 

//$ 0° 

1.0 2.0 
2c/b 

3.0 4.0 

FIGUBE 7.2—Fundamental frequency parameters for a 
C-C-C triangular plate. (After ref. 7.1) 

TABLE 7.1.—Fundamental Frequency Param- 
eters WCVP/D jor a C-C-C Equilateral 
Triangle 

Solution 1 point 8 points Extrapo- 
lation 

UC
2
VPZD -- 42.31 65.85 70.34 

the length of one of the equal sides, are given 
in table 7.2. 

These results are also plotted as a solid line 
in figure 7.5 along with experimental data ob- 
tained on two mild steel plates having £=2.95 
inches and thicknesses A=0.091 and 0.063 inch. 

FIGTJKE 7.3.—Fundamental mode shape components for 
a C-C-C triangular plate, (a) Shape along {-axis. 
(6) Shape parallel to i;-axis. (After ref. 7.1) 

The limiting values as ai=a2=a—»0 and 
ai=a2=a—»90° are both well-known exact 
solutions. Both cases become, in the limit, 
that of an infinite strip having its opposite 
edges clamped; that is, wby^/D=22A. This 
limiting value is used to plot the curves of 
figures 7.6 and 7.7 which were taken from 
reference 7.3. 

Hersch (ref. 7.5) showed that a lower bound 
for the frequency of an equilateral triangle 
clamped all around is given by w&%/p/Z>>82.20. 

7.1.2   C-C-SS 
The only known solutions to the problem of 

the C-C-SS triangular plate are for the case 
when the triangle is isosceles, as shown in 
figure 7.8. 

TABLE 7.2.—Fundamental Frequency Param- 
eters W1

2
VP/D for C-C-C Isosceles Triangle 

Plates 

2a, deg 30 60 90 

uV4p~JD  199.6 99.2 93.6 
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(a) (b) 
FIGURE 7.4.—Triangular finite difference meshes,    (a) Coarse grid.    (&) Fine grid. 

100 

80 

Experiments 
A Clamped base edge (h =-0.091") ' 
o              (h-0.063")     _l 
a Supported base edge (h = 0.091")     i 
0 (h-0.063")  / 

500 

FIGURE 7.5.—Theoretical and experimental funda- 
mental frequency parameters for C-C-C and C-C-SS 
isosceles triangular plates. (After ref. 7.3) 

Cox and Klein (ref. 7.6) solved the problem 
by using the collocation method and the de- 
flection function 

W(x, y)=(41 sin™+A2 sin 2-^+A3 sin ^) 
\ a a a / 

Equation (7.3) satisfies all the boundary con- 
ditions exactly except that for zero 'bending 

FIGURE 7.6.—Fundamental    frequency    parameters 
w62Vp/D for C-C-C and C-C-SS isosceles triangular 
plates. (After ref. 7.3) 

moment Mx along x=a. It satisfies this con- 
dition only at the midpoint of the side (i.e., at 
y=0). The differential equation (eq. (1.4)) 
was satisfied at the three points (a/2, 0), 
(2a/3, 0), and (3a/4, 0), thus giving a third-order 
characteristic determinant for the frequencies. 
Results for the fundamental frequency param- 
eter obtained directly from the collocation pro- 
cedure are shown as the broken curve in figure 
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FIGURE 7.7.—Fundamental frequency parameters 
cWp/D for C-C-C and C-C-SS isosceles triangular 
plates. (After ref. 7.3) 

FIGURE 7.8.—C-C-SS isosceles triangular plate. 

7.9. The solid curve, which is indicated in 
reference 7.6 as being more accurate, was found 
from an extrapolation of finite difference 
solutions. 

Ota, Hamada, and Tarumoto (ref. 7.3) used 
the solution for the rhombus given in reference 
7.4 (see sec. 5.1.1 of the present work) to solve 
the problem of the isosceles triangle. Funda- 
mental frequency parameters are given in 
table 7.3, where I is the length of the equal 
sides.    These frequency parameters are plotted 

250 
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90 

80 

70 

60 

50 
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20 
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// 
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I 1 
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7 

0.5 1.0 1.5       2.0      2.5       3.0       3.5      4.0 
2a/b 

FIGURE 7.9.—Fundamental frequency parameters for a 
C-C-SS isosceles triangular plate. (After ref. 7.6) 

TABLE   7.3.—Fundamental  Frequency   Param- 
eters jor a C-C-SS Isosceles Triangular Plate 

2a, deg 30 60 90 120 150 

wV^jD  178.8 81.6 73.6 105.2 304.0 

in figure 7.5 along with experimental results 
obtained on mild steel plates. In figures 7.6 
and 7.7 they are plotted again in terms of 
other length dimensions, including the limiting 
cases as 2a->0 and as 2a->180°, for which 
there are exact solutions. 

For more results on the problem, including 
those for higher frequencies, see the discussion 
of the antisymmetric modes of a C-C-C-C 
rhombus (sec. 5.1.1) and of a C-C-C-C square 
(sec. 4.3.1). 

7.1.3   C-C-F 
There are no specific solutions of the prob- 

lem of the C-C-F triangular plate. Westmann 
(ref. 7.7) proposes for the case of the isosceles 
triangle having its equal sides clamped that 



TRIANGULAR  PLATES 209 

the frequency is bounded by those of the in- 
scribed and circumscribing C-C-F sectorial 
plates as shown in figure 7.10. Eesults for the 
sectorial plates are given in the chapter entitled 
"Plates of Other Shapes" (sec. 8.2). 

7.1.4   C-SS-SS 
Cox and Klein (ref. 7.8) solved the problem 

of the C-SS-SS triangular plate for the case 
of an isosceles shape; that is, «i=a2 in figure 
7.11. The collocation method was used, with 
a deflection function 

irx .   2irx 
'sin—sin  

a        a 
(irx 

Alx
2sm2—+A2x

2 

+A^(x-ay)Cos(^)    (7.4) 

The differential equation (eq. (1.4)) is satisfied 
at the three points (a/2, 0), (2a/3, 0), and 
(3a/4, 0), thus giving a third-order characteristic 
determinant for the frequencies. Eesulting 
fundamental frequency parameters are shown 
in figure 7.12. 

For the case when ai=a2=45°, the funda- 
mental frequency may be found quite accu- 
rately from the fourth mode of a square plate 
clamped all around (sec. 4.3.1). Using the 
value from reference 7.9 yields wa%/p/Z)=32.91 
as a close upper bound. The value from figure 
7.12 is 34.7 (ref. 7.8). 

Solecki (ref. 7.10) solved the problem for the 
case a!=60°, a2=30°. A solution for the 
SS-SS-SS case (see sec. 7.1.6) is taken, and a 
Fredholm integral equation of the first kind is 
formulated  to  satisfy  the  condition  of  zero 

FIGURE 7.11.—C-SS-SS triangular plate. 
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70 
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40 

30 

0.5 1.5 2.0 2.5 3.0 3.5 
2a/ b 

FIGURE 7.10.—C-C-F isosceles triangular plate with 
inscribed and circumscribing sectors. 

FIGURE 7.12.—Fundamental frequency parameters for a 
C-SS-SS isosceles triangular plate. (After ref. 7.8) 

slope along x=a.    The fundamental frequency 
is found to be w=(120.0^DfP)/c2. 

7.1.5   C-SS-F 
No solutions of the specific problem of the 

C-SS-F triangular plate are known. In the 
case of the right triangular plate (see fig. 7.13) 
having the hypotenuse free, a considerable 
amount of information can be obtained from 
the antisymmetric modes of a symmetric 
C-F-F triangular plate (sec. 7.1.8). 
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FIGURE 7.13.—C-SS-F right triangular plate. 

7.1.6   SS-SS-SS 
Conway and Farnham (ref. 7.11) solved the 

problem for the SS-SS-SS isosceles triangle 
(ai=a2=a in fig. 7.14) by using the method 
employed on the SS-SS-SS-SS rhombus (sec. 
5.1.4). Functions given in equation (5.18) 
were used and boundary conditions of zero 
bending moment were satisfied at N points 
along the edge x=a (fig. 7.14). Frequency 
parameters arising from various -ZVth-order char- 
acteristic determinants are displayed in table 
7.4. For a first-order determinant, the single 
point used was at x=a, y=0. 

Cox and Klein (ref. 7.2) solved the case of 
the isosceles triangle by the collocation method 
using a deflection function 

-Ax sin—l-^sin 2TX 

a 

+^*T!)(*'5~B)   <"> 
This function satisfies the condition of zero 

deflection exactly on all boundaries. It also 
gives zero normal moment at (a, 0) and at some 
point in the interval a/2 ^ x ^ 3a/4 along the 
equal sides. The differential equation (eq. 
(1.4)) is satisfied at the three points (A/2, 0), 
(2Ä/3, 0), and (3A/4, 0), giving a third-order 
characteristic determinant to solve for the fre- 
quencies. Fundamental frequency parameters 
are given in figure 7.15. When 2a=90° the fre- 
quency parameter is found by the foregoing 
method to be «a2Vp/D=24.028. This is in 
error by 2.61 percent (ref. 7.2) from the exact 
value of 24.674 obtained from the second mode 
of a SS-SS-SS-SS square plate.   It must be 

FIGURE 7.14.—SS-SS-SS triangular plate. 
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FIGURE 7.15.—Fundamental frequency parameters for 
a SS-SS-SS isosceles triangular plate. (After ref. 7.2) 

observed that the curve of figure 7.15 is clearly 
inaccurate for small values of 2a/b, for in the 
limiting case 2a/b—*0 the exact solution for 
the case of a SS-SS strip, which is waVp/Z?= 
ir2=9.87, applies. 

The results of reference 7.2 were extended in 
reference 7.12 to estimate the frequencies of non- 
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TABLE 7.4—Frequency Parameters «aVp/D/or 
SS-SS-SS Isosceles Triangular Plates 

a, deg 

aa24pjD for determinant of 
size— 

lby 1 3 by 3 

10  177 69 
15  98.72 97 93 
20  66 34 
25  49 45 
30  40.70 39.48 

32 87 35  
40  28 18 
45  26.38 24.67 

isosceles triangles. This was done by taking 
the results of reference 7.2 and redefining the 
dimensions a and b so that one of the equal 
angles becomes the vertex angle and its opposite 
side becomes the base of length b. This gives 
some points on the curves of figure 7.16.   Other 

200 

150 

100 

90 

80 

70 

S   60 

50 

40 

30 

20. 

4>< 
35° -v 
30°^ 

.25°-^ v/s 
'/ 

^-20°1 
- 15"  > 
— 0° J 

<t> 

0.5 1.0 1.5        2.0        2.5        3.0        3.5       4.0 
2c/ b 

points are determined from the relationship 

relating the frequency parameters wc%/p/Z? 
corresponding to the medians of the triangle 
which have lengths cu c2, and c3. Again, the 
curves are inaccurate for small values of 2c/b. 

Solecki (ref. 7.10) gave the frequencies and 
mode shapes for the 30°-60°-90° triangle shown 
in figure 7.17.    Mode shapes Were taken as 

(2m+ri)irx 
Sin^ ~sb ~sinir) 

-lf+'sin-—'     '    sin 
do a 

mryl 
a J 

(m+n)ryl 
a      J 

;n=l,2)...;m>n)    (7.7) 

1 sin ^—^r1— sin 
3» 

FIGURE 7.16.—Fundamental frequency parameters for 
a SS-SS-SS triangular plate. (After ref. 7.12) FIGURE 7.17.—30°-60°-90° SS-SS-SS triangular plate. 
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in terms of figure 7.17. Corresponding fre- 
quencies are found from substituting equation 
(7.7) into equation (1.4), giving 

47T2(m2+mft+n2)   ID 41, 3a2 \ P 

(m=2, 3, ...;n=l,2,3, ...;m>ri)    (7.8) 

Thus the fundamental frequency is found from 
equation (7.8) to be co2ia

2Vp75=92-113- 
This was also found in reference 7.13 by- 

using the solution for the SS-SS-SS-SS rec- 
tangle and the method of images. Nodal 
patterns for the first six modes are shown in 
figure 7.18. The case of the 30°-60o-90° 
triangle is also discussed in reference 7.14. 

Schaefer and Havers (ref. 7.15) found the 
fundamental frequency of the equilateral tri- 
angle of altitude a to be wa2.v/p/Z)=39.478. 
The problem was also solved by Conway by 
analogy in reference 7.16 and by the point- 
matching method in reference 7.11. The 
problem is also solved in references 7.17 and 7.18. 

The case when ai=a2=45° (fig. 7.14) can be 
deduced from the higher mode shapes of a 
SS-SS-SS-SS square plate. The fundamental 
frequency parameter is ua2-yJp/D:= 24.674. 

The case when ai=a2=60° was examined by 
Seth (ref. 7.17), who gave a fundamental fre- 
quency parameter of coa%/p/Z>= 17.272. 

Much more information is available for this 
problem from an analogy that exists between 

a vibrating membrane and a simply supported 
polygonal plate (see the chapter entitled 
"Plates of Other Shapes" (ch. 8)). 
7.1.7 SS-SS-F 

There are no specific solutions of the problem 
of SS-SS-F triangular plates. Westmann (ref. 
7.7) proposed obtaining bounds from SS-SS-F 
sectorial plates.    (See sec. 7.1.3.) 
7.1.8 C-F-F 

Consider first the symmetric cantilevered 
triangle depicted in figure 7.19. Andersen 
(refs. 7.19 and 7.20) solved the problem by 
using the Rayleigh-Eitz method and the 
triangular u-v coordinates shown in figure 7.19 
(see also the discussion for the C-F-F-F 
trapezoidal plate, sec. 6.1.2). For symmetric 
modes, the four-term series 

W(u, v)=[An+A31u
2Uv)Mu) 

+[Ai2+Atfufyt(v)Mu)    (7.9) 

was used, and for antisymmetric modes the 
series 

W(u, v)=[A2lv+Ailfi(v)]u2<t>i(u) 
+ [A22V+Ai2Uv))u2<j>2(u)    (7.10) 

FIGURE 7,18— Nodal patterns for a 30°-60°-90° SS- 
SS-SS triangular plate. FIGURE 7.19.—Symmetric C-F-F triangular plate. 
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was used, where $1 and $2 represent the first 
two modes of a cantilever beam free at u=0 
and clamped at u=l. (See discussion of the 
rectangular cantilever beam, sec. 4.3.12.) The 
functions ^3 and ^4 represent the first symmetric 
and antisymmetric modes, respectively, of a 
beam free at »=±1. The expression for the 
strain energy in triangular coordinates is 
given in equation (6.4). Integration was 
performed numerically. Frequency param- 
eters, nodal patterns, and amplitude coefficients 
for the first four modes and several a/b ratios 
are given in table 7.5.    Poisson's ratio is 0.3. 

Variation of frequency parameter with a/b 
ratio for the two antisymmetric modes is 
shown in figure 7.20. It is seen that the 
frequency parameters increase linearly with 
a/b, as was the case for the C-F-F-F 
rectangle (sec. 4.3.12). Frequency variations 
for the first two modes are shown in figure 7.21 
where the frequency parameters oia2-^ 12p/Eh3 

obtained from beam theory are also plotted 
as horizontal broken lines. It must be re- 
membered that the plate and beam frequency 
parameters differ by the factor 1—v2. Thus, 
when Poisson's ratio is considered, the plate 
frequencies themselves are slightly higher than 
those predicted by beam theory. 

Duffin, Gustafson, and Warner (ref. 7.21) 
also used the Rayleigh-Ritz method to analyze 
the triangular plate of symmetric shape. A 
partial summary of deflection functions used 
and frequency parameters obtained is given 
in table 7.6, where the notation used is that of 
figure 7.19 and J>=1/4. Because modes 1 and 
2 are symmetric and antisymmetric, respec- 
tively, the frequency parameters listed for 
these modes are guaranteed to be upper bounds 
on the exact frequencies, and improvement in 
bounds with the various functions used is 
clearly indicated in the table. Further results 
were obtained which showed the variation in 
fundamental frequency parameter and mode 
shape with a/b ratio and Poisson's ratio by 
using the deflection function. 

These are shown in table 7.7. 

800 

600 

^ 400 
j 
O 
3 

200 

£rV 

t^S 

3 4 
a/b 

FIGURE 7.20.—Variation in antisymmetric frequency- 
parameters with a/b for a C-F-F symmetric triangular 
plate; ..=0.3. (After ref. 7.20) 
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FIGURE 7.21.—Variationin symmetric frequency param- 
eters with a/6 for a C-F-F symmetric triangular 
plate; y=0.3. (After ref. 7.20) 



214 VIBRATION  OF PLATES 

TABLE 7.5.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a C-F-F 
Symmetric Triangular Plate; v=0.S 

Amplitude 
coefficient 

a/b 

Mode Nodal lines 
1 2 4 7 

An  
An-    
^31  

An    _ . . 

COO
2
VP/Z) 

A 
7.149 7.122 7.080 7.068 

1 ^f 1. 000000 
-. 013453 

. 000887 

. 002312 

1. 000000 
-. 018583 
-. 000068 
-.001362 

1. 000000 
-. 020249 
-. 000026 
-. 000498 

1. 000000 
-. 020664 
-.000008 
-. 000176 

An  
An    __ ... 
An  
■482---  ... 

coa2Vp/Z> 

< 

y 30.803 30.718 30.654 30.638 

2 
-0. 77460 

1. 00000 
-. 02305 

. 04645 

-0.76682 
1. 00000 

. 00527 

. 01022 

-0.76427 
1. 00000 

. 00208 

. 00241 

-0. 76368 
1. 00000 

. 00073 

. 00077 

An  
Aw ... 
Ail  
Ai2 . . 

ucP^pjD 

61.131 90.105 157.70 265.98 

3 
1. 64125 
1. 00000 

. 00581 
-. 00380 

0. 60941 
1. 00000 

. 00155 
-. 00079 

0. 33684 
1. 00000 

. 00038 
-. 00019 

0. 27432 
1. 00000 

. 00012 
-. 00006 

An  
A22--  
Atl  
Ai2...  

wa2Vp7I> 

148.8 259.4 493.4 853.6 

4 4 
^ 1. 00000 

-.32893 
-. 00808 

. 00586 

1. 00000 
-.31823 
-. 00156 

. 00122 

1. 00000 
-. 31430 
-. 00036 

. 00029 

1. 00000 
.-. 31330 
-. 00012 

. 00009 
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TABLE 7.6.—Deflection Functions and Frequency Parameters for a Rayleigh-Ritz Analysis of a O-F-F 
Symmetric Triangular Plate; v=t/4 

ajb Mode no. Deflection function, W(x, y) Amplitude 
coefficients 

wa2^pfb 

1/2  1 

2 

3 

1 

(,-■)■ e«o 

\a     Ja 

C-O'C"*) 

^o=^5/3 

Ai= -4.85 

7.15 

6.55 

26. 5 

1  

.A2=-l 

43= 0.462 

A<=49/164 

46=5/3 

Ae=-3.61 

23.8 

23. 0 

37. 1 

7. 15 

7.02 

TABLE 7.7.—Frequency Parameters and Amplitude Coefficients for O-F-F Symmetric Triangular 
Plates 

aß 
y=0 *=l/4 y=l/2 

ill- aWp/D 4i UO?TJPID 4i wa?iJp~ID 

1/2   -3.95 
-2.27 
-.725 

6.733 
7. 101 
7. 154 

-4.85 
-3.61 
-2.25 

6.555 
7.002 
7. 122 

-5.92 
-5.09 
-3.83 

6.320 
6.888 
7.032 

1  
2  

Kumaraswamy and Cadambe (ref. 7.22) 
experimentally determined the first 18 modes 
and frequencies of a symmetric triangular 
cantilever plate made of commercial mild steel. 
Pertinent dimensions and physical constants 
were: a=6.00 inches, 6=6.00 inches, ^=0.0895 
inch, pg=0.282 pound per cubic inch, length- 
wise E=29.83X106 psi, breadthwise #=29.18 
X106 psi, and K=0.29 (assumed). Cyclic fre- 
quencies and frequency parameters are given 
in table 7.8. The disagreement in values of 
MOVP/Z? between tables 7.5 and 7.8 for afb=l 
is readily apparent. Nodal patterns are shown 
in figure 7.22. 

Further experimental results from reference 
7.23 for a/b=l are given later in this section. 

Consider next the delta cantilever plate 
depicted in figure 7.23. This problem was 
solved in reference 7.20 for the first two modes 
by the method described earlier in this section. 
The following six-term series was used for the 
deflection function: 

W(u, v) = (An+4atA>+4«uV.(i>))*i(«) 
+ (An+A-ii.u2v+AnUi>p3{v))to(u) (7.12) 

Frequency  parameters,   nodal   patterns,   and 
amplitude coefficients are listed in table 7.9 for 
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i/=0.3.   Variation of frequency parameter with 
a/6 ratio is seen in figure 7.21. 

In reference 7.24 the method of reference 
7.20 given previously was duplicated by using 
only the four terms of equation (7.12) asso- 
ciated with An, An, Aw, and An- The funda- 
mental frequency for the plate of figure 7.23 
was found to be wa%/p/D= 5.045 for a/b=l. 

A corroborating experimental value of o>ayp/D= 
5.36 was determined for a steel plate (a=6.00 
in., 6=6.00 in., h=0.0895 in., pg= 0.282 lb/in.3, 
and E=29.5XlOe psi). Tabular values of the 
integrals obtained from equation (6.4) are also 
given in reference 7.24. 

In  reference  7.21   the  delta  plate  having 
a=45°  was  also  analyzed by the  Kayleigh- 

TABLE  7.8.—Experimentally Determined Frequencies  and  Frequency  Parameters for a   C-F-F 
Symmetric Triangular Plate; a/b=i; v=0.29 

Mode /, cps aa2-\p/D Mode /, cps wa2Vp/jD Mode /, cps &WP/JD 

1  137 
642 
655 

1442 
1725 
2080 

5.76 
26.91 
27.45 
60!42 
72.30 
87. 18 

7  
8  
9  
10  
11  
12  

28.40 
3133 
3924 
3988 
4929 
5939 

119. 10 
131. 30 
164. 40 
167. 1 
206.5 
249 

13  
14  
15  
16  
17  
18 ' 

6499 
6526 
6884 
7627 
8498 
9875 

272.4 
2  273.5 
3  
4  

288.5 
319.7 

5  356. 1 
6  413.8 

TABLE 7.9.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients far a C-F-F Bight 
Triangular Plate; v=0.8 

Mode Nodal lines Amplitude 
coefficient 

ajb 

2 4 7 

Au  

UO
2
VP7D 

^^    b 

5.887 6.617 6.897 

1 1. 00000 
.02030 

-.31370 
-.14370 
-.00073 
-.00598 

1. 00000 
-.00077 
-.09379 
-.07012 
-.00005 
-.00198 

1. 00000 
.Ai2  -.01287 
An  -.03234 

-.02783 
A 31        -  -.00002 
A32  -.00070 

An  

U>CP4PID 

4^ i 
y 

25.40 28.80 30.28 

-0.81541 
1. 00000 
3.1448 

-1.25112 
.05200 
.01845 

-0.77842 
1. 00000 
1.11722 

-.50815 
. 01065 
. 00748 

-0.77340 
2 Am  1.00000 

An  .40809 
A22       - -.19731 
A31  .00320 

.00028 
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FIGURE 7.22.—Nodal patterns for a C-F-F symmetric 
triangular plate, a/&=l; material, steel. (From ref. 
7.22) 

Ritz method, using »=1/4. A summary of 
deflection functions used and the frequency- 
parameters obtained is given in table 7.10. 
(See fig. 7.23.) 

Gustafson, Stokey, and Zorowski (ref. 7.23) 
obtained experimental mode shapes and fre- 
quencies for the delta configurations shown in 
figure 7.24. The plates were cut from sheet 
steel averaging 0.061 inch in thickness. Ob- 
served nodal patterns and cyclic frequencies 
for the first six mode shapes of each plate are 
shown in figure 7.25, where the designations 
Al, A2, etc., refer to figure 7.24. Variation in 
cyclic frequency with b/a ratio for each mode is 
shown in figure 7.26. 

Christensen (ref. 7.25) used the method of 
replacing plate elements by equivalent beam 
networks as developed by Hrennikoff (ref. 7.26) 
to analyze the delta plate when a=45°. The 
10 grid points shown in figure 7.27 were used. 
Each grid point is allowed rotation about axes 
parallel to the x- and y-axes and a w displace- 
ment, and a thirtieth-order characteristic de- 
terminant results. Frequency parameters and 
grid-point deflections associated with each of 
the first 10 vibration modes are given in table 
7.11 for v=0.S. Experimental frequency pa- 
rameters converted in reference 7.25 from 
reference 7.23 (discussed previously) and values 
obtained from reference 7.27 by using the 
Rayleigh-Ritz method and polynomials are 
also listed for comparison. The total mass 
of the plate is M. Nodal patterns compared 
with the experimental results of reference 
7.23   are  shown  in  figure   7.28. 

' 10" SV 

FIGURE 7.23.—C-F-F right triangular plate. 
308-i337 O—70 15 

Designation       Al 

FIGURE 7.24.—C-F-F delta configurations. (After ref. 
7.23) 
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TABLE 7.10.—Deflection Functions and Frequency Parameters for a Rayleigh-Ritz Analysis of a 
G-F-F 45° Delta Triangular Plate; v=l/4 

Mode no. Deflection function, W(x, y) 

e-')!(f«)^e-')'(H-ö' 

(J)'G)' 
©'H+a+B'Ö 

Amplitude 
coefficients 

Ao=5/3 

4i=-3.88 
Xa=-5/12 

fc=l/3 
1=714 

wa2VpÄD 

7.15 

6.37 

7. 16 

6.57 

7.05 

28.0 

26.9 

57.5 

54.3 

TABLE 7.11.—Frequency Parameters wa-VM/D (M, TofoZ Mass of Plate) and Mode Shapes for a 
C-F-F 45° Delta Triangular Plate; v=0.3 

Mode  1 2 3 4 5 6 7 8 9 10 

aa-jM/D from ref. 
7.25  4.35 

4.17 

4.42 

1 
.65 
.'56 
.33 
.28 
.20 
. 10 
.08 
.06 
.02 

16.76 

16.4 

16.9 

1 
.29 

-.94 
-.05 
-.78 

-1.33 
-.05 
-.32 
-.45 
-.31 

23.01 

23.0 

23.7 

1 
-.27 

.45 
-.81 
-.07 

.43 
-.47 
-. 11 

. 12 

. 14 

38.90 

39.3 

43.5 

1 
.07 

-3.62 
.39 

-.31 
1.88 
.44 
.49 

1.24 
1.78 

53.65 

53.3 

60.32 

69.9 

78.26 90.92 107.1 148.6 

ua-yjM/D from ref. 
7 9<5 

waVM/jD from ref. 
7.27 

Grid point deflec- 
tion amplitude 
ratios for point— 

1  1 
-.74 
-. 18 
-.06 

.04 

.03 

.55 

.47 
-. 19 

-1.28 

1 
-1.01 

1.39 
.04 

-.002 
-1.99 

.90 

.27 

.27 
2.65 

1 
-1. 15 

1.86 
1.36 

-2.08 
4.38 
3.05 

-3.77 
-1.92 

.84 

1 
-1.02 
-1.03 

1.10 
1.74 

-.37 
-1.66 
-.7.0 

-1.17 
1. 18 

1 
-1.32 

1.64 
2.32 

-1.65 
-.65 

-1.05 
-.43 
2.76 

-1.99 

1 

2  -1.60 

3.  3.70 

4 .- 5.08 

5                   -6.98 

6  5.54 

7_           -5.48 

8_              8.62 

9  -6.00 

10...  2.89 

. 
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FIGURE 7.25.—Experimentally observed cyclic frequencies, cps, and nodal patterns for C-F-P delta triangular 
steel plates. (From ref. 7.23) 
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FIGURE 7.26.—Experimentally measured cyclic fre- 
quencies for C-F-F delta triangular steel plates. 
(After ref. 7.23) 

y 

s 
y 
y 
s / / 

10 

X ! / 
f      1 s 

1 s 
1 s 
1 s 

6/ -4- s 
s / 

'    1 '       a 
1 s 
1 | / 
I s 

s 
1 i (  -%- — 

1 "V 
*^45°      / 1 / 

l s 
1 s 

1 V 4! -4- s 

/ -t  s 
s 
y 
s> 

a 2a .        2a .    2a 2a s 
9 9 9 9 9        ' / 

FIGURE  7.27.—Grid  points in  a structural  element 
representation of a C-C-F triangular plate. 
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Kawashima (ref. 7.28) used the finite differ- 
ence method to obtain frequencies and mode 
shapes for delta plates (fig. 7.23) having 
6/a=l and 2. The 45° delta was analyzed by 
using both 6 and 10 free grid points on the 
plate, and the other, by using only 6 grid 
points. Cyclic frequencies were computed by 
using the dimensions of the plates in reference 
7.23 for comparison. Available results are 
given in table 7.12. Grid points used for the 
more accurate analysis of the 45° delta are 
shown in figure 7.29, wherein deflections for 
the first two mode shapes are presented. At 
each grid point, including those along the 
clamped boundary, two numbers are listed. 
The first gives the deflection amplitude at each 
point normalized with respect to the tip 
deflection. The second is the bending moment 
Mx relative to the value at a point along the 
clamped boundary near the skew edge. Cor- 
responding results for the case 6/a=2 are also 
given in reference 7.28, but are considerably 
inaccurate. 

 Gridwork Method 
 Experimental Results 

FIGURE 7.28.—Nodal patterns for a C-F-F 45° delta 
triangular plate; material, steel. (After ref. 7.25) 

TABLE 7.12.—Theoretical Cyclic Frequencies for 
C-G-F Delta Triangular Steel Plates 

Cyclic frequencies for values of bja of— 

Mode 1 
2 (6 grid 

6 grid 
points 

10 grid 
points 

points) 

1  
2  
3  
4 

40.0 
115.5 
155.8 
221.0 
266.0 

35.0 
136.7 
161.9 
301.3 
364.0 

35.5 
82.7 

161.0 

5 

The delta plate for the cases 6/a=l and 2 
was also analyzed by Walton (ref. 7.29) by 
using the method of reference 7.30 which re- 
places the derivatives in the strain energy 
integral by finite differences. Twenty-eight 
free grid points were used in the analysis. 
Frequencies were computed and compared 
with experimental data for sheet steel plates 
having the dimensions a=10 inches, 6=10 
inches and a=10 inches, and 6=20 inches. 
Both plates were 0.061 inch thick and v and E 
were taken as 0.025 and 30X106 psi, respec- 
tively. The first six cyclic frequencies for each 
plate are given in table 7.13. Nodal patterns 
for the five higher modes of each plate are 
depicted in figures 7.30 and 7.31. 

Hanson and Tuovila (ref. 7.31) experimen- 

FIRST MODE 

O.205 0.068 -0.090 -0.323 

FIGURE 7.29.—Deflections and bending moments Mx 

for a C-F-F 45° delta triangular steel plate. 
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tally investigated 45° and 60° delta plates 
made of 0.034-inch-thick magnesium (pg= 
0.064 lb/in.3). (See discussion of the C-F-F-F 
parallelogram plate, sec. 5.1.5.) They investi- 
gated plates with a=45°, 6=6.00 inches, and 
a=60°, 6=8.50 inches. The first three fre- 
quencies and mode shapes for the two plates 
are shown in figures 7.32 and 7.33. Note that 
the three-dimensional perspective used in these 
figures distorts the right angle at the clamped 
edge. 

Craig, Plass, and Caughfield (refs. 7.32 and 
7.33) measured mode shapes and frequencies 
on three 6061-T6 aluminum plates % inch 
thick and having the dimensions a=7.5 inches, 
6=7.5 inches; a=12.5 inches, 6=7.5 inches; 
and ß=15 inches, 6=7.5 inches. Cyclic fre- 
quencies, nodal patterns, and mode shapes are 
given in figures 7.34, 7.35, and 7.36. 

TABLE   7.13.—Cyclic   Frequencies for   C-F-F 
Delta Triangular Steel Plates 

Cyclic frequency, /, 

b Mode 
cps 

/Computed f\ 
V Measured// a 

Theoret- 
ical 

Experi- 
mental 

1  1 36.4 34.5 1.06 
2 139 136 1.02 
3 192 190 1.01 
4 327 325 1.01 
5 432 441 .980 
6 566 578 .979 

2 . ... 1 32.8 32.8 1.00 
2 89.9 91.0 .988 
3 164 164 1.00 
4 175 181 .967 
5 263 283 .929 
6 328 348 .943 

- Experimental 
Calculated 

FIGURE   7.30.—Nodal  patterns   for   a   C-F-F   delta 
triangular steel plate, &/o=l. 

Mode 2 

Mode 5 

Mode 3 Mode 4 

— Experimental 
A    Calculated 

FIGURE 7.31.—Nodal patterns for a C-F-F delta tri- 
angular steel plate, b/a=2. 
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\      .^Dashed lines indicate shape of 
\^       plate at maximum amplitude of cycle 

Fraction 
of 

chord 

Normalized deflection at (1-x/a) a 

.1 .3 .5 .7 .9 1.0 

0.00 

.25 

.50 
. .75 
1.00 

.021 

.029 

.033 

.037 

.037 

.087 

.107 

.121 

.133 

.1*6 

.186 

.211t 

.278 

.297 

.357 

.1(00 

."153 

.507 

.528 

.702 

.7>*2 

.771 

.796 

.820 

1.0 
1.0 
1.0 
1.0 
1.0 

.^— Heavy solid lines indicate 
^\       plate at rest 

(a) 

Fraction Normalized deflection at (1-x/a) = 

chord .1 .3 .5 .7 .9 1.0 

0.00 -.052 -.319 -.729 -.350 .325 1.0 
.25 -.069 -.365 -.511» -.173 .1*10 1.0 
.50 -.065 -.285 -.296 .020 .U90 1.0 
.75 -.029 -.115 -.052 .221 .580 1.0 

1.00 .017 .069 .183 .1(20 .681 1.0 

(b) 

Fraction 
of 

chord 

Normalized deflection at (1-x/a) = 

.1 .3 .5 .7 .9 1.0 

0.00 

.25 

.50 

.75 
1.00 

D.050 
.050 

-.010 
-.070 

-.125 

0.200 

.125 
-.087 
-.360 
-.710 

0.270 
.130 

-.125 
-.485 
-.830 

0.1(20 
.270 

.075 
-.11(0 
-.305 

3.760 
.730 
.670 
.600 

.575 

1.0 
1.0 
1.0 
1.0 
1.0 

(c) 

FIGURE 7.32.—Experimental frequencies and mode shapes for a 60° delta cantilever plate; material, magnesium. 
(a) Mode 1, /i=50 cps.   (6) Mode 2, /2= 184 cps.   (c) Mode 3, /3=258 cps. 
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Fraction 
of 

chord 

Normalized deflection at (l-x/a) = 

.1 .3 .5 .7 .9 1.0 

0.00 
.25 
.50 
.75 

1.00 

.002 

.001* 

.013 

.021 

.025 
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.067 

.126 

.158 

.160 

.139 

.232 
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.3>*2 

.1*18 

.502 

.5M* 

.570 

.580 

.750 

.800 

.835 

.850 

.860 

1.000 
1.000 
1.000 
1.000 
1.000 

|^\         Heavy solid lines indicate 
"N^    plate at rest 

-Dashed lines indicate shape of 
plate at maximum amplitude of cycle 

<<■) 

Fraction 
of 

chord 

Normalized deflection at (l-x/a) = 

.1 .3 .5 .7 .9 1.0 

0.00 
.25 
.50 
.75 

1.000 

-.023 
-.093 
-.116 
-.035 
.01*2 

-.380 
-Ml 
-.31*9 
-.081 
.198 

-1.000 
-.872 
-.•»50 
.023 
.1*00 

-.81*9 
-.550 
-.093 
.372 
.620 

.302 

.1*88 

.61*0 

.780 

.872 

1.000 
1.000 
1.000 
1.000 
1.000 

(b) 

Fraction 
of 

chord 

Normalized deflection at (l-x/a) = 

.1 .3 .5 .7 • 9 1.0 

0.00 
.25 
.50 
.75 

1.00 

.006 

.029 
-.006 
-.053 
-.11*7 

.076 

.071 
-.053 
-.1*17 
-.500 

.059 

.029 
-.11*7 
-.1*88 
-.523 

.150 

.132 

.070 
-.01*0 
-.112 

.7>*5 

.722 

.695 

.667 

.61*0 

1.000 
1.000 
1.000 
1.000 
1.000 

(c) 

FIGURE 7.33.—Experimental frequencies and mode shapes for a 45° delta cantilever plate; material, magnesium, 
(a) Mode l,/i=66 cps.   (&) Mode 2,/2=185 cps.   (c) Mode 3,/3=336 cps. 
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(a) 

I.SHAKER POSITION 
FOR ALL MODES 

+0.4 

FIGURE 7.34.—Experimental data for a 45° delta 
cantilever plate; material, 6061-T6 aluminum J/g 
inch thick, (a) Experimental node lines and data 
points; /1=118.1  cps; /2=448.5 cps; /3=670.5  cps. 
(b) Normalized deflection; mode 1; /i= 118.1  cps. 
(c) Normalized deflection; mode 2; /2= 448.5 cps. 
(d) Normalized deflection; mode 3;/3=670.5 cps. 
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CLAMPED EDGE 
-0.33 -0.18 -0.03 +0.12 +0.27 +0.40 

{=0.65 

£=0.78 

-0.80 
• SHAKER POSITION- 

NO DEFLECTION DATA 

+0.12 +0.27 +cft 

£=0.35 

■ü£=0.06 

ö£=0.50 

^£=0.65 

FIGURE 7.35.—Experimental data for a 31° delta 
cantilever plate; material, 6061-T6 aluminum }-g 
inch thick, (a) Experimental node lines and data 
points; /i=50.2 cps; /2=212 cps; /8= 316.5 cps; 
/4=524 cps; /5= 809 cps. (6) Normalized deflection; 
mode 1; /!=50.2 cps. (c) Normalized deflection; 
mode 2; /2=212 cps. (d) Normalized deflection; 
mode 3; /3= 316.5 cps. (e) Normalized deflection; 
mode 4; /4=524 cps. (/) Normalized deflection; 
mode 5;/5= 809 cps. 
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FIGURE 7.36.—Experimental data for a 26.6° delta cantilever plate; material, 6061-T6 
aluminum \i inch thick, (a) Experimental node lines and data points; /i=71.2 cps;/2=300 
cps;/3=508 cps. (&) Normalized deflection; mode l;/i=71.2 cps. (c) Normalized deflection; 
mode 2;/2=300 cps. (<i) Normalized deflection; mode 3;/a=508 cps. 
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Consider finally the triangular cantilever 
plate of general shape as shown in figure 7.37. 
In reference 7.29 this problem was also (see 
discussion earlier in this subsection) solved ana- 
lytically for a sheet steel plate having dimen- 
sions a=10 inches, 6=10 inches, /32= 116.6°, 
and A=0.061 inch. Material constants were 
taken as !/=0.250 and £=30X 106 psi. Thirty- 
one grid points were used in the analysis. The- 
oretical frequencies are compared with experi- 
mental ones in table 7.14. Nodal patterns for 
the five higher modes are depicted in figure 
7.38. 

Frequencies and nodal patterns were found 
experimentally in reference 7.23 for sheet 
steel plates having a=10.0 inches, 6=10.0 
inches, h=0.0Ql inch, and /32=63.4°, 78.7°, 90°, 

101.3°, and 126.6°. Results for the first six 
modes are shown in figure 7.39. 

Klein (ref. 7.34) proposed a set of empirical 
formulas for the prediction of frequencies of the 
first three bending modes and the first torsional 
mode for arbitrarily shaped triangles. These 
formulas are given in table 7.15. 

The planform dimensions used on both sides 
of the formulas in table 7.15 are those of 
figure 7.40. Substantiation of the formulas of 
table 7.15 was given in reference 7.34 by com- 
parison with the experimental results of refer- 
ence 7.23. These data are reproduced in table 
7.16. The plate designations used are those 
shown in figures 7,25 and 7.39. 

The vibration of C-F-F triangular plates is 
also discussed in references 7.35 and 7.36. 

4   a  » 
y 

1 

^s*C 
,  b 
s 
/ 

^^a\ s 
S^    J y 

<4 

-^^A" 1 

FIGURE   7.37.—C-F-F   triangular   plate   of   general 
shape. 

TABLE 7.14.—Cyclic Frequencies for a C-F-F 
Triangular Steel Plate; v=0.25 

Cyclic frequency, cps 

Mode 
Theoretical Experimental Theoretical 

Experimental 

1  
2  
3  
4  
5  
6  

27.6 
107 
173 
262 
352 
480 

26.3 
101 
171 
259 
346 
522 

1.05 
1.06 
1.01 
1.01 
1.02 
.92 

Mode 6 

 Experimental 

A    Calculated 

FIGURE 7.38.—Nodal patterns for a C-F-F triangular 
steel plate. 
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FIGURE 7.39.—Experimentally observed cyclic frequencies, cps, and nodal patterns for C-F-F triangular steel 
plates. (From ref. 7.23) 

Median 
Angle Bisector 

FIGURE 7.40.—Planform dimens;ons of a C-F-F tri- 
angular plate of arbitrary shape. (After ref. 7.34) FIGURE 7.41.—F-F-F 45° right triangular plate. 
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TABLE 7.15.—Empirical Formulas for Calculating the Frequencies of C-F-F Triangular Plates of 
Arbitrary Shape 

Mode Frequency formula 

1st bending  wo?Vp/D=[7.14—(0.46/ai)]Vsec 02 

2d bending  wo2-\/p/D=[31 — (2b/oi) — 2-y/sec 02— UVsec 02 

3d bending  .  «a2Vp/D=[73-4(6/a1)
2]{l + [sin 02-(6/2a2)Wsec 02-l} 

1st torsion  <*ablplD= |20[l + 0.2(6/a2)2J2+30(6/a2)Vsec 02-l}(a,/&) 

TABLE 7.16.—Cyclic Frequencies Computed From Empirical Formulas ComparedWith Test Results 
for C-F-F Triangular Plates; Material: Steel 

Frequency, cps, computed from— 

Plate 
Bending type modes 

Torsional   mode 

fi h /a 

Formula Test Formula Test Formula Test Formula Test 

Al  32.5 
35.3 
38.3 
39.6 
40.6 

32.8 
34.5 
37.5 
38.4 
40.2 

92 
140 
160 
168 
173 

91 
136 
161 
165 
172 

179 
325 
386 
401 
414 

181 
325 
392 
403 
411 

164 
192 
245 
330 
598 

164 
A2  190 
A3  243 
A4  338 
A5  608 

SI  39. 1 
37.8 
35.3 
31.6 
26.6 

38.5 
37.8' 
34.5 
32.4 
26.3 

168 
156 
140 
121 
98 

169 
151 
136 
120 
101 

400 
365 
325 
293 
255 

404 
363 
325 
293 
259 

167 
194 
192 
179 
166 

166 
S2  186 
S3           190 
S4  182 
S5    171 

7.1.9   F-F-F 

Waller (ref. 7.37) experimentally investigated 
completely free 45° right triangular plates. 
The modes were classified as m/n according to 
the corresponding products of beam functions, 
namely, 

W(x, y) =AmnXn(x) Yn(y) ± BmnXn(x)Ym{y) 

(7.13) 

where x and y are as shown in figure 7.41 and 
the beam functions apply to beams of length a. 
Cyclic frequencies were obtained for a brass 

plate having dimensions a=8.86 inches and 
h= 0.102 inch and are given in table 7.17 along 
with frequency ratios relative to the funda- 
mental frequency. Corresponding nodal pat- 
terns are shown in figure 7.42. Nodal patterns 
for some higher nodes are shown in figure 7.43. 

Some nodal patterns obtained for free equi- 
lateral triangular plates (ref. 7.38) are depicted 
in figure 7.44. 

7.2   OTHER SUPPORTS AND CONDITIONS 

The problem of a simply supported 30°-60°- 
90°  triangular  plate with  an internal point 
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support at £, i\ (see fig. 7.45) was studied by 
Solecki (ref. 7.10). Frequency parameters for 
the first three modes and for various locations 
of the point support are given in table 7.18. 

The isosceles right triangular plate with all 
edges free and having hub-pin supports (see 
fig. 7.46) was investigated experimentally by 
Craig, Plass, and Caughfield (refs. 7.32 and 
7.33). Pertinent dimensions, cyclic frequen- 
cies, and the nodal patterns of the first four 
modes of vibration are shown in figure 7.46. 
Corresponding mode shapes are plotted in 
figure 7.47. 

TABLE 7.17.—Cyclic and Relative Frequencies 
for a F-F-F 45° Bight Triangular Brass 
Plate 

[Relative frequency ratios are in parentheses] 

m 

Cyclic frequency, cps, for values 
of n of— 

0 1 2 3 

2 162 
(1) 

414 
(2. 56) 

862 
(5. 32) 

1380 
(8. 54) 

227 
(1.4) 

590 
(3. 65) 

1078 
(6. 62) 

1670 
(10.3) 

380 
(2. 36) 

710 
(4. 39) 

1350 
(8. 36) 

2000 
(12.4) 

3  1090 

4  
(6.8) 

1690 

5  
(10.4) 

2490 
(15.4) 

TABLE 7.18.—Frequency Parameters uh^p/Dfor 
a SS-SS-SS 30°-60°-90° Triangulär Plate 
With an Interior Point Support 

i 
b 

aV-^p/D for mode— 

a 
1 2 3 

0. 10 0.50 97. 91 205. 29 258. 19 
.20 .50 99.88 216. 34 261. 35 
.25 .50 101. 06 219. 50 263. 32 
.30 .50 101. 85 220. 29 264. 51 
.40 .50 101. 85 189. 10 259. 77 
.50 . 167 129. 88 216. 34 276. 35 
.50 .250 152. 39 206. 08 249. 90 
.50 .333 140. 15 175. 28 250. 29 
.250 .250 170. 55 170. 94 276. 35 
.333 .333 147. 25 233. 71 264. 11 

BA. HDk. MSk Hfe*. 

FIGUBE 7.42.—Nodal patterns for a F-F-F 45° right 
triangular plate; material, brass. (From ref. 7.37) 

BE^ 
4/4 6/1 

Ik   Ik 
6/2 7/2 6/4 

FIGURE 7.43.—Nodal patterns for some higher modes of 
a F-F-F 45° right triangular plate; material, brass. 
(From ref. 7.37) 
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FIGURE 7.44.—Nodal patterns for a F-F-F equilateral 
triangular plate; material, brass. (From ref. 7.38) 

ROTATIONAL 
CONSTRAINT POINT 

7-^-IN. 

SHAKER POSITION 
FOR ALL MODES 

FIGURE 7.46.—Cyclic frequencies and nodal patterns 
for an isosceles right triangular plate with hub-pin 
supports; material, 6061-T6 aluminum }{ inch 
thick. /! = 76.9 cps;/2=297 cps;/3=390 cps;/4=841 
cps. 

FIGURE 7.45.—SS-SS-SS 30°-60°-90° triangular plate 
with internal point support. 
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+ 1.20T 

20      +0.32 

FIGUEE 7.47.—Normalized deflections of a 45° triangular hub-pin plate; material, 6061-T6 aluminum, (a) Mode 1; 
£=76.9 cps. (&) Mode 2; /2=297 cps. (c) Mode 3; /3=390 cps. (d) Mode 4; / =841 cps. 
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Plates of Other Shapes 

Chapter 8 

8.1   POLYGONAL PLATES 
Well-known analogies (refs. 8.1 and 8.2) 

exist between the separate problems of trans- 
verse free vibration and buckling of a polygonal 
plate simply supported all around and the 
problem of the transverse vibration of a 
prestretched membrane having no deflection at 
its edges. 

The governing differential equation for the 
vibrating membrane is 

VW+ fejr) w=o (8.1) 

where W= W(x, y) is the transverse deflection, 
pm is the mass density per unit area, cam is the 
frequency, and T is the membrane tension 
(force per unit length). Operating on equation 
(8.1) by V2 and substituting for V2W from 
equation (8.1) give the resulting equation 

VW- -(^)V=0 (8.2) 

which is identical to equation (1.4) except for 
the constant coefficient of W. Furthermore, if 
W=0 along the polygonal boundary of the 
membrane, then by equation (8.1) V2W is also 
zero, which satisfies the boundary conditions 
for the simply supported plate. Thus a com- 
plete analogy exists between the two problems, 
and the frequency of the plate can be obtained 
from that of the membrane through the 
correspondence 

%~i*f)' (8.3) 
Again,  operating on  equation  (8.1)  by V2 

gives 

VW+(^)w=0 (8.4) 

which is of the same form as the differential 
equation governing the buckling of a plate 
under the action of the inplane forces 
NX—NV=NQ (a constant; i.e., hydrostatic 
pressure): 

V¥+:|v¥= = 0 (8.5) 

Again, the homogeneous boundary conditions 
for the simply supported polygonal edges of 
the plate are satisfied by the conditions around 
the membrane. Thus the following corre- 
spondence exists: 

D 
Pm<*n (8.6) 

where (N0)„ is the critical buckling load of 
the plate; that is, the eigenvalues which 
satisfy the homogeneous boundary conditions. 

Finally, from a comparison of relationships 
(eq. (8.3) and eq. (8.6)), it is seen that the 
following correspondence exists between the 
plate vibration and plate buckling problems 
(when, of course, all edges are rectilinear and 
simply supported): 

WV: p. 
D 

(iVo)c 
D 

(8.7) 

Results given for polygonal plates having all 
edges simply supported in the sections that 
follow are taken from literature which dealt 
directly with the plate problem. For further 
results which can be obtained through the 
analogy (eq. (8.3)), the reader is directed to the 
published literature dealing with membrane 
vibrations. 

8.1.1    Pentagons 

Kaczkowski (ref. 8.3) analyzed the regular 
pentagon of side a (fig. 8.1) for the case when 
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FIGURE 8.1.—Regular pentagon. 

all edges are simply supported, 
deflection function 

He chose a 

•^»HS^WOrWä 
+Bt -W(?)Wf*"^ 

(8.8) 

which exactly satisfies the symmetry conditions 
along AB and the simply supported conditions 
along OA. The symmetry conditions along 
OB yield a characteristic determinant for the 
problem. The fundamental frequency was 
found to be wa2Vp/D= 10.863. 

Waller (ref. 8.4) experimentally found several 
nodal patterns for a completely free regular 
pentagon.    These are exhibited in figure 8.2. 

8.1.2    Hexagons 

The fundamental frequency of a regular 
hexagon of side length a and simply supported 
along all sides was determined by Kaczkowski 
(ref. 8.3) to be M

2
^^[D= 6.961 by using the 

method described in the previous section. 
Conwäy (ref. 8.5) solved the problem by the 
point-matching method, using the solution in 
polar coordinates (eq. (2.1)) and satisfying 
boundary conditions at all corners, midpoints, 
and quarter points of the sides. This gave the 
fundamental frequency as wa%/p/Z)=7.129. 
The problem is also discussed in references 
8.2 and 8.6. 

Nodal patterns for completely free regular 
hexagonal plates were determined experimen- 
tally by Waller (ref. 8.4) and are exhibited in 
figure 8.3. 

(••■sfJS-W'i rnmfm-*? 
FIGURE 8.2.—Nodal patterns of completely free regular pentagonal plates. (From ref. 8.4) 

FIGURE 8.3.—Nodal patterns of completely free regular hexagonal plates. (From ref. 8.4) 
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FIGURE 8.4.—Nodal patterns of completely free regular octagonal plates. (From ref. 8.4) 

8.1.3    Other Polygonal Plates 

The fundamental frequency of a regular 
octagonal plate of side length a and simply- 
supported along all edges was computed to be 
coaVp/-0= 3.624 in reference 8.3. The method 
used was that described in the discussion of 
pentagons (sec. 8.1.1). 

Experimentally observed nodal patterns for 
completely free regular octagonal plates are 
set forth in figure 8.4 (ref. 8.4). 

8.2   SECTORIAL PLATES 

Coordinates and dimensions of a circular 
sector are shown in figure 8.5. 

8.2.1    Radial Sides Simply Supported 

An exact solution is obtainable for the case 
when the two radial edges are simply sup- 
ported, regardless of the homogeneous bound- 
ary conditions which exist along the circular 

edge. If one takes solutions to equation (1.4) 
in the form of equation (2.1) with n=ir/2a, 
3ir/2a, . . . (fig. 8.5), satisfaction of the bound- 
ary conditions along the circular edge yields a 
second-order characteristic determinant for the fre- 
quencies of symmetric modes. Similarly, the 
antisymmetric modes are determined by re- 
placing cos nd with sin nd where n=ir/a, 
3x/a, .... In spite of the relative simplicity 
of this approach, the only known solutions of 
this type are those for which n is an integer 
and which correspond to the higher modes of 
a circular plate. 

Westmann (ref. 8.7) solved the case when 
the circular edge is free by using the Rayleigh 
procedure, assuming a deflection function 

W(r,ß)=r2 cos nd (8.9) 

FIGURE 8.5.—Circular sector. 

and obtained the following approximate for- 
mula for the fundamental frequency parameter: 

coVp/Z>=3(w4-27i2+8)-^6n2-8)    (8.10) 

For the case when n=S (2a=60o), results for 
w obtained from equation (8.10) for v=0 and 
v= 1/3 are determined (ref. 8.7) to be 4.8 and 
5.5 percent too high, respectively, when com- 
pared with an exact solution obtained from the 
threefold symmetric mode of a completely free 
circular plate (see sec. 2.1.3). 

8.2.2   Other Boundary Conditions 

Ben-Amoz (ref. 8.8) used the Rayleigh-Ritz 
method to solve the problem when all edges are 
clamped.   A deflection function 

PF(r,0) = S2(l-r)2[Ci(coshYi0+cos720) 

+02 (cosh7!0—cos720)+C3 (sinh7X0 

+sinY20)+C, (sinh7!0—sin Y20)]    (8.11) 
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was used, where 

yi,2=[(a2o+p0-b0)
ll2±ao\ 

J0=?(m+2)(2+3m+2m2) 

m =-rj2a 

£=r/a 

u ¥p (m+1) (2m+1) (3m+2) 

VIBRATION  OF  PLATES 

2>o 9Z>  (m+3)(m+6)(2m+3)  J 

(8.12) 

This function satisfies the clamped edge condi- 
tions at r=a exactly. Substituting equation 
(8.11) into the boundary conditions at 6—±a 
yields the characteristic equation 

cosh -^- cos -=-= 1+^sinh^sin^   (8.13) 
71Y2 2 2 

Variation of the fundamental frequency with 
sectorial angle is shown in figure 8.6. 

The case when the two radial edges are 
clamped and the circular edge is free was ana- 
lyzed in reference 8.7 by using the Rayleigh 
procedure and an assumed mode 

W(r, 0)=r2(l+cosm0) (8.14) 

giving a fundamental frequency parameter of 

co2aV/I>=(m4-2m2+24)-K6m2-24)    (8.15) 

where m is taken as ir/a. 
Waller (ref. 8.4) experimentally observed the 

two nodal patterns shown in figure 8.7 for a 
completely free semicircular plate. 

8.3   OTHER PLATES 

Grinsted (ref. 8.9) experimentally determined 
the frequencies and mode shapes of a flat brass 
plate designed to simulate an impeller blade. 
The plate was 0.064 inch thick, and the remain- 
ing dimensions are given in figure 8.8. Mode 
shapes observed, along with the corresponding 
cyclic frequencies, are depicted in figure 8.9. 

In reference 8.9, experimental results are 
also given for a cantilevered plate of irregular 
shape intended to simulate a marine propeller 
blade. Dimensions of the plate and cyclic fre- 
quencies are given in figure 8.10.    Correspond- 

IDU 

100 

50 

n 
60° 2a 120° 180" 

FIGURE 8.6.—Fundamental frequency parameter for 
completely clamped sectorial plate. (After ref. 8.8) 

FIGURE  8.7.—Nodal patterns for a  completely free 
semicircular plate. (From ref. 8.4) 

ing mode shapes are shown in figure 8.11.    The 
material is mild steel. 

Ruscoe (ref. 8.10) experimentally found 
several "complex modes" of a flat plate in the 
shape of a turbine vane having a curved edge 
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Clamped Edge 

241 

FIGURE 8.8.—Dimensions of a flat-plate model of an 
impeller blade; R, radius. (After ref. 8.9) 

FIGURE 8.9.—Cyclic frequencies and mode shapes for a fiat-plate model of an impeller blade. (From ref. 8.9) 
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I I 2 3 4 5 6 7 

Number of Nodal Lines,n 

FIGURE 8.10.—Plate dimensions and cyclic frequencies for a flat-plate model of a marine propeller 
blade. (After ref. 8.9) 



PLATES  OF  OTHER   SHAPES 243 

249 I/O      415 O/l       889 l/l      1,135     0/2 + 2/0        1,365    2/0 -0/2 

1,819 1/2       2,155        2/1+0/3      2,202 0/3      2,418       2/1-0/3       3,009 1/3 

3,343 3/0      3,416      2/2+0/4       3,804    2/2-0/4      4,470     1/4 +3/1       4,760 3/1 

5,558     2/3+0/5      6,098       1/5-3/2      4,934     2/3-0/5      6,245 4/0      6,517        3/2-1/5 

7,542     0/6+4/1      7,987 4/1      8,594     1/6+3/3      9,744     0/7+4/2      10,000 5/0 

FIGURE 8.11.—Nodal patterns and cyclic frequencies for a flat-plate model of a marine propeller blade. (After ref. 8.9) 
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clamped and two straight edges free as shown 
in figure 8.12. Frequencies were given but 
plate dimensions were unspecified. 

The problem of a plate of epicycloidal shape 
clamped on its contour is studied in reference 
8.11.    No numerical results are given. 

In reference 8.12, a method for analyzing 
plates having two parallel edges of general cur- 
vilinear shape and simply supported is pre- 
sented. No numerical vibration results are 
included. 

Some bounds on frequencies of clamped plates 
of irregular shape are discussed in references 
8.13 and 8.14. 

FIGURE 8.12.—Some mode shapes of an irregular plate. 
(After ref. 8.10) 
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Anisotropie Plates 

Chapter 9 

No work in the literature has been found for 
the case of general anisotropy. Results for 
the special cases of polar and rectangular 
orthotropy are summarized in the following 
sections. 

9.1   POLAR ORTHOTROPY 

The differential equation for the transverse 
bending of a polar orthotropic plate is (see the 
appendix): 

dr4 ör2 Ö02 b04 
2Dr<Pw 

r  or3 

2DTe d3w     Aö2w, 2 b2w 
—r^br~W~V w+?{ne+Drt) Ö02 

. Deöw .    ö2w__ 

Assuming a variables separable solution 

(9.1) 

CO 

w='22Wn(r) cos nö cos U (9.2) 
n=0 

and  substituting it  into  equation   (9.1)   give 

dW»   2n2DredWn , n*D,Wn , 2DTd*Wn 
D, dr-4 dr2 r    dr3 

2n*DTedWn   D,d'W%    2«,2
m,n. 

dr flT* 

DtdWn 

r3   dr 
■/KOW,=0    (9.3) 

where 

an=l- 

a12=l- 

("/£)2 («/«* 

The solution to equation (9.3) can be expressed 
as a power series 

W»=rlSoJr' (9.4) 

as was shown first by Akasaka and Takagishi 
(ref. 9.1) and later in references 9.2, 9.3, and 
9.4. Substitution of equation (9.4) leads to a 
recursion relationship among the coefficients a}. 

Results exist for circular plates for only two 
cases of simple edge conditions—when the 
edge is either completely clamped or simply 

supported. 

9.1.1    Clamped Circular Plate 

The coordinate system and dimensions for 
a clamped circular plate are shown in figure 2.1. 
Boundary conditions are stated in equation 

(2.2). 
For axisymmetric modes (n=0) certain 

terms in equation (9.1) disappear; that is, 
terms containing derivatives with respect to 0. 
Akasaka and Takagishi (ref. 9.1) used the 
infinite series (eq. (9.4)) to formulate a second- 
order characteristic determinant for the 
frequencies 

an 
«21 

«12 

ß22 
= 0 (9.5) 

"(4)(2)(9-F)+(4)(2)(9-F)(8)(6)(49-F)"r 

Hi)2 , (<o/£)4 

~(5+k)(3+k)8(2+ky(5+k){Z+k)8(2+k)(9+k)(7+k)lH±+k) 
+ 

("/I)2 

>[' 
(<o/£)2 

a21~2(9-P)LlT(6)(4)(49-&2)" •] 
«22 = 1 + V&- 8(2+&)(3+fc) 

(9.6) 
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and where £2=A-/pa4 and k2=De/Dr. An ap- 
proximate formula for the first two axisym- 
metric modes is obtained from equation (9.5) by- 
truncating the series and is given in reference 
9.1 as 

WplDr- 24(3+fc) 
5+k 

[(4+Ä)(7+*) 

/(4+fc)(7+*)(64+19ft+fca)"|    (9.7) 

where terms of degree («/Ö4 and lower are 
retained. Letting k2=De/Dr=l gives «/ij= 
10.23 and 34.3 for the first two axisymmetric 
frequencies of an isotropic plate; these values 
compare with the values of 10.22 and 39.77 
from the discussion of the clamped circular 
plate (sec. 2.1.1). 

Borsuk (ref. 9.2) solved the problem by ex- 
pressing the series (eq. (9.4)) in terms of 
hypergeometric functions. He presented closed- 
form expressions for the frequency equations 
for all values of n given in terms of the hyper- 
geometric functions. The only numerical result 
given is for the axisymmetric case (n=0) and 
VA/A-=1.4 and is wa2-yJP/Dr=4:.55. However, 
because this value is much lower than the value 
of 10.22 for the isotropic plate and because 
values of De/DT greater than unity should 
further stiffen the plate, this result is clearly 
questionable. 

The first antisymmetric frequency parameter 
(w=l) is given in reference 9.1 as 

ua- w "(4+VA+T2ZV) 
(2+V^±^)J 

(9.8) 

The fundamental frequency parameter for 
the case when a concentrated mass M is 
attached at the center is given in reference 
9.1 as 

u>a 'ylfiryi 
8(3+k)(2+k) 

/2M\(3+k)(2+k) 
+ UV     (1+*)2 

(9.9) 

Pandalai  and  Patel   (ref.  9.4)   also  solved 
the problem by using the infinite series (eq. 

(9.4)) and obtained the following characteristic 
equation for arbitrary values of n: 

(.2 onj\»+>)[ t, (»+j+2)ZV,+ax»+'+1l 
\j=0,4,8 /U=0,4,8 J 

=r S (»+i)C^x-+^-i¥ fj z>„,,+2x»+'+2) 
L;'=0,4,8 J\J'=0,4,8 / 

(9.10) 
where 

Cnj=Anj/An0 

Dn,j+z=Anyj+2iAn2 

An,i=An,i^/{(n+i)(n+i-2)[(n+i-iy-ß] 
+n2[(n2-2)ß-2(a+2y)(n+i~l)2]} 

a=ETe/ET 

ß=Es/Er 

and 

y=G/Er 

and where Er, E>, Ere, and G are the material 
constants from the stress-strain relationships 

and 

(Tr=Erer
JrErsee' 

<re=EreeT-{-Esee 
TTe=Gyre 

12coVp 
Erh

3 

(9.11) 

(9.12) 

If the infinite series of equation (9.10) are 
truncated to include terms up to the degree 
271+4, a first approximation for the eigenvalue 
X is given by 

X4=l/«7„.1-3ön6) (9.13) 

which for the fundamental frequency   (n=0) 
reduces to 

X4=2 (9-/3) (25-/3) (9.14) 

In reference 9.3 the same series solution was 
assumed and a frequency equation was written, 
but no numerical results were given for the 
problem. 

9.1.2    Simply Supported Circular Plate 
The coordinate system and dimensions for a 

simply supported circular plate are shown in 
figure 2.2.    The boundary conditions are stated 
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in equation (2.9). Minkarah and Hoppmann (ref. 9.3) solved the problem for axisymmetric modes 
by assuming the series solution (eq. (9.4)") and arrived at the frequency equation 

™ [>,' (*)+£*".(X)] =^(X) \_Fi W+-F', (X)] (9.15) 

where 

(or) {ar)s 

^(r)-1+(2)(4)(9-*2)+(2)(4)(6)(8)(9-*2)(49-*2) + ■ 

(or)'1 

(2)2'(2j)!(9-*2)(49-*2)...[(4j-l)2-*2] 

(or)8 

*s(r)-r     L1+8(2+A.)(3+)t)(5+£r (8)(16)(2+*)(3+*)(4+*)(5+*)(7+*)(9+*) 
(ar)12  

" (8) (16) (24) (2+k) (3+*) (4+*) (5+*) (6+Jfc) (7+*) (9+*) (11+*) (13+*) ■] 
ai=oi2plD„ \=aa, k2=DelD„ and ve is the elastic 
constant in the axisymmetric relationship 

Mr: n /d2w   ^dttA 
"^rVdr2 + r- dr/ 

The primes indicate differentiation with respect 
to r. 

Axisymmetric frequency parameters for vari- 
ous combinations of elastic constants are given 
in table 9.1 taken from reference 9.3. 

Experimental frequencies were also measured 
in reference 9.3 for the plate of table 9.1 having 
*=1.50,  »„=0.50,  and Z>r=11500.    The cor- 

TABLE 9.1.—Axisymmetric Frequency Param- 
eters far a Simply Supported Circular Plate 
Having Polar Orthotropy 

Elastic constants wo2Vp/Dr 

k "8 Dr Mode 1 Mode 2 Mode 3 

0 25 0.22 
.40 
.30 
.70 
.75 
.75 

1.00 
.50 
.75 
.50 
.35 

10.70X10« 
4.75 
5.20 
2. 64 
1.88 
1.60 
1.33 
1.50 
1.08 
1. 15 
.95 

2. 500 
3.629 
3.452 
4.765 
5.518 
5. 518 
6.472 
5.934 
6.906 
6.646 
7. 188 

50 
50 

.75 
1.00 
1.00 
1.25 
1.25 
1.50 
1.50 
1.75 

28. 249 
30. 206 
30. 206 
32. 524 
31. 843 
34. 047 
33. 791 
35. 557 

71. 572 
74. 132 
74. 132 
76. 562 
76. 318 
81. 000 
79. 924 
83. 174 

responding frequency parameters and nodal 
patterns are shown in figure 9.1 for the first 
five axisymmetric modes and the first four 
nonaxisymmetric modes. 

In reference 9.4 the frequency equation is 
written as 

( S  Cnj\
n+1)I S l(n+j+2)(n+j+l+a) 

\;=0,4,8 /   1^=0,4,8 

J \j=0,4,8 / 
-an* 

{ S  i(n+j)(n+j 
7=0,4.8 

-l+a)-an2]CnJX n+j-2 I (9.16) 

where the terminology is the same as that used 
in the discussion of clamped circular plates 
(sec. 9.1.1). Equation (9.16) is obviously ap- 
propriate for general vibration modes of the 
plate. Truncating the infinite series contained 
in equation (9.16) to include terms up to the 
degree 2n+4 gives the following equation for 
frequency parameters: 

Xss— (ISr>      <*•"> 
Here Xss and Xc are the frequency parameters 
(12wVp/£'r/i-

3)1/4 for the simply supported and 
clamped cases, respectively, and the symbol a 
is defined in the discussion of the clamped 
circular plate (sec. 9.1.1). The parameter Xc 

is given by equation (9.13). 
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ojazv£7Dr=7.80 

(a) 

= 15.77 

(b) 

FIGURE 9.1.—Experimentally determined frequency parameters &>a2Vp/Dr and nodal patterns for a simply supported 
circular plate having polar orthotropy.    (a) Axisymmetric modes.    (&)  Nonaxisymmetric modes. (After ref. 9.3) 

A frequency determinant for the problem 
is also presented in reference 9.2, although no 
numerical results are given. 

9.1.3    Other Shapes 

Pyesyennikova and Sakharov (ref. 9.5) 
treated the problem of the annular plate having 
inside radius a and outside radius b for the 
axisymmetric modes of two cases of boundary 

conditions   by   using   the   Boobnov-Galerkin 
method. 

For the case of the inner boundary free and 
the outer boundary clamped, a deflection 
function 

TFi(Ö = A„Jo(aÖ+A12F0(aÖ 

+ A„/0(aÖ + AÄaÖ     (9-18) 
was chosen, where %=r/b, ai=ui2p/Dr, 

Aj2 = 

Al3 = 

Ai*= 

Fo(a) 
-Y(a) 

-Ym(a,a/b) 

Ma) 

-Joi(a,a/b) 

Ma) 
-Ma) 

-M(<*,a/b) 

Ma) 
-Ma) 

-J01(a,a/b) 

Ma) 
Ma) 

I01(a,a/b) 

.   Ma) 
Ma) 

I0i(a,a/b) 

Yo(a) 
~Y,{a) 

-Y01(a,a/b) 

Y0(a) 
-Y1(a) 

-Y01(a,a/b) 

-K0(a) 
Kr(a) 

—K0l(a,a/b) 

K0(a) 
-Xi(a) 
K0i(a,a/b) 

-K„(a) 
K,{a) 

—K01(a,a/b) 

Ma) 
Ma) 

Ioi(a,a/b) 
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Joi(a, afi) = J0(aalb) - 

Y0l(a,a/b)=Y0(aa/b)- 

aa/b 

aa/b 

Ji(aa/b) 

Yl(aa/b) 

l-ve Im{a, alb) =I,(Mlb)-^^Uaalb) 
aa/b 

K01{a,a/b)=K(,(aa/b)- 
aa/b Kxiaa/b) 

and the terms Jt, Yt, It, and Kf are the regular and modified Bessel functions. (See discussion 
of solutions of classical plate equations (sec. 1.1.2).) The characteristic determinant giving « is 

M«) 
-Mod 

—M(a,a/b) 
(l-A)Maa/b) 

Yo(a) 
-T1(a) 

— Y01(a,a/b) 
(l-A)Y1(aa/b) 

/«>(«) Ko(a) 
IM -KM 

I0l(a,a/b) K0i(a,a/b) 
(l+AiMaa/b) -(l+AjK^aa/b) 

= 0       (9.19) 

where 
,_l-{DelDr) 

(aa/b)2 

Frequency parameters for varying ratios of a/b 
and Do/Dr are depicted in figure 9.2. In order 
for the results of figure 9.2 to be completely 

wb2v^ö7ü. 

0.3 0.5 
a/b 

FIGURE 9.2.—Frequency parameters for a clamped-free 
annular plate having polar orthotropy. 

definitive, the value of either vr or ve must be 
known. Unfortunately, neither is given in 
reference 9.5. 

For the case of the inner boundary free and 
the outer boundary simply supported, a deflec- 
tion function 

TF2(Ö = A21J0(aÖ + A22Fo(aÖ 
+ A23/0(«Ö+A2Ä(a?j     (9.20) 

was chosen, where 

Asi= 

A22= 

A23= 

A24= 

-r„(«) 
r01(«,i) 

Y01(a,a/b) 

Ma) 
—M(a,i) 

—M(a,a/b) 

-Ma) 
M(a,l) 

M(a,a/b) 

Ma) 
—M(a,l) 

—M(a,a/b) 

'  h(a) 
/oi(a,l) 

Ioi(a,a/b) 

h(a) 
7oi(a,l) 
I0i(a,a/b) 

Y0(a) 
-r01(«,i) 

— Y01(a,afb) 

Yo(a) 
-Ym(aA) 

-Y0l(a,a/b) 

K0(a) 
#01 (a, 1) 
K01(a,a/b) 

K0(a) 
Koii«, 1) 
K01(a,a/b) 

#o(«) 
#oi (a, 1) 
K01(a,a/b) 

Ma) 
/oi(«,D 

I0i(a,a/b) 

and where the remaining symbols are as defined earlier in this section.    The characteristic deter- 
minant giving a is 

Ma) 
—M(a,l) 

—M(a,a/b) 
(l-A)Maa/b) 

308-337 O—70 17 

Yo(a) 
-F01(a,l) 

— Y01(a,a/b) 
(l~A)Y1(aa/b) 

Ma) 
/oi(a,l) 
I01(a,a/b) 

(l+A)Maa/b) 

Ko(a) 
Kniet, 1) 

K01(a,a/b) 
■(l+AiKxiaa/b) 

= 0    (9.21) 
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Frequency parameters for varying ratios of a/b 
and D,/Dr are depicted in figure 9.3. The figure 
is not completely definitive for the same reason 
as that given in the preceding paragraph. 

9.2   RECTANGULAR ORTHOTROPY 

The differential equation for the transverse 
bending of a plate having rectangular orthot- 
ropy is (see the appendix): 

a^+2« 
d4w 

xvbx2<)y2~ 

The moment-curvature relations are 

/b2w      dV\ 

, /b2w      i>2w\ 

Mxy=-2Dk 
ü2w 

öxöy 

(9.23) 

Other useful equations are given in the appendix. 
The elastic constants are related by (see the 

appendix) 
EJt     ~ 

Dx 

D, 

12(l-^„) 

EJP 
" " 12(1-V„) 

Dxs=Dxvv+2Dk 

nk= 
12 

(9.24) 

20 

ü»bzv£7Dr    10 

•WTO_     I        m 

a/b 

FIGURE 9.3.—Frequency parameters for a simply sup- 
ported free annular plate having polar orthotropy. 

If the orthotropic constants Dx, Dy, and 
Dxy are known with respect to the x' and y' 
coordinate axes, it has been shown (refs. 9.6 
and 9.7) that the orthotropic constants Dx, Dy, 
and Dxy can be determined from 

DX=DX cos4 <l>-\-Dv sin4 <j>-\-2Dxy sin2 <j> cos2 <j> 

Dy=Dx sin4 4>-\-Dv cos4 tj>-\-2D'xy sin2 <j> cos2 <t> 

Dxv= (3D'x+ZDy-2Dxy) sin2 <£ cos2 <j> 

+Z4(cos20-sin2tf>)2J 

(9.25) 

When the angle <f> between the x'- and the 
x-axis is a multiple of 22.5°, equations (9.25) 
can be used to obtain the equivalent elastic 
constants for equation (9.22). For an angle <j> 
not equal to 22.5°, 45°, 67.5°, . . ., however, 
equation (9.22) is transformed into an equation 
having terms of the type Ww/dx dy3 and tfiv/dx3 

by äs well. 

The assumption of simple harmonic motion 

w=W(x, y) cos <d 

gives for equation (9.22) 

(9.26) 

„ aw, on   aw , n aw    2TJ/ n DX-^-T+2DXV^ , „ ,+Dy-^TT-p^W=0 
aa;4 ' ax2 by2 ay4 

(9.27) 

The strain energy of bending and twisting 
of a plate having rectangular orthotropy, 
expressed in rectangular coordinates, is 

v=iLnm+<m 
a2w a2w +2ö*w+M£i,)2] dA    (9.28) 

For rectangular orthotropic plates having 
either clamped or simply supported edges, 
Hearmon (ref. 9.8) used the Rayleigh method 
to extend Warburton's work (ref. 9.9) for iso- 
tropic plates (see chapter entitled "Rectangular 
Plates" (ch. 4)) to obtain frequency parameters 
for all modes of vibration. The frequencies are 
determined from the equation 

P\ a* 
B'Dy   20DXi 

V  + a2V 
(9.29) 
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where A, B, and C are summarized in table 9.2 
for the various boundary conditions and modes. 
The terms yt and et in table 9.2 are given by 

y0=mv 

Ti 

1%—nir 

«1 

=(n+\y 

9.2.1    All Sides Simply Supported 

This problem of the rectangular plate with 
all sides simply supported (SS-SS-SS-SS) has 
a simple, exact solution. A coordinate system 
is chosen as in figure 9.4. The boundary 
conditions are 

w==0, Mx=0     (for x=0, a) 

w=0, Mv=0     (for y=0, b) 

By using equations (9.23) it is seen that 

tTT       A     .   mirx . mru 
Wmn=Amnsm——sm-jf 

a o 

(9.30) 

(9.31) 

TABLE 9.2.—Frequency Coefficients in Equation [9.29) 

Boundary conditions A B c m n 

/ 
/ 
4 

/////////, 4.730 
4.730 

72 

72 

4.730 
«2 

4.730 
*2 

151.3 
12.30e2(€2-2) 
12.30^(72-2) 

72*2(72—2) («2 — 2) 

1 
1 

2, 3, 4,  . . . 
2, 3, 4,  . . . 

1 
V 

/ 
2, 3, 4, . . . 

1 
'//////// 2, 3, 4,  . . . 

//////// / 
4.730 

72 

«1 

ei 

12.30e1(ci- 1) 
72*1(72—2) (ei —1) 

'l, 2, 3, . . . 
1, 2, 3,  . . . 

/ / / 
/ 

1 
2, 3, 4,  . . . 

/ 

4.730 
72 

«0 

«0 

12.30eo2 

72*02(72 — 2) 

1 
2, 3, 4,  . . . ', 

1, 2, 3,  . . . 
1, 2, 3, . .  . 

71 «l 7l«l(7l—1)(«1 —1) 1, 2, 3, . . . 
/ 
/ / 

1 
1 
i 

1, 2, 3,  . . . 

S/ '///////> 

71 CO 7l«02(7l—1) 1, 2, 3,  . . . 
/ / / / 

1 
 1 

1, 2, 3,  . . . 

70 «0 7oW 1, 2, 3, . . . 1     ! 1, 2, 3,  . . . 
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satisfies the boundary conditions, where Amn 

is an amplitude coefficient determined from the 
initial conditions of the problem and m and fl- 
are integers. Substituting equation (9.31) into 
equation (9.27) gives the frequency 

(9.32) 

This result was obtained by Hearmon (ref. 
9.10)   and by many others. 

The variation of frequency with a/b ratio 
was determined in reference 9.8 for several 
higher modes. This variation is depicted in 
figure • 9.5 for a five-ply maple-plywood 
plate having DJDXV= 1.543 and DV/DXV=4M0. 

The accuracy of the Rayleigh-Ritz method 
as applied to orthotropic plates was studied in 
reference 9.10 by solving this problem using 
a deflection function 

W(x, y)=x(a—x)y(b-y)(a2+ax-x2) 
(b2+by-y2)[A1+A2x(a-x)y(b-y)]   (9.33) 

where Ax and A2 are undetermined coefficients. 
The results obtained by taking only Ax (i.e., 

FIGURE 9.4.—SS-SS-SS-SS plate. 

FIGURE 9.5.—Frequency parameter uab^p/Dxvh
2 for 

SS-SS-SS-SS, C-C-SS-SS, and C-C-C-C five-ply 
maple-plywood rectangular orthotropic plates. (After 
ref. 9.8) 

A2=0) and both At and A2 are given in table 
9.3 for five-ply plywood and veneer square 
plates of birch with the orthotropic constants 
determined experimentally. 

Extensive experimental results are also given 
in reference 9.10 for several types of wood ve- 
neers and plywoods. In references 9.7 and 
9.11, this experimental work is extended to 
study the effect on the frequencies when the 
grain of the veneer or plywood is not parallel to 
the sides of the plate. 

Hoppmann, Huffington, and Magness (ref. 
9.12) simulated a stiffened plate by taking a 
steel plate and milling longitudinal grooves into 
it.    In one case, the grooves were on only one 

TABLE 9.3.—Fundamental Frequency Parameters for a SS-SS-SS-SS Square  Orthotropic Plate 

Properties (i>a?'vp 

Dx Dy DXy 1 term 2 terms Exact 

19. IX108 

2.97 
7. IX108 

.21 
4. 4X108 

.69 
0. 5920X105 

.2137 
0. 5917X105 

.2136 
0. 5916X1Ö5 

.2135 

... 
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side of the plate, and, in the other, they were 
on both sides. The dimensions and spacing of 
the grooves are given in figure 9.6. The plate 
was then considered orthotropic for purposes 
of calculation. The statically measured ortho- 
tropic constants are set forth in table 9.4. 
Nine experimentally measured cyclic frequen- 
cies for each of the plates are listed in table 9.5, 
along with theoretical results as determined 
from equation (9.32) by using the data of 
table 9.4. 

This work was further extended in reference 
9.13 wherein an aluminum plate 11 by 11 inches 
by 0.275 inch thick had grooves 0.625 inch wide 
and 0.210 inch deep milled into one side of it. 
A typical repeating section of the plate was 
0.75 inch wide, thereby giving 15 integral 
stiffeners each 0.125 inch wide across the width 
of the plate. Fifteen cyclic frequencies, both 
theoretical and experimental, are exhibited in 
table 9.6, where the grooves are assumed to run 
in the y-direction (i.e., Dyy-Dx). The corre- 
sponding measured mode shapes are depicted 
in figure 9.7. The problem was discussed 
further in reference 9.14. 

TABLE 9.4.—Orthotropic Constants far Grooved 
Plates 

TABLE   9.5.—Cyclic   Frequencies far   Grooved 
SS-SS-SS-SS Square Plates 

Type of plate 
Orthotropic constants, lb-in. 

Dx Dy Dxv Dk 

1 side grooved____ 
Both sides 

grooved___    _ . 

33 300 

23 250 

26 300 

11 660 

25 210 

18 050 

8920 

6480 

Cyclic frequency, cps, for plate— 

Mode m/n 
Grooved on 1 side Grooved on both 

sides 

Theoret- 
ical 

Experi- 
mental 

Theoret- 
ical 

Experi- 
mental 

1/1  336 
821 

1640 
884 

1345 
2145 
1806 
2251 
3026 

366 
820 

1620 
870 

1330 
2100 
1700 
2180 
2900 

294 
657 

1250 
799 

1175 
1782 
1643 
2022 
2645 

302 
644 

1216 
810 

1152 
1760 
1580 
2040 
2570 

1/2  
1/3  
2/1  
2/2    
2/3  
3/1  
3/2  
3/3  

TABLE 9.6.—Experimental and Theoretical Cy- 
clic Frequencies far a Grooved SS-SS-SS-SS 
Square Plate 

[Theoretical values (from eq. (9.32)) are in parentheses] 

Cyclic frequency, cps, for values of m of— 

1 2 3 4 5 

1 

2 

3 

244 
(238) 
794 

(800) 
1700 

(1950) 

340 
(336) 
940 

(954) 
1800 

(2020) 

538 
(534) 
1020 

(1100) 
1840 

(2150) 

800 
(831) 
1268 

(1344) 
2110 

(2349) 

1152 
(1220) 

1580 
(1689) 
2340 

(2638) 

0.2568 

* 

0.741 • 

I/I6R H° 250 „_      0.2630 

J- 

0.1946 
Cross Section of Plate Grooved 
on One Side Only 

1. r 741- 

H0.25oU- 
JL     J-fV/l6R  J ^_ 

s»_r    T^ "to. 1378 

Cross Section of Plate Grooved 
on Both Sides 

FIGURE 9.6.—Dimensions and spacing of grooves in a stiffened plate. (After ref. 9.12) 
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FIGURE 9.7.—Experimentally observed nodal patterns for grooved SS-SS-SS-SS square plate. (After ref. 9.13) 

Wah (ref. 9.15) made a study in which he 
evaluated the accuracy of simulating the gross 
vibration modes of a beam-plate system by 
means of an orthotropic plate. The cross 
section of a plate having stiff eners of a particular 
size and spacing is shown in figure 9.8. The 
stiffeners are parallel to the z-direction. Both 
materials are assumed to be mild steel. First, 
an "exact" solution to the beam-plate structure 
is found by using classical isotropic plate theory 
for the plate and beam theory for the beams, 
including twisting. Continuity conditions are 
enforced across the stiffeners. This solution is 
compared with the results of orthotropic-plate 

"Half"Stiffener 

Stiffener or Beam 

u 
Simple Support 

FIGURE 9.8.—Cross section of a stiffened plate. (After 
ref. 9.15) 

theory as displayed in table 9.7. The ortho- 
tropic constants used in the orthotropic-plate 
idealization were DI/Z)=3.396, DJD=1, and 
Z>x„/Z?= 1.08, where D is the flexural rigidity of 
the unstiffened plate. The quantity P& is de- 
fined as the mass density per unit volume of 
stiffener, and B is the number of stiffeners. It 
would appear from table 9.7 that orthotropic- 
plate theory gives frequencies that are approxi- 
mately 3 percent too high regardless of the 
stiffener spacing. 

A method for representing a simply sup- 
ported gridwork of beams as an orthotropic 
plate is discussed in reference 9.16. The 
vibration of a SS-SS-SS-SS rectangular ortho- 
tropic plate is also discussed in references 
9.8 and 9.17 to 9.20. 

9.2.2   Two Opposite Sides Simply Supported 

Let a rectangular plate have its sides x=0, 
x—a simply supported as shown in figure 9.9. 
It is easily seen that the solution originally 
suggested by Voigt in 1893 (ref. 9.21) for the 
vibration  of   an  isotropic  plate  having  two 
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TABLE 9.7.—Frequency Parameters -^2^pb[D for a Stiffened SS-SS-SS-SS Rectangular Plate it 

R 

w62 .  
ß2-^Pb/D for values of b/a of- 

Mode 
1.0 0.5 0.333 

Exact Eq. (9.32) Exact Eq. (9.32) Exact Eq. (9.32) 

(             3 2.602 2.660 1.345 1.375 1. 150 1. 176 
4 1.464 1.496 .757 .774 .647 .662 

m=\, n=l 7 .478 .488 .247 .252 .211 .216 
12 . 163 . 166 .0841 .086 .072 .074 

I            20 . 0586 .0599 .0303 .0309 .0259 .0265 

(             3 5.375 5.501 4.346 4.453 4. 181 4.284 
4 3. 026 3. 094 2.447 2.505 2.354 2.410 

m=l, n=2 7 .988 1.010 .7995 .818 .769 .787 
12 . 336 .344 .272 .278 .262 .268 

{            20 . 1211 . 1238 .098 . 1002 .0942 .0964 
C              3 8.043 8.310 ' C        1. 649 1.686 

4 4.556 4.674 .928 .948 
w=2, n=\ 7 1. 492 1.526 \       C) (") <          .303 .310 

12 .508 .519 . 103 . 105 
I            20 . 183 . 187 - I         . 0367 .0379 

(             3 10.34 10.64 (       4. 593 4.706 
4 5.847 5.985 2. 587 2.647 

m=2, n=2 7 1.912 1.954 |        (b) (b) .8450 .8643 
12 .651 .665 .2815 .2941 

{           20 . 2343 .2394 / I         . 1035 . 1059 

"Same as for 6/a= 1, m=n=l. 
bSame as for 6/a=l, m=l, n=2. 

FIGURE 9.9.—Rectangular orthotropic plate having two 
opposite sides simply supported. 

opposite sides  simply supported is  also  ap- 
plicable here.    That is, assume 

W(x,y)=^2Ym(y) sin ax (9.34) 

with a=m,T/a, which clearly satisfies the 
boundary conditions w=Mx=0 at x=0, a. 
Substituting equation (9.34) into equation 
(9.22) yields 

D„^-2a2Dw^p,-+(a^-pco2)Fm=0 

(9.35) 
which has a general solution 

Ym—Am sin fmy+Bm cos i>my 
+ Om sinh <t>my+Dm cosh <f>my    (9.36) 

where 

(9.37) 
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It is seen that equations (9.34) and (9.36) are 
of exactly the same form as equation (4.21) 
for isotropic plates, the only difference being 
in the definitions of the frequency parameters 

\pm and 4>m. 
The standard procedure for satisfying the 

boundary conditions along the sides y=0 and 
y=b, whatever they may be, is substitution of 
equation (9.36) into these conditions. The 
determinant of the resulting four homogeneous 
equations in Am, Bm, Cm, and Dn is then set 
equal to zero for a nontrivial solution. This 
yields an exact solution for the frequencies. 
This procedure was followed by Huffington 
and Hoppmann (ref. 9.19), who presented 
frequency equations and mode shapes for all 
six cases arising from the sides y=0, b being 
either clamped, simply supported, or free, and 
the case of the sides elastically supported. 

It is easily seen that the boundary conditions 
for simply supported or clamped sides are 
identical to those of the isotropic case. It 
was previously mentioned that the solutions 
to the governing differential equations also 
take the same form. Thus, substitution of 
the solution into the boundary conditions for 
the three sets of boundary conditions (SS-SS- 
SS-SS, SS-C-SS-C, and SS-C-SS-SS) would 
yield the same , characteristic determinant 
in terms of ty and <j> as that for the isotropic 
case. However, ^ and (j> are related differently 
than they are in the isotropic case; conse- 
quently, the eigenvalue results (uPp/afD) ob- 
tained for the isotropic problems in the dis- 
cussion of SS-SS-SS-SS, SS-C-SS-C, and 
SS-C-SS-SS rectangular plates (sees. 4.1, 
4.2.1, and 4.2.2) cannot be directly applied here. 

It should be noted that the form of solution 
given by equation (9.36) depends upon \p and 
<t> being real, positive constants. However, by 
looking at equations (9.37) it is seen that, 
depending upon the ratios Dx/Dv and Dxy/Dv, 
the constants ip and <$> may also take on zero, 
imaginary, or complex values. In these cases 
the form of equation (9.36) must be modified. 
A careful study of this phenomenon was done 
in the case of isotropic plates (see the discussion 
of rectangular plates with two opposite sides 
simply supported (sec. 4.2)), but no systematic 

investigation of this has been made for ortho- 
tropic plates. 

By using the Rayleigh method, Hearmon 
(ref. 9.20) gave an alternate form of equation 
(9.29) for determining the fundamental fre- 
quency parameters of rectangular orthotropic 
plates having two opposite sides simply sup- 
ported. Accordingly, the fundamental fre- 
quency parameter is determined from 

M 

/■'(tMf^'G), 

(9.38) 

where J, K, and L are given in table 9.8 for 
the various cases. Fundamental frequency 
parameters for a five-ply maple-plywood plate 
determined by equation (9.38) are also given 

For   the   SS-C-SS-C   plate   (fig. 4.4)   the 
boundary  conditions   are  given  by equation 
(4.25). The frequency equation is given in 
reference 9.19 as 

a2^/sinh06sin^6+#(l-cosh0&cos^6)=O 
Uy 

(9.39) 

with i and 0 as given in equations (9.37). 
The mode shapes are 

^oshij»?/—cosily   ^sinhefty—<j>sm\py 
*™>~ cosh 4>b—cos \fb   ^sinh#&— <j>sm\f/b 

(9.40) 

where \f/ and 4> are the roots of equation (9.39). 
The fundamental frequency parameters of a 
five-ply maple-plywood plate determined by 
this method in reference 9.22 are given in 
table 9.8. 

Kanazawa and Kawai (ref. 9.23) solved this 
problem by an integral equation approach and 
gave numerical results for the fundamental 
frequency parameters of a square having vari- 
ous ratios of Dx/Dy and Dv/Dxy. These are ex- 
hibited in table 9.9. The values computed from 
equation (9.29) are found in reference 9.8; these 
can be compared with the footnoted values in 
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TABLE 9.8.—Fundamental Frequency Parameters for a 5-Ply Maple-Plywood Rectangular Orthotropic 
Plate Having Various Boundary Conditions 

Boundary conditions 
Constants in eq. (9.38) atfjplDy 

Physical 

/ K L Ref. 9.20 Ref. 9.22 
parameters 

//////SS. / 
500. 56 121.5 121.5 94.57 94.56 

!   o  b! 

T=2.0 
0 

^=3.117 >//////;? 

(///////. 
237. 81 113.4 113.4 68.53 68. 52 

„g-0.12 
I              1 

^f=0.648 
Uy 

97.41 97.41 97.41 48.65 48.65 r « "3 i 2_  J 

12.37 -8.5 45.9 26.22 26. 06 !       a     "J / >///*//// 

0 0 29.61 20.70 20.65 1 2_  J 

0 0 0 17.42 17.39 

l               1 

1       a    b| i       a      i 

TABLE 9.9.—Fundamental Frequency Parame- 
ters wa2Vp/LV for SS-C-SS-G Square Ortho- 
tropic Plates Having the Sides x=0 and x=a 
Simply Supported 

Dy 

WO
2
VP/JDI„ for values of Dx/Dxu of— 

Dx„ 
a a 1 2 3 

H  
l 
2  
3  

»21. 052 
23. 049 
28. 124 
36. 160 

»42. 690 

21. 440 
23. 406 
28. 422 
36. 383 
42. 878 

22. 567 
24. 442 
29. 285 
37. 062 
43. 444 

24. 664 
26. 397 
30. 968 
38. 384 
44. 589 

« 26. 595 
28. 226 
32. 507 
39. 662 

» 45. 696 

table 9.9. The values from reference 9.8 are 
wayP/Dxy=2l.O, 26.5, 42.2, and 45.1. 

Frequencies for this problem may also be 
determined from equation (9.29). 

For the SS-C-SS-SS plate (fig. 4.8) the 
boundary conditions are given by equation 
(4.32). The frequency equation is given in 
reference 9.19 as 

<£ tan yj/b=il/ tanh <f>b 

with f and <£ as given in equations (9.37) 
mode shapes are 

a Compare with values from ref. 9.8. Y(y)= 
sinh (j>y    sin tyy 
sinh $b    sin ipb 

(9.41) 

The 

(9.42) 
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where $ and tj> are the roots of equation (9.41). 
The fundamental frequency of a five-ply maple- 
plywood plate determined by this method in 
reference 9.22 is given in table 9.8. The case 
when a/b=10 was also analyzed for the same 
material and gave wa?-yJp/Dy = 1546.68 when 
equation (9.41) was used and 1546.96 from 
equation (9.38). 

For the SS-C-SS-F plate (see fig. 4.10) the 
boundary conditions are given by equation 
(4.36). The - frequency equation is given in 
reference 9.19 as 

(^V-^,252) sinh <fi sin ^b 

+#[(T
2
+8

2
) cosh <j>b cos ^b+2yd]=0     (9.43) 

with f and <f> as given in equations (9.37) and 

y=Dy<t>2—a2DxVy' 

The mode shapes are 

cosh <jyy—cos\fy      ^ sinh <t>y ~4> siu \py 
*     7 cosh #6+5 cos #   \{/y sinh <£&+05 sin \pb 

(9.45) 

Several roots of equation (9.43) were found 
in reference 9.22 for a five-ply maple-plywood 
plate having a/b=2.0 and having the material 
properties listed in table 9.8. The frequency 
parameters for this plate are given in table 9.10. 
The corresponding values obtained by the 
Rayleigh method from equation (9.29) are also 
given in reference 9.22 and are listed in table 
9.10. It should be noted that for m=l and 
7i=3 the "exact" value is not lower than that 
of the Rayleigh method; this indicates round-off 
error in these calculations. 

For the SS-SS-SS-F plate (see fig. 4.11) the 
boundary conditions are given by equation 
(4.40).    The frequency equation is (ref. 9.19) 

tan i^6 _\fa2 

tanh^ö-<£S2 (9.46) 

with ^, <t>, y, and 5 given by equations (9.37) 
and (9.44).    The mode shapes are 

Y(y)- 
sin <fty    7sin^/ 

sinh <j>b    8 sin fb 
(9.47) 

TABLE 9.10.—Frequency Parameters coaVp/Dy 

for a SS-C-SS-F 5-Ply Maple-Plywood 
Rectangular Orthotropic Plate 

n 

coa2Vp/i>i/ 

m 
Exact value 
(eq. (9.43)) 

Rayleigh method 
(eq. (9.29)) 

1 
1 
1 
1 
3 
3 
5 

1 
2 
3 
4 
1 
2 
1 

26.06 
97.68 

254. 68 
490. 98 
161. 72 
212. 04 
439. 74 

26.22 
97.70 

254. 65 
491. 00 
162. 67 
213. 67 
441. 14 

Some numerical results for this problem are 
given in table 9.8. 

For the SS-F-SS-F plate (see fig. 4.12) the 
boundary conditions are given by equation 
(4.44).    The frequency equation (ref. 9.19) is 

(W-<J>254) sinh <j>b sin #> 
+2<^72S2(cosh <j>b cos #-1)=0    (9.48) 

with if?, <j>, 7, and 8 given by equations (9.37) 
and (9.44).    The mode shapes are 

Y(y)-- 
8 cosh 4>y-\- y cos \fy 
75(cosh (f>b—cos tl/b) 

\f/y sinh cfry-]-<l>8sm\py 
ypy2 sinh <j>b—<t>82 sin ^6 

(9.49) 

Some numerical results for this problem are 
given in table 9.8. 

Naruoka and Yonezawa (ref. 9.24) rewrote 
the differential equation (eq. (9.27)) as 

aw 
ÖX4" *& 

ÖW   ,fl,W    pw2 

dz2cty2 ' Dx by"    Dx 
W=0 

where 

K=DJ^DS 

(9.50) 

(9.51) 

In this form it is clear that equation (9.50) is 
factorable if K is either 1 or 0, and these values 
are used in reference 9.24. Furthermore, 
symmetry  is   taken   advantage   of  by  using 
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the x and y-axes  (see fig. 4.12.)  through the 
plate centroid.    Finally, the two cases 

pa 

a \mir/ 

TABLE 9.11.—Ratio of Second and Third Fre- 
quencies to the Fundamental jor SS-F-SS-F 
Rectangular Orthotropic Plates 

(9.52) a 
b 

DjDy 

4 100 200 

1-- 
?, 
  1:1.5:2.6 

1:2.4:6.4 
1:4.8:20 
1:7.1:73 

1:1.1:1.4 
1:1.3:2.2 
1:2.1:5.1 
1:4.0:17 

1:1.1:1.3 
1:1.2:1.9 

4  1:1.9:3.9 
8  1:3.4:13 

are considered, and eight specialized frequency 
equations are given which consider K=0, K=1, 

the separate cases of equations (9.52), and 
symmetric and antisymmetric modes in y. 

Particular attention is devoted in reference 
9.24 to the first antisymmetric mode and the 
second   symmetric   mode,   both   taken   with      fundamental is set forthin table 9.11 for various 
respect to y.    These modes are shown in figure      a/b and DJDU ratios.    Poisson's ratio  and  K 

9.10.   Variation in frequency parameter with      are not given in table 9.11 but are presumed 
Dx/Dy ratio is shown in figure 9.11 for  K=0,       to be 0 and 1, respectively. 
K=1,  and beam theory.    Poisson's ratio  v= For the plate elastically supported on the 
vxy=fyx is taken as zero and a/b=2. Further edges y=0 and y=a (fig. 4.59) and simply 
results for varying a/b ratios are given in figure supported on the other two edges, the boundary 
9.12 for the second symmetric mode. Finally, conditions are given by equations (4.71). The 
the ratio of second and third frequencies to the      frequency equation is (ref. 9.19) 

{Wtf-KiK*?) - tfS^-K&a*) +KiKia
i[<t>2(.82-K1K3a

i)-+2(y2-KlK3a
i)] 

+a2(y+8)2(K1K2<t>2^2-K3Kia
i)} sinh <f>b sin tb+MpyW-K&a^+S2) 

-K2Kia
i(S2+y2-2KlK3a

i)-ai(K2K3+KlKi)(y+8)2] cosh 4>b cos fb 

+a^+8)[-Ksa
2y2+K1<l>282-Kia

2(y2-KlK3a
i)+K^2(82-K1K3a

i) 

+KiKia
i(K3a

2-K1<t>2)] sinh 06 cos ypb+a<ß(y+8)[K3a
282+K^2y2 

+Kia
2(82-K1K3a

i)+Kixfr2(y2-K1K3a
i)-K2Ki(K3a

2+Klt
2)] cosh <$>b sin *b 

-2<l>HyS+K1K3a
i) {y8+KiKia

i)=Q    (9.53) 

with ip, (f>, y, and 8 given by equations (9.37) and (9.44) and the spring constants Ku . . ., Kt 

determined by equations (4.71).    The mode shapes are 

Yiy) = [yp(y8-\-KlK3a
i){y sinh ^b+K2a<l> cosh <j>b) — (j>{82—K1Kza

i){8 sin fb—Kzat cos ypb) 

-\-Kia<t»p{y-\-8){8 cos \pb-\-K2a\p sin ypb)] cosh <jzy 

+ bP(y2—KiKsa
i)(y sinh <j>b+K2a<t> cosh <j>b)-\-Kxa<j>\p{y-\-8){y cosh (j>b 

-\-K2a4> sinh <t>b) — 4>{y8-\-KiK3a
i){8 sin \j/b—K2a\p cos \pb)] cos ypy 

+ [—tp(y8+K1K3a
i)(y cosh <fib+K2a<l> sinh <j>b)+xp(y2—K1K3a

i)(8 cos \pb+K2axj/ sin xpb) 

+K3a
3(y+8)(S sin y^b—K^ cos ^6)] sinh <ty+[K3a

3(y+8)(y sinh <j>b 

+K2a<j) cosh <f>b) — <j>(82—K1K3a
i)(y cosh <j>b+K2a<t> sinh <f>b) 

+<t>(yd+K1Kza
i)(8 cos \pb+K2ayp sin fb)] sin yjsy    (9.54) 
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FIGURE 9.10.—Modes of a SS-F-SS-F rectangular 
orthotropic plate, (a) First antisymmetric mode 
taken with respect to y. (6) Second symmetric mode 
taken with respect to y. (After ref. 9.24) 
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FIGURE 9.11.—Frequency parameters for SS-F-SS-F 
rectangular orthotropic plates having v=0 and 
a/b=2; K—Dxy^DxDy. (a) First antisymmetric 
mode with respect to y . (b) Second symmetric mode 
with respect to y .    (After ref. 9.24) 

9.2.3    All Sides Clamped 

The problem for the plate with all sides 
clamped is described by figure 4.18. Frequency 
parameters may be calculated from a formula 
based upon the Rayleigh method given previ- 
ously as equation (9.29). Plots of frequency 
parameter variation with a/b ratio for four 
modes were given previously in figure 9.5 for a 
particular maple-plywood plate. 
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FIGURE 9.12.—Frequency parameters for the second 
symmetric mode (with respect to y) of SS-F-SS-F 
rectangular orthotropic plates for various a/b ratios; 
K=l. (o) o/6=l. (b) o/6=2. (c) o/6=4. (d) 
o/6 = 8. (After ref. 9.24) 
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Another Rayleigh solution is obtained in 
references 9.10 and 9.17 by taking the deflection 
function 

W(x, y)=[ä?-(jyj|>-(f)2]2  (9-55) 

which yields the fundamental frequency 

This result was also obtained in reference 9.16 
by using the Galerkin method and equation 
(9.55).    In reference 9.17 the function 

W(x,y)=(l + coS?£)( 

is used, giving 

by the Rayleigh method. Finally, reference 9.8 
gives the Rayleigh solution using beam func- 
tions described previously as 

TABLE 9.12.—Frequency Parameters wa%/p for 
C-C-C-C Square Orthotropic Plates Made of 
Birch 

cos—iil+cos^)   (9.57) 

(9.59) 

this latter clearly being the best of the three 
results listed, because it gives the lowest upper 
bound unless Dxv is considerably larger than 
Dx and Dy. 

Further improvement of the theoretical fre- 
quencies was obtained in reference 9.10 by 
taking the two-term deflection function 

and using the Rayleigh-Ritz procedure. The 
convergence of frequency parameters when 
equations (9.55) and (9.60) are used can be 
seen in table 9.12 for two types of square 
plates made of birch. Results are also in- 
cluded for the isotropic case for comparison 
with Tomotika's "exact" solution (ref. 9.25). 
(See discussion of the C-C-C-C rectangular 
plate (sec. 4.3.1).) 

aa2yp for— 

Method 
Isotropic case 5-ply plate a Veneer 

plateb 

Rayleigh. 
Rayleigh- 

Ritz ... 
Exact  

36. OOOVi) 

35. 996VJD 
35. 984VZ) 

12. 026X105 

12. 013X105 

4. 244 XI05 

4. 241X105 

»Dx=19.1X108;D„ = 7.1X108;flI1,=4.4X108. 
'• Z)*=2.97X 108; Z>„=0.21 X 10s; DX-„=0.69X 10s. 

Many experimentally determined funda- 
mental frequencies are also given in reference 
9.10 for plywood and veneer plates made of 
various wooden materials. In references 9.7 
and 9.11 this experimental work is extended 
in order to study the effect on the frequencies 
when the grain of the veneer or plywood is not 
parallel to the sides of the plate. 

Huffington (ref. 9.26) postulated the exist- 
ence of nonparallel node lines for clamped 
orthotropic plates; this idea was based upon 
his observations of the numerical behavior of a 
two-term Ritz solution using beam functions. 
This phenomenon is predicted by the curves 
of figure 9.13 which show frequency parameters 
as functions of a/b ratio for the case when 

■DX/DXS=1M3 and Dy/Dxy=4:.810. The nu- 
merical results show that the curves (each 
associated with a mode shape) do not cross but 
approach each other and veer away. In the 
vicinity of the location where the curves ap- 
proach each other, there is a rapid change in 
nodal patterns, as depicted in figure 9.14. It 
must be remarked that this phenomenon has 
been observed elsewhere (see discussion of the 
C-C-C-C rectangular plate (sec. 4.3.1) and 
that of the C-F-F-F rectangular plate (sec. 
4.3.12)) and the question exists of whether it 
is the result of numerical truncation. 

Kanazawa and Kawai (ref. 9.23) solved 
this problem by an integral-equation approach 
and gave numerical results for the funda- 
mental frequency parameters of a square having 
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0.750       0.752        0.754        0.756       0.758 
oVb 

FIGURE 9.13.—Frequency parameters oia?-\/p/Dxv against 
a/b ratio for a clamped orthotropic plate. DX/DI„= 
1.543; DvjDxv=4.810. (After ref. 9.26) 

X 
r<0.7526 : = 0.7526 r> 0.7526 

D 

(a) 

= 0.7526 |->0.7526 

(b) 

FIGURE 9.14.—Nodal patterns in the vicinity of a 
transition point, (a) Nodal patterns for mode 
3/1—1/3. (b) Nodal patterns for mode 3/1 + 1/3. 
(After ref. 9.26) 

various ratios of Dx/Dxv and Dv/Dxv. These are 
exhibited in table 9.13. An interesting plot of 
the results of table 9.13 is given in figure 9.15. 
It would appear from this figure that the varia- 
tion in the square of the frequency with either 
Dx or Dy is linear. 

TABLE 9.13—Fundamental Frequency Parameters 
coaVp/Dzy for C-G-G-G Orthotropic Square 
Plates 

wo2- 
D„ 

\lpjDxv for values of DxjDxv of— 

DXy 
Vz Vz 1 2 3 

Vz  
y2  
l  
2  
3. .'---•- 

25. 034 
26. 741 
31. 235 
38. 674 
44. 837 

26. 741 
28. 346 
32. 625 
39. 775 
45. 820 

31. 235 
32. 625 
36. 408 
42. 939 
48. 584 

38. 674 
39. 775 
42. 939 
48. 604 
53. 661 

44. 837 
45. 820 
48. 584 
53. 661 
58. 283 

o 

45 

40 

35 

30 

25 

3    20 

15 

10 

/ 

,/ 

!x^ 

»v ' 

S 
<& 

0.5 1.5        2 2.5 3.5 

FIGURE 9.15.—Fundamental frequency parameters 
uPtfplDzv*4 against DJDXJ and DJDXII for C-C- 
C-C orthotropic square plates. (After ref. 9.23) 

9.2.4    Other Boundary Conditions 

Frequency parameters for C-C-C-SS and 
C-C-SS-SS rectangular orthotropic plates may 
be determined from the Kayleigh formula given 
previously as equation (9.29). Plots of fre- 
quency parameter against afb ratio for four 
modes are given for the C-C-SS-SS case in 
figure 9.5. 
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An integral-equation approach (ref. 9.23) 
gave numerical results for the fundamental 
frequency parameters of square plates having 
C-C-C-SS and C-C-SS-SS edges. These are 
listed in tables 9.14 and 9.15. 

TABLE 9.14.—Fundamental Frequency Parameters 
wa2Vp/I>^ for C-C-C-SS Orthotropic Plates 
Having the Sides x—0 and x=a Clamped 

<aa? D, \IPIDXV for values of DJDV of— 

Dxv 

X X 1 2 3 

y3  22. 848 24. 706 29. 516 37. 239 43. 652 
y2  23. 796 25. 587 30. 261 37. 864 44. 162 
l  26. 361 27. 989 32. 328 39. 542 45. 576 
2  30. 786 32. 191 36. 031 42. 634 48. 330 
3  34. 604 35. 891 39. 393 45. 494 50. 874 

TABLE 9.15.—Fundamental Frequency Param- 
eters wa%/p/Dxy for C-C-SS-SS Orthotropic 
Square Plates 

aa?S 

Dxy 

p/Dxv for values of DJDXV of— 

X X 1 2 3 

X  
V2  
1  
2  
3  

20. 428 
21. 483 
24. 302 
29. 061 
33. 057 

21. 483 
22. 493 
25. 194 
29. 794 
33. 749 

24. 302 
25. 194 
27. 647 
31.910 
35. 599 

29. 061 
29. 794 
31. 910 
35. 681 
39. 064 

33. 056 
33. 749 
35. 599 
39. 064 
42. 184 

9.2.5    Circular Plates Having Rectangular Orthot- 
ropy 

The boundary conditions for a circular plate 
dictate that solutions must be obtained in polar 
coordinates. In this case the differential equa- 
tion for the case of rectangular orthotropy 
(eq. (9.22)) must be transformed into polar 
coordinates. It has been shown by Hoppmann 
(ref. 9.27) that the resulting equation is 

d4w 
dr4 "13^4 + 

a2 d4w «3 d4w 
r ör3 dB ' r2 dr2 dB2 

■  «4    O'W Os&W 

. a6d
3W    a7d

2w 
r dr3    r2 dr2 

d*w_ 

drdJ3 

a8 d3w 

«9 d
3W 

r3 dr bd2 

aw d2w     and
2w 

T-4 d03 r r
3 dr cXT r* dB2 

. «ig dw   «13 dw      d2w_ 

+ r3 dr + ri~blj+p~d!2~ 0    (9.61) 

where 

ai=/3(s22%—s2
26) 

«2=4/3(si2s26—s22Si6) 

«3= — 2/3[(si2s66—s26Si6) — 2(siiS22—s2
12)] 

«4= —4/3(sus26—Si2Si6) 

ae = /8(Sii%—S?6) 

a6=2ß(s22S^—S2
26) 

«7=— ß(suSm—Si6) 

a8=2/3[(si2s66—s26Si6) — 2(sns22—S12)] 

a9=4/3(sns26—SUJSM) 

aio=4/3[(si2s26—SI6S22)—(sns25—SI2SU)] 

an=—2/3[(Si2s66—Si2s26) —2(sns22—Si2) 

— (SllS66— S?e)] 
a12=^(snS66—Si6) 

«13= —4/3[(si2s26—Si6s22) — (snS28—SuSii)] 

ß=h3/12D(s) 

D(s)- 
511 S12   Sie 

512 S22   S26 

Sl6     S26     S66, 

SlI==icos4 e+(~2 JH-ö)sin2 d cosH 

+7^-sin4 

Uly 

s22=-^ sin4 e+(-2 J-+I) sin2 8 cos2 6 

6=4 (M+^~+2K) sin2 e cos2 e 

+-jjrCos4( 

+^(cos20-sin20)2 

Si2=f ■=-+■=-—^j sin2 ocos20 

—^(cos40-sin40) 
XL* 

Si6=sin 8 cos B \ ■£■ sin2 B—^=- cos21 

+(-2J-+^)(cos20-sin20)] 

(-2f;f|)(cos20-sin20)] 

(9.62) 

6=sin0cos0| T=rcos20—^rsin20 
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where 6 is the angle measured from the cc-axis. 
Because of the formidability of equation (9.61) 
it appears that no solutions to it exist in the 
literature. Nevertheless, it would appear that 
convergent solutions in the form of equation 
(1.15) are certainly possible. 

Experimental results were obtained in ref- 
erence 9.27 for a clamped circular plate of 
aluminum having longitudinal slots milled 
into it to approximate an orthotropic plate. 
The cross section of the plate is shown in 
figure 9.16. Measured frequencies and nodal 
patterns are given in figure 9.17. It can be ex- 
pected that the frequencies for higher modes 
will be considerably different from those of a 
homogeneous,  orthotropic plate. 

A one-term Galerkin solution (ref. 9.16) 
gave the fundamental frequency for the clamped 
orthotropic circular plate as 

41.52 
pa4 (zVrJzVf-Z?,) (9.63) 

(see discussion of rectangular plate with two 
opposite sides simply supported (sec. 9.2.2)). 
The identical result was obtained in reference 
9.17 by using the Rayleigh-Ritz method. 

—J 0.625 U- 

TTo. 

—-J U— o. i: 

I        H    1   ll~^T 
Xc L 0.210 

m 
FIGUBE 9.16.—Cross section of stiffened plate; dimen- 

sions are in inches. (After ref. 9.27) 

Fundamental Mode      Frequency = 7l0cps       Frequency■ 1020 cps 
Frequency »530cps 

Frequency»1380 cps   Frequency = 1870 cps 

Frequency - 2380cps Frequency = 2900 cps 

FIGURE 9.17.—Experimentally observed cyclic frequen- 
cies and nodal patterns for a clamped circular plate 
having stiffeners. (After ref. 9.27) 

9.2.6   Elliptical Plates Having Rectangular Orthot- 
ropy 

In reference 9.16  the  Galerkin method is 
used with the one-term deflection function 

W(x,2/)=(l-^-0 (9.64) 

(see fig. 3.1)  to analyze the clamped ortho- 
tropic elliptical plate.    The resulting frequency 
is 

41.52/B (%+l%+%) (9"65) 

In reference 9.27 experimental results were 
obtained for clamped elliptical plates of alumi- 
num having longitudinal slots milled into them 
parallel to the axes as shown in figure 9.18. A 
cross section showing slot dimensions is seen 
in figure 9.16. The a/b ratio for the ellipses 

apparently   2.0.    Resulting   frequencies was 
and nodal patterns for the two plates are shown 
in figures 9.19 and 9.20. 
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Clamped Boundary 

FIGURE 9.18.—Elliptical plate with slots milled parallel 
to major and minor axes to simulate an orthotropic 
plate. (From ref. 9.27) 

Fundamental Mode 
Frequency = 850 cps 

Frequency = 1150 cps Frequency = 1360 cps 

Frequency11490cps Frequency =1960 cps 

Frequency = 2630 cps Frequency =3320 cps 

FIGURE 9.19.—Experimentally observed cyclic frequen- 
cies and nodal patterns for a clamped elliptical plate 
having stiffeners parallel to the major axis. (After 
ref. 9.27) 

REFERENCES 

9.1. AKASAKA, T.; AND TAKAGISHI, T.: Vibration of 
Corrugated Diaphragm. Bull. JSME, vol. 1, 
no. 3, 1958, pp. 215-221. 

9.2. BORSUK,  K.:  Free  Vibration of Rotations of a 
Cylindrically Orthotropic Circular Plate. 
Arch. Mech. Stos., vol. 12, no. 5/6, 1960, 
pp. 649-665. 

9.3. MINKARAH, I. A.; AND HOPPMANN, W. H., II: 
Flexural Vibrations of Cylindrically Aeolo- 
tropic Circular Plates. Jour. Acoust. Soc. Am., 
vol. 36, no. 3, Mar. 1964, pp. 470-475. 

9.4. PANDALAI, K. A. V.; AND PATEL, S. A.: Natural 
Frequencies of Orthotropic Circular Plates. 
AIAA J., vol. 3, no. 4, Apr. 1965, pp. 780-781. 

9.5. PYESYENNIKOVA, N. K.; AND SAKHAROV, I. E.: 
Natural Vibrations Frequencies of the Funda- 
mental of Annular Plates With a Cylindrical 
Anisotropy. Izv. An SSSR, OTN, Mekh. i 
Mashin., no. 6, 1959, pp. 134-136. (In 
Russian.) 

308-1337 0—70- -18 



266 VIBRATION  OF  PLATES 

Clamped Boundary 

Fundamental Mode 
Frequency51380 cps 

Frequency11570 cps 

Frequency* 1980 cps Frequency = 2300 cps 

Frequency » 2900 cps Frequency « 3480 cps 

FIGURE 9.20.—Experimentally observed cyclic frequen- 
cies and nodal patterns for a clamped elliptical plate 
having stiffeners parallel to the minor axis. (After 
ref. 9.27) 

9.6. 

9.7. 

9.9. 

9.10. 

9.11. 

9.12. 

LOVE, A. E.: The Mathematical Theory of 
Elasticity. Fourth ed., Cambridge Univ. 
Press, 1927. 

HEARMON, R. F. S.; AND SEKHAR, A. C: The 
Frequency of Vibration and the Deflection 
Under Concentrated Load of Rectangular 
Plywood Plates. Forest Prod. Res. Lab. 
(Princes Risborough, England), Sept. 1947. 

HEARMON, R. F. S.: The Frequency of Flexural 
Vibration of Rectangular Orthotropic Plates 
With Clamped or Supported Edges. J. Appl. 
Mech., vol. 26, nos. 3-4, Dec. 1959, pp. 537- 
540. 

WARBTJRTON, G. B.: The Vibration of Rectangu- 
lar Plates. Proc. Inst. Mech. Engrs. (Lon- 
don), Ser. A, vol. 168, no. 12,1954, pp. 371-381. 

HEARMON, R. F. S.: The Fundamental Frequency 
of Vibration of Rectangular Wood and Ply- 
wood Plates. Proc. Phys. Soc. (London), 
vol. 58, 1946, pp. 78-92. 

HEARMON, R. F. S.; AND SEKHAR, A. C: The 
Frequency of Vibration and the Deflection 
Under Concentrated Load of Rectangular 
Plywood Plates. Composite Wood, vol. 1, 
1954, pp. 77-87. 

HOPPMANN, W. H.; HUFFINGTON, N. J.; AND 

MAGNESS, L. S.: A Study of Orthogonally 
Stiffened Plates. J. Appl. Mech., vol. 23, 
no. 3, Sept. 1956, pp. 343-350. 

9.13. HOPPMANN, W. H.; AND MAGNESS, L. S.: Nodal 
Patterns of the Free Flexural Vibrations of 
Stiffened Plates. J. Appl. Mech., vol. 24, 
no. 4, Dec. 1957, pp. 526-530. 

9.14. HOPPMANN,   W.   H.:   Bending of Orthogonally 
Stiffened Plates. J. Appl. Mech., vol. 22, 
no. 2, June 1955, pp. 267-271. 

9.15. WAH,    THEIN:   Vibration   of   Stiffened   Plates. 
Aeron. Quart., vol. 15, no. 3, Aug. 1964, 
pp. 285-298. 

9.16. REDDY, D. V.; AND RAJAPPA, N. R.: Frequency 
Analysis of Certain Interconnected Beam 
Systems. Appl. Sei. Res., vol. 12, sec. A, 
pp. 407-416. 

9.17. LEKHNITSKI, S. T.: Anisotropie Plates.    GITTL 
(Moscow) 1957. (In Russian.) Also, Am. 
Iron and Steel Inst. (New York, N.Y.), 
June 1956. 

9.18. AMBARTSUMYAN, S. A.; AND KHACHATRYAN, A. A.: 
On the Stability and Vibrations of Anisotropie 
Plates. Izv. An SSSR, OTN, Mate. i. Mashin., 
no. 1, 1960, pp. 113-122.    (In Russian.) 

9.19. HUFFINGTON, N. J., JR.; AND HOPPMANN, W. H., 
II: On the Transverse Vibrations of Rec- 
tangular Orthotropic Plates. J. Appl. Mech., 
vol. 25, no. 3, Sept. 1958, pp. 389-395. 

9.20. HEARMON, R. F. S.: On the Transverse Vibrations 
of Rectangular Orthotropic Plates. J. Appl. 
Mech., vol. 26, no. 2, June 1959, pp. 307-309. 

9.21. VOIGT,  W.: Bemerkungen zu dem Problem der 
transversalen Schwingungen rechteckiger Plat- 
ten. Nachr. Ges. Wiss. (Göttingen), no. 6, 
1893, pp. 225-230. 

9.22. HUFFINGTON, N. J., JR.; AND HOPPMANN, W. H., 
II: Authors Closure to "Comments on 'On 
the Transverse Vibrations of Rectangular 
Orthotropic Plates.' " J. Appl. Mech., vol. 26, 
no. 2, June 1959, p. 308. 

9.23. KANAZAWA,  T.; AND KAWAI, T.: On the Lateral 
Vibration of Anisotropie Rectangular Plates 
(Studied by the Integral Equation). Proc. 
2d Jap. Natl. Congr. Appl. Mech., 1952, 
pp. 333-338. 

9.24. NARUOKA, M.; AND YONEZAWA, H.: A Study on 
the Period of the Free Lateral Vibration of 
the Beam Bridge by the Theory of the Ortho- 
tropic Rectangular Plate. Ingr.-Arch., vol. 26, 
no. 1, 1958, pp. 20-29. 

9.25. TOMOTIKA, S.: On the Transverse Vibration of 
a Square Plate With Clamped Edges. Aeron. 
Res. Inst. Rept., Tokyo Univ., vol. 10, 1935, 
p. 301. 

9.26. HUFFINGTON, N. J., JR.: On the Occurrence of 
Nodal Patterns of Nonparallel Form in Rec- 
tangular Orthotropic Plates. J. Appl. Mech., 
Brief Notes, vol. 28, no. 3, Sept. 1961, pp. 459- 
460. 

9.27. HOPPMANN,   W.   H.,   II: Flexural Vibration   of 
Orthogonally Stiffened Circular and Elliptical 
Plates. Proc. 3d U.S. Natl. Congr. Appl. 
Mech., June 1958, pp. 181-187. 



Plates With Inplane Forces 

Chapter 10 

In this section the effects of forces acting in 
the plane of the undeformed middle surface of 
the plate will be considered. The differential 
equation of motion expressed in rectangular 
coordinates in this case becomes (see the 
appendix): 

b4w 
xvbx2by2 

b2w 

n d4w     b2w 
!/öy4+pöi2 

=N ^+2N —- 
dz2 "by2 (10.1) 

where Dx, Dy, and Dxy are the constants of 
rectangular orthotropy, as used extensively in 
the discussion of rectangular orthotropy of 
anisotropic plates (sec. 9.2). Because no pub- 
lished results are known for plate vibrations 
when both inplane forces and orthotropy are 
present, only the isotropic constant D will 
appear in the remainder of this section. 

The inplane force intensities Nx, Nv, and Nxy 

are assumed to be functions of only the spatial 
coordinates x, y or r, 6. That is, they do not 
depend upon time nor upon the transverse 
deflection w. These assumptions are required 
in order that— 

(1) The vibration be free, not forced 
(2) The equation of motion remains linear 

Inplane forces not depending upon w can be 
realized in one of the following two ways: 

(1) The boundary conditions provide no 
fixity in the plane of the plate 

(2) The deflection is sufficiently small relative 
to the initial tension or compression in the 
plate so that the inplane forces are not signifi- 
cantly affected. 

The normal forces Nx and Ny arc-positive in 
equation (10.1) if the plate is in tension; the 
shear force Nxy is positive according to the 
accepted convention of the theory of elasticity 

(see the appendix). It is emphasized that the 
inplane forces are generally found by first 
solving the plane elasticity problem for known 
boundary values of Nx, Ny, and Nxv. If these 
quantities are constant around the boundary, 
it is well known that they are also constant 
throughout the plate, and equation (10.1) is 
further simplified to the case of constant 
coefficients. In the special case of uniform 
boundary tension (Nx=Ny=N; Nxy=0), the 
equation for the isotropic plate simplifies  to 

DV^w-NV'w+p^- -0 (10.2) 

Assuming sinusoidal time response, equation 
(10.2) becomes 

vw-|vw- gV=o (10.3) 

where W is solely a function of the spatial co- 
ordinates. Furthermore, it can be seen that 
equation (10.3) can be factored into 

(V2+a2) (V2-ß2)W=0 (10.4) 

where 

4pco2£>\1/ 

N2 ) 

" iV2  ) + 1 ] (10.5) 

ß2-a2=N/D 

a2ß2=pcc2/D 

10.1   CIRCULAR PLATES 

The main results available for circular plates 
are for the case of hydrostatic inplane force. 
When V2 is expressed in terms of polar coordi- 
nates by means of equation (1.10) and Fourier 
components in 8 are assumed as in equation 

267 
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(1.15), equation (10.4) yields the two second- 
order equations 

dW,     id^/rf       A 
dr2   +r   dr      \r2+P )W =0 

(10.6) 

These equations have solutions 

Wn=AnJn(ar)+BnYn(ar) 

Wn=CJn(ßr)+DnKn(ßr) } (10.7) 

respectively, where Jn, Yn, I„, and Kn are 
Bessel functions, as discussed in the section 
covering solutions of the classical equations 
(sec. 1.1.2), and An, . . ., Dn are undetermined 
constants. Thus, the general solution to equa- 
tion (10.4) in polar coordinates is 

W(r, Ö)=S [AnJn(ar)+BnYn(ar)+ CJn(ßr) 
ra=0 

+DnKn(ßr)] cos riß+1t{AtJn(ar)+BtYn(<xr) 
M = l 

+ C*In(ßr)+D*nKn(ßr)]smn6   (10.8) 

10.1.1    Clamped Circular Plates 

The problem of clamped circular plates is 
defined by figure 2.1 and boundary condition 
equations (2.2). Because all modes of vibra- 
tion have symmetry with respect to at least one 
diameter, the terms of equation (10.8) involving 
sin nd can be discarded. Furthermore, in 
order to avoid singularities at the center of the 
plate, Bn and Dn must be set equal to zero. 
The deflection function therefore becomes 

W(r, 0) = S [AnJn(ar) + OnIn(ßr)] cosnd     (10.9) 
J! = 0 

Substituting equation (10.9) into equations 
(2.2) yields, for a nontrivial solution (refs. 
10.1 to 10.4), the characteristic equation 

aJj^+ßl*&ri0       (1010) 
Jn(aa)     r In{ßa) ' 

Wah (ref. 10.1) determined the roots of 
equation (10.10) for mode shapes having 0, 1, 

and 2 nodal circles and nodal diameters for a 
range of inplane forces varying from tension to 
compression. These results are given in table 
10.1. Herein the quantity <t> is used as a 
multiple of the critical buckling load in com- 
pression; that is, 

*=ii^ (1(U1) 

Accordingly, the, vibration frequency of the 
fundamental mode goes to zero as <j> goes to 
— 1. Frequency parameter values for inter- 
mediate values of 0 not found in table 10.1 
may be obtained from figure 10.1 by using the 
last of equations (10.5). In this figure, n identi- 
fies the number of nodal diameters and s, the 

TABLE 10.1.—Frequency Parameters o>a27p/D 
for a Clamped Circular Plate Subjected to 
Inplane Force N 

Number 
of nodal No? 

14768Ö 

ua?yp/D for values of 
n of— 

circles, s 
0 1 2 

0  2.00 17.37 30.61 45.67 
1.50 15. 92 28.59 43.39 
1.00 14.30 26.41 40.91 
.50 12.44 24. 00 38.07 
.25 11.39 22. 81 36.72 

0 10. 21 21.25 35.05 
-.25 8.91 19.61 33. 53 
-.50 7.28 17. 94 31.75 

-1.00 0 14.31 28.08 
1  2.00 50.60 71.87 97. 11 

1.50 48. 17 69.27 94.09 
1.00 45.52 66.38 91. 31 
.50 42.75 63.47 88.04 
.25 41.29 62. 02 86.39 

0 39.77 60. 37 84.82 
-.25 38. 19 58.81 83.34 
-.50 36.55 57.21 81.81 

-1.00 33.03 53.79 78.25 
2  2.00 101. 81 128. 52 166. 06 

1.50 98.77 125. 20 162. 93 
1.00 95.44 121. 99 159. 70 
.50 92.33 118. 89 156. 39 
.25 90.59 117. 39 154. 84 

0 89.09 115. 78 153. 26 
-. 25 87.45 114. 16 151. 65 
-.50 85.76 112. 48 150. 04 

-1.00 82. 28 108. 82 146. 48 
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FIGURE 10.1.—Frequency parameters <*ns and /?„, for a 
clamped circular plate subjected to inplane force N; 
a2j32=pw2/Z). (a) Zero nodal circles, (b) One nodal 
circle,    (c) Two nodal circles. (After ref. 10.1) 

H=o>a-Jp/N (10.12) 

These limiting values would apply as the in- 
plane force becomes extremely large; in partic- 
ular, the plate frequency approaches that of 
the membrane as aa-^n and if 

(1/2WD/N«! (10.13) 

Reference 10.1 is the most recent work on 
this problem which solves the exact character- 
istic equation (eq. (10.10)). However, much 
earlier work (refs. 10.2, 10.3, and 10.4) preceded 
this and also used equation (10.10). Bickley 
(ref. 10.3) in an early paper determined the 
frequencies for a clamped circular plate in ten- 
sion by means of equation (10.10). These are 
the exact values listed in table 10.2. Lower 
and upper bounds on the frequency parameter 
are calculated in reference 10.3 by means of the 
Southwell (ref. 10.5) and Eayleigh (ref. 10.6) 
methods, respectively. These are also dis- 
played in table 10.2. It is observed from table 
10.2 that the Southwell method gives less per- 
cent error as the mode number is increased. 

The Rayleigh method is well known. A de- 
flection function of the form 

w— {a2—r2)2 r" cos nd (10.14) 

was used in conjunction with the Rayleigh 
method. Equating maximum 'potential and 
kinetic energies of the system yields 

,^8(n+l)(n+2)(n+4)(n+5)/Z?\ 
" = 3 WJ 

The Southwell method uses the inequality 

«?+c4g«* (10-16) 

where w is the exact frequency of a system 
having two forms of strain energy and «t and 
u>2 are the frequencies of the system when each 
form of the strain energy is taken separately. 
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TABLE 10.2.—Frequency Parameters o>a2Vp/D of a Clamped Circular Plate Subjected to Inplane 
Force N 

s 
Na? 
D 

UO
2
VP/5 derived by— 

n 
Exact method 

(ref. 10.3) 
Southwell method 

(ref. 10.5) 
Rayleigh method 

(ref. 10.6) 

0 0 0 
1 
4 

25 
100 
400 

CO 

10. 216 
10. 552 
11. 486 
16. 527 
27. 483 
50. 792 

10. 216 
10. 495 
11. 291 
15.778 
26. 128 
49. 169 

2. 4048VNa?ID 

10. 328 
10. 646 
11. 547 
16. 533 
27. 809 
52. 662 

4. 4721VNO
2
/ö 

1 0 
1 
4 

25 
100 
400 

CO 

39. 772 
40. 190 
41. 419 
49. 146 
69. 916 

120. 59 

39. 772 
40. 152 
41. 272 
48. 396 
67. 996 

117. 25 
5. 515lVAfa2/-D 

2 0 
1 
4 

25 
100 
400 

CO 

89. 104 
89. 550 
90. 875 
99. 648 

126. 01 
198. 53 

89. 104 
89. 523 
90. 770 
99. 054 

124. 21 
194. 67 

8. 6537V2Va2/I> 

1 0 0 
1 
4 

25 
100 
400 

CO 

21. 260 
21. 652 
22. 783 
29. 447 
45. 563 
82. 146 

21. 260 
21. 603 
22. 600 
28. 619 
43. 820 
79. 529 

3. S317J Na?/D 

21. 909 
22. 271 
23. 324 
29. 665 
45. 607 
82. 946 

4jNa?/D 

1 0 
1 
4 

25 
100 
400 

CO 

60. 828 
61. 263 
62. 550 
70. 891 
94. 733 

156. 49 

60. 8284 
61. 2307 
62. 4259 
70. 2182 
92. 8547 

152. 931 
7. 01555VW/D 

2 0 0 
1 
4 

25 
100 
400 

CO 

34. 877 
35. 296 
36. 529 
44. 117 
63. 994 

111. 64 

34. 877 
35. 253 
36. 358 
43. 310 
57. 043 

108. 47 
5. 1357V Na?ID 

36. 661 
37. 040 
38. 158 
45. 211 
64. 374 

112. 00 
5. 2915VNcPjD 
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In the present problem, wi can be taken as the 
frequency of a clamped circular plate with no 
inplane force and w2, as the frequency of a 
circular membrane (no flexural stiffness) having 
a fixed boundary and membrane tension T. 
Equation (10.16) then gives a lower bound on 
the exact fundamental frequency; for example: 

TABLE 10.3—Frequency Parameters oa^/p/D 
and Nodal Circle Radii for a Clamped Circular 
Plate Subjected to Inplane Force N 

^[104.36+5.783^] (10.17) 

Federhofer (ref. 10.4) obtained solutions to 
equation (10.10) for a wide range of inplane 
forces. These are summarized in table 10.3. 
This table is more complete than table 10.1 in 
the sense that it utilizes a range of compressive 
forces up to the limiting buckling load for each 
axisymmetric mode, instead of the fundamental 
mode only. Reference 10.4 gives the radii of 
the nodal circles for s>0, and these are also 
presented in table 10.3. A plot of the variation 
of the frequency parameter as a function of the 
inplane force is shown in figure 10.2 for the 
first three axisymmetric modes. 

A perturbation technique was developed for 
the problem in references 10.7 and 10.8. The 
parameter N/D was used as a perturbation 
parameter, and the plate with no inplane force 
was the starting point upon which the pertur- 
bation was based. In addition to obtaining 
frequency parameters which compared reason- 
ably well with the exact values given earlier in 

+4    +3    +2     +1      O     -I     -2    -3     -4    -5     -6   -7    -8    -9    -10 

FIGURE 10.2.—Frequency parameter OJO
2
VP7D f°r a 

clamped circular plate subjected to inplane force N. 
(After ref. 10.4) 

n s Na?/D coo2Vp/ß Nodal circle radii, 

n 0 16 
9 
4 
1 
0 

-1 
-4 
-9 
-14. 682 

14. 6028 
12. 8851 
11. 4855 
10. 5478 
10. 2150 
9. 8712 
8. 7460 
6. 4129 
0 

1 16 
9 
4 
1 
0 

-4 
-16 
-36 
-49.219 

45. 9954 

43. 3848 
41. 4179 

40. 1909 
39. 7707 
38. 053 
32. 350 

19. 663 
0 

0. 38550 
.38297 

.38086 

. 37947 

. 37900 

. 37690 

. 36952 

. 33830 

. 26634 

2 16 
9 
4 
1 
0 

-9 
-36 
-81 
-103.50 

95. 9824 
93. 0392 

90. 8766 
89. 5514 
89. 1042 
84. 985 
71. 226 
39. 222 
0 

0. 25593 
. 25546 
.25511 
. 25490 
. 25483 
. 25415 
. 25179 
. 24952 

0. 58632 

.58505 

.58409 

.58349 

. 58329 

. 58134 

. 57370 

. 54473 

. 46875 

i 0 0 
-1 
-4 
-9 
-16 
-26.368 

21. 261 
20. 862 
19. 611 
17. 321 
13. 427 
0 

1 0 
-4 
-16 
-36 
-70.846 

60. 829 
59. 056 
53. 390 
42. 295 
0 

0. 48968 

. 48399 

. 42228 

2 0 
-9 
-36 
-81 
-135. 02 

120. 078 
116. 476 
102. 418 
74. 775 
0 

0. 34974 0. 63902 

. 34707 . 63293 

. 34760 . 56604 

?, 0 0 
-4 
-16 
-36 
-40. 692 

34. 876 
33. 148 
27. 267 
11. 972 
0 
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this section, the modes having 3, 4, 5, and 6 nodal diameters were also investigated, but the per- 
turbation technique did not give accurate results. The Rayleigh and Southwell techniques were 
also employed, thereby obtaining bounds. Resulting frequency parameters are given in table 
10.4. 

The problem was also discussed from a variational standpoint in reference 10.2. A method 
for including translational and rotational springs acting at discrete points within the interior of 
the plate was proposed and demonstrated for the case of a translational spring of stiffness k at 
the center. All terms applying to cos nd are retained in equation (10.8). In addition to the 
boundary condition equations (2.2), the conditions of transverse force equilibrium and null slope 
at the center are enforced. For the axisymmetric modes, the resulting characteristic determinant 
takes the form 

\{^[^'€>^m- 
Mz) 

zJi(z) 

1 

2F1(2)+?^,(I) 
'•(!) 

--?'•© 

where 

Na2 

2D V(iO"+** 
ka2 

~~2wD 
-    (10.19) 

\2=wa^PjD 

TABLE 10.4.—Frequency Parameters coa%/p/D 
for the Higher Mode Shapes (Having no Nodal 
Circles) of a Clamped Circular Plate Sub- 
jected to Inplane Force N 

Na2 

D 

ü)O?VPID derived by— 

Southwell 
method 

Rayleigh 
method 

3  0 
1 

100 
0 
1 

100 
0 
1 

100 
0 
1 

100 

51.02 
51.42 
81.68 
69.72 
70. 13 

103. 03 
90.71 
91. 13 

126. 24 
115. 13 
115. 56 
152. 12 

51. 20 

4  

51.64 
83. 82 
70. 06 

5  

70.50 
105. 49 
91 47 

6    _ 

91.90 
128. 71 
115 00 
115. 79 
155. 79 

-In ©" 
(10.18) 

Frequency parameters (coVp/D)1/4 obtained 
as the lowest roots of equation (10.18) are 
plotted in figure 10.3 as functions of the inplane 
loading parameter Na2/D and the spring con- 
stant parameter f (ref. 10.2). The inplane 
forces are entirely in the compressive range, 
as indicated. The broken curve indicates fre- 
quency parameters for the mode having one 
nodal diameter. Hence, for a given inplane 
compressive force, as the spring constant is 
increased the fundamental mode of vibration 
will abruptly change from axisymmetric to 
antisymmetric. It is obvious that a transla- 
tional spring at the center affects only the 
axisymmetric modes of the plate. 

10.1.2    Simply Supported Circular Plates 

The problem of simply supported circular 
plates is defined by figure 2.2 and boundary 
condition equations (2.9). 

The only known solution to the problem 
was derived by Wah (ref. 10.1). Using the 
deflection function in - the form given by 
equation (10.9) and substituting it into equa- 
tions (2.9) and (1.11) yields the characteristic 
equation 

Jn+i(aa) 
* Jn(<xa) 

ßIn+1(ßa) a{o?+ß2) 

Inißa) 1-v 
(10.20) 
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TABLE 10.5.—Frequency Parameters wa2Vp/D 
for a Simply Supported Circular Plate Sub- 
jected to Inplane Force N; v=0.3 

FIGURE 10.3.—Frequency parameter \=(oi2aip/D)^ as 
a function of the spring constant parameter $ = ka?l 
2xD for a clamped circular plate having a transla- 
tional spring at the center and subjected to inplane 
force N. (After ref. 10.2) 

The roots of equation (10.20) were determined 
in reference 10.1 for mode shapes having 0, 1, 
and 2 nodal circles and nodal diameters for a 
range of inplane forces varying from tension 
to compression. These results are given in 
table 10.5 for v=0.3. Herein the quantity </> 
is used as a multiple of the critical buckling 
load in compression; that is, 

Na2 

Frequency parameter values for intermediate 
values of <j> not found in table 10.5 may be 
obtained from figure 10.4. For an explanation 
of the method of using this figure, see the 
preceding section. 

10.1.3    Completely Free Circular Plates 

The problem of completely free plates is 
defined by figure 2.3 and the boundary con- 
ditions 

Mr(a)=0 1 

Vr(a)+NT(a)^(a)=o\ <10-22) 

Number 
of nodal ^    Na2 

aa?^pjD for values of 
n of— 

circles, s 
0 1 2 

0  2.00 
1.50 
1.00 
.50 
.25 

0 
-.25 
-.50 

-1.00 
2.00 
1.50 
1.00 
.50 
.25 

0 
-.25 
-.50 

-1.00 
2.00 
1.50 
1.00 
.50 
.25 

0 
-.25 
-.50 

-1.00 

8.55 
7.81 
6.99 
6.05 
5.52 
4.94 
4.27 
3.46 
0 

33.75 
32.79 
31.80 
30.78 
30.25 
29.72 
29. 17 
28.62 
27.49 
78.28 
77.27 
76.24 
75.21 
74.69 
74. 15 
73.62 
73.09 
72.00 

17.47 
16.55 
15.57 
14.55 
13.98 
13.47 
12.86 
12.23 
10.95 
52.05 
51.07 
49.94 
48.92 
48.41 
47.89 
47.36 
46.78 
45.60 

107. 54 
106. 52 
105. 50 
104. 49 
103. 94 
103. 43 
102. 90 
102. 37 
101. 30 

29.55 
28. 62 
27.62 
26.64 
26. 12 
25.60 
25.07 
24.53 
23.41 
72 97 1     

2  

71.97 
70.96 
69.93 
69.39 
68.89 
68.36 
67.83 
67.76 

138 62 
137. 67 
136. 65 
135. 60 
135. 02 
134. 56 
134. 16 
133. 52 
132. 36 

with MT and VT as given in equations (1.11) 
and (1.13), and Nr is the radial, inplane tensile 
force. 

Although the concept of a completely free 
plate subjected to inplane forces may be 
difficult to visualize at first, there exist at 
least four distinct types of problems where 
this phenomenon may arise: 

(1) A boundary having a strip around it 
which is prestressed into tension 

(2) Spin about an axis (not necessarily 
normal to the plate) causing centrifugal fields 

(3) Thermal gradients in the r- and 0-di- 
rections 

(4) Internal residual stresses due to cold 
working or heat treatment 
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FIGURE 10.4.—Frequency parameters ans and ßns for a 
simply supported circular plate subjected to inplane 
force N; a

2ß2=poi2/D; v=0.3. (a) Zero nodal circles. 
(6) One nodal circle, (c) Two nodal circles. (After 
ref. 10.1) 

Indeed, the preceding discussion is not limited 
to circular plates, but can apply to plates of 
arbitrary shape. In the case of the circular 
plate, results exist for loadings of the second 
and third types. 

Lamb and Southwell (ref. 10.5) examined 
the problem of the completely free circular 
plate spinning about its cylindrical axis with 
uniform angular velocity fi. If the terms in 
the differential equation (10.1) which represent 
the restoring forces due to flexural rigidity are 
neglected, equation (10.1) becomes, in polar 
coordinates, 

lb/A7.   bw\    Ned
2w      b2w    nn9,N 

rbA^^r^w^'w (10-23) 

where Nr and Ne are axisymmetric radial and 
circumferential forces, respectively, determined 
by first solving the uncoupled plane elasticity 
problem 

iV-i(3+,)Pfi2(a
2-r2) 

M=ipn2[(3+,)a2-(l+3,)r2] 
(10.24) 

The problem is solved by assuming a series 
solution 

w- =f^T,Oln(
r-)lcosndcos(oot+<t>)    (10.25) 

The frequency of the mode having n nodal 
diameters and s nodal circles is given by 
(ref. 10.9) 

rf=¥-[(n+2s+2)(n+2s)(3+v)-n2(l+3v)) 

(10.26) 

and the mode shapes are determined from 

s(s-i)(n+s+l)(n+s+2) /r V 
(2!)(n+l)(»+2) 

•] COS710   (10.27) 
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In references 10.5 and 10.9 an approximate 
method is formulated for solving the problem 
when the terms including the flexural rigidity of 
the plate are included within the differential 
equation of motion. 

Massa (ref. 10.10) analyzed the problem of 
a completely free circular plate subjected to 
the thermal gradient 

T=yo[l-(Q2] (10.28) 

This gives rise to inplane forces of the form 

EaToh\ 
Nr = 

Nr 
(10.29) 

where a is the coefficient of thermal expansion. 
The problem is solved by the Rayleigh- 

Ritz technique. Poisson's ratio is taken to 
be 0.3. For the axisymmetric modes a deflec- 
tion function 

W7(r)=^r"l-2.6161^Y+1.109o(-Y 

-O.2464g)6] + i?(0
2[l-2.68O5(02 

+1.9940 (£\- 0.5244 (^Yl    (10.30) 

is taken, where A and B are undetermined 
constants. This function satisfies not only the 
boundary conditions of the problem but also 
the condition that the total momentum of the 
plate be null. The first two axisymmetric 
frequencies can be found from 

2     2_Eh3. 
pa 72.97—4.3421 

v   A2  ) 

T65.54    / L V  A2  ;j 
Y +0.000052(^^Y 

(10.31) 

where the subscripts of u„s identify the number 
of nodal diameters and circles, respectively. 
The first axisymmetric mode shape is 

Wn(r) = a [l -2.6696 (^Y+1.2525 (£f 

-O.3530Q + 0.028o(^Yl    (10.32) 

and has a nodal circle at r=0.6790a and an 
amplitude at the boundary of W01(a) = 
—0.7423Ci. The second axisymmetric mode 
shape is 

TrM(r) = C2ri-8.7097^Y+17.4455^Y 

-12.3974Q6+3.1952^Y1    (10.33) 

and has nodal circles at r=0.4013a and 
r=0.8472a and an amplitude at the boundary 
of T^o2(a) = 0.5336<72. 

For the modes having two nodal diameters, 
a deflection function 

WM={AQ'[l-0.27H($ 

+O.O6225(04]+5(94[l-O.8195(02 

+O.2286(^Y~]\cos20    (10.34) 

is taken, which satisfies the boundary condi- 
tions. Employing the Rayleigh-Ritz procedure 
gives for the squares of the frequencies 

^20) w21: 
Ehs 

pa* 59.11-1 .249 (' -7T) 

T 56.48 
■y     +0.000011 (^J 

(10.35) 

The corresponding mode shapes are 

^o(,) = a(02[l-O.2885(02 

+0.073o(£) -0.0030^) 1    (10.36) 
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and 

^W=^g)2[l-2.523(02 

+ 1.9O4g)-O.5138(06]    (10.37) 

and have a nodal circle at r=0.8279a. 

10.1.4    Rotating Disk, Clamped at Center, Outer 
Edge Free 

Southwell (ref. 10.11) analyzed the problem 
of a circular disk which is clamped at its center, 
is free at its outer edge, and is rotating with 
constant angular velocity ti. He again used the 
method for finding lower bounds on the fre- 
quencies which was discussed in section 10.1.1. 
The frequencies are given by 

co2=Ä,ß2+.K2-^ (10.38) 

where Ki and K2 are given in table 10.6 and 
»=0.3. 

10.2   RECTANGULAR PLATES 

As described in the chapter entitled "Rec- 
tangular Plates" (ch. 4), there exist 21 pos- 
sible combinations of simple boundary con- 
ditions for rectangular plates. Results were 
found in the literature for all 21 cases for 
isotropic plates not having inplane forces. As 
will be seen in the following discussion, pub- 
lished results exist for very few cases when 
inplane forces are present.    Also, it will be seen 

that for rectangular plates results are available 
for other types of elementary inplane stress 
fields, in addition to hydrostatic. 

For the isotropic plate, when sinusoidal time 
response is assumed, 

w(x,y,f) = W(x,y) sin (ut+(j>)    (10.39) 

The differential equation of motion (eq. (10.1)) 
becomes 

VW-kiW= Nxd
2W 

where 

D ox2 

¥-- 

9N„VW   N,VW 
D bxby^D dy2 

(10.40) 

pw (10.41) 

When Nx and Nv are constants, say 2Vi and N2, 
respectively, and Nxy=0, equation (10.40) 
becomes 

V*W-JW= D dx2^D by2 (10.42) 

which is of a form particularly amenable to 
solution. 

10.2.1    Plates Having All Sides Simply Supported 

The boundary conditions for the problem of 
plates having all sides simply supported are 
defined by equations (4.18) and figure 10.5. In 
figure 10.5, the positive senses of the inplane 
forces Nx, NV) and Nxv are shown for the special 
case when each is constant throughout the plate. 

TABLE 10.6.—Constants for Eq.   (10.88) To Determine the Frequencies of a Rotating Disk Which 
Is Clamped at Its Center and Free on Its Outer Edge 

Nodal circles 
Nodal diameters 

0 1 2 3 

0       #1=0 
#2=14.1 
#i=3.3 
#2= 437.3 
#i=9.9 
#2=3683 
#i=19.8 
#2=14330 

#1=1 
#2=0 
#i=5.95 
#2=421.2 
#1=14.2 
#2=3336 
#i=25.75 
#2=14380 

#i=2.35 
#2=28.97 
#i=8.95 
#2=1212 
#i=18.85 
#2=7164 
#i=32.05 
#2=23410 

#i=4.05 

1   
#2=155.3 
#i=12.3 

2  
#2=2839 
#!= 23.85 

3   
#2=11700 
#i=38.7 
#2=36274 
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FIGURE 10.5.—Simply supported rectangular plate hav- 
ing uniform inplane forces. 

For NX=NU Ny=N2, and ^„=0, an ele- 
mentary solution exists. Letting W(x,y) be 
given by 

W(x,y)= S -4» sin ^ sin ^    (10.43) 

clearly satisfies the boundary conditions of the 
problem. Substituting equation (10.43) into 
(10.42) yields the frequency equation 

pc„ 4(THT)7 
+M(=r)'+jv, 

If equation  (10.44)  is multiplied through by 
a?ID, there results the dimensionless form: 

w'o4p 
D = =[(mx)2+(^)2(|)2]2 

D 
{rrnrY 

N2a> 
' D 

(„).0J (10.45) 

Simplifications that result in equations (10.44) 
and (10.45) when, for example, Nt=N2 or N2 

= 0 are clearly evident. It is also obvious that 
if either Ni or N2, or a combination of them, 
beco mes sufficiently large in a negative sense 
(i.e., compression), the frequency can be re- 
duc ed to zero, which yields the combinations 
of iVi and N2 which are critical buckling loads 
for the problem. For example, let N2=0. 
Then the critical buckling load is given by 

™--°(£)'m<v]' 
(10.46) 

If Ni and N2 are compressive (i.e., negative), 
then it can be seen from equation (10.44) that 
the fundamental mode does not necessarily 
occur when m=n=l but depends upon Nu N2, 
and the a/b r atio. This was shown by Herrm ann 
in reference 10.12 for the special case when N2 

=0. For this case, substituting equation 
(10.46) into equation (10.44) gives 

P"2=(^)Vl + (M)cr] (10.47) 

where (iVi)cr is clearly a negative quantity. 
Thus, the fundamental frequency for this 
loading will always occur when n=l, but not 
necessarily when m=l. This phenomenon is 
illustrated in figure 10.6 (from ref. 10.12) 
where the frequency ratio (co/ws)

2 is plotted as 
a function of the ratios Ni/(Ni)ct and a/b. The 
quantity cos is defined by 

,,2=: 
„„2 J,2 pa b 

(10.48) 

and is the square of the fundamental frequency 
of an unloaded, simply supported square plate. 

■^—-tl. 
«H ~\m = 2 

m = 3\ 

§■« 
-—^_m=l \m=4 

^\m=2 

~~R"— -___m=l 

\     \ m 
m=3\     \ 

=5 

^_tl 
-—____rn=l 

m*Z\ m=4   \ \ 

~~Fr^ 
rn^T     - 

-o\\\ 
1.00 

Fraction of Critical Loading 
<N,)„ 

FIGURE 10.6.—Influence of inplane force Nx=Ni on 
the fundamental frequency of a SS-SS-SS-SS rec- 
tangular plate for various plate aspect ratios. (After 
ref. 10.12) 
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The influence of a body force is also con- 
sidered in reference 10.12. The body force is 
assumed to be acting in the z-direction and 
may be due to the weight of the plate (if it is 
in a vertical position), or it may arise from 
acceleration in the negative x-direction. Thus, 

this  case,   all  the inplane  forces  are not m 
constant but are given by 

Nx=Ni—ybx 

Nv=NXiV=0 
(10.49) 

where Nx is the inplane tension at the end 
x=0, and y is the body force (force per unit 
area). The Eayleigh method was used to 
solve the problem, with the first term (m=n=1) 
of the sine series expansion for deflection (eq. 
(10.43)) being kept. This yielded the frequency 
parameter 

A.»--v[®v.-3]+*w(!jWi)' 
(10.50) 

The frequency ratio (w/ws)
2 is plotted in figure 

10.7 as a function of the ratio 2V"i/(2Vi)cr and a 
parameter £ defined by 

1= 
ya 

^D/b2 (10.51) 

for the particular aspect ratio a/6=3. The 
quantity «s is defined by equation (10.48). 

Frequency parameters for this problem were 
computed in reference 10.13 for use in deter- 
mining lower bounds for completely clamped 
square plates subjected to hydrostatic tension. 
These are listed in table 10.7. 

Some experimental results are reported in 
reference 10.14. A 24S-T duralumin plate, 12 
inches by 12 inches by 0.040 inch thick, was 
simply supported along all edges and subjected 
to the constant inplane load Nx=Ni and 
Ny=Nxv=0. It was found that the experi- 
mentally measured frequency does not decrease 
as rapidly as that predicted by theory when the 
compressive loading is increased. This is 
shown in figure 10.8. In reference 10.14 this 
effect is attributed to the possibility of slight 
initial curvature in the plate. 

FIGURE 10.7.—Influence of end loading JVi and body 
force ratio £ on the fundamental frequency of a 
SS-SS-SS-SS rectangular plate for o/b=3. u2

s= 
4Dir*lPa?W; ^yaW/irW. (After ref. 10.12) 

3000 

2500, 

2000 
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FIGURE 10.8.—Deviation of experimentally measured 
frequencies from those predicted by theory for a 
SS-SS-SS-SS square plate loaded in one direction. 
(After ref. 10.14) 
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TABLE 10.7.—Frequency Parameters for a Square 
Plate Subjected to Hydrostatic Tension and 
Having Clamped Boundaries Compared With 
Those for a Plate With Simply Supported 
Boundaries 

No? 

Frequency parameters 
for simply supported 

plate 

Frequency param- 
eter coa2Vp/-D for 

clamped plate 

TPD 

WII<J
2
VP/.D c3Ua?^p/D Lower 

bound 
Upper 
bound 

5  
10  
15.  
20  
30 •-- 
50  
100 
200  

36. 928 
48. 350 
57. 549 
65. 467 
78.96 

100. 65 
140. 96 
198. 38 

69. 788 
85. 473 
98. 696 

110. 34 
130. 56 
163. 67 
226. 14 
315. 98 

49. 580 
59. 922 
68. 580 
76. 124 
89. 268 

110. 60 
148. 26 
207. 79 

49. 847 
60. 392 
69. 271 
77. 088 
90. 656 

112. 90 
154. 98 
215. 69 

The perturbation technique is demonstrated 
in reference 10.15 for the case of hydrostatic 
tension. The basic problem used is that of the 
unloaded plate. One perturbation gives the 
exact solution for the loaded plate. 

In reference 10.16 the finite difference method 
is applied to the problem. The problem is also 
discussed in reference 10.17. 

10.2.2   Rectangular Plates Having Two Opposite 
Sides Simply Supported 

In addition to the case described in the pre- 
ceding section, there exist five other cases of 
rectangular plates having two opposite edges 
simply supported and simple boundary condi- 
tions on the other edges. These have been 
given previously in the discussion of simply 
supported rectangular plates (sec. 4.2). 

For uniform inplane forces, equation (10.42) 
applies. When the edges x=0 and x=a are 
simply supported (as in fig. 10.5), a deflection 
function which satisfies the boundary condi- 
tions of zero deflection and bending moment 
along these edges is given by 

where a=mv/a.    Substituting equation (10.52) 
into equation (10.42) yields 

d*F, 

(m=l, 2,...) 

(10.53) 
which has ä general solution 

Ym=Am sin $my+ Bm cos tymy 

+ Cmsinh<l>my+Dmcosh.(t>my   (10.54) 
where 

^{[(«°+iH«'-<'"°)r 

(10.55) 

+ 

It is seen that equations (10.52) and (10.54) 
are of exactly the same form as equation (4.21) 
for isotropic plates, the only difference being 
in the definitions of the frequency parameters 
ipm and <j)m. 

The standard procedure to satisfy the bound- 
ary conditions along the sides y=Q and y=b, 
whatever they may be, is the substitution of 
equation (10.54) into these conditions. The 
determinant of the resulting four homogeneous 
equations in Am, Bm, Cm, and Dm is then set 
equal to zero for a nontrivial solution. This 
yields an exact solution for the frequencies. 

Apparently the foregoing straightforward 
procedure has not been thoroughly followed in 
the literature, as will be seen by the paucity 
of numerical results to be presented. 

Boundary conditions of plates having loads 
acting on free edges are different than those of 
unloaded plates because of the component of 
inplane force which acts normal to the deflected 
middle surface of the plate. That is, the trans- 
verse edge reaction is given by 

W(x,y)=J2Ym(y)smax 
771 = 1 

(10.52) Vn=Q„i 
dt 

-N — (10.56) 
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By looking at equation (10.55), it can be seen 
that fm and <f>m can be positive real, zero, 
imaginary, or complex. The solution form of 
equation (10.54) is based upon the assumption 
that $m and <t>m are positive real numbers; 
otherwise, the form would change. No study 
is known in which the character and range of 
applicability of the separate forms of solution 
have been investigated. 

The Rayleigh method is used in reference 
10.12 to obtain an approximation for the funda- 
mental frequency of a rectangular plate having 
the edge y=b free and the others simply 
supported.    The  loading  is  Nx=Nt  and Nv 

=Nxy=Q.   A deflection function 

W(x,y)=y sin 
vx (10.57) 

was used.    The resulting  expression  for  the 
frequency is 

^=AT1a
2+ö[7r2+6(l-,)(j)2]   (10.58) 

In reference 10.18 the case is considered when 
three sides are simply supported, the other is 
clamped, and two concentrated, collinear, com- 
pressive forces P0 act upon the two opposite 
simply supported edges. No numerical results 
are given. 

Experimental results are given in reference 
10.14 for the case when two opposite edges are 
clamped. A disagreement with theoretical re- 
sults was found, similar to that discussed 
previously in the discussion of plates with all 
sides simply supported (sec. 10.2.1). 

10.2.3    Rectangular   Plates   Having   All   Sides 
Clamped 

The problem of plates with all sides clamped 
is defined by figure 10.5 with boundary condi- 
tions w=öw/Ö7i=0 on all edges. 

Weinstein and Chien (ref. 10.13) used a vari- 
ational technique to obtain lower bounds for 
the fundamental frequency of a square plate 
under the hydrostatic tension Nx=Ny=N and 
Nxy=0. Results are listed in table 10.7 for 
varying degrees of inplane tension. Upper 
bounds were also obtained by the Rayleigh- 
Ritz method using the deflection function 

W(x, y)=A cos2 x cos2 y+B cos3 x cos3 y 
(10.59) 

where x and y are coordinates having their 
origin at the center of the plate. (See fig. 4.18.) 
For purposes of comparison, the easily deter- 
mined frequency parameters when all sides are 
simply supported were computed in reference 
10.13 and are also given in table 10.7. Also, a 
plot was made which compares the frequencies 
of a clamped square plate with those of clamped 
circular plates having area and circumference 
equal to those of the given square plate. The 
circular-plate results were obtained from refer- 
ence 10.3, as discussed previously for clamped 
circular plates (sec. 10.1.1). These curves are 
shown in figure 10.9. 

In reference 10.19 the Kato-Temple method 
(refs. 10.20 and 10.21) was used to derive an 
extremely accurate lower bound for the funda- 
mental frequency of a clamped square plate 
subjected to hydrostatic tension N=10ir2D/a2. 
Accurate upper bounds were obtained by using 
the Rayleigh-Ritz method with beam func- 
tions (see discussion of the C-C-C-C rec- 
tangular plate (sec. 4.3.1)), keeping both 6 and 
36 terms in the series. These results are com- 
pared with those of reference 10.13 in table 
10.8. 

The perturbation technique is used in refer- 
ence  10.15  to  obtain fundamental frequency 

/*/ 

At Y 

f/ V 

// 

<fy 

f" 
60 
No' 
r2D 

FIGTJBE 10.9.—Frequency parameter variations of 
clamped plates as functions of inplane hydrostatic 
tension. (After ref. 10.13) 
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TABLE 10.8.—Comparison of Lower arid Upper 
Bounds for the Fundamental Frequency Param- 
eter «a2Vp/D of a Clamped Square Plate 
Subjected to the Inplane Tension Parameter 
Na2/7T2D=i0 

aa2ypjD 

Lower bounds Upper bounds 

Ref. Ref. 
10.19 

Ref. 10.19 
Ref. 

10.13 
36 terms 6 terms 

10.13 

59. 922 59. 98389 59. 98488 59. 98498 60. 392 

parameters for the problem, previously discussed. 
Kesults are summarized in table 10.9. 

10.3   PLATES HAVING OTHER SHAPES 

Lurie (ref. 10.14) showed that for a plate of 
any polygonal shape, with all its boundaries 
simply supported and subjected to hydrostatic 
pressure Nx=Nv=N=—p and Nxv=0, the 
vibration mode shapes are independent of the 
intensity of p. Hence, the mode shapes are 
identical to the buckling modes of the plate and 
also identical to the vibration modes of a stretched 
membrane having the same shape. Further- 
more, the frequency of the loaded plate can be 
expressed as 

«!.=(«...,); ri-r-^Y-'l        (10.60) 
.    L        KPmnJcv-i 

TABLE 10.9.—Fundamental Frequency Param- 
eter ü)a2Vp/D Derived From the Perturbation 
Method for a Clamped Square Plate Subjected 
to Hydrostatic Tension 

Na* utf4pfD 

0   35 989 
5     49 628 
10    60 019 
20-    68 566 

where (wmre)0 is the frequency of the unloaded 
plate in the particular mode identified by the 
subscripts m, n and (pmn)cr is the critical 
buckling pressure in the same mode. 

Schaefer and Havers (ref. 10.22) showed that 
frequencies of an equilateral triangular plate 
simply supported on all sides and subjected to 
hydrostatic pressure p can be calculated from 
the equation 

pa2 , wWp/D 
D h --h (10.61) 

where a is the altitude of the triangle (see 
fig. 7.15) and \{ are the eigenvalues of the 
membrane vibration problem determined from 

X,=^(Z*+mJ+n*) 

l+m+n=0 
l,m,n=±l,±2,±3,.. 

(10.62) 

The first six values of (l2+m2-\-n2) are given in 
table 10.10. A plot of the first six plate fre- 
quency parameters as functions of the inplane 
compression appears as figure 10.10. 

Kaczkowski (ref. 10.23) utilized the fact that 
the superposition of certain vibration modes 
(having the same frequency) of a simply sup- 
ported square plate will give a combined mode 
which has a nodal line on the diagonal of the 
square. In this way the frequencies and mode 
shapes of a plate in the form of an isosceles right 
triangle with all edges simply supported can be 

a I     40,000 

FIGTJBE 10.10.—Frequency parameters ufiatp/D as func- 
tions of inplane hydrostatic pressure for a simply 
supported, equilateral, triangular plate. (After ref. 
10.22) 

308-337 O—70 -19 



282 VIBRATION  OF  PLATES 

TABLE 10.10.—Terms for Computing the First 
Six Eigenvalues for the Equilateral Triangular 
Membrane 

i I m n P+m2+n* 

1 1 1 -2 6 
2 1 2 -3 14 
3 2 2 -4 24 
4 1 3 -4 26 
5 2 3 -5 38 
6 1 4 -5 42 

found.    The frequencies for Nx=Ny=N, Nx„=0 
are given by 

wmn=(2m2+2mn+n2) 

1- 
Na2 

J" "(2m2+2mrc+nVZ>_ 

(m, n=l, 2, 3...)    (10.63) 

and the fundamental frequency occurs when 
m=n=l: 

The mode shapes of the triangular plate are 
(in terms of fig. 10.5): 

TTT   /     •>     A    T •   m5ra; •  nvy Wmn(x,y)=Amn[sin—sm— 

-(-D ,m+re sin — sin—- 
a a J 

(m,n=l>2>3...)    (10.65) 

Isosceles right triangular plates having 
hydrostatic inplane forces and several other 
types of boundary conditions are discussed in 
reference 10.23. No numerical results are 
given for these problems, but the character- 
istic determinants yielding the frequencies are 
carefully shown. The determinants are of 
infinite order and contain terms having infinite 
series. Thus, the accuracy of a solution would 
depend upon the numbers of terms kept. 
Specific problems set up in detail in reference 

10.23 are: 

(1) The   side   x=0   clamped,   the   others 
simply supported 

(2) The   sides   clamped,    the    hypotenuse 
simply supported 

(3) The side x—0 free,  the others simply 
supported 

(4) Two sides free, the hypotenuse simply 
supported, and the point  (0, 0)  sup- 
ported 

(5) One side clamped,  one side  free,  the 
hypotenuse  simply  supported 

(6) Two  sides  simply  supported,   the  hy- 
potenuse clamped 

(7) Two  sides  simply  supported,   the  hy- 
potenuse free 

Pan (ref. 10.24) used the method of images 
to show that the square of the fundamental 
frequency of a 30°-60°-90° triangular plate 
simply supported on all sides (see fig. 7.17) 
and subjected to hydrostatic tension N is 

-!=!S(!¥+N)   <10-69» 
and the mode shape is 

„T.      .      .    nx   .   3ry .   .   ATX   .   2TTV 
W( x, y)=sm —p sin —-+sin —P sin zEM. 

aV3        a W3        a 

+sin^sin^     (10.67) 
W3      a 
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Chapter 11 

Plates With Variable Thickness 

In the case of plates with variable thickness, 
the governing differential equation of motion is 
found to have variable coefficients, and this 
fact increases the difficulty of solution. This 
added complexity will be demonstrated below 
in both polar and rectangular coordinates. 
Results are available only for isotropic plates 
having no inplane forces. 

11.1    CIRCULAR PLATES 
If inplane forces and rotary inertia are 

disregarded, the equations of motion in polar 
coordinates are 

brx 
bQe b2w 

^r(M+-w=yhw 

^-(rMre)+^+MTe-rQe=0 

(11.1) 

Equations (11.1) correspond to equations (A.2) 
and (A.8) of the appendix which were derived 
in rectangular coordinates and can be obtained 
from them by direct transformation; or they 
can be derived by summing forces and moments 
on a typical, infinitesimal, sectorial area. In 
equations (11.1), y is taken to be the mass 
density per unit volume of plate, unlike the 
constant p used elsewhere throughout this 
work. 

For   an   isotropic   plate,   equations   (A.35) 
become 

bw 

,2+H \r br V be2)] 

. 1 b2w      b2w~\ 
+ „2 ^fl2 + " £r2 J br Vd02 ►    (11.2) 

where D=Eh3/12(l — v2); that is, D is a function 
of the thickness. 

To obtain a fourth-order differential equation 
corresponding to equation (1.1), it is only 
necessary to substitute equations (11.2) into 
the last two of equations (11.1) and, in turn, 
substitute these into the first of equations 
(11.1). However, if the thickness is a function 
of r and/or 6, the resulting differential equation 
will be quite lengthy and will have variable 
coefficients (i.e., functions of r and/or 0). This 
expanded equation will not be presented here. 
Needless to say, very little has been done 
toward obtaining solutions to this differential 
equation in all its generality. 

Timoshenko and Woinowsky-Krieger (ref. 
11.1) and Conway (ref. 11.2) showed that, for 
the axisymmetric problem (no variation with 
6), the equation of motion becomes 

--irr r br \_   L 
j, b /b2w   1 dw' 

dr \ ör2   r br ) 
bD(b2w   vbw\W 

+ br \br*+r brjjj +yh 
bho_ 
bt2^ 

0   (11.3) 

Conway (ref. 11.2) gave some special solutions 
of equation (11.3) when the flexural rigidity 
varied according to 

where 

Do 

D=D0r
m 

Ehl 
"12(1—„2) 

(11.4) 

(11.5) 

and when the boundary of the circular plate is 
clamped.    Poisson's ratio was restricted to 

,=g(2m-3) (11.6) 

which simplified the solution of equation (11.3) 
considerably. 

In reference 11.2 exact solutions to equation 
(11.3) were obtained for several values of m in 

285 
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equation (11.4).    For m=2, v=l/9, and a solid 
plate, the solution takes the form 

W{f)=r-2ii[GJl{u)+02Il{u)]      (11.7) 

where 
u =br2'3 

,4_ (KW 
°~ Ehl 

(11.8) 

and Ji and Ii are the regular and modified 
Bessel functions of the first kind of order one. 
Applying the boundary conditions (eqs. (2.2)) 
gives the characteristic equation 

Ii (uo) 
(11.9) 

where the primes indicate differentiation with 
respect to the argument u and 

u0=ba2'3 (11.10) 

where a is the boundary radius. The first 
10 roots of equation (11.9) were given in 
table 2.1 (n=l), the lowest root being 

-u0= ß^f)U a2/3=(21.26)"2    (11.11) 

Consider a clamped circular plate having a 
constant thickness equal to the maximum 
thickness (at the boundary) of the variable 
thickness plate previously described (m=2, 
j/=l/9). Then, according to reference 11.2, 
the ratio of the fundamental frequency of the 
constant-thickness plate to that of the variable- 
thickness plate is 1.08. 

For m=18/7 and *<=5/21, the frequency 
equation 

M0(tanMo+tanh'Uo)=2 tan u0 tanh u0    (11.12) 

was given,  where now 

_/637 W 
u°~\ 6   Ehl 

1/4 
-,4/7 (11.13) 

The first root of equation (11.12) was given 
as «0=5.27. The ratio of the fundamental 
frequency of the constant-thickness plate to 
that of the variable-thickness plate having 
the same thickness at the boundary was 
found to be 1.13. 

For m=3 and v=l/3, there is the important 
case of linearly varying thickness, which is 
discussed in reference 11.3 as well as in refer- 
ence 11.2. The characteristic equation for a 
solid circular plate is found to be 

>/!W/iW=</iW^W     (11-14) 

with 

u0 
_/512 yv 
~V 3   Eh\ 

2\ 1/4 
(11.15) 

Equation (11.14) is also the characteristic 
equation for the transverse vibrations of a 
cantilever beam having a circular cross section 
and linear taper. Thus, by analogy with 
results for beams, the first three roots of 
equation (11.14) are found to be u0= 5.906, 
9.197, and 12.402. 

The ratios of the first three axisymmetric 
frequencies of the constant-thickness plate 
to those of the variable-thickness plate having 
the same thickness at the boundary are found 
to be 1.17,  1.88,  and 2.31. 

The case when m=6 and v is arbitrary is 
also discussed in reference 11.2, but no numer- 
ical  results  are  given. 

It is interesting to observe that in the case 
of variable-thickness plates the frequency pa- 
rameter depends upon Poisson's ratio for 
clamped as well as for other boundary conditions. 

In reference 11.4 the work just described 
was extended to annular plates of linearly 
varying thickness which are clamped on both 
the inner and outer boundaries (fig. 11.1). 
The solution for the linearly tapered beam 
again applies when Poisson's ratio for the 
plate is 1/3. The characteristic determinant 
yielding the frequencies is 

Mß) YM Uß) K2(ß) 
Mß) Y,(ß) -hiß) KM 
«/»(a) Y,(a) h{a) K,(a) 
Ma) Y3{a) -Ua) K,(a) 

where 

* A   ß2 y Y/2 

(11.16) 

(11.17) 
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FIGUBE 11.1.—Annular plate with linearly varying 
thickness and both boundaries clamped. (After ref. 
11.4) 

J2(2f/c) 

</3(2f/0 

-J.(2f) 

F,(2f«) 

F,(2f) 

-F,(2f) 

F(2f) 

-F6(2f) 

/2(2fK) 

-/3(2fK) 

/2(2f) 

/s(2f) 

A(2f) 

KZ(2^K) 

Äi(2f) 

Ä"4(2f) 

TABLE 11.1.—Axisymmetric Frequency Param- 
eters (utffH.) (2y/8E)112 for an Annular Plate 
Having Linearly Varying Thickness and 
Clamped on Both Boundaries; v=l/3 

Mode no. 

(ua?IH)Vyl%E)U* for values of 
b/a of— 

}i Yz % Mo 

1  16.5 
45.2 
88.4 

146 
211 

8.04 
21.9 
42.6 
70.3 

104.8 

5.84 
15.8 
30.6 
50.4 
75.0 

3 32 
2  8 71 
3  16 7 
4  27 3 
5  40 5 

FIGURE 11.2.—Circular plate with both constant and 
linearly varying thickness and clamped on the 
boundary. (After ref. 11.4) 

Frequency  parameters  for  various  ratios   of 
b/a are listed in table 11.1. 

Also examined in reference 11.4 was the solid 
circular plate which has a linearly varying 
thickness in the interval b^r^a and a constant 
thickness in the interval O^r^b (see fig. 11.2) 
and is clamped along its edge. Using the 
separate solutions for the variable- and con- 
stant-thickness regions and enforcing two 
boundary conditions at r=a and four con- 
tinuity conditions at r=b lead to the charac- 
teristic determinant: 

-Join 
^i(f) 

</i(f) [-^+™>] [tf-un] 

-/ott) 

-Ur) 
■/i(r) 

K^)    [(2-!)^)-^]    [_(2+l)7l(r)+^ü] 
(11.18) 

= 0 
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where 

f 
32 u*ybi 

= 3   Eh2 

K=a/b 

(11.19) 

Again, Poisson's ratio is restricted to a value of 
1/3. Frequency parameters for various a/b 
ratios are given in table 11.2. 

Thurston and Tsui (ref. 11.5) investigated 
the problem of a linearly tapered circular 
plate which is supported elastically on a central 
supporting area as shown in figure 11.3. The 
Eayleigh-Eitz method was used with a deflec- 
tion function of the form 

Wifi^A+Br^+Cr* (11.20) 

TABLE 11.2.—Axisymmetric Frequency Param- 
eters (wa7h)(#7/SE)l/2 for Clamped Circular 
Plate Having Linearly Varying Thickness in 
Interval bgrga and Constant Thickness h 
in Interval 0 ^r s£b; v=l/S 

Mode no. 

(aa?lh) (27/3£)"2 for values of 
b/a of— 

1 1/2 1/3 1/4 

1   ___ 2.55 
9.95 

22.23 

3.97 
14.21 
28.00 

6.33 
17.03 
37.70 

8.81 
2                -_-  - 20.89 
3                  44.89 

■ b—* 

FIGURE 11.3.—Linearly tapered circular plate supported 
elastically on a central supporting area. (After ref. 
11.5) 

for axisymmetric vibrations. Equation (11.20) 
satisfies the condition of zero slope at the 
origin; in addition, the condition 

£ W(r)r dr=0 (11.21) 

was imposed. This latter condition is designed 
to relax the condition of rigid clamping along 
the central core and replace it by one of "no 
net volume flow back and forth" across the 
surface of attachment. Equation (11.21) leads 
to the relationship 

A=-2b2  Z (!+?) (11.22) 

and reduces the system to two degrees of 
freedom. The Kayleigh-Ritz procedure yields 
the two frequencies given by 

12(1-^VY 
Ehl 

-(ßß'-2a'\-2a\') 

±[(ßß'-2a'\-2a\')2- -(4a'\'-ßn)(4a\-ß2)]l/2}M^'\'-ßn)    (11.23) 
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where a, a', ß, ß', X, and X' are given by 
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«=8(H-p){ia»+[3^i+3^*»+^55i*'] 
a2-b2 

-["T^T^+6 T^T^ k2+3 7T^3 &3 

b   Itf-b*     k 
J    3    +L     (a-i 

a5-65\ 
4       (a-6)3    5     / 

+3F(^=&y3J 

0=36(1 + '>{i°'+[a 
a-i^3 (a-6)2* ^(a-b)^ J    3 

La—b        {a—b)2 (a—by   J    4       |_     {a—by 

+dfc (a-b)3A    5       (a-6)3    6    / 

X=(45+36») {WJ 3a-r+3(a-6)2fc +(a-6)aAJ    4 

a-byk]    5    +L     (a- {a-V+67^*2+3 (a-6)2     '    (a 5     ' L"'" (a-b)2 

b    "la6-66 

-    (11.24) 

+dK (a-6)3J    6        (a-6)3    7    / 

«'Ki+t^)[ 
(a-6)3J    6        (c 

6   \f(a2-62)&4   (a4-64)62 . a6-6H      &   Ra3-/)3)^ !]-^[( 
12 

5^7    _P~24 

,_/   . ,    6  \r(a2-62)55   (a4-64)63    (a5-65)62   2(a7-6T| 
* "V +  o-ftA       5 5 5       +       7      J 

 k   r2(as-bs)b6   4(ffl5—65)63   (a6-66)52   a8-68~]    3   7 
a-&[_       15 25 6       +    4    J+35 

\'_^i i ,.   b   \f2(a2-b2)b"   Ha5-bBW , a8-68l ^r^a3-^6 

* ~V1+  a-&A       25 25       +    8    J   a-&|_       75 
__2(a8-68)68_l o9-JH   _9_68 

15 9    J ' 200 

and where the thickness is defined by 

h=h0       (O^r^b) 

(11.25) 
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Detailed calculations were made for an 
aluminum disk having the following constants: 
a=1.00 inch, 6=0.375 inch, £'=10.6X106 psi, 
and »>=0.33. These results are plotted in figures 
11.4 and 11.5 for various tapers k and are 
compared with experimental results for &=4/5. 
In figure 11.4 the theoretical values are plotted 
directly as they arise in the computations. 
In figure 11.5 the values are adjusted to account 
for additional cement and a barium titanate 
element used in the experiment. 

Kovalenko (ref. 11.6) made a study of the 
annular plate having thickness varying accord- 
ing to the equation 

A=A.(l-£) (11.26) 

0.15 0.20 
hQ in inches 

0.25 

FIGURE 11.4.—Uncorrected cyclic frequencies / for a 
linearly tapered, circular aluminum plate. (After 
ref. 11.5) 

o.io 0.15 0.20 

hn in inches 

0.25 

FIGURE 11.5.—Adjusted cyclic frequencies / for a 
linearly tapered, circular aluminum plate. (After 
ref. 11.5) 

(see fig. 11.6). His primary work was a direct 
attack upon the differential equation by assum- 
ing a series form of solution. Boundary con- 
ditions led to an infinite characteristic determi- 
nant, which was truncated for an approximate 
solution. Detailed numerical results were given 
for the special configuration where the boundary 
r=b=0.1r0 was clamped and the boundary 
r=a=0.5r0 was completely free. A Poisson's 
ratio of 1/3 was used. By use of the series method 
the lowest axisymmetric frequency parameter 
was found to be 

w00=19.00 I Do 
\yhor$ 

(11.27) 

where D0 is as defined in equation (11.5). The 
lowest antisymmetric frequency (i.e., cos nd 
mode, with n=l) was found to be 

w10=18.24 V Do_ 
yh0r

4
0 

(11.28) 

When equations (11.27) and (11.28) are com- 
pared it can be observed that, as in the 
case of certain b/a ratios for constant-thickness 
annular plates (see discussion for annular 
plates (sec. 2.2.7)), the fundamental mode is 
antisymmetric. In table 11.3 are given the 
mode shapes corresponding to these two fre- 
quencies and the ratios of bending moments. 

Bayleigh-Bitz solutions were also obtained 
in reference 11.6 by using the radial variation 
in deflection 

W(r)=A1(r-b)2+A2(r-by     (11.29) 

giving the frequencies 

woo=i9-2V^ 
"10 = 

0^0 

(11.30) 

Ess^Mi| S^^SS 

FIGURE 11.6.—Annular plate with thickness variation 
Ä=A0[l-(r/ro)]. 
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TABLE 11.3.—Mode Shapes and Ratios of Bending Moment for First 2 Modes of Linearly Tapered 
Annular Plate Shown in Fig. 11.6; a=0.5ro; b=0Jro 

r 
Symmetric (n=0) Antisymmetric (n= 1) 

r0 w MT Me w Mr Me 
(W)r-a (ATr)-» (.Me)r=b (W)r-a (Mr)r=b (M,)r-t 

0.1  
0.2  

0 
. 112 
. 362 
.677 

1 

1 
.382 
. 149 
. 032 

0 

1 
.988 
.552 
. 245 
.094 

0 
. 112 
.359 
.671 

1 

1 
.319 
. 120 
.025 

0 

1 
.713 
. 334 
. 121 
. 035 

0.3  
0.4  
0.5  

An integral-equation approach to the problem 
of circular plates of variable thickness is 
presented in reference 11.7, but no numerical 
results are given. 

A method of handling variable-thickness 
circular or annular plates is discussed in 
reference 11.8 whereby the plate is represented 
by circumferential strips of constant thickness 
and lumped mass. A demonstration of the 
method on a constant-thickness plate is given, 
but no numerical results for variable-thickness 
plates are included. 

11.2   RECTANGULAR PLATES 

In the case of rectangular coordinates it is 
shown in the appendix that the governing 
differential equation of motion for an isotropic 
plate of variable thickness having no inplane 
forces is 

where the mass density per unit volume y has 
been substituted in place of p. 

Very little has been done in solving equation 
(11.31) as it stands because of the variable 
coefficients arising when D is not constant. 
Appl and Byers (ref. 11.9) studied the case 
when the thickness varied only in one direction, 
say a;.  In that case, equation (11.29) simplifies to 

DV*w+2 dZ> Ö _2    , d2D/d2w 
da; ox 

_        _ Ö*M7\ 

dx2 \dx2^v by2) 
+ v 

,o2w 
+yhTt2 = =0    (11.32) 

Furthermore, for a plate having parallel edges 
simply supported, a solution in the form of 
equation (1.33) can be taken, thereby exactly 
satisfying the boundary conditions along the 
parallel edges and reducing equation (11.32) to 
an ordinary differential equation having variable 
coefficients. 

In reference 11.9 extensive calculations were 
made for the rectangular plate having all sides 
simply supported and a linear thickness varia- 
tion in the x-direction given by 

h=hi •°(i+«£> (11.33) 

where x is measured from one edge, the length 
of the plate is a (cf. fig. 4.4), and a is a constant 
determining the rate of taper. A special tech- 
nique (ref. 11.10) was used for obtaining both 
upper and lower bounds for fundamental fre- 
quency parameters. Eesults thus obtained are 
presented as table 11.4 for v=0.3 and for various 
aspect ratios. In this table, in addition to upper 
and lower bounds, a mean value is computed 
along with a maximum possible error in this 
mean value. For purposes of comparison, an 
upper bound was also determined by the 
Eayleigh method by using a deflection function 
of the form 

W{x,y)- {©'-'©" . xl .   try 
+-  sin-f (11.34) 

A representative fundamental mode shape is 
depicted in figure 11.7 for a/b=l.Q and a=0.8. 
The sine curve for the case of uniform thickness 
(a=0) is also shown for purposes of comparison. 



.292 VIBRATION  OF  PLATES 

TABLE 11.4.—Fundamental Frequency Parameters w2a4Yh0/D0 for Linearly   Tapered Rectangular 
Plates Simply Supported on All Edges; v=0.3 

a 
a 

w2<z47/io/.Do 

b 
Upper Lower Mean Maximum Rayleigh 
bound bound value error, percent method 

0.25 0. 1 121. 112 121. 067 121. 089 0. 0187 121. 081 

.2 132. 437 132. 434 132. 436 .00103 132. 435 

. 3 144. 144 143. 792 143. 968 . 122 144. 026 

.4 155. 899 155. 828 155. 863 .0228 155. 853 

.5 167. 925 167. 891 167. 908 .0102 167. 913 

.6 

.7 

.8 

180. 243 
192. 857 

206. 045 

180. 145 
192. 586 
204. 949 

180 194 0273 

192 721 . 0705 

205. 497 .267 

0.50 0. 1 167. 657 167. 656 167. 657 0. 0000596 167. 656 

. 2 183. 585 183. 577 183. 581 . 00234 183. 579 

.3 199. 979 199. 964 199. 972 . 00382 199. 970 

.4 217. 902 216. 262 217. 082 .379 216. 825 

.5 234. 463 233. 968 234. 215 . 106 234. 143 

.6 

.7 

.8 

252. 126 
270. 394 
289. 317 

251. 763 
269. 883 
288. 256 

251 944 . 0723 
270 139 0946 

288. 786 . 184 

0.75 0. 1 262. 051 262. 003 262. 027 0. 00921 262. 036 

. 2 287. 200 287. 098 287. 149 .0178 287. 132 

.3 313. 325 312. 989 313. 157 .0538 313. 103 

.4 340. 388 339. 718 340. 053 .0986 339. 941 

.5 367. 708 367. 591 367. 650 .0160 367. 703 

.6 

.7 

.8 

396. 506 
426. 062 
457. 397 

395. 625 
425. 125 
454. 239 

396 066 111 
425 593 110 
455. 818 .348 

1.00 0. 1 429. 349 429. 339 429. 344 0. 00124 429. 346 

.2 470. 556 470. 521 470. 539 . 00372 470. 549 

.3 513. 379 512. 930 513. 154 .0437 513. 220 

.4 557. 816 556. 573 557. 195 . 112 557. 355 

.5 603. 180 602. 841 603. Oil .0281 603. 006 

.6 

.7 

.8 

650. 563 
699. 732 
751. 416 

649. 540 
697. 235 
745. Oil 

650. 051 
698. 483 
748. 214 

0788 
179 

.430 

1.25 0. 1 704. 866 704. 696 704. 781 0. 0120 704. 752 

. 2 773. 000 771. 784 772. 392 .0787 772. 191 

.3 842. 034 841. 884 841. 959 . 00892 842. 013 

.4 914. 608 913. 618 914. 113 .0542 913. 759 

.5 988. 921 987. 612 988. 267 .0663 988. 424 

.6 

.7 

.8 

1066. 211 
1146. 985 
1229. 929 

1063. 428 
1139. 781 
1218. 858 

1064. 819 
1143. 383 
1224. 393 

131 
316 

.454 

1.50 0. 1 1133. 669 1133. 338 1133. 504 0. 0146 1133. 456 

.2 1242. 578 1239. 000 1240. 789 . 144 1241. 395 

.3 1353. 687 1350. 576 1352. 131 . 115 1352. 379 

.4 1468. 157 1465. 250 1466. 703 .0992 1467. 138 

.5 

.6 

.7 

.8 

1586 689 
1709. 603 
1837. 799 
1967. 569 

1583. 145 
1701. 686 
1820. 621 
1948. 622 

1584. 917 
1705. 645 
1829. 210 
1958. 095 

112 
233 
472 
.486 
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TABLE  11.4.—Fundamental Frequency Parameters a)2a47h0/D0 for Linearly Tapered Rectangular 
Plates Simply Supported on All Edges; v=O.S—Continued 

a 
a 

bPtfyho/Do 

b 
Upper 
bound 

Lower 
bound 

Mean 
value 

Maximum 
error, percent 

Rayleigh 
method 

1.75 0. 1 
. 2 
. 3 
.4 
.5 
.6 
.7 
.8 

1771. 579 
1939. 753 
2110. 977 
2288. 368 
2471. 362 
2660. 680 
2850. 204 
3054. 910 

1770. 158 
1934. 993 
2108. 915 
2284. 341 
2461. 928 
2641. 065 
2831. 734 
3031. 066 

1770. 869 
1937. 373 
2109. 946 
2286. 354 
2466. 645 
2650. 873 
2840. 969 
3042. 988 

0. 0401 
. 123 
.0489 
. 0882 
. 192 
.371 
.326 
. 393 

1770. 631 
1938. 224 
2109. 667 
2288. 320 

2.00 0. 1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 

2685. 834 
2935. 362 
3193. 446 
3458. 506 
3734. 808 
4012. 388 
4283. 839 
4556. 204 

2679. 248 
2930. 935 
3187. 392 
3446. 658 
3702. 730 
3979. 820 
4266. 413 
4539. 970 

2682. 541 
2933. 149 
3190. 419 
3452. 582 
3718. 769 
3996. 104 
4275. 126 
4556. 204 

0. 123 
.0755 
.0950 
. 172 
.433 
.409 
.204 
. 358 

2681. 525 
2935. 547 
3203. 400 
3489. 606 

■■»^ 

x   1 

/  / / / \ 

/ * 
/ / c =0.8- 

\ 
k \ 

ft // 
/ O 

).3 A 

NX 

0.4 0.6 
x/a 

1.0 

FIGURE 11.7.—Fundamental mode of a simply sup- 
ported square plate having linear thickness variation 
in the x-direction; » = 0.3. (After ref. 11.9) 

Gumeniuk (ref. 11.11) used the finite-differ- 
ence method to derive a formula for the fun- 
damental frequency of a simply supported 
rectangular plate having linear thickness vari- 
ation. This work was extended by Gontkevich 
(ref. 11.12) to plates having other boundary 
conditions. Fundamental frequencies are de- 
termined from the formula 

9.5 yj^ {A+D-TKA-Dy+tBO 
(11.35) 

where the constants A, B, C, and D are given 
in table 11.5 for the types of boundary condi- 
tions depicted in the table. The thickness 
parameter X is defined by 

h0 
(11.36) 

where the thicknesses h0 and ht are as shown 
in table 11.5. 

Plunkett and Wilson (refs. 11.13 and 11.14) 
measured the frequencies of linearly tapered 
steel cantilever plates, with the taper occurring 
between the free edges as shown in figure 11.8. 
Figure 11.8 shows the variation in the frequency 
parameter 

127(1-^) 
E (11.37) 

with the wedge angle 6, where ha is the greatest 
thickness and a is the span of the plate (5 inches, 
in fig. 11.8). The values shown for zero wedge 
angle (constant thickness) were computed by 
elementary beam theory. Fundamental fre- 
quency   parameters   for   the   various   wedge 
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200 Complete   Wedge 

100 

20 

g+_+.+.    g 

10  - 
■+-£_ + + . 

+ — j 

400 

0 5 10 
Wedge Angle 9 -degrees 

FIGURE 11.8.—Experimentally measured fundamental 
frequency parameters for different values of wedge 
angle 8 for linearly tapered, rectangular cantilever 
plates; material, steel; numbers indicate modes. 
(After ref. 11.13) 

angles are tabulated in table 11.6. The effect 
of changing aspect ratio is shown in figure 11.9. 
In this figure a/6 is varied by removing ma- 
terial from the thin side of the plate, so that 
the cross section becomes trapezoidal. The 
wedge angle 9 remains a constant 2.4°. Fun- 
damental frequency parameters for this case 
are presented in table 11.7. 

FIGURE 11.9.—Experimentally measured fundamental 
frequency parameters for different values of a/b for 
linearly tapered, rectangular cantilever plates; ma- 
terial, steel; 6=2.4°; numbers indicate modes. 
(After ref. 11.13) 

Methods for solving the free vibration 
problem for rectangular variable-thickness 
plates are also presented in references 11.15 
to 11.18, but no numerical results are included. 



PLATES  WITH VARIABLE  THICKNESS 297 

TABLE 11.6.—Experimentally Measured Funda- 
mental Frequency Parameters for Linearly 
Tapered, Rectangular Cantilever Plates; 
Material, Steel 

Wedge angle, 0, ° 1.35 2.4 3.7 5.9 11.8 

0 (eq. (11.37)).... 2.52 2.57 2.47 2.32 2.28 

TABLE 11.7.—Variation in Fundamental Fre- 
quency Parameter With Aspect Ratio for Line- 
arly Tapered, Rectangular Cantilever Plates; 
Material, Steel 

a/b 2.00 2.22 2.86 4.00 6.67 

0 (eq. (11.37)).... 2.57 2. 57 2.71 2.91 3. 15 

11.3   OTHER SHAPES 

Except for the work in references 11.19 and 
11.20, virtually nothing' has been done for 
variable-thickness plates when their shapes are 
other than circular or rectangular. A method 
is presented in reference 11.19 for analyzing 
cantilever variable-thickness plates having an 
arbitrary quadrilateral shape. Reference 11.20 
gives a method for analyzing clamped variable- 
thickness plates of arbitrary shape. 
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Other Considerations 

Chapter 12 

The effects of the following complications will 
be considered in the present chapter: 

(1) Surrounding media 
(2) Large deflections 
(3) Shear deformation and rotary inertia 
(4) Nonhomogeneity 

Generally, because of the complexity of the 
resulting theory, there are not many numerical 
results showing the effects of these complica- 
tions. Indeed, in many cases the technical lit- 
erature deals mainly with the development of 
the needed theory. Nevertheless, it will not be 
the purpose of this chapter to repeat those deri- 
vations; the reader is referred to the references 
themselves for this. The primary purpose of 
this chapter, as of the preceding ones, is the 
presentation of numerical results, where avail- 
able, with explanatory material as necessary for 
an understanding of their significance. 

It will be assumed in this chapter that the 
reader will already be reasonably familiar with 
the coordinate systems, notation, boundary 
conditions, and so forth, used in the preceding 
chapters, and so, much tedious redefinition will 
be omitted. 

12.1    EFFECTS OF SURROUNDING MEDIA 

In general, it has been the practice in this 
work to discuss plates in bending which are 
uncoupled from other elastic structures having 
mass. In this way only a single differential 
equation of motion—that of the plate—is 
involved. Yet it is apparent that practical 
experiments are conducted in air, and that the 
mass of the air thus moved has the effect of 
decreasing the vibration frequencies of the 
system. The difference between experimental 
and theoretical results for this reason has been 
alluded to in many places in the preceding 
chapters and, indeed, corrections of one or the 
other to obtain comparable values were even 
made in a few places (and so identified).    In 

the present section some of the papers that 
deal primarily with this problem will be sum- 
marized. The topic is generalized to include 
other media in addition to air—notably, water. 

12.1.1    Circular Plates 

In an early paper Lamb (ref. 12.1) considered 
a clamped circular plate which is in contact on 
one side with an infinite expanse of water. The 
Eayleigh method is used with a deflection 
function 

w=<7[l-(r/a)2]2 
U2.1) 

The kinetic energy is computed on the assump- 
tion that the water is incompressible. The 
resulting formula for the fundamental fre- 
quency parameter is 

(iM '■Jp/D-- 10.33 

V1+0-6689(v)(I) 
(12.2) 

where yjy is the dimensionless ratio of the mass 
density of water to that of the plate and a/h 
is the radius-thickness ratio. Of course, equa- 
tion (12.2) can be applied to any incompressible 
fluid. If both sides are to be exposed to the 
infinite fluid, then the 0.6689 in equation (12.2) 
is replaced by 2X0.6689. 

The frequency of the second mode (having 
one nodal diameter) was also calculated in 
reference 12.1 with the use of 

w=C[l-(r/a)2]2rcosd 

and resulted in 

Wffl' VP/#= 
21.909 

VI+MO*(T)0D 

(12.3) 

(12.4) 

Hence, the effect of the water's inertia is less 
upon the second mode than upon the first. 
In order to check the accuracy of the foregoing 
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results, a two-term Ritz solution was carried 
out in reference 12.1 for the first and second 
modes of a particular iron plate; this calcula- 
tion yielded results which differed from those 
calculated from equations (12.2) and (12.4) by 
less than 1 percent. The effects of damping 
due to the water are also discussed. 

Experimental results for the preceding prob- 
lem are given in reference 12.2. 

McLachlan (ref. 12.3) extended Lamb's 
work to the case of a circular plate having 
a free boundary. For a plate having both sides 
immersed in an infinite fluid, he shows that the 
ratio of the frequency of the system co to the 
frequency of the plate in a vacuum co0 can be 
determined from the formula 

w_   / 1_ 
IMt) 

where, for the case of one nodal circle, 

•» i    16      5 
Ml=357'a 

(12.5) 

(12.6) 

and, for the case of a point support at the 
center, 

80 
M^yta? 

and, in both cases, 

MQ=^ya2h 

(12.7) 

(12.8) 

where yf is now the mass density of the 
surrounding fluid. In reference 12.3, equation 
(12.5) is applied to the problems of an aluminum 
plate vibrating in either air or water. 

The previous work was extended further by 
Peake and Thurston (ref. 12.4), who applied 
the Rayleigh method to the problem of the 
simply supported circular plate having water 
loading on one side.    A deflection function 

w=l-1.245(r/a)2+0.245(r/<z)4       (12.9) 

was used; the result is the frequency parameter 
formula 

too»V^/D=-i=    4"94,   ,   . ,    (12-10) 

V'+^feXi) 
Bycroft  (ref.  12.5)  studied the problem of 

transverse vibration of a circular plate which 

is perfectly attached to a massless, elastic, infi- 
nite half space. The Rayleigh-Ritz approach is 
used, with the potential energy of the half space 
being added to that of the plate. Clamped, 
free, and simply supported edge conditions are 
considered for the plate. For the clamped case 
a deflection function for the plate is taken in 
the form of equation (12.1). The square of the 
fundamental frequency parameter is found to 

be: 

^p=106.7+MZ^-zi!K   (12.n) 

where 
Q 

~\+2G 
(12.12) 

and  X  and  0 are Love's   (ref.   12.6)   elastic 

constants for the half space: 

X= 
vE 

67= 

(1+J0(1-2J0 

E 
(12.13) 

"2(l+v) 

For the free plate, a two-term solution function 
is assumed as a constant plus the first term 

of a Dini series; that is, 

w=A0+A1Jo[\l(r/a)] (12.14) 

where Xi is thefirstrootofJo(X)=0. Byapplying 
the Ritz method, the two resulting frequencies 

are determined from 

afa*p 
D ' 

[ 
■(9.21+4,7Qv+l.590ß)Al+2.2mAAi+^ßAll 

ir(0.1355A!+0.43&40A1M-0.5ilS) J 

(12.15) 

where 
Ga\l-T*) 

P-       D 
(12.16) 

and the amplitude constants A0 and At are 

related by 

4l=- f (4.61+2.39z>+0.255|3) ± (21.2+ 5.68/ 

+ 0.298ß2+22^+4.76/3+2.48^)1/2] 

-H3.98+2.07*'+0.383/3)    (12.17) 
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Finally, the simply supported plate is analyzed 
by using equation (12.14) with A„=0. The 
square of the fundamental frequency parameter 
is found to be 

D  = =21.70+11.25*>+7.460/3    (12.18) 

12.1.2    Rectangular Plates 

An interesting experimental and theoretical 
study of the vibration frequencies of rectangular 
cantilever plates (see fig. 4.40) immersed in 
water was reported by Lindholm, Kana, Chu, 
and Abramson (ref. 12.7). Cyclic frequencies 
are listed in table 12.1 for 15 plates made of type 
1080 cold-rolled steel having various aspect 
ratios and ratios of thickness to width. Theo- 
retical values are based upon Barton's work 
(see discussion of rectangular cantilever beams 
(sec. 4.3.12)), where applicable, and elementary 
beam theory. These pertain, of course, to the 
case of a vacuum. Frequencies are measured 
both in air and in water. 

A correction formula of the form given in 
equation (12.5) was derived in reference 12.7 by 
means of hydrodynamic strip theory to account 
for the added "apparent mass" of the surround- 
ing fluid. The ratios MJMg to be used in 
equation (12.5) are given in table 12.2 for six 
modes of the cantilever plate (see definition 
of modes in table 12.1). 

A further correction is suggested in reference 
12.7 to account for the effect of plate thickness 
on the apparent mass of the air. In this case 
equation (12.5) becomes 

«_=     / 1_ 
M 
M, 

where 

/= 
2(a/b) 

~'2(a/b)+k 

(12.19) 

(12.20) 

and Kis obtained from figure 12.1 for modes 1, 
3, and 6. 

A comparison of theoretical and experi- 
mental results for frequency parameters is 
made in figure 12.2 for the six modes. The 
effects of corrections for aspect ratio AK, a/b and 
thickness ratio b/h are clearly seen. 

u 
£ 
c3 .o 
t> 
a w w 
O 
Ü 

c 
u 

^-ff 

AS <"f 

0.2 0.4 0.6 0.8 

Thickness Ratio 4J- 
D 

FIGURE 12.1.—Thickness correction factor of a rectan- 
gular cantilever plate for modes 1, 3, and 6. (After 
ref. 12.7) 

The variation of node-line location in going 
from air to water is shown in figure 12.3. 
Frequency variation with depth below the sur- 
face is set forth in figure 12.4 for plate 11 of 
table 12.1. Finally, the effect on frequency 
due to partial immersion is shown in figure 12.5 
for plate 8. It is stated in reference 12.7 that 
the angle of inclination of the plate to the sur- 
face seems to have an effect only for very 
shallow angles. 

Greenspon (refs. 12.8 and 12.9) has proposed 
a correction formula to account for the effects 
of water on one side of a rectangular plate for 
all boundary conditions.    The frequency ratio is 

ü>o V; •ft)®«)© 
(12.21) 
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TABLE 12.2.—Mass Correction Factors for Ea. 
{12.5) 

Mode Mi 
Ma 

1  KvXD 
1(T)G) 

KTXD 
0.0808.(^X0 

lCf)G) 
I(T)(I) 

2  

3  

4  

5  

6  

where / is a "virtual mass function" for plates 
of rectangular shape and is plotted as a function 
of a/b in figure 12.6. The coefficients Au and 
Btj are determined from the formulas 

Aij=aTbL*WiidA 

B^ahL^A. 
(12.22) 

where the w„ are mode shapes which are the 
products of beam functions (see discussion of 
rectangular plates (ch. 4)); that is, 

Wt^X^Yjiy) (12.23) 

and the dimensions of the plate in the x- and 
y-directions are a and 6, respectively. The 
integrals given by equations (12.22) are readily 
evaluated by means of the tables of reference 
12.10. The coefficients for seven modes of rec- 
tangular plates having all edges clamped or 
simply supported are given in table 12.3. 

In reference 12.8, equation (12.21) was shown 
to become 

1 
ü>0 

1+0.2798 (v)G> 
(12.24) 

TABLE 12.3.—Correction Coefficients for 2 Cases 
of Water-Loaded Rectangular Plates 

Mode C-C-C-C ss-ss-ss-ss 

i j A.ij Bij A« B„ 

1 

3 

1 
2 
3 
5 
1 
2 
3 

0. 6904 
0 
.3023 
. 1924 
.3023 

0 
. 1324 

0. 4053 
0 

. 1351 

.0810 

. 1351 
0 
.0450 

0.25 
.25 
.25 
.25 
.25 
.25 
.25 

for the case of a rectangular plate having the 
sides a;=0, a simply supported and the sides 
y=0, b clamped. 

12.2   EFFECTS OF LARGE DEFLECTIONS 

The term "large deflections" when applied 
to plate theory is somewhat misleading, for 
the deflections involved are generally not 
large relative to the inplane dimensions of the 
plate; indeed, they are usually of a smaller 
order of magnitude. Use of this term usually 
implies that the transverse deflection is suffi- 
ciently large to cause further stiffening of the 
plate because of membrane forces generated 
by the deflection. The magnitude of deflec- 
tion required for this effect to be significant 
depends upon, for one thing, the precise 
boundary conditions of the plate. Thus, for 
example, the term "simply supported" is no 
longer completely definitive, for the degree of 
restraint placed upon the two inplane com- 
ponents of displacement must also be specified. 

In deriving the equations of equilibrium in 
the appendix the assumption is made that the 
slope of the middle surface relative to its 
undeflected plane remains small in order that 
the sines of the angles between the normals 
of the deformed and undeformed middle sur- 
faces can be replaced by their tangents öw/da; 
and bw/dy and the cosines can be replaced by 
unity. This assumption is usually retained in 
the large deflection theory of plates and 
gives equilibrium equations (A.5), (A.6), and 
(A.8) found in the appendix.    However, strain- 



304 

4.0 

VIBRATION  OF  PLATES 

22 

20 

18 

E»porlmoriMI h/D ■ .1240 .0611 .02M   J0I3I    .0090 

Air 6       O     A       B       V 
«it» 4    •  A    m   ▼ . 

Strip Theory (or Vacuum Thoory) _-^_ 
Strip Thoory with AR Correction ™— 
Strip Thoory with AR ond Thiekneet Correction - 



OTHER   CONSIDERATIONS 305 

40 

■35 

15 

zz~~-b ® 
IJ      BEAM THEORY, 
~~  BENDING (VACUUM), 

Exparimtntol h/b ■■ .1240  .0611    .0238    .0131     .0090 
Air 0       O        A G V 
Wot., ♦       •        A ■ ▼ 

Strip Thtoryfor Vacuum Thoory) _—_ 
Strip Thtory with AR Correction ^_—_ 
Strip Thoory with AR and Thlcknoss Cornetlon ———— 

-PLATE THEORY 
(VACUUM) 

^ t 
^ 

h/b»,l240-f 

—7^4"- 

*^-*/b=.0090 

b/b = .OI3l7~" 

b/b=.0090- 

-h/b..0090 £. b  © 

3 
a/b 

65 

60 

55 

50 

45 

40 

35 

30 

25 

20 

15 

ssssss,,/,s ,s sss '/' ' **'"""{' 

FIGURE 12.2.—Experimental and theoretical frequency 
parameters in water, air, and a vacuum, (a) Mode 1. 
(6) Mode 2. (c) Mode 3. (oQ Mode 5. (e) Modes 
4 and 6. (After ref. 12.7) 

displacement equations (A. 11) are generalized 
to include terms of   the next order; that is 

_ch£o_  b2w    l/bw\2 

€x~bx     Sbx2+2\bx') 

__bvo_  d2w    l/bw\ 
'»"a*   2öj/2+2V"öi/ 

_b»o   ö«o_     d2w    dwdw 
7iv_ da: + dy      S bx by+ bx by J 

(12.25) 

Equations (12.25) are then substituted into 
equations (A. 18) or (A. 19) and then into 
equations (A.6). It is found that the additional 
terms in equations (12.25) which are even in 
2 drop out in the bending moment integrations, 
namely, equations (A.20(d)), (A.20(e)), and 
(A.20(f)), leaving the fourth-order equilibrium 
equation (A.27) unchanged. 

ssssssssss///<// 

Air      ■ 
Water - 

FIGURE 12.3.—Comparison of node-line locations in air 
and water. Plate 10; a/b=l; h/b=0.0131. (After 
ref. 12.7) 

Another equation is obtained from the equa- 
tion of compatibility of strains for the middle 
surface. By using equations (12.25), this is 
found to be: 

b\   b2ev    b
2y„=/ b2w Y   b2wb2w   /1226N 

by2    bx2    bxby   \bxbyj     bx2by2 

The formulation is simplified when an Airy 
stress function 0, defined by 

bQ 
by2 

bQ 
bx2 

b2<j> 

(12.27) 

xy       bxby) 

is introduced. This guarantees that the inplane 
equations of motion (eqs. (A.5)) are identically 
satisfied. Substituting equations (12.27) into 
equation    (12.26),    using    equations    (A.19), 
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Depth Ratio d/a 

1.00 

FIGURE 12.4.—Frequency variation with depth of total 
immersion in water. (After ref. 12.7) 

0.25 0.50 0.75 

Depth Ratio S/a 

too 

FIGURE 12.5.—Frequency change for surface-piercing 
plates. Plate 8; o/6=5; A/6 = 0.0238. (After ref. 
12.7) 

FJGTJRE 12.6.—Virtual mass function  for  rectangular 
plates.    (After ref. 12.8) 

(A.20(a)), (A.20(b)),and (A.20(c)), gives for the 
isotropic plate: 

öx4"1"  öx2dy2 
öV 
W *K d

2w 
bx by. 

V   b2wb2wl 
)    bx2 by2] 

(12.28) 

The equilibrium equation becomes 

°^+>w- h(b2wb%   b2wb2<j, 
J)x2 by2 bifbx2 

, b2w   Zfy 
'bxbybxby. :) 

(12.29) 

It is observed that equations (12.28) and (12.29) 
are both nonlinear. 

Equations (12.28) and (12.29) were derived 
for the static case by Von Kärmän (ref. 12.11). 
They were extended to the dynamic case and 
generalized further by Herrmann (ref. 12.12). 

12.2.1    Circular Plates 

Wah (ref. 12.13) used the Berger (ref. 12.14) 
simplication of the Von Kärmän equations to 
study the problems of the circular plate having 
either a clamped or simply supported boundary. 
The plate is constrained against inplane dis- 
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placement at the boundary in both cases.    The 
differential equation to be solved is 

BViw-NV2w+p^=0 ~ö2w 
du2 (12.30) 

where, for the axisymmetric modes, N is defined 
by 

N-- 12D ra/bw 
VA2Jo Vor, 'dr (12.31) 

For the solution of equations (12.30) and 
(12.31), a Galerkin procedure is proposed that 
uses a deflection function 

w=J2G{Bi(r)ri(t) (12.32) 

where the terms Bt are the normal modes of 
the linearized, small-deflection problem (cf. 
ch. 2). For the nonlinear problem, the 
Tf will not, in general, be sinusoidal functions 
of time. By taking only the first term of equa- 
tion (12.32), the following nonlinear differen- 
tial equation in time is found: 

a?+p^+ 
r~i2£> m~ 0    (12.33) 

where p is the small-deflection frequency as- 
sociated with i?i and 

r(^"- Arj 

a2 Jo 
B2rdr 

(12.34) 

The solution of equation (12.33) is in terms of 
elliptic integrals. The resulting ratio of linear 
frequency to nonlinear frequency as a function 
of the ratio of center deflection to plate thick- 
ness is shown in figure 12.7. 

Further information is given in reference 
12.13 for estimating stresses during vibration. 
A nondimensional radial bending stress ä'T is 
plotted in figure 12.8 as a function of the 
amplitude-thickness ratio. Similarly, a non- 
dimensional radial membrane stress <F'/ is 
plotted in figure 12.9. Superposition of these 
stresses gives the total stress. 

Yamaki (ref. 12.15) applied the Galerkin 
method to the Von Kärmän equations (12.28) 
and (12.29) themselves.  When only axisymmetric 

0.2 0.4 0.6 0.8 1.0 
Amplitude 
Thickness 

FIGUEE 12.7.—Ratio of linear (small-deflection) fre- 
quency to nonlinear (large-deflection) frequency as a 
function of amplitude-thickness ratio for circular 
plates; v=0.3. (After ref. 12.13) 

deformations   in   polar   coordinates   are  con- 
sidered, they become: 

Ebwb2w v*<t>=- 
r or or2 

nm    ,    b2w   hd<j>b2w 
(12.35) 

Altogether, four sets of boundary conditions 
were considered; the particular ones used de- 
pended upon the degree of restraint placed 
upon both the transverse and inplane displace- 
ments.    The cases considered were 

Case 1(a): w=Mr=Nr=0 

Case 1(b): w=Mr=u=0 

Case 11(a): w=bw/br—Nr=0 

Case II(&): w—bw/br=u=0 

"■  (on boundary) 

(12.36) 
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FIGURE 12.8.—Nondimensional bending stress in large- 
amplitude vibrations of circular plates. (After ref. 
12.13) 

Deflection functions were taken in the form 

w(r)=hr(t) ^i+Ci(02+o2(0*] (12.37) 

where Oi and C2 were chosen to satisfy the 
transverse boundary conditions exactly; that is, 

6+2/ 
Case I: Ci=- 

<72= (12.38) 

5+v 

'5+v 
Case II: Oi=-2 

C2=l 
Substituting equation (12.37) into the first of 
equations (12.35) and letting 

4>=f(r)i*(t) (12.39) 
give 

+ h^if+h^if] (12-40) 

lb 

11 
/1 

i 11 
—ii      1 -V     O2   _n 

/1 
i 
i 
i // o-J!« Membrane Stress 

if 
7 
/ 

Simply Supported // 
Plate, v=0.3-\ // 

7' 
// 
li h it 

/'   ^Clamped Plate 

/ 
/ 

^-*^** 
^ 

0.7 
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0 0.2 0.4        0.6 0.8 1.0 
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FIGURE 12.9.—Nondimensional membrane stress in 
large-amplitude vibrations of circular plates. (After 
ref. 12.13) 

where C3 is a constant determined from the 
inplane boundary conditions of equations 
(12.36); that is, 

Cases 1(a) and 11(a): 

0»=-Jj(3C?+4öiCd-2C2) 

Cases 1(6) and 11(6): 
1 a 24(1—») 

[3(3-v)C? 

-4(5-v)aC2+2(7-v)C$] 
(12.41) 

Finally, the Galerkin technique is applied to 
approximate the second of equations (12.35); 
the result is the ordinary differential equation 

dt 
"-r-a2T-(-(32T3=0 (12.42) 
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where o? and ß2 are given in table 12.4 for the 
four cases defined by equations (12.36). The 
solution of equation (12.42) results in figure 
12.10, which shows the effect of amplitude- 
thickness ratio upon the ratio of linear-to- 
nonlinear frequency for the four cases for z>=0.3. 

TABLE 12.4.—Coefficients far Eq. (1242) far the 
4 Cases Defined by Eqs. (12.36) 

w(r,t)=R(r)r(t) (12.44) 

Coefficient 
Value for case— 

1(a) 1(6) 11(a) 11(6) 

a2pa*IEhs  
ppa*IEW  

2. 242 
. 591 

2. 242 
4. 148 

9.768 
1.429 

9.768 
4.602 

Further discussion of the application of the 
Galerkin method to the problems just described 
was given in reference 12.16. 

The nonlinear case of the completely free 
circular plate having inplane forces caused by 
the thermal gradient 

T=To[l-0y] (12.43) 

was examined by Massa (ref. 12.17) as an 
extension of his previous work (see discussion 
of completely free circular plates (sec. 10.1.3)) 
for the linear problem. A deflection function 
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FIGURE 12.10.—Ratio of linear to nonlinear frequency 
as a function of amplitude/thickness ratio for circular 
plates having boundary conditions denned by 
equations (12.36); x=0.3. (After ref. 12.15) 

is taken for the first axisymmetric mode, 
where R(r) is the mode shape of the linear 
problem; that is, 

#(r)=l-2.6161 ßY+1.1090(~) -0.2464Q 

(12.45) 

and r(t) is an unknown function of time. An 
energy formulation of the problem is made by 
means of Hamilton's principle for *»=0.3. 
Solutions for the nonlinear frequencies are in 
terms of elliptic integrals, but approximate 
expressions of a more useful type are also 
found. 

For aT0a
2/h2^(aT0a

2/h2)CI, or for aT0a
2/h2 

^(aTQa
2/h2)cr, in the range W^-fi, W0> the 

square of the nonlinear frequency can be 
approximated by 

«g?=7.4273 ^? |~1 - (0.2759aT0a
2/h2) 

pa L 

+0.6772 (^fYl    (12.46) 

where a is the coefficient of thermal expansion, 
and (aT0a

2/h2),.T is the critical value of the 
parameter aT0a

2/h2 at which buckling occurs, 
according to the linear theory; that is, 

(aT0a7^)cr=3.62 (12.47) 

The term Wm defines the nonlinear deflection 
amplitude measured at the center, and W0 is a 
parameter defined by 

W0 = 1.0524h-y]0.2759(aT0a
2/h2)-l    (12.48) 

_For   «T0a7^(aToG2A2)cr   and  W0<Wal^ 
■\J2W0, the corresponding expression is 

(o.2759 ^2-l)J    (I2-49) 

In figures 12.11 and 12.12 the square of the 
ratio of the nonlinear frequency to the iso- 
thermal linear frequency  (ü2

01=7 A273Eh?/ pa*, 
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FIGURE 12.11.—Effect of temperature upon the non- 
linear frequency of a completely free circular plate 
for various amplitude/thickness ratios; c=0.3; one 
nodal circle. 

FIGURE 12.12.—Effect of amplitude/thickness ratio 
upon the nonlinear frequency of a completely free 
circular plate for various temperature parameters; 
y=0.3; one nodal circle. 

with one nodal circle) is plotted  against  the 
parameters aT0a?/h and W0i/h, respectively. 

The first mode having two nodal diameters 
is also studied in reference 12.17 for the same 
thermal gradient given by equation (12.43). A 
deflection function 

w(r,d,t)=R(r)(cos 26)r(t)        (12.50) 

is chosen, where 

ÄW=(5),[l.27O9-O.35Oo(j),+O.O791l(04" 

(12.51) 

For aT0a
2/h2^(aT0a

2/h2)cr=d.G2, the square of 
the nonlinear frequency is approximated by 

,,*2  
w2o — =2.6294^[l+0.3772^2+0.3164(T^)2] 

(12.52) 

and for aT0a
2/h2^(aToa2/h2),.T there results 

aT^f)    (12.53) a>fo2=6.2169 ?®L (i+0.000345 - 
pa \ 

The variation in the square of the ratio of the 
nonlinear frequency to the isothermal linear 
frequency (s2o=2.6294M3/pa4, with two nodal 
diameters) is depicted in figures 12.13 and 
12.14. 

12.2.2    Rectangular Plates 

The earliest paper dealing with large-ampli- 
tude vibrations of rectangular plates was pub- 
lished by Chu and Herrmann (ref. 12.18) in 
1956. In this paper the general equations 
derived in reference 12.12 were specialized to 
the Von Kärmän form of equations (12.28) 
and (12.29) and were approached by means of 
the perturbation technique. The problem of 
all edges simply supported was studied in 
detail. For this problem, the boundary con- 
ditions involving w are given in equations 
(4.18). 
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W-io/h'0.75 

W20/h»0.5 

FIGURE 12.13.—Effect of temperature upon the non- 
linear frequency of a completely free circular plate, 
for various amplitude/thickness ratios; v=0.3; 
two nodal diameters. 

'» 
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1.2 

FIGURE 12.14.—Effect of amplitude/thickness ratio 
upon the nonlinear frequency of a completely free 
circular plate for various temperature parameters; 
p=0.3; two nodal diameters. 

Partly in accordance with the later work by 
Yamaki (ref. 12.15), four cases of inplane 
restraint will be defined (see fig. 10.5): 

Case (a): Nx=Nxy=0 on x=0, a 
Ny=Nxy=0 on y=0, b 

Case (b): u—Nxv=0 on x—0, a 
v=Nxv=0 on y—0, b 

Case (c): Px=Nxv=0, u=Constant on a:=0, a 
P 

Case (d): u=v=0 on x=0, a 
u=v=0 on y=0, b 

(12.54) 

v—Nxy=0, «=Constant on y=0, b 

where Px and Pv are defined by 

P,e fV.dy      Pv= (aNydx    (12.55) 
Jo Jo 

Thus in case (c) there are edges which are kept 
straight by a distribution of normal stresses, 
the resultant of which is zero. 

In reference 12.18, case (6) was treated.    A 
transverse deflection function 

irx ■KX 
w=yV(£)sin—sin-r- (12.56) 

was taken; the result is a nonlinear equation for 
T in the form of equation (12.42). The ratio of 
linear frequency to nonlinear frequency is given 

(<»To°*\ 
V    h«  'cr by 

2[l+(a/bY]K 

^!.o 
(12.57) 

where K=K(k) is the complete elliptic integral 
of the first kind and 

_1_ 2[l+(a/6)2]2 

•®W)O+SK] 
(12.58) 

Equation (12.57) is plotted in figure 12.15 for 
i>=0.318. The maximum membrane stress is 
given by 
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FIGURE 12.15.—Effect of large amplitudes on the 
frequency of a SS-SS-SS-SS rectangular plate; 
v= 0.318. (After ref. 12.18) 

and the maximum bending stress by 

0»= 4(t)<IHLm+o-34) (i2-60> 
That is, the membrane stress increases with the 
square of the amplitude, whereas the bending 
stress increases only linearly. The problem w as 
also formulated in reference (12.18) by the 
principle of conservation of energy. 

Yamaki (ref. 12.15) extended the work to 
include the first three cases of inplane restraint 
given in equations (12.54). A deflection func- 
tion like that of equation (12.56) was used, and 
the stress function was obtained from equation 
(12.28).    Equation (12.29) was approximated 

by  the   Galerkin  method.    The  equation  in 
time which results for a/b=l is 

T^Etf 
dt2 G ,3(1-V) •] r+ar3  =0    (12-61) 

where a takes on the values 0.06492, (3—v)/ 
8(1+1/), and 1/8 for cases (a), (6), and (c), 
respectively. The ratio of linear to nonlinear 
frequency for the square plate is plotted in 
figure 12.16 for the three cases. For case (b) 
the results are identical with those of reference 
12.18. 

In reference 12.15, the problem of all edges 
transversely clamped (cf. eq. (4.25)) was also 
analyzed.    A deflection function 

vx »*v w(x,y, t)=hT(t) cos2 ■-cos2^    (12.62) 

(see fig. 4.18) was used.    The equation in time 
which results is 

16ir4M3 

dt2 G .3(1 -v2) 
r+ar n=0   (12.63) 

where a takes on the values 0.14903, 0.16656+ 
(0.14063)/(l-v), and 0.16656 for cases (a), 
(b), and (c), respectively. The ratio of linear 
to nonlinear frequency is plotted in figure 12.17 
for the three cases when a/b=l. 
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FIGURE 12.16.—Effect of large amplitude on the 
frequency of a SS-SS-SS-SS square plate for three 
cases of inplane edge restraint; v = 0.3. (After ref. 
12.15) 
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Nash and Modeer (ref. 12.19) and Wah (ref. 
12.20) extended the Berger (ref. 12.14) simpli- 
fied formulation for the large-amplitude static 
deflection of plates to the nonlinear vibration 
problem. The first paper used an energy for- 
mulation with Hamilton's principle; the second 
used a modified form of the Galerkin method. 
Both papers solved the problem of the rectan- 
gular plate having simply supported edges of 
the type given by case (d) of equations (12.54). 
Both obtained results for frequency ratio versus 
amplitude ratio which were in substantial 
quantitative agreement and, in contrast with 
those of reference 12.18, these results do not 
depend upon the aspect ratio a/b oj the plate. 
These results are shown in figure 12.18 (from 
ref. 12.20). In this figure a curve is also 
plotted for the infinite strip, in accordance 
with elementary beam theory. 

In reference 12.20 the problems of the 
SS-C-SS-SS and SS-C-SS-C plates were also 
studied. Deflection functions for w were 
taken which are the fundamental mode shapes 
of the linear problem (see sees. 4.2.2 and 
4.2.1). The effect of amplitude upon fre- 
quency is shown in figures 12.19 and 12.20 for 
these two problems. 

The existence of normal modes for the non- 
linear problem of the SS-SS-SS-SS plate is 
discussed in reference 12.21.    Large-amplitude 
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12.20) 

vibration of rectangular plates is also discussed 
in references 12.22 and 12.23. 

12.3   EFFECTS  OF  SHEAR DEFORMATION 
AND ROTARY INERTIA 

In 1877 Lord Rayleigh (ref. 12.24) showed 
how the addition of "rotatory" (in the language 
of his day) inertia effects to those of classical 
transitional inertia affected the flexural vibra- 
tion frequencies of beams. Timoshenko (ref. 
12.25) in 1921 showed that the effects of shear 
deformation, previously disregarded, were 
equally important. It is well known that both 
effects serve to decrease the computed fre- 
quencies because of increased inertia and flexi- 
bility of the system. 

An extension of plate theory to account for 
shear deformation was proposed by Reissner 
(ref. 12.26) for the static deflection of plates, 
and a significant number of papers by others 
have followed this approach. A first presenta- 
tion of a consistent theory for the dynamic 
behavior of plates, including the effects of 
shear deformation and rotary inertia, was made 
by Uflyand (ref. 12.27). However, Mindlin's 
1951 paper (ref. 12.28) unquestionably made 
the most profound impact upon the subject. 

In this paper a consistent set of equations re- 
lating moments and transverse shears to 
transverse deflection and bending rotations was 
presented. The basic sixth-order system of 
partial differential equations of motion was 
derived, along with potential and kinetic 
energy functions. A part of this paper will be 
summarized below. 

In addition to exposing the theory, Mindlin 
and his colleagues have done much to apply 
the theory and to develop it further, as observed 
by references 12.29 to 12.46. In references 
12.29 through 12.32 the theory is applied to the 
cylindrical bending of AT-cut quartz crystal 
plates. The crystal plates are idealized as an 
anisotropic material having constants defined 
by equation (A. 12) of the appendix in which 

and the thickness is taken in the z-direction. 
Crystal plates are also discussed in references 
12.36 to 12.46. Because of the highly special- 
ized form of anisotropy involved, the numerous 
results reported in these papers will not be dis- 
cussed here. The only results from references 
12.28 to 12.46 which will be discussed in this 
section will be those dealing with isotropic 
plates. 

The essential features of Mindlin's theory 
(ref. 12.28) will now be discussed. The discus- 
sion will be limited to the bending (with no 
inplane forces) of isotropic plates. When the 
effects of shear deformation are included, the 
kinematic relationships given in equations 
(A.9) become 

u=—z\px(x,y, *)"") 
v=-zMx,y,t) V (12-64) 
w=w(x, y, t)     J 

where \px and i/v are the local rotations (changes 
of slope) in the x- and y-directions, respectively, 
of lines originally normal to the midplane 
before deformations. That is, the rotations 
iix and xpy are due to bending. The deflection 
of the middle surface w is then composed of 
two parts—one due to bending and the other 
due to shear deformation. These modes of 
deformation are shown in figure 12.21. Equa- 
tions    (12.64)    are   substituted   into   strain- 
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Substituting the stress-strain relationships 

] Midplane 

Shear Deformation 

FIGURE    12.21.—Modes     of    bending     and    shear 
deformation. 

displacement equations (A. 10), then into stress- 
strain equations (A. 19), and the bending mo- 
ments are integrated by means of equations 
(A.20(d)), (A.20(e)), and (A.20(/)), giving 

M"~ 2      Kbz + ty)) 

The transverse shearing forces are obtained 
by integrating the transverse shearing stress 
over the thickness; that is, 

Ä/2 

'A/2 

Tzx dz 
(12.66) 

:ds 

Tyz== Vnftiz J 
(12.67) 

and the strain-displacement equations 

_bu   bw' 

_äffi,Ö5 
(12.68) 

into   equations   (12.66)   and  using  equations 
(12.64) gives 

(12.69) 

where K
2
 is a constant which is introduced to 

account for the fact that the shear stresses 
TZX and T„z are clearly not constant over the 
thickness —A/2<s<A/2 as the simple kinematic 
relationships, equations (12.64), would lead 
one to believe. In Reissner's static theory 
(ref. 12.26) K

2
 was taken as 5/6. Mindlin 

(ref. 12.28) chose K so as to make the dynamic 
theory consistent with the known exact fre- 
quency for the fundamental "thickness shear" 
mode of vibration. More will be said about 
this in the following discussion. 

The right-hand sides of moment equilibrium 
equations (A.8) are made consistent with 
the present theory; they become 

bMx   bMxy   pA2öV, 

bMxy 

by      12 bt2 

bMv_ph?b^v 

bx by     12 bt2 J 

(12.70) 

When inplane forces and transverse external 
loading or body forces are neglected, equation 
(A.6) becomes 

bx + by    p bt2 (12.71) 
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Substituting equations (12.65) and (12.69) 
into equations (12.70) and (12.71) yields the 
fundamental set of equations for the system 

|[(1_w,+a+,|@+|-)] 

f[a-,™+a+„!(g+£)] 

rw 
'dt2 

(12.72) 

where V2 is the usual Laplacian operator. It 
is observed that the system of equations 
(12.72) is of the sixth order in the three de- 
pendent variables ipxi ipv, and w. Thus, with 
this higher order plate theory, three boundary 
conditions are enforced along each edge. 

In reference 12.28, equations (12.72) are re- 
written into a form much more amenable to 
solution by the introduction of three potential 
functions. It is from this form that many of 
the useful results obtained from references 
12.33 to 12.37 and given later in this section 
were derived. The reader is referred to the 
individual papers for the details of these ma- 
nipulations and solutions. Similarly, the exten- 
sions of the theory to include inplane forces, 
large deformations, and thermal effects (refs. 
12.12, 12.40, 12.47, and 12.48) will not be 
discussed here. 

Thickness-shear vibration is defined by 
modes of the form (ref. 12.29) 

v=w=0   f (12.73) 

It can be shown (ref. 12.29) that, for a plate 
having infinite dimensions in the x- and y- 
directions, the exact frequency of the first 
antisymmetric mode of thickness-shear vibra- 
tion is 

-WS       (i2-74) 

It can be further shown (ref. 12.28) that, for 
equations   (12.72)   to  give  results  consistent 
with equation (12.74), 
an isotropic plate to be 

K2 must be chosen for 

= 12 
(12.75) 

Further theoretical discussion of the effects of 
shear deformation and rotary inertia upon the 
vibration of plates can be found in references 
12.49 to 12.61. For the most part, these ref- 
erences give alternative derivations of sys- 
tems of governing equations, in some cases 
concluding with Mindlin's equations and in 
other cases obtaining substantially different 
formulations. 

12.3.1    Circular Plates 

Consider first a circular plate having a 
clamped boundary. (See fig. 2.1.) For axi- 
symmetric modes of vibration the sixth-order 
system of differential equations (12.72) (when 
converted to polar coordinates) reduces to a 
fourth-order system. The boundary condi- 
tions are 

w(a) =*,(<»)=0 (12.76) 

That is, the change in slope due to bending 
is zero at the boundary. Applying equation 
(12.76)   to   the  solutions   of   the   differential 

FIGTIBE 12.22.—Ratio of plate frequency to thioknesa- 
shear frequency for a clamped circular plate derived 
from classical theory; »-=0.312. (After ref. 12.35) 
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tions (see refs. 12.33, 12.34, and 12.62), yields 
a set of characteristic equations for the 
frequencies. 

Results for the axisymmetric modes' were 
presented by Deresiewicz (ref. 12.35). The fre- 
quency ratio w/w derived from the classical 
theory of plates is plotted in figure 12.22. With 
the use of the notation of the chapter entitled 
"Circular Plates" (ch. 2), the circular fre- 
quencies of the plate can be obtained from 

a>,aV^7Ö=X/       (i=l,2,...)    (12.77) 

where X4 are the eigenvalues determined from 
the characteristic equation. By using equa- 
tions (12.74) and (12.77), it is easily seen that 
the ratio of the plate flexural frequency to the 
thickness-shear frequency 3 is 

where the subscript ton « and X has been 
dropped but is implied. Figure 12.22 is conse- 
quently a plot of equation (12.78) for a par- 
ticular value of Poisson's ratio e=0.312. 

Figure 12.23 is a corresponding plot with the 
plate frequencies w obtained by the theory of 
this section, although this figure is plotted over 
a smaller range of ufw, thereby emphasizing 
the region in the vicinity of w/w=l. In com- 
paring figures 12.22 and 12.23, it is obvious that 
consideration of shear deformation and rotary 
inertia has the effects of— 

13 

0.96- 

0.88 

0.80 
20      24       28       32 

FIGURE 12.23.—Ratio of plate frequency to thickness- 
shear frequency for a clamped circular plate derived 
from the Mindlin theory; v= 0.312. (After ref. 12.35) 

(1) Lowering the fundamental frequency for 
a given diameter-thickness ratio 

(2) Rendering more frequencies in a given 
range of w/w for a particular plate 

(3) Completely altering the curves in the 
high-frequency range <o/«>l 

The case when the circular boundary is 
simply supported was attempted by Tomar (ref. 
12.63). Again, when only the axisymmetric 
modes are sought, only two boundary condi- 
tions are required; namely, 

w(a)=Mr(a)=0 (12.79) 

In reference 12.63 the equations of motion (eqs. 
(12.72)) are retained in rectangular coordinates, 
and their finite-difference equivalents are writ- 
ten. Because of the choice of coordinate 
system, a rectangular finite-difference grid must 
be fitted to a sector of the circular plate. This 
is accomplished by using nine mesh points 
within one octant obtained from a square grid 
having elements of dimension a/4. Fundamental 
frequency parameters 4ia>2a2p/Eh for various 
thickness-radius ratios given in table 12.5 and 
figure 12.24 for v—0.3 are taken directly from 
reference 12.63. In addition, the frequency 
parameter a>a%/p/Z> is presented in table 12.5 
for direct comparison with the classical result 
wa2Vp/Z>=4.977 (see sec. 2.1.2) which applied 
for very small values of h/a. From this com- 
parison it appears that the accuracy of the 
results given in table 12.5 and figure 12.24 is 
highly questionable. 

Numerical results for the completely free cir- 
cular plate were found by Mindlin and Deresie- 

TABLE 12.5.—Fundamental Frequency Param- 
eters for a Simply Supported Circular Plate 
According to the Mindlin Theory; v=O.S 

hja 4«2o2p 
Eh 

aa?s/plD 

0.2 
.4 
.6 
.8 

0. 43365 
1. 44326 
2. 53474 
3. 49852 

5. 4403 
4. 96242 
4. 38426 
3. 86308 



318 VIBRATION  OF  PLATES 

0.4 

FIGURE 12.24.—Fundamental frequency parameters 
for a simply supported circular plate; v=0.3. (After 
ref. 12.63) 

wicz (refs. 12.33 and 12.34). In this case the 
boundary conditions are 

MT(a)=Mre(a) = QT(a)=0       (12.80) 

The twisting-moment condition is identically 
satisfied by symmetry for the axisymmetric 
modes. In reference 12.34 frequency param- 
eters for axisymmetric modes were deduced 
when j<=0.312. Plots of the frequency ratios 
w/w discussed earlier in this section are depicted 
in figures 12.25 and 12.26 for the classical 
theory and the Mindlin theory, respectively. 
Kesults for the antisymmetric modes (having 
one nodal diameter) were computed m refer- 
ence 12.33 and are presented in figure 12.27, 
again for i<=0.312. 

In reference 12.64, Callahan used the Mindlin 
theory to derive characteristic determinants 
corresponding to eight separate sets of con- 
tinuous boundary conditions for circular plates. 

All sets are presented in forms conducive to 
computer programing and for general vibration 
modes.   No numerical results were given. 

12.3.2   Rectangular Plates 

It was shown in reference 12.28 that equations 
(12.72) can be uncoupled (after the time is 
taken out by assuming harmonic response) by 
defining three potentials wu w2, and H by the 
equations: 

-1) dx     ~öy 

t   A           1 \ Ö101   ,    /   A           , S ÖW2 

W=Wi+W2 J 

where 

A^ll+g-i-D'Bt1       0'= = 1,2) 

£,=[(i-0)2+4</OW]1/2   (i= = 1,2) 

0=K»(l_,)/2 

(12.81) 

(12.82) 

and where w/w is the ratio of plate frequency 
to thickness-shear frequency used earlier in this 
chapter (73 is defined by eq. (12.74)), K is 
given by equation (12.75), and v is Poisson's 
ratio. Substituting equations (12.81) and 
(12.82) into equations (12.72) results in the 
three uncoupled equations 

(V2+S?)Wl=0 

(V2+S>2=0 

(V2+72)#=0 

(12.83) 
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FIGURE 12.25.—Ratio of plate frequency to thickness- 
shear frequency for the axisymmetric modes of a 
completely free circular plate derived from classical 
theory; v= 0.312. (After ref. 12.34) 
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where 

5*=6(u,/ü)2[l+sr-(-l)^]/r 

72=7r2[(a>3/^)2-l]Ä-2 

u= HI, 2)1 

(12.84) 

Thus the potentials wi, w2, and H may be 
regarded as uncoupled vibration modes having 
the frequencies uh u2, and o>3, respectively. 

The problem of the rectangular plate simply 
supported on all edges was solved by Mindlin, 
Schacknow, and  Deresiewicz  (ref.   12.36)  by 
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means of the approach just given. In terms of 
a coordinate system x, y having its origin at the 
center of the plate (cf. fig. 4.4), the boundary 
conditions are: 

(12.85) 
w=Mx=ypv=0        (onx=±fl/2) 

w=M„=^x=0       (onj/=±6/2) 

It is easily seen that 

Wi=sin ociX sin ßiy 

w2=sin a2x sin ß2y 

H=cos a3x sin ß3y 

are solutions to equations (12.83), provided that 

(12.86) 

2   |    02 2 
«8 + 03 = 7 

(12.87) 

Substituting equations (12.86) into equations 
(12.85) gives 

aj=rjTr/a 

ßi=e'i*/!>       0=1,2,3) 
(12.88) 

where r} and Sj are even integers. The modes 
given by equation (12.86) are then odd in both 
x and y. For modes even in x, sin atx and cos aft, 
are   interchanged   in   all   three  of  equations 
(12.86) and the rt are odd integers. Similarly, 
for modes even in y, sin ß/y and cos ß}y are 
interchanged, and the ss are odd integers. 

Substituting equations (12.88) into equations 
(12.87) and solving for the frequency ratios 
give 

2(|)2=l+^(l+^+(-l)%       0=1,2) =i+j(i+0)#+(-i)'n, 

(f)-1-** 
where 

#=p(fl3+isj) 

(12.89) 

0=1,2,3) 

0>={[l+£(l+flf)tfj 
K4 1    1/2 

~4^} 0=1,2,3) 

(12.90) 

In figure 12.28 (taken from ref. 12.36) the 
three sets of frequency ratios given by equations 
(12.89) are plotted against the length-thickness 
ratio as a function of the parameter 4>i> where 

*,= [»?+(«Wr        0=1,2,3)    (12.91) 

and where j>=0.312. From figure 12.28 it can 
be seen that for a given plate and for a given 
mode number j the frequencies are ordered 
according to WI<ü>3<CO2 and that w2 and co3 are 
much greater than wi except for very thick 
plates. 

In figure 12.29 (taken from ref. 12.36) a 
more detailed plot of the frequency ratios is 
indicated in the vicinity of w/w =1 for a fixed 
ratio Sjh/b=0.2 and for »»=0.312. This cor- 
responds to the particular case when the dis- 
tance in the y-direction between node lines 
(including the boundaries) is five times the 
plate thickness. In this figure rx=m, r»=n, 
and r3=q; that is, the curves m, n, g=constant 
give the frequencies of the wx, w2, and H modes, 
respectively. In this case, each mode has a 
low-frequency cutoff given by 

2(0=l+(#)*+(-l)'O?       0=1,2) 

m -i+ttty 

(12.92) 

II       1.3     15      17 

FIGURE 12.28.—Ratio of plate frequency to thickness- 
shear frequency for a SS-SS-SS-SS rectangular plate 
derived from the Mindlin theory; v= 0.312. (After 
ref. 12.36) 
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FIGURE 12.29.—Ratio of plate frequency to thickness-shear frequency for a SS-SS-SS-SS rectangular plate when 
the distance between nodes along the width is five times the thickness; x= 0.312. (After ref. 12.36) 

where ^* and Q* are given by equations 
(12.90) with rjh/a=0. These formulas give 
the values 1.0198 and 1.0704 shown in figure 
12.29. 

The mode shapes corresponding to wu w2, 
and H are depicted in figure 12.30 (taken from 
ref. 12.36). The mode shape corresponding to 
classical theory is shown in figure 12.31, which 
is also from reference 12.36. Of the three 
modes, the Wi mode most closely resembles the 
classical mode; hence, it is called a "flexural" 
mode. As a/A—>«,; this mode approaches the 
classical mode, and its frequency approaches 
the classical frequency given by equation 
(4.20). For the w2 mode the thickness-shear 
deformation predominates. The H mode shape 
(fig. 12.30(c)) contains no average deflection, 
but twists the plate; hence, it is called a "thick- 
ness twist" mode. 

In references 12.65 and 12.66 the problem of 
the simply supported plate is attacked by the 
finite-difference method. Mindlin's equations 
are the basis for this method in reference 12.65, 
whereas in reference 12.66 an alternate set is 
used. Numerical results for frequencies are 
given in both papers, but they are inconsistent 

with classical theory and will not be repeated 
here. 

A stiffened plate was treated as an ortho- 
tropic plate for purposes of analysis in refer- 
ence 12.67. The effects of rotary inertia were 
considered, but shear deformation was ignored. 
In this case the system of governing differential 
equations remains fourth order. Equation 
(9.22) is generalized to 

d4w 
D, 

d4w 
bx2by2^   "by" 

+wvw~l b
2w    , b2w 

bx2     " by' > 
0    (12.93) 

where Ix and Iv are the moments of inertia of 
the stiffened plate about axes parallel to the 
y- and x-directions, respectively. 

For a rectangular plate simply supported 
along the edges x=0, a and y=0, b, it is appar- 
ent that the boundary conditions will be 
satisfied by the deflection function 

W(x, y)= sin ax sin ßy (12.94) 

where  a=rrnr/a, ß=mr/b,   and m  and n are 
integers.    Substituting  equation   (12.94)   into 
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t=^=^±=i 
2w/U9 

(b) 

ry      » 

(0 
FIGURE 12.30.—Mode shapes for a SS-SS-SS-SS 

rectangular plate with consideration of shear de- 
formation and rotary inertia, (a) w\ mode. (6) w2 

mode,    (c) H mode. (After ref. 12.36) 

equation (12.93) and assuming harmonic time 
response give the frequency equation 

Dxo?+2Dx«o?ß2+DvlP 

P+Ixa
2+Iyß

2 (12.95) 

It is seen that the effects of rotary inertia enter 
as terms in the denominator of equation (12.95) 
with a resultant decrease in frequency from 
the classical theory. 

In reference 12.67, theoretical results were 
obtained from equation (12.95) and compared 
with experimental data for an aluminum square 
plate having the cross section and dimensions 

FIGURE 12.31.—Mode shape for 
rectangular plate, derived from 
(After ref. 12.36) 

a   SS-SS-SS-SS 
classical   theory. 

a=b=ir 
hs= 0.275" 
hc= 0.065" 
os= 0.063" 
a = 0.625" c 

FIGURE 12.32.—Dimensions of stiffened plate. (After 
ref. 12.67) 

shown in figure 12.32. A comparison of 
theoretical and experimental results for this 
plate is given in table 12.6. 

The problem of the SS-F-SS-F rectangular 
plate was also analyzed in reference 12.36. 
The boundary conditions are: 

Mx=Mxv=Qx=0 

w=Mv=\px=0 
(on*=±a/2n      (1296) 

It should be noted that here the simply sup- 
ported edges are along y=±b/2; this is unlike 
the previous convention used in section 4.2.5. 
Solution functions in the form of equations 
(12.86), which exactly satisfy the simply 
supported edge conditions, were again used. It 
is most interesting to note that the free edge 
conditions are also satisfied exactly (unlike in 
the classical theory) by this simple solution 
set upon substituting equations (12.86) into 
the first three of equations (12.96). This yields 
a characteristic determinant of the third order 
which is solved for the frequencies. Thus the 
modes wu w2, and H do not remain uncoupled 
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TABLE 12.6.—Theoretical and Experimental Cyclic Frequencies for a SS-SS-SS-SS Stiffened 
Rectangular Plate 

Mode no. n Derivation 

Cyclic  frequency,   cps,  for  values  of  mode 
no. m of— 

Experimental  
Rotary inertia neglected. 
Rotary inertia included. 
Experimental  
Rotary inertia neglected. 
Rotary inertia included. 
Experimental  
Rotary inertia neglected. 
Rotary inertia included. 

244 
238 
237 
794 
880 
877 

1700 
1950 
1940 

340 
336 
332 
940 
954 
941 

1800 
2020 
1983 

538 
534 
520 

1020 
1100 
1070 
1840 
2150 
2090 

800 
831 
793 

1268 
1344 
1282 
2110 
2349 
2238 

1152 
1220 
1135 
1580 
1689 
1570 
2340 
2638 
2451 

as in the SS-SS-SS-SS case discussed previ- 
ously in this section. 

The ratio of plate frequency to thickness- 
shear frequency is plotted in figure 12.33 for the 
particular ratio Sjh/b=0.2 (as in fig. 12.29). 
The broken and solid curves are for modes odd 
and even, respectively, in x. 

1.15 

12.3.3    Other Shapes 
Callahan (refs. 12.64 and 12.68) treated the 

problem of the elliptic plate, including the 
effects of shear deformation and rotary inertia. 
Mindlin's equations were transformed into 
elliptic coordinates, and series solutions to the 
differential equations were found in terms of 

a/h 
FIGURE 12.33.—Ratio of plate frequency to thickness-shear frequency for a SS-F-SS-F rectangular plate when the 

distance between nodes along the direction parallel to the free edges is five time the thickness; v= 0.312. 
(After ref. 12.36) 
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Mathieu functions. The boundary conditions 
are satisfied by finding the roots of an infinite 
determinant, each element of the determinant 
being an infinite series of Mathieu functions 
containing the frequency within their argu- 
ments. In reference 12.68 the infinite charac- 
teristic determinants are displayed for eight 
types of boundary conditions, but no numerical 
results are given. 

12.4   EFFECTS OF NONHOMOGENEITY 

A brief survey of the literature dealing with 
the vibration of nonhomogeneous plates will 
now be given. Nonhomogeneity may arise 
in many ways. Overall material properties 
themselves may vary in a continuous manner 
(e.g., a continuum representation of a fibrous 
composite plate). Inclusions or holes may 
occur within the plate. As can be seen from 
earlier chapters, the effect of a "classical" (i.e., 
cylindrical) hole, even if small, can cause a 
significant effect upon the vibration frequencies 
of a plate. 

Some practical and commonly used types of 
nonhomogeneous plates are sandwich plates 
having a honeycomb, corrugated, or Styrofoam 
core. These plates consist of a core material 
bonded between two face sheets. Because of 
the relative geometric complexity of these 
structures, the theoretical analysis of their 
vibrational behavior almost always assumes 
that the core material can be represented as a 
homogeneous, elastic continuum and, con- 
sequently, the overall structure can be treated 
as a layered plate. Indeed, if this representation 
were not made, the plate would have to be 
analyzed as a structure and, hence, would fall 
beyond the scope of this work. Even with 
these assumptions, the complexity of the 
results and the number of parameters required 
to describe the sandwich make it impractical 
to report detailed numerical results in this 
section. 

In the most simple case, a layered plate is 
made up of several layers bonded together, each 
layer being homogeneous and isotropic, and the 
Kirchhoff hypothesis of normals to the middle 
surface remaining straight and normal is as- 
sumed valid. In this case the mathematical 
complication of the plate theory is minimal. 

The necessary modifications of the theory are 
discussed in the section of the appendix entitled 
"Force and Moment Integrals" (sec. A.5). This 
is the type of nonhomogeneity discussed in 
reference 12.69. 

Bolotin (ref. 12.70) generalized the model 
for the layered plate by assuming that the plate 
is composed of both "hard" and "soft" layers. 
The hard layers obey the Kirchhoff hypothesis 
while slippage occurs in the soft layers. In the 
soft layers the inplane stresses ax, av, and rxv 

are assumed to be zero, while the transverse 
shear stresses and are constant within 
the layer. On the basis of these assumptions, 
a complete plate theory is developed in refer- 
ence 12.70. Another formulation, based upon 
the three-dimensional equations of elasticity, is 
given in reference 12.71. 

The theoretical work of Yu on layered plates 
(refs. 12.72 through 12.83) is particularly sig- 
nificant. This effort is primarily devoted to the 
incorporation of shear deformation and rotary 
inertia effects into the layered-plate theory. 
It is shown that these effects, particularly shear 
deformation, are especially important when one 
deals with conventional sandwich plates com- 
posed of a relatively soft-core material con- 
tained between two relatively rigid, thin face 
sheets. The statement is made (ref. 12.79) that 
shear-deformation effects can become impor- 
tant for a sandwich plate at a flexural frequency 
which may be only 1 percent of that of the 
corresponding solid, homogeneous plate. It is 
shown furthermore that, for ordinary sandwich 
plates, the shear effect on the faces, the rotary 
inertia of the faces about their own midplanes, 
and the flexural rigidity of the core are negligi- 
ble; of importance are the shear effect in the 
core, the rotary and translatory inertias of the 
core, the translatory inertia of the faces (in- 
cluding the rotary effect of the faces about the 
midplane of the sandwich plate), and the flex- 
ural and extensional rigidities of the faces (ref. 
12.75). 

A one-dimensional theory was developed in 
references 12.72 to 12.76, which is applicable 
to the vibration of plates in modes of plane 
strain. The transverse displacement w, as in 
the Mindlin theory, was assumed to be con- 
stant through the plate thickness.    The dis- 
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placements in the plane of the plate are assumed 
to vary linearly through the thickness, with the 
slope in the face sheets not necessarily the 
same as the variation in the core. 

The theory is generalized to a two-dimen- 
sional variation in w in references 12.77 and 
12.78 and is applied to the problem of a rec- 
tangular plate simply supported on all edges. 
In references 12.78 and 12.83, sets of formulas 
are presented for the calculation of natural 
frequencies of the simply supported rectangular 
plate. Those formulas will not be reproduced 
here because of their inherent complexity 
(arising from the relatively complicated geom- 
etry and material properties of the sandwich 
plate) and the amount of explanation which 
would be required. 

The theory is extended to the nonlinear 
(large-deformation) domain in references 12.80 
to 12.82. It is shown that the basic behavior 
is the same as that for homogeneous plates; 
that is, the membrane stiffening due to large 
deformations causes the overall stiffness of the 
system to be like a "hard" spring, thus causing 
an increase in frequency with increase in ampli- 
tude. (See section 12.2 of this work for back- 
ground information.) In particular, the non- 
linear theory is applied to a rectangular plate 
having immovable, hinged edges. 

Further theoretical derivations of equations 
for the vibrational behavior of layered plates 
are made in references 12.84 to 12.86. In 
both references 12.84 and 12.85 the analyses 
are generalized to include orthotropic core 
materials, and explicit frequency equations 
are developed for the case of a plate simply 
supported on all edges. 

Experimental results for sandwich plates 
having honeycomb and Styrofoam cores are 
given in reference 12.87. Experiments were 
conducted in a vacuum and data were compared 
with analytical frequencies obtained from a 
finite-difference solution of the classical plate 
equations. It was found that the classical theory 
is adequate for obtaining frequencies and mode 
shapes, except in cases of extremely low core 
stiffness. 

Circular sandwich plates with linearly vary- 
ing thickness were examined in reference 12.88. 
Experimental frequencies were compared with 

theoretical values obtained by a simple analysis 
by using the Eayleigh method. 

In reference 12.89 radial nonhomogeneity in 
circular plates is accommodated by treating the 
plate as a composite of homogeneous, isotropic 
annuli and enforcing continuity conditions 
across the internal junctions. 

The plate consisting of a thin face sheet 
stiffened by corrugated sheet (see fig. 12.34) is 
analyzed in reference 12.90. It is shown that 
this configuration cannot be treated as ortho- 
tropic plate because the twisting-moment rela- 
tion Mxy—Mvx is no longer applicable. A 
theory for this case is derived. 

In reference 12.91 an inflatable plate is 
analyzed. This plate consists of two woven 
cover membranes joined to each other by 
closely spaced perpendicular filaments. The 
space between the covers is pressurized, and the 
filaments hold the cover membranes together 
(see fig. 12.35). A variable-thickness plate is 
obtained by using variable-length connecting 
filaments. The theory developed in reference 
12.91 was applied in reference 12.92 to obtain 
natural frequencies of square plates having 
simply supported edges. Results were com- 
pared with experimental ones. 

FIGURE 12.34.—A corrugation-stiffened plate. 

WOVEN COVERS ■ 

■CONNECTING 
FILAMENTS 

FIGTJBB 12.35.—Typical inflatable plate construction. 
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Plate Equations 

APPENDIX 

The purpose of this appendix is to present 
the notation, conventions, assumptions, and 
fundamental equations upon which the main 
part of this work is based.    The effects of 

(1) Anisotropy 
(2) Inplane forces 
(3) Variable thickness 

will be explicitly included. Where other com- 
plicating effects (e.g., large deflections) enter 
the formulation, they will be pointed out. 
Basic derivations are, for the sake of simplicity, 
carried out in rectangular coordinates. 

A.1   NOTATION 
A notation will be developed which is con- 

sistent with that of elasticity theory; that is, at 
a point the directions of positive stress will be 
taken as shown on the element of figure A.l. 
Positive normal stresses are tensile. Positive 
shear stresses are directed in the positive x-, y-, 
and ^-directions if they He on "positive faces" 
of the element; that is, those faces of the three 
parallel sets whose x-, y-, and s-coordinates are 
the largest.    The three well-known (ref. A.l) 

FIGURE A.l.—Notation and positive directions of stress. 

moment equilibrium equations Txy=Tvx, ryz= 
TZV, and T2X=TXZ (neglecting couple stresses) have 
already been introduced in figure A.l. 

Figure A.2 shows a plate element of thickness 
h and incremental dimensions da; and dy. The 
x- and y-axes are chosen to contain the unde- 
jormed middle surface of the plate. This plane 
is called the "neutral plane." More will be 
said later about its location when layered 
plates are discussed. For a plate homogeneous 
through its thickness, the neutral plane lies 
midway through its thickness. The 2-axis is 
normal to the undeformed middle surface. 
The s-axis is shown, for convenience only, 
as acting along one edge of the element. Thus, 
it is noted that the xyz coordinate system is 
space fixed. The transverse shearing force 
intensities Qx and Qu, the inplane normal 
and shearing force intensities Nx, N„, and 
Nxv and their incremental changes are shown 
acting on the sides of the element, with positive 
forces acting in positive directions on positive 
faces. These quantities have dimensions of 
force per unit length. As will be seen later, 
these forces arise from the integrals of the 
even components of positive normal and shear- 
ing stresses. The shearing forces Nxv are 
identical on the faces x=0 and y=0 because 
the shear stresses causing them are equal. 
Also shown is the transverse external force 
<L=q(x, y) which has the dimension of force 
per unit area and arises from, for example, a 
gravitational field or an external pressure. It 
will be understood that, as the plate deforms, 
all the forces shown in figure A.2 will be 
measured in directions tangent to or normal to 
(as the case may be) the deformed middle 
surface of the plate. 

Figure A.3 shows the same element with 
bending moment intensities Mx and M„, 
twisting moment intensities Mxv, and their 
incremental changes; all these are indicated as 

331 
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*.♦«""■ °>-äf<*' 
FIGURE A.2.—Forces (intensities) acting on a plate element. 

^     ^ dM„ 

My+$j»dy 

Mxy+-£f dx 

FIGURE A.3.—Moments (intensities) acting on a plate element. 

right-hand vectors in the figure. These quan- 
tities have dimensions of moment per unit 
length. As it will be seen later, these moments 
arise from the integrals of the odd components 
of positive normal and shearing stresses. These 
stress variations are depicted typically on 
two faces of the element. The twisting moments 
Mxy are identical on the faces x=0 and y=0 

because the shear stresses causing them  are 
identical. 

The middle surface of the element after 
deformation is shown in figure A.4. The origin 
of the space-fixed coordinate system is taken 
at one corner of the element for convenience 
only. The displacement in the s-direction is 
taken as w.   Slopes, along with  their incre- 
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4a+A(AL)dy ox   dy   ox 

Jw+jL(iw)dy + 
dx   dy   dx' ' £♦**»*♦ 

FIGURE A.4.—Deformed middle surface of a plate element showing slopes and their changes. 

mental changes, are shown at all corners of 
the element, with positive changes assumed in 
positive directions. For small displacements 
it will be assumed later that the slope (tangent 
of the angle) and the sine of the angle are 
equivalent. 

A.2   EQUILIBRIUM EQUATIONS 
Considering small deflections (or, more 

precisely, small slopes), summing forces in the 
z-direction yield the equation (refer to figs. 
A.2 and A.4) 

-iV^da; 5+("»+f^) 
i  /bw ,   b2w  , \    T,T   . d<S+5J^*)-w»d!' 

■o +(N» _m1 
bx 

dx)dyQ%- 

bw 
by 

b2w 
by    bxby 

dx 
') 

+ qdxdy=pdxdy 
b2w 
bt2 (A.l) 

where p is mass density per unit area and 
b2w/bf is the acceleration in the 2-direction. 
The technique of generalizing the above equa- 
tion to account for large deformations (slopes) 
is self-evident. Expanding the terms involving 
products, discarding resulting third-order differ- 
ential terms, dividing through the equation by 
the area da; dy, and simplifying yield: 

bQ*   bQv 
bx     by $+U(»-KK(»%) 

+fe0O+4(^)+* bw\ . b' w 
bt2 

(A.2) 

Equation (A.2) can be simplified by consid- 
ering the well-known equilibrium equations 
of the three-dimensional theory of elasticity 

bax , brxv . brz 

bx     by 

brxu , b<rv 

bx     by 

*b2u 
bt2 

_yz_   *bh) 
bz ~p bt2 

bz 

dr 

brlx     bryz     b(TZ 

bx     by     bz 
tb

2W 

(A.3) 
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where u, v, and w are displacements in the 
x-, y-, and s-directions, respectively, and p* is 
mass density per unit volume. When the 
inplane inertia forces within the plate are 
neglected and the transverse shearing stresses 
Tyi and r„ are small relative to the other 
stresses, the first two of equations (A.3) become: 

box . t)^jy=Q 
da;     by 

brxy    Ü<rv=Q 

bx     by 

(A.4) 

Because these equations must be satisfied for 
every infinitesimal thickness (dz) of the plate 
element, their integrals over the thickness must 
also be satisfied.    That is, 

bNx   bNxv_ 
bx      by 

bNXy        Wy 
bx      by ' 

-0 

=0 
(A.5) 

By use of equations (A.5), equation (A.2) now 
simplifies to 

üQx , bQy    „ b2w    M b2w 
bx+ by^~   xbx2~t *y<itf 

. _,T    b2w  , 
'bxby 

b2w 
(A.6) 

If one were to sum forces in the x- and y- 
directions, he would arrive at the following 
equations: 

bNx , bNXi 

bx 

bNxt 

bx 

by 

My 
by 

bxK^bxJ    dyV4 
bw\ 

tvbi)'' 
b2u 

-pbt2 

 b^(n bw\    b (n bw\_  btv 
bxK^by)   byVlvbyJ~pbt2 

(A.7) 

Inplane inertia forces will be considered to be 
small, as before. If the transverse shearing 
forces are small relative to the inplane forces, 
and the slopes are also considerably less than 
unity, then terms of the type Qx(bw/bx) can 
certainly be considered negligible compared 
with terms of the type Nx, for example. Equa- 
tions (A.7) are thus seen to reduce to equations 
(A.5), which was obtained previously. 

In summing moments about the space-fixed 
x- and y-axes, it is found that terms containing 
Nx, Ny, and Nxy yield differentials of higher 

order   than   the   others   and   the   equations 
simplify to 

Qx- 

Qy- 

bMx   bMxy_ph2 bsw 
bx by 

bMxa   bMv 

' 12 bxbt2 

ph2 bsw 
(A.8) 

bx       by     12 by bt2 

where the terms on the right-hand sides ac- 
count for the rotary inertia of the plate element 
and are customarily considered small relative 
to the remaining terms in the equations. 

The moment equation about the 2-axis is 
identically satisfied. 

A.3   KINEMATICS OF DEFORMATION 

The assumption of elementary beam theory 
that "plane cross sections remain plane" is 
generalized to apply to a plate as follows: 

Normals to the midplane of the undeformed plate 
remain straight and normal to the midplane during 
deformation. 

An edge view of a portion of a plate is shown 
in figure A.5. The undeformed position of the 
plate is shown in solid lines, while the deformed 
shape is shown in broken lines. The longitudinal 
elastic displacement (due to inplane forces) of 
a point P on the midplane is depicted as u0- 
Points such as 0 not falling on the midplane 
will also have, in general, displacement due to 
rotation of the normal. Thus, the longitudinal 
components of displacement of points within 
the plate will be characterized by 

u=ua—z 
bw' 
bx 

bw 
v==v —z.—- 

02/J 

(A.9) 

 -—otr / j^r\ / 

FIGURE A.5.—Kinematics of plate deformation. 
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where u and v are measured in the a;-and y- 
directions, respectively. 

The linearized strain-displacement equations 
(obtained by assuming strains much less than 
unity) for a continuum are well known: 

_i>u 

€"~Ty 

_bv . du 
yxu~dx+i>yJ 

(A.10) 

where yxu is engineering strain as differentiated 
from the tensorial strain required for tensorial 
manipulations. Substituting equations (A.9) 
into equations (A. 10) gives 

' dx 
b2w 

_bv0     b
2w 

'by      by2 

-<s°+t)-2* 
b2w 

dxdy. 

(A.ll) 

A.4   STRESS-STRAIN RELATIONSHIPS 
For a general, anisotropic, elastic body the 

stress-strain relationships may be written in 
matrix form as: 

y%y 

Ifyz 

«11 «12 «13 «14 «15 die 

«12 «22 «23 0&24 «25 «26 

«13 «23 #33 «34 «35 «36 

«14 «24 «34 «44 «45 «46 

«15 «25 «35 «45 «55 «56 

_«16 «26 «36 «46 #56 «66. 

(A.12) 

where the coefficient matrix [ai}] can be proven 
to be symmetric as shown. Thermal strains 
will not be considered here, for it can be shown 
that they do not directly influence the free 
vibration problem. In the case of the plate 
the transverse stresses o-z, TVZ, and TZX are as- 
sumed to be small relative to the inplane stresses, 
and so equation (A.12) is reduced to 

(A. 13) 

Inverting equation (A. 13) gives the stresses in 
terms of the strains 

*z «11 «12 «14 <r 
€„ = «12 «22 «24 a 

LTZJ JLu «24 «44_ _T 

<rx 'On Öl2 bu *x 

ffy = bi2 b22 b2i ey 
Txy_ _bu b2i bu. JYxy_ 

(A.14) 

where 
1 

bn—j-r («22*44—«24) 
l«l 

6l2= 7-7 («14«24—«12«44) 

0l4=|—T («12«24_«14«22) 

&22=TT|(«44«11—a\i) 

"24 = I    f («12«14—«24«ll) \a\ 

bu = T~\ («11«22—«12) 
l«l 

and where let! is the determinant 

(A.15) 

«11 «12 «14 

«12 «22 «24 

«14 «24 «44 

(A.16) 

In the case when the material properties are 
orthotropic, with x and y lying in the directions 
of orthotropy, equations (A. 13) and (A.14) 
are simplified, with au=a2i= bu=b2i=0. Then 
equation (A. 13) can be written more meaning- 
fully in terms of the "technical constants" of the 
material.    In detail, 

ex=-g-(<Tx—Vx<ry) 

ev^-g-ivy—Vyax)   " 

*Yxy     Txyl(x 

(A.17) 

with vxIEx=VylEy because of the required sym- 
metry of the stress-strain equations. Thus, for 
an orthotropic plate, there are four independent 
elastic constants. Inverting and substituting 
in equations (A.17) yield 

1—VxVy 

Jv—1 

(Extx+VxEyty) 

(Ey€y-{-VyEXex) 

Txy = GyK 

(A.18) 
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For an isotropic material, equations (A. 17) 
further simplify "to 

ex=Ei(^i—V(Ty) 

Jxv= 
2(l+v) 

(A.19) 

A.5   FORCE AND MOMENT INTEGRALS 
The inplane forces and the bending moments 

are obtained by integrating the inplane stresses 
over the plate thickness. In the case of a 
homogeneous plate, these integrals are 

Nxv 

M 

■hß 

hl 2 

hß 

7 
h/2 

M, 

Mx 

Jh/2 

<r> 
-h/2 

f. 
-f. 

(•hß 
= <Tx 

J -h/2 

rh/2 

= <*v 
J-h/2 

fhß 
— Tx 

J-h/2 

dz 

(TydZ 

„UZ 

zdz 

zdz 

„zdz 

(A.20(a)) 

<A.20(6)) 

(A.20(c)) 

(A.20(<J)) 

(A.20(e)) 

(A.20(/)) 

The detailed integrations will be carried out for 
the bending and twisting moments in an ortho- 
tropic plate. 

When equations (A. 11) and (A.18)' are sub- 
stituted into equations (A.20(<£)), (A.20(e)), 
and (A.20(/)), it becomes clear that terms con- 
taining u0 and v0 disappear during the integra- 
tion between symmetric limits, whereas those 
containing w xemain. Similarly, the odd func- 
tions of z in equation (A. 11) disappear in the 
integrations of equations (A.20(a)), (A.20(&)), 
and (A.20(c)).    The moment integrals become: 

M*=-D*KM+V"W) 

M>=-DAw+Vxw) 
Mxt -2D, 

d2w 
i)xby 

(A.21) 

where 

Dx-- 
EXW 

Dk= 

"12(1-^) 

Evh? 
=12(l-jyv) 

Oh? 
12 

(A.22) 

In the isotropic case, Ex=Ey=E, vx=vy=v, 
and G=EJ2(1+V), and these equations simplify 
to 

Mxv=-D(l-v) 
b2w 

(A.23) 

where 

D-- 
Eh? 

"12(1-/) 

The generalization of equations (A.21) to 
the case of anisotropy is straightforward when 
equations (A.13) and (A.14) are used instead 
of equations (A.17), but it will not be carried 
out here. 

It must be pointed out here that in the case 
of homogeneous plates of variable thickness, 
the limits of integration in equations (A.20) 
simply become variables h=h(x,y), and equa- 
tions (A.21), (A.22), and (A.23) still apply. 

Finally, consider the layered plate shown in 
figure A.6. The plate is constructed of two or 
more laminas having thicknesses hh h2, ■ ■ ■ 
which are bonded together at their interfaces. 
The material properties of each lamina will, in 
general, be different. Consequently, the neutral 
plane will not, in general, occur midway be- 
tween the two outer faces.    Its distance from 

1   h,       \ 

plane 

FIGURE A.6.—Layered plate. 
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dz 

(A.24) 

the upper surface is denoted by c. As before, 
the transverse coordinate z will be measured 
from this neutral plane. 

The force and moment integrals will be 
formulated for the layered plate of figure A.6, 
which has three layers. Extension of this 
formulation to other numbers of layers is 
straightforward and obvious. Because the 
stress variation in each layer will, in general, 
be different, it is necessary to perform these 
integrations in a piecewise manner; for example, 

/»C-A1-A2 fC—hl " 
Nx= I ax, dz+ I ax, dz 

«/c—Ai—A2—As i/c—Ai—A2 

+ I      <r*, 
Jc-hi 

<Tx,z dz+ I <TZ,Z dz 
c—Ai—A2—As J c—h\—hi 

+ I     0-^2 dz 
J c-Ai - 

where <rx{ is the normal stress in the «-direction 
in the layer having thickness h{. 

Now the location of the neutral plane will be 
determined. Consider a plate bent by pure 
moments (i.e., no inplane forces). The neutral 
plane is that plane having no bending stresses 
(i.e., cx=(Ty—Q). Then the location of the 
neutral plane is such that inplane force integrals 
vanish when only the bending components of 
stress (i.e., the odd functions of z) are used. 
Thus, for example, the distance c can be 
determined by setting the first of equations 
(A.24) equal to zero and using equations 
(A. 11) and (A. 18), with bu0/bx=O in equations 
(A.11). 

A.6   SYNTHESIS OF EQUATIONS 
Consider first a homogeneous plate having 

rectangular orthotropy and subjected to inplane 
forces, but let its thickness be constant. Sub- 
stituting equations (A.21) into equation (A.8) 
gives the transverse shearing forces in terms 
of the plate deflection (neglecting rotary 
inertia): 

where 

b2w   n b2w\ 
(A.25) 

Dxv=vvDx+2Dk (A.26) 

Combining   equations   (A.25)   with   equation 
(A.6) gives the equation of plate bending 

DX^+2DX1 
b*w 

bx2by2 n ö4w-i_ b2w 
W 

"bx2^    ' 
b2w -N, 5

2w 
cty2 (A.27) 

where the transverse loading g has been omitted 
from the free vibration problem. 

The inplane forces are generally functions of 
x and y. For the linear problem, they are 
determined first from solving the plane elasticity 
problem, which involves equations (A. 5) and 
an equation of compatibility. Thus, in this 
case the bending and stretching effects are 
uncoupled from each other. When inplane con- 
straints (e.g., «=0 and/or v=0) are introduced 
into the problem, the inplane forces that will 
be generated will vary with w, and equation 
(A.27) becomes nonlinear. 

In the case of variable thickness, when equa- 
tions (A.21) or (A.23) and (A.8) are substituted 
into equation (A.6), the thickness is simply 
regarded as a variable h=h(x, y) when carrying 
out the differentiations. The resulting differ- 
ential equation, which is a generalization of 
equation (A.27), is relatively complicated. For 
example, in the most simple case (isotropic, 
homogeneous, no inplane forces, etc.) equation 
(A.6) becomes: 

Vl(D" w)- -(!-,) (S^-2 by2 da;2      da; by bx by 

+ b
2Db2w 

with 

b2w 
bt2 bx2 by 

V2=(b2/öa^) + (ö2/öy2) 

+p^=0    (A.28) 

A.7   BOUNDARY CONDITIONS 

Because the differential equation governing 
plate deflection (e.g., eq. (A.27)) is of the 
fourth order, two boundary conditions are 
required along each edge. AIL possible bound- 
ary conditions on an edge can be obtained 
from the case of elastic constraints; hence, 
these general conditions will be discussed first. 
An infinitesimal width taken from the edge of 
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a plate normal to the »-direction is shown in 
figure A.7. Translational and rotational 
springs having stiffnesses Kw and K$, 
respectively, are attached to the edge. The 
force Kufljo required to deflect the translational 
spring in the positive direction and the moment 
Kfbw/dx required to cause a positive rotation 
are shown, along with their reactions on the 
edge of the plate. The "edge reaction" Vx 

and the bending moment Mx occur at an in- 
finitesimal distance within the plate (the "edge 
reaction" is discussed later). By summing 
forces and moments on the infinitesimal ele- 
ment and neglecting higher order terms such 
as those arising from forces and moments 
acting on the two planes parallel to the plane 
of the paper, the following equations are found 
to hold on the boundary: 

Vx- 

MX=K^ 
(A.29) 

The inplane force component Nx does not enter 
this equation, for it was defined to be taken 
always in the deformed neutral plane. The 
generalization of equations (A.29) to arbitrary 
edge directions is accomplished by using n in 
place of x, where n is the direction of the outer 
normal to the edge. 

Special cases arise when the spring constants 
Kw and/or K$ are zero or infinity. When 
Kw=Kf=0, the edge is completely free. When 
both Kw and K+ approach infinity, the edge 
becomes clamped. When K$=0 and Kw ap- 
proaches infinity, the edge becomes simply 
supported.    The last possible case is that in 

 J 
+ w 

FIGTJHE A.7.—Elastic edge constraints. 

which Kw=0 and Kf approaches infinity. This 
last condition is physically possible but receives 
virtually no treatment in the literature on 
plates. 

The meaning of the "edge reaction" will now 
be discussed. It would appear that for a free 
edge normal to the ^/-direction all three quanti- 
ties Mv, MXV, and Qv would be zero. However, 
as discussed previously, only two boundary 
conditions are admissible per edge. It is found 
that Qx and Mxv combine into a single edge 
condition as will be described now. Figure A.8 
depicts a free edge parallel to the ai-direction. 
The twisting moment Mxy=Mxv{x) along the 
edge can be represented by pairs of vertical 
forces having intensities Mxv and infinitesimal 
changes, as shown. The vertical force resultant 
from the opposing forces is thus Z>Mxv/()x in 
intensity. When this is added to the trans- 
versing shearing force, the total edge reaction is 

Vy^Qy 
bMxt 

da: 
(A.30) 

In terms of arbitrary directions normal and 
tangent to the boundary (n and t), equation 
(A.30) is generalized to 

Vn = Qn- 
Wdnt 

bt 
(A.31) 

Mxy+^dx 

FIGUHB A.8.—Twisting moments along an edge. 



For further discussion of the free edge con- 
dition, see references A. 1 (p. 84) and A.2 (p. 17). 

A.8   POLAR ORTHOTROPY 
A development parallel to that of the pre- 

ceding sections may be carried out for the case 
of polar orthotropy. That is, if the stresses 
associated with plane polar coordinates (see 
fig. 1.1) are <r„ a, and rre and the corresponding 
strains are er, ee, and yrg, the stress-strain 
relations are given by the equations 
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where the flexural rigidities are defined by 

Erh
3 

_ 11 

1   ( 
JtL) 

yr$=rTe/G 

-Vr<T») 

-ve(Tr) (A.32) 

which are analogous to equations (A. 17). The 
kinematic relationships between displacements 
are 

bw} 
or 

zbw 
r öd 

where u and v now identify the radial and 
circumferential displacements. The strain- 
displacement equations become 

er= 

«9= 

bu 
dr 

lbv 
rbd^r 

low ,    ö 
yr>=rbe+ro~r 0 

(A.34) 

Using moment integrals corresponding to 
those of equations (A.20) with equations 
(A.32), (A.33), and (A.34) gives the moment- 
curvature relations (ref. A.3) 

Mr~~Diw+l,\r^+?w)i 

Me=-De{rb-r+?W+v'b?)      y    (A-35) 

or\i 
b /l bw lbw\ 

rbd) 

De= 

12(1 —vri/e) 

Eeh? 

Dk= 

12{l — vrve) 

Gh3 

12 

(A.36) 

When moment equilibrium equations equiv- 
alent to equations (A.8) are used and rotary 
inertia is neglected, the transverse shearing 
forces are found to be (ref. A.3) 

Qr=-[pT 
b /b2w   1 bw 
br\br2    r br 

>\   De/lbw    1 b2wV 
)    r \r br+r2bd2) 

+Dr$r 

(A.33)       where 

b2  flbw\l 

o -   ["-*d (l bw   * °2w\  Dre b*w "1 H*       [_r bd\rbr+r2b82J+ r br^bd] 

(A.37) 

Drt=DfVi+2Dk (A.38) 

Finally, the transverse force equilibrium 
equation gives the governing differential equa- 
tion of motion 

rdr'~V   ,6br2b6^f 
b*w 

tD'^+zDr 
b3w 
br1 

2_        b3w 
'r3   rebrb62' 

In ö2w   2 m,n vö2w 

bw 
br 

=0    (A.39) 

A.9   STRAIN ENERGY 

It is often useful to know the strain energy 
stored in a plate due to deformation. One such 
instance occurs when the Eayleigh-Ritz method 
is applied in order to obtain approximate 
solutions. 

The strain energy stored in any elastic body 
during deformation is given by 

U=2 I  (o*«*+ <rvev+<rzez+TxVyxV 

+ TViyvz+TzXytlx)dV   (A.40) 
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where the integral is taken over the volume of 
the body. Kestatement of an earlier assumption 
that the transverse stresses az, T„Z, and rtx are 
small relative to the others in the case of a 
plate allows equation (A.40) to reduce to 

where the remaining integral is yet to be taken 
over the plate area, and where Dx, DV! Dxy, and 
Dk are as defined previously in equations (A.22) 
and (A.26). For an isotropic plate, equation 
(A.42) simplifies to 

£/=i f («Ä+^+wJdF     (A.41)       u=DCf/Vw 
2 JA \,\öar 

Now the stresses are expressed in terms of the 
strains by means of appropriate stress-strain 
relationships, the strains are expressed in terms 
of the displacements by means of equations 
(A. 11), and the integration over the thickness 
is carried out. 

For a plate possessing rectangular orthotropy, 
equations (A.18) are used; and the strain 
energy due to bending alone becomes 

KIN 0+D'dO+2°»-- 
W£s)> 

da;2 by2 

(A.42) 

bx*+w)~2(1 

b2w 
<: 

b2w b2w 
dx2 dy2 

dA    (A.43) 
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Accelerometers, parallelogram plates, 171 
Added mass, rectangular plates, 141-151 
Admissible functions, rectangular plates, 77 
Air, effects of surrounding media, 170, 299, 301 
Airy stress function, large deflections, 305 
Aluminum parallelogram plates, 171, 172, 180, 181, 186 
Aluminum rectangular plates, 83, 86, 89, 126, 133, 143, 

148 
Analog computer, 77 
Anisotropie elastic body, stress-strain relationship, 333 
Anisotropie plates, 245-266 

added concentrated mass, circular plate, 246 
all sides clamped, rectangular, 260-262 
all sides simply supported, rectangular, 251 
annular plate, 248 
Bessel function, 249 
Boobnov-Galerkin method, 248 
circular plates, clamped, 245-246, 264 
circular   plates   having   rectangular   orthotropy, 

263-264 
elliptical  plates  having  rectangular  orthotropy, 

264-265 
Galerkin method, 261, 264 
grain of veneer, 252 
infinite series, 246 
longitudinal slots, 264 
maple-plywood plate, 256, 260 
other shapes, 248 
Poisson's ratio, 259 
polar orthotropy, 245-249 
Rayleigh method, 250, 256, 258, 259, 261, 262 
Rayleigh-Ritz method, 252, 261, 264 
rectangular orthotropy, 250-266 
Ritz method, 261 
SS-C-SS-C, 256 
SS-C-SS-F, 258 
SS-C-SS-SS, 257 
SS-ES-SS-ES, 259 
SS-F-SS-F, 258 
SS-SS-SS-F, 258 
SS-SS-SS-SS, 251-254 
simply supported circular plates, 246-248 
spacing of grooves, 253 
square plates 

C-C-C-SS, 263 
C-C-SS-SS, 263 

stiffeners, 265 
strain energy, rectangular coordinates, 250 
two opposite sides SS, 254-260 
veneer, grain of, 252 

Annular plates, 19-33 
anisotropic plates, 248 
Bessel functions, 21, 29 
clamped outside and inside, 20-21 

Annular plates—Continued 
clamped outside, free inside, 22-24, 26-27 
clamped outside, rigid mass inside, 32 
clamped outside, simply supported inside, 21-22 
free outside and inside, 30 
free outside, clamped inside, 28-29 
free outside, simply supported inside, 29-30 
Rayleigh-Ritz method, 20 
simply supported outside and inside, 25-26 
simply supported outside, clamped inside, 24-25 
simply supported outside, free inside, 26-27 
variable thickness, 286 

Annulus.    See Annular plates. 
Anticlastic bending effects on rectangular plates, 89 
Apparent mass, surrounding media, 301 
Arbitrarily shaped triangular plates, 227 
Area integrals, replaced by double summations, 86 
Asymptotic-expansion estimate, 17-19 
Axes,  of ellipse, 37 

Beam functions 
parallelogram plates, 161, 168 
rectangular plates, 58, 65, 76, 81, 87, 104 
surrounding medium, effects of, 303 
trapezoidal plates, 195 
triangular plates, 212 

Beam theory, elementary, kinematics of deformation, 
332 

Bending and twisting moments 
elliptical coordinates, 3 
polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

Bending moment intensities, 329 
Bending moments, shear deformation, 315 
Bending, strain energy of.    See Strain energy. 
Bending stress, large deformations, 312 
Bessel functions 

anisotropic plates, 249 
annular plates, 20, 29 
circular plates, 7 
plates with inplane forces, 268 
recursion formulas for derivatives of, 32 
variable thickness, 286 

Bessel's equation, 2 
Biharmonic singular function, rectangular plates, 151 
Boobnov-Galerkin method, anisotropic plates, 248 
Boundaries as nodal lines, 42 
Boundary conditions, 335-337 

elastically supported circular plate, 14 
mixed, 14-15 
rotary inertia, 324 
shear deformation, 324 

Brass plate, 11-13, 38-39, 108, 116 
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Buckling 
large deformations, 309 
parallelogram plates, 168 
polygonal plates, 237 
rectangular plates, 117 

Buckling loads, critical 
plates with inplane forces, 
polygonal plates, 237 

277 

Cantilever 
beam, triangular plates, 213 
parallelogram plates, 168-184 
rectangular plates, 76-87, 301 
trapezoids, 194-196 
triangles, 212-228 

Centrifugal fields, plates with inplane forces, 273 
Chain rule of differentiation, right triangular coordi- 

nates, 194 
Characteristic determinant equation, sixth order, 17 
Characteristic determinant, unbounded order, 37 
Circular edge, sectorial plates, 239 
Circular frequency, 1 
Circular holes, rectangular plates, 152 
Circular membrane plates with inplane forces, 271 
Circular plates, 7-33 

anisotropic, 245-248 
annular.    See Annular plates. 
Bessel functions, 7 
central mass, 17-19 
clamped (see also Clamped circular plates), 7-8 
clamped at center, 15-17 
clamped partially, and supported, 14-15 
clamped, simply supported, 14-15 
coordinate system, polar, 7 
elastically supported, 13-14 
free, 10-13, 16 
Harvard tables, 7 
inplane forces, 267-276 
internal holes, 7 
large deflections, 306-310 
mass concentrated at center, 17-19 
mixed boundary conditions, 14-15 
polar coordinates, 7 
radii of nodal circles, 8, 9, 11 
Rayleigh-Ritz method, 20 
rotary inertia, 316-318 
shear deformation, 316-318 
simply   supported    (see   ako   Simply   supported 

plates), 8-10 
simply supported and clamped, 14-15 
solid, 7-19 
supported on internal circle, 17 
surrounding media effects, 299-301 

Circular plates having rectangular orthotropy, 263-264 
Circular plates of variable thickness, 285-291 
Circular plates with inplane forces, 267-276 
Circular sandwich plates, nonhomogeneity, 325 
Clamped circular plates, 7-8 

anisotropic plates, 245-246, 264 

Clamped circular plates—Continued 
effects of Poisson's ratio, 18 
plates with inplane forces, 268-272 

Clamped/supported circular plates, 14-15 
Classical plate equations, anisotropic plates, 249 
Classical plate theory, 1-5 
Coarse finite-difference grids, 47 
Collocation method 

trapezoids, 193 
triangular plates, 207, 209, 210 

Confocal ellipses, 37 
Constraint of zero deflection, rectangular plates, 130 
Continuity conditions 

circular plate, supported on ring, 17 
for transverse shear, rectangular plates, 145 

Coordinates 
elliptical.    See Elliptical coordinates. 
polar.    See Polar coordinates. 
rectangular.    See Rectangular coordinates. 
skew.    See Skew coordinates. 

Corrugated core, nonhomogeneity, 324 
Corrugation-stiffened plate, nonhomogeneity, 325 
Critical buckling loads, plates with inplane forces, 277 
Cutouts, rectangular plates, 151-154 
Cylindrical masses, rectangular plates, 148 

Deflections, infinite, circular plates, 7 
Deflections, small equilibrium equations, 331 
Deformation, strain energy, 337 
Deformed middle surface, notation, 329 
Dependence upon time, inplane forces, 267 
Derivatives 

in strain energy, 220 
replaced by finite differences, 86 

Dini series, surrounding media, 300 
Dirac delta function, rectangular plates, 147 
Discontinuous edge conditions, 123-130 
Displacement, transverse, 1 
Distributed stiffness, 13 
Double Fourier sine series, 63 
Double-precision arithmetic, 77 
Double summations replace area integrals, 86 

Eccentricity, elliptical, 37 
Edge constraint, 14 
Edge reactions 

polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

Edge rotation, 13 
Elastic constants, 300 
Elastic, discontinuous, and point supports, rectangular 

plates, 114-141 
Elastic edge supports, 114-123 
Elastic foundation, 1 
Elasticity theory 

notation, 329 
three-dimensional, 331-332 

Elasticity, uncoupled plane, 274 
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Elastic moment edge constraint, 14 
Electric analog computer, 77 
Electrical analogies, 77 
Electrical analogies, development of, 77 
Ellipse 

axes, 37 
eccentricity, 37 

Ellipses, confocal, 37 
Elliptical coordinates, 2-3 

bending and twisting moments, 3 
interfocal distance, 2 
Laplacian operator, 2 
rectangular coordinates, relation to, 2 
shearing forces, transverse, 3 

Elliptical plates, 37-39 
clamped, 37 
free, 38 
Galerkin method, 38 
Rayleigh method, 37, 38 
Rayleigh-Ritz method, 38 
rotary inertia, 322 
shear deformation, 322 

Elliptical plates having rectangular orthotropy, 264-265 
Epicycloidal shape, 244 
Epicycloidal transcendental function, 38 
Equal slope restraint, 122 
Equation of motion remains linear, inplane forces, 267 
Equilateral triangular plates, 212 
Equilibrium equations, 331-332 

deflections, small, 331 
elasticity, 3-dimensional theory, 331-332 
inplane inertia, 332 
slopes, small, 331 
transverse shearing forces, 332 

Euler's constant, 16 

Filing down edges of rectangular plates, 108 
Finite-difference method 

inplane forces, 279 
rectangular plates, 58, 86, 130, 131, 136 
shear deformation and rotary inertia, 314 
triangular plates, 205, 220 
variable thickness, 293 

Finite summation replaces integral equation, 129 
Five-ply maple-plywood plate, 256 
Flexural rigidity 

defined, isotropic plate, 1 
polar orthotropy, 337 
rectangular orthotropy, 250 
variable thickness, 285 

Flexural stiffness, no, 271 
Force and moment integrals, 334-335 
Foundation 

elastic, 1 
plate supported by, 1 
stiffness, 1 

Fourier components, 2, 267 
Fourier sine series, 139, 145 
Free membrane mode shapes, 104 

Free regular pentagons, 238 
Free vibrations, 1 
Frequency, circular, 1 
Frequency in vacuum, parallelogram plates, 170 

Galerkin method 
anisotropic plates, 261, 264 
elliptical plates, 38 
large deflections, 307, 308, 312, 313 
rectangular plates, 61, 71, 88 

General rectangle, rectangular plates, 89 
Grain of veneer, anisotropic plates, 252 
Green's function, rectangular plates, 129 

Half-sine waves, rectangular plates, 47 
Hamilton's principle, 309, 313 
Hard spring, nonhomogeneity, 324 
Harvard tables, 7 
Hexagons 

completely free, 238 
simply supported, 238 

Holes, internal, 7 
Hub-pin plates, rectangular, 140 
Hub-pin supports, 223 
Hydrostatic pressure 

parallelogram plates, 168 
plates with inplane forces, 281 
polygonal plates, 237 

Hydrostatic tension, 280 

Impeller blade, 240, 241 
Inertia 

inplane, 331-332 
rotary, 314-324 
rotational, added mass, 147 
translational, added mass, 147 

Infinite series, anisotropic plates, 246 
Inflatable plate, nonhomogeneity, 325 
Inplane forces, 267-284 

all sides SS, rectangular plates, 276-279 
assumptions, 267 
Bessel functions, 268 
body force, 278 
buckling loads, critical, 277, 281 
centrifugal fields, 273 
circular membrane, 271 
circular plates, 267-276 
circular plates, clamped, 268-272 
circular plates, completely free, 273-276 
circular plates, simply supported, 272-273 
concentrated forces, 280 
critical buckling loads, 277 
dependence of forces upon time, 267 
elasticity, uncoupled plane, 274 
equation of motion remains linear, 267 
finite difference method, 279 
flexural stiffness, no, 271 
Fourier components, 267 
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Inplane forces—-Continued Large deflections, 303-314 
hydrostatic pressure, 281 Airy stress function, 305 
hydrostatic tension, 280 assumption for magnitude of deflection, 303 
internal residual stresses, 273 bending stress, 312 
isotropic plates, 279 Berger simplified equations, 306, 313 
Kato-Temple method, 195, 280 boundary conditions, 303 
membrane tension, 271 buckling, 309 
method of images, 282 circular plates, 306-310 
perturbation technique, 271, 279, 281 compatibility of strain, 305 
plates having other shapes, 281 Galerkin method, 307, 308, 312, 313 
Poisson's ratio, 275 Hamilton's principle, 309, 313 
prestressed boundary, 273 inplane restraint, 311 
Rayleigh method, 269, 270, 272 membrane stress, 312 
Rayleigh-Ritz method, 269, 271, 275, 277 , 279 nonhomogeneous plates, 325 
rectangular orthotropy, 267 perturbation method, 310 
rectangular plates, 276-281 rectangular plates, 310-314 
rectangular plates, all sides clamped, 280- 281 static case, 306 
rectangular plates, all sides SS, 276-279 strain-displacement equations, 303-304 
rectangular plates, two opposite sides SS, 279-280 thermal gradient, 309 
rotating disk, clamped at center, outer edge free, Von Karmän equations, 306, 310 

276 Large error, frequency of, 73 
rotating disk, free, 273 Layers, hard and soft, 324 
Southwell method, 269, 270, 272 Legendre functions, rectangular plates, 77, 104 
strain energy, 269 Longitudinal slots, 264 
thermal gradients, 273, 275 
two opposite sides SS, rectangular plates, 279-280 Magnesium, parallelogram plates, 187-189 
uniform inplane forces, 279 Maple-plywood plate, five-ply, anisotropic, 256, 260 
variational method, 271 Marine propeller blades, 240, 242 

Inplane restraint, large deformations, 311 Mass density ratios, critical, 33 
Integral equation, replaced by finite summation,  129 Mathieu functions, 3, 38, 324 
Interfocal distance, 2 Membrane stress, large deformations, 312 
Internal cutouts, rectangular plates, 151-154 Membrane tension, plates with inplane forces, 271 
Internal holes, circular plates, 7 Membrane vibration, analogies, 237 
Internal residual stresses, 273 Mesh widths, rectangular plates, 130 
Isosceles trapezoidal plate, 193, 194 Method of images 
Isosceles triangle, C-C-C, 205 plates with inplane forces, 282 
Isotropic plates, inplane forces, 279 triangular plates, 212 

Mindlin theory, 318, 319, 323, 324 
Kato-Temple method nonhomogeneity, 324 

parallelogram plates, 161-162 rotary inertia, 318, 319 
plates with inplane forces, 280 shear deformation, 318, 319 
trapezoids, 195 Mode of vibration, shear deformation, 315 

Kinematic relationships, 337 Mode shape, polar coordinates, 2 
Kinematics of deformation, 332-333 Moment-curvature equations, polar orthotropy, 337 

beam theory, elementary, 332 Moment integrals, 334 
plane cross sections, 332 Moments,  bending and twisting.    See  Bending and 
strain-displacement equations, 333 twisting moments. 
tensorial manipulations, 333 
tensorial strain, 333 Neutral plane, 329 

Kirchhoff hypothesis, 324 Nonhomogeneity, 324-325                                                                 , 
circular sandwich plates, 325 

Lagrange's equation, 148 composite material, 324                                                             ' 
Laplace transform, 17 corrugated core, 324 
Laplacian operator corrugated-stiffened plate, 325 

elliptical components, 2 hard spring, 325 
polar coordinates, 2 
rectangular coordinates, 
skew coordinates, 5 

Large-amplitude vibrations, 310 

honeycomb core, 324 
inflatable plate, 325 
Kirchhoff hypothesis, 324 
large deflections, 325 
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Nonhomogeneity—Continued 

layers, hard and soft, 324 
Mindlin theory, 324 
shear deformation and rotary inertia, 324 
Styrofoam core, 324, 325 

Nonsquare cantilever, 77 
Notation, 329-331 

bending moment intensities, 329 
deformed middle surface, 329 
elasticity theory, 329 
neutral plane, 329 
positive faces, 329 
positive shear stresses, 329 
transverse shearing force intensities, 329 
twisting moment intensities, 329 

Octagon 
free, 239 
simply supported, 238 

One-g method, parallelogram plates, 184 
Orthotropy 

polar, 245 
rectangular, 245, 250-266 
stress-strain relationships, 333 

Parallelogram plates, 161-192 
accelerometers, 171, 184 
accuracies of solutions, 161, 164, 165 
added mass, 185, 186 
aerodynamic lifting surface, 161 
air mass, effect of, 170 
aluminum, 171, 172, 180, 181, 186 
beam functions, 161, 168 
buckling analogy, 168 
cantilevered, 161, 168-184 
C-C-C-C, 161-164 
C-C-C-SS, 164 
C-C-SS-SS, 164-165 
C-F-F-F, 168-184 
exact solutions, 161, 166 
F-F-F-F, 184 
FORTRAN    program    statement    listing    for 

C-F-F-F plates, 170 
frequency in vacuum, 170 
influence functions, statically determined, 171 
Kato-Temple method, 16^-162 
magnesium, 187-189 
membrane vibration analogy, 168 
one-g experimental method, 184 
perturbation method, 165 
point-matching method, 163, 167 
Rayleigh method, 164 
Rayleigh-Ritz method, 161, 164, 168 
rhombic, compared to square, 163 
simple edge conditions, 161-184 
SS-SS-SS-SS, 168 
stabilizing surface, 161 
steel plates, 163 
transition curves, 170 
transition points, 171 

Parallelogram plates—Continued 
Trefftz method, 161 
unlike rectangle, 161 
variational method, 170, 171 

Passive element analog computer, 77 
Pentagons, 237-238 

completely free, 238 
polygonal plates, 237-238 
simply supported, 237 

Perturbation techniques, 165, 271, 279, 281, 310 
Plane cross sections, kinematics of deformation, 332 
Planform dimensions 

trapezoids, 196 
triangular plates, 227, 228 

Plate equations, 329-338 
Plates 

anisotropic.    See Anisotropie plates. 
annular.    See Annular plates. 
circular.    See Circular plates. 
clamped circular.    See Clamped circular plates. 
elliptical.    See Elliptical plates. 
free circular.    See Free circular plates. 
free elliptical.    See Free elliptical plates. 
parallelogram.    See parallelogram plates. 
polygonal.    See Polygonal plates. 
quadrilateral.    See Quadrilateral plates. 
rectangular.    See Rectangular plates. 
square steel.    See Square steel plates. 
triangular.    See Triangular plates. 

Plate theory, classical, 1-5 
Point masses, rectangular plates, 145-151 
Point-matching method 

parallelogram plates, 163, 167 
polygonal plates, 238 
rectangular plates, 151 
triangular plates, 210, 212 

Point supports, rectangular plates, 130-141 
Poisson's ratio, 1 

anisotropic plates, 259 
annular plates, 19 
circular plates, clamped, 8 
circular plates, elastically supported, 14 
plates with inplane forces, 275 
rectangular plates, 41, 54, 74, 79, 86, 87, 89, 131, 

132, 133 
shear deformation, 317 
triangular plates, 213 
variable thickness, 285, 286, 288, 290 

Polar coordinates, 1-2 
bending moments, 2 
boundary conditions, 2 
circular plates, 7 
edge reactions, 2 
Kelvin-Kirchhoff edge reactions, 2 
Laplacian operator, 2 
mode shape, 2 
shearing forces, 2 
strain energy, 2 
twisting moments, 2 

J 
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Polar orthotropic plate, transverse bending, 245 
Polar orthotropy, 245-250, 337 

flexural rigidities, 337 
kinematic relationships, 337 
moment curvature, 337 
rotary inertia, 337 
strain displacement, 337 
transverse force equilibrium, 337 
transverse shearing forces, 337 

Polygonal plates, 237-239 
buckling analogy, 237 
hexagons, 238 
membrane vibration analogy, 237 
octagons, 238 
parallelogram plates, 161-192 
pentagons, 237-238 
point-matching method, 238 
rectangular plates, 41-154 
simply supported, all edges, 237, 238 
trapezoidal plates, 193-196 
triangular plates, 205-235 

Positive faces, notation, 329 
Positive shear stresses, notation, 329 
Prestressed boundary, planes with inplane forces, 273 
Prestretched membrane, polygonal plates, 237 
Propeller blades, marine, 240, 242 

Quadrilateral plates 
of general shape, 196 
parallelogram, 161-192 
rectangular, 41-154 

Radial sides simply supported, sectorial plates, 239 
Rate of taper, variable thickness, 291 
Rayleigh method 

anisotropic plates, 250, 256, 258, 259, 261, 262 
elliptical plates, 37, 38 
inplane forces, 269, 270, 272 
parallelogram plates, 164 
rectangular plates, 41, 43, 58, 118, 132 
sectorial plates, 239, 240 
surrounding media, 299, 300 

Rayleigh-Ritz method, 20 
anisotropic plates, 252, 261, 264 
circular plates, 20 
inplane forces, 275-280 
parallelogram plates, 161, 162, 168 
rectangular plates, 58, 59, 61, 65, 69, 72, 73, 76, 

77, 79, 81, 86,103, 119, 122,131-133,141,151,152 
surrounding media, 300 
trapezoidal plates, 194, 195 
triangular plates, 212, 213, 215, 216 
variable thickness, 288, 290 

Rectangular cantilever plates, 301 
Rectangular coordinates, 4 

bending and twisting moments, 4 
edge reactions, 4 
Laplacian operator, 4 
shearing forces, transverse, 4 
strain energy, 4 

Rectangular orthotropy, 250, 266 
circular plates having, 263-264 
elliptical plates having, 264-265 
plates with inplane forces, 267 
rectangular plates having, 250-263 

Rectangular plates, 41-154 
added mass, 141-151 
admissible functions, 77 
aluminum, 83, 86, 89, 126, 133, 143, 148 
anisotropic, 250-266 
anticlastic bending effects, 89 
area integrals replaced by double summations, 86 
beam functions, 58, 71, 76, 81, 87, 104 
behavior like beam, 54, 86 
biharmonic singular function, 151 
boundaries as nodal lines, 42 
boundary conditions, possible combinations, 41 
brass, 108, 116 
buckling, 45, 46, 117 
cantilever, 76-87 
C-C beam, 60 
C-C-C-C, 58-65, 280-281 
C-C-C-C square plate, 60 
C-C-C-F, 65 
C-C-C-SS, 65 
C-C-F-F, 72 
C-C-SS-F, 71 
C-C-SS-SS, 65-71 
C-F-C-F, 74-75 
C-F-F-F, 76-87 
C-F-SS-F, 75-76 
circular holes, 152 
coarse finite difference grids, 47 
constraint of zero deflection, 130 
continuity condition for transverse shear, 145 
C-SS-C-F, 73 
C-SS-F-F, 74 
C-SS-SS-F, 74 
cutouts, other, 152 
cylindrical masses, 148 
deflection functions, 77, 81, 119, 131, 136, 140 
Dirac delta function, 147 
discontinuous edge conditions, 123-130 
double-precision arithmetic, 77 
elastic edge supports, 114-123 
electrical analogies, development of, 77 
electronic analog computer, 77 
equal slope restraint, 122 
extrapolation formula for finite difference method, 

130, 136 
F-F-F-F, 87-115 
finite-difference equations, 71, 86, 130 
finite-difference mesh, 86 
finite-difference method, 58, 131, 136, 220 
finite differences replace derivatives, 86 
finite summation replaces integral equation, 129 
flexural rigidity, 86 
Fourier sine series, 139, 145 
Galerkin method, 61, 72, 88 
general rectangle, 89 
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Rectangular plates—Continued 

Green's function, 129 
half-sine waves, 47 
high-frequency parameters, 51 
hub-pin plate, 140 
inplane forces, 276-281 
integral equation, replaced by finite summation, 

129 
internal cutouts, 151-154 
Lagrange's equation, 148 
large deflections, 310-314 
large error, frequency of, 73 
Legendre functions, 77, 104 
mesh widths, 130 
modulus of elasticity, 86 
narrow internal slit, 154 
nonsquare, 47 
nonsquare cantilever, 77 
orthotropic, 250-266 
plates with inplane forces, 276 
principle of stationary total energy, 123 
point masses, 145-151 
point-matching method, 151 
point supports, 130-141 
Poisson's ratio, 41, 54, 74, 79, 87, 89, 131, 132, 133 
Rayleigh method, 41, 43, 58, 118, 132 
Rayleigh-Ritz method, 58, 59, 61, 65, 69, 72, 73, 

76, 77, 79, 81, 86, 103, 119, 122, 131, 132, 133, 
141, 151, 152 

Reissner's variational method, 140 
rigid strip mass, 141, 145 
rotary inertia, 318-323 
series method, 58, 60, 63, 74, 79, 102, 131 
shear deformation, 318-323 
simple edge conditions, other, 58 
soap powder, 83 
Southwell's method, 78 
spring-mass system, 148 
SS-C-SS-C, 46-50 
SS-C-SS-F, 51-52 
SS-C-SS-SS, 50-51 
SS-ES-SS-ES, 116, 120 
SS-P-F-P, 87 
SS-F-SS-F, 53-58 
SS-SS-F-F, 87 
SS-SS-SS-F, 52-53 
SS-SS-SS-SS, 43-45, 276-279 
steel, 79, 83, 86 
stepwise superposition of modes, 57 
strain energy, 119 
surrounding media, effects of, 301-303 
symmetrical slope restraints, 120 
transcendental functions, 129 
transition points, 54, 65, 75, 79, 109 
translational spring, 148 
transverse shear, continuity of, 139 
two opposite sides SS, 45-46, 279-280 
uniform slope restraint, 122 
variable thickness, 291-297 
variational method, 47, 51, 58, 65, 79, 136, 140 

Rectangular plates—Continued 
"veering away" phenomenon, 63, 74 
V-groove simulation of simply supported edge, 124 
Warburton's formula, 86 
weight density, 86 
Weinstein method, 58, 61 

Recursion formulas, 14, 20, 32 
Regularity conditions, 17 
Reissner's static theory, shear deformation, 315 
Reissner's variational method, rectangular plates, 140 
Rhombic plates.    See Parallelogram plates. 

compared to square, 163 
parallelogram, aluminum, 172 
triangular, 205 

Rigid body translation, 31 
Rigidity, flexural, 1 
Rigid strip mass, rectangular plates, 141-145 
Ritz method, anisotropic plates, 261 
Rotary inertia, 314-324 

AT-cut quartz crystal plates, 314 
boundary conditions, 324 
circular plates, 316 
effects of, 314, 317, 323 
elliptical plates, 322 
finite difference method, 314 
inplane forces, 316 
large deflections, 316 
low frequency cutoff, 320 
Mathieu functions, 324 
Mindlin's equations, 323 
Mindlin theory, 318-319 
rectangular orthotropy, 321 
rectangular plates, 318-323 
synthesis of equations, 335 
thermal effects, 316 
thickness-shear mode, 315, 316, 317, 321 
thickness-twist mode, 321 
variable thickness, 285 

Rotating disk, clamped at center, outer edge free, 276 
Rotation 

edge, 13 
modes, 31 

Sectorial plates, 239-240 
all edges clamped, 239 
boundary conditions, other, 239 
circular edge, 239 
completely clamped, 240 
exact solution, 239 
radial sides simply supported, 239 
Rayleigh method, 239, 240 
semicircular, 240 

Semicircular plates, sectorial, 240 
Series method, rectangular plates, 60, 63, 78, 131 
Shear deformation, 314-324 

anisotropic material, 314 
AT-cut quartz crystal plates, 314 
bending moments, 315 
circular plates, 316-318 
effects of, 314, 317 
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Shear deformation—Continued 
elliptical plates, 322 
finite difference method, 317 
inplane forces, 316 
large deflections, 316 
low-frequency cutoff, 320 
Mathieu functions, 324 
Mindlin theory, 318, 319 
mode of vibration, 315 
Poisson's ratio, 317 
polar orthotropy, 337 
rectangular plates, 318-323 
Reissner's static theory, 314, 315 
static theory, 314 
strain displacement, 314-315 
synthesis of equations, 335 
thermal effects, 316 
thickness-shear mode, 315, 316, 317, 321 
thickness-twist mode, 321 
transverse shearing force, 315 
variable thickness, 285 

Shearing forces, transverse, 2-5 
elliptical coordinates, 3 
polar coordinates, 2 
rectangular coordinates, 4 
skew coordinates, 5 

Simple edge conditions 
parallelogram plates, 161-184 
rectangular plates, 58 
triangular plates, 205-229 

Simply supported plates 
all edges, polygonal plates, 207 
circular plates, anisotropic, 246-248 
circular plates, inplane forces, 272-273 
circular plates, isotropic, 8 
parallelogram plates, 165 
polygonal plates, 237 
rectangular plates, 45 
sectorial sides, 239 
simulation by V-grooves, 123 
trapezoidal plates, 193 
triangular plates, 210 

Sinusoidal time response, 276 
Skew coordinates, 5 

bending and twisting moments, 5 
edge reactions, 5 
Laplacian operator, 5 
shearing forces, transverse, 5 
strain energy, 5 

Slopes, small, equilibrium equations, 331 
Soap powder, rectangular plates, 83 
Solid circular plates.    See Circular plates. 
Solutions, significant, parallelogram plates, 161 
Southwell method 

plates with inplane forces, 269, 270, 272 
rectangular plates, 78 

Space fixed coordinate system, notation, 329 
Spacing of grooves, 253 
Spring-mass system, rectangular plates, 148 
Springs, supporting plate, 13-14 

Square plates.    See Rectangular plates. 
Stabilizing surface, 161 
Static case, large deflections, 306 
Static deflection, shear deformation, 314 
Steel plates 

cantilever plates, 293 
parallelogram plates, 163 
rectangular plates, 83 
trapezoids, 195, 196 

Stepwise superposition, rectangular plates, 57 
Stiffeners, anisotropic plates, 265 
Stiffness, distributed, 13 
Stiffness of foundation, 1 
Strain-displacement equations 

kinematics of deformation, 333 
large deformations, 303-304 
polar coordinates, 337 
shear deformation, 314-315 

Strain energy, 337-338 
anisotropic plates, 250 
bending, 250 
deformation, 337 
derivatives, 220 
plates with inplane forces, 269 
Rayleigh-Ritz method, 337 
rectangular coordinates, 4 
rectangular plates, 119 
skew coordinates, 5 
transverse stresses, 338 
triangular plates, 220 

Stress-strain relationships, 333-334 
general anisotropic elastic material, 333 
isotropic elastic material, 334 
polar orthotropy, 337 
rectangular orthotropy, 333 
shear deformation, 315 

Styrofoam core, nonhomogeneity, 324, 325 
Surrounding media, effects of, 299-303 

air, 299, 301 
apparent mass, 301 
beam functions, 303 
cantilever plates, rectangular, 301 
circular plates, 299-301 
Dini series, 300 
hydrodynamic strip theory, 303 
incompressible fluid, 299 
partial immersion, 301 
Rayleigh method, 300 
Rayleigh-Ritz method, 299, 300 
rectangular cantilever plates, 301 
rectangular plates, 301-303 
virtual mass function, 301 
water, 299, 300, 301 

Surrounding media, elastic constants, 300 
Symmetrical slope restraints, rectangular plates, 120 
Synthesis of equations, 335 

Tensorial, kinematics of deformation 
manipulations, 333 
strain, 333 
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Thermal gradients, 273-275 
large deformations, 309 
plates with inplane forces, 267-284 

Thickness 
shear deformation, 315 
synthesis of equations, 335 
variable.   See Variable thickness. 

Torsional moduli of rigidity, 171 
Transcendental functions, 129 
Transition curves, parallelogram plates, 170, 171 
Transition points 

parallellogram plates, 171 
rectangular plates, 54, 65, 75, 79 

Translational spring, stiffness, 148 
Transverse bending, polar orthotropic plate, 245 
Transverse deflection 

large deflections, 311 
plates with inplane forces, 267 

Transverse displacement, 1 
Transverse force equilibrium, polar orthotropy, 337 
Transverse shear, continuity of, 139, 145 
Transverse shearing force 

equilibrium equations, 332 
notation, 329 
polar coordinates, 2 
polar orthotropy, 337 
shear deformation, 315 
strain energy, 338 

Transverse stresses, strain energy, 338 
Trapezoidal plates, 193-196 

beam functions, 195 
cantilever, C-F-F-F, 194-196 
chain rule of differentiation, 194 
collocation method, 193 
Kato-Temple method, 195 
perturbation methods, 193 
planform dimensions, 196 
Rayleigh-Ritz method, 194, 195 
right triangular coordinates, 194 
SS-SS-SS-SS, 193-194 
steel, 195, 196 
strain energy, 194 

Trefftz method, 161 
Triangular plates, 205-235 

analogy with vibrating membrane, 212 
arbitrarily shaped, 227 
beam functions, 212 
beam network representation, 217 
cantilever beam, 213 
cantilever plate, 212-229 
C-C-C, 205-206 
C-C-F, 208-209 
C-C-SS, 206-208 
C-F-F, 212-229 
collocation method, 205, 207, 209, 210 
C-SS-F, 209-210 
C-SS-SS, 209 
delta cantilever plate, 215-226 
derivatives in strain energy, 220 
equilateral triangle, 206, 212 

Triangular plates—Continued 
extrapolation formula, 206 
F-F-F, 229 
finite difference method, 205, 220 
hub-pin supports, 230 
isosceles, 208 
method of images, 212 
other supports and conditions, 229-233 
planform dimensions, 227, 228 
point-matching method, 210, 212 
Poisson's ratio, effects of, 213 
Rayleigh-Ritz method, 212, 213, 213-217 
sectorial plates, comparison with, 205, 208 
simple edge conditions, 205-229 
skew coordinates, 205 
SS-F-F, 205 
SS-SS-F, 212 
SS-SS-SS, 210-212 
steel, 206, 208 
strain energy, derivatives in, 220 
triangular coordinates, 212 

Turbine, vane, 244 
Twisting and  bending moments.    See  Bending  and 

twisting moments. 
Twisting moment intensities, notation, 329 
Twisting, strain energy of, 250 
Two opposite sides, SS, anisotropic plates, 254-260 
Two opposite sides, SS, inplane forces, 279-280 

Uniform inplane forces, 279 
Uniform slope restraint, 122 

Variable thickness, 285-298 
annular plates, 286 
arbitrary shape, 277 
Bessel functions, 286 
cantilever beam, analogy with, 286 
circular plates, 285-291 
circular plates, clamped, 285 
finite-difference method, 293 
flexural rigidity, 285 
inplane forces, 285 
polar coordinates, 285 
rate of taper, 291 
Rayleigh-Ritz method, 288, 290 
rectangular plates, 291-297 
rotary inertia, 285 

Variational method, 136, 140, 170, 271 
"Veering away" phenomenon, 63, 75, 170, 261 
Veneer, grain of, anisotropic plates, 252 
Von Karman equations, 306, 310 

Warburton's formula, 86 
Water 

loading, 300 
surrounding media, 299, 301 

Weight density, square steel plate, 86 
Weinstein method, 58, 61 

Young's modulus, 1 
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