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Preface

The ever-increasing rate of scientific research throughout the world, and
particularly in the United States, is a well-known fact. This increase is partly
evidenced by the growing number of books, papers, and reports published
every year. Indeed, we are faced with an information retrieval problem. If
the results of a piece of scientific work are to provide useful knowledge, the
expository technical papers or reports must be generally known and available,
and they must be capable of being understood and evaluated by the reader
(the problem of language is included here). The present monograph attempts to
bridge these gaps in one field—the vibration of plates.

From the beginning, two objectives were intrinsic in this work:

(1) A comprehensive set of available results for the frequencies and mode
shapes of free vibration of plates would be provided for the design or develop-
ment engineer.

(2) A summary of all known results would be provided for the researcher
in the field of plate vibrations.

These objectives will be elaborated upon below.

Several years ago I observed the following incident at a major aerospace
company. An engineer needed to know the first three frequencies and mode
shapes of a rectangular plate of a certain aspect ratio and with certain simple
restraint conditions along its edges. A literature search was conducted by
the engineer for 2 weeks, during which only the first two frequencies and no
accurate mode shapes were found. Since he had neither the analytical capa-
bility of solving the problem nor the money and time needed for an experimental
program, the engineer was forced to drop the problem at this point.

In the present study all direct results which are known for the aforemen-
tioned problem are presented. Furthermore, from a brief comparison among
the known results for other boundary conditions, estimates of additional
frequencies and mode shapes can be made. This is one way in which the
engineer can develop a qualitative understanding of plate vibrational behavior.
For the aforementioned problem, at least two approximate formulas are given
for estimates of frequencies. Finally, the mathematical techniques used in
the literature to solve the problem or related ones are pointed out in case more
accurate results are needed.

It is my hope that this monograph will reduce duplication of research effort
in plate vibrations in the future (a very pointed example is that of the square
plate clamped all around). In addition, the researcher is provided accurate
numerical results for the testing of new methods (this is the reason that results
are given to eight significant figures in some cases). Finally, it is hoped that
this work will give added perspective to the merits and complexities of applying
analytical techniques to eigenvalue problems.

III
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Gaps in knowledge are made implicitly obvious by examining this work.
For example, analytical results have been found for 2 clamped elliptical plate,
and experimental results for the free case, but no results whatsoever have been
found for the simply supported case.

The scope of this study was limited by several considerations. Only the
analytical results from plate theories were considered; that is, the governing
equations are two-dimensional, not three-dimensional. Materials were re-
stricted to those which are linearly elastic. Structures were not included in
the study; for example, a rectangular plate supported by one or more edge
beams was considered to be a structure.

The primary logical division of this work is by the complexity of the
governing differential equations. Thus, the first eight chapters deal with the
simplest ‘‘classical theory” of plates. The next three chapters introduce the
complications of anisotropy, in-plane force, and variable thickness. Other
complications are discussed in the twelfth chapter. The first subdivision is
by geometrical shape; that is, circles, ellipses, rectangles, parallelograms, and
<o forth. Further subdivision accounts for holes, boundary conditions, added
masses or springs, and so forth.

It is presupposed that the user of this monograph will have at least an
elementary understanding of plate theory. In order to increase understanding
and to define notation and assumptions more clearly, a reasonably rigorous
derivation of the plate equations is made in the appendix.

Some statements about the format of presentation will be useful in under-
standing this work. It will be seen that the majority of results available are
for the natural frequencies of free vibration and quite often only the funda-
mental (lowest) frequency. Patterns showing node lines are frequently
available for the higher modes. Mode shapes (deflection surfaces in two
dimensions) are usually not completely specified in the literature. It should
be remarked here that the mode shapes (eigenfunctions) cannot be completely
determined until the frequencies (eigenvalues) are found. The mode shapes
are generally known less accurately than the frequencies.

Virtually no one in the literature evaluates the bending stresses due to a
unit amplitude of motion. This information is obviously important, particu-
larly for fatigue studies. The lack of results is undoubtedly due to the fact
that the stresses must be obtained from second derivatives of the mode shapes.
Not only does this require additional computational work, but also the mode
shapes usually are not known with sufficient accuracy to give meaningful
results for stresses.

Frequency data were converted to the angular frequency o (radians/unit
time) or to a corresponding nondimensional frequency parameter, where
possible. Almost always the number of significant figures was kept the same
as that in the original publication. In no case were significant figures added.
In some few cases the number of significant figures was reduced because the
accuracy of the calculations in the publication did not justify the numbers
given. Curves were not replotted but were photographically enlarged and
traced to maximize accuracy. Quite often, when they are available, both
tabular and graphical results are given for a problem. Tabular results are
particularly important for measuring the accuracy of an analytical method,
whereas curves are valuable for interpolation, extrapolation, and qualitative
studies. In some cases many sets of results are given for the same problem.
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In these cases each set was derived by a different theoretical or experimental
technique; this permits a comparison of techniques.

Two of the major goals of the project were accuracy and completeness.
Some of the efforts made to maintain accuracy have been described in the
foregoing paragraphs. Reasonable completeness of results published through
the end of the year 1965 is claimed. Writing of the manuscript began in the
summer of that year. In addition to the well-known abstracting journals,
several special-purpose bibliographies were used in order to procure pertinent
technical papers and reports. Further references were obtained from the
discussion and reference lists within those already procured. Approximately
150 letters were sent to people throughout the world who were known to be
active in the field of continuum vibrations. These letters listed their publica-
tions already in hand and asked for copies of any others which they deemed
applicable. Through these efforts I have come to possess a reasonably com-
plete set of literature in the field of plate vibrations. However, in spite of this,
I am convinced that some significant publications are not included, particularly
some which are known to exist but have been thus far unobtainable, especially
books by Soviet researchers.

In light of the preceding paragraph, I expect—indeed, hope—to receive
considerable valuable criticism pointing out errors or omissions. In addition, I
would appreciate receiving copies of recent or forthcoming publications and
reports which are pertinent. It is my intention to write a supplement to this
volume after a few years have elapsed; such a document will correct any
major mistakes or omissions in this work and will report on further advances
in the field.

For historical record and recognition it should be pointed out that, ap-
proximately 6 months after this project began, I discovered a notable work
entitled “Free Vibrations of Plates and Shells,” by V. S. Gontkevich, published
(in Russian) in 1964. A subsequent complete translation into English was
made under the sponsorship of the Lockheed Missiles & Space Co. This
book purports to do what the present monograph does and, in addition to plates
and shells, covers the fields of membranes and stiffened plates. I do not
wish to criticize the work of Mr. Gontkevich. Indeed, if used with great care,
his work can be used to supplement this monograph. Nevertheless, two
objective comments concerning Gontkevich’s work must be made for the record:

(1) The number of references on plate vibrations included is less than half
of those in the present monograph.

(2) The large number of typographical mistakes made and the difficulty
in interpreting the work (in either the original Russian or in the English
translation) decrease its usefulness enormously.

The present monograph, sponsored by the National Aeronautics and
Space Administration, is my first major undertaking in the area of continuum
vibrations. It is to be continued by a 2-year project which is currently in
progress and summarizes the field of vibrations of shells. I would appreciate
receiving technical papers and reports related to that field from the readers
of this work.

The support of the National Aeronautics and Space Administration is
gratefully acknowledged. In particular, I am indebted to Mr. Douglas Michel
of NASA, who not only recognized the potential value of this work, but
was thinking of it before my proposal ever reached him. His technical com-
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ments and advice during the course of the work were also greatly appreciated.
I particularly wish to thank Messrs. Milton Vagins and S. G. Sampath, who
did all the necessary work so that I could be free for the actual summarization
and writing. Without their efforts in supervising the procurement of papers,
in manuscript editing, and in providing technical criticism, this work would
not have been possible. I wish to recognize the contributions of the project
advisory panel, which consisted of Mr. Michel, Drs. Robert Fulton, W. H.
Hoppmann, T. C. Huang, Eric Reissner, and Howard Wolko, who generously
met with me twice during the course of the project and offered their comments.
I also thank my colleagues, Drs. C. T. West and F. W. Niedenfuhr, for their
technical advice. Finally, the enormous editorial assistance of Mr. Chester
Ball, Mrs. Ada Simon, and Miss Doris Byrd of The Ohio State University is
gratefully acknowledged.

ArtaUr W. LEIssa

The Ohio State University
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Chapter 1

Fundamental Equations of Classical Plate Theory

The classical differential equation of motion
for the transverse displacement w of a plate is
given by (see app. A):

2,
Dv4w+p%—:f=0 (1.1)

where D is the flexural rigidity and is defined by

ER?
D “120—)

(1.2)
E is Young’s modulus, A is the plate thickness,
v is Poisson’s ratio, p is mass density per unit
area of the plate, ¢ is time, and V:=V2V? where
Vv? is the Laplacian operator.

When, free vibrations are assumed, the mo-
tion is expressed as

w=W cos wt (1.3)

where o is the circular frequency (expressed in
radians/unit time) and W is a function only of
the position coordinates. Substituting equa-
tion (1.3) into equation (1.1) yields

(V*—EYW=0 (14)

where k is a parameter of convenience defined as

=t

D (1.5)

It is usually convenient to factor equation (1.4)
into

(V41 (VE—EH W =0 (1.6)
whence, by the theory of linear differential
equations, the complete solution to equation
(1.6) can be obtained by superimposing the
solutions to the equations

V2W1+k2W1=0}

V2W2“"‘k2W2=O (1 .7)

In the case of a plate supported by (or
embedded in) a massless elastic medium (or
foundation), equation (1.1) becomes

2,
DViw+Kw+p %—Zf=0 (1.8)

where K is the stifiness of the foundation
measured in units of force per unit length of
deflection per unit area of contact. If the
foundation has significant mass, then its differ-
ential equation must also be written and a
coupled system of differential equations solved,
which is beyond the scope of the present work.

Assuming the deflection form (eq. (1.3)) and
substituting into equation (1.8) again results in
equation (1.4), where now ‘

_pa?—K

4
F==p5

(1.9)

Thus, all results presented in this section as
pertaining to the classical plate equation (eq.
(1.1)) can salso apply to the case of elastic
foundations by the simple use of equation (1.9)

.in place of equation (1.5).

1.1 POLAR COORDINATES

The location of a point P in polar coordinates
is shown in figure 1.1.

Figurg 1.1.~—Polar coordinate system.
1
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1.1.1 Classical Equations
The Laplacian operator expressed in polar
coordinates is

=orTror T PR (110

Bending and twisting moments are related to
the displacements by

b2
M= D[a “ +v(1 L R a;f)]
low 1 Qw . O™
ror T 2602+V ort ]

My=—D(1—») br(

Mo = — > (111)

o
Transverse shearing forces are given by

Q=—D2 (V)
(1.12)

@=—D12 ()

and the Kelvin-Kirchhoff edge reactions are

1 OM,
00

aM 78

(1.13)
=@+

The strain energy of bending and twisting of
a plate expressed in polar coordinates is

D (((Fu 12w, 1 Ywy
U=3 f((br2+rbr 7o
Qw/l1ow 1 d%w
“2(1“”){ar2 Fortier)

—[E(?"zﬁ)] })dA (1.14)

where dA=r dr d6.
1.1.2 Solutions
When Fourier components in ¢ are assumed,
Wir,8)= nz“’own (r) cos n(H—Zw;W: () sin nb
. = n=

(1.15)

substituting equation (1.15) into equation (1.7)
yields

den]_ ldWﬂl /n
dr Tr dr _k>W"1=0 (1.16)
1.16
dW,,2 1dW,, /s
v 'y dr +k>W =0
and two identical equations for W). Equa-

tions (1.16) are recognized as forms of Bessel’s
equation having solutions (cf. work of McLach-
lan, ref. 1.1)

Wy = Ao o(kr) + B, (k)
W= Gty + DK [ 17

respectively, where J, and Y, are the Bessel
functions of the first and second kinds, respec-
tively, and I, and K, are modified Bessel
functions of the first and second kinds, respec-
tively. The coefficients A4,, . . ., D, determine
the mode shape and are solved for from the
boundary conditions. Thus, the general solu-
tion to equation (1.4) in polar coordinates is

Wir, 0)= 33 [ A, (kr) + BaY (k)
+ O, I, (kr)+ D, K, (kr)] cos nf
+ 23 (43T (kr)+ BEY u(kr)
+ O, (kr) +- DK (kr)lsin g (1.18)
1.2 ELLIPTICAL COORDINATES

Elliptical coordinates &, 4 are shown in figure
1.2 and are related to rectangular coordinates
z,y by the relation

¢+iy=c cosh (¢+in)  (i=y—1) (1.19)

where 2¢ is the interfocal distance. Separating
real and imaginary parts of equation (1.19)

yields
x=c cosh ¢ cos n}

1.2
y=c¢ sinh £ sin 7 (1.20)

1.2.1 Classical Equations

The Laplacian operator in elliptical co-

ordinates is (refs. 1.2 to 1.4)

2
= ¢*(cosh 26—cos 21) (b£2+b ) (1.21)




FUNDAMENTAL EQUATIONS OF CLASSICAL PLATE THEORY 3

Bending and twisting moments are related to the displacements by

. ow, Ow (1—y)sinh2¢ ow
My=— ¢*(cosh 2£—cos 27) I: o¢? i oy’

Mo 2D E)Zw o’w
" ¢*(cosh 26—cos 21)

+ {(1—»)sin 2y _8)1_0]\
" (cosh 26—cos27) Ot ' (cosh 2¢—cos 21) Oy

+ (1—»)sinh 2¢  ow (1—») sin 2y b_fw]
Yog ' on® " (cosh 28—cos 29) 0f (cosh 26—cos 2y) Oy

2D(1—v) ow > 3
c*(cosh 2t—cos 2y)? | O sin 2’7+a sinh 2¢— 350n (cosh 2¢—cos 277)]

> (1.22)

M5n=

and the transverse shearing forces are given by (ref. 1.4)

2v2D

. o*w | O'w b2w o*w
Qf—ca(cosh E—o0s 277" [2 sinh 2¢ (a—g-{—g—z—) —(cosh 2§—cos 217 652 )]

0,— 22D

1.2.2 Solutions

It has been shown (ref. 1.5) that equations
(1.7) have solutions composed of two parts:

Wi=33 [CuCen(t, @)+ FuFeyn(t, @)lcen(n, 0

+ 32 [SpSen(t, @)+ Gnetin(t, D)sen(n, @

m=1
W, = mz [C%Cen(t,—q) -
+F;Fekm(f;_4)]cem(’7’_Q)

+20 [S5Sen(t,—9)
+ G Gekn (s, —

Dlsen(n,—q) |
(1.24)

where Ce,, cen, Sen, sen, Fey,, Fek,, Geyn,
and Gek,, are ordinary and modified Mathieu
functions of order m; C,, CF, Sn, S, Fp,
F}, @, and G* are constants of integration;
and

q=k*=w+/p/D (1.25)

The complete solution to equation (1.4) is then
W= Wl+ W2 (1.26)

For a solid region containing the origin, regular-
ity conditions require that half of the ‘terms in

. o™w , Ofw o%fw , d%w
”_ca(cosh25—008217)5/2[231112 (bgz—l—b ) {cosh 2¢— cos217)b ( 52+577 >]

(1.23)

equations (1.24) be discarded, and the complete
solution becomes:

W=33 [CnCen(t, den(n, 9
+07Cey (¢, Q)cem(nr— Q)]
+ 32 [SnSen(t, a)sen(n, 9

+87.Sen(t,— (1.27)

Q)sem(ﬂ’ - Q)]

7=120°
7n=135°

7=180°

C—3p—C

Figure 1.2.—Elliptical coordinate system.
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1.3 RECTANGULAR COORDINATES

The rectangular coordinates of a point P are
shown in figure 1.3.

y
———————————— —TP
|
|.
|
|
]
|
1
|
]
Firgure 1.3.—Rectangular coordinate system.
1.3.1 Classical Equations

The Laplacian operator in rectangular co-
ordinates is.
a2
2

:a—xz'i'b—yz (1.28)

Bending and twisting moments are related to
the displacements by

a? '
(axz"*'l'ayqf
62
M, — D(ay"f+ya > (1.20)
e D O
Mxll"' D(l V)away )

Transverse shearing forces are given by

@=—Dg(vv)
(1.30)

Q= —D%(v%o)

and the Kelvin-Kirchhoff edge reactions are

V=25
(1.31)
V=@ + 2

The strain energy of bending and twisting of a
plate expressed in rectangular coordinates is

o=2[{Cap)

o%w b"w

—2(1—v) 327 o

2 by) ]}dA (1.32)

where dA=dz dy.

1.3.2 Solutions

General solutions to equation (1.4) in rec-
tangular coordinates may be obtained by
assuming Fourier series in one of the variables,
say z, that is,

Wi, y)=mz=lYm(y) sinaa:—l—gol’;(y) cos azx (1.33)

Substituting equation (1.33) into equation (1.7)
yields

sz,,,
L+ (B —a?)Y =0
sz . (1.34)
d 2 _(k +a )Ym
and two similar equations for Y}, With the

assumption that k2>>a?, solutions to equations

(1.34) are well known as

Y, =Ansin VE—=o?y+ B,, cos\kP—afy
Y yny=Cp sinh V& +o’y+D,, cosh V2 +aty
(1.35)

where A,, . . ., D, are arbitrary coefficients
determining the mode shape and are obtained
from the boundary conditions. If k2<a? it is
necessary to rewrite ¥, as

Ya, =A,, sinhyo?—Fk%-+ B, coshyo’—k%y (1.36)

Thus the complete solution to equation (1.4)
may be written as

Wiz, 3/)=§‘:,1 (A, sin VF—aty-B,, cosyIP—aly

+ O, sinh k> +o2y
+D,, cosh VI*+oPy) sin ax
1+ SO (A* sinyEE—ofy+ B cos B —aty
m=0
4~ O% sinh vE* -y

+ D} coshk*+a’y) cosox  (1.37)
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1.4 SKEW COORDINATES

The skew coordinates £, 9 of a point P are
shown in figure 1.4. The skew coordinates are
related to rectangular coordinates by

f=z—ytana
71=___y_ (1.38)

COos «

1.4.1 Classical Equations

The Laplacian operator in skew coordinates
is (ref. 1.6)

1 [0 .0 O
szcosza o 2smab£bn+51_1§) (1.39)

Bending and twisting moments are related to
the displacements by

a 2, N
[ o8 Foosta (sz"‘gT?
2, 2
—2sina§;gv +g,,w):|
=_D|:cos,2 (sm aaéz >
Qw | dw
_28111“620 +b77 +v 652
_ (1—v) O%w
Mg”* cos o aébn Smabfz) J
(1.40)
y n
—————————— »P
/
a /
/
/
B ’I
/
\ L x’e

Ficure 1.4—S8kew coordinate system.

Transverse shearing forces are (ref. 1.7):

D [ow O®w A
Qe=— sin® | o£® —3cos Bb.‘gzbn

3, 3
+(142 cos®B) b_af_“g:f’ —Cos Bg—;ﬁl—)

D [dw Ow
S=—gwrplor 3¢ Basa 2
+(1+20052ﬁ)bgza cosﬂass:l
(1.41)
where 8= (7/2) —a. The edgereactions are (ref.
1.7):
D [Fo*w o%w A
Vf_—_snﬁﬂ 5?_4 cos Bbgzb
o*w
_ 28_ . gin2g) .2 ¥
(243 cos? B—v sin ﬁ)bl&b,72
O%w
—2COSﬁW:| k
D [o%w O*w
V”__sm"’ﬁ W_‘l cos Bbéb 2
3
_ 20 in2 o*w
(243 cos? B—y sin’ B) YT
OBw
—2 cosﬁsgé-]J
(1.42)

The strain energy of bending and twisting of
a plate expressed in skew coordinates is

_D 1 *w | d'w , dw

U= f {cos‘ Y bEbn+bn )
20—y [owdh_
cosfe | OF o agan”}d“l (1.43)

where dA=cos « d¢ dy.
1.4.2 Solutions

There are no known general solutions to
equation (1.4) in skew coordinates which allow
a separation of variables.
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Circular Plates

2.1 SOLID CIRCULAR PLATES

When the origin of a polar coordinate system
is taken to coincide with the center of the
circular plate and plates having no internal holes
are considered, the terms of equation (1.18)
involving Y,(kr) and K,(kr) must be discarded
in order to avoid infinite deflections and stresses
at r=0. If the boundary conditions possess
symmetry with respect to one or more diameters
of the circle, then the terms involving sin n6
are not needed. When these simplifications
are employed, equation (1.18) becomes for a
typical mode:

W.=14.J,.(kr)+C.I,(kr)] cosng (2.1)

where it will be understood in what follows that
n can take on all values from 0 to . The
subscript n will also correspond to the number
of nodal diameters.

2.1.1 Plates Clamped All Around
Let the outside radius of the plate clamped
all around be a (see fig. 2.1). The boundary

conditions are:
W(a)=0
W(a)_ 0

or

(2.2)

When equation (2.1) is substituted into equa-
tions (2.2), the existence of a nontrivial solution
yields the characteristic determinant

Ja(N)  T.(N)
NS 20 I 2:3)

where A=ka and the primes are used to indicate
differentiation with respect to the argument, in

this case kr. Using the recursion relationships
(ref. 2.1)

L) =1L sA) M wsa(A) (24)

Chapter 2

e
8

Frcurs 2.1.—Clamped circular plate.

and expanding equation (2.3) gives

Jn()‘)ln+l()‘) +In(x)Jn+l(>‘) =0 (25)

The eigenvalues A determining the frequencies o
are the roots of equation (2.5).

The Bessel functions are widely tabulated for
small values of n. The Harvard tables (ref. 2.2)
are available for n £120. Otherwise, the recur-
sion relationships

Juri=e @A DT rr—,
9 (2.6)
In+2=_x (n"l" l)In+l+In

or various forms of series expansions for the
Bessel functions may be used.

Values of A\? taken from references 2.3 to 2.5
are tabulated in table 2.1, where n refers to the
number of nodal diameters and s is the number
of nodal circles, not including the boundary

7
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TaBLe 2.1.—Values of N¥=waZ+/p/D for a Clamped Circular Plate

A2 for values of n of—
s
0 1 2 3 4 b 6 7 8 9 10 11 12 13 14
[ SR 10,2158 | 21.26 | 34.88 | 51.04 | 69.6659 | 90.7390 |114.2126 |140.0561 |168. 2445 (198, 7561 |231. 5732 {266. 6790 (304.0601 [343.7038 |385, 5006
1. 39,771 60.82 | 84.58 | 111,01 |140,1079 |171.8029 {206.0706 |242, 8782 (282, 1977 {324.0036 |368.2784 }. .- .ooo.)oeeoooo|ommmmmmos]ommamaas
2 e 80.104 | 120.08 | 153.81 | 190.30 229, 5186 (271.4283 (316.0015 1363.2007 |. ... . 1. ...l e
: S 158.183 | 199.06 | 242.71 | 289.17 [338.4113 1390.3806 |- .| o oo | e
4 ... 247,005 | 207.77 | 351.38 | 407.72 | e e e
. SR 356.568 | 416.20 | 479.65 | 545,97 | oo || e a e e e
[ 483.872 | 554.37 | 627.75 | 708,95 | voo | e e e el
[ A 631.014 | 712.80 | 795.52 | 88L.67 |- oo eemmme e e et
8 .- 799.702 | 889.95 | 983.07 {1079.0 | ..o |oooooo | e
9. 987.216 11087.4 |1190.4 [1296.2 |-oooooooo|oonammo | e e

circle. It is seen from equations (2.2) that the
frequency does not depend upon Poisson’s ratio
in the clamped case. An accurate transcen-
dental approximating equation for additional
roots of equation (2.5) is given in reference 2.5.

The mode shapes of equation (2.1) are
determined from either of equations (2.2).
Using the first of equations (2.2)

A, L)

C,  J.0\)

(2.7

where the A values are taken from table 2.1.
The radii of nodal circles p=r/a are determined
from the equation

Ju(Mo) _Ln(Np)

T~ T\ 28

and are presented in table 2.2 as taken from
reference 2.6.

The procedure for determining the motion
of a plate subjected to arbitrary initial dis-
placement and velocity conditions is given in
reference 2.7.

The problem of finding stresses in a vibrating
clamped circular plate was discussed by Ungar
(ref. 2.8). The problem was also discussed
in references 2.9 to 2.18.

For more information concerning this prob-
lem, see the section in the present work on
in-plane forces in clamped circular plates
(10.1.1).

2.1.2 Plates Simply Supported All Around
Let the outside radius of the simply supported

plate be a (see fig. 2.2).
conditions are
W(a)=0}
M (a)=0

Substituting equation (2.1) and equation (1.11)
into equations (2.9) and noting that d%w/06?=0
on the boundary give the equations

The boundary

(2.9)

AT A0+ O, () =0
afro+inm Jra] ro+inm J=o

(2.10)

Ficure 2.2—8imply supported circular plate.
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TasLE 2.2.—Radii of Nodal Circles p=r/a for Clamped Circular Plate

p for values of n of—

8
1 2 3 4 5

) WO .0 1.0 1.0 1.0 1.0 1.0
.379 . 4899 . 559 . 606 . 641 . 669

2 .0 1.0 1.0 1.0 1.0 1.0
. 583 . 640 . 679 .'708 .730 . 749
. 255 . 350 .414 . 462 .501 .532

L S .0 1.0 1.0 1.0 1.0 1.0
. 688 721 .'746 .765 .781 .787
. 439 . 497 . 540 .574 . 601 .618
.191 .272 . 330 .375 .412 . 439
S .0 1.0 1.0 L0 oo
. 749 767 .789 2808 |
. 550 . 589 . 620 645 .
. 351 . 407 . 449 488 ||
.153 . 222 .274 316 ||
S .0 L0 | e e
.791 807 e
. 625 .653 ||
. 459 499 |
. 293 S84 |l
.127 88 |
s S .0 1.0 oo e
. 822 833 ||
. 678 2699 |
- .535 2566 | e
. 393 A2 |
.251 L2908 e
.109 163 (e
e e .0 L0 L
.844 c858 | e
. 720 CT85 | e
. 593 ;) I (R U IR AN R
. 469 499 e
. 344 C881 e
. 220 0268 | e e
. 096 B . S PRI NN A A

where the notation of the previous section is
used. It has been shown (ref. 2.11) that equa-
tions (2.10) lead to the frequency equation

TasLe 2.3.—Values of N=wa/p/D for a
Simply Supported Cireular Plate; v=0.3

; A2 for values of n of—
R
" " g 0 1 2
Roots of equation (2.11) and radii of nodal
circles for y=0.3 are taken from reference 2.6 0 4.977 13. 94 25. 65
and presented in tables 2.3 and 2.4, respectively. 1. ________ 29.76 48. 51 70. 14
Poisson, in an early paper (ref. 2.12), and 2----..___. 74.20 102. 80 134. 33
Prescott (ref. 2.11) give A=2.204 for »=0.25.  8---------- 138. 34 176. 84 218.24
Bodine (ref. 2.19) (see section entitled ‘“‘Plates

308-337 0—T70——-2
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TasLE 2.4.—Radii of Nodal Circles p=1/a for a
Simply Supported Circular Plate; v=0.8

p for values of n of—
s
0 1 2
[ I 1 1 1
) 1 1 1
.441 . 550 .613
D e 1 1 1
. 644 . 692 .726
.279 .378 .443
: S 1 1 1
.736 .765 787
. 469 . 528 .570
. 204 . 288 . 348

Supported on Circle of Arbitrary Radius”
(2.1.7)) gives A=2.228 for »=0.333.

The mode shapes are most conveniently
determined from the first of equations (2.10)
by use of the roots of table 2.3; that is, '

An LN
G- " T.00

(2.12)

The procedure for determining the motion of
a plate subjected to arbitrary initial displace-
ment and velocity conditions is given in
reference 2.7.

The simply supported case is also solved in
reference 2.20.

For more information concerning this prob-
lem, see section entitled “Simply Supported
Circular Plates” (10.1.2).

2.1.3 Completely Free Plates

Let the outside radius of the completely
free plate be a (see fig. 2.3). The boundary
conditions are

M,(a)=0}

V(@)= (2.13)

Using equations (1.11), (1.12), (1.13), it has
been shown (ref. 2.3) that equations (2.13)
yield the frequency equation

Ficure 2.3.—Free circular plate.

N (W) (1 =) INT (N =1 (V)]
NN —(1—») NN = L(N)]

_NLMN+(1—y)n? INT (V)= (N)]
NI — (1 —r)n? N (AN —1.(N))

(2.14)

Tt has also been shown (ref. 2.20) that, when
A>>n, one can replace equation (2.14) by the
approximate formula

Ja(N) N2 —n)n? LA/, (N)]—2M(1—»)
T N—2(1— )

(2.15)

According to reference 2.20, the roots of
equation (2.14) are located between the zeroes
of the functions J,(A) and J,(\) and the
larger roots may be calculated from the series
expansion

_m—{-1_4(7m2—|-22m+11)_ .

8a 3(8a)? (2.16)

A=a

where m=4n? and a= (/2) (n+2s). The asymp-
totic value is

Naeg (n+25) (2.17)
Using equations (2.15) and (2.16), values of
N are computed in reference 2.20 for »=0.33,
and in reference 2.3, for »=0.25. These are
presented in tables 2.5 and 2.6, respectively.
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TaBLE 2.5.—Values of N=wa®/p/D for a Completely Free Circular Plate; v=0.33

11

A2 for values of n of—
s
0 1 2 3 4 5 6
0 e L 5. 253 12. 23 a21.6 2331 a 46, 2
1 ____ 9. 084 20. 52 35. 25 52. 91 273. 1 s 95, 8 = 121. 0
2 ___. 38. 55 59. 86 83.9 111. 3 142, 8 175. 0 210. 3
b SO 87. 80 119. 0 154. 0 192. 1 232. 3 274. 6 310. 7
4 . 157. 0 198. 2 242. 7 290. 7 340. 4 392. 4 447. 3
L S 245. 9 296. 9 350. 8 408. 4 467. 9 529. 5 593. 9
6. . 354. 6 415. 3 479. 2 546. 2 615. 0 686. 4 760. 1
A 483. 1 651. 8 627. 0 703. 3 781. 8 864. 4 952, 3
8 .. 63L. 0 711. 3 794. 7 880. 3 968. 5 1061 1158. 7
9 .. 798. 6 888. 6 981. 6 1076 1175 1277 1384
100 ____. 986. 0 1086 1188 1292 1401 1513 1631

» Values true within 2 percent (ref. 2.20).

TABLE 2.6.—Values of N*=wa?/p/D for a Com-
pletely Free Circular Plate; v=0.25

M for values of n of—
s
0 1 2 3
| ) I P 5.513 12.75
: 8.892 20.41 | 35.28 53.16
R 38. 34 59.74 | 84.38 112. 36
B 87. 65 118.88 | 153.29 191.02
: S, 156.73 196. 67 | 241.99 289. 51
S 245. 52 296.46 | 350.48 408. 16
| 354. 08 414.86 | 478.73 545.83
(. 482. 37 553.00 | 626.75 703. 63
B 630. 41 710.92 | 794.51 881.20
L IR 798.23 888.58 | 982.01 | 1078.5

The radii p=r/a of the nodal circles may
be found from reference 2.20:

. ()\p)—(l_y)y ANy e La)
In(xp) " In()‘p) In()‘P)
(2.18)

Table 2.7 gives values of p=r/a for »=0.33
computed from equation (2.18).

For large values of n and s it has been shown
(ref. 2.20) that the radii of nodal circles can be
computed from the approximate formula

TaBLE 2.7.—Radii of Nodal Circles p=r/a for a
Completely Free Circular Plate; v=0.33

p for values of n of—

0 1 2 3 4 5
1. 0.680 |0.781 [0.822 0.847 (0.863 | 0.881
2 . .841 | .871 | .8897 | .925 | .926 | .993

.391 | .4972 | .562 | .605 | .635 | .663
S SR .893 | .932 | .936 | .939 | .943 | .947
.591 | .643 | .678 | .704 | .726 | .745
.257 | .351 | .414 | .460 | .498 | .529
4 . .941 1 .946 | .950 | .951 | .955 | .958
.691 | .723 | .746 | .763 | .779 | .793
.441 | .498 | .540 | .572 | .600 | .623
2192 | .272 | .330 | .374 | .411 | .443
5 S .952 [ .956 | .959 | .960 | .963 | .966
L7521 .773 [ .790 | .803 | .814 | .825
.52 .590 | .620 | .644 | .644 | .682
.352 | .407 | .449 | .483 | .512 | .536
.154 | .222 | .274 | .316 | .351 | .381

AL
(P)f;=)fi (2.19)
where A} is the pth root of the equation
J(A)=0.

Experimental results were obtained for a free
circular brass plate (ref. 2.21). The ratios of
frequencies of free vibration w to the funda-
mental frequency w, are presented in table 2.8
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80— and figure 2.4 taken from reference 2.21. Radii
‘,’,g of nodal circles p=r/a are given in table 2.9.

70

~< 5/"
//,’
I

~ / references 2.20 and 2.22 to 2.28. Further dis-
/ / cussion of this problem is given in references

ya
60 /1/ / 7 {'” / 2.10, 2.11, 2.12, 2.15, 2.17, 2.29, 2.30, and 2.31.
/ / yany,
/

50 2.1.4 Plates With Elastic Edge Supports

ported elastically by springs uniformly dis-

' 4
s:}/ ; / » Consider a circular plate of radius e sup-
o 40
4 . . .
3 / -3 / tributed about its contour as shown in figure
30 A >,/ / - 2.5. Translation in the direction of w is op-
2y / 4 posed by springs having distributed stiffness
A A K, (force/(unit length)?). Edge rotation y is
20 / J /" » opposed by spiral springs having distributed
/ L~ stiffness K, (moment/unit length).
e oA
3@— : . K
% T 2 3 45 67 85 10 125 w4 -
Number of Diameters, n $ Ky
F1URE 2.4.—Experimental values of frequency ratios 77T . .
w/w, for a completely free circular brass plate. (After F1cure 2.5.—Elastically supported circular plate.

ref. 2.21)

TaBLE 2.9.—FEuxperimentally Determined Radii of Nodal Circles p=r/a for a Completely Free
Circular Brass Plate

p for values of n of—
Circles s
0 1 2 3 4 5 6 7 8 9 10 11

1o .. 0.680 | 0.781 [ 0.823 | 0.843 | 0.859 | 0.871 | 0.880 | 0.889 | 0.897 | 0.903 | 0.909 | 0. 912
2 ... .391 | .497 | .562| .604 | .635| .662 | .681 | .702 | .715 | ___|ooo____|o____.
.843 | .867 | .887 | .898 | .906 | .915| .922| .927 | .932 | __ .| . ___|._.__.

L T | 257 | .349 | .415( .461 | .505 | 531 |oo_ oo oo
.501 | .643 | .681 | .706 | .728 | 745 | ool e

.805 | .902 | .913 | .919 | .925| .933 | oo |ooo e

S L190 | 269 | .828 | .374 | 411 | 443 | oo\
' .441 | .495 | .540 | .571| .596 | .623 | oo e
.692 | 726 | (748 (764 | 779 | 794 ||t b

L918 | .928 | .934 | .9038 | .941 | .944 |._____ | | |l ol

L J G154 | e e e
7 I PR ERRN [N MR FAVSURR) MNP NN ORI RN N SO

DB48 | e e e

B £:3: 2 (AR IR NSO ORI AU NI SR RSN MU A N

2956 || e e e

i S CIBY o e e e
2202 | e

456 || e e e

624 || e e

94 | e e

v 958 e e e

Other experimental data are presented in’
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The boundary conditions are

ow

Ma,0)=K,5—(a,8

(a,0=K, 32 (0,0) } 220
VT(a: 0)='_KwW(a’J 0)

Substituting equatlon (2.1) into equations

(2.20) and using recursion formulas of the type

of equations (2.4) and (2.6), it can be shown
that equations (2.20) become

A,,{[Jn+2(>\)+Jn—z(>\)]

Ky

— V+ Jn+1(x) ""Jn—l()‘)]

4V’n

+Bn{ [In+2()‘)+1n—2(k)]

A(V+K¢“ LN +Taa (V)]

+(z-2)n0 } =

Ar{ — 1N = TR a0 s V)

" and

 a el PARCVERAREY

2B }

+Bn{ s+ Las()]

+% [2(3——1/)712—)\2—

2 [ LaN) - TaaN)]

+|:3__4_ 42— ”)”][1,,+1(x)+1,, )]
2(2 3v)ni N2 — 2%“ I,(\)=0

(2.22)

Formulation of the second-order characteristic de-
terminant for the frequencies from -equations
(2.21) and (2.22) is a trivial operation. In the
case n=0, the frequency equation simplifies to

@.21)

JiA)—gJo(N) —qlo(N) ’
where
K‘p(l/ (1 '—‘V)
and X
o
Ng=—"7— D

The problem was formulated in a similar
manner in reference 2.32 for the special case
when only an elastic moment edge constraint
is allowed; that is, the boundary conditions are

M.(a,0)=K, %‘:—7 (a,6) } (2.24)
W(a,8)=0

This case is obtained by setting K,=« in
equation (2.22). Numerical results for the
first four frequencies for equations (2.24) for
varying amounts of rotational constraint are
given in table 2.10. Poisson’s ratio is not
given in reference 2.32, but it appears to be
0.3 for table 2.10.

TapLe 2.10.—Values of N=uwai/p/D for a
Circular Plate With No Edge Deflections and
Elastic Moment Constraint; v=0.3

a2 for values of n of—
K,D 0
N 1 2
s=0 s=1
00 e 10. 2 39.7 21.2 34.8
100 o__- 10.2 39.7 21.2 34.8
107 - 10.0 39.1 20.9 34.2
102 _ . 8.76 35.2 18.6 30.8
103 - 6. 05 30.8 15.0 26.7
| 4.93 29.7 13.9 25.6

9.1.5 Plates Clamped Along Part of Boundary
and Simply Supported Along Remainder

Figure 2.6 shows a circular plate which is
clamped along its edge for the interval —y<(6
<+ and simply supported on y<8<27—v.
This problem was solved by Bartlett (ref. 2. 33)
by an interesting variational approach to give
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Figure 2.6.—Circular plate partially clamped and
partially simply supported.

upper and lower bounds for the eigenvalues.
The method is based upon two perturbations.
One is a perturbation of the problem when the
plate is clamped all around (y=r) and yields
upper bounds for A; the other is a perturbation
of the simply supported case (y=0) and yields
lower bounds. Upper and lower bounds for
A? for the case v==1/4 are presented in table 2.11
as taken from reference 2.33.

An approximate solution to this problem was
given by Noble (ref. 2.34), who showed that a
good approximation of the frequency parameter
A is given by the roots of the equation

SiA) LT

2\ —

1
TN L] =T e

(2.25)

A comparison of the values of \ obtained from
equation (2.25) and the more accurate results of
reference 2.33 is given in figure 2.7.

This problem was also discussed in references

PLATES 15

35

3.0

25 gran
\

from reference 2.34]

20

0 I +r 3~ 1

Y

Figure 2.7.—Comparison of frequency parameters
obtained by two methods for a circular plate with
mixed boundary conditions; »=1/4. (After ref. 2.34)

2.35 and 2.36 wherein a method superimposing
concentrated moments along parts of the bound-
ary to be clamped was proposed. A numerical
solution A= (pw?/D)'"¢=3.98 is given for the
case when one-fourth of the boundary is
clamped, but this is clearly erroneous because
it is greater than the value for a completely
clamped plate.

2.1.6 Plates Clamped at Center With Various
Conditions on Contour

In the case of plates clamped at the center
that have various conditions on contour, it is
obvious that for two or more nodal diameters
(n2z2) the resultant frequencies and mode

TasLe 2.11.—Values of N=way/p/D for a Circular Plate Clamped Along the Boundary Through
an Angle 2y and Simply Supported Along the Rest of the Boundary; v=1/4

A2 for values of v of—
Bound
0 /8 278 3r/8 4x/8 5#/8 6x/8 7=/8 T
Upper. o | 5,871 | 6.350| 6.880 | 7.508 | 8231 | 9.120 | 9. 885 10. 21
Lower_ .. _____.____ 4. 862 5. 842 6. 335 6. 864 7. 480 8. 162 8. 880 9.126 |..___.-.
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shapes are identical to those obtained in the
previous sections when no constraint was
applied at the center. This can be seen be-
cause at the intersection of two node lines the
slopes in all directions, as well as the deflection,
are zero.

Southwell (ref. 2.37) discussed the problem
of a free disk clamped at the center as a special
case of an annulus free on the outside and
clamped on the inner edge (see section entitled
“Annular Plates Free on Qutside and Clamped
on Inside” (2.2.7)). It is necessary to evaluate
the fourth-order characteristic determinant by
a careful limit process as the inner radius ap-
proaches zero. He showed that in the case of
one nodal diameter (n=1) the set of frequencies
is identical to those for the completely free
plate. For the axisymmetric case (n=0), the
first four roots for »=0.3 are given as:

N=wa?/p/D=3.752
=20.91
=60.68
=119.7

Colwell and Hardy (ref. 2.20) showed that
the frequency equation for the axisymmetric
case can be approximated accurately by

EJoN)—Y ) _2(1—»)_ Is(N)

L)Yy~ Ly (220

where E=(In 2)—Euler’s constant=0.11593.
The first 11 roots of equation (2.26) for »=1/3
are given in table 2.12. It is seen that higher
roots of A are separated by =.

The equation determining nodal radii p=r/a
is (ref. 2.20)

EJo(Ap)=Yo(Np) (2.27)

and has roots given in table 2.13 for »=1/3.

Reference 2.11 gives wa?,/p/D=3.717 for y=
0.25.

The axisymmetric cases for the plates having
simply supported or clamped edges in addition
to a point support at the center are discussed in
reference 2.38. The frequency equation for the
simply supported plate becomes

a=n{ U7 T+ 20 |

HIMHEO T+ R0 |}

—2x[zo(‘x)Yo<x>+§Jo(x>Ko(x>]=o (2.28)

which has as its first two roots (» is not given,
but apparently is 0.3):

N=14.8
=49.4

TaBLE 2.12.—Values of N=wal\p/D for Azisymmetric Vibrations of a Free Circular Plate Fized
at the Center; v=1/8

s 0 1 2 3 4

5 6 7 8 9 10

AN 3.752 | 20.91 61. 2 120.6 | 199.9

208.2 | 416.6 | 555.1 | 712.9 | 890.4 1088

TaBLE 2.13.—Roots for Determining Relative Radii p=t/a for a Free Circular Plate Fized at the
Center; v=1/3

[Values of p are determined by dividing each of suecessive roots by value of A of desired mode]

s l 1 2 3 4 5

6 7 8 9 10

3.97 7. 08 10. 20 13. 33 16. 49

19. 61 22.75 25. 90 29. 04 32,18
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The frequency equation for the clamped plate is
=L Z0+2E0 |
—AM+LMI TO+2E0 |0 @.29)

which has as its first two roots:

N=22.7
=61.9

2.1.7 Plates Supported on Circle of Arbitrary
Radivs

A circular plate having a free outside edge of
radius @ is supported on a concentric ring
having a radius b as shown in figure 2.8. The
solution of this problem is very straightforward.
One can recognize symmetry and take

Way=An a(kr)+ B, Y oller)+C, I (kr)
+D, K k) (i=1,2) (2.30)

from equation (1.18), where the subscript 1
refers to the region 0<(r<(b and the subscript 2
refers to b<r<a; Br; and Da, are discarded
to satisfy regularity conditions at 7r=0.
The remaining six boundary and continuity
conditions

wl(b):—U)g(b):O 3
2.(0) 2.(b)

or or ¢
Dwy(b)  Oun(B) (2.31)
or? _ or?

M, ()=V,(a)=0 |

are satisfied by substituting equation (2.30) into
equations (2.31) and forming a sixth-order char-

a—]

. |
Y

F1eure 2.8.—Circular plate supported on a concentric
circle.

acteristic determinant equation. The roots of
the determinant are found by evaluating it
by computer for many values of A for a given
b/a ratio.

The numerical solution of this problem is
reported in reference 2.19 for the fundamental
mode. The frequency parameter A? is plotted
in figure 2.9 and mode shapes for three repre-
sentative b/a ratios are shown in figure 2.10,
both for y=1/3.

2.1.8 Plates With Concentrated Mass at Center

The problems of free and clamped circular
plates having a concentrated mass m at the
center were solved by Roberson (refs. 2.39 and
2.40) for the case of axisymmetric modes. The
concentrated mass was treated as an impulse in
the mass density function. The impulsive
change in density makes it convenient to solve
the problem by Laplace transform methods.

In the case of the plate having free edges, it
is shown (ref. 2.39) that the frequency equation
takes the form

b

M
e (232

where
H0)=F| TOILM+T ML)
2 1
—2a—T0EM -3
0= FOEKN T MEN)
2 1
| FEA—DFWLM -3
#: 0= FVEN)+TOIN)

2
Y (l—v)JIO‘)Il()‘)]J
(2.33)

and p is the ratio of the concentrated mass at
the center to the mass of the plate; that is,

m
b= (2.34)

The first four roots of equation (2.32) are shown
graphically in figure 2.11 (for »=0.3) as func-
tions of the mass ratio p. An asymptotic-
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5 //
4//
30" 0. 02 03 04 05 06 07 08 09 10

b/a

F1GURE 2.9—Values of N=wa?yp/D for a circular
plate of radius a supported on a concentric circle

of radius b (for fundamental mode); »=1/3. (After
ref. 2.19)
w
1\.4§ ; o / r
1.0 05 —T— 05 Lo @
(a)
w

{c)

ol

Fi6ouRE 2.10.—Fundamental mode shapes for a circular
plate supported on a concentric circle; »=1/3.
(@) b/a=0.392; *=6.502. (b) b/a=0.699; \2=9.024.
(c) b/a=0.814; =7.301. (After ref. 2.19)
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A2 VALUES

s—|l 2 3 4
9W4090 158

8136 {841

150
\
192 NG

\ N

N

126 ]
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FiaURE 2.11.—Values of M=wa?y/p/D for various mass
ratios for a free circular plate having a concentrated
mass at the center; »=0.3. (After ref. 2.39)

expansion estimate of the higher roots for the
above problem can be obtained from the
frequency equation

— [ TE Y2
tan A= (8))\

The accuracy of equation (2.35) is shown by
table 2.14 for the extreme mass ratios of p=o
and u=0. The first mode shape is shown in
figure 2.12 for three values of mass ratio.

For the clamped plate (vef. 2.40) the fre-
quency equation is also given by equation (2.32)
where, in this case,

(2.35)

SN =S LMW +LNT O]+

SN =T MVEMN~JMEN+3 b (236)

&s(N\)=I(\)J1(A)+L:(N) Jo(N)

The first four roots of equation (2.32) are shown
graphically in figure 2.13 as functions of the
mass ratio u. It is noted that in the case of
clamped edges the frequencies are independent
of Poisson’s ratio. More precise values of N
for =0, 0.05, and 0.10 are given in table 2.15.

Tt should be noted that for both types of edge
conditions (free or clamped) the frequency
changes rapidly with the addition of a small
amount of mass at the center, particularly for
the higher modes.
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TasLe 2.14.—Comparison of Roots N> From Asymptotic-Expansion Estimate With Exact Values;

y=0.3
A\ for values of u of—
oo 0
8
Value from Estimate from Error of Value from | Estimate from Error of
eq. (2.32) eq. (2.35) estimate, eq. (2.32) eq. (2.35) estimate,
» [(2s—1) (=/2)}? percent (sm)? percent
| I 3.73 2. 47 —33.8 9. 006 9. 87 9.6
2 20.9 22, 20 6. 2 38. 44 39. 48 2.7
> S, 60. 5 61. 69 19 87. 76 88. 83 1.2
4 _ . 119.7 120. 91 1.0 156. 75 157. 90 L7
| J N P 199.85 || eeaC 246. 74 | ______
[ 7 S 298. 56 | 355.32 | __
Y (N [N 416. 98 | .| e 483.60 |.__ .. ______..
TABLE 2.15.—Precise Values of N=wa?/p/D for
" a Clamped Circular Plate Having a Concen-
- ] trated Mass at the Center :
~l
‘\£=0
w preih N A2 for values of u of—
S = - s
g ¢ - N 0 0.05 0.10
4 e
s
N ) 10. 214 9.0120 8.1111
0 2 .. 39.766 32.833 29. 681
: J 89. 114 72.012 67.733
0 Ol 02 03 04 05 06 07 08 03 10 oo 158.18 129. 39 125. 69

al=

FiourE 2.12.—First mode shape for a free plate having The clamped case having a genera]_ concen-

a concentrated mass at its center; »=0.3. (After  {rqted impedance at the center was discussed
ref- 2:39) in reference 2.41, though no numerical results
were presented therein.
e X;VA;UEi 2.2 ANNULAR PLATES

0192920160 An annular plate consists of a circular outer
al3asalisz N boundary and a concentric circular inner bound-
ary. Throughout this work the radii ¢ and b
5134178144 will define the outer and inner boundaries,

al30l72}zs \ ~ respectively. o )
\ T There exist nine possible combinations of sim-
2{26 1661128 \S: — ple boundary conditions (i.e., clamped., simply
N 1 T P I 7 3 | supported, or free) for the two>b01_1ndanes. A.n
0 02 04 06 08 10 12 14 »  outstanding set of results was given by Raju

(ref. 2.42) for all nine combinations of boundary
conditions for a Poisson’s ratio of 1/3, and the
results which follow draw heavily from his work.

F10urE 2.13.—Values of AM=wa?yp/D for various mass
ratios for a clamped circular plate having a con-
centrated mass at the center. (After ref. 2.40)
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Joga-Rao and Pickett (ref. 2.43) also evaluated
the exact characteristic determinants in the
axisymmetric case when the outside boundary
is clamped, simply supported, or free and the
inside boundary is free. Their results closely
match those of Raju and will not be repeated
here. They also analyzed these cases for
a/b=0.5 by the Rayleigh-Ritz method and
obtained confirming results.

Two-term Rayleigh-Ritz solutions were used
in reference 2.44 to obtain approximate axi-
symmetric frequency parameters for all but the
free-free cases. These results are summarized
in table 2.16 for y=1/3 and are compared with

exact solutions. The b/a ratio is 0.5 throughout
the table.

Sakharov (ref. 2.45) solved the cases for
plates with the outside clamped or simply sup-
ported and the inside free, and Gontkevich
(ref. 2.6) presented results for four additional
cases but omitted those for the simply supported
inside boundary. Vogel and Skinner (ref. 2.46)
in a recent paper also obtained exact solutions

for all nine cases.

In addition, Southwell (ref. 2.37) presented
results for the outside-free, inside-clamped case;
Hort and Koenig (ref. 2.47) and Kumai (ref.
2.48) gave theoretical and experimental results
for annular plates of given dimensions; reference
2.47 deals with the free-free case and reference
2.48, with the case for both edges either clamped
or simply supported.

2.2.1 Annular Plates Clamped on Outside and

Inside

Substituting the complete solution (eq.
(1.18)) for the cos n8 terms into the boundary
conditions W=dW/dr=0 at r=a and r=b
yields four homogeneous equations in A,, B.,,
C,, and D, for which a nontrivial solution can
exist only if the determinant of coefficients is
zero. Using recursion relationships of the types
in equations (2.4) and equations (2.6), deriva-
tives of the Bessel functions can be expressed
in terms of functions of the zeroth and first
orders. The frequency determinants for n=0
(axisymmetric), n=1 (one diametral node), and
n=2 (two diametral nodes) are given below
(ref. 2.6).

TABLE 2.16.—Axisymmetric Frequency Parameters for Annular Plates; v=1/3; b/a=0.6

Boundary way p/D
conditions ®
Deflection function W(r)
Exact Rayleigh-
r=a r=b solution Ritz
solution

C C A[1l— (r/6)2P[1— (r/a)?] In (r/a)+ B[1— (r/b)*R[1—(r/a)?_ . . ______ 89. 30 89. 42
C S8 A[1— (/)21 —(r/a)?] In (r/a)+ B[1— (#/b)2 1 — (rfa)? P ___ 64. 06 65. 17
C F All—(r/a)®) In (r/a)+B[1— (r/a) 2P - e 17.51 17. 56
SS C A[l—(/5)2F In (rfa)+ Bl1— (@/0)2P2[1—(rla)?) e 59.91 61. 81
S8 S8 All— (/52 In (r/a) +B1— (/b)Y 1—(r/a)?) e oo 40.01 43.19
S8 F Aln (rla)+Bl1—(/a)2 ]+ Cr/a) 1l — (rfa)?) e oo 5.040 5. 062
F C A= (/52 In (rfb)+BA— (r/b)2P_ e e 13.05 13. 59
F S8 A ln (r/b)+ B[1—(r/b)2}+C(r/a) [1— (r/b)2) e o o e 4. 060 4.084

s C, clamped; S8, simply supported; F, free.

For n=0,
Jo(N) Yo(N)
Ji(N) N
Jo(aN) Yo(aN)
Jl(a)\) Yl(a)\)

where a=b/a.

I Ky(\)
—I(\) Ki(») —0
Io(a)) Ky(aN)|

—Ii(aN) Ki(aN)
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For n=1,
J1(N) iy L K,(»
Jo(N) Yo(n) I,(N) —Ko(N) -0
Jie))  FiaN) e Ki(oN)|™
Jo(ar) Yo(ad) Iy(aN) —Ko(aN)
For n=2,
TN YN —LOER0)  —KM-LEM)
IO AN Lo —E) i
Jlad) Yo —-Io(a)\)—}—fxll(a)\) —Ko(ax)—%Kl(a)\)
Jl(a)\) Yl(a)\) Il(a)\) —-—Kl(a)\)

Fundamental roots for these three frequency equations are given in table 2.17.

TABLE 2.17.—Values of N=wa%/p/D for a Clamped, Clamped Annulus

A2 for values of b/a of—

n
0.1 0.2 0.3 0.4 0.6 0.6
O e 27.25 | _______ 45. 36 62. 33 89.30 |_______.___.
) SIS RIS 28.84 36.23 |oo____._. 62.92 | ___...___ 108. 16
e 36. 609 41.796 | ____..___ 66.406 |- ___ ... ____. 123. 766
These results are plotted in figure 2.14, along o
4

with the eigenvalues for the second mode of
n=0 taken from reference 2.6. Extrapolations
are shown as dashed lines as they were proposed
in reference 2.42. Note that for b/a=0 accurate
values are given in the section entitled “Plates
Clamped at Center With Various Conditions
on Contour” (2.1.6).

A more comprehensive set of results is given
in table 2.18 (see ref. 2.46).

Theoretical and experimental results for
0=<b/a<0.5 are given for the first three mode
shapes in reference 2.48. Additional informa-
tion is given in table 2.16.

2.2.2 Annular Plates Clamped on Qutside and
Simply Supported on Inside

The case of plates clamped on the outside
and simply supported on the inside is not dis-
cussed in reference 2.6. Fundamental eigen-
values from reference 2.42 are given in table
2.19 and are plotted in figure 2.15. Accurate

Nz
AN

@

A7
7
s |3

6 == —

- [/n=0

n=l s=0 a

2

—:’/

P
40 0.1 0.2 03 0.5 06 o7 08

o
elo

Ficure 2.14.—Values of A= {pw?/D)'/4a for a clamped,
clamped annulus. (After refs. 2.6 and 2.42)

“values for b/a=0 are given in the section en-
titled “Plates Clamped at Center With Various
Conditions on Contour” (2.1.6). Additional
information is given in table 2.16.
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TasLe 2.19.—Values of N=wal/p/D for a
Clamped, Simply Supported Annulus; v=1/3

A2 for values of b/a of—

0.1 0.2 0.3 0.4 0.5 0.6
W —_—
A7 / / .
ﬁ/ / -lb 0...| 22.61 | 26.57 | 33.66 | 44.89 | 64.06 99.16
6 Py ] 1] 25,20 | 29.11 |_______ 47.09 . -__ 98. 01
% je—a 2.1 35.39137.5¢ |__.____ 51.81 |.__.__._ 104. 45
5 =] -
40 [oX] 0.2 03 0.4 0.5 06 07 08
& A more comprehensive set of results is given

FicUurRE 2.15.—Values of A= (pw?/D)!/4q for a clamped,
simply supported annulus; »=1/3.

TaBLE 2.18.—Frequency Parameters wa’y/p/D
for a Clamped, Clamped Annular Plate

(After ref. 2.42)

in table 2.20 (see ref. 2.46).

TaBLE 2.20.—Frequency Parameters wa’/p/D
for a Clamped, Simply Supported Annular Plate

wayp/D for values of bja of— wa+p/D for values of b/a of—
n s n s
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
O.____. 0 27.3 45.2 89.2 248 2237 0 0 22.6 33.7 63.9 175 1550
) I 0 28.4 46. 6 90.2 249 2238 1 0 25.1 35.8 65. 4 175 1551
2 . 0 36.7 51.0 93.3 251 |.____ 2 0 35.4 42.8 70.0 178 1553
S 0 51.2 60.0 99.0 256 2243 3 0 51.0 54.7 78.1 185 1558
0. 1 75.83 | 125 246 686 6167 0 1 65.6 | 104 202 558 5004
1. 1 78.6 | 127 248 686 6167 1 1 70.5 | 107 203 560 5004
2 .. 1 90.5 | 134 253 689 |__.___ 2 1 86.7 | 116 210 563 5007
3 _- 1| 112 145 259 694 6174 3 1| 111.0 | 130 218 570 5012

2.2.3 Annular Plates Clamped on Outside and Free on Inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.45 for plates clamped
on the outside and free on the inside are as follows:

For n=0,

Jo(N)
Ji(N)

J, 1(60\)
Jo(a)

where

For n=1,

Jo(N)

Ji(N

—Jy(a))
Jo(a))

Yo(n)
—Y:1(N)

Y1 (a)\)
—Yo(aN)

A=

YoV

Y:(0)
—Yi(aN)

Y (aN)

(N Ko\
LN —K(M\) -0
Ii(a)N) — K (aN)
Io(aN) +AIL(aN) Ky(a))+BK;(aN)
2(1—vw) _2(1—v)
al B= al
I Ky(\)
1,0) B0 |,
CJy(aN)+ DI (a)N) —Ki(aN)
BJy(ar) +AL(aN) Ky(oN) +BK,(a))
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where (1—») (1) 2(1—) 4(1—)
8(1—vp o 4_1:-1 — —v _ 1—p
A="0y B="l(ny OC=—Ta Doy
For n=2, |

Ji(N) iy IL(N) —Ki(N)
SEOTS NS SRS AN ~SEM-EM |,
TN Tola)) AN —B*L(a))  A*Ko(aN)+B*E. ()
Jied) Y@  CL(ed)—DIL(a) CKy(aN)+DEK(a))

where

ar=1-40, 4=2-3%,  p—p-ap, B=24+%%

oo B0 o 120+ (@)*
12(1—p)*—(ar)* 12(1—p)*—(aN)*

Eigenvalues from reference 2.42 are given in table 2.21 and figure 2.16. Results for b/a=0
are also given in the section entitled ‘“Completely Free Plates” (2.1.3).

TABLE 2.21.—Values of N=wa%/p/D for a Clamped, Free Annulus; v=1/3

A for values of b/a of—
n
0 0.1 0.2 - 03 0.4 0.5 0.6 0.7 0.8
O e 10.24 10. 18 10. 34 11. 37 13. 54 17. 51 25. 60 42. 38 85.32
) U 21. 25 21.17 20.48 (... __. 19. 80 21.76 28. 52 51.12 | __ . __
e 34. 88 34. 52 33.86 |._______ 31.34 [-_______ 36.60 [________ 72.17

Numerical problems make it difficult to evaluate the frequency determinant as b/a—1.
Reference 2.43 gives an approximate value of A=15 for b/a=0.9. Additional information appears
in table 2.16.

A more comprehensive set of results is given in table 2.22 (see ref. 2.46).

TABLE 2.22.—Frequency Parameters wa%/p/D for a Clamped, Free Annular Plate

w0? /D for values of bja of—
n s
0.1 0.3 0.5 0.7 0.9
0 0 10.2 11. 4 17.7 43.1 360
1 0 21.1 19.5 22.0 45.3 362
2 0 34.5 32.5 32.0 51.5 : 365
3 0 51.0 49.1 45.8 61.3 370
0 1 39.5 51.7 93.8 253 2219
1 1 60.0 59.8 97.3 254 2220
2 1 83.4 79.0 108.0 259 2225
0 2 90.4 132.0 253.0 692 6183
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TaBLE 2.23.—Values of N2=wa%/p/D for a Simply Supported, Clamped Annulus; »=1/3

A2 for values of b/a of—
n
0.1 0.2 0.3 0.4 0.5 0.6
1 RN 17. 85 22.79 30. 05 41. 23 59. 91 95. 16
) PR 19. 44 24.32 . 42.56 | e 96. 67
D J PR 28. 25 31.08 |- 46, 81 | _____ 98. 84

2.9.4 Annular, Plates Simply Supported on Outside and Clamped on Inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for plates simply
supported on the outside and clamped on the inside are as follows:

For n=0,
Jo(A) Yo(N) I\ Kq(\)
SO T ELM-L0) s EM-K0)|
Tl Vo) I Kya)
Jila\)  Yi(aN) —Ii(aN) Ki(oN)
For n=1,
VSIS £ Lo BN
JN T LML)~ K|
T o) AN —Kyfa)
Jl(a)\) Yl(a)\) Il(a)\) Kl(a)\)
For n=2,
O B AR L) —AKN - K
JN TN SBI—ALO)  —{BEM-AKWN) |_

Ji(ad)  Yi(ad) Ii(o) —K(o)

Jo@)  Folad) —-Io(a)\)-{-%Il(a)\) —Ko(ax)—o%Kl(ax)

where

5 3=
A_-l—v T 1y
Eigenvalues from reference 2.42 are given in table 2.23 and figure 2.17. Eigenvalues for the
second mode of n=0, taken from reference 2.6, are also given in figure 2.17. Additional infor-
mation appears in table 2.16.
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F1GUurRE 2.16.—Values of A= (pw?/D)V4¢ for a clamped,
(After ref. 2.42)

free annulus; »=1/3.

o
olo &

Fieure 2.17.—Values of A= (p?/D) /4 for a simply
supported, clamped annulus; »=1/3. (After ref.

2.42)

A more comprehensive set of results is given in table 2.24 (see ref. 2.46).

TaBLE 2.24.—Frequency Parameters wa%/p/D for a Simply Supported, Clamped Annular Plate

wa?Vp/D for values of b/a of—

n s
0.1 0.3 0.5 0.7 0.9
0 0 17. 8 29. 9 59. 8 168 1535
1 0 19.0 3L 4 61.0 170 1536
2 0 26. 8 36. 2 64. 6 172 1538
3 0 40.0 45. 4 71.0 177 1541
0 1 60. 1 100 198 552 4989
1 1 62. 8 102 200 553 4989
2 1 4.7 109 205 557 4992
3 1 95. 3 120 211 563 4997

2.2.5 Annvlar Plates Simply Supported on Both Edges

The case of annular plates simply supported on both edges is not discussed in reference 2.6.
Eigenvalues from reference 2.42 are given in table 2.25 and figure 2.18.

TaBLE 2.25.—Values of N2=wa/p/D for an Annular Plate Simply Supported on Both Edges; v=1/3

A2 for values of b/a of—

0.1 0.2 0.3 0.4 0.5 0.6 0.7

14. 44 17. 39 21. 31 28, 25 40. 01 62. 09 110. 67
16. 77 19.19 . ___ 30.00 . __.___ 62.41 ...
25. 97 27.55 |______..__ 36.14 ... ... 68.41 | ____._.__

308337 0—70——3
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A more comprehensive set of results is given in table 2.26 (see ref. 2.46).

TABLE 2.26.—Frequency Parameters wa¥/p/D for a Simply Supported, Simply Supported Annular

Plate
waVp/D for values of b/a of—
n s
0.1 0.3 0.5 0.7 . 0.9
0 0 14. 5 21. 1 40.0 110 988
1 0 16. 7 23. 3 41. 8 112 988
2 0 25. 9 30. 2 47.1 116 993
3 0 40.0 42,0 56. 0 122 998
0 1 51.7 81. 8 159 439 3948
1 1 56. 5 84. 6 161 441 3948
2 1 7.7 933 167 444 3952
3 1 94. 7 108 177 453 3958

Theoretical and experimental results for  shapes in reference 2.48. Additional informa-
0<b/a<0.5 are given for the first three mode  tion appears in table 2.16.

2.2.6 Annular Plates Simply Supported on Outside and Free on Inside
The frequency determinants for n=0, 1, and 2 taken from reference 2.45 are as follows:

For n=0,

Jo(N) Yo\ I, K\(N)
—Ji(N) YN LM +ALM) — K (N +A4K,(N) —o
J1(aN) Y, (aN) I (a)N) —K;(a))
—dJo(aN) —Yo(aN) Iy(aN) — BI(a)) Ky(aX) +BK;(a))
where .
For n=1,
Jo(N) Yoy I,(N—EL(N) —K,(N—EK,(»)
Ji(N) Y. L) K,(N)
—Jied)  —Yi@) Ol +DL(a)  —OCKy(aN+DEeN)|
Jo(aN) Yo@) Bl aN4+AL(@)  —BEya\)+AK(aN)
where
I IR
For n=2,
Ji(d) Yi(0) EL(N—FI,(N) —EK,(\)—FK,(\)
Jo() Yo\ GL,(\)—EI (N —GK;(\)—EK,(N)

Jo(ad) Yo(a)) A*Iy(ar)—B*I(aN) A*K(ar)+B*K,(aN) B
Ji(aN) Yi(a)M) CIy(aN)—DIi(aN) CKy(a\) +DK (o))




-

CIRCULAR PLATES 27

where + Sty @ 18(1—)
__3Tv, o\ STy a\ —_ 48%(1—p)ar
A*=1-AC  B*=B-AD A=—%+T B=%4T  CChmuioy—y
1201 —=)[(7+)F(aA)]—(ar)t _5— 2 43—y
D= 12(1—»)?—(oN)* E_l—v F——l—v G_i 1—y

Eigenvalues from reference 2.42 are given in table 2.27 and figure 2.19. Values for b/a=0
are also given in section 2.1.3. Additional information appears in table 2.16. A more compre-
hensive set of results is given in table 2.28 (from ref. 2.46).

TaBLE 2.27.—Values of N'=way/p/D for a Simply Supported, Free Annulus; v=1/3

A for values of b/a of—
n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 T 0.8 0.9
[ SR R 4, 933 4,726 4, 654 4. 752 5. 040 5. 664 6. 864 9. 431 17. 81
) N 13.93 | 13. 91 1260 |__..... 11.66 |.._____. 12.27 | ________ 1705 |__.____.
e 25. 65 | 25. 43 24.97 | ___.___._ 23.09 |._______ 22.20 |.._____. 29.92 |_____.___

TaBLE 2.28.—Frequency Parameters wa®/p/D for a Simply Supported, Free Annular Plate

n s way/p/D for values of b/a of—
0.1 0.3 0.5 0.7 0.9
0 0 4. 86 4. 66 5. 07 6. 93 17. 7
1 O 13. 9 12. 8 11. 6 13. 3 29. 7
, 2 0 25. 4 24. 1 22. 3 24. 3 51. 2
3 0 40.0 38. 8 35.7 37. 2 74. 5
0 1 29. 4 37.0 65. 8 175 1550
1 1 48. 0 45. 8 69. 9 178 1553
2 1 69. 2 65.1 811 185 1558
0 2 74. 8 107 203 558 5004
10
I}
i
]
’I
9 7
/
!
8 / 8 7
/) /
7
7 ]‘—a /
\ / | /],
/ 6 7 17
6 /| % 2
y// : N ~ ’/"
- / b _ =2 ar
5 =3 . i
“ =~ —
== ‘// mo I-—o_-l : 3 T el n=0
|- L~
M _"/
3 0.l 02 03 04 05 06 07 08 % o1 0z 03 04 05 06 07 08 09 1.0
b ]
a a

F16URE 2.18.—~Values of A= (pw?/D)1/4q for 2 simply sup- Fiaure 2.19.—Values of A= (pw?/D)Y4a for a simply
ported, simply supported annulus; »y=1/3. (After supported, free annulus; »=1/3. (After ref. 2.42)
ref. 2.42) '
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9.9.7 Annular Plates Free on Outside and Clamped on Inside

The frequency determinants for n=0, 1, 2 taken from reference 2.6 are as follows:

For n=0,
a0 T —Lw+ 0y —km-22 K0
T ) L —K(0) 0
Jo(aN) Yo(aN) Iy(aN) Ky(oN)
Juan)  Yi(e) —I(e) Ki(ed)
For n=1,
[n Ty anm-BLo)  —Ke-ZE2 R
Ji(\) Y.\ < L(\) —Ki(\) =0
Jo(ar)  Yo(ar) Io(aN) Ko(ar)
Ji(aN) Yi(aN) I (o)) Ki(aM)
where
4(1—) 8(1—v»)
A=—14+=1" B==35—
For n=2,
J0) Yo (1—44ABNLM—DLQM)  (1—4ABNEKM)+DEi(N)
J) 70 4B\ — OL(N) 4ABNK,(\)+OK.(\)
Tl Y@  —IaN)+ s ) —EyfaN)— = (o)
Ji(aN) Yi(aN) I(aN) —Ki(a)N)
where
_l_ﬁg D 12(1—v) _12(1—~u)(7+v+)\2)—>\4 A 3+V__
A“4 PIN B—12(1—y2)—>\4 O= 12(1—»%)—\* D=3+ AC

Eigenvalues from reference 2.42 are given in table 2.29 and figure 2.20. Accurate values for
b/a=0 are given in the section entitled “Plates Clamped at Center With Various Conditions
on Contour” (2.1.6).

TaBLE 2.29.—Values of AN2=wa?+/p/D for a Free, Clamped Annulus; v=1/3

A2 for values of b/a of—

n
0.1 ‘ 0.2 } 0.3 0.4 0.5 0.6 0.7 0.8
O 4. 235 5. 244 6. 739 7. 036 13. 05 20. 63 36. 60 81, 45
1. 3. 482 4.814 | __.______ 9.09 | . .._____ 20.93 |- 45. 09
2 e 5. 499 6.345 |_____.____ 10. 37 |oooao_- 21.63 |- 67. 65
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A more comprehensive set of results is given in table 2.30 (see ref. 2.46).

TaBLE 2.30.—Frequency Parameters wa®+/p/D for a Free, Clamped Annular Plate

wa2Vp/D for values of b/a of—
n s
0.1 0.3 0.5 0.7 0.9
1 0 3.14 6. 33 13.3 37.5 345
0 0 4. 23 6. 66 13.0 37.0 51.5
2 0 5. 62 7. 96 14. 7 39.3 347
3 0 12. 4 13. 27 18. 5 42. 6 352
0 1 25. 3 42. 6 85. 1 239 970
1 1 27.3 44. 6 86. 7 241 2189
2 1 37.0 50.9 91.7 246 2194
3 1 53. 2 62. 1 100 253 2200

Additional data for this case are available from the work of Southwell (ref. 2.37), who saved
considerable effort in computation of the Bessel functions by assuming arguments of A and then
finding the b/a ratios to which these correspond. These additional data are presented in table 2.31
for »=0.3. Results appear also in table 2.16. This problem was also discussed in reference 2.15.

TaBLE 2.31.—Additional Values of N\*=wa/p/D for a Free, Clamped Annulus; v=0.3

n=0 n=1 n=2 n=3
bja N bla Py bla Py bla A2
0.276 6. 25 0. 060 2. 82 0. 186 6. 25 0. 43 16. 0

. 642 25.0 . 397 9. 00 . 349 9. 00 .59 25

840 81.0 . 603 21. 2 . 522 16. 0 .71 49

_________________________ . 634 25.0 . 769 64. 0 . 82 100
_________________________ L771 64. 0 .81 100 ) JE
_________________________ . 827 121. 0 e | e | e

2.2.8 Annular Plates Free on Outside and Simply Supported on Inside

The case of annular plates free on the outside and simply supported on the inside is not discussed
in reference 2.6. Elgenvalues from reference 2.42 are given in table 2.32 and figure 2.21. Additional
information appears in table 2.16.

TaBLE 2.32.—Values of N=wa?/p/D for a Free, Simply Supported Annulus; v=1/3

A? for values of b/a of—

n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
O 3.516 | 3.312| 3.378| 3.610 | 4.060 | 4.951 | 6.101| 8779 18. 92
R 2.403 | 2.816 |-...___. 3.940 |_______. 6.027 |_.__.____ 12.55 |-
2 L 5313 | 5513 |._______ 6.620 | _____ 9.653 |________ 19.95  |-coeo---
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Ficure 2.20.—Values of A= (pw?/D)V4a for a free,

clamped annulus; »=1/3.

(After ref. 2.42)

Fi1cUrE 2.21.—Values of A= (pw?/D)1/4a for a free, simply
supported annulus; »=1/3. (After ref. 2.42)

A more comprehensive set of results is given in table 2.33 (see ref. 2.46).

TaBLE 2.33.—Frequency Parameters wa®/p/D for

a Free, Simply Supported Annular Plate

watyp/D for values of b/a of—
n s

0.1 0.3 0.5 0.7 0.9
1 0 2.30 3. 32 4. 86 8. 34 25.9
0 0 3.45 3.42 4.11 6.18 17.2
2 0 542| 608 7.98 | 13.4 42.6
3 0] 12.4 12. 6 14.0 20.5 61.4
0 1]20.8 |36 |61.0 |170 1535
1 1241 34.5 63.3 172 1536
2 1358 |43.0 |69.7 | 177 1541
3 1153.0 56.7 80.3 185 1548

2.2.9 Annular Plates Free on Both Edges

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for annular plates free
on both edges are as follows:

For n=0,
Jo(N)
J1(N)
Jo(a))
J1(a))
where :

Yo(n) —I, (N +ALN) —K,(\)—AK;(N)

Yilh) L) —EKi(\ B

Vo)  —Iola)+BLiad)  —Ky(ah)—BEya))|

Y1(O_t)\) I (a)) —Ki(a))
4=20=r)  p 20—v)

A

al
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For n=1,
TN TN (S1H5A) K- AT —(—1454) K- 4K )
AE A A\ A
TN T A —-(1+54) L0 L AKM—(1454) K
=0
T Y@ (=145 B) L@ —BL@) —(—1+% B) K — BE,(o)
2
T Ty DEa-(142B) L@ [-9 ) pryen-(1+3 ) B) K |
where ( (
_8(1—») _8(1—w)
4= A2 B= (ar)?
For n=2,
Jo(A) Yo(h) AI,(\)—BIL(N) AK(\) +BKi(\)
Ji(M) Yi() OI,(\)—DIL,(») CKN+DEK(N) |
Jo(aN) Yo(ad)  A*Iy(aN)—B*I(a)) A*K(a))+B*K, (o))
Ji(aN) Yi(a)) C*Iy(aX) —D*I(a)) C*Ko(a)) +D*K;(a))
where
A= (N 3+v)0 3+v 3+u O— 48(1—y)\
4 20\ T12(1—»)—)
12(1—») (7+y+>\2) x* (oA 34y _oh 3+y_(aN_ 3+v
D= 12(1—5%)—\* A*=1~ZF—% B*=7ton 72 )"
O*— 48(1—) () D*— 12(1—») [7+v+ (aN)]— (M)t
12(1—»%)—(aN)* 12(1—p?)—(\)*
Eigenvalues from reference 2.42 are given in [¢ 7
table 2.34 for the lowest root of n=2. The / /
lowest roots of n=0 and n=1 are rigid body o /
translation and rotation modes, respectively. a
Other eigenvalues are plotted in figure 2.22 as / /
taken from reference 2.6. Labels near the 7 /"‘ :
ordinate identify roots for b/a=0 given in the ) / /
section entitled ‘“Completely Free Plates” © [ Oms k02 = //
(2.1.3). A5 I /]
ks=0,n=q / 4
. §l~{\\ sz, n=l ///
N ;E-/o/
2 \Fo'"LZ\ ,/
[
0

0 0l 02 03 04 05 06 07 08 09 10

olor

F1qURE 2.22.—Values of A= (pw?/D)'/4q for a free, free
annulus; »=1/3. (After ref. 2.6)
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TaBLE 2.34.—Values of N=wa/p/D for an Annular Plate Free on Both Edges; v=1/3

A2 for values of b/a of—
n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2 U 5. 203 5. 053 4. 822 4. 567 4. 203 3. 865 3. 519 3. 200 2. 890

TaBLE 2.35.—Frequency Parameters wa%/p/D
for a Free, Free Annular Plate

wa?Vp/D for values of bja of—
n ]
0.1 0.3 0.5 0.7 0.9

2 0f 5.30| 4.91| 4.28 3.57 2.94
3 0| 12.4 | 12.26 | 11.4 9. 86 8.14
0 1 877 | 836 | 9.32 13.2 34.9
1 17205 18.3 | 17.2 22.0 55.7
2 11349 |30 |31 37.8 93.8
3 1]53.0 | 510 |47.4 55.7 | 135

0 21382 |50.4 |92.3 | 251 2238

1 2|59.0 | 58.8 | 96.3 | 253 2240

A more comprehensive set of results is given in
table 2.35 (see ref. 2.46). -

2.2.10 Annular Plates Clamped on Outside With
Rigid Mass on Inside '

Considering only axisymmetric vibrations

the boundary conditions for annular plates

clamped on the outside with a rigid mass on. the
inside (fig. 2.23) are

w(a,0,1)=22 (a,0,1)=22 (5,6, 1)=0

- (2.37)
20bV,(8,0, )=M 55 (b, 6, 1)

Je———a

je—— h ——»

'//////////AI—J_x:

¢

F1GURE 2.23.—Annular plate clamped on outside, rigid
mass on inside.

L

V224

where M is the total mass of the rigid insert. In
the general case the condition of zero slope at
the junction with the rigid mass would be
replaced by an equation of motion relating the
integral of the components of torque along the
edge r=> about a diametral axis to the product
of the mass moment of inertia and the rotational
acceleration about the axis.

Letting =0 in equation (1.18) and substi-
tuting into equation (2.37) result in a fourth-
order frequency determinant. Expanding this
by making use of the recursion formulas for
derivatives of Bessel functions yields a char-
acteristic equation which was given by
Handelman and Cohen (ref. 2.49):

([ToN LN +J: (N To(V)){4A Y1 (Aa)
+ar[Vi(Ae) Ko(Ae) — Ki(Ae) Yo(Aa)]))
+ ([To(N) K1 (\) — Ko(NJ1 (M {4 (Ae) Vi (Aar)
— a2y [[;(Aa) Yo(Ae) +To(Aa) Yi(Aa)]D
(TN LA+ L) VI () K (V)
+any[J1(Aa) Ko(Aa) — K (A@) Jo(Aa)]})
+ (Yo K (\) — Ko Y1)
{—4)\J1(7\a) I;(Aa) + a’2y[Ji(Aa) Iy(Aa)

+Il,(>\a)Jo(>\a)]})=‘% (2.38)

where
A= (w?p/D)a (2.39)
and
a=bla  y=p'Ip

where p’ is the mass per unit area of the rigid,
inner mass.

Equation (2.38) was solved for the funda-
mental root A for two values of @ and y=2 and
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10. These results are shown as small circles
in figure 2.24. Because of the complexity of
equation (2.38) its numerical evaluation was
limited in reference 2.49 and, in its place, a
minimal principle was used to obtain approxi-
mate eigenvalues which are upper bounds.
These results appear as curves in figure 2.24,

In figure 2.24 it is seen that for high mass-
density ratio ¥ there exists a ratio of radii a
for which the frequency is identical to that for
the clamped solid circular plate without central
mass. The critical values of v for which this
occurs are shown in figure 2.25 as a function
of & (see ref. 2.49).
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Elliptical Plates

The elliptical boundary will be taken to be
one of the confocal ellipses of an elliptical co-
ordinate system. The semimajor and semi-
minor axes of the ellipse will be taken as @ and
b, respectively (see fig. 3.1). The eccentricity
¢ of the ellipse is related to a and b by

e=+1—(b/a)? (3.1)

For a mode shape having symmetry with
respect to both axes of the ellipse (m even) or
with respect to the minor axis (m odd), equation
(1.27) reduces to

W=§‘:O[Om06m(5; Q)Gem(m Q)
+CrCen(t,—g)cen(n,—g)] (3.2)

For mode shapes which are antisymmetric
about both axes (m even) or with respect to the
major axis of the ellipse (m odd), equation
(1.27) reduces to

@

Wzmgl[smsem(& Q)sem(n; g)
+S;:S€m(£:_Q)sem(7h—g)] (33)

y

b

Fioure 3.1.—Elliptical plate.

Chapter 3

3.1 CLAMPED PLATES

When equation (3.2) is used and the condi-
tions of zero deflection and slope around the
boundary are applied, a characteristic de-
terminant of unbounded order is obtained.
Shibaoka (ref. 3.1) solved the problem of
clamped elliptical plates by beginning with the
element in the upper left-hand corner and tak-
ing a series of finite determinants containing
that element. As successive determinants were
taken, convergence to a lowest root was es-
tablished. Table 3.1 shows the fundamental
roots obtained for three values of a/b and
corresponding eccentricities. The convergence
is slower for large values of a/b. Only third-
order determinants were required to establish
the convergence to the number of figures given
for a/b=1.25 and 2.00, but a fourth-order
determinant was required for a/b=3.00.

TaBLe 3.1.—Values of N=wal/p/D for a

1IN
N

Clamped Elliptical Plate
afb € N=uwa?p/D
1.25 .. 0. 600 13.1
2,00 .. . 866 27.5
3.00. . . 943 56.9

In reference 3.1 an expansion formula is also
derived for elliptical plates of small eccentricity.
Itis

A=(pw?/D)*q=3.19614-0.7991 ¢4 0.7892¢*
(3.4)

where 3.1961 is the fundamental eigenvalue for
a clamped circular plate of radius a.
The problem was also solved by using the
Rayleigh technique (ref. 3.1). A function
37
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2

W=Wo(1——%-—%;)2 (3.5)

was chosen to satisfy the boundary conditions
exactly. The Rayleigh quotient gives the
approximate frequency formula

w=a1§\/40[1+§(%>2+(%)4](D/p) (3.6)

The Galerkin method and a two-term de-
flection function

2 ‘ 2 2 2 2 3
W=A1(§§+%2-—1> +A2(%+%§—1) (3.7)

were also used to solve the problem (ref. 3.2).
By use of equation (3.7), the eigenvalues are
found to be

N pula/D=39.218 [1+§-<§)2+<‘;)4] (3.8)

d
n)\§=pw§a,4/D=129.18[1+§(%>2+<%)4:| (3.9)

Values of A? from equation (3.8) for various
ratios of ¢/b are given in table 3.2.

&

TABLE 3.2.—Approximate Values of N=wa? Vo/D
for a Clamped Elliptical Platé

af/b a2

1.0 e an 10. 217
1. e 11. 314
1.2 e 12. 566
1.5 e 17. 025
2.0 e 27. 746
3.0 oo 58. 693
5.0 e 158. 85

VIBRATION OF PLATES

Comparing equations (3.8) and (3.6) with table
3.1, it is seen that equation (3.8) gives results
only slightly more accurate than those of equa-
tion (3.6) and the ratio of frequencies obtained
from equations (3.6) and (3.8) does not vary
with a/b.

In reference 3.3 the differential equation
(eq. (1.4)) expressed ir. terms of elliptical co-
ordinates (eq. (1.20)) is transformed into a
form yielding a solution in “‘epicycloidal tran-
scendental functions.” The characteristic de-
terminant for the clamped case is presented,
but not evaluated.

In reference 3.4 a minimal energy method is
used with a deflection function of the form

W(r,0)=(1—p?) A1+ A1p*+ Azp*+ (Asp*+ Asp)
cos 20+ Azpt cos46] (3.10)

where p and 6 are related to rectangular co-
ordinates by the parametric equations

r=pcosf }
b .
y=psin 6
to obtain fundamental frequency parameters.
Results are given in table 3.3.
The problem was also formulated in terms of

Mathieu functions and discussed in reference
3.5. Itis also discussed in reference 3.6.

3.2 FREE PLATES

Experimental results for free elliptical brass
plates having a/b ratios of 2 and 1.25 were ob-
tained by Waller (ref. 3.7). Table 3.4 gives
ratios of frequencies for a/b=1.98 relative to
the fundamental frequency. The fundamental
frequency upon which the table is based is
given in reference 3.7 as 438 cycles per second

(3.11)

TaBLE 3.3.—Approximate Frequency Parameters N'=wa/p/D for a Clamped Elliptical Plate

bla 0.9 0.8 0.7

0.6 0.5 0.4 0.3 0.2 0.1

11. 443 | 13.229 | 15. 928

20. 195 | 27. 378 | 40. 649 | 69. 163 | 149.89 | 583. 10
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TABLE 3.4.—Ezperimentally Determined Rela-

tive Frequencies for a Free Elliptical Brass
Plate; a/b=1.98

TaBLE 3.5.—Euzperimentally Determined Rela-
tive Frequencies for a Free Elliptical Brass
Plate; a/b=1.24

Frequency for value of n of— Frequency for value of n of—
s s
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

1 SR S A 1 2.58 1 4.7 7.3 10 {100 S 1 2.45 |4.28 16.66 [9.39 | 13

) SO S 1.77 | 3.27 | 5.68 | 8.29 | 11 R ) O D 1.07 | 2.59 | 4.34 (6.8 9.6 |.____ -

2._._.14.25 1 6.57 | 9.43 12.6 | ___.__[______ ——- 2.12.03]3.99|6.71|10 | ____|_____|-____ ——

3_...j10.6 14 [ ____ i _____|.___. - 3..04.42 | 7.41 110.7 (14 || ___|eo___ .

4 ___|17 22 || - 4.1 9.01 |12 ||| . -
G4 e .

for a brass plate with a major axis of 4.99

inches, a minor axis of 2.52 inches, and a thick-

' ’ REFERENCES

ness of 0.0638 inch. The mode indicators s
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Rectangular Plates

Altogether there are 21 combinations of
simple boundary conditions (i.e., either clamped
(C), simply supported (SS), or free (F)) for
rectangular plates. Frequency parameters are
expressed in terms of wa?/p/D, where a is a
length dimension, and do not depend upon
Poisson’s ratio unless at least one of the edges
of the plate is free. However, because D
contains », the frequencies themselves depend
upon » for all cases.

Warburton (vef. 4.1) presented the first com-
prehensive collection of solutions for rectangular
plates. He used the Rayleigh method with
deflection functions as the product of beam
functions; that is,

W(z,y)=X()Y () (4.1)

where X(x) and Y(y) are chosen as the funda-
mental mode shapes of beams having the
boundary conditions of the plate. This choice
of functions then exactly satisfies all boundary
conditions for the plate, except in the case of
the free edge, where the shear condition is
approximately satisfied. The six possible dis-
tinet sets of boundary conditions along the
edges =0 and 2z=q are satisfied by the
following mode shapes:

(@) Simply Supported at =0 and r—=qa:
X(x):sin(—m—Tl)lx (m=2,3,4,...) (4.2)

(6) Clamped at =0 and z=a:

= z_ 1 sin (y,/2) z 1
X(x)-cosw(a 2>+mcoshyl(5_§
(m=2,4,6,...) (4.3)

where the values of v, are obtained as roots of

tan (y,/2) +tanh (y,/2)=0 (4.4)

308-337 0—70——4

Chapter 4

and

r z 1\ sin(vy/2) . (g_l)
X(x)—SID.’)'g(E'_"z‘ Wsmhvz 272

(m=3,5,7,...) (4.5)

where the values of v, are obtained as roots of

tan (vs/2) —tanh (y,/2)=0 (4.6)

(c) Free at =0 and z=a:
X(x)=1 (m=0) (4.7)
X@=1-2  (m=1) @48

_ x 1 sin (y,/2) (a_c__}
X(2)=cosy; (&—5 ~sinh (7v,/2) coshy, 273

(m=2,4,6,...) (4.9)
and

. z 1 sin (v,/2) . z 1
X(Z) =8Iy, ((—i—§>+gﬁl_1~(’:2/2) ginh Y2 (a 3

(m=3,5,7,...) (4.10)

with v; and v; as defined in equations (4.4)
and (4.6).
(d) Clamped at =0 and Free at 2=a:

T
X(z)=cos Y€ —cosh Y&
a a
+( sin y,—sinhy, ) (sinw— sinh 'YL”>
cosy;—cosh vy, a a

(m=1,2,3,...) (4.11)
where
cos vz cosh y3=—1 (4.12)

(¢) Clamped at z=0 and Simply Supported
at r=a:

) z 1\ sin (y/2)
X(@)=sinn(g—3)—smp

sinhy-’,(%—%) (m=2,3,4,--+) (4.13)

41
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with v, as defined in equation (4.6).
(f) Free at =0 and Simply Supported
at x=a:

X(x)=1—§ (m=1) (4.14)

. z 1\, sin(y:/2)
X(z)=sin~v; <2a 2)+sinh (v2/2)

sinh'yQ(%L——%) (m=2,3,4,--) (4.15)

with v, as defined in equation (4.6).

The functions Y(y) are similarly chosen by
the conditions at y=0 and y=a by replacing
z by y, a by b, and m by n in equations (4.2) to
(4.15). The indicators 7 and m are seen to be
the number of nodal lines lying in the z- and
y-directions, respectively, including the bound-

aries as nodal lines, except when the boundary

is free.
The frequency w is given by reference 4.1 as

=] @+ai(5)
2
+%ﬁmmmww}@m

where @,, H,, and J, are functions determined
from table 4.1 according to the conditions at
=0 and z=aq.

The quantities G,, H,, and J, are obtained
from table 4.1 by replacing « by ¥ and m by n.

Another comprehensive set of solutions was
later given by Janich (ref. 4.2). Fundamental
frequencies were obtained for 18 combinations
of boundary conditions. He, too, used the

TaBLE 4.1.—Frequency Coefficients in Equation (4.16)

Boundary
conditions at— m G, H, I
e e .| ot (m—1y n—1y
[0 1 T 2 1. 506 1. 248 1. 248
: 2 1\ 2
(o] TR 3,45 ... m—z m—z)|1 ( ) m=3 1—( 1)
—=)r m—z )«
2
Fa . 0 0 0 0
1 0 0 12/
2 1. 506 1. 248 5. 017
1 2 - - -
L 3,45 ... m—y (m— %) Fl ( 2 ) (m—%) 1+< 6 )
m—xz v m—g jr
o 3 2 - 2r- -
ng ________________ } 284 . - mTy (m_ 72) rl—(—jls (m" %) 1 (m_l_)
| "7 "
Fo oo 1 0 0 3/x?
3 2 -— 2 -—
88b. .. 2,3,4,... | m—3 (’m— §) rl——13— (m— 72) [ 3
| (9 | (m-2)r]
Ca 1 0. 597 —0. 0870 0. 471
"""""""""" 2 1. 494 1. 347 3. 284
b “mt AN U B _ 1y 2
FY e 3,4,5, ... m m—j 1 1 m—3 1+ _l)
(m—3)- (m=3)"
agx==(.

bg=a.
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Rayleigh method, but used simple trigono-
metric functions whlch satisfied only the geo-
metric boundary conditions. The mode shapes
used in reference 4.2 are glven in table 4.2.

The frequency w is given in reference 4.2 for
v=0.25 by

. DK
with K and N given in table 4.2.

The results of references 4.1 and 4.2 are both
obtained by the Rayleigh method and, hence,
yield upper bounds on the frequency values.
However, it must be pointed out that both sets
of results have limitations in accuracy. The
three cases not included in table 4.2 (F~-F-F-F,

SS-F-F-F, and SS-SS-F-F) yield such poor
results with mode shapes of the same type that
they were not included in reference 4.2. The
force-type boundary conditions as well as the
geometric are satisfied in reference 4.1; this
usually improves the accuracy of the solutlon
but occasionally makes it worse. The results
determined from table 4.1 will decrease in
accuracy for higher mode shapes (increasing
values of m and n).

A partial summary of vibration frequencies
for rectangular plates was given in reference 4.3.

41 S5-55-55-SS

The problem of plates with all sides SS is the
most simple to solve for the rectangular plate.

TABLE 4.2.—Frequency Coefficients for Equation (4.17) and Different Mode Shapes; v=0.25

Boundary conditions Deflection function or mode shape N K
L2227,
5 /b 2 a\’ '
/ a (cos ———1)(cos L 2.25 12--8 (—) +12 (9)
7>y, b : b
2222
; a ! b 21ry a\’ 8 a ‘
/77’777& <cos ——cos —)(cos ) 1.50 3.85+5 (5) + (5)
L L L 2 L LS
/
4 27y a\’ a\'
/ _— fladed k- S = ot
o (1 cos )(cos .340 | 0.0468--0.340 (b) +1.814 (b)
/ ———— 4
1 /

(cos e 1) sin _y
rd

(cos 22213

/

/ Y, 27z
cos ——1
a

Y ]
/7777779
/
/ {
/ ,' (cos ———cos )(1
777777.

(cos ———cos )(cos ———cos 1.00

5 | 442 (Z—’)Z+o.75 (%)4

2
50 | 2.67+0.304 (g)
150 8

2.56--3.12 (%‘)2+ 2.56 (‘3‘)4

2 4
.227 | 0.581+0.213 (g) +0.031 (%)
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Boundary condifions Deflection function or mode shape N K
1 Tz Ty ay’
% rrrs (l—cos 2—a)<1—cos 2—b) 0.0514 | 0.0071-+0.024 (5)
4
+0.0071 (‘5’)
- N N
____! (cos L cos —) sin = —— .50 1.28+1.25 (3)-]—0.50 (3)
] a\’
] (cos 37 _ cos —> y .333 | 0.853+0.190 (3)
|
/ ' co8 312 _ o5 I% 1.00 2.56
. 20 2a
Tz\ 7 Y a\’
(1—005 -—-—) 3 8in .1134 | 0.0156--0.0852 (—-)
2a/ b? b
4
+0.1134 (%)
a 2
, I (1 cos = 3 y .0756 | 0.0104-+0.0190 (-5)
y
4 1—cos 22 .2268 | 0.0313
2a
| 2 4
I 2 gin 7Y 9_) (2)
b ___: sin ZZ sin 5 .25 0.25+0.50 (b +0.25 3
| | T\ y a\’
L (sin ) ¢ 1667 | 0.1667-+0.0760 (5 )
' sin 7% .50 | 0.50
a
The boundary conditions are satisfies the boundary conditions, where Ap, is
, an amplitude coefficient determined from the
w=0,M,=0  (forz=0,a)Y (4.18) initial conditions of the problem and m and n
w=0,M,=0  (fory=0,b) are integers. Substituting equation (4.19) into

When equations (1.29) are used it is seen that

. mwe
Wan=Anrn sin—"-=

sin’i’l?f (4.19)

equation (1.4) gives the frequency

B[]

(4.20)
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A plot of four frequency parameters as a func-
tion of the b/a ratio was made by Vet (ref. 4.4)
and is shown in figure 4.1.

40
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Figure 4.1.—Frequency parameter 0.90wb2\/p/D for
88-8S8-88-88 rectangular plate. (After ref. 4.4)

The node lines for a general rectangle are
simply straight lines parallel to the edges as
shown in figure 4.2. For square plates, how-
ever, two mode shapes may have the same
frequency and exist simultaneously, their rela-
tive amplitudes depending upon the initial con-
ditions. Sequences of nodal patterns obtain-
able for a given frequency are shown for three
cases from reference 4.5 in figure 4.3. The
problem was also solved in reference 4.6 by
replacing the plate by an assemblage of beams
and concentrated masses.

a

m=ln=| m=2,nz| mzl,n=2 m=2,n=2

Ficure 4.2—Nodal patterns for S8 rectangular plate
with ¢>b..

42 TWO OPPOSITE SIDES SS .

There are six combinations of boundary con-
ditions for which two opposite sides are SS.
One of these (for the plate with all sides SS
which has a simple, exact solution) has already
been discussed. The remaining five cases also
have exact (although more difficult) solutions.
When the edges =0 and z—a are SS, it is
seen that the conditions at these boundaries,
as well as the differential equation of the prob-

\, \
N \\ \
N N \
\, \ \
W F Wy, \\\ \\ \‘
N \
N AN \
N \ !
AxrAp A=102A,2 Az =2A);
/ ’ /
d
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Agi=-Ajs Ag=-1.02A5 Asi=-5A5

Ficure 4.3.—Combined nodal patterns for a SS
square plate. (After ref. 4.5)

lem (eq. (1.4)), are exactly satisfied by using
the first half of equation (1.87) with a=mr/a;
that is,

W(z, )= [A,sin yEP—aly

m=1

+ By, cosvk*—a*y+-C,, sinh VE+ oy
+D,, cosh k> +oPy]sinaz  (4.21)

Applying the remaining four homogeneous
boundary conditions results in a set of fourth-
order characteristic determinants, one for each
value of @. Each determinant has an infinity
of solutions for the eigenvalues k. Any of the
four edges being free is & necessary and suffi-
cient condition for the frequency parameter to
depend upon Poisson’s ratio.

The first straightforward, comprehensive
solution of these five cases by the method out-
lined above was given by Fletcher, Woodfield,
and Larsen in reference 4.7 and in reference 4.8.
In reference 4.7 an excellent analysis is made of
the conditions which lead to k*<a? requiring
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that sin \k—a?y and cos yk*—o2y be replaced
in equation (1.36) by sinh o?—F% and cosh
vJo?—k%y, respectively. They formulated the
characteristic determinants and solved for the
eigenfunctions for all five cases and published
the first six frequencies of a square plate in each
case.

Iguchi (ref. 4.9) solved the problems involving
one edge C and the opposite either C or SS and
presented extensive numerical results for them.
Das (ref. 4.10) formulated characteristic equa-
tions and eigenfunctions for the two cases of
opposite edges either F or C. Pertinent dis-
cussion can also be found in reference 4.11.

Tt has been shown (e.g., refs. 4.9 and 4.12)
that a useful analogy exists between the vibra-
tion and buckling of rectangular plates having
two opposite sides SS. The deflection of a
rectangular plate loaded by compressive inplane
forces is given by (see the appendix)

Q’w O*w

4y _—
DViw= ’az+2N“a sy~ Vo (422)

where N,=N,(z,y) and N, are compressive
forces per unit length acting in the z- and y-
directions, respectively, and N,, is the inplane
shearing force per unit length. Taking the case
N,=N,=0 a.nd assuming that w(z, y)=

ZY ) sm—— (where m=1, 2,

the S8 boundary conditions at =0 and z=a
and reduce equation (4.22) to the two homo-
geneous equations

PY,, N,
(oSt T
&Y, N,
dy? _<°‘\/ D +°‘2) Y =0

where a=mx/a, as before. When equations
(4.23) are compared with equations (1.34), it is
seen that the solution for buckling also solves
the vibration problem if N,a?/D is replaced by

. .) satisfy

(4.23)

y

|

a/2
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1
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Figure 4.4.—SS8-C-8S-C plate.

pe?/D and the boundary conditions on the re-
maining two edges are the same. Thus the
critical buckling load N, gives vibration fre-
quencies according to

2
pw

Nz,-\/———2
o

421 SS-C-SS-C

Recognizing that the solution for SS-C-55-C
plates (fig. 4.4) given by equation (1.37) must
be valid for all independent values of & and sub-
stituting into the boundary conditions

(4.24)

Wi, o>=%ﬂy’ (z,0)=W(z, b)=%’<x, 5)=0

(4.25)
results in the four homogeneous equations

B,+D,=0 A
Anh+Crha=0
A,, sin \ib+ B, cos Mb+C,, sinh Azb
+D,, cosh \b=0
A\ €08 Mb— B\ sin b+ Oy cosh Agh
4D\, sinh Ab=0)

Y

(4.26)
where
M= \/kz—az}
(4.27)
A= Vo2

For a nontrivial solution the determinant of the coefficients of equations (4.26) must vanish; that is,

0 1
At 0
sin Mb cos Mb

AL COS A]_b —N sin A]_b

0 1
As o | ;
sinh A\;b cosh Azb =0 (4.28)
)\2 cosh >\2b A2 sinh )\2b
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TasLe 4.3.—First 6 Frequency Parameters \= wal/p/D for SS-C-SS-C Square Plate

28. 946 54,743

69. 320 94. 584 102. 213 129. 086

Mode. . ____. w11 w1

w12 w22 w31 [ H]

which, when expanded, yields the characteristic
equation

2MA2(cos Mb cosh Ab—1)
+(M—22) sin \b sinh \b=0 (4.29)

Iguchi (ref. 4.9) solved this problem in essen-
tially the same manner and obtained the first
six frequency parameters for the case of the
square. They are presented in table 4.3.

For the frequency wyy, the subscript m identifies
the number of half-sine waves in the z-direction
and the subscript » identifies the nth lowest root
for a fixed value of m. The results of table 4.3
are also verified in references 4.7 and 4.13.

TaBLe 4.4.—12 Higher Frequency Parameters
A=wa’(y/p/D) (not a Complete Set) for SS-
C-SS-C Square Plate

CA Mode A Mode
140.189 ________ w32 307300 _________ wi1s
154.765 ________ wWoz 333.926 ________ wop
199.797________ wgs || 379.274________ w35
208.373 ________ wig 425.885 ________ w16
234.578 ________ Wy 452.877 ________ Wop
279.627________ wgy || 498.501________ w3s

In addition, reference 4.9 gives 12 more roots
as listed in table 4.4. It must be emphasized
that other frequencies exist (e.g., wi, we, and

w;;) which would separate some of the values in
table 4.4 if a complete, sequential list were
available. These can be obtained from the
work of Odman (ref. 4.13) who solved equation
(4.29) with less accuracy than did Iguchi but
extracted the first six roots for m=1,2, ..., 6.
The corresponding frequency parameters are
listed in table 4.5.

Nishimura (ref. 4.14) achieved accurate results
for the square using relatively coarse finite dif-
ference grids. He obtained wa?/p/D=28.974
for the fundamental mode by solving only third-
order finite-difference determinants.

For nonsquare plates, fundamental frequen-
cies are available for various aspect ratios.
These are listed in table 4.6 (see also ref. 4.9).
Hamada (ref. 4.15) used a variational approach
and Kanazawa and Kawai (ref. 4.16) used an

TaBLE 4.5.—Frequency Parameters wa/p/D for
S8S-C-SS-C Square Plate

wa? v /D for values of n of—
m
1 2 3 4 5 6
1] 28.9 | 69.2 | 129.1 | 208.6 | 307.4 | 426.1
2.___| 54.8 | 94.6 | 154.8 | 234.5 | 333.9 | 452.9
3....|102.2 | 140.2 | 199.9 | 279.5 | 379. 1 | 498. 4
4.___| 170.3 | 206.6 | 265.2 | 344.6 | 443.8 | 563. 5
5_.__] 258.5|293.8 | 351.1|429.8 | 520.0 | 647.9
6.___| 366.8 | 400.9 | 457.4 | 535.1 | 633.7 | 752. 2

TaBLE 4.6.—Fundamental Frequency Parameters for a SS—-C-SS-C Rectangular Plate

A for values of b/a and M* for values of a/b of—

Parameter
1 1.5 2 2.5 3 @
A=w@® /D)oo _____ 28. 946 17. 369 13. 688 12. 129 11. 359 9. 869
Ne=wb?(vVp/D) .o ___ 28. 946 24, 047 23. 814 23. 271 22. 985 22. 373
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TABLE 4.7.—Frequency Parameter wb*(y/p/D) for the Second Antisymmetric Mode of a SS-0-SS-C
Rectangular Plate

Boundary conditions

wb?(Vo/D) for value of a/b of—

1.5 2 2.5 3 ©

LLt 2l

b——— - b
]

77777

68. 181

65. 118 63. 641 62. 967 62. 602 61. 178

integral formulation to obtain confirming results
for several a/b ratios. In reference 4.16, results
are also obtained for the mode antisymmetric
about 7=0, for a/b=1. Unfortunately, this is
the second antisymmetric ' mode shape of the
plate. These frequency parameters are given
in table 4.7.

The first six roots of equation (4.29) for
m=1, 2, . .., 6 and for a/b=0.5, 1.5, and 2.0
were found in reference 4.13. The correspond-
ing frequency parameters are listed in table
4.8.

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies are listed in table 4.9 for various

Eliminating three of the constants (e.g.,
B,, C,, and D,) in equations (4.26) in favor of
a fourth (e.g., A,) leaves one equation giving
the eigenfunctions, or mode shapes, for this
case. From reference 4.7 it is known to be:

w(z, y) =[(cosh Ab—cos Mb) (A; sinh Aoy
—Az sin Ay)
—(A; sinh Az sin \;b) (cosh Ay —cos \¥)] sin ax
(4.30)
Substitution of A; and A, determined from

equations (4.27) into equation (4.30), using the
frequencies from the tables of this section,

a/b ratios as given on page 367 of reference 4.17.  completely determines the mode shapes. Mode
TABLE 4.8.—Frequency Parameters wb/p/D for SS-C-SS-C Rectangular Plate
‘ wb?Vp/D for values of n of—
% m
1 2 3 4 5 6

1 54. 8 94. 6 154. 8 234. 5 333. 9 452. 9
2 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
0.5 3 366. 8 400. 9 457. 4 5356. 1 633. 7 752, 2

4 642. 8 675. 9 730. 5 806. 9 904. 2 1021

5 997. 7 1030 1084 1159 1257 1375

6 1432 1464 1517 1592 1686 1802
1 25.0 64. 9 124. 5 203. 7 302. 4 420. 9
2 35.1 75. 6 135. 7 215. 1 314. 1 432. 8
L5 3 54. 8 94. 6 154. 8 234. 5 333.9 452. 9
’ 4 84.1 122. 3 182. 6 262. 5 362: 0 481. 1
5 122. 6 160. 0 219. 3 208. 9 398. 5 518. 0
6 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
1 23. 8 63. 4 123. 0 202. 1 300. 7 419. 0
2 28.9 69. 2 129. 1 208. 6 307. 4 426. 1
2.0 3 39. 0 79. 5 139. 7 219. 3 318. 2 437. 1
' 4 54. 8 94. 6 154. 8 234. 5 333. 9 452. 9
5 75.9 114. 7 174. 6 254. 7 354. 1 473. 3
6 102. 2 140. 2 199. 9 279. 5 379.1 498. 4
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FigUurE 4.5.—Mode shapes Wy, (%, 9) =X (&) ¥, () for 36 modes of a SS-C-SS—C square plate. m, n=1,2,...86.
(After ref. 4,13)

TaBLE 4.9.—Fundamental Frequency Parameters for SS-C-SS—-C Rectangular Plate

a/b 1 0.4 0.5

0.6 0.7 ' 0.8 ‘ 0.9

15. 692 18. 258 20. 824 24. 080

walo/D_ . l 12. 139 13.718
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FigURE 4.6.—Variation in Y,.(7) with a/b for the mode
m=6, n=>5 for a SS-C-8S-C rectangular plate.
(After ref. 4.13)

shapes were computed and plotted in reference
4.13 for the first six roots of equation (4.29)
for m=1, 2, ..., 6. Plots were made for
a/b=0.5, 1.0, 1.5, and 2.0. These are repro-
duced in figure 4.5 for a/b=1.0 alone. The
mode shapes are represented as the products
Won(3,9) =Xu(@) Y(y). Each of the six parts
of figure 4.5 corresponds to one value of m.
The first six modes having that value of m
are then determined from the separate curves
Y.(7). The curves for Y,(3) do not change mark-
edly for variation of a¢/b in the range 0.5<a/b
<2.0. Themaximum variationsforthe36 modes
shown in reference 4.13 are illustrated by
figure 4.6, which is for the mode m=6, n=>5.
When k24-o2>>1, then cosh I24-o2b—
sinh \k*+a?b and equation (4.29) reduces to
the following asymptotic formula (ref. 4.7):

[+ N

(m,nintegers) (4.31)

Other approximate formulas are given pre-
viously in equations (4.16) and (4.17). Fre-
quency parameters obtained from equation
(4.16) are given in reference 4.4 and are re-
produced as figure 4.7.

The problem was also studied in references

4.18 t0 4.21.
40 //?/
P ,/ A
20 4 v
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2 0 V. f /
g 0.8 A
0.6 " i
[7 o i
0.4 C ss C (;—-
i =
oz | 1111

“io 20 40 60 80100 200

0.80 wb?.p7D

400 600 8001000

Figure 4.7.—Frequency parameter 0.90wb?y/p/D for a
8S-C-S8-C rectangular plate. (After ref. 4.4)

4292 SS-C-S5-SS
The boundary conditions for SS-C-SS-SS .

rectangular plates (fig. 4.8) at y=0,b are
Wz, 0)=My(s, =W (s, )= " &, B)=0
(4.32)

Substituting equation (1.37) into equation
(4.32) as in the previous section yields the
characteristic equation (ref. 4.7)

A2 cosh Agd sin A;h=2X\ sinh A;b cos b (4.33)

LLOLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

FIGURE 4.8.—SS-C-8S-S8 plate.

TABLE 4.10—First 6 Frequency Parameters \=waZ/p/D for SS-C-SS-SS Square Plate

23. 646 . 51. 674 l 58. 641 l 86. 126 ‘ 100. 259

113. 217

w1t ‘ w21 ‘ w12 ‘ w22 | w3t w33
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where A; and ), are defined in equations (4.27).

Iguchi (ref. 4.9) also obtained equation (4.33)
and presented the first six frequencies, for the
case of the square. They are given in table
4.10. These results are verified in reference
4.7. Three additional frequencies listed in
reference 4.9 are given in table4.11. Explana-
tion of the significance of these roots appears
in the preceding section (4.2.1).

TaBLE 4.11.—3 High-Frequency Parameters
A=wa?/p/D for SS-C-SS-SS Square Plate

Ungar (ref. 4.22) presented an interesting
table which shows the ratio of the frequencies
of the SS-C-SS-SS plate to those of the

S5-SS-SS-SS plate when a=b. This is given
here as table 4.12, where m denotes the number
of half-sine waves in the z-direction (fig. 4.8)
and n denotes the mode number for a given
value of m.

TaBLE 4.12.—Ratio of Frequencies of a SS-C-
SS-SS Plate to Those of SS-SS-SS-SS
Plate When a=b

Frequency ratio for value of n—
m
1 2 3 4 5 6
) .19 .06 | 1.02 | 1.01 | 1. 00 1. 00
2 .. 1.21 | .09 | 1.05 | 1.02 | 1. 02 1.01
. N 1.14 | .09 | 1.06 | 1. 03 | 1. 02 1. 02
4 .. 1,11 .09 | 1.06 | 1.04 | 1. 03 1. 02
S T 1.10| 1.08 | 1.06 | 1.05 | 1. 03 1. 02
6 L08|1.07 106|105 1.04 1. 02

For nonsquare plates, fundamental frequencies are available for various aspect ratios as listed
in table 4.13 (ref. 4.9). Hamada (ref. 4.15) used a variational approach and Kanazawa and Kawai
(ref. 4.16) used an integral equation formulation to obtain confirming results for several a/b ratios.

TasLe 4.13—Fundamental Fregquency Parameters for SS-O-SS-SS Rectangular Plate

Frequency parameter

A for values of b/a or A* for values of a/b of—

1 1.5 2 2.5 3 ®
A=wa(yp/D) .. 23. 646 15. 573 12. 918 11. 754 11. 142 9. 869
MNe=wb? (vp/D) - o 23. 646 18. 899 17. 330 16. 629 16. 254 15. 425

The mode shapes are (ref. 4.7)

W(z, y)=(sin \,b sinh Ajy—sinh \,b sin Ay) sin ax
(4.34)

When k*+a?>>1, equation (4.33) reduces
to (ref. 4.7)

= { TS
: (m,nintegers) (4.35)

Other approximate formulas are given in
equations (4.16) and (4.17). Frequency param-

eters obtained from equation (4.16) are given
in figure 4.9 (ref. 4.4). The problem was also
discussed in references 4.23 and 4.24.

42.3 SS-C-SS-F

The boundary conditions for SS-C-SS-F
rectangular plates (fiz. 4.10) at y=0, b are
ow

W(z,0)= oy

(113, 0)=Mﬂ(x; b)=VII (x: b)=0
(4.36)

All results reported in this section are from
reference 4.7.
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Figure 4.9.—Frequency parameter 0.90wby/p/D for a
S§8-C-S8-SS rectangular plate. (After ref. 4.4)

o

[ ]
PP7777777777777777 7777777777777/

Figure 4.10.—SS-C-8S-F plate.

Substituting equation (1.37) into equation

(4.36) yields the characteristic equation

2)\1)\2[<§-)4—(1—V)2 +2x1x2|:(§)4+(1—v)2:|

4
c08Asb cosh Agb--(N—A2) (é) (1—2,)
—(l—v)z]sinklbsinhkzb-——o (4.37)

where \; and ), are defined in equations (4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.14,
with wp, as described in the section covering
SS-C-SS-C plates (sec. 4.2.1). The mode

shapes are

Wi, y)=({[<§>2+(l—y)] cosh Asb
+ (§>2_(1 —-y):l cos A\ }

()\2 sin )\ly"')\l sinh )\2'!/)

+ { [<§>2+ (1 —v):l A sinh Agb |
+ (%)2—(1—;;)])\2 sin \b }

(cosh Ay—cos xly)) sinax (4.38)

TABLE 4.14—First 6 Frequency Parameters \=wa%/p/D for SS-C-SS-F Square Plate; v=0.3

33. 06

41.70 l 63. 01 l 72. 40 90. 61

w12 ‘ w21 \ w22

R

When k?=a?>>>1, equation (4.37) reduces to

e (LT

(m,nintegers) (4.39)

Another approximate formula is given by
equation (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental

frequencies given in reference 4.17 (p. 364)
and reference 4.25 (p. 298) are listed in table
4.15 for various a/b ratios for »=0.25.

424 SS-SS-SS-F
The boundary conditions for SS-SS-SS-F
rectangular plates (fig. 4.11) at y=0, b are

Wz, 0)=M,(z, 0)=M,(=, b)=V,(z, b)=0
(4.40)
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Figure 4.11.—SS-SS-SS-F plate.

TABLE 4.15.—Fundamental Frequency Param-
eters for SS-C-SS-F Rectangular Plate; v=0.25

afb wavp/D alb watyp/D
1.0 _______. 12,859 | 1.6__________ 18. 258
) 3 R 13.520 || 3.7 _________ 19. 343
1.2 _________ 14.310 || 1.8 .. ______ 20. 527
1.3 .. 15,198 || 1.9__________ 21. 910
14 ___._____ 16.086 || 2.0__________ 23. 192
1.5 . 17172 || 2.2 ________ 26. 153

All results reported in this section are from
reference 4.7.

Substituting equation (1.37) into equation
(4.40) yields the characteristic equation

I\ e .
)\2 [(&) —(1 —V)] cosh )\2b sin )lb
B\ .
=>\1[(&) +(1—v):| sinhAgb coshb  (4.41)

where \; and \; are defined in equations (4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.16, with
wm, 8s described in the section covering
8S-C-8S8-C plates (sec. 4.2.1).

The mode shapes are

W(z,y)= { [(5)2— (1 —u):l sin Ay

+[(§>2+(1—y)] sinh A sin xly} sin o
(4.42)

When k2+o?>>1, equation (4.41) reduces to

—{ TG

(m,nintegers) (4.43)

Other approximate formulas are given by
equations (4.16) and (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies given in reference 4.17 (p. 362) and
reference 4.25 (p. 297) are listed in table 4.17
for various a/b ratios for »=0.25.

42,5 SS-F-SS-F

The boundary conditions for SS-F-SS-F
rectangular plates (fig. 4.12) at y=0, b are

Mz, 0)=V (=, O)=Mﬂ(w: b)=V(x, b)=0

(4.44)

Substituting equation (1.837) into equations
(4.44) yields the characteristic equation

(10T sa-T)
X sin A sinh Ab=2A, [(2)4_ a _V)2]2
X (cos \b cosh \gb—1) (4.45)

where A\, and A, are defined in equation (4.27).

TABLE 4.16.—First 6 Frequency Parameters A=wa*(y/p/D) for SS-SS-SS-F Square Plate; v=0.3

11.68 27.76

41.20 90.29

59.07 l 61.86

w11 ‘ w2

w21 ] W2 ‘ w3 w31
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Fieure 4.12.—SS-F-SS-F plate.

TABLE 4.17.—Fundamental Frequency Param-
eters for SS-SS-SS-F Rectangular Plate; v=
0.25

afb waVp/D afb wat\p/D

o 10.362 || 1.8 o oo __ 15. 396
0.60___ ... 11.349 || 2.0 ________ 16. 481
0.80____ ... 11.547 || 2.5 ______ 19. 244
1.0 e 11.843 || 8.0 ... 22. 205
1.2 . 12.632 || 4.0 _____. 28. 324
14 . 13.520 || 5.0 ... 35. 133
1.6 . 14, 409

The first exact solution to this problem was
achieved by Voigt (ref. 4.26) in 1893. The first
six frequencies for the case of the square and
»=0.3 are taken from reference 4.7 and listed
in table 4.18, with w,, as described in the sec-
tion covering SS-C-SS-C plates (sec. 4.2.1).
The frequencies w;; and wy are the only fre-
quencies among the first six frequencies for each
of the six cases of plates having two opposite
edges simply supported for which k*<a”

For non-square plates, a complete set of lowest
frequencies for mPr?< way/p/D< 160 has been cal-
culated by Jankovic (ref. 4.27) for various
aspect ratios and for »=0.3 and »=0.16. These

are given in tables 4.19 and 4.20. In these tables
the notation w,, is the same as before; that is,
m gives the number of half-sine waves in the
z-direction, and n is the nth lowest frequency
for a given value of m. Odman (ref. 4.13) also
obtained frequency parameters for »=1/6 and
a/b=0.5, 1.0, 1.5, and 2.0. He gave 36 values,
but he assumed that for n=1 the plate behaves
exactly like a beam. His results, where appli-
cable, are essentially verified in table 4.19.
Roots obtained from reference 4.13 which sup-
plement those of reference 4.27 are also shown
in the column for a/b=1.0 in table 4.19. It
must be remembered that the frequencies wm are
omitted in these portions of the table.

When the results of table 4.20, when a/b=1,
are compared with those of table 4.18, it can
be seen that disagreement exists for values of
@y and ws. The problem appears to be the
assumption in reference 4.27 that k*>o? for
all roots. In reference 4.7 it is shown that

B< o if B
(<G

This gives critical constants for various values
of Poisson’s ratio as listed in table 4.21. Thus,
for a square plate, if »=0.3, negative values
of k*—a? exist for m<(15. Even though the
roots for which %2< o? are not handled correctly
in reference 4.27, the frequencies arising from
these roots should not differ markedly from
those given in tables 4.19 and 4.20.

Zeissig in an early piece of work (ref. 4.28,
published in 1898) also set up the frequency
determinant for an exact solution and achieved
a comprehensive set of solutions which are
shown in figure 4.13. In this figure, solid
curves identify symmetric modes in y and
broken curves identify antisymmetric modes
in y. The 10 numbered points indicate in-
teresting intersections or ‘‘transition points”

(4.46)

TABLE 4.18.—First 6 Frequency Parameters \=wa®(yp/D) for SS-F-SS-F Square Plate; v=0.8

9.631 16.13

36.72 70.75

38.94 ( 46.74

Mode _____________________ w11

w12 ‘ w13 ‘

w21 ‘ w22 ) w23
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TasLE 4.21.—Critical Constants Determining When k*<o? for SS-F-SS-F Plate

v 0 0.1 0.2 0.3 0.4 0.5
m (é) ____________________ ® 162. 507 36. 463 14. 455 7. 202 4. 051
a
20 - >
l' ,’l , l' ’II / ,/ ,/, . + i - i + - ‘\\\ - ’/7
! ] Vs , R I - . - ~—— ]
175H | H l,/ /’ /| [ [ S N Vg
i i i f A TARDY - - - R
! ! ! / / 17 1 / \
] { ) '1 e 1/ 3 [N I i RN
15 ! ! ) A4 / A ___'___'!__—" * - ]
’ 1 | LY A} oot B N
ol //I: /’/ A T A7
I g 4 Al @ (b ©
e NN (AN e : T
i /] s Z-Je - i v N2
: / 4 // '/, A" - ” L - B —
< 10 A i_, ’,4’ 2 =4  TTTTmmmmees e N
l: / ! // 9 / I/"q’” /,//’// 4 S~ pem——— M— * \~:—/‘
L -
075 ! l# A Y vl B Sd - =~ - e
|15 77 /) s i — I ittty £\ E
7 | / ’7 % —: - -1 + Y I
LAY I/ 7 (6" ()
0.5 1 L4 b ~ 12
,’ o /?7 ,' FicURE 4.14.—Superposition of two modes having the
'/,/ P77 1/ / H same frequency. {a) Nodal pattern for 3/2 mode.
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for (a) superimposed on (b). (b') Nodal pattern
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1"—53 70 on (b). (After ref. 4.28)

—e symmetric modes in ---- antisymmetric modes in
y! 4 4 Y

FicUre 4.13.—Frequency parameters wa?/x2/p/D for
various a/b ratios of a rectangular SS-F-SS-F plate.
Numbered points are intersections where two modes
can exist simultaneously. (After ref. 4.28)

where two modes can exist simultaneously.
For example, at point 1 the fifth root for
m=1 (called 1/4 mode) and the third root for
m=3 (3/2 mode) can exist simultaneously for
a plate having an a/b ratio of approximately
0.9. Figures 4.14(¢) and 4.14(b) (reprinted
from ref. 4.28) show the nodal patterns for
these two modes. The areas denoted by plus
signs can be taken as positive (upward) dis-
placements and the others, as negative. If
the initial conditions are chosen so as to excite
each mode with the same amplitude, the
308-337 0—70—5

resulting nodal pattern of the superimposed
modes is shown in figure 4.14(c). If the initial
amplitude of the 1/4 mode is taken 180° out of
phase as in figure 4.14(d’), the superimposed
motion is as in figure 4.14(¢’). Stepwise
superposition of varying ratios of the modes

3/2 and 1/4 yields nodal patterns as shown
in figure 4.15 (from ref. 4.13).
T T 7 =
i R R =g e’ ] Freerm fmemm 1
‘\I : \\' ‘// \) I,— \)/_ S I S—
Vo WAL I BN PSSR I U Nl | TR
i v N iy | e | | o
AN | IPTASN | RN J . XJF
PG I et [ aaf%s =~ F-t-1-
<SIGTO 0D
4L N 1L N/ PV I SR . _}_-
.\\\/,— \\\l,’ ~\\ l, \l AI

Ficure 4.15.—Stepwise superposition of two modes
having the same frequency. (After ref. 4.28)
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The detailed mode shapes are (ref. 4.7):

W (z,y)= (—— (cosh Ab—cos \b) [(%)4_ 1 _u,,)z]

{xl [(5) +a—» Jsinbrg-n,
-0}
+ { M[(E) +a—n Jsinr
—)\2[<§>2—(1 -V)]2 sin b }
[T
+[<§>2+(1 —V)] c0s My }) sin oz

(4.47)

Mode shapes were computed and plotted in
reference 4.13 for the six roots of equation
(4.45) for m=1, 2, . . ., 6 and »=1/6. Unfor-
tunately, it was assumed that for the lowest root
(symmetry about 37=0) for each value of m, the
plate behaves exactly like a beam and, conse-
quently, these cases were omitted in the results.
Thus, the plotted mode shapes begin with those
antisymmetrical about 37=0. Plots are given
in reference 4.13 for a/b=0.5, 1.0, 1.5, and 2.0
and those for a/b=1.0 reproduced in figure 4.16.
The mode shapes are represented as the products
Wun(@, y) =Xu(x)Y,(y), where Z and 7y are
measured with the point at the center of
the plate taken as origin (see fig. 4.12).
Each of the six parts of figure 4.16 corre-
sponds to one value of m. The first six modes
having that value of m are then determined
from the separate curves Y,(y). The curves
for Y,(y) do not change markedly for
variations in a/b in the range 0.5<a/b<2.0.
The maximum variations for the 36 modes
shown are illustrated in figure 4.17, which cor-
responds to m=>5 and n=>5.

When k?*/a’>>>1, equation (4.45) reduces to
(vef. 4.7) :

={ @[T

(m, nintegers) (4.48)

Other approximate formulas are given in equa-
tions (4.16) and (4.17).

Zeissig (ref. 4.28) reported many experimen-
tal results which essentially substantiated his
analytical calculations. The problem was also
formulated in references 4.10 and 4.24.

4,3 OTHER SIMPLE EDGE CONDITIONS

4.3.1 All Sides Clamped (C-C-C-()

The problem of C-C-C-C rectangular plates
(fig. 4.18) has received a voluminous treatment
in the literature, especially for the case of the
square plate. The first reasonably accurate
results for the square plate were given in 1931 by
Sezawa (ref. 4.21), who used the series method.
He used functions which exactly satisfied the
differential equation (eq. (1.1)) and the bound-
ary condition of zero deflection along all edges
and required the slope to be zero only at the
midpoints of the edges. This initial work has
been followed by a host of Japanese publica-
tions on the problem; for example, see references
4.9,4.15,4.16, 4.20, and 4.29 to 4.33.

Some variation of the series method was used
in references 4.9, 4.20, 4.21, 4.29, 4.30, 4.32, and
4.34 t0 4.40. Particularly notable is Tomotika’s
work (refs. 4.30 and 4.41); he determined
the fundamental frequency for the square plate
with extreme accuracy. Like Sezawa, he chose
functions which satisfied the deflection condi-
tions exactly and set up an infinite characteris-
tic determinant for the slope conditions.
Convergence of results from a sequence of deter-
minants obtained by truncating the infinite case
was used to get extreme accuracy. He also
used the Rayleigh and Weinstein methods to ob-

tain the frequency bounds 35.9855< (way/p/D)
<36.09 for a square of dimension @ x a.

Finite difference techniques were used in
references 4.14, 4.38, 4.42, and 4.43; the Galer-
kin technique, in references 4.13, 4.33, 4.44,
4.45, and 4.46; the Rayleigh or Rayleigh-Ritz
method, in references 4.1, 4.2, 4.47, and 4.48;
Weinstein’s method, in reference 4.49; integral
equations, in reference 4.16; and a variational
approach, in reference 4.15. Other publica-
tions include references 4.18, 4.31, and 4.50 to
4.56. A notable lack of experimental results
exists.
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(After ref. 4.13)

Table 4.22 summarizes the first six sets of
frequencies, nodal lines, and amplitude coeffi-
cients for a square plate having side length a.
Iguchi (ref. 4.9) did not find the fourth mode in
his work. Young (ref. 4.47) used the products
of beam functions (i.e., eigenfunctions for C-C
beams) and the Rayleigh-Ritz method to ob-
tain accurate upper bounds. The resulting
mode shapes are of the form

VR | €nl €nd
W(z,y)=23 > Ann| cosh 2=—cos 2=
m=1n=1 a a

. €nl « Epd €
— (| sinh -25 —gjn -2~ cosh &Y
a a a

—cos Eﬁ_an (sinh Y _sin eLy)] (4.49)
a a a

where the values of 4,,, are given in table 4.22,
those of a and ¢ are given in table 4.23, and
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Defiection
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FicurE 4.17.—Variation in Y,.(§) with afb for the
mode m=>5, n=">5 for a SS-F-SS-F rectangular plate.
(After ref. 4.13)

the origin of the xy-coordinate system is taken
at one corner of the plate as shown in figure
4.18.

Further results were obtained by Bolotin
(ref. 4.57), who used a variation of the series
method to obtain approximate results for the
square. These are summarized in table 4.24.
In table 4.24 odd values of m yield modes sym-
metric about the y-axis, even values of m yield
modes antisymmetric about the y-axis, and simi-
larly for » with respect to the z-axis. It is

y y
g
pssecrriceind V277727777777 7%5
7 /
/ "
7 2
/ ”
7 s
Z]b 4 X
/ "
4 [ I
7/ [ b/2
/
/ l
/) 3 x

SIS
Fiaure 4.18.—C-C-C-C rectangular plate.

TaBLE 4.23.—FEigenfunction Parameters for a

OC-C Beam
m,n Qmy On €my €n
| . 0. 98250222 4. 7300408
b 1. 00077731 7. 8532046
I 0. 99996645 10. 9956078
4 .- 1. 00000145 14. 1371655
[ 0. 99999994 17. 2787596
6 - 1. 00000000 20. 4203522
>0 .. 1.0 2r+1)7/2

TABLE 4.22.—First 6 Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for
a C-C-C-C Square Plate

Mode 1 2 3 4 5 6
2 \/’p" = 35. 9866 ©78.40 ©108.22 | ... _____._. ° 132, 18 ° 164.99
““NVD b 35,99 b 73,41 b 108. 27 b 131. 64 b 132,25 b 165. 15
Y94 gy y4 L. /. Y
Nodal 7 ; 7 ; Al % /\\ //§ 4 - & / 4 E-{;
- e o oo e o} z ) % P
lines___ ﬂ ¢ ;F V) ; T 7 % /y\ ¢ ; Vv ;}— ! ? /
s yr o4 44 g4 g4 Y4
Ampli- A =1.0000 A3=1.0000 Az =1.0000 A43=1.0000 Ay=—0.0280 | Ap=—0.0406
tude co~ | A13=0.0142 A=0.0101 A3=0.0326 A=0.0085 A3=1.0000 Au=—0.0105
efﬁcient b A15= 0.0020 A16= 0.0020 A25= 0.0073 A31= —1.0000 A]5"—" 0.0055 A16= _00017
Az =0.0142 A3=0.0406 A4$=0.0326 Ag=—0.0141 | A3=1.0000 Ajz=1.0000
Apn=—0.0031 | Az=—0.0022 | Auu=—0.0019 | As=—0.0085 | A3=0.1267 A3=0.0560
Ap=—0.0009 | Azp=—0.0007 | Ayp=—0.0010 | A;=0.0141 A3=0.0118 A3=0.0141
Ay =0.0020 Ap=0.0070 Ag;=0.0073 A5 =0.0055 Ag=0.0238
Ap=—0.0009 | Ay=—0.0011 | Ag=—0.0010 Ap=0.0118 Ag==—0.0011
Ap=—0.0004 | Ay=—0.0005 | Ag=—0.0006 Ag=—0.0018 | A= —0.0009

& Work of Tomotika (ref. 4.30).
b Work of Young (ref. 4.47).
¢ Work of Iguchi (ref. 4.9).
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TABLE 4.24.—Approximate Frequencies for a
C-C-C-C Square Plate

m n wa’\[p/—D
1 1 35. 10
2 1 72. 90
2 2 107. 47
3 1 131. 63
3 2 164. 39
4 1 210. 35
3 3 219. 32
4 2 242, 20
4 3 295. 69
4 4 370. 66

noted that only one root is given in this table
in the vicinity of 132. The general formula
for frequency for a square when m=n is (ref.

4.57)
\*x* |D
wmn——2(m+—§> ? ;

Bazley, Fox, and Stadter (ref. 4.58) used a
method developed in reference 4.59 to compute
lower bounds for the first 15 frequencies of the
following symmetry class of a square: With an
zy-coordinate system having its origin at the
plate center and axes parallel to the edges, the
modes are symmetric with respect to both Z
and ¥ and are unaltered by interchange of z
and y (fourfold symmetry). (Thus, the first
and fifth modes of table 4.22 would be the only
modes shown which would fall into this sym-
metry class.) They also obtained extremely
accurate upper bounds by the Rayleigh-Ritz
method by taking the first 50 admissible prod-
ucts of C-C beam functions. Double-precision
arithmetic (16 significant figures) was used in
the computations where necessary. Results
are listed in table 4.25. In this table results
from the Rayleigh-Ritz method are given using
both 25 and 50 admissible functions to show
the rate of convergence.

Another significant contribution was made
by Aronszajn (ref. 4.49), who used Weinstein’s
method to obtain accurate lower bounds for
the first 10 frequencies of a square plate. The
Rayleigh-Ritz method was used to obtain
upper bounds. These results are summarized
in table 4.26.

(4.50)

TasLe 4.25.—Bounds on Frequency Parameters
waZ/p/D for Fourfold Symmetric Modes of a
C-C-C-C Square Plate

waVp/D
Mode Upper bound
Lower
bound

25 terms 50 terms
) 35. 982 35. 986 35. 986
2. 132. 18 132. 21 132. 21
kS 219. 73 220. 06 220. 04
4. 309. 08 309. 17 309. 17
L T 393. 00 393. 98 393. 92
6 . 558, 58 562. 38 562. 18
T e 565. 39 565. 56 565. 54
8 646. 62 648. 58 648. 46
L I 806. 51 814, 84 814. 48
100 ... .. 900. 70 901. 00 900, 97
1. 979.55 | .. 982. 93
12__ . __. 1017.56 | 1062, 5
18 .- 1127.4 | ... 1147.1
4. 1235.1, | .. 1315. 4
15 ________ 13149 ... 1393. 4

Odman (ref. 4.13) used a variation of the
Galerkin method and mode shapes of the form
Wz, ?) =X(z) Y(-{/—) , where
X(Z)=A4, cosh 7+ A4, sinh T

+.A3 COSh M2E+A4 Sinh ”25;-
Y(?j)=B1 cosh M3Z—/.+B2 sinh p,3y
+B3 COSh M4_’!}+ .B4 sinh ﬂ4§

(4.51)

and where gy, . . ., u, are determined by applying
the Galerkin formula to the differential equation
of motion for the plate. The 36 frequencies
wma(m,n=1, . . ., 6) computed by this method
in reference 4.13 are upper bounds and are
given in table 4.27. It is interesting to note
that, in spite of apparent numerical precision,
Odman did not detect two separate frequencies
for w3, as did Young (table 4.22).

For computing fundamental frequencies of
clamped rectangular plates of arbitrary a/b ratio,
there exists, in addition, Warburton’s (ref. 4.1)
and Janich’s (vef. 4.2) formulas, equations (4.16)
and (4.17). Frequencies obtained from War-
burton’s formula were plotted in reference 4.4.
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TABLE 4.26.—Frequency Parameters for a C-C-C-C Square Plate

waZ\/;—)/T)
Mode symmetry
Lower bound | Upper bound | Mean value Maximum
error, percent
Symmetric about bothZ and ¥_______________ 35. 9693 36. 1074 36. 0384 0.19
131. 55 133. 20 132. 38 .63
131. 8 134. 1 132. 9 . 87
218 231 224. 5 2. 98
Symmetric about Z, antisymmetric about 7 (or
conversely) . - oo oo 73. 354 74. 226 73. 790 . 59
164. 39 171. 39 167. 89 2.13
210 216 213 1. 43
Antisymmetric about both Z and 7____________ 108. 119 109. 936 109. 027 .84
241. 924 246. 118 244. 021 . 87
242. 071 251. 033 246. 552 1. 85
TaBLE 4.27.—Frequency Parameters wa’y/p/D for ¢ C-C-C-C Square Plate
[Values in parentheses were obtained by interpolat?ion; table is symmetric]
wa?y p/D for values of n of—
m
1 2 3 4 5 6
) 35. 998965 73. 405 131. 902 210. 526 309. 038 (428)
2 e 108. 237 165. 023 242. 66 340. 59 458, 27
B e e 220. 06 296. 35 393. 36 509. 9
4| 371. 38 467. 29 583. 83
D e e e |- 562. 18 (676)
[ T AUV FUUEUNTOTpEPIUO] RSSO USRI UPIOUPUOUPIU JEROU U 792. 5

A simple formula derived by Galin (ref. 4.45)
for this case is

w=12\/-;-(&1;+§a—zlb—é+%>\/% (4.52)
For a square this reduces to wa?y/p/D=36, which
compares favorably with the accurate value of
35.9866 from table 4.22.

A summary of the literature for frequencies
of nonsquare C-C-C-C rectangular plates is
presented in table 4.28. Neither Iguchi (ref.
4.9) nor Kanazaws and Kawai (ref. 4.16) recog-
nized the existence of the other mode having
one symmetry axis and one antisymmetry axis
which is not shown in the table.

Sixteen frequency parameters for a/b=0.25

and 0.50 are computed in reference 4.60. These
are given in table 4.29, with m and n as ex-

plained previously. More extensive results are
obtained in reference 4.13 and are also listed in
table 4.29. '
Mode shapes in the form Wy.(Z, y)=
X,.(Z)Y.(7) corresponding to wn, were found in
reference 4.13. The components X.(%)y/Ja and
Y.(7)yb are shown in figure 4.19 for a/b=1.0.
Variation in these curves with a/b is very small
for the range 0.5 <a/b<2.0. The magnitude of
this variation is shown by figure 4.20 for the
components X,(Z)ya and Y.(y)yb. Figure
4.21, teken from reference 4.60, shows the

frequency parameter AZ= wa?(y/p/D)/7* plotted
T

as a function of a/b and b/a. For a/b=0, the

frequencies are given by reference 4.60:

B

(4.53)
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TABLE 4.28.—wb%/p/D for O—-O-C-C Rectangulor Plates

wb/p/D for values of afb of—
Source Mode (a>b)
1.5 2 2.5 3 ©
a
Iguchi (ref. 4.9)_______ 2LYZ, 27. 00 24. 56 23.76 23. 19 22. 37
/]
A /b
77777
a
Kanazawa and Kawai LLLLLy 67. 58 65. 41 64. 49 64, 02 61. 78
(ref. 4.16). A------ b
7777
Kanazawa and Kawai LLLLL 81. 57 72. 66 68. 89 66. 96 61. 78
(ref. 4.16). 5--_;..__/1-,
77777
{Xl(i)./a or _A_
Y7 IvB 2 m=3,0=4
= 7 X f%1/a or 2 4
X,(%)/6 or - 1 4
{Y;(Y)JE XaR1-6 or I,{"“M’ O/ o a3
15 Y {YZW)JB {t:t;;ﬁo 2| ngl
1ol {§j§}£ o 50 / / /
0.5 g,mg
g X . il . %3 it
& U T U ' 3
E . 0.2 0.4 05 b '2 |
sl 25 // A /
—
-lof- e =
b —é__-_//
) 0.5 I 0.5 0

FiGURE 4.19.—Mode shape components X,(£)va or
Ya(#) Vb for a C-C-C-C rectangular plate. (After ref.
4.13) '
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10
0.667} Y3 /B
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Figure 4.20.—Variation in mode shape components
X.@®+a and Y.(@)+b with a/b for a C-C-C-C
rectangular plate. (After ref. 4.13)

F1gURE 4.21.—\/m*=wa?/x2(y/p/D) for a C-C-C~C rec-
tangular plate.

Claassen and Thorne (refs. 4.35 and 4.36)
used a most straightforward application of the
series method which represented the deflection
form as a double Fourier sine series; that is,

Wiz, y)=>" “lAmnsin-”%”sin”ﬂ (4.54)

m=1n= b

When the homogeneous boundary conditions
are written for all edges, they result in an in-
finite determinant, the zeros of which are the
desired eigenvalues. Numerical convergence
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TABLE 4.29.—Frequency Parameters wa’/p/D
for a C-C-C-C Rectangular Plate

[Values in parentheses are interpolated].

wat+/p/D for value of afb of—
m n 0.50
0.25 0.667
(ref. (ref.
4.60) Ref. Ref. 4.13)
4.60 4,13
1 1] 23.19 | 2409 24, 58 27. 01
2| 23.94 | 31.40 31. 83 41.72
3| 26.32 | 44.35 44,78 66. 53
4} 30.01| 63.00 63. 34 100. 81
;3 P 87. 26 144. 21
(£ SRR I (117) (195)
2 1| 62,17 | 63.93 (64. 1) (65. 5)
2 63. 70 70. 90 71. 08 79. 81
3 66. 23 82. 90 (83. 2) (103)
4 69. 97 | 100. 18 100. 80 136. 10
;20 [ IO (124. 2) (178)
[ 200 [N I 151. 91 230. 04
3| 1]121.59 | 123.07 | (124) (126)
2| 122,98 | 130. 13 130. 35 138. 64
3112574 | 142.12 142. 38 161. 23
4 | 129.81 | 156. 47 159. 49 193. 24
;2 O (SO 181. 79 234. 65
(T I (209. 6) (285. 4)
4 1} 200.33 | 202, 02 (204) (206)
2 | 202.00 | 209.18 | (210) (218)
31204 72 | 23102 | (221) (241)
4 | 208.83 | 238. 01 238. 35 271. 17
L2 N . (261) (312)
[ 3 P P 287. 54 361. 90
5 ) R ISP (302) (303)
2 P 308. 12 316. 11
2 N R (320) (339)
A SRR I, 337. 08 369. 34
; J0 [ IS, 358. 0 (409)
T P ._.| (382) (456)
6 ) R SRS AU (421) (422)
2 R ISR (427) (436)
200 RS PSP (439) (457)
Z: O P I (456) (488)
;S0 O PRSP (478) (529)
6 || 504. 3 576. 6

is established by successive truncation of the
infinite determinant. The method is also dis-
cussed in reference 4.39.

The frequency as a function of the a/b ratio
for the 10 lowest modes is plotted in reference
4.35. These curves are reproduced as figures
4.22 t0 4.25. Intable 4.30 the accurate values

OF PLATES

14.0

n.o — . 5

5.0

20 eenentd

o/b

FioURE 4.22.—Frequency parameters \/m*=wa?/r(+//D)
for modes symmetric about both &- and §- axes for
a O-C—C-C rectangular plate. (After ref. 4.35)
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FigUrE 4.23.—Frequency parameter /2= wa?/n2(v/ o/D)
for modes symmetric about £=0 and antisymmetric
about =0 for a C-C—C—C rectangular plate. (After
ref. 4.35)
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FiGURE 4.24. —Frequency parameters \/r2= wa?/7*(v /D)
for modes antisymmetric about £=0 and symmetric
about =0 for a C—C—C-C rectangular plate. (After
ref. 4.35)

of frequency used in the preceding plots are
displayed for a/b increments of 0.02 in the
range 1.00=a/b=0 (ref. 4.36).

When one looks, for example, at figure 4.23,
it appears that the curves for the second and
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F1eurE 4.25.—Frequency parameters A/n?= wa?/x%(+/p/D)
for modes antisymmetric about both #- and F-axes
for a C-C-C-C rectangular plate. (After ref. 4.35)

third symmetric-antisymmetric frequencies
cross in the vicinity of a/6=0.84. Such an
intersection point is termed a “transition
point.” It is the contention of Claassen and
Thorne that these curves do not actually cross
at transition points but only approach each
other closely before ‘‘veering away” or being
“repelled.” Very small increments of a/b are
taken in reference 4.36 in the vicinity of these
transition points and corresponding values of
frequency parameter A are computed which
appear to substantiate this. The details of
this phenomenon can be seen in table 4.31.

From the table it is seen that the two curves
approach each other most closely at a/b=0.834.
It is the opinion of the writer that, although
extremely precise work was performed in refer-
ence 4.36, certain questions of convergence of
the series approach used need to be answered
before the transition-point phenomena de-
scribed above can be accepted.

In figure 4.26 are shown nodal lines for one
quadrant of the plate for various a/b ratios in
the vicinity of transition points (ref. 4.36).
In these figures the center of the plate is at
(0,0) and the ¥ and 7 coordinates have been
nondimensionalized to Z/a and /b, respectively.
The rapid change from one mode form to
another with small variation in a/b is interest-
ing. Precise node-line coordinates used for
figure 4.26 and other nodal patterns are given
in reference 4.36.

Accurate upper and lower bounds for the
doubly symmetric modes of a rectangle (see
discussion earlier in this section) are reported

in reference 4.58. These results are given in
table 4.32. Upper bounds were computed
using 50 admissible beam modes. It is note-
worthy that the second and third doubly sym-
metric modes for the square are for distinct
frequencies, as reported earlier in references
4.36 and 4.47.

4.3.2 C-C-C-SS

Three sources of numerical data are available
for the problem of the C-C-C-SS plate (fig.
4.27). Results are listed in table 4.33 for the
case of the square.

Some higher frequencies for the square were
obtained by Kaul and Cadambe (ref. 4.61) as a
special case of the parallelogram plate by using
the Rayleigh-Ritz method and beam functions
(see sec. 5.1.1). Frequencies for four higher
modes are presented in table 4.34.

For a general rectangle, a spectrum of funda-
mental frequency parameters is given in
table 4.35.

Frequencies for the first antisymmetric mode
with respect to z=a/2 are given in table 4.36
(ref. 4.16). However, it is obvious that this
is at least the third mode of all mode shapes of
a plate for ¢/6=1. No detailed mode shapes
are available in the literature, but for a/b=1
the second mode clearly must have a nodal line
essentially parallel to the z-axis and located
above y=>0/2.

Approximate formulas for frequencies are
given previously in equations (4.16) and (4.17).

Frequency parameters obtained from equation

(4.6) are plotted in figure 4.28 (from ref. 4.4).
For more information on this problem, see
the discussion of the antisymmetric modes of a
C-C-C-C rectangular plate in the preceding
section (sec.4.3.1). Straight nodal lines of anti-
symmetry duplicate SS boundary conditions.

433 C-CCF

The only known results for the problem of the
C-C-C-F plate (fig. 4.29) are the approximate
formulas, equations (4.16) and (4.17).

4.3.4 C-C-S5-SS

Four sources of numerical data are available
for fundamental frequencies of C—C—SS8-SS rec-
tangular plates (fig. 4.30). The results are
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TaBLE 4.31.—Frequency Parameters wal+y/p/D for the Second and Third Modes Symmetric About
£=0 and Antisymmetric About =0 in Vicinity of a Transition Point

wayp/D for values of afb of—
Mode
0. 837 0. 836 0. 835 0. 834 0. 833 0. 832 0. 831
Second_ __ _______._________. 150. 2685 | 150. 1544 | 150. 0184 | 149. 8461 | 149. 6269 | 149. 3663 149. 0791
Third. _ _ . 151. 2909 | 150. 9951 | 150. 7217 | 150. 4853 | 150. 2963 | 150. 1492 150. 0029
Difference. ... ______ 1. 0224 . 8407 . 7033 . 6392 . 6694 . 7829 . 9238
05 e 05 <
07 o6l6
0.9999 (ﬁ//
04 e 04
%’ 0.9995 / / 064
03 03 e
L~ . 06 f—""
3y - 0.6
b 0996 % 0.614
0.2 02
osist osle} 107
09 09
L.9% o 0614
ol _"‘-9/993/ ol —
) 06
0.6l4
booso 07 o.s?\\
0 o 0816 |
o ol 0.2 03 04 05 0 ol 0.2 0.3 0.4 05
(a) /o (c) x/a
05 05 .
0992 09 N 09 0835 0.833

0.834,

04 04
0.996 / 0832
\
03 \

y ¥
b \ b 08
02 \\ o.2bos3
10
)
0.834
0.l \ 0.l 835
1.0 09
o 0.992 o.ssx o
0 0.1 0.2 03 0.4 05 0 o.l 02 03 04 05

(b) X/a (d) /o
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08
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b
0.836 09
0.2} 02
ol N,
o8 0834 \ 0835
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(e) X/a
05
0538
} 0537
04
/ 0.53
05 / 05
03
_ 0536
5 06
b 0537 -0.538
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02553
05 \ 05
: 0536
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06 \ 0,537
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0
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) %/a

summarized in table 4.37. Kanazawa and
Kawai (ref. 4.16) used an integral equation
formulation. Hamada (ref. 4.15) used a varia-
tional approach. Iwato (ref. 4.62) used the

Rayleigh-Ritz method and mode shapes of the
form

W (2,1) =3 3 O (08 22

_ . 3mmx nwy
cos — )(cos 9p €08

3nwy

2b

(4.55)

05

04 /—‘

74

09 0.9

\
%\

0.2

0.996

ol—

0.9999

o} ol 0.2 03 04 [oX]
(9) /a

F1oure 4.26.—Nodal patterns for various a/b ratios
in the vicinity of transition points. (a) Second
symmetric-symmetric mode; a/6=0.9 to 0.9999.
(b) Third symmetric-symmetric mode; a/b=0.9 to
1.0. (¢) Third symmetric-symmetric mode; afb=
0.6 to 0.7. (d) Second symmetric-antisymmetric
mode; a/b=0.8 to 0.9. (¢) Third symmetric-
antisymmetric mode; a/b=0.8 to 0.9. (f) Third
symmetric-antisymmetric mode; a/b=0.5 to 0.6.
(g) Second antisymmetric-antisymmetric mode; a/b=
0.9 to 0.9999.

and retained Cj;, Oy, Ca1, and Cy;.  Nishimura
(ref. 4.14) used finite difference equations. Ap-
proximate formulas, equations (4.16) and (4.17),
may also be used. Frequency parameters ob-
tained from equation (4.16) are plotted in figure
4.31 (from ref. 4.4) for four modes.

For more information on this problem, see
the discussion of the doubly antisymmetric
modes of a C-C-C-C rectangular plate (sec.
4.3.1). Straight node lines of antisymmetry
duplicate simply supported boundary conditions.
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TABLE 4.33.—Frequency Parameters wa%/p/D for

RECTANGULAR PLATES

a C-C-C-88 Square Plate

71

TaBLE 4.34.—Frequency Parameters for Hz'gher

Mode Shapes of a C-C-C-88S Sgquare Plate

waty p/D for mode— Mode 6 ] 7 , 8 l 9
Source
1 2 3 4 5 way/p[D - o 130.84 | 152.75 | 160.00 | 209.97
Dill and Pister
(ref. 4.24) . ___. 31. 83 163. 33 |71. 08 [100. 8 | 116. 4
Kanazawa and 435 C-C-SS-F
Kawai (ref.
H4'16c)1_“"f ----- 3L.88 |- TL26 |- The only known results for the problem of
e T NN N N the C-C-SS-F plate (fig. 4.32) are the approxi-
mate formulas, equations (4.16) and (4.17).

TaBLE 4.35.—Fundamental Frequency Parameters way/p/D for a C-C-C-SS Rectangular Plate

waVp/D for values of a/b of—

Source
0 0.333 0.4 0.5 0.667 1 1.5 2
Dill and Pister (ref. 4.24) - _ || |eo___ 24.49 | _______ 31,83 |-ccoaaas 73. 07
Kanazawa and Kawai (ref. 4.16)..__| 22.39 23.40 | 23.76 | 24 48 26. 23 3187 | ..
Hamada (ref. 4.15) - .. || e 25. 85 31. 83 48. 1 | _____._

TABLE 4.36.—Fundamental Frequency Parameters wa’/p/D for the First Antisymmetric Mode of a

C-C-

C-SS Rectangular Plate

wa?y p/D for values of a/b of—
Mode shape
0 l 0.333 ’ 0.4 ‘ 0.5 0.667 1
g —'— -~ b
'L 61. 781 63. 947 64. 366 65. 161 66. 971 71. 259
7 ,CI 7

TaBLE 4.37.—Fundamental Frequency Parameters wa’yJp/D for a C-C-SS-SS Rectangular Plate

wa?Vp/D for values of afb of—

Source
0 0.333 0.4 0.5 0.667 1 1.5
Kanazawa and Xawai (ref. 4.16) ___ ... ____.__ 15, 45 16. 74 17. 22 18.16 | 20.39 | 27.10 |_.______.
Hamada (ref. 4.15) | e oo 27. 00 44, 90
Iwato (ref. 4.62) . e e e || 28.357 |_o_____
Nishimura (ref. 4.14) . _ . e e | 27.234 | ______.
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Ficure 4.27.—C-C-C-SS plate.
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Figure 4.28.—Frequeney parameter 0.90wb?y/p/D for
a C-C-C-S8 rectangular plate. (After ref. 4.4)
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Ficure 4.29.—C-C-C-F plate.

43.6 CCF-F

The problem of the C-C-F-F rectangular
plate (fig. 4.33) was investigated by Young
(ref. 4.47), who used the products of beam
functions and the Rayleigh-Ritz method to
obtain accurate upper bounds for frequencies

SUONONUONUNNNNNINNTY
o

a
JT7777777 777777777777 7777777777

Ficure 4.30.—C-C-S8-S88S plate.
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Frcure 4.31.—Frequency parameters 0.90wb?y/p/D for
a C—C-S88-88 rectangular plate. (After ref. 4.4)
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Ficure 4.32.—C-C-S8-F plate.

in the case of the square plate for »=0.3.
These results are summarized in table 4.38.
The resulting mode shapes are of the form of
equation (4.49) where the values of A, are
given in table 4.38 and « and e are given in
table 4.39 (from ref. 4.47).
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Figurz 4.33.—C-C-F-F plate.

A fundamental frequency of large error is
also computed in reference 4.48 by use of the
Rayleigh-Ritz method.

Results from using the Galerkin method are
given in reference 4.46 ; these results also appear
to have considerable error, particularly for the
fundamental mode. Approximate formulas,
equations (4.16) and (4.17), may also be used.

4.3.7 CSSC-F

The approximate formulas, equations (4.16)
and (4.17), may be used for the problem of a
C-SS-C-F rectangular plate (fig. 4.34). Addi-
tional information can be obtained from an
antisymmetric mode of the case of the C-F-—
C-F plate (sec. 4.3.10). Straight node lines of

73

antisymmetry duplicate SS boundary con-

ditions.

TaBLE 4.39.—FEigenfunction Parameters for a

C-F Beam
mn Qmy Op €my €n
) IR 0. 7340955 1, 8751041
S 1. 01846644 4. 6940911
b J . 99922450 7. 8547574
4. 1. 00003355 10. 9955407
5 J . 99999855 14. 1371684
6. 1.0 2r—1)=x/2
y
/
7 4
/] “
/] ”
/] 2
1 2
/] /
7 4
5 “
e e e ] f
X

Fiaure 4.34.—C-S8-C-F plate.

TABLE 4.38.—First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for
@ C—-C-F-F Square Plate; v=0.3

Mode. _ . .________ 1 2 3 4 5
waVp/D_ . ______. 6.958 24.80 26.80 48.05 63.14
A AN -7 ,
. % / / N /] ! A N
Nodal lines_____.__ / j g / : A
// 7 777 7777 777
Amphtude coeffi- A11= 1.0000 Au: 0 A11= —0.1172 A11= 0.0286 A11= 0
cients. A= 0.0604 A= 1.0000 A= 1.0000 A= —0.1566 A= 0.0030
A;3=—0.0030 A= 0.00003 A= 0.0553 Aq3=—0.0825 A= 1.0000
Axy= 0.0604 Agy=—1.0000 Axn= 1.0000 Ay=—0.1566 A=—0.0030
A22= —‘0.0101 A22= 0 A22= 0.3223 Azz= 1.0000 A22= 0
Az3=—0.0003 A23= —0.0221 Aza= 0.0111 A23= —.1458 A23= 0.1350
Agz=—0.0030 Az=—0.00003 | A3= 0.0553' Ag=—0.0825 Ay=—1.0000
Aj=—10.0003 Az= 0.0221 A= 0.0111 A= 0.1458 Azy=—0.1350
Ag=—0.0017 | Agz= 0 Ayp= 0.0022 | Ay=—0.0019 A= 0

308-337 0—T70——=6
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4.3.8 C-SS-SS-F

The only known results for the problem of
the C-SS-SS-F rectangular plate (fig. 4.35)
are the approximate formulas, equations (4.16)
and (4.17). Additional information can be
obtained from the doubly antisymmetric modes
of the C-F-C-F plate (sec. 4.3.10). Straight
node lines of antisymmetry duplicate SS
boundary conditions.

439 C-SS-F-F

. The only known results for the problem of
the C—SS-F-F rectangular plate (fig. 4.36) are
the approximate formulas, equations (4.16)
and (4.17). Additional results can be obtained
from the antisymmetric modes of the C-F-
F-F plate (sec. 4.3.12). Straight node lines
of antisymmetry duplicate SS boundary
conditions.

4.3.10 CF-C-F

Claassen and Thorne (ref. 4.36) used the
series method described in the section for

ANUONONOOMNONNNNNNN

Figure 4.35.—C-SS-SS-F plate.

-~

SONNNONONNNONNNNNY

Figure 4.36.—C-S8-F-F plate.

the C-C-C-C rectangular plate (sec. 4.3.1)
to obtain frequencies for 11 modes and varying
a/b ratios for the C-F-C-F rectangular plate
(fig. 4.37). These modes will be classified
as symmetric-symmetric, symmetric-antisym-
metric, antisymmetric-symmetric, and anti-
symmetric-antisymmetric, according to the
symmetry or antisymmetry exhibited about
the axes =0 and =0, respectively, as shown
in figure 4.37. The first mode of each class is
illustrated in figure 4.38. Frequency results are
summarized in tables 4.40 to 4.43. Poisson’s
ratio is not known, but is assumed to be 0.3
as in reference 4.63.

A question arises about the foregoing results
in one of the limiting cases. It would appear

y y
a/2 ,
/ [
/ [
7 b2l
/ %
1 A
7 2
7 4
/ 4
/] “
/ a %
X
Ficure 4.37.—C-F-C-F plate.
%
g %
/ f
(a} b)
H T /
H l
I
i
I P —— ———
1
i
i /
1
(c) (d)

Ficure 4.38.—Lowest nodal patterns in the four
classes of symmetry for a C-F-C-F plate. (a) First
symmetric-symmetric mode. (b) First symmetric-
antisymmetric mode. (c) First antisymmetric-sym-
metric mode. (d) TFirst antisymmetric-antisym-
metric mode.

Fal
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from table 4.40 that the doubly symmetric
frequencies all vanish as b/a—0. However, as
b is held fixed and @ becomes infinite, it is
obvious that the boundary conditions at 2=0

TABLE 4.41.—Frequency Parameters A= wa?/o/D
and A*=wb%/p/D for the Symmetric-Antisym-
metric Modes of a C—F~C-F Rectangular Plate

and 2= are no longer significant, and the Mode
fundamental frequency becomes that of an
infinite strip having two node lines parallel to b%? ff(;)rr {‘,L 1 9
the z-axis. Additional frequency parameters in
the vicinity of ‘“transition points” (see sec. A NE N A
4.3.1) and detailed coordinates of nodal lines
are given in reference 4.36. 1.0 26.40 | 26, 40 79.8 79. 8
Approximate values of frequency parameters g9 25.67 | 22. 10 68. 4 76. 1
are given by equations (4.16) and (4.17). 08 . _________ 24.99 | 18.22 | 582 72.9
0.7 . ____ 24. 38 14. 75 49. 3 65. 2
0.6 ___________ 23. 84 11. 68 41. 8 49. 5
TABLE  4.40.—Frequency  Parameters A= g'i “““““““““ gg 36 2‘ gg gg g gg ?
walyp/D and N*=wb/p/D for the Doubly o5 29,7 463 268 16.3
Symmetric Modes of a O~-F-C-F Rectangular — 02.___________ 22. 5 2. 88 24, 2 9.4
Plate 01 . 22.3 136 | 227 4.1
O . 22. 4 .0 22. 4 .0
Mode
Ratio afb 1 2 3 4 5 TABLE 4.42.—Frequency Parameters \=wa%/p/D
and MN*=wb%/p/D for the Antisymmetric-Sym-
A metric Modes of @ C~F-C-F Rectangular Plate
10 22.17 | 43.6 | 120.1 | 136.9 | 149. 3 Mode
0.9 ______ 2219 |39.5 | 114.2 | 120.1 | 143. 9 afb for »,
0.8 _______ 22. 20 35. 8 94.1 | 120.2 | 1390.1 b/a for \* 1 2
0.7 ___._____ 22. 22 32. 6 76.3 | 120.3 | 134. 8
06__._______ 22. 24 29. 8 61.1 120.4 | 122.5 A X A A*
0.5 ______ 22. 26 27.5 48. 6 90.3 | 120. 4
04 _________ 22. 28 25. 6 38. 5 64.3 | 103. 6
03..______. 22.3 241 | 31.0| 446 | 659 1.0 61.2 61. 2 87. 5 87. 5
0.2 _______ 22.3 23.1( 26.0| 31.4| 40.0 0.9 ___ 61.2 49. 5 82. 8 75.7
01 . _____. 22.3 22.5 | 23.1| 243 26.1 0.8 61. 3 30. 1 78. 4 64. 9
0. 22. 4 22.4 | 22.4| 224 22.4 0.7 61.3 29. 9 74. 5 55. 4
06.___________ 61. 4 21. 9 71. 1 47. 0
0.5 _______ 61. 4 15.2 68. 2 39. 8
*
ba A 04 61.4| 97| 657| 3.6
03 __________ 61. 5 5 4 63.9 17.7
1.0- o 22.17 | 43.6 | 120.1 | 136.9 | 149.3 0-? ------------ 61.2] 23 6?' 6 ; ﬁ
0.9 . 18.93 139.5| 97.2|126.1|133.6  Ol---e-omooocfoiooon 6 6 1'? R
0.8 1416 |35.7 | 76.8 | 105.5 | 130.8  O--m--=----o-of-oooooo- 0] 6L
0.7 . ______ 10. 83 32.5 58.7 87.0 | 128. 3
06 ________ 7.95 29,7 43.1 70.9 | 106.7
05 551 | 27.3 | 29.9| 56.9 | 740 4311 C-F-SS-F
0.4 _________ 3. 51 19.0 25. 5 45. 3 47. 3
03 . .97 | 10.7| 241 | 26.5| 357 The first four frequencies for the C-F-SS-F
02 oees - 87 47| 1.7 219 231 rectangular plate (fig. 4.39) in the case of the
0.1 . .____ . 217 1.2 2.9 5.4 8.7 £ N . . bl 4 f
o .00 0 0 ol square for »=0.3 are given in table 4.44 (re .
4.24 and 4.64). Additional results for this
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, TaBLE 4.43.—Frequency Parameters A=wa’/p/D
and N*=wb%/p/D for the Doubly Antisym-
metric Modes of @ C—-F-C-F Rectangular Plate

Mode
a/b for A, 1 2
b/a for A*
A ¥ A A

1.0 _____. 67. 2 67. 2 124. 5 124. 5
0.9 ... 66. 1 55. 5 112. 6 112. 6
0.8 . 65. 1 45.0 102. 0 102. 0
0.7 . 64. 3 35.7 92. 5 92. 6
0.6 ________ 63.5 | 27.5 84.3 78.3
0.5 ... 62.9 | 20.5 77. 4 56. 3
04 ... 62. 4 14.7 717 38. 2
0.3 e 62. 0 9. 87 67. 2 24.0
0.2 ____.______ 61. 2 5. 90 64. 1 13. 3
0.1 | 2. 80 62. 1 5.6
(SO I, .0 61. 7 .0

TaABLE 4.44.—Frequency Parameters for a C-F-
SS-F Square Plate; v=0.8

Mode ‘ 1 ‘ 2 ‘ 3 ’ 4
watyp/fD___.___} 1516 | 20.50 | 50.21 56. 38

problem are given by the approximate formulas,
equations (4.16) and (4.17).

Further information on this problem can be
obtained by considering antisymmetric modes
of the C-F-C-F plate (see preceding section).
Straight node lines of antisymmetry duplicate
SS boundary conditions.

4312 CF-F-F (Cantilever)

Young (ref. 4.47) in his investigation of
rectangular C-F~F-F plates (fig. 4.40) used the
products of beam functions and the Rayleigh-
Ritz method to obtain accurate upper bounds
for frequencies in the case of the square canti-

SUONOUONUNSNSNNONNNNANN
o

F1cUure 4.39.—C-F-SS-F plate.

TaBLE 4.45.—First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for
a Square Cantilever Plate; v=0.8

Mode.._.._________ 1 2 3 4 5
waVp/Do._________ 3.494 8. 547 21. 44 27. 46 31.17
1§ e {
! - an e o
Nodal lines.. .. _____ / jL——_.—_ é { ; Q-—-{.
/ A /] g whalutuin /
Amplitude coeffi- Au= 1. 0000 A12= 1. 0000 Au"—— 0. 0054 A11= 0. 0090 A12= —0.1201
cients. A= —0.0087 Ayy=—0.0134 A= 0.2731 Ap=1.0000 Au= 0.0627
A;=—0.0008 Ap=—0.0011 A= 0.0092 Ap;s=—0.0120 A= 0.0080
A23= '—‘0. 0050 A24= O 0044 A23= 0 0713 A23= 0. 1786 A24= '—‘0. 0388
A25= —0 0011 Aze= 0 0006 A25= 0 0079 A25= 0. 0009 Azs—": —0 0013
Ay= 0.0001 Aszp=—0.0020 Ayx=—0.0118 Az=—0.0451 Ap= 0.0776
Az=—0.0014 Az=—0.0011 Agp=0.0050 Ap= 0.0125 Ayx= 0.0086
Agz=—0. 0006 Agzs=—0. 0006 Agz=—0.0003 Ag=—0.0023 A= 0.0024
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TABLE 4.46.—FEigenfunction Parameters for O-F and F-F Beams

m, n U an [ €n
8 U U 0.7340955 | . ___._.___ 1. 875104 | _________________
2 1.01846644 | _________________ 4. 6940011 | ______________._.
B L . 99922450 0. 98250222 7. 8547574 4. 7300408
4. 1. 00003355 1. 00077731 10. 9955407 7. 8532046
TSRO . 99999855 . 99996645 14. 1371684 10. 9956078
6 . 1.0 1. 00000145 @m—1)w/2 14. 1371655

These results are summarized
The mode shapes are given by

lever for »=0.3.
in table 4.45.

W (s, y)=i= { Am1+A,,m/§(1—2%>

+2Amn cosh ”y—l—cose"y

—ay (sinh %—f—sin G—Z—)] } [cosh Em
—cos %—am (smh——- sin e,,,:v)] (4.56)

where the values of A,, are given in table
4.45 and those of a and € are given in table
4.46.

In references 4.65 to 4.68, Reissner’s varia-
tional principle (ref. 4.69) is modified and
applied to the square plate. Asin the Rayleigh-
Ritz method, generalized force boundary con-
ditions may or not be satisfied here. In reference
4.66, moment boundary conditions were satis-
fied at discrete points and four degrees of
satisfaction of shear boundary conditions were
considered; the best results were obtained when
the transverse shear conditions on the free
edges were ignored. Theoretical frequencies
for the first three modes, along with experi-
mental data from reference 4.66, are presented
in table 4.47. Mode shapes corresponding to
these frequencies are shown in figure 4.41.

Electrical analogies were developed in ref-
erence 4.70 for solution of the problem on a
passive element analog computer. Five sets of
frequencies and mode shapes for a square are
given. In reference 4.71, simple difference and
higher order difference equations were written
and solved by means of electronic, analog
computer for the first six frequencies of a

TABLE 4.47.—Frequency Parameters wa?+/p/D
Jor a Square Cantilever Plate

wayp/D for mode—
Type of data
1 2 3
Theoretical . ___.________ 3. 44 8. 21 21. 09
Experimental . __________ 3. 33 8. 17 19. 97
Y,y
/]
7
A
y
b ; X
/]
/ I
7 b/2
7 |
/]
x

a

Ficure 4.40.—C-F-F-F plate.

square. The problem is also discussed in
references 4.48 and 4.72.

Barton (refs. 4.73 and 4.74) extended the
Rayleigh-Ritz analysis of reference 4.47 to
obtain results for the nonsquare cantilever.
Five sets of mode shapes and frequencies for
a/b=1%, 2, and 5 are reproduced as table 4.48.
The amplitude coeflicients A4,,, refer to equation
(4.56). These frequencies are approximately
plotted as solid lines in figure 4.42.

Bazley, Fox, and Stadter (ref. 4.75) used a
method developed in reference 4.61 to compute
frequency lower bounds for the first 10 symmet-
ric modes. They also obtained accurate upper
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TaBLE 4.48.—Frequency Parameters, Mode Shapes and Amplitude Coefficients of Rectangular
Cantilever Plates; v=0.3

First mode Fourth mode
albo. . 1/2 2 5 afb_____._. 1/2 2 5
Mode Mode
shape __ shape
wavVp/D...| 3.508 | 3.472 | 3.450 wapD._.| 1026 | 9449 | 563.9
Ay 1. 0000 1. 0000 1. 0000 AL 0. 0155 0. 0034 0. 0006
Ape e —. 0151 | —. 0027 | —. 0004 Ao 1. 0000 1. 0000 1. 6000
Ay —. 0028 | —. 0002 . 0000 2 Agpe o —. 0357 | —. 0031 | —. 0004
Aggo —.0011 | —.0040 | —. 0048 Ay L0459 | —. 0389 | —. 0065 | "7
Ape —.0040 | —. 0032 | —. 0008 Apgo .. . 1120 . 2359 . 2469
Ags_ oo —.0023 | —.0004 | —. 0001 Agso . . 0088 . 0009 . 0001 L e
Ay .0001 | —.0003 | —. 0010 Ay —. 0091 . 1025 . 0104
Ay oo —. 0005 | —. 0015 | —. 0005 Ay oo . 0020 . 0351 . 0381
Ags . —. 0008 | —~.0003 | —. 0001 Agso .. —-. 0018 | —. 0003 | -~-. 0002
Second mode Fifth mode
. afbo ... 1/2 2 5
afbo ... 1/2 2 5 Mode
Mode — shape
shape waVp/D_._| 24.85 48.71 105.9
watvp/D_..| 5.372 14.93 34.73
Ao —0.0529 |—0.2053 |—0.2639
A 1. 0000 1. 0000 1. 0000 Ay oo —. 1989 . 0128 . 0016
Ay —. 0509 | —.0027 | —. 0004 Ao . 0448 . 0017 . 0002 .
Ao —.0056 | —.0001 | .0000 Ag . 1.0000 | 1.0000 | 1.0000 ;
Agg . . 0436 . 2040 L2555 1 4] Agg —.1069 | —.0168 | —. 0028 __—_i,_
Appe oo L0045 | .0011 | 0001 A .0000 | —. 0005 | —. 0001 -,
Apo . . 0007 . 0002 . 0000 Agp . . 0261 . 2222 . 3893 *
Ap oo . —.0012 | .0059 | .0215 Ase . 0001 | .0048 | .0004
. P —.0014 | —. 0005 | —. 0001 Ao L0040 | .0012 | .0002
Age oo —. 0010 | —. 0002 . 0000
Third mod bounds by the Rayleigh-Ritz method by taking
I o .
¢ the first 50 admissible products of beam func-
tions. Double-precision arithmetic (16 signifi-
afb . 1/2 2 5 cant figures) was used in the computations
Mode . .
T shape where necessary. Results are listed in table
waVp/D_._| 21.96 21.61 21.52 4.49 for seven a/b ratios. Sigillito (ref. 4.76)
showed that even more precise upper bounds
Ay . 0.0008 | 0.0042 | 0.0048 can be obtained with the Rayleigh-Ritz pro-
A . —. 0465 . 0346 . 0054 cedure by using deflection functions which are
jlﬁ ——————— 0725 | .0027 | . 0004 7 products of beam functions and Legendre
e L ggg(l) 1 gggg L 88(5)8 t functions. Results obtained using 30 admis-
% PO R . . ' N . N N
Ao 0196 | 0024 | . 0005 \ sible functhns constructed in this manner are
Apo —.0011 | —. 0058 | —. 0068 also listed in table 4.49. All values in table
p; P . 0001 . 0010 | —. 0007 4.49 are for »=0.3.
Ass- - - 0024 | —. 0003 | —. 0001 Gontkevich (ref.. 4.55) used Southwell’s
method to get lower bounds of frequency param-
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1.0 T

—fr————n %/0=0.9

X/a=0.7
0.5+
X/0=0.5

x/a=0.3
X/a=0.1-

0.4 -04

Normalized Deflection

-0.54

-1.04

frneo=74-Icps
wa =T1.7cps

MODE |

frheo=1780¢ps
fE)tp =176.0cps

MODE 2

X/a:=09

Experimental
Theoretical

ob

-1.0

frheo 454.0cps
f Exp” 430.0cps

MODE 3

Ficure 4.41.—Theoretical and experimental mode shapes for a square cantilever plate.

a5
40 =
35 ]
VA
30 A /
RVt /-
g [
Ng 20 [+ 1
15 Theory
/ e Test
10 /
L/ nl
% I 2 3 4 5

a/b

FicUrRe 4.42.—Frequency parameter wa?+/p/D for a
rectangular cantilever plate; »=0.3. (After ref. 4.73)

eters for the first five modes. These are sum-
marized in table 4.50 for »=0.3. The mode
numbers agree with those of table 4.48.

Claassen and Thorne (refs. 4.63 and 4.77)
used the series method described in the discus-
sion of the C—-C—C-C plate (sec. 4.3.1) to obtain
precise frequencies for small variations in a/b
ratio. Figure 4.43 gives the lowest five sym-
metric frequencies and the lowest four antisym-
metric frequencies as functions of a/b, with
a<b. Figure 4.44 shows the variation with b/a
for a>>b. Poisson’s ratio »=0.3 was used.

Detailed tabular data for the above curves
are given in tables 4.51 and 4.52. Additional
frequencies in the vicinity of “transition points”
(see discussion of the C-C-C-C plate, sec.
4.3.1) and the detailed coordinates of nodal lines
are given in reference 4.63.

Martin (ref. 4.78) devised a variational pro-
cedure similar to the Rayleigh-Ritz method and
used it to compute the frequencies of a mild
steel plate of dimensions @=5.12 inches,
b=2.76 inches, and h=0.053 inch. These are
compared with experimental data found by
Grinsted (ref. 4.79) in table 4.53. The upper
values are taken from reference 4.78 and the
lower, from reference 4.79, and the percent dif-
ference is given. The indicators m and n cor-
respond to the number of nodal lines running
‘““parallel” to the y- and z-axes, respectively;
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TasLE 4.49.—Bounds on Frequency Parameter wayp/D for Symmetric Modes of a Rectangular
Cantilever Plate; v=0.3

wa?Vp/D
Mode Upper bounds Upper bounds
Lower Lower
bounds bounds
Ref. 4.75 Ref. 4.76 Ref. 4.75 Ref. 4.76
a/b=0.125 a/b=0.250
) 3. 4926 3. 5134 3. 5113 3. 4835 3. 5094 3. 5059
2 e 3. 9425 4. 0448 4. 0406 5. 2559 5. 5171 5. 5141
S 5. 3402 5. 6095 5. 6076 10. 583 11. 313 11. 318
4. . 7. 6439 8. 2204 8. 2204 20. 106 21. 465 21. 455
;I 11. 050 11. 995 11. 996 21. 900 22. 309 22. 308
6 . 15. 576 17. 008 17. 018 24. 040 24, 857 24. 816
A 20. 827 21. 977 . 21. 955 30. 755 32. 500 32. 489
8. 21. 869 22. 618 22. 606 35. 142 37. 669 37. 890
Q. 22. 381 23. 431 23. 599 41. 738 44, 481 44. 520
10 .. - 24, 067 24. 909 24. 901 53. 987 58. 218 60. 738
a/b=0.500 a/b=1.000
) 3. 4608 3. 5001 3. 4944 3. 4305 3. 4823 3. 4729
2 ... 9. 7605 10. 210 10. 208 20. 874 21. 367 21. 304
B 21. 529 21. 891 21. 848 26. 501 27. 278 27. 291
4 . 29. 927 31. 522 31. 491 51. 502 54. 301 54, 262
L 32. 906 34. 160 34. 180 60. 249 61. 450 61. 276
[ 55. 061 58. 195 58. 184 92, 143 97. 321 97. 208
A 60. 256 61. 560 61. 440 115. 68 119. 51 119. 24
8o 68. 292 71. 346 71. 217 121. 11 124. 63 125. 14
¢ 74. 355 77. 717 78. 936 143. 98 150. 24 156. 67
100 . 93. 740 99. 722 99. 925 149. 47 158. 25 161. 13
a/b=2.000 a/b=4.000
1 3. 3856 3. 4575 3. 4415 3. 3306 3. 4332 3. 4131
2 21. 062 21. 550 21. 447 20. 822 21. 475 21. 340
S 58. 946 60. 477 60. 191 58. 356 60. 292 59. 937
4. 91. 165 93. 390 94. 245 114, 57 118. 59 117. 98
L; S 115. 77 119. 00 118. 67 189. 63 196. 62 195. 80
6. 122. 53 127. 22 128. 44 283. 02 293. 96 293. 03
O 170. 71 179. 29 181. 56 354. 30 361. 12 364. 43
B . T 193. 19 198. 94 198. 20 384. 46 394. 02 400. 44
9 234. 60 294. 00 252, 59 401. 04 415. 19 416. 66
100 __ 287. 76 297. 09 296. 00 443. 26 459. 58 520. 04
a/b=8.000
| S 3. 3025 3. 4297 3. 3885
2 o ___ 20. 683 21. 481 21. 220
. 57. 940 60. 208 59. 472
S 113. 67 118, 20 116. 79
L S 188. 20 195. 83 193. 60
6 __ 281. 60 293. 22 290. 08
0 e 393. 91 410, 42 406. 38
8. 525. 11 547, 45 542, 54
O . 675. 15 704. 29 698. 58
100 842. 90 880. 88 874. 46
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TaBLE 4.50.—Lower Bounds of wa’/p/D for
Rectangular Cantilever Plates; v=0.8

Lower bounds of wa?y/p/D for values of
) afb of—
Mode
0.5 1.0 2.0 5.0
1______ 3. 35407 3. 35407 3. 35407 3. 35407
2..____ 4. 6490 7. 2595 13. 3064 32. 3660
3. 21, 0195 21. 0195 21. 0195 21. 0195
4. ____ 9. 0096 25. 151 86. 402 534. 55
5 .. 23. 110 28. 546 43. 977 98. 836
8.0
(.
6.0}— '_;‘ L A
Symmetric . .
A 40 ad 3
A .
"2 -
1{:. . . - o go°S .o:'
20 V . + NE
(3 RN S [N R (R IR A
0 .
0] 0.2 04 0.6 08 1.0
a/b

thus, n must be even for symmetric modes and
odd for antisymmetric modes.

Forsyth and Warburton (ref. 4.80) used the
Rayleigh-Ritz method with a deflection func-
tion having two terms involving the products of
beam functions to obtain the frequencies of a
rectangular steel plate having a=16 inches,
b=7.5 inches, and A=0.282 inch and compared
them with experimental results. These results
are listed in table 4.54.

Much experimental information is available

on this problem. Dalley and Ripperger (refs.

4.81 and 4.82) gave results determined from

80

Anti~Symmetric

40 »
2 o p 2
g =
20 - 2l
0 N
0 02 04 06 08 10
a’b

F1GURE 4.43.—Frequenc parameter )\/7r2=coa2\/p/D (#?) for a rectangular cantilever plate; v=0.3.
q y
(After ref. 4.77)

80
6.0
Symmetric L
X 40 —
w2 s ’
o - hd
oz - -::... .
20 e~ 4 -
PN NN NN
0] 0.2 04 06 0.8 1.0
b/a

8.0
”‘%' e
6.0 v 4
Anti—Symmetri¢ 5 .
X40
w2 :
2.0 e .
O . : 4 N . o P o
0 0.2 04 06 0.8 1.0
bl/a

F16URE 4.44.—Frequency parameter A’/n2=wb?/p/D(x?) for a rectangular cantilever plate; »=0.3.
(After ref. 4.77)
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TaBLE 4.51.—Frequency Parameters \=wa%/p/D  TABLE 4.52.—Frequency Parameters \= wa?/p/D
and N*=wb?y/p/D for Symmetric Modes of a and N*=wb%/p/D for Antisymmetric Modes of

Rectangular Cantilever Plate; v= 0.3 a Rectangular Cantilever Plate; v=0.3
A and A* for mode— A and A* for mode—
Aspect
ratio Aspect ratio
1 2 3 4 5 1 2 3 4
alb A afb A
1.00_______ 3. 472 21.29 | 27.2 54. 3 61. 3 1000 8. 55 3L 1 64. 2 711
0.95_ ... 3.474 }21.13 | 25.3 51.8 61. 2 095 _____. 8.23 30.3 58. 6 69. 8
0.90__.____ 3. 476 20.74 | 23.7 49. 2 61. 2 0.90_ .- 7.92 20.5 53. 2 68. 7
0.8____.__ 3. 477 19.85 | 22.7 46.9 61. 1 0.85. ... 7. 60 28.7 48.0 67. 7
0.80._.__.._ 3. 479 18.49 | 22.2 44. 5 61. 1 080 _________ 7. 27 28.0 43. 0 66. 6
0.75._____. 3. 481 16.98 | 22. 1 42. 1 61. 0 075 . _______ 6. 96 27. 2 38. 5 64. 1
0.70_____._ 3. 484 15.48 | 22.0 40. 0 60. 3 070 ... 6. 63 26. 5 34.1 59. 8
0.65_-_____. 3. 486 14.06 | 21. 9 37.9 54. 0 065 - ___. 6. 32 25. 7 30. 3 55. 4
0.60._.__._ 3. 488 12. 68 | 21. 9 35. 7 46. 7 0.60._.____.___ 6. 00 24. 4 27.2 51. 1
0.556_______ 3. 491 11.41 | 21.9 33.7 40.1 055 _____ 5. 68 22.0 25. 6 47.1
0.50____.__ 3. 493 10.22 | 21. 9 3L.5 34.1 050 _____ 5. 38 19. 0 24. 8 43. 2
0.45.______ 3. 496 9.13 | 21.8 27.6 30. 7 045 _______ 5. 07 16. 4 24. 1 39.6
0.40.______ 3. 498 811|215 22.0 | 288 040 ____. 4.79 13. 8 23.6 34. 6
0.35.______ 3. 501 7.18 | 18. 3 21.9 27.2 035 __.____ 4. 51 11. 5 23. 1 27.7
0.30_______ 3. 503 6.32 | 14.52 | 21. 4 25. 8 030__.________ 4. 26 9. 62 21.0 23. 2
0.25_.__.___ 3. 506 5.57 1 11.31 | 1563 | -_.__ 025 . _____ 4. 04 7.91 15.8 |__oooo--
0.20_______ 3. 508 4. 85 865 |t 020 _________ 3. 85 6. 42 1168 | e
015 __.____ 3. 511 4. 28 6.5 |- |oooooC 015 ______ 3.70 520 oo feo____.-
0. 10 ||| e 010 ________.. 3.64 |||
0.05. ||| e 0.05. |-
0.00-..__.__ 3.5160 || |eeaas [ JRURUPRUPRNE DSNUUUUUUU [ENIUPUPUN PRI I
bla A*® bla Ak
1.00.______ 3.472 21.29 | 27.2 54.3 61. 3 1.000 . ________ 8. 55 3.1 64. 2 711
0.95.______ 3. 132 19.30 | 26. 6 51.5 55. 5 095 . __ 8. 01 28. 8 62. 3 66. 6
0.90.______ 2. 809 17.36 | 26. 1 48.3 50. 4 090._______.___ 7. 49 26. 6 57.9 64. 8
0.8 _______ 2. 504 15. 51 | 25.6 43. 8 47.0 0.85_ ... 6. 98 24. 6 52. 8 64. 2
0.80_______ 2. 217 13.75 | 25.2 39.0 44.3 080.__________ 6. 47 22. 5 47.9 63. 7
0.75.______ 1. 946 12,09 | 24.7 34. 3 41. 8 0.75. . ___._ 5. 99 20. 6 43.0 63. 2
0.70.______ 1. 694 10. 53 | 24. 2 30.0 39.6 0.70 . .. 5. 51 18. 8 38. 6 62. 5
0.65___.___ 1. 459 9.08 | 23. 5 26. 3 37.3 065 ____.___. 5. 04 17.0 34.3 58. 7
0.60-____.__ 1. 242 7.73 | 21. 4 24.3 35. 2 060____.____._ 4. 59 15. 3 30. 4 51. 7
0.55__.____ 1. 042 6.49 | 18. 2 23.7 33.2 066 . ______ 4.15 13. 7 26. 6 44.7
0.50....___ . 861 5.37 | 15.03 | 23.3 29. 6 050_..________ 3.7 12. 1 23.2 38. 3
0.45_______ . 696 4,341 12.18 | 22.7 24. 5 045 __________ 3.29 10. 7 19. 9 32.5
0.40____.___ - . 549 3. 42 9.61 | 189 23.0 040_______.__._ 2. 87 9. 21 17.0 27.0
0.35.__.__. . 419 2. 63 7.35 | 14.47 | 22.5 035 ______ 2. 48 7. 86 14. 2 22. 3
0.30.____.. . 307 1. 92 539 10.63 | 17.6 030 ... 2. 09 6. 56 1.7 18. 0
0.25._._._. . 213 1. 33 3.73 7.36 | 12.20 0.25__________. 1. 72 5. 34 9. 36 14. 05
0.20_______ . 135 .85 | 2.39 4. 70 7.79 020 __.____.. 1. 35 4,16 7.19 10. 60
0.15_ ______ . 076 .47 1. 34 2. 64 4. 36 015 _________ 997 3. 06 5. 20 7. 52
0.10_____.__ . 034 .21 59 1. 16 1. 92 0.10___________ 66 1. 99 3. 36 4.78
0.05.___.._ . 008 .05 15 29 47 005 __________ 33 98 1. 64 2. 30
0.00-______ . 000 .00 00 00 00 0.00_________._ 00 00 00 00
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TaBLE 4.53.—Theoretical and Experimental Frequencies (cps) for a Mild Steel Cantilever Plate;
a=58.12 inches, b=2.76 inches, and h=0.053 inch

Frequency, eps, for values of m of—
n Type
0 1 2 3 4 5
0 Theoretical .. ____________________ 69. 5 436 1, 220 2, 390 3, 940 5, 900
Experimental .__.__________________ 64 405 1,120 2,233 3, 736 5,573
Percent difference.._______________ 8.6 7.7 89 7.0 5.5 5.9
1 Theoretical .______________________ 276 905 1, 743 2, 970 4,530 |._._.___.__
Experimental ____________________ 260 |______.____ 1,676 | 2, 804 4,335 | _.____.__
Percent difference.._._____________ 6.2 |_________. 4.0 59 4.5 | _____
2 Theoretical .. _________________. 1,610 2, 260 3,280 - 4, 660 6, 350 8, 350
Experimental _____________________ 1,606 |__________ 3, 160 4,428 6, 009 7, 859
Percent difference_________________ 0.2 |_._____ 3.8 5.3 5.7 59
3 Theoretical . ___________________ 4, 250 4, 810 5, 950 7, 450 9, 200 11, 280
Experimental . ____________________ 4, 235 4,773 5,739 7,069 || __._
Percent difference.________________ 0.4 0.8 3.7 B A .
4 Theoretical ______________________ 8, 260 8, 870 9, 750 10, 620 13, 150 15, 300
Experimental _____________________ 8, 238 8, 685 9,651 |_ || __
Percent difference_________________ 0.3 2.1 L0 e

TaBLE 4.54.—Theoretical and Experimental
Cyclic Frequencies for a Rectangular Canti-
lever Steel Plate Having a/b=2.13

TaBLe 4.55.—Ezperimentally Determined Fre-
quency Parameters waJp/D for a Rectangular
Cantilever Aluminum Plate

Frequency, cps, for
values of n of—
m Type

1 2 3
1 | Theoretical - ______ 37.7 169. 8 1166
Experimental _____ 35. 6 162 1115
2 | Theoretical _______ 236.3 | 542.9 1563
Experimental______ 219 529 1451
3 | Theoretical ________ 662. 3 | 1030. 5 2149
Experimental______ 618 996 1996
4 | Theoretical _______ 1298 || .
Experimental ______ 1216 || _.

aluminum plates as listed in table 4.55. The
foregoing results are also shown as circles in
figure 4.42. Photographs showing nodal lines
formed by the soap powder used in the experi-
ment are shown for a square plate in figure
4.45.

Heiba (ref. 4.83) tested a series of -inch-
thick mild steel plates of width =10 inches
and ¢/b=1.0, 0.8, 0.6, and 0.4, and obtained the
frequencies and nodal patterns shown in
figure 4.46.

wa?+/p/D for mode—
alb
1 2 3 4 5
Y _ 3. 34 5.38 | 10.31 | ______|______
1. 3. 37 8.26 | 20. 55 | 27.15 | 29. 75
2o 3.36 | 14.43 | 20.86 |.______1._____
[ SO, 3.32 [ 20.84 | 32.40 |_______|______

Plunkett and Wilson (refs. 4.84 and 4.85)
measured the frequencies of steel plates with
a@=5.00 inches, A=0.100 inch, and a/6=2.00,
2.50, 3.33, and 5.00. Results are listed in
table 4.56. The significance of m and = is the
same as it is in table 4.53.

Craig, Plass, and Caughfield (ref. 4.86) ex-
perimentally obtained the first four frequencies
and mode shapes of a 6061-T6 aluminum
cantilever plate 7.5 inches by 7.5 inches by
0.125 inch. Frequencies and corresponding
frequency parameters are listed in table 4.57.
Mode shapes are also given in reference 4.86
but are inaccurate, apparently because of the
influence of the shaker position. Neverthe-
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FicurE 4.45—Photographs of nodal patterns on a square cantilever plate. (From ref. 4.81)
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FicURE 4.46.—Experimentally determined cyclic frequencies and nodal patterns for rectangular cantilever plates.

(a) a/b=1.0.

(®) a/b=0.8.

(¢) a/b=0.6.

(d) a/b=0.4.
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TABLE 4.56—FEzperimental Values of wa/p/D
for a Rectangular Cantilever Steel Plate

waz/p/D for values of a/b of—
nim
2.00 2.50 3.33 5.00
0/0_. 3. 50 3. 50 3. 50 3. 45
O/ 2.7 21.6 | 2.5 21. 1
0/2._________ 60. 5 60. 4 59. 8 59. 3
0/3. .. 118.7 117.5 116. 5 115. 2
0/4 . _____ 196.0 |- 195. 0 190. 0
05 292.0 oo 281. 0
) LV R 14.5 17.3 22. 5 32.0
7 48.1 54. 8 69. 6 98. 0
12 .. 92.3 101. 5 125. 0 169. 0
18 ___ 1540 |- 187. 0 248. 0
14 2980 |||
16 .. 319-324 | |-
200 ___ 92. 8 139.1 246.0 |______.
o 1251 ool
2/2 . 176.0 oo
23 . 2440 ||
30 . 246.0 | . |
Y SR 274.0 oo |
3/2 . 319-324 || |a_

less, figure 4.47 showing the nodal lines is
reproduced, partly as an estimate of accuracy
for further results on parallelogram and tri-
angular plates.

Gustafson, Stokey, and Zorowski (ref. 4.87)
experimentally determined the first five fre-
quencies of a square steel plate having dimen-
sions 10 inches by 10 inches by 0.0627 inch
and the following material properties:

Modulus of elasticity in z-direction: 29.3X
108 psi

Modulus of elasticity in y-direction: 31.5X
108 psi

Weight density: 0.282 16/in.?

Poisson’s ratio (assumed): 0.29

Frequency parameters wa®/p/D are listed in
table 4.58. The arithmetic mean of the two
moduli given above was used as E in the
flexural rigidity D.

Grinsted (ref. 4.79) obtained considerable ex-
perimental data. Frequencies and nodal patterns

TasLE 4.57.—FExperimentally Determined Fre-
quency Parameters and Cyclic Frequencies for
a C-F-F-F Square Plate

Mode 1 2 ‘ 3 ’ 4
Frequency, cps..| 71.9 175 437 552
wayp/D- - __ 3.34 823 | 20.56 | 25.97

TaBLE 4.58.—Ezperimentally Determined Fre-
quency Parameters for a Square Cantilever
Plate

Mode]1‘213’4‘5

3.35 | 853 | 20.90 | 26.72 | 30. 61

for a mild steel plate having a/b=1.86 are shown
in figure 4.48.

Walton (ref. 4.88) used the method developed
by Houbolt (ref. 4.89) to determine the first
five frequencies for the cantilevered square.
This method is a numerical development of
the Rayleigh-Ritz method in which deriva-
tives are replaced by finite differences and
area integrals are replaced by double summa-
tions. In table 4.59 are given the first five
cyclic frequencies for an aluminum-alloy plate
as determined: (1) Experimentally, (2) by the
method of reference 4.89, using 30 internal
grid points in the finite-difference mesh, and
(3) by using Warburton’s formula (eq. (4.16)).
No plate dimensions are given in reference 4.88.

TaBLE 4.59.—Theoretical and Experimental
Cyclic Frequencies for a Square Aluminum-
Alloy Cantilever Plate; v=0.28

Frequency, cps
Mode :
Experimental | Method of | Eq. (4.16)
ref. 4.89
loooeos 23 | 21 21
2 . 48 50 56
b J, 118 121 132
4 162 163 171
LS S 173 177 190
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For a comparison of frequencies of a rectan-
~ gular cantilever plate in air, water, or vacuum,
see the chapter entitled “Other Considerations”
(ch. 12).

The problem was also discussed in references
4.90 to 4.94.

4,3.13 SS-SS-F-F

The only specific result directly available for
the problem of the SS-SS-F-F plate (fig. 4.49)
is the approximate formula, equation (4.16).
For more information on this problem, see the
discussion of the doubly antisymmetric modes
of a completely free rectangular plate (sec.
4.3.15). Straight node lines of antisymmetry
duplicate SS boundary conditions.

4.3.14 SS-F-F-F
The only specific result directly available for

the problem of the SS-F-F-F plate (fig. 4.50)
is the approximate formula, equation (4.16).

4.3.15 F-F-F-F

The problem of the completely free plate (fig.
4.51) has a rich history. The first significant
work examining nodal patterns on rectangular
plates of any kind was produced by Chladni
in 1787 (vef. 4.95) for completely free bound-
aries and extended in references 4.96 to 4.98.
Other early experimental work on this problem
was performed by Strehlke (refs. 4.99 to
4.103), Konig (ref. 4.104), and Tanaka (ref.
4.105). Wheatstone (ref. 4.106) in 1833 made
an attempt to explain the Chladni patterns
in terms of the modes of F-F beams, and these
geometrical studies were extended by Rayleigh
(vef. 4.107).

Ritz (ref. 4.108) in 1909 used the problem
to demonstrate his famous method for ex-
tending the Rayleigh principle for obtaining
upper bounds on vibration frequencies. This
innovation resulted in several following papers
(e.g., refs. 4.109 to 4.112) which used the
method to solve the problem in great detail.

Lemke (ref. 4.110) computed frequencies
and mode shapes for the six modes of a square.
Functions of the type

WE ) =2 4mX@Y(7) (4.57)

were used, where X,,(z) and Y,,(y) are the F-F
beam functions expressed in terms of a nor-
malized (i.e., z=wx/a, where ¢=1) zy coordi-
nate system having the origin at the plate
center (fig. 4.51); that is,

X, (F)= cosh k,, cos k,,&-+-cos k., cosh k,,T h
vcosh? k,+cos?k,,
(m even) }
X, (§)=sinh ke si.n k,,,'i:'—}—sir'l l;:,,, sinh k,%
+/sinh? k,,—sin? k,,
{(modd)
(4.58)

The function Y,(y) is obtained from equations
(4.58) by replacing 7 by y and m by n. The
values k,, are the roots of the equations

(m even)
(modd) } (4.59)

tan k,,-+tanh k,, =0
tan k,,—tanh k,,=0

and are listed in table 4.60.

Results were obtained in reference 4.110 by
using six or more terms of equation (4.57)
and four different values of Poisson’s ratio.
These data are given in table 4.61.

Ritz (ref. 4.108) himself computed many
more frequencies for the square. Table 4.62
lists frequency parameters, nodal patterns,
and the approximate mode shapes used, again
in terms of equations (4.57) and (4.58). All the
nodal patterns in table 4.62 are either doubly
symmetric or doubly antisymmetric about the
bisectors of the square z=0, y=0.

Frequencies and mode shapes are computed
for »=0.225, using the number of terms listed
for W(z,y). Small variations in » from the

TaBLE 4.60.—Eigenvalues of @ F—F Beam

m km m km
O 0 | SO 0
2 2.36502 || 3_________. 3. 92660
4 . 5.49780 || 5o ____._. 7. 06858
6 863938 || 7. . 10. 21017
8 11.78096 || 9 - ____. 13. 35175
10 __ 14. 92255 || Moo 2m—1)x/4
Moo @2m—1)x/4
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value of 0.225 can be taken into account by
the terms &v, where given. It must.be re-
membered that these are upper bounds on the
exact frequencies and that the higher frequen-
cies and mode shapes may be quite inaccurate.
In reference 4.108 frequencies and mode shapes
are also listed for modes symmetric about one
axis and antisymmetric about the other. Some
interesting superpositions of these modes are
also presented. These are given in table 4.63.

Odman (ref. 4.13) used a variation of the
Galerkin method to obtain extensive results
for this problem. Unfortunately, his results
for the cases when nodal lines lie in only one
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FicUurEe 4.47—Experimentally determined nodal pat-
terns for the first four modes of a C-F-F-F square
plate; material, 6061-T6 aluminum -inch thick.
(2) Experimental node lines and data points.
(b) Mode 1; fi="71.9 cps. (¢) Mode 2; f,=175 eps.
(d) Mode 3; f;=437 cps. (¢) Mode 4; fi=>552 cps.

direction are those of a F-F beam and do
not consider anticlastic bending effects. The
numerical error in these frequencies is not large,
however. Results for w,, (m, n=0, 1, . . .,
6) are given in table 4.64, where m and =
denote the number of nodal lines approxi-
mately parallel to the y- and z-directions,
respectively. The cases when m=0 or n=0 are
then the beam modes just described. Values in
parentheses were obtained by interpolation.
Poisson’s ratio is 1/6.

Iguchi (ref. 4.113) used the series method to
solve the problem. He formulated the problem
for the general rectangle with solutions to
equation (1.4) in the form

W(E, )= 33 X, cos m[(%>+ n]
—I—mi;OY,,, cos mvrl:(%>+é] (4.60)

308-337 0—70——7

89

in terms of figure 4.51, where £=% /a, n=¥/b, and

cosh wh\¥ ¢ h

sinhg)\in ‘

cosh mhg. ¢

+45

sinh;—r)\a,,

4 A sinh 7\ anf - A sinh #\% ¢

. Ty %
cosh 3 Nan cosh2)\an

cosh mhs1 cosh A5

Ym=Bm

] B*
T LPm . T
sinh g)\g,,, sinh 3 N

sinh mhg,, sinh mA%,
+ B #17 + Boex 2L Tham
cosh 3 Nom

\  (4.61)

with

Neny A&, = W/aznzj: M

(= Ve
e ND T

)‘ﬂm; )‘;:m: v 62m2i /-"*

™
cosh 3 N
P

> (4.62)

5 _ob? JZ, _§>
(# _’Il'2 D 6_(1/ J

The boundary conditions are

oW oW - @
ﬁZ_+VD—jZ—ZO (on (IJZ:I:E)

o'W W - b
3 om0 (°n?/=i§>
oIrow O*W

% 6?“2—")6‘72]:0

(on T :I:%)

o[oW O*W
Silop T o |70

(r7=22)
o4

ﬁa—yzo (at the corners)

(4.63(2))

(4.63(b))

(4.63(c))

(4.63(d))

(4.63(e))
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Ficure 4.48.—Experimental frequencies and nodal patterns for a rectangular cantilever
plate; a/b=1.86. (After ref. 4.79)
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FiaurE 4.49.—SS-SS-F-F plate.

Ficure 4.50.—SS-F-F-F plate.
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The last of these is identically satisfied by
equation (4.60). Applying equations (4.63(c))
and (4.63(d)) gives

Xn=anuan(£)+a/:van(£) 3

Ym= bmuﬁm(ﬂ) + b;vﬂm( 77)

tan(E) _ 1 (N2, —vein?) cosh A&
)‘an . ko

sinh 5 Nen

cosh m\ ¢

— i (N —vo?) SO
o sinh T M,

v“"(g):)\in (A%, —va®n?) w

cosh gkan

1

sinh #\%, ¢
5 SINA Thang

(N —vatt) T
Ok

cosh 5 A,

1 cosh T\,

Usm(n)=5— (N —f*m?) —
pm sinh § )\gm

h hg
— 5 (i) O T

- Y

sinh ’—2r Mo
1 . o o Sinh mhg,7
vﬂm(’?):—” ()‘ﬁm_Vﬁ m )—'_
Nom cosh u s
2 m
3 *
i (i) SN
om cosh%r N
-

_ D
oty [t _ cohe i
L smhiﬁ sin 5\/; )

taa(m) = cosh r+/u*g _ cos m/u*y
sinhT/u*  sin Z/p*
. 2 2 /

— | sinh 7+/4* : X

vgo(n) =+vu* (sm 7;_ £ n_l_,smw;/p 1

cosh-vu*  cos z+/p*
. 2 2 J

(4.64)

where a,, a}, b, and b; are undetermined
constants.

Applying equations (4.63(a)) and (4.63(b))
results in an infinite characteristic determinant

y
a/2

b/2

Fieure 4.51.—F-F-F-F plate.

for the frequencies. When the determinant is
truncated to a finite order of terms, the eigen-
values are found to converge rapidly with in-
creasing order of determinant. Frequencies,
nodal patterns, and numerical constants for
mode shapes are given in table 4.65 (from ref.
4.113) for the case of the square having »=0.3.
For modes having symmetry about both co-
ordinate axes and both diagonals, the mode
shapes are

W@, §)=advo(£)+us(n)]
+n=§_, (_l)n/2a"[un(£) COS Ny

+u,(n) cos nrg] (4.65)

For mode shapes symmetric about the co-
ordinate axes and antisymmetric about the
diagonals:

W(Z, §) = oofuo() — o(7)]
+ 35 (—D"2afu,(f) cos nry
n=2,4,...
—Uy(n) cos nxf] (4.66)
For mode shapes antisymmetric about the

coordinate axes and symmetric about the
diagonals:

WET= 3 a(—1) 7 [0a(8)sin
' +0,(n) sin nrg]  (4.67)

For mode shapes antisymmetric about the
coordinate axes and the diagonals:

n—1

WE D)= 35 a(—1)" [oa(8)sin nay
n=13,...
—v,{n) sin nxt] (4.68)
where u,; and v, are given in equation (4.64)

and @, A, N, and so forth are given in
table 4.65.
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TasLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate

SHYU I S

1
|
!
!

() Firstmode: W(z,7) = Au X1 Y1+ Au(X1 Y3+ X Y1) + 45 X5 Y

: + A (X Vst X VD) + A (Ko Vst Xs¥) + ApXs Vst ...
;
i
_________________________ 0.225 0.343 0.360 0.390
No. terms. - oo 6 6 15 6 15 15
wap[Do o 14.14 13.10 13.086 12.94 12.927 12.64
Amplitude coefficients: :
Ape oo 1. 0000 1. 0000 1. 0000 1. 0000 . 0000 . 0000
Agge oo 0378 . 0328 . 0325 0320 . 0318 . 0306
Agge oo —.00435 | —.00541 | —. 0050 —. 00555 | —. 00514 . 00537
Agseoooe —.0034 | —.00265 | —.00257 —. 00255 | —. 00246 . 002285
Agsooo oo 00118 00139 . 00121 00141 | .001235 . 001276
Aggeoooee —.00045 | —.000474 | —. 000365 —. 00048 | —. 000366 . 000370
At e 000413 |_.__________ . 000382 . 000328
O S —. 000431 | _______ . 000440 . 000456
U I (R 000148 |.___________ . 000149 . 000150
Ao o —. 0000708 | ... . 0000701 | —. 000070
Atge o e —. 0000767 |._________.. . 0000638 | —. 0000413
Agoe oo e 000196 |- .- . 000201 . 0002086
Agge e . 0000720 |- ______.__._ . 0000727 | . 0000733
Avge e . 0000382 |- ... . 0000382 | . 00003805
N A R —. 000028 | _____.___. . 0000230 | —. 0000228
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TaBLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con.

N /
\\ ,/
rd
N7 (b) Second mode: W (Z, §)=An(Xo¥2— X2¥o) +Aou(Xo¥si— X:¥o)
e AN FAu(XoVi— X Yo) +A0(XoYo— XoVo) +An(Xo Yo~ Xo¥a) 4 . . .
A Y
/7 \\
L/
Y e e 0.225 0.343 0.360 0.390
No. terms_________________ 3 4 11 4 11 11
waz\/p/D_ e 20. 49 19. 306 19. 231 19. 129 19. 045 18. 707
Amplitude coefficients:
Aope e 1. 0000 1. 0000 1. 0000 1. 0000 . 0000 1. 0000
Aode oo —. 131 —. 0204 —. 02042 —. 02142 | —. 02146 —. 023312
Asge oo _____ —. 0043 —. 00643 | —. 006105 —. 00675 | —. 00642 —. 006976
A6 o e L 00522 . 00518 00549 . 00545 . 005927
Agge oo . .00207 .. . 00217 . 00235
Agge o e e .000098 | ... . 0001006 . 000105
Aoge oo e —. 002042 |____________ —. 00215 —. 002337
Agse oo e —. 000929 |____________ —. 000975 -—. 001054
Agge oo e —. 0000613 |____________ —. 0000631 —. 0000658
Agg o | . 0000080 |__.__________ . 0000083 . 0000087
T U RN R . 001008 | _____ . 00106 . 001154
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con.

27N
\
( i (¢) Third mode: W(%, ) =A0(X oY+ X2V0) +A0X,Y,
\\ //’ +A04(X0Y4+X4Yo) +A24(X2Y4+>X4Yz) +A44X4Y4-|— P
Yt e e 0.225 0.343 0.360 0.390
No. terms ... ____ 5 6 15 6 15 15
7 23.97 24.64 24.58 24.73 24.66 24.80
Amplitude coefficients:
Ao o 1. 0000 1. 0000 1. 6000 1. 0000 1. 0000 1. 0000
Aggm oL —. 0236 —. 0447 —. 0449 —. 0484 —. 0488 —. 0563
Ade e 00132 02011 . 0202 02115 . 0213 . 02324
Apgo oo 0022 00384 . 00363 00409 . 00385 . 00426
Agge oo 00166 00282 . 00252 00302 . 00271 . 00306
A QB e e e e —. 00503 —. 00505 —. 00529 —. 00531 —. 00580
Agg e —. 00194 |___._________ —. 00206 —. 00229
A8 oo .00199 . ______. . 00209 . 00228
. SR SR URIU (S —. 000822 |_____.__..__ —. 000884 —. 000994
Aoge oo e . 000987 |___ .- . 00105 . 001166
A g0 e e e e —. 000976 |_______.._._. —. 00103 —. 001121
Agge oo || .000293 |- . 000316 . 000353
Adge | . 000355 | . 000382 . 0004303
Agg oo |eiiao —. 000138 {__________.__ —. 000146 —. 000163
Agge o e . 000069 | .. _____._-_ . 000073 . 000081
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con.

| i
{ !
- -“ - - —l o=am o
" " (d) Fourth mode: W&, 7)=A4¢(X Y-+ XY0) +42:X,Y,
| _ ’I’__ S FA404(XoY 4+ X4Y0) +A24(XoYu+- X Vo) + A 03X sVt . L.
{ ‘
1
I
_________________________ 0.225 0.343 0.360 0.390
No.terms. ... 5 6 15 6 15 15
walvp/D__ . __ 66.402 63.160 62.676 62.664 62.196 61.329
Amplitude coefficients:
Aoz o 0. 0118 0. 02266 0. 0228 0. 0246 0. 0248 0. 02864
Asye e 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000
Aoge oo —. 020 —. 0288 —. 0275 —. 03005 —. 02875 —. 0310
Agge oo 0876 . 0730 . 0690 . 0709 . 06704 . 06350
Agge o —. 0047 —. 00951 —. 00674 —. 01015 —. 007355 —. 00841
Ao o . 00529 . 00540 00556 . 00568 . 00619
Agg e oL —. 00971 |____________ —. 00921 —. 00830
Agge e e 00314 .. . 00330 . 003574
Agg e e —. 00148 | ___________ —. 00151 —. 00158
Age e —. 00211 | ___ —. 00222 —. 002425
A28 oo e .00204 | . 00183 . 00147
A4 oo e —. 00153 | ___.__ —. 00160 —. 00172
Agge o .00076 o ______. . 000778 . 000808
Agg e —. 000435 | ... __. —. 000441 —. 000452
A0mc e e | e . 001006 | ... ..._._ . 00106 . 00116
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TABLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con.
i
\\\ ! , ’l
\\\ !_L/l (e) Fifth mode: W(Z, %) =A(X1Ys— XsY1) +A35(X1Ys— X5Y))
7{ =T + A5 (XsVs— Xs¥0) +An(X Vi — X YD)+ . . .
V4
LN
»” } N

P e e 0.225 0.343 0.360 0.390

No.terms oo 3 3 10 3 10 10

VoD 71.830 68.50 68.346 67.993 67.804 66.820

Amplitude coefficients:
Afge e o 1. 0000 1. 0000 1. 0000 1. 0000 . 0000 1. 0000
Afse oL 00024 | —.01394 —. 01423 —.0160 | —. 01634 —. 02008
Ao oo 00216 | —.005895 | —. 00511 —. 00707 | —. 00623 —. 008235
Agre i e e 00643 |oco oo . 00709 . 00826
Agro oo L 004255 |- . 00470 . 005495
Agre o e . .00081 fooooo_ . 000315 . 000322
A9 oo —. 00838 |- o —. 00367 —. 00419
Asge | —. 002718 |- —. 002934 —. 00333
Ay o e —. 000282 |- —. 000236 —. 000241
Ay e L000415 |-l . 0000421 . 000043
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TapLE 4.61.—6 Frequency Parameters and Mode Shapes for a Completely Free Square Plate—Con.

(b Sixth mode: W, 7) = A4uX1 Y1+ 4u(X Y3+ X3Y7)
F ApXs Y+ Ap(X Vs + X5 V) + A (X V- X V) + . . .

Do o 0.225 0.343 0.360 0.390

No. terms_ ... 6 6 15 6 15 15

VDo 77.881 77.730 77.380 77.683 77.309 77.162

Amplitude coefficients
Al —0. 0746 —0. 06456 | —0. 0641 —0.0631 | —0.0627 —0. 06035
A e 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000
Asge oo L 171 . 1295 . 1252 . 1227 . 1184 . 10562
Agge e . 0431 . 05066 . 0489 0518 . 0500 . 05194
Ags oo —. 0084 —. 00480 —. 00347 —. 00419 —. 00285 —. 00172
Ags e 00546 . 00814 . 00645 00856 . 00684 . 00755
Ay SR IR F U —. 01286 |oeooooooo_- —. 01321 —. 01384
At || —. 001936 | ________._- —. 00229 —. 00295
Age o e —. 00290 . ________. —. 003052 —. 00334
A e .00139 oo __.- . 00146 . 001575
Ao e .00515 | _ . 00531 . 00560
Agg e e .00184 .. ____.___. . 002046 . 00242
Ay o e 00150 |- __ . 00158 . 001724
At0c e e —. 000766 |- - ___.___- —. 000798 —. 000858
A9 e .000448 | __________. . 000466 . 000497
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TaBLE 4.62.—Doubly Symmetric and Doubly Antisymmetric Frequencies and Mode Shapes for a

VIBRATION OF PLATES

Completely Free Square Plate; v=0.226

Nodal pattern w?atp/16D Wz, y)
Doubly antisymmetric modes
miatal ol 12. 43—18. 0 é» X1¥140.0394(X,Y;+ X;¥;) — 0.0040X,Y;—0. 0034(X,Y;5+ X:Y))
+0.0011(X;¥ 54 X;Y;)—0.0019X,;Y;
’
1] |
' ....._:.,';f... - 316.1—270 &y | (Xy¥s— X¥7)+0. 0002(X,Y5— X5¥y) +0.0033(X3Ys— X;¥5)
V4 \\
I, ~
Vo N
4 \
'I, :{ \\. .
e e e e e 378—57 év —0.075X,Y1+ (X1Y3+ X3Y,) +0.173X:Y 3+ 0.045( X V4 X5 Yy)
s = —0.015(X,Y 5+ XY3) —0.029 XY
- 'd
AN : 1{
1 7
of sudady RXT B
| I
.-}.-. Sl .{. 1554 0.009.X,Y,—0.075(X Y3+ X;Y1) + X3 V53— 0.057 (X, Y54 X;V5)
I +0.121(X5Y 5+ X;¥3) —0.007 XY
Y OV S
L.\
—
\
"\’\
o 2713 X1V~ XY,
NN
L Vi)
S | N
P p— 2945 X\ Y5+ XY,
Pl { [N
AL
Lot 20e2 )
-,
N /-~
AR XV XY,
...r.._>‘......r.. 5570 [ €7 523
) 7/ |\\ 1
- i \
7ZCTEN
ey pl v
Y
EAERY 6303 X5t XY
\N | /A
Y Y s
TR
R .
. |
] 13674 s
mmm
1 s el i st 3
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TasLe 4.62.—Doubly Symmetric and Doubly” Antisymmetric Frequencies and Mode Shapes for a
Completely Free Square Plate; v=0.2256—Continued

Nodal pattern w?atp/16D W&, 7)
Doubly symmetric modes
\\\ //
\x/ 26. 40 (XoY— XY ) —0.0129(X Y, — X,Y ) — 0.0045(X, Y, — X, Y5)
7 N\
/ N\
/ \
-—
,l, \\
{ ‘, 35. 73+20. 8 o (XoY:— XY ) —0.0238X,Y,;+0.0130(X Y+ X,Yo) +0.0026
\\ /, (X2Y4+ X4Y2) +0.0016X4Y4
N
] ¥
P~ \\ e I, o~
\l l’ 266. 0— 274 6v 0.0122(X Y+ XY ) + X,Y>—0.0188(X, Y+ X,Y,) + 0.0880
/[ \\ (X2Y4+ X4Y2)—0004:4X4Y4
TN
1 ).
X
/’ AN
{ \’\/ \ 886 X Yi—X,Y,
\/’ \\/I
’N_’
Caly “~\
XY
NN 941 XYt X,Y,
AN N
{ 7\ )
N ~
7
NN/ /
~ N\ / pr
NN 1702 XYt X,V
JN
/ -~
’ﬁn
7/ / \‘ \
T—7X%
// P anhat Y \
( ) ; 2020 XYt XYs
Y \\ 1/ f{
-;. -f-F-"
T_rj"f. 5480 XY,
P _F_
R
Wik S fsaey
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TasLe 4.62.—Doubly Symmetric and Doubly Antisymmetric Frequencies and Mode Shapes for a
Completely Free Square Plate; v=0.226—Continued

Nodal pattern waip/16D Wz, v)

Doubly symmetric modes—Continued

5500 XoYs— XY

5640 XY+ XeYo

] 7310 XzYo-‘XeYz

7\
'M
\ll(\
Il
{
g

WS

7840 X,Ye+XoY2

7

TTs
L
i

»
\

4

:..r_::.
(Wl W4

\N

e
A Y

PN R\
\
=y

13 840 X Ye—XoYs4

S0 15 120 X Yo+ XY,

a3 28 740 XoVs
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TABLE 4.63.—Symmetric-Antisymmetric Frequencies and Mode Shapes for a Completely Free Square
Plate; v =0.225

Wz, ) . -
w?alp W, ) — W@, z)
16D nodal pattern
Mode shape Nodal pattern
H T v
I e
80.8— 736y _ ... X;¥,—0.0682X5Y,+0.0760X,Y; | i /
+0.0260 XY+ 0.0073X5¥ o 0.0027 XV ! VA
_00112X5Y2+00030X5}74 ——-——‘r‘“-— // ,’
[ — I
LS
: : : /"\\//
v g D 0.0678X,Y;+ X3V o—0.0150X5Y; ;g b t ~
! ! E AN
+0.0355X,Y4-0.0000 XY 04 0.0100 X, Lo N4
—0.0007X;Y,-0.0016 XY ,l E : AN
(1.7 7
TA6 . .| —0.0709X,¥,+0.0214X:Y o+ XY, Y { f vy
—0.1260X,Y,—0.0038X ;Y ,+0.1234 XV, R ; 7
—0.0095 X35Y,—0.0100 XY, L7 L\ 7/
VAR Y 77 7
[ B | V4 1
] "\ L 7
———~i-——-- /’ \\ \ 7
v it et \,///\’\-
1181 XY, ] e =~
] N ,‘
et i 2 A\
T 7 1 ~ -
i NG
| : 1 )‘Q N,/
i ' N W
2407 ... XY, R NN
NS
I 1 l / \(l \(l
Pt LA
-{—-—-—-—}-—--«-:— frr~.»‘(." //
| N
3240 ____________. XY, : T 1 FaatVds
———ba s -
] /7 -\
S ' ,,l(._),
T T L M
! 1 -
R I A
8927 Xs¥s bbb N N
11 X
IR R OV
I NN
i B TSR
b e e o e 4 A y\\\
6036 . X,Ys IS TR <) 7
RN I L ~
—_...: ..... \\>< \(“\’
[—-—--—- 4+ o e o o] S } ‘\,"
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TaBLE 4.63.—Symmetric-Antisymmetric Frequencies and Mode Shapes for a Completely Free Square
Plate; v = 0.225—Contineud

w(z, 7% _
w?atp W@, y)—W (g, 7
16D nodal pattern
Mode shape Nodal pattern

U L ) 7 'y
P T ==

gy ! | =07 )

b-r-brat |

)

9030.. ... XY ot (7 e
! _{ 1 __: } ’//’,J,_)
ol el B N 1 ~7 1t 7

0 R gl S YoIs3 7
1S SR - F;’r\\\ //,'

|- G
10380 o X:Y, R [N N
o | R
, 3

L ..—T.-.-T- L /'\\ So? 2
Pt =t -1 o’ \\\I/LA
:r——;:—;:-;::f_ rmy == TSI ST T
(T I o

=111 )] el
20400 . _________. XY T L et et ¥ -7
T, T 1 Ioilfats
I L1y s b )

1=~ 1] ISR
ok e e VA atdil o MR N

TABLE 4.64.—Frequency Parameters way/p/D for F~F-F~F Square Plate; v=1/6

[Table is symmetric; values in parentheses are interpolated]

a2~/ p/D for values of n of—

m
0 1 2 3 4 5 6

LU g Y PO SO Up 22. 373 61. 673 120. 903 199. 860 298. 556
| U 14. 920 37. 284 75. 948 134. 107 214. 138 (292. 4)

(309. 06)

2 o 67. 591 110. 599 169. 998 248. 064 345. 669
P 159. 324 222. 700 302. 831 (399.2)
(396. 8)

: S U U 290. 427 373. 952 474. 596
L5 U 460. 964 (562. 6)
(565. 5)

6 . 670. 958

For modes symmetric with respect to z=0
(fig. 4.51) and antisymmetric about =0 (asym-
metric with respect to the diagonals):

n—1

W@, y)= Za antty(£)(—1) * sinnwn+Bive(n)

=13, ...

+ 20 Broa(n)(—1)y"2cos mrt (4.69)

m=2,4,.

The first four of these frequencies and the
amplitude parameters are listed in table 4.66
(ref. 4.113).

The four nodal patterns corresponding to
table 4.66 are shown in figure 4.52; also shown
are interesting patterns which arise by taking
the linear combinations:

W@, y)—-KW(, 7)
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wa?./p/D=35.1564 wa?,/p/D=105.4632
. wa?,/p/D=61.093! wa?./p7D=131.4695
| 14 L 1 ¥ ] | J
‘| " e e ——— -~\‘\\-—‘} ” I' " || "
o) | : | | B | _L \
"¥ -—'F———r-q ———————— - b—'————r—- J‘——lL— = —1-
" ‘\ = —— o ] /' - ‘\ \‘ = : "
I \ il S W [
> (I-1) (o-1 (-1 (D-1)
>
: I' 4 ‘\ /' H l' ‘l |
T TR YT /R
) ' - . . { [] A\l -
- o -4 O
ol I’—_(/’— c') \\5_—’— ‘\\ ||| ”l ”——//’ Ill \\-/I’-l,~\\ ?l
] Lok 1x ) Cle &
] I b ,—~~7__’/ - ’___\\~ ] “ ' I
J 1 ) 1 .' [\ 1
(I-2) (II-2) (m-2) (DL-2)
] ,l _ ] ~’,"_--',l - /r T l]
! VAR 0 ’ — ( 7l | | [ P
/ / g l o) | , ~ -/ /7 N~
- ,/ . \ - (@) ] PR e (@) / (@]
- (] \\_—/ N\ 1 .7 4 / | V4 |
V4 ! Y RU ,’ " 9 ’ ~~|®
/ / " HR / ! ¥ N / WX
/ I R Pt RO e R VAN
Yi ! d i Y, 2
= (I-3) (I-3) (1I-3) (I-3)
o .
/' /,‘ 7 ’ﬁ ~—},—— f /’T ,” \' \\ ,’A
- _/ / / \<’ / ’ 7 S
=l F e \ AN ! . A F~-" /1
\ / \ / ’ / 7
\ / \ -’ 7/ 4 -
\5 / - 4 ‘ V4 ' \\ 7/ L4 ~
/’ /” 7N / f A W
-/ 7 // \\_’/ ,/ ,p— I’ ) \ Y ’/
L .{’ i k k 1 A .{’ \ \ 2
(1-4) (I-4) (T-4) (IZ-4)

F1GURE 4.52.—Superposition of mode shapes for a completely free square plate; »==0.3. (After ref. 4.113)
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TABLE 4.65.—Frequency Parameters and Mode Shapes for a Completely Free Square Plate; v=0.3

Nodal pattern waty/o/D n an An b
Modes symmetric about’coordinate axes, symmetric about diagonals
JNg 0 8 51935 |- |
2N 2 21. 00000 2. 54147 1. 24132
{ ) 24. 2702 4 . 04225 4. 29641 3. 67990
N S 6 . 01173 6. 20154 5. 79145
M7 8 . 00494 8. 15225 7. 84480
7 0 — 11966 ||
A I 2 1. 0000 3. 23309 a1. 566151
YO 63. 6870 4 . 03422 4.73844 3. 08985
S 6 . 01065 6. 51558 5. 43573
vt 8 . 00473 8. 39362 7. 58598
s 0 —8. 81714 | e
7NN 2 1. 00000 4. 05046 2. 899354
NN 122. 4449 K 4 —1. 19356 5. 32975 1. 89572
N 6 —. 08213 6. 95746 4. 85734
X 8 —. 02402 8. 74107 7. 18288
— (0 —. 07482 | feccaiccmeeenan
N 2 1. 00000 4. 59037 3. 615451
7TV 168. 4888 4 . 44885 5. 75078 1. 035132
Nl 6 . 03590 7. 28502 4. 35069
[ N ya 8 . 01347 9. 00397 6. 85044
'\ ~
_ 0 —8.90424 |- |
F PR N 2 1. 00000 5. 86426 5. 137071
LN 299, 9325 4 —. 59521 6. 81099 3. 793351
< 6 —1. 39192 8. 14998 2. 36864
™ N X 8 —. 13703 9. 71543 5. 79745

*{=v-1.

Detailed mode shapes showing contour lines
for 16 of the modes described in the foregoing
paragraphs are shown in figure 4.53 (ref. 4.113).

Grauers (ref. 4.114) in an early work also
attempted to solve the problem using solutions
to the differential equation but obtained in-
accurate results.

Upper and lower bounds for the fundamental
frequency were obtained in references 4.115
and 4.116 and were improved to extreme
accuracy in reference 4.117. For »=0.225,
these bounds are

14.1028< waty/p/D<14.1165

Bazley, Fox, and Stadter (ref. 4.118) used
a method developed in reference 4.59 to com-
pute lower bounds for the first 10 frequencies
of the following symmetry class of a square:

Taking a coordinate system as in figure 4.51,
the modes are antisymmetric with respect to
both z and i and are unaltered by interchange
of ¥ and § (symmetric about the diagonals).
Five nodal patterns of this type are shown
in the third part of table 4.65. They also
obtained extremely accurate upper bounds by
the Rayleigh-Ritz method, using the first 50
admissible products of free-free beam functions.
Double precision arithmetic was used in the
computations where necessary. Results are
listed in table 4.67 for »=0.225 and »=0.3.
Herein results from the Rayleigh-Ritz pro-
cedure are given; both 25 and 50 admissi-
ble functions are used to show the rate of
convergence.

Sigillito (ref. 4.76) showed that more precise
upper bounds can be obtained with the Ray-
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TABLE 4.65.—Frequency Parameters and Mode Shapes for a Completely Free Square Plate; v=0.83—Con.

Nodal pattern wayo/D

Modes symmetric about coordinate axes, antisymmetric about diagonals

VAN 19. 5961

117.1093

161. 5049

293. 7190

|

65. 3680

n ayn An AL
0 —19.46060 |_______ | __._
2 1. 60000 2. 44653 1. 41933
4 . 00264 4. 24093 3.74359
6 —. 00487 6. 16324 5. 83219
8 —. 00290 8.12315 7.87493
0 3.93698 |-
2 1. 00000 3.25932 21, 619267
4 —. 09935 4.75638 3. 06216
6 —. 01507 6. 52864 5. 42004
8 —. 00451 8. 40376 7.57475
0 3.84826 ||
2 1. 00000 3. 98317 2. 804587
4 —. 48091 5.27879 2. 03331
6 —. 02845 6. 91850 4. 91267
8 —. 00453 8.71009 7. 22041
0 —. 02833 |
2 1. 00000 4. 51264 3.51623%
4 —. 24498 5. 68893 . 603227
6 —. 01363 7. 23629 4. 43127
8 —. 00297 8. 96459 6. 90189
0 B.T9854 | e
2 1. 00000 5.81033 5. 075437
4 . 66331 6. 76461 3. 709447
6 —. 61699 8. 10925 2. 49801
8 —. 05732 9. 68297 5. 85150

s f=v-1.

leigh-Ritz procedure by using Legendre func-
tions rather than beam functions. Results
from this approach are also listed in table 4.67.

Waller (ref. 4.119) obtained experimental
frequencies and mode shapes for square brass
plates (v=%). Consider the mode shapes as
being approximated by free membrane mode
shapes; for example,

—-— maZ n1r:’L7 nrx m7r-1]
W (%, 7)=cos a2 7" +cos g GO
(4.70)

in terms of figure 4.51. Theratio of fre-
quencies relative to the fundamental are given
in table 4.68 for various m/n ratios. The plus

or minus signs after m/n in the table correspond
308337 0—70——8

to plus or minus signs in equation (4.70)-
Values given above the main diagonal of the
array are for the minus sign, and values below
the diagonal are for the plus sign. Numbers on
the diagonal of the table are then for m=mn.
In reference 4.79 are plotted the experimental
frequency ratios of reference 4.119. This plot
is reproduced as figure 4.54. Experimentally
observed mode shapes corresponding to many
of these frequencies are shown in figure 4.55
(ref. 4.119). Other experimental results for
the square are given in references 4.110,
4.113, 4.120, and 4.121.

Waller (ref. 4.122) observed the transition
points in sudden nodal pattern change in the
fundamental mode as a/b varies for the com-
pletely free plate. This had been observed
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TasLE 4.65.— Frequency Parameters and Mode Shapes for a Completely Free Square Plate; v=0.5—

Concluded
Nodal pattern wa?/p/D n an A PN
Modes antisymmetric about coordinate axes, symmetric about diagonals
! 1 1. 00000 1.53788 | = 0.060422¢
| ] 3 . 00766 3. 21949 2. 76314
1 18. 4728 5 . 00100 5. 13469 4. 86158
! 7 . 00041 7. 09684 6. 90181
71\
N 1 1. 00000 2. 97685 2. 61947;
. 3 . 23339 4. 10632 1. 06694
L 77. 5897 5 . 00888 5. 73251 4.13985
N 7 . 00178 7. 54066 6. 41392
ra
~"\-i~-",— 1 1. 00000 4.10247 3. 851011
b 3 — 4. 56065 4. 98299 2. 61348¢
. 156. 2387
F=171 56. 238 5 —. 05491 6. 38986 3. 02815
',,-1-\& 7 —. 01457 8. 05176 5. 75931
SHE® 1 1. 00000 4.76468 4. 549963
SN 3 —. 07613 5. 54095 3. 564007
e d ] 214. 191
T Rl - . 17938 6. 83389 1. 81600
Y Y 7 . 01181 8. 40846 5. 22474
N/ ) N2 .
AR 1 1. 00000 5. 61744 5. 436514
g ,f”'r\‘ 9 301, 5724 3 —6. 10581 6. 28933 4. 642814
=] 5 —2. 80175 7. 45357 2. 357057
N 7 —. 12231 8. 91940 4, 29469
Cy N L]
Modes antisymmetric about coordinate axes and diagonals
Nt 1 1. 00000 2. 83585 » 9. 458054
_-:3;<___ 69. 5020 3 —. 12827 4. 00525 1. 39928
SN : 5 —. 00557 5. 66057 4. 23769
21N 7 —. 00101 7. 48612 6. 47750
[
NNV 1 1. 00000 4. 31266 4. 07419i
N\ 1 ;
RN 3 2. 68336 5. 15742 2. 932414
,'/’.\'[\ \ 173. 6954 5 —. 13566 6. 52679 2. 72047
28NN 7 —. 02103 8. 16082 5. 60366
Y 1 1. 00000 4. 66215 4. 44248;
b N2 904 6527 3 . 15411 5. 45304 3. 425731
Ny . 5 —. 13841 6. 76282 2. 06503
<X ' 7 —. 01080 8. 35079 5. 31642
L Y/
NG 1 1. 00000 5. 55717 5. 374214
R 3| 1275527 6. 23555 4. 569707
2] 294, 9247 .
T-AS 5| —346.402 7. 40825 2. 209557
TN 71 —20.133 8. 88156 4. 37240
Pl e




el

U
WA

| wa?/p7D=35.1564 (x=0)

T

wa?/p7D=34.8010 (x=-0.) wa?/p7D=61.0931 (k=-0.5) wa2/p7D =105.4632 {k=-1)

wa?/p7/D=351564 (k=-I) wa?/p7D=77.5896 (k=0) wa?/p7D=131.4695 (xk=-0.7)  wa?,/p7D=294.9242 (k:0)
N/ A A\ [ \_/ N\
2NN == X

Sresie et I over W o |

&

o = + > H & N
.50 N \o ° -0,%0 g q,:'o o 189/ /0
) @ © ©©X
\ . 5.28 por 84 O
wa2/p7D=63.6869 (x:=0) wa?,/p7D=105.4632 (x=0) wa?,/p7D=156.2384 (x=0) wa?,/p7D=299.9320 (x=0)

Fieure 4.53.—Contour lines for 16 modes of a completely free square plate; »=0.3. (After ref. 4.113)
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TaBLE 4.66.—Frequencies and Amplitude Parameters for a Completely Free Square Plate;

VIBRATION OF PLATES

v=0.3;

Modes Symmetric to T=0; antisymmetric to Y=0; p=+—1

way/p/D n o An e m B Am Am
34.8011_ - 11 —1.00000 | 2.12746 | 1.58937¢ 0! —0.18568 | ccocccoc|ommmaaaon
3 .01182 | 38.53922 | 2. 33964 2 .29218 | 2.74337 | 0.68841
5 .00430 | 5.34098 | 4. 63399 4 .01218 | 4.41884 | 3.53184
7 .00183 | 7.24749 | 6.74343 6 .00321 | 6.28698 | 5.69859
» 8 .00133 | 8.21743 | 7.77650
61.0932___ _______._._._. 1 1.00000 | 2.68145 | 2.27819 0! —7.62932 | e
3 —.86028 | 3.89746 | 1.67626 2 —.56588 | 3.19221 | 1.47992¢
5 —.04348 | 5.58482 | 4.33703 4 —.01392 | 4.71065 | 3.13207
7 —.00074 | 7.42901 | 6.54292 6 —.01076 | 6.49540 | 5.45984
8 —.00595 | 8.37796 | 7.60328
1054634 ___________ 1 1. 00000 | 3.41843 | 3.11218¢ 0 14106 |- oo
3| —1.43311 | 4.43685 | 1.298341 2| —3.03882 | 3.83219 | 2.58567¢
5 —. 07788 | 5.97375 | 3.78343 4 —.01973 | 5.16582 | 2.30528
7 —.02391 | 7.72565 | 6.18986 6 —.02166 | 6.83269 | 5.03133
8 —.01136 | 8.64209 | 7.30167
131.4697__ .. 1 1.00000 | 3.78427 | 3.51008¢ 0 — 07630 | oo
3 .00333 | 3.72448 | 2.07863¢ 2 —.07815 | 4.16181 | 3.05298:
5 .00250 | 6.19037 | 3.41750 4 .17972 | 5.41486 | 1.63687¢
7 .00245 | '7.89434 | 5.97322 6 .01323 | 7.02287 | 4.76227
8 .00382 | 8.79322 | 7.11894

theoretically for other boundary conditions
(see secs. 4.3.1 and 4.3.12). In figures 4.56(a)
and 4.56(b) are shown the nodal patterns of
two brass plates having the same width, but
the length in figure 4.56(a) is slightly greater.
The a/b ratio is approximately 1.93. The cyclic
frequencies in figures 4.56(a) and 4.56(b) were
548.8 and 558 cps, respectively. It was found
that by gradually filing down the longer side
the nodal patterns in figures 4.56(c), 4.56(d),
and 4.56(¢) could be produced. It is esti-
mated that the transition between figures
4.56(b) and 4.56(f) occurs at a/b=3.9.

Pavlik (refs. 4.111 and 4.112) extended Ritz’
work to nonsquare rectangular plates. Fre-
quencies and mode shapes for three aspect
ratios are presented in tables 4.69 to 4.71 for
»=0.25. The functions X, and Y, are as
defined previously in equation (4.58).

In reference 4.13, extensive results are
obtained for a/b=% and % and v=%. These
are listed in table 4.72. Values in parentheses
are interpolated.

Mode shapes in the form W, (&, y)=Xx(Z)
Y.(7) corresponding to w., were found in ref-
erence 4.13. The shape of the components

X, and Y,(7) are shown in figure 4.57 for
a/b=1.0. The curves of figure 4.57 do change
slightly between the different modes and with
varying a/b ratio. Thirty-six precise sets of
curves for W,.(Z, 7) are plotted in reference
4.13, but is is not felt that the variations are
sufficient to justify their detailed repetition here.
An estimate of this variation can be obtained by
looking at the edges where the variation is
usually the greatest. One of the mode compo-
nents having relatively large change in shape
due to change in the other component or
a/b is X,(F). Deflection values to be used at
¥/a=0.5 in figure 4.57 for varying values of
Y,() are given in table 4.73 for a/b=1.0.
Increasing n also increases the magnitude of
the negative curvature in the range
0.3<z/a<<0.5.

Variation in edge deflection of X,(Z) with
a/b ratio is shown in table 4.74 for Y.(%).

Accurate upper and lower bounds for the
doubly antisymmetric modes of a rectangle
(see discussion earlier in this section) are re-
ported in reference 4.118. These results are
given in table 4.75 for »=0.3. Upper bounds
from reference 4.78 for doubly antisymmetric
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TaBLE 4.67.—Bounds on Frequency Parameters
waly/p/D for Modes of a Completely Free
Square Plate Which Are Antisymmetric About
the Coordinate Axes and Symmetric About the
Diagonals

"
/ )/7 )// 0a*y/p/D
% /
ms
< / / / Mode L Upper bounds
— ower
= 80 / / ). ) bounds
g y / / 25 terms | 50 terms | 50 terms
£ o / ) ) (vef. 4.118)|(ref. 4.118)| (ref. 4.76)
S =
%704 ar,
o
o / / // »=0.225
2 N A YL/
e m=9| ( 7\
2 ¢ j S 13.851 | 14.119 | 14,118 14. 111
55 / 2 . 76.245 | 77.621 | 77.576 |  77.154
@ _ / S J, 151. 54 156. 41 156. 36 156. 26
s % 4o 210.90 | 214.79 | 21467 | 21429
£ 40 A/ 5o 293.27 | 302.49 | 302 24 301. 94
gl 44 6omeoeee 421.26 | 430.94 | 430.76 | 430.03
m=7 72 (R 438. 47 456. 82 456. 37 456. 05
30 - / - T, 504, 41 519. 43 519. 03 518. 40
m=6/ (/ 9 ... 654, 62 683. 94 682. 76 682. 03
1 10 710.70 | 727.35 | 726.97 725. 85
20 m=5 ~
1
m=4 »=10.300
10 Q= 1
m=3 m=2
s m=i
of jm=0 1oeooe 13.201 | 13.474 | 13.473 |  13.464
O I 2 3 45 6 7 8 9 10l 12 13 2 __ 75. 735 77. 430 77. 354 76. 904
Number of Nodal Lines,n b F 147. 71 153. 13 153. 07 152. 80
: S 209. 46 214. 85 214. 62 213. 94
FicUurRE 4.54.—Experimentally determined frequency L 288. 72 299. 31 299. 05 298. 51
ratios for a completely free square plate; »=1%. 6 - 416. 00 430. 68 430. 33 428. 96
(After ref. 4.79) [ 432. 13 451. 06 450. 71 450. 19
< S, 498. 77 516. 68 516. 19 515. 01
9 ____.. 645. 60 677. 35 676. 35 675. 27
modes for b/a=4.0 are given in table 4.76  10------ 701.20 | 727.79 | 727.08 724.92
for »=0.3.

Waller (ref. 4.123) measured experimental
frequencies and mode shapes for brass plates
having several aspect ratios. Relative frequen-
cies for three aspect ratios are given in table
4.77. The letter m indicates the number of
nodal lines approximately parallel to the y-
axis (or width), and, similarly, n indicates
those for the 7 axis.

Nodal patterns (ref. 4.123) are shown in figure
4.58 for a/b=4.0, 2.0, 1.5, and 1.09. Other ex-
perimental results for free rectangular plates
are given in references 4.111 and 4.112. Other
approximate analytical results for the problem
are in references 4.109, 4.114, and 4.124 to
4.126.
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Fiaure 4.55.—Experimentally determined mode shapes for a completely free square plate. (From

ref. 4.119)
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Figure 4.56.—Nodal patterns in the vicinity of a
transition point for a completely free rectangular
plate. (After ref. 4.122)
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TaBLE 4.68.—Experimentally Determined Relative Frequencies for a Completely Free Square Brass

Plate; v=14

Relative frequenecy for values of m/n minus—

FIGUR_E 4.57.—Mode shape components X.(&)Va or
Y.(%)vb for a F-F-F-F rectangular plate of dimen-
sions @ and b. (After ref. 4.13)

min
+
0 1 2 3 4 5 6 7 8 9 10 11 12 | 13 |14
[ T I 1.52 5.10 9.14 | 15.8 | 23.0 | 32.5 | 43 55.2 | 70 84‘ 101 ({119 (141
) R P 1 2.71 5.30 | 10.3 15.8 | 23.9 | 32.2 | 43 55.8 | 71 86.1 (102 (121 |._._
2. ___. 1.94 2.71 4.81 8.52 | 12.4 19.0 | 26.4 | 34 46.6 | 59 73 89 105 (124 |___
3o___. 5.10 6. 00 8.52 | 11.8 16. 6 22.6 ) 30.0  39.5{50.5|63.4|77.592.4 1110 |128 |___
4_____ 9.9 |10.3 13.2 16.6 21.5 28.7 | 35.5 | 45.4 | 55.9 | 69.7 | 82.9 | 99 116 (132 |___
5_o____ 15.8 16. 6 19.0 23. 3 28.7 35 43 52.1 | 64.5 | 75.9 | 90 106 122 |136 |--_
6. ____ 23.8 23.9 27.1 30.0 35.9 43 51 61.7 | 73 84 99 115 130 [____|.__
7 . 32.5 32.4 34.0 39.8 45.4 53 61.7 | 70.3 | 84 93 108 124 [N NN AU
8. ____ 43.0 43.0 46. 6 50.5 57.2 64.5 | 73 84 94.4 1106 120 136 RS RO S
9_ ___. 55.2 55.8 59 63. 4 69.7 76.2 | 84 93.2 106 120 133 . ___ RV NI
10_.___| 70.0 71.0 73 77.5 82.9 90 99 108 120 1 S N PR FRUSRION R
11.___| 84.0 86. 1 89 92. 4 99 106 115 124 136 ||l _... (SO U
12____{101 102 105 110 116 122 130 | e RO SRR
13___._|119 121 124 128 132 136 147 | |e | JRUPS SRR
44l e RN R N
X4(X)/0 or}
\ATING)
- X)/a or
X4X)/a or ¢z(§) }
sk YaW)ve } 27/
ok
o5}
0 : : Ay .1
ol 02 03 o5 2b
-05}
-0k
I e or}
s(x X(X)/a or
Y5(y)ﬁ Y:(Y)JB }
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TaBLE 4.69.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=1.041;

=Y

wa*yp/D WE,
189.6_____ X,¥;+0.050X,Y,+0.045X,Y;— 0.012X3Y 53— 0.0064 XY, —0.0055X,Y;+0.0034 XY+ 0.0032 XY 5
280.6.____.| X;Y,—0.66X,Y;—0.0043X,¥;—0.011X,Y,+0.013X,Y,—0.0034X,Y>+ 0.0045X,Y,+40.00077X,Y,
343.9______| 0.66X,Y o+ X¥,—0.022X,Y,+0.016X,Y,+0.0090X,Y,40.0046 XY+ 0.0027 X, Y-+ 0.00038X,Y,
494.9____ __ X,V1—0.066X,Y;--0.083X,Y;+0.042X,Y;+ 0.0094 X Y5~ 0.016X,Y,
511.9.____.| X,Y,—0.088X;:Y+0.082X;Y,+0.036 XY+ 0.011X;Y,—0.015X,Y,
832.0______ 0.094X,Y,+ XY~ 0.024 X,Y,+40.028 XY+ 0.010X;Y,
902.6._____ 0.070X,Y;+ Xo¥3:—0.024X,Y,;+40.035X,Y,40.011X,Y;
909.2______| 0.016X:Y,—0.016X,Y,~+ X,¥,—0.026X,Y,—0.021X,Y,+0.10X,Y,+ 0.096X,Y,—0.024X,Y,
987.5_ .- —0.020X,Y;+ X3Y—0.64X,Y;5+0.029X5Y;3+0.010 XY+ 0.0099 X, Y;— 0.0047 X ;¥3— 0.0053 XY
1098______ —0.074X,Y:1+0.65X:Y+ X,V +0.15 X3V +0.052X;Y;+0.043 X, Vs — 0.025 XY 3— 0.023X,Y;
1502_____. —0.094X,Y,-+0.028X,;Y o+ X2 Y —0.16X,V,— 0.010X:Y,+0.13X3Y,+ 0.085 XY, — 0.024 XY,
15562______ —0.091X,Y;+0.027X,Y;+ X.¥;—0.28X,V;— 0.0084 X,V ;4 0.14X,Y;
1624 _____ —0.016X,Y,+0.029X,Y,+ X,Y,— 0.19X,¥,—0.030X,¥,+0.032X,Y - 0.015X,Y,
1772 ... —0.013X,Y o+ 0.022X,Y,+0.20X,Y ¢+ XY+ 0.044X,Y,— 0.031 X,V + 0.015X,Y,
1824 ____._ —0.042X,Y;—0.038X,V;+0.35X,Y;+ X,V;— 0.085X,Y;5+0.0016 X,Y;
1951 _.___ —0.037X,Y,—0.028X:Y--0.19X5Y 5+ X;¥,—0.053 XY+ 0.0018 XY
2165 __ .. 0.013X,Y;—0.098X,Y;—0.10X,Y;3+ X;¥;—0.097 X;Y,— 0.071X,Y;5+0.15X:Y3+0.14 XY
2306 .. __ X:Y,—0.65X,Y,
2484 _____. 0.65X,Y.+ XY,
2698 ... XY,

TaBLE 4.70.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=1.073;
r=1

H

wa’xf;lﬁ W(E) ?_/)
1741 __ X,¥,-+0.052X5Y;+0.043X,¥;—0.012X,; V5~ 0.0067 X;V; — 0.0052X,¥;40.0034 XY, 4 0.0031 X,
2554 _____ Xa¥o— 0.44X,Y,—0.013X:Y,40.0075X,Y 4+ 0.013X Y, — 0.00030X,Y,--0.0043X,Y,+0.00023 X, Y
320.3____._ | 0.50X,Y o+ Xo¥2— 0.028X,Y,+ 0.017X,Y o 0.0064 X )Yy +0.0051 XY, +0.0019.X,Y,— 0.000097 X, Y,
449.2______ X.¥,—0.061X,Y3+0.081X,Y;+0.044X,Y; - 0.0089 X, Y;— 0.016 X,Y
4753 ... X,¥,—0.098 XY+ 0.084 XY, 0.034X,Y,-0.012X;Y,—0.014 XY,
7421 ___ 0.11X,Y,+ XY ,—0.024 X,Y,+ 0.026 X,Y ;4 0.010.X ;Y
840.2______ 0.015X,Y o+ 0.016 X ¥+ X,V — 0.029 XV — 0.019.X Y+ 0.11X,Y,+0.095X,Y,— 0.024 X,Y 4
853.1.___..| 0.064X,Y+ X,Y3—0.024X,Y;+0.038X,Y+0.011X,Y;
8874 _____ —0.059X, Y1+ XY, —0.44X,Y;5+0.083X;Y;3+0.032 XY +0.025 XY ;— 0.015 XY 3 — 0.014 X5V
1028._____ —0.074X,Y1+0.65X,Y,+ X Y3+ 0.15X, Y3+ 0.056 XY, + 0.041 X, Y5 — 0.025 XY, — 0.022 X5
1370...__ —0.095X,Y,;+0.027 XY )+ X5¥,—0.14 X,V — 0.011 X,V 4+ 0.13X5Y s+ 0.088 XY, — 0.024 XY,
1432 _____ —0.090X,Y,+0.027X,Y;+ X,V3—0.34X,Y,— 0.0078 X Y5+ 0.14 X,V
1450 _____ —0.017X,Y,40.031 X,¥,+ XV, —0.11 X,V,— 0.030X,Y,+0.029 X;Y,+0.015 X, Y4
1637_.____ —0.044X,Y,—0.039X,Y;+ 0.48X,Y;+ X,Y;— 0.031X,Y;+0.0015X,Y;
1676 ____ ~0.018X,Y o+ 0.020X,¥,+0.12X,Y o+ X,V +0.051X,¥,—0.031 X,Y,+0.016 X, Y,
1836____.. —0.035X,Y,—0.026 X,Y,+0.16 X;V,+ X1V, — 0.064 XY (- 0.0016 XY,
1991 _____ 0.013X,Y;—0.098 XY, —0.10X; Y3+ X;¥3— 0.11X;Y;— 0.064 X,V5-+ 0.15X; ¥+ 0.14 X5V'5
2084 ___ + XY2—0.44X,Y,
2314______ +0.65X,Y,+ X,Y,
2405_.____ + XY,
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TABLE 4.71.—Frequencies and Mode Shapes for a Completely Free Rectangular Plate; a/b=1.499;

y=14
waty/p/D W, 7)
498.7______| X,Y;-+0.072X;Y;0.024X,Y;
525.7 ... X,Y—0.098X,Y,—0.011X,Y,
1208______ 0.085X,Y ¢+ XoY,—0.014X,Y,+0.039X,Y,
1212 _____ XY 1—0.026X,Y;
1434______ X3Y—0.42X,Y,
1623______ 0.55X:Y s+ X1V, +0.1X;Y,+0.025X:Y,—0.020X,Y,
2160_.___. —0.074 XY+ X5V, —0.10X,Y;
2611______ 0.012X,Y ¢+ 0.014X,Y,;+ X, ¥Y,—0.20X,Y,
2004______ —0.039XY,+0.20X,Y,+ X, YV (—0.03X,Y,—0.019X,Y,+0.014X,Y,+40.0039X Y5
3332______ 0.026 XY+ X Y3;—0.025X,Y;

TABLE 4.72.—Frequency Parameters wa’p/D for a F~F~F~F Rectangular Plate; =14

[Values in parentheses are interpolated]

waty/p/D for values of n of—
a m
b
0 1 2 3 4 5 6
14 0 |- __ 5. 593 15. 418 30. 223 49. 965 74. 639
1| .. 7. 374 (17. 61) 27. 032 (42. 25) 61. 628 (85. 56)
2 22. 373 (26. 52) 37. 585 (51.70) 70. 007 (91.78) (117. 29)
3 61. 673 (65. 17) (75. 05) 91. 963 (111. 58) 135. 794 (162. 56)
4 120. 903 (123. 34) (132. 94) (149. 57) 170. 974 (196. 56) (223. 50)
5 199. 860 (200. 70) (210. 02) (226. 41) 248. 876 274. 639 (303. 18)
6 298. 556 (298. 94) (307. 30) (324. 72) (345. 96) (372. 88) 402. 968
24 O || ._ 9. 944 27. 410 53. 735 88. 826 132. 691
1. 9. 905 22. 245 40. 339 66. 309 |. 100. 928 (144. 5)
2 22. 373 (30. 36) 46. 654 (68. 39) 97. 822 (133. 40) 177. 606
3 61. 673 (69. 56) 86. 028 111. 510 143. 532 . 182. 204 (226. 20)
4 120. 903 (127.7) (145. 2) (160. 5) 204. 804 (245.9) 294. 258
5 199. 860 (205. 1) 222. 088 (250. 0) 283. 715 326. 580 (374. 8)
6 208. 556 (302. 1) (320. 4) (347.8) (382. 6) (425. 6) 476. 853

TABLE 4.73.—Variation in Edge Deflection of @  TaBLE 4.74—Variation in Edge Deflection of a
Mode Component Due to Change in the Other Mode Component Due to Change in a/b; v=14

Component; v=14
a/b 1 % %
n 1 2 3 4 ( 5 ‘ 6
Edge deflection___..___. 1. 81 1.72 1. 67
Edge deflection_ __|{1. 95 [1. 81 |1. 71 |1. 66 |1. 62 |1. 60
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TaBLE 4.75.—Bounds on Frequency Parameters wa?+/p/D for the Doubly Antisymmetric Modes of a
Completely Free Rectangular Plate; v=0.3

wad v p/D
Mode Lower bound| Upper bound| Lower bound | Upper bound| Lower bound | Upper bound
bla=1.00 bla=1.25 bla=1.50
) U 13. 092 13. 474 10. 479 10. 761 8. 6667 8. 9351
2P 66. 508 69. 576 48. 352 50. 487 36. 651 38. 204
B e 75. 146 77.411 67. 665 69. 746 64. 844 66. 965
4 e 145. 57 153. 12 117. 68 124. 15 4. 147 98. 648
S 196. 46 205. 17 132. 77 138. 41 103. 32 108. 18
6L 207. 87 214. 81 197. 36 205. 77 166. 83 176. 56
0 el 277. 72 292. 37 208. 75 220. 03 184. 44 193.73
8 e 285. 47 299. 27 249. 46 262. 66 198. 62 205. 35
O e 393. 93 420. 99 264. 27 277. 23 234. 75 244. 80
10 L. 410. 74 430. 66 339. 96 358. 87 261. 14 275. 96
b/a=2.00 b/a=4.00 b/a=8.00

3 S 6. 4563 6. 6464 3. 1463 3. 2604 1. 5330 1. 6158
2 .. 24. 417 25. 455 10. 284 10. 728 4. 7291 4. 9941
U U 56. 151 59. 051 19. 809 20. 821 8. 2953 8. 7915
S U 63. 726 65. 392 32. 952 34. 783 12. 436 13. 237
D e 85. 647 89. 263 49. 920 53. 194 17. 323 18. 514
6 - 107. 66 113. 81 60. 830 62. 394 23. 095 24. 766
T e e 125. 15 131. 73 67.133 69. 099 29. 845 32. 089
8 e 174. 88 186. 73 71. 408 76. 824 37. 617 40. 542
USRS SO 178. 26 190. 04 78. 658 82. 051 46. 410 50. 150
10 . 195. 26 202. 79 94. 076 99. 291 56. 017 60. 602

TABLE 4.76.—Frequencies for Doubly Antisymmetric Modes of a Completely Free Rectangular Plate;

bja= 4.0; v=0.3
Mode 1 ‘ 2 3 4 5 6 I 7 8 9 10
wayp/D_ oo ___ 3. 2507 | 10.711 | 20. 749 | 34. 622 | 53. 092 | 64. 080 | 71. 048 | 77.232 | 84.532 | 102. 87

4.4 ELASTIC, DISCONTINUOUS, AND POINT
SUPPORTS

4.4.1 Elastic Edge Supports

Consider first the rectangular plate simply
supported (SS) along the sides =0 and z=a
and elastically restrained (ES) against both
translation and rotation along the other sides
as shown in figure 4.59. The solution. equa-
tion (eq. (1.37)) satisfies the boundary condi-

tions along z=0 and z=a.

boundary conditions are

oW,
Mz, 0)=—Ki 5 (@,0)

Mz, b>=K2%yW (2, )

V. (z, 0)=K;W(z, 0)
V,,((I?, b)=—K4W(II?, b)

<

J

The remaining

(4.71)
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Ficure 4.58.—Experimentally observed nodal patterns for
completely free rectangular brass plates. (a) a/b=4. ()
a/b=2. (c) a/b=l.5. (@) a/b=1.09. (From ref. 4.123)
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TaBLE 4.77.—Experimentally Determined Frequency Ratios for Completely Free Rectangular Brass

Plates
Frequency ratio for values of m of—
n
0 1 2 3 4 5

a/b=1.09
0 e 1. 53 4. 55 9.8 |oceee
) SO U U EUUI RPN RO U =1 2. 67 5.16 10 oo
2SS 2. 23 2.78 5.1 8 13 oo
S, 5. 35 6. 4 8.8 11. 5 16 | .
4 - 10. 8 11. 8 14 17 21 o .

a/b=1.5
1 U SUOUUUURUPNS SOOI UUPUPRY (TR 1. 08 2. 93 5. 53 9. 96
) U P REOUUUP U SPUOUNPPSRURN b] 2.49 4. 47 7. 09 11
2 PP 2. 62 3. 42 5 7. 60 10. 5 14. 9
P 7.5 7.9 9.6 12.3 15. 5 20
OSSR 13. 6 14. 4 16. 5 19.3 22.7 27

a/b=2.0
O | el 2. 88 5.42 | ____.__
B USSP 1. 20 2.30 3. 62 6.2 |__._____.__
. USRI 4,37 4. 87 6.7 8.2 10.8 .

» Fundamental frequency of a 3.94- by 3.62- by 0.720-in. plate was 423 cps. For a 6.15- by 5.67- by 0.0906-in.

plate, it was 220 cps.
b Fundamental frequency of a 9.81- by 6.38- by 0.934-in. plate was 134 cps.
¢ Fundamental frequency of a 2.36- by 1.172- by 0.0807-in. plate was 1730 cps. For a 5.55- by 2.78- by 0.1240-in.

plate, it was 482 ¢ps.

a/2 a/2

b/2

Elastic Supports b/2

g —
W Y-
x|

Fi1GURE 4.59.—SS-ES-SS-ES plate.

oS
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where K534 are the stiffness coefficients of
distributed translational and rotational springs
acting along the edges y=0 and y=b. For
simplicity it will be assumed that these co-
efficients do not vary with z. The constants
K, and K, have dimensions of moment/(unit
length) and K; and K, have dimensions of
force/(unit length)2. Substituting equation
(1.37) into equations (4.71) results in a char-
acteristic determinant, the zeros of which yield
the vibration frequencies.

Das (ref. 4.10) showed that the characteristic
equation for the case K;=Ky=K, Ky=K,==

becomes
cosN\b coshhb—1 N—N
sin \bsinhNod 2\
+<()\2+)\2) D) [cobh b cot b_'_ D )\2+>\2)]
Az K\ 2\ )\,
(4.72)

with A; and A, as defined in equations (4.27)
and that the mode shapes are given by

W(x,y)= {(cosh Azy—cos My)+|:()‘§

+)\§) sin )\1b+(K)\1/D)(COSh )\2b‘—GOS xlb)] sinh A
(B/D)(n, sin Mb—\; sinh Azb) 2y

__(M+)j) sinh Aeb+ (Eo/D)(cosh \b—cos \b) .
(KID)(n, 5in Mb—A; sinh Ab) sin \y psin ez (4.73)

In reference 4.10 the characteristic equation for K;=K,=w, K;=K,=K is given as

cos N\ b coshab—1

:(gzh1)2—(glhz)2
sin >\1b sinh )\26

29192h1h2

with g, and hy , defined as

cob M cothhsb I_{) h1+h2]
+< (bt hz))[ Giha +3 Sqngautn] 7Y

gl=)\1[>\’1’+(2“‘1')0¢2]

go= MNIN—(2 _V)az]

(4.75)

=M +va?)
ho=N(A2—pa?)

and the mode shapes are

(K/D)(hy+-hy) sin A b+ gihz(cos \b—cosh \;b)

W, y)z[cosh Ny+

1h2 sinh )\zb gghl SiIl. )\16
(K/D)hg(h1+h2) sinh hob— gzhlhz(COSh Ab—cos\b) .

sinh Ay + %3 cos My

hl(g1h2 Slnh )\2b gZhl Sln )\1b

The buckling results obtained by Lundquist
and Stowell (vef. 4.127) can be applied here by
use of equation (4.24). For the case given by
equation (4.71) when K;=K,=« and K, and
K, are separate and distinct, the characteristic
equation is given as

[(x§+x§) +(&:/D) (M tanh }S—b“‘l tan le_bﬂ
><|:(>\;‘T+>\§)+(Kz/D)
()\2 coth

neoty)]

=—|:(>\¥+)\§)+(Kz/D)

()\2 tanh )‘i2b+>\1 tan )‘—éb>]

sin xly] sinax (4.76)
x| s+ (E/D)

()\2 coth—b—h ot%—b>] (4.77)

It is apparent that for K;=K,=K, equation
(4.77) reduces to one of its sides set equal
to zero. Furthermore, for K;=K,=K, modes
symmetric with respect to T (fig. 4.59) give
rise to the characteristic equation

N4n2+(K/D) (xz banh>‘2b+>\1 b nz‘l—b)_

(4.78)
and the antisymmetric modes
NN (K/D) (xz coth b-—xl cot)\—gl =0
(4.79)
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FicURE 4.60.—Frequency parameters w?a?b?p/m2wD for a SS-ES-SS-ES rectangular plate with symmetrical slope
restraints.

In reference 4.127 the problem is also solved
by the Rayleigh method. A mode shape is

chosen as
- — 4A/_, b
Wiz, y)=[7,2— ('yz—z>

+<‘%—4+ B) cos —:I cosaZ (4.80)

where A and B are arbitrary amplitude co-
efficients. The coefficients 4 and B are chosen
so that A=0 represents the condition of
simply supported edges at 7= +b6/2, and B=0
represents the condition of clamped edges.
The ratio A/B is then a measure of edge re-
straint and is determined from

W W
5?/2+V T Jjmin <by 7=bi2 (4:81)

which gives A= (zKb/8D)B. Formulating the
Rayleigh quotient yields the frequency param-

oo () {2+

+<1+ (mb mb) (; Kb 4{%}
D)

+§(1+@> ]} (4.82)

Results obtained from equation (4.82) are
given in table 4.78 in the columns denoted
by (a). Realizing that these values must be
upper bounds, correction factors were estab-
lished based upon exact solutions of equation
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(4.78) for fundamental roots at selected points.
Column (b) lists the corrected values. Values
marked by an asterisk identify the exact values
obtained. The values of column (b) are
plotted as figure 4.60.

Figure 4.60 gives valuable design information
if properly used. The fundamental frequency
is obtained by letting m=1. While frequencies
higher than the fundamental can be obtained
from it by increasing m, it must be remembered
that all higher mode shapes considered have
nodal lines parallel to only the y-axis. Other
mode shapes are not considered in figure 4.60.
The dashed line locates the minima of the
various curves.

Tt is suggested in reference 4.127 that, when
the two side moment restraints are unequal,
a reasonably good approximation to the true
frequency value can be obtained by averaging
the results obtained from the separate sym-
metric problems by considering first one
magnitude of edge restraint and then the other.

If the frequency parameter T is defined by

w?a?bip

I'= mirtD

(4.83)

then the average used may be either the arith-
metic mean, (I'1+T4)/2, or the geometric mean,
NI

Carmichael (ref. 4.128) used the Rayleigh-
Ritz method to compute frequencies for a
rectangular plate having w=0 and uniform
slope restraint along pairs of opposite edges.
Mode shapes of the type

were used, where X, (z) and Y,(y) are the
characteristic functions of a vibrating beam
having zero deflection and rotational restraint
at its ends; that is,

Xn=A, ( cosh i co e"‘x>
a a
. [ o €T
+Bm smh T—f-sm 7 (484)

and similarly for Y,, by replacing m, 2, and a
in equation (4.84) by n, y, and b, respectively.

Values of e, A, and B,, are given in table 4.79
for varying spring constant parameters ¢, with

L= (for X,) .
Er=tl (forY,) |

and K defined as in equation 4.81.
The strain energy of the system is (fig. 4.59)

v=z | [GF) +(Gr) v S 5
+2(1 v)<§’ ):Ida:dy
L) G S
Y]

where the second term represents the energy
stored in the rotational springs along the edges.

Calculations were based upon a 36-term
series for the deflection function taking m,
n=1, 2, 3, 4, 5, 6. Because the diagonal
terms of the resulting frequency determinant
are much greater than the others, an approxi-
mate solution for the (mn)th mode can be ob-
tained by taking only the (mn)th term of
W(z,y). The approximate frequency can then
be written as

o=y 2] (3) test2(E) guse | s

where

- enlen(Brt+1)+24,,(Bn—1)]

(4.88)

and similarly for ¢, by replacing m by n in
equation (4.88). Values of ¢, , are given in
table 4.79.

Frequencies and approximate nodal patterns
are shown in table 4.80 for ranges of d/¢ and
g,=§,=¢  Values in parentheses are those
found from equation (4.87). Other results
for ¢£=20 and « are obtained from the 36-
term series. Values for £=0 found from equa-
tion (4.20) are included for comparison. It is
seen that the approximate solution in the table
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TaBLE 4.79.—Eigenfunction Parameters for a Beam With

: m, n=1 m, n=2 m, n=3
€ 4, — By 1 € A, —B, b2 € Az=—B; @3
[ 3.1416 |0 0 9. 8697 | 6. 2832 0 39. 479 9. 4248 0 88. 827
0.25__.__ 3. 2166 | . 0375 | . 0346 9. 8710 | 6. 3220 | . 0194 | . 0195 | 39. 482 9. 4909 . 0131 | 88. 827
0.5 ... 3.2836 | . 0711 | . 0668 9. 8750 | 6. 3588 | . 0378 | . 0380 | 39. 485 9. 4762 . 0257 | 88. 830
0.75___._| 3.3440 | . 1015 | . 0946 9. 8306 | 6.3939 | . 0554 | . 0556 | 39.495 9. 5007 . 0380 | 88. 833
1. 3.3988 | . 1293 | . 1210 0. 8880 | 6.4273 |.0722 | . 0724 | 39. 505 9. 5245 . 0499 | 88. 839
1.5 .. 3.4949 | . 1785 | . 1680 9. 9074 | 6. 4806 | . 1036 | . 1039 | 39. 534 9. 5699 . 0727 | 88. 853
2 - 3. 5768 | . 2211 | . 2091 9, 9320 | 6. 5466 | . 1325 | . 1328 | 39. 572 9. 6127 . 0042 | 88. 874
2.5 . 3. 6477 | . 2586 | . 2454 9.9604 | 6. 5980 | . 1592 | . 1596 | 39. 614 9. 6531 . 1146 | 88. 901
F: J—— 3.7007 | . 2919 | . 2780 9. 9908 | 6. 6472 | . 1840 | . 1845 | 39. 652 9, 6913 . 1340 | 88. 934
3.5 3.7646 | . 3220 | . 3074 | 10. 023 6. 6018 | . 2072 | .2077 | 39.718 9. 7274 . 1525 | 88. 971
4______. 3.8135 { . 3492 | . 3341 | 10. 057 6.7332 | . 2289 | .2294 | 39.775 9. 7617 . 1700 | 89. 022
|5 J 3. 8974 | . 3970 | . 3812 | 10. 126 6. 8077 | . 2684 | . 2690 | 39.900 9. 8250 . 2028 [ 89.108
[ 3.9666 | . 4376 | . 4214 | 10. 196 6, 8728 | . 3037 | . 3043 | 40. 028 9. 8824 . 2329 | 89. 218
Y (. 4.0250 | . 4729 | . 4563 | 10. 265 6. 9303 | . 3353 | . 3360 | 40. 162 9. 9345 . 2605 | 89. 257
< T 4.0748 | . 5037 | . 4869 | 10. 332 6. 9814 | . 3640 | . 3647 | 40. 297 9. 9821 . 2861 | 89. 466
10______ 4. 1557 | . 5555 | . 5383 | 10. 459 7. 0683 | . 4140 | . 4147 | 40. 564 | 10. 066 . 3322 | 89. 729
12 _____ 4. 2185 | . 5973 | . 5800 | 10. 573 7.1894 | . 4563 | . 4570 | 40.819 | 10. 137 . 3718 | 90. 021
15 ____. 4.2905 | . 6472 | . 6297 | 10.726 7.9248 | . 5090 | . 5097 | 41. 176 | 10. 225 . 4231 | 90. 447
20 ... 4, 3737 | .'7080 | . 6904 | 10. 932 7.3293 | . 5766 | . 5774 | 41. 695 | 10. 339 . 4917 | 91. 123
25 ... 4.4304 | . 7514 | . 7337 | 11. 095 7.4040 | . 6275 | . 6283 | 42. 097 | 10. 423 . 5453 | 91. 735
30_._ ... 4. 4714 | . 7840 | . 7663 | 11. 223 7. 4601 | . 6673 | . 6681 | 42. 486 | 10. 489 . 5885 | 92. 358
45 __._ 4. 5467 | . 8467 | . 8289 | 11. 487 7.5673 | .7477 | . 7485 | 43.268 | 10. 618 . 6794 | 93. 539
60 ...___ 4. 5880 | . 8828 | . 8650 | 11. 648 7. 6286 | . 7966 | .7974 | 43.775 | 10. 695 L7372 | 94. 418
] 4.6208 | . 9124 | . 8946 | 11. 785 7.6735 | . 8460 | . 8467 | 44. 185 | 10. 760 . 7880 | 95. 233
100 ____ 4.6413 | . 9313 | . 9135 | 11. 875 7.7103 | . 8657 | . 8665 | 44. 523 | 10. 801 . 8224 | 95. 802
150 ____ 4, 6697 | . 9582 | . 9404 | 12. 005 7.7550 | . 9056 | . 9064 44. 970 | 10. 861 . 8735 | 96. 671
200.___. 4, 6843 | . 9723 | . 9544 | 12. 074 7.7784 | . 9271 | . 9279 | 45.214 | 10. 892 . 9184 | 97. 092
300_____ 4. 6992 | . 9869 | .9691 | 12. 146 7.8025 | . 9498 | . 9506 | 45.475 | 10. 925 . 9320 | 97. 693
500.__._ 4, 7114 | . 9990 |.9812 | 12 207 7.8224 | . 9689 | . 9697 | 45. 696 | 10.953 . 9581 | 98. 152
1000____|. 4. 7207 |1. 0083 | . 9905 | 12. 254 7.8377 | . 9838 | . 9846 | 45. 870 | 10. 974 . 9785 | 98. 515
[ 4. 7300 {1. 0178 1. 0000 | 12. 302 7.8532 | . 9992 |1. 0000 | 46. 050 | 10. 996 1. 000 98, 905

nowhere differs from the series solution by more
than 0.7 percent. It must be noted from equa-
tions (4.81) and (4.85) that choosing equal
values of £, and &, does not give equal slope
restraint along all edges except for the case
of the square.

The case of uniform slope. restraint and
W =0 along all edges was studied by Bolotin
et al. (vef. 4.60), who used a variation of the
series method to obtain frequencies for the
first 10 modes of a square having variable
restraint. These results are shown in figure
4.61. Results for this problem were also pre-
sented in reference 4.129 for the case of the

square by using the same procedure as in refer-
ence 4.128. These are shown in figure 4.62.

In reference 4.130, the problem is also solved
by using the Rayleigh-Ritz method and alge-
braic polynomials.

In reference 4.131, the typical electronic
chassis which is formed by bending the edges
of a plate down is treated as a plate with elastic
edge supports. An eigenfunction is used to
solve the problem which is an average of the
eigenfunctions for plates with simply supported
edges and those having clamped edges. The
Rayleigh-Ritz method is employed. Theo-
retical and experimental results are obtained
for particular chassis.
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m, n=4 m, n=35 m, n=6
€ Ay=—B, b1 € As=—B;s "5 € A¢=—B; L]
12. 566 0 157. 91 15. 708 246. 74 18. 850 0 355. 31
12. 566 . 0098 157. 92 15. 724 . 0079 246. 74 18. 863 . 0066 355. 31
12. 605 . 0194 157. 92 15. 739 . 0156 246. 74 18. 876 . 0131 356. 31
12. 624 . 0288 157. 92 15. 755 . 0232 246. 74 18. 889 . 0195 355. 31
12. 642 . 0380 157. 92 15. 769 . 0307 246. 74 18. 901 . 0258 356. 31
12. 678 . 0558 157. 93 15. 799 . 0454 246. 75 18. 926 . 0381 355. 32
12,712 . 0729 157. 94 15. 827 . 0594 246. 76 18. 950 .. 0501 355. 32
12, 745 . 0893 157. 96 15. 854 . 0731 246. 78 18. 973 . 0618 355. 34
12,776 . 1051 157. 99 15. 880 . 0863 246. 79 18. 996 . 0732 355. 34
12. 806 . 1202 158. 01 15. 906 . 0991 246. 82 19. 018 . 0842 355. 36
12. 834 . 1348 158. 04 15. 930 . 1115 246. 83 19. 039 . 0951 355. 38
12. 889 . 1625 158. 12 15. 977 . 1353 246. 89 19. 080 . 1158 355. 42
12,939 . 1882 158. 21 16. 021 L1577 246. 96 19. 119 . 1356 355. 48
12, 985 . 2123 158. 31 16. 062 . 1788 247. 05 19. 156 . 1545 355. 55
13. 028 . 2349 158. 42 16. 101 . 1990 247. 14 19. 191 L1724 355. 63
13. 105 . 2762 158. 84 16. 172 . 2362 247. 36 19. 256 . 2061 355. 81
13. 173 . 3129 158. 94 16. 235 . 2698 247. 61 19. 315 . 2370 356. 04
13. 260 . 3613 159. 38 16. 318 . 3149 248. 02 19. 394 . 2789 356. 41
13. 375 . 4278 160. 12 16. 431 . 3783 248, 77 19. 503 . 3393 357. 15
13. 464 . 4814 160. 84 16. 521 . 4307 249. 54 19. 592 . 3895 357. 91
13. 534 . 5257 161. 51 16. 595 . 4748 250. 28 19. 666 . 4327 358. 68
13. 679 . 6219 163. 17 16. 749 . 5733 252. 25 19. 827 . 5316 360. 86
13. 768 . 6854 164. 41 16. 847 . 6404 253. 80 19. 932 . 6008 362. 68
13. 844 . 7428 165. 62 16. 933 . 7026 255. 38 20. 025 . 6664 364. 61
13. 894 . 7825 166. 48 16. 990 . 7464 256. 55 20. 089 . 7134 366. 08
13. 967 . 8430 167. 85 17. 075 . 8145 258. 47 20. 184 . 7880 368. 55
14. 007 . 8771 168. 65 17.121 . 8538 259. 10 20. 237 . 8317 370. 07
14. 048 . 9144 169. 53 17. 171 . 8973 260.89 |  20.294 . 8808 371. 84
14. 082 . 9476 170. 29 17. 212 . 9356 262. 04 20. 342 . 9248 373. 40
14. 109 . 9726 170. 92 17. 254 . 9667 262. 98 20. 380 . 9608 374. 71
14. 137 1. 0000 171. 59 17. 279 . 0000 264. 00 20. 240 1. 0000 376. 15

Hoppmann and Greenspon (ref. 4.132) pre-
sented a method for experimentally simulating
elastic edge supports by means of sharp V-
grooves machined along the edges of a eclamped
plate, the degree of slope restraint being deter-
mined by the depth of the grooves. A curve
showing the frequency parameter for a clamped
square plate as a function of the notch ratio B
is shown in figure 4.63; R is the ratio of the
depth of the notch to the thickness of the plate.
Experimentally determined points are shown
as circles. The curve was drawn through end-
points determined by the theoretical results of
Iguchi (ref. 4.9) and fitted to the four experi-
mental points.

4.42 Discontinvous Edge Conditions

Some interesting results are available for the
case of a square plate which is simply supported
but clamped along segments of its edges.

Consider first the square which is clamped
along four symmetrically located segments of
length Z;, and simply supported along the re-
mainder of the boundary as in figure 4.64. Ota
and Hamadsa (refs. 4.133 and 4.134) solved the
problem by assuming a deflection function
which satisfies the simply supported boundary
conditions everywhere (eq. (4.19)), and applying
distributed edge moments of the type, for
example,

(M”)”=0=(m2* K, sin mmc) coswt (4.89)
m=1
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TABLE 4.80.—Frequency Parameters wb*/p/D and Approximate Nodal Patterns for a Rectangular
Plate Elastically Restrained Against Rotation Along All Edges

[Values in parentheses are found from eq. (4.87)]

wb2Vp/D for mode—

bla £
1 2 3 4 5 6
1.0 0 19. 74 49. 35 78. 96 98. 70 98. 70 128. 3
20 31. 09 64. 31 95. 85 117. 3 116. 8 147. 6
(31. 16) (64. 52) (96. 17) (117. 8) (116. 9) (148. 0)
® 35. 99 73. 41 108. 3 131. 6 132. 3 165. 2
(36.11) (78. 74) (108. 9) (131. 71 (132. 4) (165. 4)
T T1
| r /)\\ \ v rT
i | | - |
0.9 0 17. 86 41. 85 47. 47 71. 46 81. 82 111. 4
20 28. 21 54, 57 61. 97 86. 85 97. 03 123. 0
(28. 28) (54. 77) (62.17) (87.15) (97. 34) (123.3)
® 32. 67 62. 29 70.76 98. 14 109. 4 143. 5
(82.78) (62. 71) (71. 06) (98. 66) (109. 8) (144. 1)
T T T 1
{ e — — — — il b4~
i 1 1 1 L1
0.8 0 16. 19 35. 14 45. 79 64. 74 66. 72 96. 33
20 25. 80 46. 02 59. 98 79. 06 79. 24 111. 2
(25. 86) (46. 17) (60. 16) (79. 32) ('79. 50) (111. 5),
© 29. 08 52. 52 68. 52 89. 40 89. 29 124. 5
(29. 18) (52. 76) (68. 80) (89. 86) (89. 69) (125. 0)
T T T1 T T
i P e e - — 4~ — ] e T S
1 1 11 1 1
0.6 0 13. 42 24, 08 41. 85 43. 03 53. 69
20 22. 30 32. 58 50. 48 56. 97 66. 96
(22. 34) (32. 68) (50. 63) (57.11) (67. 17)
® 25. 90 37. 28 56. 93 65. 18 75. 94
\25. 97) (87.43) (57. 20) (65. 39) (76. 31)
1 T 1 I
i P e b -+ — -
1 i !
0.4 0 11. 45 16. 19 24, 08
20 20. 30 24. 15 31. 20
(20. 33) (24. 20) (31. 26)
® 23. 65 27. 81 35. 45
(28.70) (27.91) (35. 56)
’ T T
{ | S
| 1 1
0.2 0 10. 26 11. 45 13. 42
20 19. 38 20. 15 21. 52
(19. 39) (20. 17) (21. 54)
® 22. 64 23. 45 24, 89
(22. 66) (23. 49) (24. 92)

-
—
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Ficure 4.61.—Frequency parameters for a square
plate having uniform slope restraint along all edges
derived by Bolotin (ref. 4.60)
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FicURE 4.62.—Frequency parameters for a square
plate having uniform slope restraint along all edges
derived by procedure of reference 4.128. (After ref.
4.129)

“ The coefficients K,, are then chosen for each
edge such that the normal moments are zero
along the simply supported segments and the
normal slopes are zero along the clamped
segments. These conditions, along with the
principle of stationary total energy, are used to
formulate a characteristic determinant for the
problem, the roots of which yield the vibration
frequencies.

The accuracy of the results de-
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Fiaure 4.63.—Variation in frequency parameter with
notch ratio for a square plate. (After ref. 4.132)

————————

M
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FIGURE 4.64—8S-885-SS-8S square plate clamped
along four symmetrically located segments.

pends upon the number of terms kept in the
summations and, hence, the orders of the
characteristic determinants used. The problem
was solved at essentially the same time by
Kurate and Okamura (ref. 4.135), who used a
very similar method.

Fundamental frequency parameters for
several values of [, are shown in figure 4.65
(ref. 4.133) and tabulated in table 4.81. Ex-
perimental data shown in figure 4.65 were
obtained on mild steel plates having edge
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F1GURE 4.65.—Frequency parameters for SS-SS-SS-SS
square plate clamped along four symmetrically
located segments. (After ref. 4.133)

lengths of 6.50 inches and thicknesses of 0.063
and 0.091 inch.

Experimental frequencies and nodal patterns
for the first three modes for an aluminum
plate 11.8 inches long, 0.012 inch thick, and
having l;/a=Y% were obtained in reference 4.135
and are presented as table 4.82. A

The cases when only two opposite edges have
symmetrically located clamped segments as
shown in figure 4.66 were also studied in
references 4.133 and 4.135. Fundamental fre-
quency parameters for several values of I, are
shown in figure 4.67 (ref. 4.133) and tabulated
in table 4.83. Additional experimental fre-

TaBLE 4.81.—Fundamental Frequency Param-
eters wa’/p/D for a Simply Supported Square
Plate Clamped Along 4 Symmetrically Located
Segments, v=0.8

wa?yp/D for values of l;/a of—

Source
0 ‘ % ‘ % ’ 1
Ref. 4.133______ 19. 74 33.9 35. 5 35. 98
Ref. 4.135______ 19. 74 33.97 |________ 35. 98

VIBRATION OF PLATES

quencies are given in table 4.84 (ref. 4.135) for
l;Ja=Y. Experimental results shown in figure
4.67 and table 4.84 were obtained on the same
plates described earlier in this section.

The case when two unsymmetrically located
segments of opposite edges are clamped is
shown in figure 4.68 and was discussed in
reference 4.133. Fundamental frequency pa-
rameters for several values of I, are shown in
figure 4.69 and tabulated in table 4.85. Ex-

TaBLE 4.82.—Ezperimental Cyclic Frequencies
and Nodal Patterns for a Simply Supported
Square Plate Clamped Along 4 Symmetrically
Located Segments

vA F{J Y{A

7 771 |\ Bl i-
Nodal pattern | Z F/A 7 E av j
lZ Z |77/

Frequency, cps____ 280 535 725

y
i
______________ 3

FiGUurE 4.66.—SS-SS-SS-SS square plate clamped
along two symmetrically located segments of opposite
edges.
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O Experimental Data (h=0.063")
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F16URE 4.67.—Frequency parameters for SS-SS-SS—-88
square plate clamped along two symmetrically
located segments of opposite edges. (After ref. 4.133)

perimental data shown in figure 4.69 were ob-
tained on the plates described earlier in this
section.

The case when one symmetrically located
segment of an edge is clamped is shown in
figure 4.70. The numerical solution to this
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FiGurRe 4.68.—SS-8S-8S-8S square plate clamped
along two unsymmetrically located segments of
opposite edges.

problem was obtained in reference 4.133 and
is given in figure 4.71 and table 4.86. Experi-
mental frequencies and approximate nodal pat-

TaBLE 4.83.—Fundamental Frequency Parameters wa*J/p/D for a Simply Supported Square Plate
Clamped Along 2 Symmetrically Located Segments of Opposite Edges, v=0.3

Source

watvy/p/D for values of ly/a of—

’ Y5 ‘ 24 1

Ref. 4133 _________________
Ref. 4135 __________________

19 74
19. 74

TABLE 4.84.—Experimental Cyclic Frequencies and Nodal Patterns for a Simply Supported Square
Plate Clamped Along 2 Symmetrically Located Segments of Opposite Edges

77 B 77 770 77, rg | e
1 S
Nodal pattern } = "‘":""' i i b
1 ]
& 87z 77 ZZ) 7 )
Frequency, eps____________. 225 420 500 660 785 955
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P/

(wa?/mr
~
e-

O Experimentat Data (h=0.063")
" "

TasLe 4.85.—Fundamental Frequency Param-
eters for a Simply Supported Square Plate
Clamped Along 2 Unsymmetrically Located
Segments of Opposite Edges; v=0.3

13/0, \ 0

b

% %\1

19.74 | 22.2 | 25.5 | 27.8 | 28.95

TaBLE 4.86.—Fundamental Frequency Param-
eters for a Simply Supported Square Plate
Clamped Along 1 Symmetrically Located Seg-

° | ’ (h]’ 0.091") ment of an Edge; v=0.3
0 | s
0 iy oz 53 !
23/0
F1gUrE 4.69.—Frequency parameters for S5-8S-8S-88 woyp/Doo . 19.74 | 23.0 | 23.4 | 23.6 | 23. 65
square plate clamped along two unsymmetrically

located segments of opposite edges. (After ref. 4.133)

F————————— e —————————

+

[ e e e e

FicURE 4.70.—SS-SS8-88-88 square plate clamped
along one symmetrically located segment of an edge.

terns obtained in reference 4.135 are given in
table 4.87 for l/a=%. Experimental results
shown in figure 4.71 and table 4.87 were ob-

tained on the same plates as those described
earlier in this section.

The case when the plate is clamped along
one segment at the end of one edge is shown in
figure 4.72. Nowacki (refs. 4.136 and 4.137)
expressed a unit moment acting at a point
along the clamped interval in terms of a trigo-

5
4
3
»
QU
L b_;f.'i_—.%! 3 —
o~
5 2
1
0 Experimental Data (h=0.063")
o" " " (h=0.091")
0

wr -
“‘0‘ —

| 1 ]
o+ 44 3
94/0
F1GURrE 4.71.—Frequency parameters for SS-88-88-58

square plate clamped along one symmetrically
located segment of an edge. (After ref. 4.133)
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F1GURE 4.72.—8S-S8-S5-8S square plate clamped
along one segment at the end of an edge.

nometric series and formulated an integral
equation involving a Green’s function -along
the clamped interval. The integral equation
was replaced by a finite summation carried out
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over discrete segments of the interval, which
resulted in a system of equations, each term
of which is an infinite series of transcendental
functions containing the eigenvalues. Trun-
cating the series and solving the resulting
characteristic determinant yielded the vibration
frequencies.

Numerical results from reference 4.133 are
given in figure 4.73. Data from references
4.133 and 4.136 are also given in table 4.88.
By looking at the results of reference 4.136
in table 4.88, it is seen that they are clearly
inaccurate, the frequency parameter listed for
the case when l;/a=14 being greater than the
well-known result for the case when l/a=1
(see discussion on SS-C-SS-SS plate, sec. 4.2.2).

The solution is also given in reference 4.136
for the case when the interval 0<z<l, is
clamped along the edge y=0 (fig. 4.72), the
interval L;<{z<la is free, and the remaining
edges are simply supported. It was found
for l;/a=1% that wa®/p/D=14.8.

The case obtained when the simply sup-
ported portions of the edges of the plate shown
in figure 4.72 are replaced by clamped edge
conditions and the remaining portion has zero
slope and shear is included in reference 4.138.

TasLe 4.87.—Experimental Cyclic Frequencies and Nodal Patterns for a Simply Supported Square
Plate Clamped Along 1 Symmetrically Located Segment of an Edge

T
1 T
Nodal pattern ! { ! ! — ] ! :
|27, Y- Y. 2Z) Y/4 v/4 r/4
Frequency, eps_ - ___._________ 200 425 480 680 835 900 1000

TABLE 4.88.—Frequency Parameters wa*y/p/D for
1 Segment at the

a Stmply Supported Square Plate Clamped Along
End of an Edge

Source

way p/D for values of ls/a of—

%

% %

Ref. 133
Ref. 136
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F1cURE 4.73.—Frequency parameters for SS-8S-S8-88
square plate clamped along one segment at the end
of an edge. (After ref. 4.133)

The necessary integral equations are completely
formulated but no numerical results are
obtained.

4.4.3 Point Supports

Throughout this section the term ‘“point
support” will be used to denote a constraint
of zero deflection at a point. Unless otherwise
stated, there will be no constraint on the
slopes at such points.

Consider first the problem of the rectangular
plate free along all edges and supported at
the four corner points (fig. 4.74). Cox and
Boxer (ref. 4.139) solved the problem by
means of finite difference equations. Funda-
mental frequencies for a/b=1, 1.5, 2, and 3
for »=0.3 are listed in table 4.89 and plotted
in figure 4.75. The mesh widths Ae and Ab

VIBRATION OF PLATES

y

*—s

Figure 4.74.—Free rectangular plate point supported
at the four corners.

o

are shown in figure 4.76. The extrapolated
values of table 4.89 were obtained from the
extrapolation formula

A 22(6)\6)2_(4)\4)2

©T (8 —(4)

where A=waXy/p/D and the subscripts 4 and 6
identify the two meshes used.

The mode shapes W(z,y) corresponding to
the fundamental frequencies are given in
table 4.90, where the grid locations are those
shown in figure 4.76.

Higher frequencies for the square supported
at the corners were also given in reference
4.139. These are listed in table 4.91 for two
mesh widths. Extrapolated values using equa-
tion (4.90) are also given.

Mode shapes corresponding to these frequen-
cies are shown in figure 4.77, and the amplitudes
of W(z,y) at the grid locations shown in figure
4.78 are listed in table 4.92 for »=03. Two
independent mode shapes corresponding to the
second frequency were found. They are iden-
tified as 2a¢ and 2b.  As can be seen from figure

(4.90)

TaBLE 4.80.—Frequency Parameters way/p/D for a Free Rectangular Plate Point Supported at the
4 Corners; v=0.3

wav/p/D for values of a/b of—

Mesh width
1.5 2 3
Aa=Ab=b/4__ - 6. 97939 8. 78632 9. 18688 9. 35971
Aa=Ab=0b/6_ e 7. 05598 8. 86492 9. 24590 9. 39803
s 7. 117 = 8. 927 29, 203 29, 429

» Extrapolated value from eq. (4.90).
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variation of the frequency itself with Poisson’s

.’rZ -~ RN I N ENY AN (N N O 1 0 O e
CLEFTIT ratio to be seen. This is shown in figure 4.80.
95 = Nishimura (ref. 4.14) used the finite-differ-
ence method and a relatively coarse grid (char-
9.0 7 acteristic determinants of order no larger than
g six) to obtain the first 10 frequencies and nodal
o 85 patterns of a free square plate point supported
: at the four corners. He also obtained experi-
80 , mental results on a steel plate 10.1 by 10.1
inches by 0.087 inch. These results are shown
75 in figure 4.81, with experimental values given
in parentheses. It is noted that the third,
70 : sixth, and ninth mode shapes and frequencies

1 1.5 2 3 4 5 6 8 10 15 20 30 .

arb . also exist for the completely free square plate.

Ficure 4.75.—Frequency parameters watyy/D for a Reed (ref. 4.140) obtained extensive analyti-

free rectangular plate point supported at the four
corners; »=0.3. (After ref. 4.139)

cal and experimental results for the rectangular
plate supported at its four corners. Analyti-
cal results were achieved by two methods—

4.77, the third mode shape and frequency are the R?,yleigh-R.itz and series methods. The
identical to those of the fundamental mode of a  deflection function
completely free square plate (sec. 4.3.15). ( nrx
Variation in the frequency parameter wa®/p/D Wiz, y)= Z Gonsin "3 +b°” 8in = " a
with Poisson’s ratio is shown in figure 4.79. mrx . Ny
However, it must be remembered that D de- +,§17§, @mn COS =5 SmT
pends upon ». Substituting equation (1.2) mry . nrr
for D into the frequency parameters permits the Fbma 005 5= b sin a (4.91)
—2—3—2—i | =23 § = § = — 7 — B — 9—B~— 76— 5 — & — 3— 2— |
RN
|—4—5—6—5—4—1 lO—Il——l2—|3——l4—l5—|6—l7—IB——-IQ—-I8—I7——l6——l5—l4—|3—l2—H—IO
I O N B B R T S I T N A A A R O
2—7—8—9—8—7-—2 20—2|—22—23— 24— 25— 26— 27— 28 —29 — 28— 27—26—25—24 —23 — 22— 21— 20
N A [ O R O [ R N R A N AR N A I
3—6—9—I0—~9—6—3  30—3l—32—33—34 35 —36-—37—38 —39 —38 — 37—36—35—34 —33 —32—31—30
T s e e T e e e e T e e T T e e
2—7—9—9—8—7—2 20— 21— 22— 23 —24— 25— 26— 27— 28 —29 —28~—27—26 —25 —24 —23— 22— 21— 20
b .
| =4 § e —5— 4 — | |0—|||—|T—-|T—T—|T—|Is——||7—- |z|3—|T——||s—||7—|T—|?—|T—ll:',—ula—— lII-—IO
I—!—Iz—ls—lz——lu—J |—I-—2—3—4—5——-—6—-—7—8—9—8—7—6——5—4-—-—3-——-2-——-|—J
a/b= a/b=3

Hao}-
—2—3—4—65—6—5—4—3—2—|

Abl_|l||11||||ﬂ

—T7'—B—9——10—ll—'l2—l3—|2—l|—|0—9

00—I1—12—Ii3—14 —14—|3~—12— | 1—10 I4—I5'—'16—|7— 18— I19—20—I9— 18— [T— 16— 15— 14

N [ O P A e e e e e

I5—16 — 17— 18— 19— 19— |8 —[7—16 —I5 2|—22—23—24—25—26—27—26 — 25— 24—23—22—2i

L Y T N B L A

10—11—12— 13[4 —|4 —13—12 —(I—I0 14—15— |6 ==17 — I8 — |19 —20— (9— 18— IT— 16 — 15 —I4

5-—|6—7——8-—s|a—]9—8—7—e——5 7——8—9——!0—I||—l|2-—l3—-I2—|l—IO—-9—8——7

| 1] | R

l———l—2—£—-4—4—£—2—| ‘—l—2—3—4—5—6—5—4—3—2—-|—J
a/b=1.5 a/b=2

FicurE 4.76.—Finite difference meshes. (After ref. 4.139)
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TaBLE 4.90.—Fundamental
W, y) for Free Rectangular Plates Point
Supported at the 4 Corners; v=0.3

VIBRATION OF PLATES

Mode

Shapes

W(z,y) for values of a/b of—
Grid
location
1.0 1.5 2.0 3.0

) S 0. 34407 | 0.35177 | 0.26141 | 0. 17474
2 e . 58825 | .65713 | .50327 | .34364
E . 67600 | .88141 | .70970 | .50168
4 .. . 58026 | 1.0 . 86743 | . 64423
L .75081 | . 11297 | .96631 | .76711
[ . 82616 | .41240 | 1.0 . 86668
Tt V75981 | . 67951 | . 04188 | . 94000
- . 89905 | . 87885 | .28042 | .98489
£ . 95183 . 98513 .50445 | 1.0

100 ___ 1.0 . 19186 | .69753 | .01135
10| __ . 45973 . 84592 . 17900
12 | .70293 | . 93928 | . 34210
13 | . 88653 | .97113 | . 49540
14 . . 98502 | .07094 | . 63408
15 . . 21992 . 29562 . 75387
16 | . 47731 | . 50849 | . 85106
17 . . 71244 . 69315 . 92268
) T . 80066 | .83569 | .96655
19 | . 98649 . 92561 . 98132
20, |l . . 95632 | .01919
21 |l . 08124 | .18251
22 | . 30131 | . 34197
28 e . 51040 | . 49228
24 |l .. . 69218 | . 62855
b2 S ISV ST, . 83274 | . 74642
26 || . 02148 | . 84216
2 || . 95181 . 91275
28 | . 95600
29 . . 97057
B0 e e . 02196
31 e . 18384
32 e L . 34205
83 e e . 49135
B34 e || . 62681
38 | .. . 74403
36 ||| . 83927
B | e . 90952
B8 | . 95257
B9 | e . 96707

was used with the Rayleigh-Ritz method. Pois-
son’s ratio was taken to be 0.3. Frequency
parameters, nodal patterns, and normalized
mode shape coefficients are shown in table
4.93 for the first seven modes of plates having
a/b ratios of 1.0, 1.5, 2.0, and 2.5. ‘

The second analytical method in reference
4.140 used the series given in equation (4.21)
as half of the solution, the other half being a
similar series obtained by interchanging z and
y. Frequency parameters obtained in keeping
24 terms of the series are listed in parentheses
in table 4.93. In table 4.94 the theoretical cyclic

2b

20

4th

Sth

Ficure 4.77.—Higher mode shapes for the free square
plate point supported at the four corners. (After ref.
4.139)

I 2 3 4 5

6 7 8 9 10 f 12

3 14 5 16 7 18 19

20 2l 22 23 24 25 26

27 28 29 30 3 32 33

34 35 36 37 38 39 40
4 42 43 44 as

Figure 4.78.—General finite difference mesh for.a
square. (After ref. 4.139)
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TaBLE 4.91.—Higher Frequency Parameters wa’/p/D for a Free Square Plate Point Supported at
" the 4 Corners; v=0.3

wa?y p/D for mode—
Mesh width
3 4 5
Aa=Ab=af5_ _ _ . 15. 0541 16. 8311 35. 5951 38. 7292
Aa=Ab=af6. ... 15. 2650 17. 5659 36. 4827 40. 2638
215,73 % 19. 13 = 38. 42 2 43. 55
= Extrapolated values.
a7 T
a6 1 —
\\5 a5
4|"_\
44
—~]
42 3® O
% 22 b
< ‘E ]
40 o S ——
4 % 20 R e
— ]eé
38
< —
Nm 22 —_— 16
3 ' 2 o
20 —
8 [o] 0.1 0.2 0.3
Poisson's Ratio,v
18
— Ficure 4.80.—Variation in the modified frequency
T parameter with Poisson’s ratio for a free square
6 o plate point supported at the four corners. (After ref.
15 4.139)
<
7 ! Kirk (vef. 4.141) used the Rayleigh-Ritz
6 method and a mode shape
° 0.l 0.2 03

Poisson's Ratio, ¥

F1gURrE 4.79.—Variation of frequency parameter with
Poisson’s ratio for a free square plate point supported
at the four corners. (After ref. 4.139)

frequencies determined by the series method
and by adapting the results of reference 4.139
are compared with experimental results ob-
tained with two aluminum plates.

Wiz, y)=A (sin’%rsin%y)

+(1—24) sin%’”sin’i/

7 (4.92)

to obtain a fundamental frequency for the
problem when »=0.3. Minimizing the Ray-
leigh quotient with respect to A yields A=
0.6956 and wa®/p/D=17.224.

The Rayleigh method and a mode shape of
the form

W(x,y)=Asin%x+BsinLy (4.93)

b
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TaBLE 4.92.—Higher Mode Shapes W(x,y) for a Free Square Plate Point Supported at the 4 Corners;

v=0.3
Wz, y) for mode—
Grid loeation
2a 2b 3 4 5
;S 0. 42800 0. 50302 0. 48159 0. 82466 —0. 49310
S . 79707 . 86736 . 85688 .79791 —. 73475
S 1.0 1.0 1.0 0 —. 78861
Y S . 93765 . 86736 . 85688 —. 79791 —. 713475
B o e . 57804 . 50302 . 48159 —. 82466 —. 49310
i e —. 42800 . 07502 —. 48159 . 82466 —. 49310
T o Ll 0 . 37920 0 1.0 —. 35047
8 e . 39652 . 60887 . 36362 . 73369 —. 13858
T . 69381 . 69381 . 50055 0 —. 02813
10 o el . 82122 . 60887 . 36362 |. —. 73369 —. 13858
) G - 75841 . 37920 0 —1.0 —. 35047
120 . el . 57804 . 07502 —. 48159 —. 82466 —. 49310
1 S —. 79707 . 07029 —. 85688 . 79791 —. 73475
14 o —. 39652 . 21235 —. 36362 . 73369 —. 13858
15 0 . 32296 0 . 47978 . 44086
16 o o . 36438 . 36438 . 13585 0 ) . 69261
17 e . 64592 . 32206 0 —. 47978 . 44086
18 o . 82122 . 21235 —. 36362 —. 73369 —. 13858
19 .. . 93765 . 07029 —. 85688 —. 79791 —. 73475
) U ~1.0 0 —-1.0 0 —. 78861
21 i —. 69381 0 —. 50055 0 —. 02813
22 o —. 36438 0 —. 13585 0 . 69261
28 e e e 0 0 0 0 1.0
. : . 36438 0. —. 13585 0 . 69261
2B e . 69381 0 —. 50055 0 —. 02813
26 e L0 0 —1.0 0 —. 78861
27 —. 93765 —. 07029 | —. 85688 —. 79791 —. 73475
1 S —. 82122 —. 21235 —. 36362 —. 73369 —. 13858
29 .. —. 64592 —. 32296 0 —. 47978 . 44086
80 . —. 36438 —. 36438 . 13585 0 . 69261
S U 0 —. 32296 0 . 47978 . 44086
B2 e . 39652 —. 21235 —. 36362 . 73369 —. 13858
88 . 79707 —. 07029 —. 85688 . 79791 —. 73475
B4 .. —. 57804 —. 07502 —. 48159 —. 82466 —. 49310
85 e —. 75841 —. 37920 0 —1.0 . —.35047
86 e —. 82122 —. 60887 . 36362 —. 73369 —. 13858
37 . —. 69381 —. 69381 . 50055 0 —. 02813
B8 e —. 39652 —. 60887 . 36362 . 73369 —. 13858
89 i 0 —. 37920 0 1.0 —. 35047
40 .. . 42800 —. 07502 —. 48159 . 82466 —. 49310
4l . —. 57804 —. 50302 . 48159 —. 82466 —. 49310
42 . —. 93765 —. 86736 . 85688 —. 79791 —. 73475
43 —-1.0 —-1.0 1.0 0 —. 78861
44 e . —. 79707 —. 86736 . 85688 . 79791 —. 73475
45 . —. 42800 —. 50302 . 48159 . 82466 —. 49310
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L

1 I
! -
I
I ( \
| Ny
: k
7.442 40.62 42.76
(7.8) (40.7) (43.1)
( )(-——1"——3(
7/
-~ 1N
{7 AR
\</ / ‘\ /
/ - .],t
7/ 1
[l
46.07 . 71.94 95.42 119.29
(50.8) (78.4) (95.6) (1206)

FicURE 4.81.—Theoretical and experimental frequency parameters and nodal patterns for a free steel square plate
point supported at the four corners. Experimental values are given in parentheses. (After ref. 4.14)

TaBLE 4.93.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a Rectangular
Plate Supported at Its 4 Corners; v=0.3

[Values in parentheses are obtained by keeping 24 terms of the series]

Mode 1: Mode 2: [um wa
a/b _
waVp/D Normalized mode-shape waZ\/;/ﬁ Normalized mode-shape
coefficients coefficients
ao1= 1.000 b01= 1.000 aoz=—0.1248 bu= 1.000
7. 46 ag3=—.0663 bos= —.0663 16. 80 ap=—.0075 b= —.0671
1.0 (7.12) an=.1787 by=.1737 (15.77) | az=.1695 bsy= —.0574
Ay3= .0329 b23= .0329 Aog— — .0055 b33= .0348
Qq1= — L0267 b41= —.0267 Q== — .0146 b51= —.0083
ap= .0869 b01= 1.000 Aop= —.1753 b11= 1.000
ag3= —.0150 bes= —.0320 ag=.0002 biz=—.0499
1.5 9.21 a21=.0950 b21=0281 22.78 (l22=.1530 b31= —.0748
(8.92) a3=.0056 by;=.0161 (21.53) ax=—.0059 bss=.0205
Qg1= —.0102 b41= —.0068 a42=.0012 b51=0052
Aog= .0009 b15"—" —.0065
(101=—.0054 b01=1000 A= —.1915 bu:l.OOO
Qo3—= —.0052 b03= —.0179 a04=.0067 b13= —.0460
9.46 ay=.570 by =.0046 29.03 az=.1537 by = —.0893
ag = — .0035 b41= —.0025 Qo= .0080 b51= —.0028
Qog— .0007 b15= —.0093
a(u=—.0197 b01=1.000 (102:—.1‘984 b11= 1.000
9.48 = —.0020 bos=—.0108 aos=.0100 b= —.0451
2.5 (9.39) a1 =.0372 by = —.0014 a9=.1550 b3y =—.0967
: ag;=.0002 by =.0042 35.5 ay=—.0103 by3=.0135
as = —.0007 b“: —.0011 a42=.0120 vb51=—.0009
aoa=.0005 b15= —.0113
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TABLE 4.93.—Frequency Parameters, Nodal Paitterns, and Amplitude Coefficients for a Rectangular

[Values in parentheses are obtained by keeping 24 terms of the series]

VIBRATION OF PLATES

Plate Supported ai Its 4 Corners; v=0.83—Continued

3 f (4
. N N N \ [4
Mode 3: : Mode 4: /X ’_.' Y
a/b -
wavp/D Normalized mode-shape worvp/D Normalized mode-shape
coefficients coefficients
an= 1. 000 b02= —0. 1248 Ao = 1. 000 b01= —1. 000
16. 80 ap=—. 0671 b= —. 0075 19. 60 ap=—. 0244 bos=. 0244
1.0 (15.77) a5 =—. 0574 bay=. 1695 (19. 60) agn=—. 0802 by =. 0802
a33==, 0348 b24= —. 0055 do3=. 0112 b23= —. 0112
as1= —. 0083 b42= —. 0146 aqy=. 0049 b41= —. 0049
a;;=1. 000 bez=0. 1539 ap=1. 000 ba=—0. 8108
27.74 a;3=—. 0817 b= —. 0380 34. 8 ap=—. 0536 bes=. 0002
L5 (25. 82) ay=. 0205 bar=. 1850 (33. 69) as=. 0756 bai=. 1693
Agz=—. 0428 b24=. 0115 Aoz =. 0255 b23=. 0171
as=—. 0209 bp=—. 0230 ag=—. 0107 by=—. 0191
a11=0. 7924 b02= 1. 000 agp= 1. 000 b01= —0. 742
34.7 aig=— —. 0877 b04= —. 0808 56. 2 Qoz=— —. 0726 b03=. 0903
2.0 (32. 83) ag=. 1496 b=, 1713 (52.0) an=. 2048 by =. 2277
as=. 0426 bas=. 0334 an=. 0322 boy=. 0341
a5 =—. 0304 bp=—. 0272 ay=. 0011 by=—. 0277
an=0. 1928 bez=1. 000 an=0. 8438 b= —0. 8072
apg= —. 0337 b04= —. 0479 aog=— —. 3091 b03=. 1068
2.5 3.72 an=. 1130 baa=. 0536 101. 7 an=—. 8536 bar=1. 000
az=. 0150 bey=. 0191 ap=. 2419 b= —. 1570
as1— —. 0109 b42= —. 0112 a4=. 0530 b41= —. 1440

were used in reference 4.2 to obtain approximate
fundamental frequencies for general values of
a/b and »=0.25. The frequency may be com-
puted from equation (4.17) with

171 1
K=3(3+5)

(4.94)
N=%<a2+19ab+ bz)
™
Cox (ref. 4.142) also used the finite-difference
method to solve the problem of the free square
plate supported at the midpoints of its sides
(see fig. 4.82). Frequencies obtained from two
mesh widths and from the extrapolation formula
equation (4.90) are listed in table 4.95 for
v=0.3.
Plass (ref. 4.143) used a variational method
described later in this section to solve the prob-

lem of a free square plate clamped at one mid-
point as shown in figure 4.83. A deflection
function

Wz, §)=A1(%)2—%G>2[01+02(§>] (4.95)

was used to yield & fundamental frequency
parameter wa*/p/D=2.580. In this case the
point clamp at (0, 0) permits rotation about
the z-axis, but not about the y-axis.

The square plate having two adjacent edges
both either clamped or simply supported and
a point support at the opposite corner (see
fig. 4.84) was also analyzed by Cox (ref. 4.144).
The finite difference method and »=0.3 was
used. Frequency parameters for both prob-
lems are listed in table 4.96 for two mesh




RECTANGULAR PLATES 137

TaBLE 4.93.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a Rectangular
Plate Supported at Its 4 Corners; v=0.8—Continued

. :
Mode 5: | =4 Mode 6: -) h (
M ¥
ofb L ..
wa?yp/D Normalized mode-shape wa?vp/D Normalized mode-shape
coeflicients coefficients
a;z=1. 000 bi2=1. 000 a;;=1. 000 boz=—0. 9796
ap=—. 1458 b14= -. 1458 A= —. 0629 bo4=. 0944
1.0 41, 5 (132':.‘2107 b32=. 2107 51. 6 as= —. 2789 b22=. 0337
(38. 44) az=. 0645 ba=. 0645 (50. 3) ap==—. 0007 be=—. 0492
As0= —. 0433 b52= —. 0433 as1=. 0318 b42= -, 0000
A= —. 0053 b15= - 0053
a;p=—. 0666 be=1. 000 a; = 1. 000 boz=—0. 8072
Q= —, 0342 b14= —_. 0797 Q3= —. 0446 bo4=. 0477
L5 56. 0 azp=. 1809 bzpe=—. 0153 57.7 az = —. 1487 boa=. 1222
: (52 7) A=, 0119 b34=. 0326 (57 7) A3z=. 0225 bu: —. 0232
Asp— —. 0049 b52=’ -. 0190 As1=. 0084 b42= - 0078
ajg=. 0014 bie=—. 0101
Qip= —. 1869 b12= 1. 000 aﬁ= 1. 000 boz—'_— '—0. 6479
ajy=— —. 0]22 b14=—. 0671 A= —. 0597 bo4=. 0324:
2.0 67.1 azp=. 1764 bp=—. 0548 73.0 az= —. 0626 bop=. 1557
) (63. 8) az=. 0011 ba=. 0238 (71.3) azp=. 0316 bpy=—. 0051
dge=—. 0068 b52='—. 0114 As1=—= —. 0013 b42=~—. 0151
aig=. 0015 b1e= —. 0134 .
a=—. 2238 biz=1. 000 an=1. 000 bez=—0. 5687
ay=—, 0021 b14= —. 0630 ap=—. 0705 bo4=. 0720
2.5 78 5 QAzp=, 1772 b32= —. 0717 97. 5 Az = —. 0104 b22=. 1772
au=—, 0038 b34=. 0195 Azz=. 0364 b24=. 0027
QAsa=. 0134 b52= —. 0074 as1=. 0059 b4z= —. 0195
A=, 0013 b15='—. 0160
l’\)
Mode 7: \_/
aflb
waty/p/D Normalized mode-shape
coefficients
G=0.1555 | by=0.1555
L0 48. 3 agz= —.1950 bos=—.1950
' (44. 4) a2;=1.000 by =1.000
a=.1088 ba3=.1088
aqy= —.0988 b41= —.0988
ag=—0.4491 | by;=0.6498
QAoz= — .1209 b03= —.0355
L5 75.4 a2 =1.000 by =.5491
(70.1) | ay=.0468 bys==.1078
ay= —.0658 byy=—.0590

308-337 0 - 70 - 10
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TaBLE 4.94.—Comparison Beiween Experimental and Theoretical Results for Cyclic Frequencies of
Rectangular Plates Point Supported in the Corners

Cyeclic frequencies, cps, for—
Plate 1: 12- by 12- by 0.129-in. 2024 aluminum | Plate 2: 10- by 20- by 0.173-in. 2024 aluminum
Mode E=10.6X108 psi (book value) E=10.6X 103 psi (book value)
Solution Series Solution Series
from ref. Experiment solution from ref. Experiment solution
4.139 4,139
| 61. 4 62 61. 4 38.8 38.3 38.8
2 eemen 136 134 136 |- 113 115
S 136 134 186 |- 136 137
S 166 169 170 |ocooeee o 214 218
5 333 330 333 | 261 267
TSNP [SPU U 434 436 |- 294 298
U, 375 383 885 || -
y -
y
a a
/2 ='I
¥
a/2
Clamped Point
X X X X
a/2 a/2
X% X

Figure 4.82.—Free square plate supported at the
midpoints of its sides.

widths. Extrapolated values are derived from
equation (4.90).

The second mode shapes for these two prob-
lems have node lines y=z, and thereby dupli-
cate the second modes that exist when the
corner point is not supported. (See secs.
43.6 and 4.3.13 for relevant information.)
First and second mode shapes and frequencies
can also be obtained directly from the results

Figure 4.83.-—Free square plate clamped at one
midpoint.

of the free square plate point supported at its
four corners given earlier in this section.
Straight node lines duplicate simply supported
boundary conditions.

 Consider next the problem of the rectangular
plate simply supported on all edges and sup-
ported at a point located at the coordinates
g, n (fig. 4.85). Nowacki (vefs. 4.137 and 4.145)
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TaBLE 4.95.—Fundamental Frequency Param-
eter way/p/D for a Free Square Plate Sup-
ported at the Midpoints of Its Sides; v=0.3

wa’w/ ;/._D
Mesh width
Extrapolated
value
af8 a/10
17. 129 17. 443 18. 002

TABLE 4.96.—Frequency Parameters wal/p/D
Jor a Square Plate Simply Supported or

" Olamped on 2 Adjacent Edges and Supported
at the Opposite Corner; y=0.3

wa2y, o/D
Adjacent edge

conditions Mesh width Extrap-

olated

value

ald afb af6

Simply supported___| 8. 22 850 |__.____ 9. 00
Clamped_._________|______ 12. 55 | 12. 90 13. 68

solved the problem by dividing the plate into
two sections by the line y=¢, assuming a solu-
tion of the form

W(z, y)=3" (A, sinh \gy+ B,, sinh \) sin me

(4.96)
where

. mm\?  pw?
As, )\4—\/<7 i—D- (4.97)
for each section, and satisfying the boundary
conditions along y=0 and y=b and the con-
tinuity conditions along y=y exactly. Con-
tinuity of transverse shear along y=y requires
expanding the point load at £, 5 into a Fourier
sine series. These conditions lead to the char-
acteristic equation

Zﬂ sin’ of ["sinh A sinh A,(b—7)
m=1,2,... ()\g—)\i) )\4 Sinh )\46
sinh Asp sinh A\;(6—7) a
Assinh A0 -

0 (4.98)

y
a
A —X
/] ]
41
Al
%1
1 a
j |
A
A |
41
A e _
7777777777777 77, x

Simply Supported
or Clamped
Fieure 4.84—Square plate simply supported or

clamped on two adjacent edges and supported at the
opposite corner.

[
| |

X

FiGUuRE 4.85.—88-SS-S8-SS rectangular plate with
point support along one symmetry axis.

where a=mx/a. The roots N\; and A, of
equation (4.98) yield the frequencies.

The fundamental frequency parameters for
three a/b ratios and with the point support at
the center (¢=a/2,n=">0/2) arelisted in table 4.97.
Frequencies were also determined (ref. 4.137)
for the case of the square when the support
point was allowed to relocate along the line
y=a/2="5/2. Results are given in table 4.98.
It is noted that corresponding values (¢/a= 14,
a/b=1) of tables 4.97 and 4.98 show consider-
able disagreement.
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TABLE 4.97.—Fundamental Frequency Param-
eters for a SS-SS-SS-SS Rectangular Plate
Hawing a Point Support at the Center

afb l 1.0 \ 1.5

TaBLE 4.98.—Fundamental Frequency Param-
eters for a SS-SS-SS-SS Square Plate Having
a Point Support Along a Symmetry Axis

ta 0 Y% A 3% ¥
wapD - .- 19.7 1 25.5|30.4 389 | 49.3

The case when the plate is supported at a
point by a spring, with or without added mass,
is discussed in the section entitled ‘“Point
Masses’’ (sec. 4.5.2).

The square hub-pin plate (fig. 4.86) consists
of a hub support attached to the edge of a
plate and having an axis of rotation parallel
to the adjacent edges and a pin support at
another point along the same edge. For the
particular locations shown in figure 4.87, the
boundary conditions at the hub are for W(z,y)

a\ oW/ a
(05)-2 (0,9)0

and at the pin

(4.99)

3\ 3\
W(O,Za)—M,(O,Ia —0  (4.100)

Fieure 4.86.—Square hub-pin plate.

Free-edge boundary conditions apply every-
where else.

This problem was treated in references 4.66
and 4.143 by using a modification of Reissner’s
variational method (ref. 4.71) and a deflection
function

=4[]
a[)-56)]
a0

TSNy _2(T)]
+B‘{a 23[ a) 3\a
AY&] T\ (i
3OO0
NE(TY-2(2 ‘]
+a()ELE 6)
N/ /N 277\
+aEEE-56E)] e
Moment boundery conditions were exactly
satisfied at discrete points and four degrees
of approximate satisfaction of the shear bound-
ary conditions were considered; the best results
were obtained when the transverse shear con-
ditions on the free edges were ignored. Fre-
quency parameters from reference 4.66 com-
pared with the experimental data of reference
4.72 are presented in table 4.99 for an aluminum
plate 7.5 by 7.5 inches by 0.25 inch. Experi-
mental methods used to get these results are
described in reference 4.146.

Mode shapes corresponding to the first three
frequencies are shown in figure 4.87, where

TaBLE 4.99.—Frequency Parameters way/p/D
and Nodal Patterns for a Square Hub-Pin Plate

wavp/D for mode—
Type
1 2 3 \ 4 N 5
Theoretical____{ 2.67 | 5.86 | 15. 87 | —ooo|-cm---
Experimental__| 2.76 | 5. 59 | 15.95 21.73 | 26. 81
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1.0 €09 1L.Or

AE
PE05 Ay
A £:05
09
A=A, P £:0.1

Normalized Deflection

a~Experimental

-05+ -054+ 0o ~Theoretical
-0 -104 -16-
Frheo!15-3 cos frhes252.9¢ps frhec=6846cps
fExp =|19.6 cps fExp =243 Ocps fExp =692 .0cps
MODE | MODE 2 MODE 3

Freure 4.87.—Theoretical and experimental mode shapes for a square hub-pih plate.

f=7/a and g=¥/a. Further experimental re-
sults (ref. 4.86) for a thinner plate are shown
in figure 4.88. More work on point-supported
plates is contained in reference 4.147.

4.5 ADDED MASS
4.5.1 Rigid Strip Mass

The problem of the rectangular plate, simply
supported on two opposite edges, free on the
other two, and carrying a rigid mass of finite
width ! running across the center of the plate
(fig. 4.89) was studied by Cohen and Handel-

man (ref. 4.148). In reference 4.148, the
Rayleigh-Ritz method is used with a funda-
mental mode shape

i T a I . my
W (&, y)=sin (cle)+Ab3z (q;—§+§> sin 5%

(4.102)

where A is an undeterminéd coefficient to be
found from the minimization process. An ex-
plicit formula for the frequency parameter is
found to be

A2 C:05—2(CsCy+ C,Cs) +2+(C0sC,— C, 0y’ — o0 C: 0o+ . C) + 0304@,—}— G0t

where

T (4.103)
=waX/p/D )
OIZ—TTT
16 (3) (1‘6
a=10 (3) (=3[ 14+ G (1) ]
< (4.104)

(O (YT 1200 +2 O (2]

o))
o200
(D
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ROTATIONAL
CONSTRAINT POINT

. ——/ n=+04

+ PIN
£=017
£=030
NODELINE
75N \\ / ¢=050

e = ] £=070
v i
/ \£=o.9o
} 7L —
@ !
m
-0.4 -0.2 0 +0.2 +0.4
£=0300— e N
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-06071 W
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a —— 2
N
S
Y
-0.801 &
2
£=0.904— o

(b)

]

-1.00

® SHAKER POSITION —
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+0807
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+0.40+

+0.20+

£070
£090
” < 2
2
7,
. ,
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NO DEFLECTION DATA
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/ +0.2 T +04

® SHAKER POSITION -
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£=050,

RECTANGULAR PLATES

£=090

&=0.70

+ 100+

+0.801

+0.601

+0.40

NORMALIZED DEFLECTION

143

¢=0.90,
-0.804

@ SHAKER POSITION=
NO DEFLECTION DATA

NORMALIZED DEFLECTION

(e) -1.00

L

U]

-1.00

® SHAKER POSITION —
NO DEFLECTION DATA

FicuRE 4.88.—Experimental node lines and normalized deflection of a square hub-pin plate;
material, 6061-T6 aluminum £ inch thick. () Experimental node lines and data points.

(b) First mode; fi=>58.8 cps. (¢) Second mode; f,=119 cps.
cps. (e) Fourth mode; f,=462 cps. (f) Fifth mode; f;=570 cps.

a/2

a/2
—{ 472

ey

HNNNNNN

472 =

F1aURE 4.89.—SS-F-SS-F plate carrying a rigid mass.

(d) Third mode; f;=339
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and where p’ is the mass density per unit area
of the plate plus the additional mass in the

region  [(a/2)— (/2)|<a<[(a/2)+(#/2)]. For

il () H@ e 0D (-0) ()]

large values of a/b, equation (4.104) can be

simplified by retaining terms of order (b/a)?
but no higher powers, giving:

05)
l l 1 b 8192 l 3\ /b
<1_"> [ -O) (=)0 +5@) 500 (D G )
Numerical results were evaluated in reference  where
4.148 for »=025. For the square, equation
(4.103) was used. Frequency variation with — A=wa’vp/D )
I/a ratio for several values of p/p is shown in BN N 5
figure 4.90. For a/b=10, equation (4.105) was D1=E2<—> I:E5(_> +E6<_>]
used. Results aré shown in figure 4.91. It is a a @
interesting to note that in both figures for B\6 B\¢ B\2
p'[p<2 the frequency always increases as D,=E, I:E7<E> +Es (ﬁ) +E, (5) :I
I/a increases, whereas for p’/p>2 there exist B\
crossover points where the frequency of the +E;E, (E)
plate with the added strip is the same as that of _ b\¢
the unloaded plate. Dy=D,—2E,E, (ﬁ) 4
In reference 4.149 the technique of reference ]
4.148 was extended to the lowest antisym- p —p, (l’.) [ E5(é)3+ E, (é):l
metrical mode. A function @ a @
Q[ C)n(5 )
W(z,y)= 5111—%—-{—441—(1—6 z(z—a+1) sin* (4.106) 2\ g \a \a \gz
is used where 8 is the fundamental root of the \3 b h\3
equation pe=m[ 5(G) + 5() |- B2 (G)
t&nﬁ(l-—-£ +B£=0 (4.107) B\6
N e Di=(2) E—4EEy
The explicit form for the frequency parameter @ 7
is found to be (4.109)
_ 2
k2=D1 2D2+2'\/D3+D4D5 (4.108)
24/82) [3 /
/
g - / R« /]
$ 5 £
3 ,/ S | ; ;//
- . C';// . _ e %‘:5
2 § /7/ /:’//
° 0.2 c.4 1 06 0.8 1.0 ° 0.2 04 06 0.8 10
. /a

FicUrE 4.90.—Fundamental frequency variation for a
S8-F-88-F square plate carrying a rigid strip mass;
v==0.25. (After ref. 4.148)

bro

Ficure 4.91—Frequency variation for a SS-F-SS-F
rectangular plate (a/b=10) carrying a rigid strip
mass; »=0.25. (After ref. 4.148)
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and where

BEOGIHOLHON
1+62(l>
Fir55(1-5)
. 1+B2(l> (1"
1+62(l>
1+2<f;>

™

E.=

Y

2

Es= 74_"’_3'12E'5
E— 4(1—-
By 15 <1 Ta
_m™ (.
By~ 1680 (1 a) J

(4.110)

For large values of a/b,
simplifies to

AEE,—E? b
AE.E, 8E2E2( ) [2E\ (B

—2E:E,)—E(E;—4E,Ey)] (4.111)

equation (4.108)

N=

Numerical results were evaluated in refer-
ence 4.149. For the square, equation (4.108)
was used. Frequency variation with {/a ratio
for several values of p’/p is shown in figure 4.92.
For a/b=10, equation (4.111) was used.
Results are shown in figure 4.93.

4.5.2 Point Masses

A rectangular plate simply supported all
around and having a concentrated mass M
attached at the coordinates & % is shown in

5000
2000
1000 : ll‘l
F
11
17
500
I

T /1]
calh//

E 100 f Py 47 sl s
o A
3 07771
o /yyms
3 /08
p70A A
20 <L ’\0
LS E /
10 // / o)
— = vf
= Z 1 &/
. /
AN A
N /
2
|0 0.2 0.4 06 0.8 1.0
Lra

Ficure 4.92.—Variation of the first antisymmetric
frequency for a SS-F-SS-F square plate carrying a
rigid strip mass. (After ref. 4.149)

figure 4.94. Gershgorin (ref. 4.150) solved
the problem by dividing the plate into two
regions 0<y<n and <{y<b and assuming a
solution (eq. (1.37)) for each region. Eight
homogeneous equations are written, four for
the boundary conditions at y=0 and y=b,
and four for the continuity conditions across
the line y=y. The continuity condition for
transverse shear takes into account the con-
centrated mass by expanding a point load
into a Fourier sine series. This procedure
leads to a characteristic equation, the roots of
which are the desired eigenvalues.

Numerical results are presented in implicit
form in reference 4.150 for the doubly symmet-
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FicUrRE 4.93.—Variatien of the first antisymmetric
frequency for a SS-F-SS-F rectangular plate carrying
a rigid strip mass; a/b=10. (After ref. 4.149)

X

FIGURE 4.94.—SS-SS-S8-88 rectangular plate with a
point mass M.

ric modes of a square (a=>5) when the mass
is at the center (¢=a/b, n=a/2). It is obvious
that for modes having an axis of antisymmetry
the mass M will fall on a node line and, hence,
will not affect the plate. The frequencies may
be obtained from the characteristic equation

_ tanh/@m+1)>—X

f1(>\)=>‘m2=0 (—~—(2m+1)2_)\

tanh72—rw/(2m—|—l)2+)\ 2

L A—— A VR V)
NOmesy == S A
where
2
)\Zc:%\‘/p/D (4.113)

The function f;(\) is given in table 4.100 and
plotted in figure 4.95.

TaBLE 4.100.—OCharacteristic Functions for a SS-SS-SS-SS Sgquare Plate Having a Mass at

the Center
A 51N A HN) A H»

O 0 2.0 — 10 — ®
02 . L0289 W 2.1 —26. 9900 101 - —264. 8749
04 . ___ L1197 | 2.2 . —13.9576 || 10.2______________.. —129. 7239
06 . L2818 || 2.5 . — 6. 5248 105 . —61. 1816
0.8 . .B382 || 3.0 o ___. —3.7910 110 . —33. 3897
1.0 e L9323 || 4.0 o _______. —1. 7000 120 . —13. 6614
12 1.3698 || 5.0 . ____._. —., 5124 13.0 e —7.6301
14 o ___ 2. 6115 6.0_______________ — 1. 2861 140 . _ —3. 5239
1.6 ___ 4,.7415 | 7.0 o ___ 3. 7948 15.0 e . 6548
17 . 7.4900 || 8.0_ . __________ 8. 5774 160 o 6. 4283
1.8 . 11. 1529 9.0 ______. 22. 0731 1700 oo 19. 7349
1.9 . 24,3803 || 9.5 ____ 45, 3092 17,5 42. 6325
20 o ___ © 9.8 .. 124. 2640 17,8 113. 0580

1000 _____ ® 180 . @
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The method of obtaining frequencies is
shown in figure 4.95. For a given problem, the
right-hand side of equation (4.112) is computed.
This is represented by the broken line in
figure 4.95. The intersections of this line with
the curves fi(3) yield the values of N on the
abscissa. The frequency is then determined
from equation (4.113). It is seen that fi(3)
becomes infinite at values of \ corresponding
to the natural frequencies of the unloaded
plate. Also, as the mass is increased, f,(})
always remains positive. Thus, for infinite
mass M the higher frequencies are not zero.

The doubly symmetric mode shapes are
given by

smh( BmF1r—n x)

i\
50

505883

20|

40
50

Ficure 4.95.—Characteristic functions for a SS-SS-
S8-88 square plate having a mass at the center.

Wiz, y)=23(~1)"

sinh (2 y@mFIVFA, )

v(2m—1)*—\,; cosh (5 J@m+1 )Z“M>

V@M1 cosh (’21\/(2m+1)2+xi)

where A, are the associated
parameters.

Wah (ref. 4.151) and Amba-Rao (ref. 4.152)
solved the problem by using a solution for the
plate without an added mass (eq. (4.19)) and
representing the concentrated force resulting
from the point mass by a Dirac delta function.
In reference 4.152, the frequencies for modes
which do not have nodes at (£, ) are determined

from the characteristic equation

frequency

g mwf . 2n';r'n

S A [ S

Frequency parameters for doubly symmetric
modes of a square having the mass M= pa?/4
at the center are listed in table 4.101.

In reference 4.151, an approximate formula
for the square of the fundamental frequency
of the simply supported rectangle having a
point mass M at the center is given as

sin’

(4.115)

sin[(2m+1)’%‘] (4.114)

wb(*@

4.116
M+pab (4.116)
and an independently derived approximation
for the square of the fundamental frequency
of a massless plate having the point mass is

D 1,1V
wLI”%?ﬁQ
o M

Thus the practical rule results that the funda-

mental frequency of the plate-mass system in

this case may be approximated by adding

one-fourth of the mass of the plate to the

central concentrated mass and calculating the

frequency by equation (4.117) as if the plate
itself were massless.

‘Stokey and Zorowski (refs. 4.153 and 4.131)
and Lee (ref. 4.154) developed a general
method for determining the frequencies of a
rectangular plate with arbitrary edge condi-
tions and any number of arbitrarily located
masses having both translational and rotational
inertia. Deflections are expressed in terms of

(4.117)
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TaBLE 4.101.—Frequency Parameters wa’y/p/D
for a SS-SS-S8-8S Square Plate Having a
Point Mass M= pa?/4 al the C’enter

Number of terms in eq. (4.115)—
Mode No.
1 l 2 3 4
1o 13.96 | 13. 89 13. 81 13.79
b L, IR 80.999 | 70..511 | 68. 996
U SUURUUONPURUIEY FEOUPEDURRN M U 162. 65

the eigenfunctions of the plate without masses,
and the equations of motion of the plate-mass
system are determined from Lagrange’s
equation

d (M _oT 3U_

dt\d,4/ 9¢:. 0¢;
where T is the kinetic energy of the plate-
mass system, U is the potential energy of the
system, ¢, are the generalized coordinates cor-
responding to the eigenfunctions used, and ¢
is time. The resulting infinite set of ordinary
differential equations in the ¢, are solved for
the frequencies of the system in the usual
manner.

Numerical results were obtained for a simply
supported aluminum plate 20 by 20 inches by
0.091 inch with a concentrated mass having
negligible rotational inertia at the center. By
assuming a specific weight of 0.0955 pound per
cubic inch for aluminum, this gives the weight
of the plate as 3.48 pounds. Theoretical and
experimental fundamental cyclic frequencies
were obtained and are given in table 4.102.
Only the first four eigenfunctions of the SS-
SS-SS-SS plate were used in the calculation of
the frequencies.

Table 4.103 (ref. 4.153) lists the results for
the effect of adding various numbers of cylin-
drical masses having equal rotational inertias
about all axes in the zy plane at different loca-
tions (the axis of the cylinder is perpendicular
to the plate). Moments of inertia listed are
relative to axes lying in the middle plane of
the plate.

The case when an externally connected
translational spring of stiffness & (force/length)
is attached to the plate at the same location
as that of a concentrated mass is studied in

0 (4.118)

TaBLE 4.102.—Fundamental Cyclic Frequencies
Jor a SS-SS-SS-SS Square Plate With Vary-
ing Point Mass at the Center

Concentrated Cyelic frequency, eps ~
weight, b
Theoretical Experimental
U 23. 5 23. 4
4 . 18.0 17. 5
6 .. 15. 1 15. 0
8 13. 2 13. 2
10 . .. 11. 9 12. 0
12 . 11.0 11. 0

reference 4.155. The characteristic equation
for the simply supported square having a mass
and & spring at its center is equation (4.112)
with the right-hand side modified to become

2
A=—222

7I’<M——2

(5]
for doubly symmetric modes. Again, values
of i(A) may be taken directly from table 4.100
and figure 4.95. From equation (4.119) and
figure 4.95 it is seen that for w=+k/M the
vibrations of the spring-mass system and the
plate become uncoupled. As k—o, fi(A)—0
and the solution is that of a rigid point support

at the center.

Consider next the simply supported square
plate having four equal masses symmetrically
located along its diagonals as shown in figure
4.96. For modes symmetric with respect to
r=a¢/2 and antisymmetric with respect to
y=a/2, the frequencies may be determined
from the characteristic equation (ref. 4.150)

(4.119)

banhg\/(2m+ 12—\

fz(k)=)‘;|:

VEmF1P—r
tanhgv'(2m+1)2+>\]
V@M1
2p0” 4.120
~ M (4.120)

with A given in equation (4.113). The function
f2(\) is given in table 4.104 and plotted in
figure 4.97.
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TaBLe 4.103.-—Fundamental Cyclic Frequencies for a SS-85-88-88 Square Plate Having Various
Numbers and Locations of Added Masses

Location Cyelic frequency, cps
Weight, 1b 1, 1b in. sec?
£ ) Theoretical Experimental
2.75 0. 021 25.1 26. 0
a/4 al2 2.75 . 021 28. 7 28. 5
al4 al4 2.70 . 020 s
a/2 a/2 2.75 . 021 } 17.9 15.5
ald a/2 2.70 . 020
a/2 ajd 2.75 021 } 20.1 18.0
a/4 a/2
l—2a/4 a/2 a/4—-
= o o o o o o ————- [
1
| |
| : : a/4
|
| ! oo
| ° . | R
| ] sol
| | -
60 pm
| | L
1 | a0}~
| 1 B
| 1 a/2 20
( [ . . ,
{ : or 5 ) 15 ) 25 A
| | 20~
! ] -
| 1 40 -
: . b : sof-
| | -
I 1| asa or
| | oo -
1 H 1
he e o e o e - —— - ——— - — 720 4
X

Fieure 4.96.—Simply supported plate with four sym-

metrical masses.

S8-88

located masses.

Ficure 4.97.—Characteristic functions for a SS-SS—

square plate having four symmetrically

TABLE 4.104.—Characteristic Functions for a SS-SS-SS-SS Square Plate Having 4 Symmetrically
Located Masses

A f20) hy f2(N
0 o ___. 0 5.0 __ —
1.0 L L2650 || 5.l .. —153. 5112
2.0 .. 1.1836 || 5.2 .. —66. 4149
3.0. 8.3561 || 5.5 oo —27. 5738
4.0 ... 9.9930 || 6.0-_ . ______... —14. 4680
4.5 22,5453 || 7.0 .. —7.1951
4.8 .. 61.1634 || 8.5 ... —1. 5711
4.9 .. 125. 1397 || 1000 _______.___ 2. 9591
5.0 e o || 1000 .. 8. 9760
1200 . 26. 6930
12,5 oo 60. 2381
12,8 .. 159. 6640
129 .. 211. 6283
13.00 o _____ ©

A JFa(N)
180 ... —®
185 . —71. 4574
14.0 o —37. 8496
15.00 e —20. 3772
16.5. .. —11. 7206
18.0 o ... —7. 0385
20.0 . —2. 2286
23.0. s 6. 5164
25.0. e 15. 8490
26.5. e 29. 6535
28.0. . 77. 1999
28,5 e 152. 1900
2900 .. ®
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The mode shapes corresponding to these frequencies are given by

Wz, y)=2, [(-—1)’" cos

a

h"ry\/—(zm’f‘ 1)2—“)\
a

sin

(2m:-1)7rsin(2m+1)1rx

]

hﬂwy V(2m+1)*+2
a

sin

V@R cosh VEPED' T iR s TN

In references 4.156 and 4.157, Solecki gives
the fundamental frequency of a square plate
clamped all around and having a point mass at

the center of twice its own mass. The fre-
quency is found to be
=
w= 0'92” \/Q (4.122)
a P

The problem of the rectangular plate having
three sides simply supported and the other
clamped and having a mass M and a spring of
stiffness k£ attached at a given point (fig. 4.98)
was solved in reference 4.158. The method
used was essentially that given in reference
4.153 and discussed previously in this section.
Ratios of the fundamental frequency of the
system to that of the plate alone as functions
of the stiffness ratio k/k. and the mass ratio
M]/pab are shown in figure 4.99 for the case of
the square, and £=%=0.2¢. The quantity
k. may be thought of as a generalized spring
constant corresponding to a uniformly loaded
SS-SS—-SS-C square plate of negligible mass;
that is, k,=0D/0.00279a>.

LLLLLLYLLLL LLLLL

—————t o~ — — =]

1
|

FiGURE 4.98.—SS-SS-SS-C plate with a point mass
and point spring.

(4.121)

The problem of the SS-SS-SS-C square plate
having two point masses, one at &=mn=0.2¢
and the other at £=1,=0.4¢, was also solved
by Das and Navaratna (ref. 4.158). Frequency
ratios are shown in figure 4.100.

A method for determining frequencies . of
rectangular plates having added masses and
elastic edge constraints is given in reference
4.131. Theoretical and experimental fre-
quencies are given for specific plates used as
electronic chassis.

For a specific case of a rectangular cantilever
plate having added mass at the tip (z=a),
see the discussion under parallelogram plates
entitled ‘“Other Supports and Conditions”

(sec. 5.2).
700
. ///
500 e 7

# 400 e i y /

= 2]

g 300 7 //// 4,/
/// pdn
. W L

° ] 2 3 4 5 N 8

Frequency Ratio

F1cURE 4.99.—Ratio of the fundamental frequency of a
SS-88-8S-C square plate having a point mass and a
spring at £=75=0.2a to that of the plate alone.
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Figure 4.100.—Ratio of the fundamental frequency of
a S5-SS5-8S-C square plate having point masses
M; and M; at {=n=0.2a and §=1,=0.4q, respec-
tively, to that of the plate alone.

4.6 INTERNAL CUTOUTS

4.6.1

A rectangular plate either clamped or simply
supported on the outer edges and having a
centrally located circular hole is shown in fig-
ure 4.101. Takahashi (ref. 4.159) solved the
problem in the case when all edges are clamped
by using the Rayleigh-Ritz method and deflec-
tion functions which are products of beam func-
tions. Variation in fundamental frequency
parameter as a function of R/a ratio is given in
figure 4.102 for several a/b ratios and »=0.3.
The frequency scale is amplified in figure 4.103
and theoretical and experimental values are
given for the case when a¢/b=0.5.

Kumai (ref. 4.160) used the point-matching
method to find the first three frequencies for

Circular Holes

LLLLLL L L
“

bl

- —_— b
4 \<J |
V
R [ b/2
14
/) |
O |
TIVTTI 777777777 x

FicUre 4.101.—Rectangular plate having a centrally
located circular hole.

2000 : 7
' v=0.3 '/,
1500
,/
a °/b=\//
o |0
3 v /
a/0= 118 37 7
1000 /+/
—a/b=6/8 i 4
a ‘/

LN ' =
(g/b=5/§___/// 4/
o/b=4/8 | —

500 ‘I’/ b-0
) X 0.2

R/a

Ficure 4.102.—Frequency parameters wiatp/D for a
rectangular plate clamped all around having a
central circular hole. (After ref. 4.159)

the previous problem when a¢/b=0.5. Theoret-
ical and experimental cyclic frequencies were
obtained for celluloid plates 2.75 by 2.75
inches by 0.020 inch having various E/a ratios
and are shown in figure 4.104. TIn table 4.105
are listed the ratios of the frequencies of clamped
square plates having central circular holes to
those of plates without holes.

The case when the outer boundary is simply
supported was also studied in reference 4.160
and cyclic frequency variations are shown in
figure 4.105. Frequency ratios for this prob-
lem are also shown in table 4.105.

Joga-Rao and Pickett (ref. 4.37) used the
Rayleigh-Ritz method with algebraic poly-
nomials and a biharmonic singular function to
obtain

wa?+/p/D=5.6148 (4.123)
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. /
700

TaBLE 4.105.—Frequency Ratios and Nodal
Paisterns  for Square Plates With Central
Circular Holes

/
o o/

/

v=0.3
S a’/b=1/2
o o Experiment

L

‘ /
600

0 0.l 0.2
R/a

FigUurE 4.103.—Theoretical and experimental frequency
parameters w?afp/D for a clamped rectangular plate
having a central circular hole. (After ref. 4.159)

for a SS-SS-SS-SS square plate having a
central circular hole, R/e=0.5, and »=0.3.
The function used was (see fig. 4.101)

I:A1+A2(£>2+A31n§:| (4.124)

Frequency parameters for various numbers
and combinations of coefficients retained in
equation (4.124) are listed in table 4.106.
Because all results are upper bounds, the
lowest value is the most accurate one.

The frequency parameter for the square
plate having a central circular hole in the

Frequency ratio
Nodal pattern R
a
Clamped edge SS edge
0 1. 000 1. 000
@ 0 | .2 . 986 . 985
.4 1. 118 . 965
0 1. 000 1. 000
O. .2 . 916 .9013
.4 . 876 . 804
PN 0 1. 000 1. 000
IO, 2 1. 040 1. 024
N\ 4 1. 195 1. 228

case when the outer edge is completely free
was given in reference 4.37 as

wa?+/p/D=2.8963 (4.125)

when R/a=0.5 and »=0.3. The Rayleigh-
Ritz method and the function

W(r,0) = (Ar*+ Ag*+ A3+ Ag~?) sin 260 (4.126)

(see fig. 4.101) was used. Frequency param-
eters for various numbers and combinations of
coefficients retained in equation (4.126) are
listed in table 4.107.

4.6.2 Other Cutouts

The case of the completely free square plate
(fig. 4.106) having a centrally located square
hole was investigated in reference 4.37. The
Rayleigh-Ritz method and functions given in
equation (4.126) were used for ¢/a=0.5. Fre-
quency parameters for various numbers and
combinations of coefficients retained in equa-

TABLE 4.106.—Frequency Parameters wa/p/D for a SS-SS-SS-SS Square Plate Having a Central
Cireular Hole; v=0.3

Coefficients retained / A A,

4s A, Ads \ 41424,

WOVPD e # 6. 743 24. 21

20. 003 ~ 5,955 5. 629 5. 615

S,
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Ficure 4.105.—Cyelic frequencies for SS-SS-SS8-8S
square plate having a central circular hole. (After
ref. 4.160) .

F1GURE 4.104.—Cyclic frequencies for C-C-C-C
square plate having a central circular hole. (After
ref. 4.160)
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TABLE 4.107.—Frequency Parameters wa’yp/D for a F-F-F-F Square Plate Having a Central

Circular Hole
Coeflicients retained A1 Az A3 A4 A1A3 A1A2A3 A1A3A4 ’ A1A2A3A4
@ap Do oo . 3.189 9. 478 7. 617 25. 45 3. 026 2.914 2. 962 2. 896

TABLE 4.108.—Frequency Parameters wa’y/p/D for a F-F-F-F Square Plate Having a Central
Square Hole; v=0.3 :

Coefficients retained A1 Az A3 A4 A1A3 AlAzA;; A1A3A4 A1A2A3A4
wap/D_ . 3.1 10. 21 6. 754 17. 13 2. 931 2. 845 2. 887 2. 845
1 y

1
1 I
| |
] |
l i
| if | ®
: |
] : ¢
! I
|
| SRR [ U . I
C a X
a/2 I a/2

a

FicUrRe 4.106.—F-F-F-F square plate with a central
square hole.

tion (4.126) are listed in table 4.108. The
lowest value is the most accurate.

Consider next the rectangular plate simply
supported on all external edges and having a
narrow slit of length ¢ along one axis of sym-
metry as shown in figure 4.107.  This problem is
studied in reference 4.136. One numerical
result is given but it is highly inaccurate. 'The
case when the slit is completely internal is
formulated in reference 4.161, but no numerical
results for vibration are given.

F1cURE 4.107.—SS-SS-88-8S rectangular plate with a
symmetrically located slit.
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Parallelogram Plates

Because no exact solutions to equation (1.4)

expressed in skew coordinates by equation
(1.39) are known to exist in variables separable
form, no significant exact solutions exist for
parallelogram plates. Even the case when all
edges are simply supported requires an intricate
solution, unlike the case of the rectangle (sec.
4.1). Some solutions have been obtained by
-approximate methods for a few of the many
possible combinations of boundary conditions.
Particular emphasis exists in the literature for
the case of the cantilevered parallelogram
because of its importance as an aerodynamic
lifting or stabilizing surface.

5.1 SIMPLE EDGE CONDITIONS

Results for plates with clamped (C), simply
supported (SS), and free (F) edges are given
in the following subsections.

51.1 C-C-CC

Kaul and Cadambe (ref. 5.1) proposed a
solution to the problem of the C-C-C-C
parallelogram plate which used the Rayleigh-
Ritz method and the products of characteristic
beam functions; that is,

where
1 /sin {kn[—(a/2)]}
#n(8) w@( sin (k.a/2)
sinh {knl§—(a/2)]}\ . ,m7
T sinh (kna/2) )"OS 2
1 (cos {knlt—(a/2)1}
+w75( cos (k,a/2)
cosh {knl§—(a/2)] }\ ;. ,mm
T cosh (knaf2) )S’n 2
m=1,2,3,... (52)

Chapter 5

where ke is themth positive root of the tran-
scendental equation

tan (k,a/2)=(—1)"tanh (k,a/2) (5.3)
The functions ¥,(n) are obtained by replacing
£, a, and m in equation (5.2) by 7, b, and =,
respectively.

Results were obtained in reference 5.1 by
using only one term of equation (5.1) and the
Rayleigh method to obtain upper bounds for
frequency parameters for the case of the rhom-
bus (@=>4). These results are given in table 5.1;
the notation m/n is used to indicate the number
of approximate half sine waves in the &/y
directions, respectively (at least for small
values of «). Combined modes of the form
(m/n+n/m) having nearly equal frequencies
exist, as in the case of the square. (See sec.
4.3.1.)

Lower bounds were obtained in reference 5.1
for some of the modes by use of the Kato-

TaABLE 5.1.—Frequency Parameters wal~p/D
cos® a for a C~-C-C-C Rhombic Plate

watyp/D cos? « for values of skew
angle, «, deg, of—
Mode type

0 15 30 45
L S 36. 11 36. 67 38. 15 40. 08
12 L 73.74 74.76 77. 48 81. 06
22 . 108. 85 | 111.43 | 118. 19 126. 84
(1/3)—(3/1)..__| 131.77 | 132.90 | 135. 96 140. 02
(1/3)4(3/1).___| 133.20 | 133.71 | 138.03 142. 70
32 165. 92 | 169. 56 | 179, 12 191. 41
3/8 . 220.91 | 226.76 | 242. 04 261. 46
(2/4) — (4/2) ... _| 242,82 | 246. 91 | 258. 02 272. 36
(2/4)+(4/2) ... _| 245.23 | 249. 67 | 261. 40 276. 64

161
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TaBLe 5.2.—Upper and Lower Bounds of wa%/p/D cos? o for a C—-C~-C-C Rhombic Plate

wa%/;)/—D cos? a
Maximum
Skew angle, «, deg Mode type possible
Lower bound Upper bound Mean value percentage
deviation from

mean value

L 1/1 35. 333 36. 109 35. 721 1. 07
1/2 71,768 73.737 72. 752 1.33

2/2 104. 988 108. 850 106. 919 1.77
15 e 1/1 34. 690 36. 666 " 85. 678 2. 69
1/2 63. 686 74. 759 69. 222 7.41
80 oo /1 32. 959 38. 147 35. 55 6. 80
S 1/1 30. 638 40. 082 35. 36 11. 36

TaBLE 5.3.—Fundamental Frequency Parameters

wa%y/p/D cos* a for a C-O-C-C Parallelogram

Plate
a watVp/D cos? o for values of skew angle, «, deg, of—
3 Source
15 20 30 35 45 60
1 Ref. 5.5 ________ 35. 636 35. 376 34. 624 34. 172 | |eiee_-
Ref. 5.2 ____._________ 35.625 |_._______. 34. 788 | ... 32. 795 30. 323
0.5 Ref. 5.5 oL 24, 484 24. 388 24. 196 24. 096 |- _|oeoao___

Temple method. These are given in table 5.2
along with a mean value of frequency parameter
determined from the lower and upper bounds
and a computation of the maximum possible
error which can arise from using the mean
value.

It is clear from table 5.2 that the accuracies
of the solutions decrease as (1) the mode
number increases and (2) the skew angle
increases.

Further results for this problem were obtained
by Hamada (refs. 5.2 and 5.3) who used the
method of Trefftz (ref. 5.4) and deflection
functions

W(E,n)= 2= M 0<z‘1,,mcos—7r—cos7%7

mm nr
+ B, cos —f sin—— 1

e mt
+ Cpy sin 5 CosT 5

+D n7r17

and by Hasegawa (ref. 5.5) who used the
Rayleigh-Ritz method and deflection functions
(see fig. 5.1)

W(E, 7)=[—(a/2)*F [7*— (b/2)*(Aw
+ Ayt Ao+ A+ AuE®y
+ A+ At (5.5)

These results are summarized in table 5.3 for
a/b=1 and a/b=0.5. The problem is also
discussed in reference 5.6.

In references 5.2 and 5.3, experimental results
for the rhombic plate were also given. Mild
steel plates with a=b=2.36 inches and 1=0.035
inch were used. Figure 5.2 shows the ratio of
the frequency of the rhombic plate to that of
the square as a function of the skew angle.
The curve shown is from the theoretical results.
Plotted points are experimental data.

Conway and Farnham (ref. 5.7) analyzed

-~
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TasLe 5.4.—Frequency Parameters for a C-C-C-C Rhombie Plate
B, degou ... ‘ 45 40 37.5 35 ‘ 30 27.5 25 ‘ 22.5 ’ 20 15
wep/D_ ... l 18.00 | 21.70 | 24.05 26.90 | 34.66 | 40.03 47. 05 56. 02 67. 91 107. 27

Figure 5.1.—C-C-C-C parallelogram plate.

the case of the rhombus by the point-matching
method. In terms of the coordinate system
shown in figure 5.3, the deflection functions

(1.4) were taken.

teristic determinant.
various values of 8 are listed in table 5.4.

y

Wir,0)= § [AuT (lr)+BI (k)] cosmd - (5.6)

which exactly satisfy the differential equation
Boundary conditions of
w=0w/dr=0 ab 6=0°, 30°, 60°, and 90° were
matched, thus giving an eighth-order charac-
Frequency parameters for

x|

A /
/ F16URE 5.3.—C-C-C-C rhombic plate.
3 J
O Experiment / TaBLE 5.5.—Frequency Parameters wa’/p/D
/ cos? a for a C-C-C-S8 Rhombic Plate
=3 _
o 2 / wa?Vp/D cost a for values of
3 skew angle, «, deg, of—
3 Mode type
/’ 0 15 30 45
/)
' § 115 DO 31.95 | 32.54| 34.09| 3611
12 . 63. 66 64. 76 67. 68 71. 47
2/ . 71. 43 72. 40 75. 04 78. 46
202 . 101. 26 | 103. 83 | 110. 58 119. 18
18 . 116.97 | 118.29 | 121. 81 126, 47
0 275 D 130. 84 | 132. 03 | 135. 11 139. 25
o° 30° 60° 28 152.75 | 156. 50 | 166.32 | 178. 87
a 32 160. 00 | 163. 51 | 172.75 | 184.62-
____________ .97 | 215. 82 | 231. 06 250. 37
Fioure 5.2.—Ratio of the frequency of a C-C-C-C 3% 209.9 i

rhombic plate to that of a square. (After ref. 5.2)
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TasLE 5.6.—Upper and Lower Bounds of wa™y/p/D cos® & for a O—~0O-C-SS Rhombic Plate

waVp/D cost a
Skew angle, «, deg Mode type Maximum
possible
Lower bound Upper bound Mean value percentage
deviation from

mean value
0 e e 1/1 31. 460 31. 953 31. 707 0.77
1/2 62. 227 63. 659 62. 943 1. 13
15 e 1/1 31. 467 32. 541 32. 004 1. 65
1/2 60. 881 64. 761 62. 821 2. 99
B0 e 1/1 30. 351 34. 094 32. 222 5. 49
A5 e 1 29. 464 36. 108 32. 786 9. 20

5.1.2 C-C-C-SS

The problem of the C-C—C-SS parallelogram
plate (fig. 5.4) is solved in reference 5.1 by
using the Rayleigh method and a single term
which is the product of beam functions ex-
pressed in terms of the skew coordinates. (See
preceding sec. 5.1.1.) Frequency parameters
for the case a=5 are given in table 5.5. Lower
bounds from reference 5.1 are given in table
5.6 along with a mean value of frequency pa-
rameter determined from its lower and upper
bounds.
error which can arise from using the mean
value. Accuracies of the solutions decrease as
(1) the mode number increases and (2) the
skew angle increases.

n

£

F16URE 5.4.—C-C~-C-S8 parallelogram plate.

TABLE 5.7.—Frequency Parameters wa/p/D
c0s? a for a O-C-SS-SS Rhombic Plate

Also given is the maximum possible .

waVp/D cost o for values of skew
angle, «, deg, of—
Mode type
0 15 30 45
Yilo____._____| 27.19 | 27.84| 29.52 31. 68
1/2—@/1)_._.| 60.69 | 61.73 | 64 48 68. 06
@/2)+@/1-...| 61.29 62.40 | 65 33 69. 13
202 . 93.13 | 95.74 | 102.33 | 11115
(1/3)—(3/1)-._.} 115. 06 | 116. 29 | 119. 60 124, 44
(1/3)+(B/1)..._| 115.31 | 116. 57 | 119. 96 124, 44
(2/3)—(3/2).___| 145.98 | 149. 58 | 159. 00 171. 04
(2/3)+ (3/2)..._| 146. 81 | 150. 50 | 160. 15 172. 46
8/8 el 198. 55 | 204.43 | 219. 69 | 238 97

5.1.3 C-C-S5-SS

The problem of the C—C-SS-SS parallelo-
gram plate (fig. 5.5) is solved in reference 5.1
by using the Rayleigh method and a single
term which is the product of beam functions
expressed in terms of skew coordinates. (See
sec. 5.1.1.) Frequency parameters for the case
a=b are given in table 5.7. Lower bounds
from reference 5.1 are given in table 5.8 along
with a mean value of frequency parameter
determined from its lower and upper bounds.
Also given is the maximum possible error that
can arise from using the mean value. Accu-
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TaBLE 5.8.—Upper and Lower Bounds of wa%y/p/D cos? a for a C-C-SS-SS Rhombic Plate

waVp/D cos?
Skew angle, «, deg Mode type Maximum
possible
Lower bound Upper bound Mean value percentage
deviation from
mean value
0 e 1/1 26. 225 27. 195 26. 710 1. 78
(1/2)—(2/1) 59. 407 60. 690 60. 048 1. 06
15 e 1/1 24. 913 27. 838 26. 375 5. 25
B0 e 1/1 21. 450 29. 523 25. 487 13. 67
/") where e=tan a, A=uw?p/D, W=W(, n),
4 W\
____________________ Ll E4( 0 ;W + 3)
080 * 0809
oW oW
a L=b ogor T 2t
> (5.8)
7.—4OW
08093
a
ANURN NN RN A NN NR L R N RN RN AR N NN NG x,€ I oW
= 57
F1aurE 5.5.—C-C-S8-8S parallelogram plate. on /

racies of the solutions decrease as (1) the mode
number increases and (2) the skew angle
increases.

5.1.4 SS5-SS-SS-SS

Tsydzik (ref. 5.8) solved the problem of the
SS—-SS—-SS—-SS parallelogram plate (fig. 5.6) by
using the perturbation method. Equation (1.4)
can be expressed as

VW —AW=eL,(W) — 2Ls(W) + &Ls(W) — e*Lo(W)
5.7

FiqUure 5.6.—SS-SS-SS-SS parallelogram plate.

and ¢ may be considered as a perturbation
parameter. Solutions for W and A are then
assumed in the form

Won=WO+ WO+ WA - - -
Man =N+ AL A NG - - - (5.9)

Substituting equations (5.9) into equation
(56.7) and equating powers of e yield

VOO WG=0 (5.10)
VWS —NaWan=L(W2)+ e Wa  (5.11)
VAW o —NoW e =L(W ) —L(Wr2)
AW AN WD, (5.12)
Thus W and Ay, are taken to be
2 . mwE . nmy
O _— —_— .t
W,,m-—msm 5 Sin—g
(5.13)
mZ nz 2
Ap=m* 'a—2+p>
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TaBLE 5.9.—Frequency Parameters, Nodal Patterns, and Mode Shape Coefficients for a SS—SS-SS-SS

Rhombic Plate; tan a=0.1

J1Y (0T (- 1 2(a) 2(b) 3

Py YT 7 S 19.87 49.27 49.27 78.67

Nodal pattern_ - o oocoeen -

Amplitude coefficients . -_.___ Apr=1. 00000 Apz=1. 00000 Ag=1. 00000 Az=1. 00000
Age=—, 00963 An=0 Ap=0 Ap=. 03850
A= —. 00058 A= —. 09020 Au=. 00219 Apz=. 11540
Age=—. 00019 Ags=—. 00126 Agp=. 00028 Apz=. 00269
Agp=—. 00058 Ay=.00219 Azp=—, 09020 Az=. 11540
Ay=—. 00009 Ap=—. 00173 A=, 00173 Ag=—. 02880
Age= —. 00004 Ay=—. 00025 A= —. 00033 Ap=—.00274
Ag=—. 00019 Ag=. 00028 An=—. 00126 Ags=. 00269
Ag=—. 00004 Agp=—.00033 A= —. 00025 Asp=—. 00274
Aue= —. 00001 A55=’= . 00007 A55= - 00007 A55= —. 00048

and the solution to equation (5.11) is assumed to

be

r 8
Wa=23323 APQW;B!) p#Em, ¢g#n (5.14) 4
p=1 ¢=1 Q)
This is substituted in equation (5.11) to yield \ 9 /

A, and A\ and the procedure is continued.
Results for the first three independent modes
of a rhombus (e=bd) are given in reference 5.8
for e=tan a=0.1. Frequency parameters and
mode shapes for this plate are given in table
5.9. Fundamental frequencies wy; may be ob-
tained for other skew angles a and other a/b
ratios from the curves of figure 5.7, where

b
b

=—CO0S &
B a

(5.15)

Seth (ref. 5.9) gave an exact solution for the
parallelogram bounded by the sides =0, z=a,
y=1//3, and y=(2/43)+(2¢/4/3) as shown in

figure 5.8. Frequencies are given by

2
wmn=%a2 (m2+ mn+n2)\/? m, 7'L=1, 27 e
(5.16)

X
\\

\

6

B
~[=~
|

\

/// %//' /4

\ 5
N 4 .~
\—/ a’
60° 40° 20° 0 20° 40° | 60°

Ficure 5.7—Fundamental frequency parameters &=
wnobvp/D/27 as a function of skew angle « and
aspect ratio parameter (b/a) cos « for a SS-SS-S5-
SS parallelogram plate.
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and the mode shapes by
W ez, ¥)=2sin (m—n)rz cos (m-+mry/3y
R a a
—2sin (2mtn)re cos nr+/3y
@ a

+2sin (2n+am)1rm cos mr;/ﬁy (5.17)

Conway and Farnham (ref. 5.7) solved the
problem by using the point-matching method.

S

e e e e e e e e e e e e o o o o o e )

\

FigUre 5.8.—SS-SS-88-SS parallelogram plate having
an exact solution.
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Figure 5.9.—S8-SS-88-88 rhombie plate.

Fundamental frequencies for the rhombus (fig.
5.9) were derived by choosing a solution for the
bending moment M in the form

M= lz";‘, A,J (k) cos gb (5.18)
7=1,3,...
where ¢g=n=/8 and M is defined by
u=t M e, (5.19)

14+»

The function in equation (5.18) satisfies exactly
the differential equation (eq. (1.4)) and the
boundary conditions along the edges 6= +8.
Symmetry conditions require that the trans-
verse shear @, be zero along the line x=c.
Satisfying this boundary condition at N discrete
points along z=¢ in the interval 0 <y<{c tan 0
resultsin an N-by-N characteristic determinant
for frequencies. Frequency parameters ob-
tained by using various numbers of points are
given in table 5.10.

In reference 5.7 the case of the general
parallelogram (fig. 5.6) was also studied. In
this case the functions

M= > A,J,(kr)singb

n=12,...

(5.20)

were chosen and a characteristic determinant
was derived by satisfying symmetry conditions
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along the diagonal AC having the length .
Pointwise symmetry conditions employed were

w|r=c13=w[r=5c/3 3

W]y =20/8=W)r =403

1ow, _ _low - (5.21)
r 08 r=¢/3 r of r=5¢/3

10w 10w

;&- r=2c/3: _;-56 r=4¢/3 )

Solutions of the resulting fourth-order character-
istic determinants are given in table 5.11 for
various angles 8 and a/b ratios.

Accuracy of the results can be estimated by
comparing values for =90° with the known
exact ones (section entitled ““All Sides SS’ under
“Rectangular Plates” (4.1)) and the parameters
for a/b=1 with those of table 5.10.

TABLE 5.10.—Frequency Parameters wc/p/D for
SS8-SS-SS-SS Rhombic Plates

weVp/D for determinant of
sl1ze—
B, deg
3 by 3 6 by 6
10 e oo 116,92 | e
) K J 58, 06 58. 14
b | 35, 87 |
2D i eceam————— 24. 95 |oo e
| R 18. 65 18. 654
21 R 14.62 |ocoeeceeeeme
Y 11 87 |
[ TR 9. 872 |

TaBLe 5.11.—Frequency Parameters wb®/p/D
for SS-SS-SS-SS Parallelogram Plates

wb*Vp/D for values of a/b of—
B, deg
1 1.5 2
90, .. 19. 8 14. 2 11. 97
Y T 20. 4 143 12. 0
60 . 23. 7 16. 1 13. 3
45_ e 3L 9 21. 2 16. 6

Analogies which permit one to obtain fre-
quencies for polygonal plates simply supported
all around from the problems of either (a)
membrane vibration or (5) plate buckling due
to hydrostatic pressure are discussed in the
chapter entitled “‘Plates of Other Shapes’ (ch. 8).

5.1.5 C-F-F-F

Barton (ref. 5.10) obtained the first compre-
hensive set of results for the problem of C-F-
F-F parallelograms (fig. 5.10) by using the
Rayleigh-Ritz method with deflection functions
which are products of characteristic beam
functions; that is,

W(Em) =32 3 Ambn(E¥aln) (5:22)

where
fmf €nt

=cosh —>— ¢os ==
bn p p

— Ol (sinh E;LE —sin é_zﬁ)
=1
¥o=+/3(1—27/b)

— €nll €7
:[/nf-cosh 2 + cos 2

. € . €
—ay, (smh-%’l + sin <21

3 n>2 (5.23)

and where e,, €, am, and a, are found from
table 4.46.

FicurE 5.10.—C-F-F-F parallelogram plate.

P —
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FicURE 5.11.—Experimental and theoretical frequency

parameters wo?*Vp/D for a C-F-F-F parallelogram;
a/b=1; material, 24 S-T aluminum alloy.

F1GurE 5.12.—Nodal patterns on a C-F-F-F parallelogram; o=230°; material, 24 S8~T aluminum alloy.
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Results were computed by using 18 terms in
equation (5.22), and frequency parameters,
nodal lines, and mode shape amplitude coeffi-
cients are given in table 5.12 for a=15°, 30°,
and 45°, a/b=1, and »=0.3.

Experimental frequency parameters for the
first five modes were also determined in refer-
ences 5.10, 5.11, and 5.12. Test results and
corrected results are shown and compared with
theoretical results in table 5.13. Corrected
results include an approximation of the effect
of air-mass in order to estimate the equivalent
frequency in a vacuum. (See chapter entitled
“Other Considerations” (ch. 12).) A plot of
the foregoing results, including approximate
nodal patterns, is shown in figure 5.11.  Photo-

VIBRATION OF PLATES

graphs of nodal patterns obtained when a=30°
are shown in figure 5.12.

Claassen (refs. 5.13 and 5.14) extended the
work of reference 5.10 by using the same ana-
lytical procedure. A detailed Fortran pro-
gram statement listing for the procedure is also
given in reference 5.13. The first nine fre-
quency parameters for «=0° 5° 10° .. .,
35°, and a/b=1 are given in table 5.14. In
reference 5.13, extensive frequency and node
line data are given in the vicinity of “transition
curves”; i.e., the frequencies at which the basic
form of the nodal pattern changes into another.
This phenomenon is discussed in the section on
rectangular plates entitled “All Sides Clamped”
(4.3.1). In this case the mode shapes vary

TaBLE 5.12.—Frequency Parameters, Nodal Lines, and Amplitude Coefficients for O-F-F-F
Parallelograms; afb=1; v=0.3

o, degue oo 15 30 45

Moden. oo 1 2 1 2 1 2

wazw/;_ﬂ—) ___________________ 3.601 8.872 3.961 10.190 4.824 13.75

P - -

Nodal lines.cooocoeocaaaan

Amplitude coefficients:
AL 1. 0000 0. 1162 1, 0000 0. 2387 1. 0000 0. 3534
Ay —. 1134 1. 0000 —. 2288 1. 0000 —. 3302 1. 0000
A8 oo —. 0041 —. 0721 . 0089 —. 1447 . 0231 —. 2173
Afhe e oo —. 0007 —. 0145 —. 0006 —. 0179 . 0013 —. 0237
A o oo —. 0006 —. 0049 . 0001 —. 0093 . 0010 —. 0116
Agf oo —. 0102 . 0892 —. 0339 . 1785 —. 0704 . 2685
Agg & —. 0223 . 1035 —. 0399 . 0489 —. 0488 —. 0411
A3 e —. 0016 —. 0384 . 0074 —. 0708 . 0197 —. 0970
Agge oo —. 0015 . 0057 —. 0028 . 0103 —. 0038 . 0203
A e e —. 0006 —. 0035 . 0002 —. 0049 . 0007 —. 0040
Agy e e —. 0001 —. 0043 —. 0006 —. 0138 -, 0003 —. 0337
A o —. 0011 —. 0081 . 0010 —. 0254 . 0082 —. 0511
Agie oo —. 0006 —. 0074 . 0017 —. 0078 . 0036 . 0027
Agge e —. 0003 —. 0005 —. 0008 . 0024 -, 0021 . 0074
Age e oo —. 0005 —. 0034 —. 0014 . 0057 —. 0021 . 0064
Agp e —. 0007 . 0032 —. 0010 . 0020 —. 0008 . 0046
. —. 0001 —, 0020 . 0002 —, 0009 —. 0007 . 0039
A e o e . 0001 —. 0010 . 0002 —. 0026 . 0005 —. 0044
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with skew angle « as well as with the a/b ratio,
and the “transition points” of section 4.3.1
consequently become ‘‘transition curves” in a
three-dimensional plot.

Plass, Gaines, and Newsom (refs. 5.15 and
5.16) used a variational method (see the section
for C-F-F-F cantilever rectangular plates
(4.3.12)) to obtain the first three frequencies
and mode shapes for the case when a=45° and
a=>b. Theoretical and experimental frequency
parameters are listed in table 5.15. Mode shapes
are shown in figure 5.13. Experimental results
are taken from reference 5.12.

Hall, Pinckney, and Tulloch (ref. 5.17 used)
statically determined influence functions to
obtain frequencies and mode shapes for three
cantilevered skew plates. The plates were
given six degrees of freedom—three points
_ along n=>0/2 were allowed transverse displace-
ment, and the corresponding three stations
were allowed to rotate about an axis normal
to the g-direction. The first three cyclic
frequencies for a=30°, 45°, and 60° are given
in table 5.16 for aluminum-alloy plates 0.613
inch thick (p=0.0001561 lb-sec?/in.®) having
varying dimensions as indicated. The experi-
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ments were conducted with accelerometers,
each with a mass of 0.0005135 lb-sec?/in. Five
accelerometers were equally spaced along the
leading edge (n=0) and five along the trailing
edge (p=>5). The effects of the accelerometer
masses were included in the theoretical cal-
culations. In figure 5.14 are shown the mode
shapes corresponding to the frequencies of
table 5.16. The deflections W* are defined as
the mean of the leading and trailing edge
deflections measured at points intersecting
Y=constant (see fig. 5.10); the angles ¢ refer
to rotations about axes parallel to the y-axis.
The quantity 6 is defined as the difference
between the deflections at the leading and trail-
ing edges divided by b.

Extensive numerical results for frequencies
and mode shapes are obtained and presented in
reference 5.18 by use of the same theoretical
procedure as that in reference 5.17. Sweep
angles are taken as 0°, 15°, 30°, 3714°, 45°, 50°,
55°, and 60°. Ratios ¢/a of 1.5, 2.0, 2.5, 3.0,
4.0, 5.0, 6.0, 10.0, and 20.0 were used. Ratios
EI/GJ of 5§, 1, and 114 were taken, where
EI and GJ are the flexural and torsional moduli
of rigidity, respectively, in a plane normal to

TABLE 5.13.—Ezperimental and Theoretical Frequency Parameters way/p{D for a C-F-F-F
Parallelogram; a/b=1; Material, 24 S-T Aluminum Alloy

waty/p[D
o, deg Mode
Corrected Theoretical Uncorrected Corrected
Test results test results results percent percent
difference difference

16 1 3.38 3. 44 3. 60 6.2 4.6
2 8. 63 8. 68 8. 87 2.7 2.1

3 21.49 | e

4 26. 04 || e

5 33. 01 ||| e e

B0 o 1 3. 82 3. 88 3. 96 3.6 2.0
2 9. 23 9. 33 10. 19 9.4 8.4

3 24, 51 | e e

4 25,84 | | e

- 5 40.64 |__ | e

45 e 1 4. 26 4. 33 4,82 11. 8 10. 3
2 11, 07 11. 21 13. 75 19. 5 18. 5

3 26. 52 |||

4 80. 18 | e e |

5 50,19 | u e e
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the swept centerline (or normal to the f-axis).
Cyclic frequency parameters fa*ymo/El cos a,
where m, is mass (slugs) per unit length meas-
ured along the &-direction, are shown in figure
5.15. Translational and rotational mode shape
deflections are listed in reference 5.18 for 12
values of ¥ and the sweep angle, c/a, and
EI/GJ variations just described. The volume of
these results (47 pages of tables) is too great
to be included here.

VIBRATION OF PLATES

Craig, Plass, and Caughfield (ref. 5.19)
measured the first four frequencies and mode
shapes on aluminum rhombic plates having
sweep angles « of 15°, 30°,45°, and 60°. Cyclic
frequencies, nodal patterns, and mode shapes
for these four configurations are shown in fig-
ures 5.16 to 5.19, respectively. An estimate
of the accuracy of the nodal patterns can be
obtained from figure 4.47.

TABLE 5.14.—Frequency Parameters wa’y/p/D cos® o for o O-F-F-F Parallelogram; a/b=1; »v=038

wa?Vp/D cos? a for mode—
o, deg
1 2 3 4 5 6 7 8 9
[ NP 3. 48 8. 52 21. 3 27.2 3L 1 54. 3 61, 4 64. 3 71.. 3
B e e 3. 46 8. 48 21. 3 26. 8 31.2 53. 6 61. 3 64. 3 71. 6
10 2 3. 42 8. 36 21.1 26. 0 3L.6 51. 6 60. 9 64. 0 72.3
15 e memeee 3. 36 8. 16 20. 8 24,7 31.9 48. 8 60. 3 63. 0 73. 4
20 e 3. 25 7.91 20. 4 23.1 32. 1 45. 6 59, 2 61. 4 74. 0
5 SO 3.12 7. 60 19. 8 21. 4 32.1 42,1 57.7 59. 2 70. 5
80 e 2. 96 7. 24 19. 1 19. 6 31. 8 38.7 55. 2 56. 3 66. 5
21 J U, 2. 76 6. 87 17. 8 18 4 3.2 35. 3 51.2 53. 4 63.7

TaBLE 5.16.— Theoretical and Experimental Cyclic Frequencies for C-F-F-F Parallelogram Plates;
Material, 65 S Aluminum Alloy

P 1<) SRS S S S 30 45 60
@y A0 o e 29.00 36.55 28.70
€y A e e e e e e m e e 10.00 10.00 10.00
Fy CPS oo T S 25. 38 17. 56 37.79
T8t e - 24.2 16.5 32.6
Test/theory oo oo e oo 0. 954 0.940 0. 853
2y OPS e e e ThEOTY - e c oo e o eemmem e 114.0 85. 59 126. 8
TSt - o e 116 83.3 122
Test/theory oo oo oo 1. 02 0.970 0. 962
f3y CPSecm oo TheOTY e o oo e 156. 8 113. 8 224.0
Test e e ecm i ——— o 162 127.6 227
Test/theory m - ccccccccmcccamnn- 1.03 1.12 1.01




PARALLELOGRAM PLATES 173

TaBLE 5.15.—Frequency Parameters wa?/p/D
for @ C-F-F-F Parallelogram Plate; a=45°;
a=b; »=0.3

waVp/D
Mode
Theoretical Experimental
) 4. 12 4, 26
2 e 11. 26 11. 07
S J 27. 72 26. 52
A
/\
A
1
~
A
1 +0.0528
A \
-
P
A
A
-~ +0.335
A \ |
1 TJO.IGI
=
A1
A
-~ |\
\ Mero.769 FIRST MODE
A \\
-~ +0.354

$0.63;
+1.539

+1.240

Yr0.3%0 /Expenmemal ‘Node Line
—y
A

SECOND MODE

Theoretical Node Line

AUANAALL NN LNNNNN LY NARA AN N N NAANNAY

Theoretical Node Line

THIRD MODE

AT

Experimental Node Line

-0.665

F1cURE 5.13.—Mode shapes for a C~-F-F-F parallelo-
gram plate; a=45°; a=b; »=0.3. (After refs. 5.15
and 5.16)
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Figure 5.14.—Theoretical and experimental mode

shapes for C-F-F-F parallelogram plates; material,
65 S aluminum alloy. (a¢) Fundamental mode;
a=30°. (b) First overtone mode; «=30° (c)
Second overtone mode; a=30°. (d) Fundamental
mode; a=45° (e¢) First overtone mode; a=45°.
(f) Second overtone mode; a=45°. (g) Fundamen-
tal mode; a=60°. (k) First overtone mode; o= 60°.
(2) Second overtone mode; a= 60°.
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Figure 5.16.—Experimentally determined ecyclic fre-
quencies, nodal patterns, and mode shapes for a
C-F-F-F rhombic plate; a=15°; material, 6061—
T6 aluminum alloy 14 inch thick. (a) Experimental
node lines and data points. (b) Mode 1; f,=76.6
cps. (¢) Mode 2; f,=179 eps. (d) Mode 3; f,=469
cps. (e) Mode 4; ;=566 cps.
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Fieure 5.17.—Experimentally determined eyclic fre-

quencies, nodal patterns,

and mode shapes for a

C-F-F-F rhombic plate; a=30°; material, 6061-T6
aluminum alloy 1§ inch thick. (a) Experimental

node lines and data points.
(¢c) Mode 2; f,=195 cps.
() Mode 4; f,=556 cps.

(b) Mode 1;f,==83.5 ¢cps.
(d) Mode 3; f3=521 cps.
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Fraure 5.18.—Experimentally determined eyclic fre-
quencies, nodal patterns, and mode shapes for a
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aluminum alloy 14 inch thick. (a) Experimental
node lines and data points. () Mode 1; £;=97.4
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Ficure 5.19.—Experimentally determined cyclic frequencies, nodal patterns, and mode shapes for a C-F-F-F
rhombic plate; a=60"; material, 6061-T6 aluminum alloy 4 inch thick. (a) Experimental node lines and
data points. (b)) Mode 1; fi=97 cps. (¢) Mode 2; /=305 cps. (d) Mode 3; f3==570 cps.
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Hanson and Tuovila (ref. 5.20) used a
method “‘called the 1-g method” to determine
experimental mode shapes. In this method the
plate is sprinkled with sand, and the sand
particles themselves are used as accelerometers.
At any given frequency, particles having equal
accelerations will also have equal amplitudes.
An acceleration corresponding to that of
gravity occurs when a particle placed on a
vibrating plate just begins to rise from the
surface. In this way “l-g lines” of constant
amplitude may be located, in addition to the
- nodal lines. Varying the magnitude of the
exciting force allows one to find other 1-g lines.

Experimental results were obtained on four
plate configurations made of 0.041-inch-thick
magnesium having a weight density of 0.064
Ib/in.? The plate dimensions in terms of figure
5.10 are given in table 5.17.

Frequencies and mode shapes for the first
three modes of each plate are shown in figures

VIBRATION OF PLATES

51.6 F-F-F-F ‘

Very little information is known on the
problem of the F-F-F-F parallelogram plate
(see fig. 5.24). Waller (ref. 5.21) obtained the
nodal patterns shown in figure 5.25.

5.2 OTHER SUPPORTS AND CONDITIONS

No results are available for parallelogram
plates having elastic or discontinuous edge
conditions, or being supported at discrete
points. Some results for plates with added
mass were discussed earlier for the cantilever
(sec. 5.1.5) as obtained in reference 5.17. The
accelerometer masses added there were small
and well distributed and so had small effect
upon the problem.

TABLE 5.17.—Dimensions of 4 Experimental
Plate Specimens

5.20 to 5.23 and the deflections are given in Plate no. s, in. b, in. o, deg
tables 5.18 to 5.21, respectively. In these
figures the heavy solid lines indicate the posi-  {________________ 5. 52 2 05 15
tion of the plate at rest. The broken lines 2 _______________ 4.80 2.28 30
indicate the deflected shape in its mode of  3-----c-coooooeo- 3.90 2.93 | 45
vibration. Vertical lines measure the relative = %---------------- 2.7 4.10 60
amplitudes of points on the plate surface.
TasLE 5.18.—Deflections for First 8 Modes of Plate 1
Normalized deflection at £/a of—
Mode n/b
0.1 0.3 0.5 0.7 0.9 1.0
0. 00 0. 039 0. 160 0. 316 0. 547 0. 800
.25 . 043 . 175 . 338 . 569 . 817 0. 952
1a . 50 . 048 . 185 . 360 . 569 . 840 . 966
.75 . 053 . 200 . 383 . 608 . 856 . 983
1. 00 . 056 . 225 . 406 . 631 . 875 1. 000
.00 —. 088 —. 361 —. 579 —. 485 —. 207 —. 055
. 25 —. 080 —. 289 —. 407 —. 297 —. 008 . 117
2b . 50 —. 069 -, 210 —. 260 —. 106 . 180 . 310
.75 —. 044 —. 135 -. 120 . 100 . 386 . 524
1. 00 —. 014 —. 062 . 014 . 331 . 758 1. 000
. 00 . 099 . 106 . 162 . 401 . 788 1. 000
.25 . 021 —. 035 —. 021 . 176 . 472 . 654
3¢ . 50 —. 042 -. 190 —. 225 —. 085 . 190 . 352
.75 —. 099 —. 345 —. 451 —. 338 —. 099 . 085
1. 00 —. 155 —. 556 —. 831 —. 746 —. 373 —. 162
s fi=236 cps. bf,=205 cps. ¢ f3==238 cps.
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TaBLE 5.19.—Deflections for First 8 Modes of Plate 2
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Normalized deflection at £/a of—
Mode /b
0.1 0.3 0.5 0.7 0.9 1.0

0. 00 0. 011 0. 052 0. 126 0. 233 0. 383 0. 472

.25 . 015 . 067 . 148 . 267 . 420 . 509

1s .50 . 018 . 080 . 170 . 296 . 461 . 635
.75 . 025 . 098 . 195 . 328 . 518 778

1. 00 . 030 . 118 . 226 . 370 . 604 1. 000

.00 —. 025 —. 264 —. 494 —. 563 —. 500 —. 361

.25 —. 031 —. 264 —. 405 —. 400 —. 228 —. 028

2b . 50 —. 033 —. 228 —. 295 —. 160 . 110 . 300
.75 —. 028 —. 125 —. 117 . 147 . 458 . 630

1. 00 —. 011 —. 022 111 . 458 . 818 1. 000

.00 . 010 . 028 . 071 . 361 . 787 1. 000

25| —.006| —.061| ~—.123 . 150 . 600 . 830

30 50| —.019 | —.232| —.335| —.110 . 380 . 613
750 —.074 | —.445| —.600 | —.380 . 070 . 355

LO0O| —.168| —.677| —.910| —.658| ~—.193 . 097

s f1=239 cps. bf,=212 cps. o f3=272 cps.
TaBLE 5.20.—Deflections for First 3 Modes of Plate 3
Normalized deflection at £/a of—
Mode 2/b
0.1 0.3 0.5 0.7 0.9 1.0

0. 00 0. 007 0. 054 0. 124 0. 210 0. 350 0. 467

. 25 . 017 . 070 . 155 . 259 . 418 . 557

1= . 50 . 021 . 091 . 191 . 313 . 510 . 673
.75 . 028 . 117 . 238 . 395 . 640 . 810

1. 00 . 039 . 159 . 307 . 500 . 812 1. 000

.00 . 007 . 132 . 578 . 872 . 904 . 857

.25 . 021 . 286 . 625 . 718 . 668 . 607

2b . 50 . 046 . 300 . 471 . 403 . 014 —. 143
.75 . 050 . 179 . 057 —. 282 —. 678 —. 786

1. 00 —. 036 —. 196 —. 518 —. 793 —. 947 —1. 000

.00 . 000 —. 017 —. 071 . 063 . 622 1. 000

.25 —. 004 —. 059 —. 185 —. 029 . 520 . 840

3e . 50 —. 008 —. 201 —, 374 —. 200 . 416 . 735
.75 —. 050 —. 470 —. 676 —. 412 . 310 . 681

1. 00 —. 214 —1. 000 —1. 000 —. 504 . 250 . 651

s fi==38 cps. bf,=184 cps. °f3=263 eps.

808-337 O—70——13
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TasLe 5.21.—Deflections for First 8 Modes of Plate 4

Normalized deflection at ¢/a of—
Mode /b
0.1 0.3 0.5 0.7 0.9 1.0

0. 00 0. 012 0. 040 0. 085 0. 164 0. 286 0. 380

.25 . 015 . 058 . 116 . 215 . 376 . 475

1= . 50 . 022 . 091 171 . 315 . 510 . 620
.75 . 040 . 135 . 272 . 458 . 665 . 800

1. 00 . 062 . 211 . 400 . 618 . 830 1. 000

.00 —. 008 —. 039 —. 156 —. 383 —. 495 —. 515

.25 —. 016 —. 078 —. 258 —. 433 —. 445 —. 390

2b . 50 —. 022 —.133 —. 312 —. 328 —. 156 . 047
.75 —. 034 —. 159 —. 180 . 019 . 350 . 515

1. 00 —. 055 —. 089 . 109 . 484 . 867 1. 000

.00 —. 024 —. 111 —. 347 —. 606 —. 667 —. 650

.25 —. 045 -, 125 —. 202 —. 303 —. 505 —. 707

3e . 50 —. 071 . 000 . 238 . 216 —. 252 —. 666
.75 . 101 . 545 . 808 . 657 —. 162 —. 656

1. 00 . 465 . 980 1. 000 . 657 —. 353 —1. 000

s f=47 cps. b f,=207 cps. o f3=380 cps.

The case of a cantilevered parallelogram
with an added mass at the tip is discussed in
reference 5.22. An aluminum-alloy plate hav-
ing dimensions @¢=30 inches, ¢=10 inches,
h="54 inch and having a total mass of 0.0468
Ib-sec?/in. is loaded by a mass at the tip
(¢=a, n=0/2, in terms of fig. 5.10) which has
the following inertial properties: mass=0.0330
Ib-sec?/in., Iy—=6.483 lb-in.-sec?, I,=0.1242 ]b-in.-
sec?. 'The mass moments of inertia Iy and I,
are about axes in the y- and #-directions, re-
spectively. These axes pass through ¢=¢ and
n=>0/2. The first three theoretical frequencies
for a=0°, 30° 45°, and 60° are given in table
5.22. In figure 5.26 are shown the nodal lines
for the fundamental and second modes of

vibration for «=30°, 45° and 60° with and
without the tip mass.

TasLE 5.22.—Cyclic Frequencies for a C-F-
F-F Parallelogram Plate With Added Tip
Mass; Material, 65 S Aluminum Alloy

Cyeclic frequency, cps, for values of
skew angle, «, deg, of—
Mode
0 30 45 60
| 11.33 | 12.40 | 10.91 15. 35
D SR 23.07 | 27.39 40. 83
 JO 101.7 | 1149 | 11L.1 153. 5
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Fiaure 5.20.—First three mode shapes
and frequencies for a C-F-F-F plate;

i {c) \%O/” \

a=15°; material, magnesium. (a)

Mode 1; f1;=36 cps.

F2=205 cps.

(b) Mode 2;
(¢) Mode 3; f3=238 cps.
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Figure 5.22.—First three mode shapes and frequencies for a C-F-F-F plate; a=45°;
material, magnesium. (a) Mode 1; f;=38 cps. (b)) Mode 2; f;=184 cps. (¢) Mode 3;
f3=263 cps.
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N
(b) 0 ~

N — -
(C) N~

FieurE 5.23.—First three mode shapes and frequencies for a C—F-F-F plate; a=60°; material, magne-
sium. (a) Mods 1; fi=47 cps. (b) Mode 2: f,=207 cps. (¢) Mode 3; f3=2380 cps.
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Fi1GUurg 5.25.~Nodal patterns of F—F—F-F parallelo-
gram plates. (After ref. 5.21)
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Other Quadrilateral Plates

6.1 TRAPEZOIDS

6.1.1 All Edges Simply Supported

The problem of the trapezoidal plate simply
supported all around (SS-SS-SS-SS) (see
fig. 6.1) was solved by Klein (ref. 6.1) by using
the collocation method for the case a;=a,=a.
A function

W(z,y) :[Al sin 7"(1:—;62_*.[12 sin 2‘”(_52___0)

+A; sin@](cos%cob a) (6.1)

was used. This function guarantees that—

(1) The deflections are zero on all edges

(2) The bending moment M, is zero at
(¢, 0) and (¢c+a, 0).

(3) The bending moment M, is zero at some
point in the region A/3<z=<2h/3 along the
edges y=42 tan «

(4) Symmetry exists about y=0

The differential equation (eq. (1.4)) is satisfied
at the three points along the line y=0 given by
(x—e¢)/a=1/3, 1/2, 2/3. This leads to a third-order
characteristic determinant for the frequencies,
the elements of which are listed in reference 6.1.

Fundamental frequencies for varying values
of o and average width b= (b,-+b,)/2 are shown
in figures 6.2 and 6.3.
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—_——————

/ Iﬁ;—
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F1curE 6.1.—S8-8S-SS-S8 trapezoidal plate.

Chapter 6

N

/
AN

s

>

/
4
L

/,/
/

=
g
S
S
<

9

/

NN N e

pd

o

0° 10° 20° 30° 40° 50°
a
Ficure 6.2.—Fundamental frequency parameter
X:‘M: where b= (b;+by)/2, against « for an
po ,

isosceles SS-SS-SS—-SS trapezoidal plate. (After ref.
6.1)

A method of perturbing the solution for the
rectangle simply supported all around in order
to solve this problem is discussed in reference
6.2.

Reipert (ref. 6.3) formulated a solution in
terms of functions (eq. (1.37)) which satisfy
the differential equation (eq. (1.4)) and the
parallel edge boundary conditions exactly.
Satisfaction of the remaining boundary con-
ditions yielded a characteristic determinant
for the frequencies. A first approximation
yields the following formula for fundamental fre-
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b/a
frequency parameter

» where b= (b,+by)/2, against b;/a for

an isosceles SS-SS-SS-SS trapezoidal plate. (After
ref. 6.1)

08 10

Ficure 6.3.—Fundamental
ol wb?Vp/D
<

quency parameters of isosceles trapezoids (a;=

a=a):
b [“(qunay] °?

Numerical values for a=45° are given in table
6.1 as determined from equation (6.2) and
from a second approximation.

6.1.2 Cantilever (C-F-F-F)

The problem of the C-F-F-F trapezoidal
plate is depicted in figure 6.4. Nagaraja
(ref. 6.4) used the Rayleigh-Ritz method and
the nonorthogonal right triangular coordinates
shown in figure 6.5 to solve the problem in the
special case when a;=0. The coordinates
%, v are related to the z, y coordinates by:

x
=5

] (6.3)

v=3—/cota
z

VIBRATION OF PLATES

TABLE 6.1.—Fundamental Frequency Parameters
way/p/D for a SS-SS-SS-SS Isosceles Trape-
zoidal Plate; a=45°

wa?Vp/D
2
bs First approxi- Second
mation approximation
1/8 . 10. 11 10. 09
14 10. 96 11. 177
B8 e 13. 4 14. 311
1/2. . 19.7 24.7
y,
V/
U 1o

4 [s] 4

Figure 6.4—C-F-F-F trapezoidal plate.

Fieure 6.5.—Right triangular coordinates.

Using the chain rule of differentiation and
substituting equation (6.3) into equation (1.32)
yield the following expression for the strain
energy of the plate (ref. 6.4):

_DtanaJ‘J‘{ b"’w
V= 207

+—§ (v*+ cot? )? (a—->2

bwbw

2 b2
4= (v2+vcot2a)a 2 oE bw v

V3w dudw
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)b"’iv O*w
%) 3% duov

200 o*w \?
+a[2v + (1—»)cot?a] (bu bv)

% du? ov 3 v

_A o 2, QW Qw
1207 (1) cot?a] s =

+5§ [20—(1—») cot?a] (?)—1:)2 } dude (6.4)

v
—4;;2 ¥+ cot?

+4 +4% (v*+ cot?

The kinetic energy of translation is

2
T— L’ﬁ;ﬂ‘ o f f wrdudo  (6.5)
Deflection functions of the form
W(’LL, U) = ; ; Amn ¢m(u)'l’n(?)) (6°6)

were used, where ¢,,(#) and ,(v) are the char-
acteristic beam functions deduced from equation
(5.23). Because the limits of integration of
equation (6.4) give considerable algebraic com-
plication, the integration was performed numer-
ically. Results for the first two modes for tan «
=1/2 and for various ¢/l ratios are given in
table 6.2.

TaBLE 6.2.—Frequency Parameters wl*/p/D for
a C-F-F-F Trapezoidal Plate; v=0.3

195

was also used in reference 6.4 with the Rayleigh-
Ritz method. Resulting fundamental fre-
quency parameters are tabulated in table 6.2.
Lower bounds appearing in the table are ob-
tained by application of the Kato-Temple
method (refs. 6.5 and 6.6).

Rather extensive experimental results are
available for this problem. Gustafson, Stokey,
and Zorowski (ref. 6.7) took three series of
steel plates obtained by cutting the tips off of
cantilevered triangles. These series are shown
in figure 6.6. Measured material properties for
the three series are given in table 6.3. The
weight density for all series was pg=0.281
pound per cubic inch and » was taken as 0.29.
Experimentally measured cyclic frequencies for
the three series of plates are given in table 6.4.

B 10 9 8 7.5 7" 6.5 6
o] 0.2 0.25 03 0.35 04
e I-0 I-1 I1-2 -3 I-4 I-5 1-6

wl2vp/D for—
Mode 1
c Mode 2
1 upper
Upper bound bound
Lower (beam
bound | functions)
Beam Polyno-
functions mial
0.____. 7. 152 7.163 6. 880 21. 209
0.2..__ 8. 465 8. 150 8. 042 23. 996
0.4 ___ 13. 121 12. 291 11. 160 26. 625
0.6.___ 18. 8397 | e 30. 965

In order to determine another set of upper
bounds for the problem, the polynomial

W (w, 0)=(1—u?*(Ao+ Asu+ Az u) (6.7)

V.
l 2
10" 4
; ’
. o > e 75 p Py P
a¥c [¢] 0. 0.2 0.25 03 0.35 0.4
®) -0 - I-2 I-3 I-4 I-5 I-6
10"
” Dl | e [ s P B W= ) P
10" 9" 8" 75 7" 6.5" 06:
0 0.l 0.2 0.25 0.3 0.35 .
ae X-0 o-1 o-2 -3 X-4 T-5 x-6

(c)

Figure 6.6.—C-F-F-F trapezoidal plate configura-
tions. (a) Series I plates. (b) Series II plates.
(c) Series III plates. (After ref. 6.7)

TABLE 6.3.—Material Properties for 3 Series of
Trapezoidal Cantilever Plates; v=0.29

Modulus of elasticity, psi
Series Thickness,
in.
z-direction | y-direction
) S, 29. 3X 108 31. 5X 108 0. 0622
) § R 29. 2 27. 8 . 0613
mI.______. 29.0 27.8 . 0613
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TaBLE 6.4.—Ezperimentally Measured Cyclic Frequencies for C-F-F-F Trapezoidal Plates; v=0.29

Cyelic frequencies, eps, for mode—
Series c
atc
1 2 3 4 5 6

) S 0 32.8 91 164 181 283 348
.1 34 93 179 181 293 352

.2 38.5 97. 6 184 212 302 362

. 25 41. 9 99. 4 186 235 304 366

.3 48. 3 103. 4 190 266 308 379

.35 53.7 107. 4 196 299 314 404

4 60 112 202 350 312 436

I 0 34.5 136 190 325 441 578
.1 37 142 198 335 482 583

.2 42 153 223 364 561 598

.25 46 157 243 374 596 621

.3 50.5 161 268 385 606 660

. 35 56 169 300 410 629 695

.4 64 175 339 434 639 718

mr_ . ____ 0 26. 3 101 171 259 346 522
.1 27.9 110 184 274 376 525

.2 3L.5 122 198 289 438 542

.25 34.8 130 215 300 476 567

.3 38.5 136 243 312 505 623

.35 44. 9 143 277 327 540 674

.4 51.7 151 314 347 573 699

Nodal patterns corresponding to most of the
frequencies of table 6.4 are shown in figures
6.7, 6.8, and 6.9. Plate designations are
shown on the fundamental modes and refer to
those of figure 6.6.

Heiba (ref. 6.8) experimentally determined
frequencies and mode shapes for 12 trapezoidal
plates of various aspect ratios and having
a;=15°, 30°, and 45° and «,=0 (fig. 6.10).
Aspect ratios of 2.0, 1.6, 1.2, and 0.8 were used,
where the aspect ratio=4a/(b;+b,). The plates
were made of ¥-inch-thick steel. Cyeclic fre-
quencies and nodal patterns for the first six
modes of each plate are shown in figure 6.10.
Planform dimensions are given on the funda-
mental mode in each case. The mode labels

(m/n) identify the number of nodal lines ap-
proximately parallel to the z- and y-directions,
respectively. Modes having double labels (e.g.,
(0/1)+(2/0)) can be thought of as being the
superposition of two simple modes, each of the
designated label. The variation in frequency
with tan «, is shown in figure 6.11. It is seen
that this choice of parameters yields small
variations. Frequencies for o;=0 for the rec-
tangle, as well as nodal patterns, are listed in
section 4.3.12.

6.2 OTHER QUADRILATERALS OF GEN-
ERAL SHAPE
No published results exist for quadrilaterals
of general shape.
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MODE NO =+ 1
PLATE NO.

!

Fraure 6.7.—Nodal patterns for series I plates; »=0.3. (From ref. 6.7)
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Freure 6.8.—Nodal pattérns for series II plates; »=0.3. (From ref. 6.7)
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IMODE NO —» |
©UPLATE NG

Fiaure 6.9.—Nodal patterns for series IIT plates; »=0.3. (From ref. 6.7)
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Iy
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T~
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ql: = = -4(0/) 300?4 o —p(0/1)
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Freure 6.11.—Variation of frequency (cps) with tangent of sweep angle for a trapezoidal C-F-F-F plate; material,
steel. (a) Aspect ratio=2.0. (b) Aspect ratio=1.6. (c) Aspect ratio=1.2. (d) Aspect ratio=0.8.
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Triangular Plates

7.1 SIMPLE EDGE CONDITIONS

Ten combinations of simple (i.e., clamped
(C), simply supported (SS), or free (¥)) bound-
ary conditions exist for a triangular plate. Of
these, only six have a significant amount of
results. One, the case when one edge is
simply supported and the others free, has
absolutely no results in the published literature
and will not be discussed herein.

711 C-C-C

In terms of the £, n skew coordinates for the
C-C-C triangular plate shown in figure 7.1,
the differential equation (eq. (1.4)) for the
region becomes

b‘*W oW oW
s -7 +2(1+2sin ¢)a 2352'*‘ YL

oW et
4s1n¢(a o bnbg”) DW (7.1)

Cox and Klein (ref. 7.1) took a deflection
function

W (6, m=( 4 sint T+ Augsin Zsin 22E)

4¢%q? menm
(1 6252)00S bE

(m=1,3...) (7.2)

where A; and A, are undetermined constants.
Equation (7.2) satisfies the boundary condi-
tions exactly. Equation (7.1) was satisfied at
the two points £é=¢/2 and 2¢/3 and %=0; this
yielded a second-order characteristic determi-
nant. Fundamental frequency parameters are
shown in figure 7.2 for ¢=0° and 25°. As dis-
cussed later in this section, the limiting case as
2¢/b—0 is we*yp/D=22.4, an exact solution,
which indicates a lack of accuracy for small
values of 2¢/b in figure 7.2. According to
reference 7.1, the results are not sufficiently
accurate for use when ¢>>25°, but, by suitable
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Figure 7.1.—C-C-C triangular plate.

choice of coordinates, ¢ can almost always be
kept less than 25°. The mode shape compo-
nents arising from equation (7.2) are shown in
figure 7.3.

The results were also checked in reference
7.2 for the case when ¢=0 and the triangle is
equilateral by using the finite difference method.
The two triangular meshes shown in figure 7.4
were used. For the fundamental mode, only
one sextile of the triangle is required; this
results in independent deflections of one point
in figure 7.4(a) and eight points in figure
7.4(b). Results from using these two meshes
and the extrapolation formula (eq. 4.90)) are
given in table 7.1.

In reference 7.3 the solution for the rhombus
given in reference 7.4 (see discussion on the
C-C-C-C rhombic plate, sec. 5.1.1) is extended
to yield the solution for the isosceles triangle
clamped all around. Fundamental frequency
parameters wl’/p/D for ay=a,=«, where [ is
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FiaurE 7.2—Fundamental frequency parameters for a
C-C-C triangular plate. (After ref. 7.1)

TasLE 7.1.—Fundamental Frequency Param-
eers wc/p/D for a CO-C-C Eguilateral
Triangle

Solution 1 point 8 points | Extrapo-
- lation
wep/D. . i 42. 31 65. 85 70. 34

the length of one of the equal sides, are given
in table 7.2.

These results are also plotted as a solid line
in figure 7.5 along with experimental data ob-
tained on two mild steel plates having [=2.95
inches and thicknesses A=0.091 and 0.063 inch.
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(a)

(b}

Fi1curE 7.3.—Fundamental mode shape components for
a C-C-C triangular plate. (a) Shape along -axis.
(b) Shape parallel to y-axis. (After ref. 7.1)

The limiting values as a;=a;=a—0 and
a=a;=a—90° are both well-known exact
solutions. Both cases become, in the limit,
that of an infinite strip having its opposite
edges clamped; that is, wb%/p/D=22.4. This
limiting value is used to plot the curves of
figures 7.6 and 7.7 which were taken from
reference 7.3.

Hersch (ref. 7.5) showed that a lower bound
for the frequency of an equilateral triangle
clamped all around is given by wb%/p/D>>82.20.

71.2 CC-SS

The only known solutions to the problem of
the C—C-SS triangular plate are for the case
when the triangle is isosceles, as shown in
figure 7.8.

TaBLE 7.2.—Fundamental Frequency Param-
eters w®\p/D for C-C-C Isosceles Triangle
Plates

2a, deg 30 ’ 60 90

1 Y > 93.6
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Ficure 7.4—Triangular finite difference meshes.
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Figure 7.5.—Theoretical and experimental funda-
mental frequency parameters for C~C-C and C-C-88
isosceles triangular plates. (After ref. 7.3)

Cox and Klein (ref. 7.6) solved the problem
by using the collocation method and the de-
flection function

W(z,y)= (Alsm +A2s1n—+A3 i 3?

(1 4b2 sin ——cos( ay) (7.3)

Equation (7.3) satisfies all the boundary con-
ditions exactly except that for zero bending

(b)

(a) Coarse grid. (b) Fine grid.

500

400 /l

Clamped base edge

100 X
Supported base edge

0 30° 60° 90° 120° 150°
2a
FIGURE_ 7.6.—~Fundamental frequency parameters
wb?/p/D for C-C-C and C-C-SS isosceles triangular
plates. (After ref. 7.3)

moment M, along x=a. It satisfies this con-
dition only at the midpoint of the side (i.e., at
y=0). The differential equation (eq. (1.4))
was satisfied at the three points (a/2, 0),
(2a/3, 0), and (3a/4, 0), thus giving a third-order
characteristic determinant for the frequencies.
Results for the fundamental frequency param-
eter obtained directly from the collocation pro-
cedure are shown as the broken curve in figure
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Figure 7.7—Fundamental frequency parameters
wey/p/D for C-C-C and C-C-88 isosceles triangular
plates. (After ref. 7.3)

Q\ﬁt/n
»

Figure 7.8.—C-C-SS isosceles triangular plate.

7.9. The solid curve, which is indicated in
reference 7.6 as being more accurate, was found
from an extrapolation of finite difference
solutions.

Ota, Hamada, and Tarumoto (ref. 7.3) used
the solution for the rhombus given in reference
7.4 (see sec. 5.1.1 of the present work) to solve
the problem of the isosceles triangle. Funda-
mental frequency parameters are given in
table 7.3, where ! is the length of the equal
sides. These frequency parameters are plotted
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Figurg 7.9.—Fundamental frequency parameters for a
C-C-SS isosceles triangular plate. (After ref. 7.6)

TasLE 7.3.—Fundamental Frequency Param-
eters for a O—-C-SS Isosceles Triangular Plate

2a, deg 30 60 90 120 ‘ 150
wlp/D_______. 178.8 | 81.6 : 73.6 | 105.2 | 304.0

in figure 7.5 along with experimental results
obtained on mild steel plates. In figures 7.6
and 7.7 they are plotted again in terms of
other length dimensions, including the limiting
cases as 2a—0 and as 2a—180°, for which
there are exact solutions.

For more results on the problem, including
those for higher frequencies, see the discussion
of the antisymmetric modes of a C-C-C-C
rhombus (sec. 5.1.1) and of a C-C-C-C square
(sec. 4.3.1).

71.3 C-CF

There are no specific solutions of the prob-
lem of the C-C-F triangular plate. Westmann
(vef. 7.7) proposes for the case of the isosceles
triangle having its equal sides clamped that




TRIANGULAR PLATES 209

the frequency is bounded by those of the in-
scribed and circumscribing C-C-F sectorial
plates as shown in figure 7.10. Results for the
sectorial plates are given in the chapter entitled
‘“Plates of Other Shapes’” (sec. 8.2).

7.1.4 C-S5-SS

Cox and Klein (ref. 7.8) solved the problem
of the C-SS-SS triangular plate for the case
of an isosceles shape; that is, ey=a; in figure
7.11. 'The collocation method was used, with
a deflection function

. oL . T . 2mx
Wz, y)=(A1x2 sin? —a~+A2x"’ sin—=sin ==

2 (r—a) ) cos ("%
+A3a4(w a))cos b

(7.4)
The differential equation (eq. (1.4)) is satisfied
at the three points (¢/2, 0), (2a¢/3, 0), and
(3a/4, 0), thus giving a third-order characteristic
determinant for the frequencies. Resulting
fundamental frequency parameters are shown
in figure 7.12.

For the case when o;=a,=45°, the funda-
mental frequency may be found quite accu-
rately from the fourth mode of a square plate
clamped all around (sec. 4.3.1). Using the
value from reference 7.9 yields wa?/p/D=32.91
as a close upper bound. The value from figure
7.12 is 34.7 (ref. 7.8).

Solecki (ref. 7.10) solved the problem for the
case o;=60° a,=30°. A solution for the
SS-SS-SS case (see sec. 7.1.6) is taken, and a
Fredholm integral equation of the first kind is
formulated to satisfy the condition of zero

2 e R
>

Figure 7.10.—C-C-F isosceles triangular plate with
inscribed and cirecumseribing sectors.
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Fieure 7.11.—C-S8-88S triangular plate.
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Figure 7.12.—Fundamental frequency parameters for a
C-88-S8 isosceles triangular plate. (After ref. 7.8)

slope along z=a. The fundamental frequency
is found to be w=(120.0y/D/p)/c*

714.5 C-SS-F

No solutions of the specific problem of the
C-SS-F triangular plate are known. In the
case of the right triangular plate (see fig. 7.13)
having the hypotenuse free, a considerable
amount of information can be obtained from
the antisymmetric modes of a symmetric
C-F-F triangular plate (sec. 7.1.8).
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FiGURE 7.13.—C-SS-F right triangular plate.

7.1.6 SS-S5-SS

Conway and Farnham (ref. 7.11) solved the
problem for the SS-SS-SS isosceles triangle
(ey=ay=«a in fig. 7.14) by using the method
employed on the SS-SS-SS-SS rhombus (sec.
5.1.4). TFunctions given in equation (5.18)
were used and boundary conditions of zero
bending moment were satisfied at N points
along the edge xz=a (fig. 7.14). Frequency
parameters arising from various N™-order char-
acteristic determinants are displayed in table
7.4. For a first-order determinarnt, the single
point used was at z=a, y=0.

Cox and Klein (ref. 7.2) solved the case of
the isosceles triangle by the collocation method
using a deflection function

W(z,y) =<A1 sin ™4 A4, sin 27
a a
AV B ]
+A;sin o ) (sm 26 Ty (7.5)

This function satisfies the condition of zero
deflection exactly on all boundaries. It also
gives zero normal moment at (a, 0) and at some
point in the interval a¢/2=<z= 3a/4 along the
equal sides. The differential equation (eq.
(1.4)) is satisfied at the three points (h/2, 0),
(2h/3, 0), and (3h/4, 0), giving a third-order
characteristic determinant to solve for the fre-
quencies. Fundamental frequency parameters
are given in figure 7.15. When 2a=90° the fre-
quency parameter is found by the foregoing
method to be wa®/p/D=24.028. This is in
error by 2.61 percent (ref. 7.2) from the exact
value of 24.674 obtained from the second mode
of a SS-SS-SS-SS square plate. It must be
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FI1gURE 7.14.—8S8-SS-88 triangular plate.
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Fiaure 7.15.—Fundamental frequency parameters for
a SS-SS-SS isosceles triangular plate. (After ref. 7.2)

observed that the curve of figure 7.15 is clearly
inaccurate for small values of 2a/b, for in the
limiting case 2a/b—0 the exact solution for
the case of a SS—SS strip, which is wa?/p/D=
x2=9.87, applies.

The results of reference 7.2 were extended in
reference 7.12 to estimate the frequencies of non-
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TABLE 7.4— Frequency Parameters way/p/D for
SS-8S-S8 Isosceles Triangular Plates

wa’*’\/TD for.determinant of
size—
a, deg
1byl 3by 3
100 | 177. 69
15 . 98, 72 97. 93
20 e 66. 34
25 e 49. 45
30 40. 70 39. 48
85 e 32. 87
40 e 28. 18
45 . 26. 38 24, 67

isosceles triangles. This was done by taking
the results of reference 7.2 and redefining the
dimensions ¢ and b so that one of the equal
angles becomes the vertex angle and its opposite
side becomes the base of length 8. This gives
some points on the curves of figure 7.16. Other

200
/]
150 7
o[ %
.S &
® .0/
8 Y7/

30

NN N
NN

AN

20O 0 1.5 20 25 30 35 40
2c/b

Ficure 7.16.—Fundamental frequency parameters for
a S8-88-88 triangular plate. (After ref. 7.12)

points are determined from the relationship

(VB (VB vE), @9

relating the frequency parameters we%/p/D
corresponding to the medians of the triangle
which have lengths ¢, ¢;, and ¢;. Again, the
curves are inaccurate for small values of 2¢/b.

Solecki (ref. 7.10) gave the frequencies and
mode shapes for the 30°-60°-90° triangle shown
in figure 7.17. Mode shapes were taken as

Wona(2, )= (Sm (2m—|—n)1rz sin _1r__y)
——[(-—1)”‘"‘" sin (m+2n)1rx sin mvry]
+[(—1)"‘ sin (m—3—gb)1r:c sin (m-{;’n)ry]

gsm>n) (7.7

(m=2,3,..

an=L12..

F1cURE 7.17.—30°-60°-90° SS-SS-SS triangular plate.
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in terms of figure 7.17. Corresponding fre-
quencies are found from substituting equation
(7.7) into equation (1.4), giving

mn=

_Ar¥(m*+ mn—l—n“’)\/D

(m=2,3,..;n=1,2,3,...;m>n) (7.8)
Thus the fundamental frequency is found from
equation (7.8) to be wua’y [0/D=92.113.

This was also found in reference 7.13 by
using the solution for the SS-SS-S5-SS rec-
tangle and the method of images. Nodal
patterns for the first six modes are shown in
figure 7.18. The case of the 30°-60°-90°
triangle is also discussed in reference 7.14.

Schaefer and Havers (ref. 7.15) found the
fundamental frequency of the equilateral tri-
angle of altitude a to be wa®/p/D=39.478.
The problem was also solved by Conway by
analogy in reference 7.16 and by the point-
matching method in reference 7.11. The
problem is also solved in references 7.17 and 7.18.

The case when o= a,=45° (fig. 7.14) can be
deduced from the higher mode shapes of a
SS-SS-SS-SS square plate. The fundamental
frequency parameter is way/p/D=24.674.

The case when ay=a,=60° was examined by
Seth (ref. 7.17), who gave a fundamental fre-
quency parameter of wa®/p/D=17.272.

Much more information is available for this
problem from an analogy that exists between

w2 % w3y % w3z
Way ) W2 Wwgg
] BN
EY 3
F 4 |

Fiaure 7.18.—Nodal patterns for a 30°~60°-90° SS-
SS-S8 triangular plate.

a/2

:

a vibrating membrane and s simply supported
polygonal plate (see the chapter entitled
“Plates of Other Shapes” (ch. 8)).

7.1.7 SS-SS-F

There are no specific solutions of the problem
of SS-SS-F triangular plates. Westmann (ref.
7.7) proposed obtaining bounds from SS-SS-F
sectorial plates. (See sec. 7.1.3.)

7.1.8 C-F-F

Consider first the symmetric cantilevered
triangle depicted in figure 7.19. Andersen
(refs. 7.19 and 7.20) solved the problem by
using the Rayleigh-Ritz method and the
triangular u-v coordinates shown in figure 7.19
(see also the discussion for the C-F-F-F
trapezoidal plate, sec. 6.1.2). For symmetric
modes, the four-term series

W (u, 0) =[ Ay -+ Asups(v) s (1)
F[Are+Asuis(v)1do(u)  (7.9)

was used, and for antisymmetric modes the
series

Wu , v)=[Av+ A, ) Ju*e; (w)
+ A+ Asls(0)IuPgo(u)  (7.10)

L

L~
L~
L~
2\ -

y ) ',','/b/2
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V= ; x
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-
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Ficure 7.19.—Symmetric C-F-F triangular plate.
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was used, where ¢, and ¢, represent the first
two modes of a cantilever beam free at =0
and clamped at u=1. (See discussion of the
rectangular cantilever beam, sec. 4.3.12.) The
functions ¥; and ¢, represent the first symmetric
and antisymmetric modes, respectively, of a
beam free at v=11. The expression for the
strain energy in {triangular coordinates is
given in equation (6.4). Integration was
performed numerically. Frequency param-
eters, nodal patterns, and amplitude coefficients
for the first four modes and several a/b ratios
are given in table 7.5. Poisson’s ratio is 0.3.

Variation of frequency parameter with a/b
ratio for the two antisymmetric modes is
shown in figure 7.20. It is seen that the
frequency parameters increase linearly with
a/b, as was the case for the C-F-F-F
rectangle (sec. 4.3.12). Frequency variations
for the first two modes are shown in figure 7.21
where the frequency parameters wa’/12p/Eh?
obtained from beam theory are also plotted
as horizontal broken lines. It must be re-
membered that the plate and beam frequency
parameters differ by the factor 1—»*. Thus,
when Poisson’s ratio is considered, the plate
frequencies themselves are slightly higher than
those predicted by beam theory.

Duffin, Gustafson, and Warner (ref. 7.21)
also used the Rayleigh-Ritz method to analyze
the triangular plate of symmetric shape. A
partial summary of deflection functions used
and frequency parameters obtained is given
in table 7.6, where the notation used is that of
figure 7.19 and »=1/4. Because modes 1 and
2 are symmetric and antisymmetric, respec-
tively, the frequency parameters listed for
these modes are guaranteed to be upper bounds
on the exact frequencies, and improvement in
bounds with the various functions used is
clearly indicated in the table. Further results
were obtained which showed the variation in
fundamental frequency parameter and mode
shape with a/b ratio and Poisson’s ratio by
using the deflection function.

(o (1))

These are shown in table 7.7.

(7.11)

800 /

600 A

\\%7
<

E‘ 400

200
)4

a/b

Ficure 7.20.—Variation in antisymmetric frequeney
parameters with a/b for a C-F-F symmetric triangular
plate; v=0.3. (After ref. 7.20)
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Ficure 7.21.—Variation in symmetric frequency param-
eters with a/b for a C-F-F symmetric triangular
plate; »=0.3. (After ref. 7.20)
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TABLE 7.5.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for ¢ C-F-F

Symmetric Triangular Plate; v=0.3

b
Amplitude o
Mode Nodal lines coefficient
1 2 4 7
wa71/,>/_D
Q——s!
7.149 7.122 7.080 7.068
1 b
Ay e 1. 000000 1. 000000 1. 000000 1. 600000
Atg —. 013453 —. 018583 —. 020249 —. 020664
: Agie . . 000887 —. 000068 —. 000026 —. 000008
Agg . 002312 —. 001362 —. 000498 —. 000176
waﬂ\/;/-ﬁ
30.803 30.718 30.654 30.638
2
Afeeee —0. 77460 —0. 76682 —0. 76427 —0. 76368
Ao oo 1. 00000 1. 00000 1. 00000 1. 00000
Ay —. 02305 . 00527 . 00208 . 00073
Asge . 04645 . 01022 . 00241 . 00077
wazx/p/—D
V 61.131 90.105 157.70 265.98
3
Agpe 1. 64125 0. 60941 0. 33684 0. 27432
Aggo . 1. 00000 1. 00000 1. 00000 1. 00000
. P . 00581 . 00155 . 00038 . 00012
Ap o —. 00380 —. 00079 —. 00019 —. 00006
wa"’v p/D
148.8 259.4 493.4 853.6
4
Ap . 1. 00000 1. 060000 1. 00000 1. 00000
Agg oo -, 32893 —. 31823 —. 31430 —. 31330
Ao —. 00808 —. 00156 —. 00036 —. 00012
Agge e . 00586 . 00122 . 00029 . 00009
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TaBLE 7.6.—Deflection Functions and Frequency Parameters for a Rayleigh-Ritz Analysis of o O-F-F
Symmetric Triangular Plate; v=1//

alb Mode no. Deflection function, W(z, ¥) Amplitude wa?Vp/D
coefficients
12 1 (f—1>2 (2+Ao) Ao=5/3 7.15
a a
z_ .\ 3z z_ .\ _
(6 1) (7+5>+A, (a 1) L Ay=—4.85 6. 55
2
2 (2—1)% ................ 2. 5
(2_1 ’(11+Ayf Ay=—1 23. 8
a ) a e 2= 2
2 \fz ¥ —
(& 1) (5+A3) y Ay=0.462 23. 0
2
3 (5-1) (’—‘~A4) A=49/164 37.1
a a
z e _
oo 1 (5—1) (E+A5) As=5/3 7.15
z_\(3 z_ V¢ -
(2 1) (71-4-5)+A6 (a 1)L Ag=—3.61 7. 02

TABLE 7.7.—Frequency Parameters and Amplitude Coefficients for C-F-F Symmetric Triangular

Plates
»=0 v=1/4 »=1]2
afb
Ay wa?Vp/D Al wa?yp/D A, wayp/D
12 . —3.95 6. 733 —4.85 6. 555 —5.92 6. 320
1. —2. 27 7.101 —3. 61 7. 002 —5.09 6. 888
P J —. 725 7. 154 —2.25 7.122 —3. 83 7. 032

Kumaraswamy and Cadambe (ref. 7.22)
experimentally determined the first 18 modes
and frequencies of a symmetric triangular
cantilever plate made of commercial mild steel.
Pertinent dimensions and physical constants
were: a=6.00 inches, =6.00 inches, h=0.0895
inch, pg=0.282 pound per cubic inch, length-
wise £=29.83X10° psi, breadthwise £=29.18"
X10° psi, and »=0.29 (assumed). Cyclic fre-
quencies and frequency parameters are given
in table 7.8. The disagreement in values of
wa*y/p/D between tables 7.5 and 7.8 for a/b=1
Nodal patterns are shown
in figure 7.22,

Further experimental results from reference
7.23 for a/b=1 are given later in this section.

Consider next the delta cantilever plate
depicted in figure 7.23. This problem was
solved in reference 7.20 for the first two modes
by the method described earlier in this section.
The following six-term series was used for the
deflection function:

W(n, v)= (An+Av?v+Asuiys;(©)) ¢ (v)
+ (Ase+ Ao+ Az 3(v)) po(w)  (7.12)

Frequency parameters, nodal patterns, and
amplitude coefficients are listed in table 7.9 for
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»=0.3. Variation of frequency parameter with
a/b ratio is seen in figure 7.21.

In reference 7.24 the method of reference
7.20 given previously was duplicated by using
only the four terms of equation (7.12) asso-
ciated with Ay, As, Ajs, and Azs. The funda-
mental frequency for the plate of figure 7.23
was found to be wa®/p/D=5.045 for a/b=1.

VIBRATION OF PLATES

A corroborating experimental value of wa%y/p/D=
5.36 was determined for a steel plate (a=6.00
in., 5=6.00 in., A=0.0895 in., pg=0.282 Ib/in 2,
and E=29.5X10° psi). Tabular values of the
integrals obtained from equation (6.4) are also
given in reference 7.24.

In reference 7.21 the delta plate having
a=45° was also analyzed by the Rayleigh-

TaBLE 7.8—Ezperimentally Determined Frequencies and Frequency Parameters for ¢ CO-F-F
Symmetric Triangular Plate; a/b=1; v=0.29

Mode f; cps wa2yp/D Mode f, eps wa2yp/D Mode 1, cps waVo[D
| S 137 576 || T __.__ 28, 40 119. 10 || 13-_.-___ 6499 272, 4
2 642 26.91 || 8. 3133 131.30 || 14. ... 6526 273.5
B 655 27.45 || 9_-oo-- 3924 164.40 | 15.______ 6884 288. 5
4 1442 60.42 || 10______. 3988 167. 1 16__.____ 7627 319.7
L 1725 72.30 || 11.______ 4929 206. 5 17 L. 8498 356. 1
6 2080 87.18 || 12_______ 5939 249 18 . ... 9875 413. 8

TABLE 7.9.—Frequency Parameters, Nodal Patterns, and Amplitude Coefficients for a C—-F-F Right
Triangular Plate; v=0.8

a/b
Mode Nodal lines Amplitude
coefficient
2 4 7
wa?yp/D
5.887 6.617 6.897
1 b Ao 1. 00000 1. 00000 1. 00000
Ajgea . . 02030 —. 00077 —. 01287
a Ao —. 31370 —. 09379 —. 03234
Aggoeoee —. 14370 —. 07012 —. 02783
Aspooeeoo o —. 00073 —. 00005 —. 00002
Aggee o —. 00598 —. 00198 —. 00070
wa?y p/D
25.40 28.80 30.28
Ao —0. 81541 —0.77842 —0.77340
2 Agpeeoee 1. 00000 1. 00000 1. 00000
3 Apleeceeae 3.1448 1.11722 . 40809
Apo e —1.25112 —. 50815 —. 19731
A . 05200 . 01065 . 00320
Aggeeoee . 01845 . 00748 . 00028




TRIANGULAR PLATES 217

F1cURE 7.22.—Nodal patterns for a C-F-F symmetric
triangular plate, a/b=1; material, steel. (From ref.
7.22)

ALV
o

———
- Q

902

3

F1GURE 7.23.—C-F-F right triangular plate.
308-337 0—70——15

Ritz method, using »v=1/4. A summary of
deflection functions used and the frequency
parameters obtained is given in table 7.10.
(See fig. 7.23.)

Gustafson, Stokey, and Zorowski (ref. 7.23)
obtained experimental mode shapes and fre-
quencies for the delta configurations shown in
figure 7.24. The plates were cut from sheet
steel averaging 0.061 inch in thickness. Ob-
served nodal patterns and cyclic frequencies
for the first six mode shapes of each plate are
shown in figure 7.25, where the designations
A1, A2, etc., refer to figure 7.24. Variation in
cyclic frequency with b/a ratio for each mode is
shown in figure 7.26.

Christensen (ref. 7.25) used the method of
replacing plate elements by equivalent beam
networks as developed by Hrennikoff (ref. 7.26)
to analyze the delta plate when a=45°. The
10 grid points shown in figure 7.27 were used.
Each grid point is allowed rotation about axes
parallel to the z- and y-axes and a w displace-
ment, and a thirtieth-order characteristic de-
terminant results. Frequency parameters and
grid-point deflections associated with each of
the first 10 vibration modes are given in table
7.11 for »=0.3. Experimental frequency pa-
rameters converted in reference 7.25 from
reference 7.23 (discussed previously) and values
obtained from reference 7.27 by using the
Rayleigh-Ritz method and polynomials are
also listed for comparison. The total mass
of the plate is M. Nodal patterns compared
with - the experimental results of reference
7.23 are shown in figure 7.28.

10" 10 10" 10" 10"
Designation Al A2 A3 A4 AS

Figure 7.24.—C-F-F delta configurations. (After ref.
7.23)
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TasLe 7.10.—Deflection Functions and Frequency Parameters for o Rayleigh-Ritz Analysis of a
C-F-F }5° Delta Triangular Plate; v=1/4

Mode no. Deflection function, W (z,y) Amplitude watyp/D
coefficients

L et (2—1)2(2-{-110) =5/3 7.15
(5— 1)2(%+5)+A1 (s— 1)2(3—,«12 2)2 i:z - ?;/8182 6. 37
( )(A T S — 7.16
()40 Gt 240 T s T R A 6. 57
616 i "

% (O (Bi+pn?) 28.0
(D (ara frateatean) 0 26.9

B @ (B Erpany) 57.5
(2)(40 Sts £+ L N S 54.3

TaBLE 7.11.—Frequency Parameters way/M/D (M, Total Mass of Plate) and Mode Shapes for a
C-F-F }5° Delta, Triangular Plate; v=0.3

Mode_ - _._____ 1 2 3 4 5 6 7 8 10
way M/D from ref
7. 25 _____________ 4. 35 16.76 | 23.01 38.90 | 53.65 | 60.32 78.26 | 90.92 | 107.1 148. 6
wayM/D from ref
728 . 4,17 16. 4 23.0 39.3 53.3 69.9 | i|emem e ma
wayM/[D from ref
7.27 4. 42 16. 9 23.7 43.5 |||
Grid point deflec-
tion amplitude
ratios for point—
| SO 1 1 1 1 1 1 1 1 1 1
b . 65 .29 —.27 .07 —.74 |—1.01 —1.15| —1.02 | —1.32 —1. 60
T .56 —.94 .45 | —3.62 —. 18 1. 39 1.8 | —1.03 1. 64 3.70
4 e .33 —. 05 -—. 81 .39 —. 06 .04 1. 36 1. 10 2. 32 5. 08
LS S . 28 —.78 —. 07 —. 31 .04 | —.002 | —2.08 1.74 | —1.65 —6.98
[ .20 | —1.33 .43 1. 88 .03 | —1.99 4. 38 —-. 37 —. 65 5. 54
Y (PR .10 —. 05 —. 47 .44 . 55 .90 3.05 | —1.66 | —1.05 —5. 48
8 - .08 —. 32 —. 11 . 49 . 47 .27 —3.77 —.70 —. 43 8. 62
L D . 06 —. 45 .12 1.24 —.19 .27 —1.92 | —1.17 . 76 —6. 00
100 e .02 —.31 .14 1.78 | —1.28 2. 65 . 84 1.18 | —1.99 2. 89
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Fiaure 7.25.—Ezxperimentally observed eyclic frequencies, cps, and nodal patterns for C~F-F delta triangular
steel plates. (From ref. 7.23)
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g e00 V4 1 H L
] /1 // ] ! ZA

g 500 / / A I : -
w L~ | ”
/ / < 3 5! 8 ”
/) 8 _ ____V
400 / Lo — !y 3 % -8 #
T | A ! Z
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______ b-"'__ﬁ'—"___}'_"-—-/
L~
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0 -
0O 2 4 6 8 10 I 14 18 18 20 22 9 ga 2a 2a 2a__[°
b/a 9 9 9 9 9 [

Ficure 7.26.—Experimentally measured cyclic fre-
quencies for C~F-F delta triangular steel plates. Ficure 7.27.—Grid points in a structural element
(After ref. 7.23) representation of a C—C-F triangular plate.
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Kawashima (ref. 7.28) used the finite differ-
ence method to obtain frequencies and mode
shapes for delta plates (fig. 7.23) having
b/a=1 and 2. The 45° delta was analyzed by
using both 6 and 10 free grid points on the
plate, and the other, by using only 6 grid
points. Cyeclic frequencies were computed by
using the dimensions of the plates in reference
7.23 for comparison. Available results are
given in table 7.12. Grid points used for the
more accurate analysis of the 45° delta are
shown in figure 7.29, wherein deflections for
the first two mode shapes are presented. At
each grid point, including those along the
clamped boundary, two numbers are listed.
The first gives the deflection amplitude at each
point normalized with respect to the tip
deflection. The second is the bending moment
M, relative to the value at a point along the
clamped boundary near the skew edge. Cor-
responding results for the case b/a=2 are also
given in reference 7.28, but are considerably
inaccurate.

— Gridwork Method
—=—— Experimental Results

AN 4 &L
1 ; yarl

MODES

Figure 7.28 —Nodal patterns for a C-F-F 45° delta
triangular plate; material, steel. (After ref. 7.25)

TaBLE 7.12.—Theoretical Cyclic Frequencies for
C-C-F Delta Triangular Steel Plates

Cyeclic frequencies for values of bja of—
Mode 1
2 (6 grid
points)
6 grid 10 grid
points points
) 40.0 35.0 35.5
2 115. 5 136. 7 82.7
K 1565. 8 161. 9 161. 0
4. . 221. 0 301.3 .
s 266. 0 364.0 |-

OF PLATES

The delta plate for the cases b/a=1 and 2
was also analyzed by Walton (ref. 7.29) by
using the method of reference 7.30 which re-
places the derivatives in the strain energy
integral by finite differences. Twenty-eight
free grid -points were used in the analysis.
Frequencies were computed and compared
with experimental data for sheet steel plates
having the dimensions a¢=10 inches, b=10
inches and a¢=10 inches, and 5=20 inches.
Both plates were 0.061 inch thick and » and E
were taken as 0.025 and 303<10°% psi, respec-
tively. The first six cyclic frequencies for each
plate are given in table 7.13. Nodal patterns
for the five higher modes of each plate are
depicted in figures 7.30 and 7.31.

Hanson and Tuovila (ref. 7.31) experimen-

FIRST MODE -

L~

L~

e

y L

0.031 0

1.263, )

L~

L~

L~

0.264 0.078 o

x 0.893 7560 LT g

Ve

e

0.657 0354 0.4 o>

-0.334 0474 1758 36Tl

e

-

| 0.725] 0409  0.133 ol

0" -0459 0449 1595 2.992

SECOND MODE

-1.047

0.89, ]

-1.890 -0.872 0

-0.485 ~0.108 0833

' L~

L

e

-0.834 -0684] -0.327 o

-0.264, =0.323] -0.12 OIE] g

- L~

e

L~

I 1.303] 0993 0483 0

00205 0068 -0090 -0.323

Ficure 7.29.—Deflections and bending moments M.
for a C-F-F 45° delta triangular steel plate.
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tally investigated 45° and 60° delta plates
made of 0.034-inch-thick magnesium (pg=
0.064 1b/in.3). (See discussion of the C-F-F-F
parallelogram plate, sec. 5.1.5.) They investi-
gated plates with a=45°, b=6.00 inches, and
a=60°, b=8.50 inches. The first three fre-
quencies and mode shapes for the two plates
are shown in figures 7.32 and 7.33. Note that
the three-dimensional perspective used in these
figures distorts the right angle at the clamped
edge.

Craig, Plass, and Caughfield (refs. 7.32 and
7.33) measured mode shapes and frequencies
on three 6061-T6 aluminum plates % inch
thick and having the dimensions ¢=7.5 inches,
b=7.5 inches; a=12.5 inches, 4=7.5 inches;
and a=15 inches, b=7.5 inches. Cyclic fre-
quencies, nodal patterns, and mode shapes are
given in figures 7.34, 7.35, and 7.36.

,

LN

Mode 3

>

Mode 5

Mode 2

>

Mode 4

Experimental
A Calculated

A
4
A

Mode 6

Fiaure 7.30.—Nodal patterns for a C-F-F delta
triangular steel plate, bja=1.
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TaBLe 7.13.—Oyclic Frequencies for C-F-F
Delta Triangular Steel Plates

Cyeclic frequency, f,
cps
b | Mode P (Computed f
a Measured f
Theoret~ Experi-
ical mental
) S 1 36. 4 34.5 1. 06
2 139 136 1. 02
3 192 190 1. 01
4 327 325 1. 01
5 432 iq1 . 980
6 566 578 . 979
2o 1 32. 8 32. 8 1. 00
2 89.9 91. 0 . 988
3 164 164 1. 00
4 175 181 . 967
5 263 283 . 929
6 328 348 . 943
aa
a
aa,
Aaa
Mode 2 Mode 3 Mode 4
= Experimental
A Colculated
Py
Mode 5 Mode 6

Ficure 7.31.—Nodal patterns for a C-F-F delta tri-
angular steel plate, bja=2.
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\ Dashed lines indicate shape of
l\ plate at moximum amplitude of cycle
F“z;““ Normalized deflection at (1-x/a) =
chord 1 3 5 7 9 |1.0
0.00 .021 | .087 | .186 | .357 [.702 | 1.0
.25 029 | .107 | .21k | .bhoo |.7H2 {2.0
.50 .033 | .121 | .2b7 | 453 |.77L 1.0
.15 .037 | .133 | .278 | .507 |.79 | 1.0
1.00 .037 | .6 | .297 | .528 |.820 1.0

Heavy solid lines indicate
plate at rest

03
ol = \
[¢] (a)
\ Fraggion Normalized deflection at (1-x/a) =
\\ chord 1 -3 .5 o7 .9 1.0
10 0.00  |.052 {-.319 | -.729 |-.350 | .325 1.0
ool \ .25 f.069 |-.365 | -.514 |-.173 {110 [1.0
i W50 1-,065 | -.2851-,296 [ ,020 {.490 | 1.0
75 .029 ]-.115 | -.052 | .221 |.580 [1.0
\\ 1,00 L017 | .069| .183 | .h2o |.681 1.0
0.7
~
O‘R \\ \ \
\\
~
03 ~
\\ —
———
~
0l _____..____\—\
[] )
Normalized deflection at (l-x/a) =
.1 .3 .5 .7 .9 [1.0
0.050 | 0.200 J0.270 | 0.420 b.760 | 1.0
. 050 .125] .130] .270{.730 (1.0
09 L.010| -.087 | -.125{ .o75 | .670 [ 1.0
l-.070{ =.360 | -.485 | -.140 | .600 [ 1.0
|.1250 =710 j-.830 -.305 | .575 [ 1.0
[oX¢
05
03
o \
o] (c)

FigurE 7.32.—Experimental frequencies and mode shapes for a 60° delta cantilever plate; material, magnesium.
(a) Mode 1, f;=>50 cps. (b) Mode 2, f;=184 cps. (c¢) Mode 3, /=258 cps.
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Fraggion Normalized deflection at (l-x/a) =
P\ chord 1 .3 .5 .7 9 | 10
- 0,00 002 | .025 | .139 | .418 }.750 | 1.000
.25 o0k | ,067 | .232 | .502 |.800 |1.000
N .50 .013 | .126 | .325 | .544 {.835 | 1.000
\ .75 .021 [ .158 | .337 | .570 {.850 | 1.000
10 N 1.00 .025 | .160 | .34%2 | .580 |.860 | 1.000
0.9 \\
\ Heavy solid lines indicate
>(plcte at rest

Dashed lines indicate shape of
plate at maximum amplitude of cycle

\ . Fraz;ion Normalized deflection st (1~x/a) =
\ chord .1 .3 .5 .7 .9 1.0
N 0.00 -.023 | =.380{~1.000 | -.849 |.302 |1.000
.25 -.093 t =.477| -.872 | ~.550 | .488 | 1,000
1.0 .50 -,116 | «.349] ~.450 | -.093 |.6k0 |1.000
.75 |~.035]-.081| .023| .372 |.780 |1.000
09 ~ 1.000 .ok2| .198| .hoo| .620 }.872 |1.000
07 SN\

05 >~ \\\\\‘ N

0.3
—a N
ol \ e —_——
ol ®)
Fraction N
of Normelized deflection at (1-x/a) =
chord .1 .3 .5 .7 .9 | 1.0
0.00 £006 | .076 [ .059 | .150 | .745 | 1,000
.25 L029 | Lo71 | 029 | .132 |.722{ 1,000

.50 1-.006 | -,053 |=.147 | .070 | .695 | 1.000
.75 -.053 { - k17 |-, 488 [ -.040 | .667 | 1.000
1.00 -.147 [ =,500 {-.523 | ~.112 | .640 | 1,000

(e)

Fraure 7.33.—Experimental frequencies and mode shapes for a 45° delta cantilever plate; material, magnesium.
(a)AMode 1, fi=66 cps. (b) Mode 2, f,=185 cps. (¢) Mode 3, f;==336 cps.
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FiGURE 7.34.—Ezxperimental data for a 45° delta §
cantilever plate; material, 6061-T6 aluminum 14
inch thick. (a) Experimental node lines and data =080+
points; fi=118.1 cps; f,=448.5 cps; f:=670.5 cps.
(b) Normalized deflection; mode 1; f;=118.1 cps.
-1.00

(¢) Normalized deflection; mode 2; f,=448.5 cps.
(d) Normalized deflection; mode 3; f;=670.5 cps.
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Figure 7.35.—Ezxperimental data for a 31° delta
cantilever plate; material, 6061-T6 aluminum 14
inch thick. (a) Experimental node lines and data
points; f1=50.2 cps; f:=212 cps; f:=316.5 cps;
fi=524 cps; f5=809 cps. (b) Normalized deflection;
mode 1; f;=>50.2 cps. (¢) Normalized deflection;
mode 2; f,==212 cps. (d) Normalized deflection;
mode 3; f;=316.5 eps. (¢) Normalized deflection;
mode 4; f,=524 cps. (f) Normalized deflection;
mode 5; f5=809 cps.
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F1cURE 7.36.—Experimental data for a 26.6° delta cantilever plate; material, 6061-T6
aluminum 14 inch thick. (a) Experimental node lines and data points; fi=71.2 eps; f,=300
cps; f3==508 cps. (b) Normalized deflection; mode 1; f;="71.2 ¢ps. (c) Normalized deflection;
mode 2; f,==300 cps. (d) Normalized deflection; mode 3; f3==508 cps.
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Consider finally the triangular cantilever
plate of general shape as shown in figure 7.37.
In reference 7.29 this problem was also (see
discussion earlier in this subsection) solved ana-
lytically for a sheet steel plate having dimen-
sions =10 inches, b=10 inches, 8;=116.6°,
and A=0.061 inch. Material constants were
taken as »=0.250 and E=30X10° psi. Thirty-
one grid points were used in the analysis. The-
oretical frequencies are compared with experi-
mental ones in table 7.14. Nodal patterns for
the five higher modes are depicted in figure
7.38.

Frequencies and nodal patterns were found
experimentally in reference 7.23 for sheet
steel plates having @=10.0 inches, 5=10.0
inches, #=0.061 in¢h, and 8,=63.4°, 78.7°, 90°,

|
1

»
A

ANV VYAV VAANNAN

Figure 7.37—C-F-F triangular plate of general
shape.

TaBLE 7.14.—Cyclic Frequencies for a C-F-F
Triangular Steel Plate; v=0.26

Cyeclic frequency, cps
Mode

Theoretical | Experimental | Theoretical

Experimental
1. 27.6 26. 3 1. 05
2. 107 101 1. 06
3.____- 173 171 1. 01
4 __.__ 262 259 1. 01
s S, 352 346 1. 02
6._____ 480 522 .92

101.3° and 126.6°. Results for the first six
modes are shown in figure 7.39.

Klein (ref. 7.34) proposed a set of empirical
formulas for the prediction of frequencies of the
first three bending modes and the first torsional
mode for arbitrarily shaped triangles. These
formulas are given in table 7.15.

The planform dimensions used on both sides
of the formulas in table 7.15 are those of
figure 7.40. Substantiation of the formulas of
table 7.15 was given in reference 7.34 by com-
parison with the experimental results of refer-
ence 7.23. These data are reproduced in table
7.16. The plate designations used are those
shown in figures 7,25 and 7.39.

The vibration of C-F-F triangular plates is
also discussed in references 7.35 and 7.36.

Mode 2

= Experimental
A Calcutated

Fiaure 7.38.—Nodal patterns for a C-F-F triangular
steel plate.
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FicUrE 7.39.—Experimentally observed cyclic frequencies, c¢ps, and nodal patterns for C-F-F triangular steel
plates. (From ref. 7.23)

Y
G2
az
a,
. \ Angle Bisector
Median \\
177 T ET TV 7 77777
b b
2 2 X
a
FieUure 7.40.—Planform dimensions of a C-F-F tri-

angular plate of arbitrary shape. (After ref. 7.34) FigUrE 7.41.—F-F-F 45° right triangular plate.
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TaBLe 7.15.—Empirical Formulas for Calculating the Frequencies of C-F-F Triangular Plates of
Arbitrary Shape

Mode Frequency formula
1st bending_ - .. ____________ wai/p]D=[7.14—(0.4b/a;) |Vsec 6,
2d bending . - ... waiy/p/D=[31—(2b/a;) — 2+sec 6,—1]Vsec 6,
3dbending_ - - ... waiVp/D=173—4(b/a))21{1+[sin 6,— (b/2az)]Vsec G,— 1}

18 6OTSION A - oo

waiVp/D=1{20[1+0.2(b/az)?]t +30(b/az)Vsec 0,— 1} (a,/b)

TaBLE 7.16.—Cyclic Frequencies Computed From Empirical Formulas Compared With Test Results
Jfor C-F-F Triangular Plates; Material: Steel

Frequency, cps, computed from—
Bending type modes
Plate Torsional mode
T fa I3

Formula Test Formula Test Formula Test Formula Test
Al ... 32. 5 32. 8 92 91 179 181 164 164
A2 . 35. 3 34. 5 140 136 325 325 192 190
A3 . 38.3 37.5 160 161 386 392 245 243
A4 . 39.6 38. 4 168 165 401 403 330 338
A5 . 40.6 40. 2 173 172 414 411 598 608
S . 39.1 38.5 168 169 400 404 167 166
S2 . 37. 8 37.8 156 151 365 363 194 186
83 o __ 35. 3 34. 5 140 136 325 325 192 190
S4 o 31. 6 32. 4 121 120 293 293 179 182
(1 JO 26. 6 26. 3 98 101 255 259 166 171
7.1.9  F-F-F plate having dimensions @¢=28.86 inches and

Waller (ref. 7.37) experimentally investigated
completely free 45° right triangular plates.
The modes were classified as m/n according to
the corresponding products of beam functions,
namely,

W((IJ, y) =AmnXm(x) Yn(y) :than(m) Ym(y)
(7.13)
where 2 and y are as shown in figure 7.41 and

the beam functions apply to beams of length a.
Cyclic frequencies were obtained for a brass

h=0.102 inch and are given in table 7.17 along
with frequency ratios relative to the funda-
mental frequency. Corresponding nodal pat-
terns are shown in figure 7.42. Nodal patterns
for some higher nodes are shown in figure 7.43.

Some nodal patterns obtained for free equi-
lateral triangular plates (ref. 7.38) are depicted
in figure 7.44.

7.2 OTHER SUPPORTS AND CONDITIONS

The problem of a simply supported 30°-60°—
90° triangular plate with an internal point
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support at £ 7 (see fig. 7.45) was studied by
Solecki (ref. 7.10). Frequency parameters for
the first three modes and for various locations
of the point support are given in table 7.18.

The isosceles right triangular plate with all
edges free and having hub-pin supports (see
fig. 7.46) was investigated experimentally by
Craig, Plass, and Caughfield (refs. 7.32 and
7.33). Pertinent dimensions, cyclic frequen-
cies, and the nodal patterns of the first four
modes of vibration are shown in figure 7.46.
Corresponding mode shapes are plotted in
figure 7.47.

TABLE 7.17.—Cyclic and Relative Frequencies
for a F-F-F }5° Right Triangular Brass
Plate

[Relative frequency ratios are in parentheses]

Cyeclic frequency, eps, for values
of n of—
m
0 1 2 3
2. 162 227 380 |-
(1) (1. 4) (2.86)| oo
L 414 590 710 1090
(2. 56) (3. 65) (4. 39) (6. 8)
4 - 862 1078 1350 1690
(5. 32) (6. 62) (8. 36) (10. 4)
L5 S 1380 1670 2000 2490
(8.54)| (10.3) (12. 4) (15. 4)

TABLE 7.18.—Frequency Parameters wb>/p/D for
a SS-SS-SS 30°-60°-90° Triangular Plate
With an Interior Point Support

¢ . wb?y/p/D for mode—
a b
1 2 3
0.10 0. 50 . 97.91 205. 29 258. 19
.20 . 50 99. 88 216, 34 261. 35
.25 . 50 101. 06 219. 50 263. 32
.30 . 50 101. 85 220. 29 264. 51
. 40 . 50 101. 85 189, 10 259, 77
. 50 . 167 129, 88 216. 34 276. 35
. 60 . 250 152. 39 206. 08 249. 90
. 50 . 333 140. 15 175. 28 250. 29
. 250 . 250 170. 55 170. 94 276. 35
. 333 . 333 147. 25 233. 71 264. 11

VVV

Figure 7.42.—Nodal patterns for a F-F-F 45° right
triangular plate; material, brass. (From ref. 7.37)

F1guRrE 7.43.—Nodal patterns for some higher modes of

a F-F-F 45° right triangular plate; material, brass.
(From ref. 7.37)

6/2 /2
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F1GURE 7.44.—Nodal patterns for a F-F-F equilateral
triangular plate; material, brags. (From ref. 7.38)
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FIGURE 7.45.—8S-8S8-88 30°-60°-90° triangular plate
with internal point support.
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Plates of Other Shapes

8.1 POLYGONAL PLATES

Well-known analogies (refs. 8.1 and 8.2)
exist between the separate problems of trans-
verse free vibration and buckling of a polygonal
plate simply supported all around and the
problem of the transverse vibration of a
prestretched membrane having no deflection at
its edges.

The governing differential equation for the
vibrating membrane is

2
WW+<%%QW=0 8.1)
where W=W(zx, y) is the transverse deflection,
pn is the mass density per unit area, w, is the
frequency, and T is the membrane tension
(force per unit length). Operating on equation
(8.1) by V? and substituting for VW from
equation (8.1) give the resulting equation
2\ 2
V4W—(””—1“’,"‘) W=0 (8.2)
which is identical to equation (1.4) except for
the constant coefficient of W. Furthermore, if
W=0 along the polygonal boundary of the
membrane, then by equation (8.1) V2W is also
zero, which satisfies the boundary conditions
for the simply supported plate. Thus a com-
plete analogy exists between the two problems,
and the frequency of the plate can be obtained
from that of the membrane through the

correspondence
QN(&@Y
D T

Again, operating on equation (8.1) by V?
gives

(8.3)

2
v4W+(% VI =0 (8.4)

Chapter 8

which is of the same form as the differential
equation governing the buckling of a plate

under the action of the inplane forces
N,=N,=N, (a constant; ie., hydrostatic
pressure) :

v+ vy —o (85)

Again, the homogeneous boundary conditions
for the simply supported polygonal edges of
the plate are satisfied by the conditions around
the membrane. Thus the following corre-
spondence exists:

(—A;g)—“ ~ Prion (8.6)

T

where (Vo). is the critical buckling load of
the plate; that is, the eigenvalues which
satisfy the homogeneous boundary conditions.

Finally, from a comparison of relationships
(eq. (8.3) and eq. (8.6)), it is seen that the
following correspondence exists between the
plate vibration and plate buckling problems
(when, of course, all edges are rectilinear and
simply supported):

;— (NO)cr
"’\/ D~ D

Results given for polygonal plates having all
edges simply supported in the sections that
follow are taken from literature which dealt
directly with the plate problem. For further
results which can be obtained through the
analogy (eq. (8.3)), the reader is directed to the
published literature dealing with membrane
vibrations.

8.1.1

Kaczkowski (ref. 8.3) analyzed the regular
pentagon of side a (fig. 8.1) for the case when
237

(8.7)

Pentagons
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Figure 8.1.—Regular pentagon.

all edges are simply supported. He chose a
deflection function

W(z,y) =m=Z°;,; [Amsmh\/( )—i—J
+B, smh\/<~—) ‘/’;‘:’ ] Smm_mc

which exactly satisfies the symmetry conditions
along AB and the simply supported conditions
along 0OA. The symmetry conditions along
OB yield a characteristic determinant for the
problem. The fundamental frequency was
found to be wa’y/p/D=10.863.

Waller (ref. 8.4) experimentally found several
nodal patterns for a completely free regular
pentagon. These are exhibited in figure 8.2.

8.1.2 Hexagons

The fundamental frequency of a regular
hexagon of side length ¢ and simply supported
along all sides was determined by Kaczkowski
(vef. 8.3) to be wa®/p/D=6.961 by using the

“method described in the previous section.
"Conway (ref. 8.5) solved the problem by the

point-matching method, using the solution in
polar coordinates (eq. (2.1)) and satisfying
boundary conditions at all corners, midpoints,
and quarter points of the sides. This gave the
fundamental frequency as way/p/D=7.129.
The problem is also discussed in references
8.2 and 8.6.

Nodal patterns for completely free regular
hexagonal plates were determined experimen-
tally by Waller (vef. 8.4) and are exhibited in
figure 8.3.

Ficure 8.3.—Nodal patterns of completely free regular hexagonal plates. (From ref. 8.4)
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Ficure 8.4—Nodal patterns of completely free regular octagonal plates. (From ref. 8.4)

8.1.3 Other Polygonal Plates

The fundamental frequency of a regular
octagonal plate of side length ¢ and simply
supported along all edges was computed to be
way/p/D=3.624 in reference 8.3. The method
used was that described in the discussion of
pentagons (sec. 8.1.1).

Experimentally observed nodal patterns for
completely free regular octagonal plates are
set forth in figure 8.4 (ref. 8.4).

8.2 SECTORIAL PLATES

Coordinates and dimensions of a circular
sector are shown in figure 8.5.

8.2.1 Radial Sides Simply Supported

An exact solution is obtainable for the case
when the two radial edges are simply sup-
ported, regardless of the homogeneous bound-
ary conditions which exist along the circular

Ficure 8.5.—Circular sector.

edge. If one takes solutions to equation (1.4)
in the form of equation (2.1) with n=m/2«,
37/2e, . . . (fig. 8.5), satisfaction of the bound-
ary conditions along the circular edge yields a
second-order characteristic determinant for the fre-
quencies of symmetric modes. Similarly, the
antisymmetric modes are determined by re-
placing cos nf with sin 78 where n=n/a,
3r/a, . ... In spite of the relative simplicity
of this approach, the only known solutions of
this type are those for which n is an integer
and which correspond to the higher modes of
a circular plate.

Westmann (ref. 8.7) solved the case when
the circular edge is free by using the Rayleigh
procedure, assuming a deflection function

Wi(r, 8)=r*cosnb (8.9)

and obtained the following approximate for-
mula for the fundamental frequency parameter:

w’atp/D=3(n*—2n*}8)—v(6n*—8) (8.10)

For the case when n=3 (2a=60°), results for
w obtained from equation (8.10) for »=0 and
v=1/3 are determined (ref. 8.7) to be 4.8 and
5.5 percent too high, respectively, when com-
pared with an exact solution obtained from the
threefold symmetric mode of a completely free
circular plate (see see. 2.1.3).

8.2.2 Other Boundary Conditions

Ben-Amoz (ref. 8.8) used the Rayleigh-Ritz
method to solve the problem when all edges are
clamped. A deflection function

W(r,0)=£*(1—£m)?[C; (coshv,0+-cosy4f)
~+C; (cosh v,6—cos y0)+ Cs (sinh v,0

+sinvy,0)+ C; (sinh v,8—sin v,08)] (8.11)
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was used, where

v1,e=[(a§+po—D0)'? L ao]'” 7
a=3 (m—1)
2
b0=§(m—}—2) (2+3m-+-2m?) (8.12)
m=mn/2a
E=rja

_ a*p (m+1)(2m+1)(3m—+2)
P= 79D (mF3)(mF6)(2m+3)

This function satisfies the clamped edge condi-
tions at r=a exactly. Substituting equation
(8.11) into the boundary conditions at =+«
yields the characteristic equation

ne Y g Qo o N Yoo
cosh 5 0085 l—l—,yl’yzsmh 5 Sin 5 (8.13)

Variation of the fundamental frequency with
sectorial angle is shown in figure 8.6.

The case when the two radial edges are
clamped and the circular edge is free was ana-
lyzed in reference 8.7 by using the Rayleigh
procedure and an assumed mode

W(r, 0) =p*(1+cos m#h) (8.14)

giving a fundamental frequency parameter of
w?atp/D=(m*—2m?*+24)—v(6m*—24) (8.15)

where m is taken as 7/a.

Waller (ref. 8.4) experimentally observed the
two nodal patterns shown in figure 8.7 for a
completely free semicircular plate.

8.3 OTHER PLATES

Grinsted (ref. 8.9) experimentally determined
the frequencies and mode shapes of a flat brass
plate designed to simulate an impeller blade.
The plate was 0.064 inch thick, and the remain-
ing dimensions are given in figure 8.8. Mode
shapes observed, along with the corresponding
cyclic frequencies, are depicted in figure 8.9.

In reference 8.9, experimental results are
also given for a cantilevered plate of irregular
shape intended to simulate a marine propeller
blade. Dimensions of the plate and cyclic fre-
quencies are given in figure 8.10. Correspond-
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Ficure 8.6.—Fundamental frequency parameter for a
completely clamped sectorial plate. (After ref. 8.8)

Figure 8.7.—Nodal patterns for a completely free
semicircular plate. (From ref. 8.4)

ing mode shapes are shown in figure 8.11. The
material is mild steel.

Ruscoe (ref. 8.10) experimentally found
several ‘‘complex modes” of a flat plate in the
shape of a turbine vane having a curved edge
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/—Clomped Edge

Fieure 8.8.—Dimensions of a flat-plate model of an
impeller blade; R, radius. (After ref. 8.9)

Fraure 8.9.—Cyeclic frequenéies and mode shapes for a flat-plate model of an impeller blade. (From ref. 8.9)
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Ficure 8.10.—Plate dimensions and cyclic frequencies for a flat-plate model of a marine propeller
blade. (After ref. 8.9)
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249 170 415 0/} 889 /1 135 0/2 +2/0 1,365 2/0 -0/2

1,819 172 2,155 2/71+0/3 2,202 0/3 2,4i8 2/1-0/3 3,009 /73

3,343 3/0 3416 2/2+0/4 3,804 2/2-0/4 4,470 /4 +3/1 4,760

hS

»

5,568 2/3+0/5 6,098 1/5-3/2 4,934 2/3-0/5 6,245 /0 65T  3/2-1/5

7,542 0/6+4/1 7,987 4/1 8,594 1/6+3/3 9,744 0/7+4/2 10,000 5/0

Ficure 8.11.—Nodal patterns and cyclic frequencies for a flat-plate model of a2 marine propeller blade. (After ref. 8.9)
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clamped and two straight edges free as shown
in figure 8.12. Frequencies were given but
plate dimensions were unspecified.

The problem of a plate of epicycloidal shape
clamped on its contour is studied in reference
8.11. No numerical results are given.

In reference 8.12, a method for analyzing
plates having two parallel edges of general cur-
vilinear shape and simply supported is pre-
sented. No numerical vibration results are
included.

Some bounds on frequencies of clamped plates
of irregular shape are discussed in references
8.13 and 8.14.

)

|

FicurEk 8.12.—Some mode shapes of an irregular plate.
(After ref. 8.10)
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Anisotropic Plates

No work in the literature has been found for
the case of general anisotropy. Results for
the special cases of polar and rectangular
orthotropy are summarized in the following
sections.

9.1 POLAR ORTHOTROPY

The differential equation for the transverse
bending of a polar orthotropic plate is (see the
appendix) :

Dy Dy o*w Db3w
’a4+2 : azaefrr* T2 o

2D, Ow _Didw, 2
oo P o T DD G

Do ow -
+2 0 TE=0 (o)
Assuming a variables separable solution
'w=iW,,(r) cos N cos wt (9.2)
n=0

and substituting it into equation (9.1) give

Chapter 9

The solution to equation (9.3) can be expressed
as a power series
=rt Z:) ari (9.4)
=
as was shown first by Akasaka and Takagishi
(ref. 9.1) and later in references 9.2, 9.3, and
9.4. Substitution of equation (9.4) leads to a
recursion relationship among the coefficients a;.
Results exist for circular plates for only two
cases of simple edge conditions—when the
edge is either completely clamped or simply
supported.

9.1.1 Clamped Circular Plate

The coordinate system and dimensions for
a clamped circular plate are shown in figure 2.1.
Boundary conditions are stated in equation
(2.2).

For axisymmetric modes (n=0) certain
terms in equation (9.1) disappear; that is,
terms containing derivatives with respect to 6.
Akasaka and Takagishi (ref. 9.1) used the

§ 20°Dy @ ‘D, d*W, s .
D, ddI;V nrD 9ddW27 +n OW 2? ddI;Z infinite series (eq. (9.4)) to formulate a second-
order characteristic determinant for the
202D, dW,, DdW,, 2 .
+ nra d I —r_; PR 1:: (Do+D:o) frequencies
%’%—pwzwﬂzo (9.3) Z: Z;Z:o (9.5)
where
(«/8)? n (w/8)* 1. I
T@E) - TR ) (3)6)[E0—F)
(w/£)? (w/£)* .
(5+k) (3+k)8(2+k) (5+k)(3+k)8(2+k) (9+k)(7+k)16(4+k) L (9.6)
G D +] '
“T2(9—-kH)L 7 (6)(4)(49—K%)
1 JE (w/£)?
=k g Ern T ,
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and where £=D,/pa' and k*=D,/D,. An ap-
proximate formula for the first two axisym-
metric modes is obtained from equation (9.5) by
truncating the series and is given in reference
9.1 as

24(3-+k) :
BB ) (7-+b)

(A4%) (7+k) (64+-19k+k) |
i:\/ 3 J (9.7)

wza}"p/D,:

where terms of degree (w/£)* and lower are
retained. Letting k*=Dy/D,=1 gives w/t=
10.23 and 34.3 for the first two axisymmetric
frequencies of an isotropic plate; these values
compare with the values of 10.22 and 39.77
from the discussion of the clamped circular
plate (sec. 2.1.1).

Borsuk (ref. 9.2) solved the problem by ex-
pressing the series (eq. (9.4)) in terms of
hypergeometric functions. He presented closed-
form expressions for the frequency equations
for all values of n given in terms of the hyper-
geometric functions. The only numerical result
given is for the axisymmetric case (n=0) and
VDy/D,=1.4 and is wa’/p/D,=4.55. However,
because this value is much lower than the value
of 10.22 for the isotropic plate and because
values of D¢/D, greater than unity should
further stiffen the plate, this result is clearly
questionable.

The first antlsymmetrlc frequency parameter
(n=1) is given in reference 9.1 as

/ (4 R \/p,+z;;+2n,o

e .
wa \/D, 4\/ <2 N \/D,+Da+2D,o

(9.8)

The fundamental frequency parameter for

the case when a concentrated mass M is

attached at the center is given in reference
9.1 as

\/7 \/ 8%}-{—10)(2-1-@
Wty = 2M N\ 3-+k)(2+k)
D,V 1) arr

Pandalai and Patel (ref. 9.4) also solved
the problem by using the infinite series (eq.

(9.9)

(9.4)) and obtained the following characteristic
equation for arbitrary values of n:

Z 01)\”+’>[ Z ,(tit2)D,, j+2>\"+’+‘]

=[, > <n+j)0w+f—l] 3 Daganon)

j=0,4,8
(9.10)
where

0n1=Anj/Ano
D, j42=Ap, 542/ An
Ay =4, _of{ (D) F-i—2)[(n+i—1Y—]
| +n[(nf—2)8—2(a-+2v)(n+i—1)"}
a=FE/E,
B=Es/E;
and
1=G/E,

and where E,, K, E,5, and G are the material

constants from the stress-strain relationships

0= r€r+Er050 .
‘70:Er067+E050 (911)
710=G770
and
120%atp
4__
Nt (9.12)

If the infinite series of equation (9.10) are
truncated to include terms up to the degree
2n--4, a first approximation for the eigenvalue
A is given by '

=1/(Cr4—3Ds) (9.13)

which for the fundamental frequency (n=0)
reduces to

1

N=5(9—8)(25—5) (9.14)

In reference 9.3 the same series solution was
assumed and a frequency equation was written,
but no numerical results were given for the
problem.
9.1.2 Simply Supported Circular Plate

The coordinate system and dimensions for a
simply supported circular plate are shown in
figure 2.2. The boundary conditions are stated
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in equatlon (2.9). Minkarah and Hoppmann (ref. 9.3) solved the problem for axisymmetric modes
by assuming the series solution (eq. (9. 4)) and arrived at the frequency equation

FO[ B0+ E | =R HEF O |

where

(or)* (ar)®

(9.15)

RO=14 G 0= T@ @0 ®) 0—F) 09—F)

(or)*

(ar)“
RO L o T T o [y L

(or)?

F(n=r* [“s<2+k>(3+k><5+k> B TR I DD BIRTTROTE

(ar)lz
T @) 16) 28 @+ 0 (30 (4+k)(5+k)(6+k><7+k) CEEAITESANIERn L ]

ot=w?p/D,, \=aa, k*=Dy/D,, and v, is the elastic
constant in the axisymmetric relationship

Vg dw
dr2 + r dr>
The primes indicate differentiation with respect
to 7.

Axisymmetric frequency parameters for vari-
ous combinations of elastic constants are given
in table 9.1 taken from reference 9.3.

Experimental frequencies were also measured

in reference 9.3 for the plate of table 9.1 having
k=1.50, »,=0.50, and D,=11500. The cor-

M,=—

TasLe 9.1.—Axisymmetric Frequency Param-
eters for a Simply Supported Circular Plate
Hawing Polar Orthotropy

Elastic constants way p/D,
k Ve D, Mode 1| Mode 2 | Mode 3
0.25 | 0.22{ 10.70X10% | 2.500 |__ ... _|--_____
.50 | .40 | 475 3.629 |- _|--._-__
.50 .30 | 520 3.452 | |-
.75 .70 | 2.64 4.765 | 28.249 | 71. 572
1.00| .75 1. 88 5.518 | 30.206 | 74. 132
.00} .75 1. 60 5. 518 | 30.206 | 74. 132
1.25 | 1. 00 1. 33 6.472 | 32. 524 | 76. 562
1.25 | .50 1. 50 5.934 | 31.843 | 76. 318
1.50 | .75 1. 08 6. 906 | 34. 047 | 81. 000
1.50 1 .50 1.15 6. 646 | 33.791 | 79. 924
1.75| .35 .95 7.188 | 35. 557 | 83. 174

respondlng frequency parameters and nodal
patterns are shown in figure 9.1 for the first
five axisymmetric modes and the first four
nonaxisymmetric modes.

In reference 9.4 the frequency equation is
written as

(;Es )‘"H){ Z [(n+7+2) (nt-j+1+a)

__anzlbn’j+2)\n+j } =<i ﬂz;ls Dn.1+2)\n+:/+2>
> (5 (i
j=0,4.8

—1+a)—an?) C A2 } (9.16)

where the terminology is the same as that used
in the discussion of clamped circular plates
(sec. 9.1.1). Equation (9.16) is obviously ap-
propriate for general vibration modes of the
plate. Truncating the infinite series contained
in equation (9.16) to include terms up to the
degree 2n-+4 gives the following equation for
frequency parameters:

_(2n+1l+a
M (Grrsra

Here Mgs and A¢ are the frequency parameters
(12wa*p/E.h*)* for the simply supported and
clamped cases, respectively, and the symbol «
is defined in the discussion of the clamped
circular plate (sec. 9.1.1). The parameter Ac
is given by equation (9.13).

(9.17)
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|
wa?vp/D=7.80

=27.70

2
=27.74

VIBRATION OF PLATES

I 3 4

264,93 =116.3
(a)
3 4
=45.44 =66.12
(b)

Freure 9.1.—Experimentally determined frequency parameters wa?+/p/D, and nodal patterns for a simply supported

‘circular plate having polar orthotropy.

A frequéncy determinant for the problem
is also presented in reference 9.2, although no
numerical results are given.

9.1.3 Other Shapes

Pyesyennikova and Sakharov (ref. 9.5)
treated the problem of the annular plate having
inside radius @ and outside radius b for the
axisymmetric modes of two cases of boundary

(e} Axisymmetric modes.

(b) Nonaxisymmetric modes. (After ref. 9.3)

conditions by wusing the Boobnov-Galerkin
method.

For the case of the inner boundary free and
the outer boundary clamped, a deflection
function
Wl(E) = Ay o(af) + A2 Yi(ab)

+ ArsTo(at) + ArKo(af)

was chosen, where £=7/b, a*=10’p/D,,

(9.18)

Yo(a) Iv(a) —K, (a)

An=| —Yi(a) Ii(a) K (a)
—Yu(a,a/b) T (a,afb) — Ko (e, afb)

Jo(a) - Iy(a) K(a)

Ap=| —Ji(a) I (a) —Ki(a)
—Ju{a,alb) Ty (e, afb) Ky (a,a/b)
Jo(e) Yo(e) —Ko(a)

Ap=| —dJi(a) ~Y1(a) Ki(a)
—Jula,a/b) ~Yo(a,a/b) ~Ky(e,afb)

J 0 (a) Yo(a) 1, 0(01)

Ay=| —Ji(a) —Y1(a) Ii(a)
—Ju(e,a/b) —Yo(a,a/b) Iy (e,a/b)
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Tule, a/b)=Ju(aa/b) =2 Ji(aa/b)
Youla, a/b) EYo(aa/b)—%;TZ" Y 1(aa/b)

249

(e, a/b) EIU(aa/b)——%/l;: T.(aa/b)

Ko(a, a/b) EKG(aa/b)—f-l;;—/Vb—o Ki(aa/b)

and the terms J;, Y, I, and K, are the regular and modified Bessel functions. (See discussion -
of solutions of classical plate equations (sec. 1.1.2).) The characteristic determinant giving « is

Jo(a) Yo(e) Io(a) Ky(a)
_Jl(d) —Y1(Ol) Il(a) _Kl(a> =0 (9 19)
—J o (e, a/b) —Yu(a,a/d) Lo (e, a/b) Ky (a,a/b) )
(1—A4)Ji(aafb)  (1—A)Yi(aa/b)  (1+A)I(aa/b) —(1+A4)K;(aa/b)
where definitive, the value of either », or », must be
A= 1—(Dy/Dy) known. Unfortunately, neither is given in
(ad/b)* reference 9.5.

Frequency parameters for varying ratios of a/b
and Dy/D, are depicted in figure 9.2. In order
for the results of figure 9.2 to be completely

35 ,

25

WbZMr

5O.I 0.5

a/b

F1cUuRE 9.2.—Frequency parameters for a clamped-free
annular plate having polar orthotropy.

and where the remaining symbols are as defined earlier in this section.

minant giving « is

Jo(a) Yo(a)
__J01(047 1) —‘Ym(a, 1)
—dJu(a,a/b) —Yo(a,a/b)

(1—A4)J (aa/b)

308-337 0—70——17

(1—A)Y:(aa/b)

For the case of the inner boundary free and
the outer boundary simply supported, a deflec-

tion function

Wo(8) = A o(at) + D92 Yo(af)

was chosen, where

Agy=

Agp=

Agy==

Agy==

+ Agal y(af) + A K (af)

—-Y 0(01}
Ym(a; 1)
Yu(a,a/b)

Jo(a)
_Jm(a, 1)
_‘J01(C¥, a/b)

—Jo(a)
Jm(oz, 1)
J01(a, a/b)

Jo(@)
'—Jm(a, 1)
—Jo(a, a/b)

Io(e)
Iol(a, ].)
.[01((1, (Iz/b)

(1+4)J1(aa/b)

- Iy(a)
To(a, 1)
Im(a, a/b)

Io(a)
Im(d, ].)
Im(a, a/b)

Yo(e)
- Y()l (0!, 1)
— Yo (a,a/b)

Yo(a)
~Yu(e, 1)
- Y01 (a, a/b)

(9.20)

K(a)
KOI((X, 1)
K (a,a/b)

Ko(e)
Ko(e,1) |
Ky(a,a/b)

Koy(a)
Km (a, 1)
Ko (e, a/b)

Io(a)
.[01(6!, 1)
101((1, G//b)

The characteristic deter-

Ko(a)
Km(a, 1)
Ky (e, a/b)

—(1+4)Ki(aa/b)

=0 (9.21)
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Frequency parameters for varying ratios of a/b
and Dy/D, are depicted in figure 9.3. The figure
is not completely definitive for the same reason
as that given in the preceding paragraph.

9.2 RECTANGULAR ORTHOTROPY

The differential equation for the transverse
bending of a plate having rectangular orthot-
ropy is (see the appendix):

otw Otw Otw , O

ov B 22
D, ozt +2D,, 22 ay2+Dv bgf+p A 0 (9.22)
The moment-curvature relations are

dw . O\ |
M,=—D, a_wz"*"’ﬂ_a?

0% %w
M,=—-D, a—yzu-)-l- Pyl

Y

(9.23)

ow
M,,,= —2Dk aa—y

/

Other useful equations are given in the appendix.
The elastic constants are related by (see the
appendix)

ER )
D= 12(1—v,)
Eh
D=
v 12(1—V,V,)L (9.24)
ny=Dsz+2Dk
aGh?
De=7g
20 T T T
I‘-—b—'La'l //
A/(D)ﬁo
—-—/
wb2,p70, 10
20
175 ){
N0.75| 0.5
OO.I 0.3 0.5

a/b

Fi1cUrRE 9.3.—Frequency parameters for a simply sup-
ported free annular plate having polar orthotropy.
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If the orthotropic constants D,, D,, and
D,, are known with respect to the z’ and y’
coordinate axes, it has been shown (refs. 9.6
and 9.7) that the orthotropic constants D,, D,,
and D,, can be determined from

D,=D:, cos* ¢-|—D:, sin* ¢+2D;,, sin® ¢ cos? ¢
D,=D. sin* ¢+D; cos* ¢+2D;,, sin® ¢ cos? ¢
D= (3D, +3D,—2D,,) sin? ¢ cos? ¢
4D, (cos? $—sin® ¢)?
(9.25)

When the angle ¢ between the 2’- and the
z-axis is a multiple of 22.5° equations (9.25)
can be used to obtain the equivalent elastic
constants for equation (9.22). For an angle ¢
not equal to 22.5°, 45°, 67.5°, . . ., however,
equation (9.22) is transformed into an equation
having terms of the type 9*w/dz dy® and o%w/ds®
oy as well.

The assumption of simple harmonic motion
w=W(z, y) cos wt (9.26)
gives for equation (9.22)

o'W o'W oW
D:t W+2va ax2 ay2+Dﬂ ay4 pw2W=O

(9.27)

The strain energy of bending and twisting
of a plate having rectangular orthotropy,
expressed in rectangular coordinates, is

1 O*w\? O*w\?
U_QL[D” bx2> +D”(ay2
O*w O*w o%w \?

For rectangular orthotropic plates having
either clamped or simply supported edges,
Hearmon (ref. 9.8) used the Rayleigh method
to extend Warburton’s work (ref. 9.9) for iso-
tropic plates (see chapter entitled “Rectangular
Plates” (ch. 4)) to obtain frequency parameters
for all modes of vibration. The frequencies are
determined from the equation

, 1(A*D, B‘D,, 20D,

A =; pr z—f- 0 ”—*— (I,2b2_ (929)
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where A4, B, and C are summarized in table 9.2
for the various boundary conditions and modes.
The terms v; and ¢; in table 9.2 are given by

Yo—mm

'yl=<m+%>1r
’yg=(m+%>7r

€=nT

€= n-l—i)r
1

€= n+§>7l'

9.2.1  All Sides Simply Supported

This problem of the rectangular plate with
all sides simply supported (SS-SS-SS-SS) has
a simple, exact solution. A coordinate system
is chosen as in figure 9.4. The boundary
conditions are

w=0, M,=0
w=0, M,=0

(for z=0, a)

(9.30)
(for y=0, b)
By using equations (9.23) it is seen that

W.n=A4 ,,sm—a—fsinn%y (9.31)

TasLr 9.2.—Frequency Coefficients in Equation (9.29)

Boundary conditions A B C m n
LLLLLLLL 4.730 4.730 151.3 1 1
7 7 4.730 & 12.30e(ez—2) 1 2,3, 4, .
/ 4 12 4.730 12.30y,(v2—2) 2, 3, 4, 1
TT777777 v2 € vaea(v2—2) (e2—2) 2,38, 4, 2,3, 4,
LLLLLL \
4 4 4.730 a 12.30¢;(e;— 1) 1, 2, 3, 1
5 _______ _15 Y2 € o€ (v2—2) (e — 1) 1, 2, 3, 2, 3, 4,
7 4 4.730 @ 12.30¢ 1 1,23, .
A ] 7 v € vaeo? (v2—2) 2,34 ... | 1,23,
= N
4 | T €@ mnealyi—1) (g—1) 1,23, ... 1,238, ...
GIIIIIITY
AT 3
2 ______ _Jl Ll € 11t (y1~1) 1,2,3, ... 1,2,8, ...
AN
J Yo € VoPeg? 1,23 ... 1,23, ...
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satisfies the boundary conditions, where An,
is an amplitude coefficient determined from the
initial conditions of the problem and m and n
are integers. Substituting equation (9.31) into
equation (9.27) gives the frequency

—~—7i\/ D m*+2D,,m™n’* (g)z—i—D nt (9)4
wmn"—a’g\/—‘; z Ty b Y b

(9.32)

This result was obtained by Hearmon (ref.
9.10) and by many others.

The variation of frequency with a/b ratio
was determined in reference 9.8 for several
" higher modes. This variation is depicted in
figure . 9.5 for a fiveply maple-plywood
plate having D,/D,,=1.543 and D,/D.,=4.810.

The accuracy of the Rayleigh-Ritz method -
as applied to orthotropic plates was studied in
reference 9.10 by solving this problem using
a deflection function

W(z, y) =z(a—2)y(b—1y) (&*-+az—2?)
(024 by— 1A A1+ Asz(a—2)y (b —y)]

where A4, and A4, are undetermined coefficients.
The results obtained by taking only A4; (ie.,

(9.33)

F1cURE 9.4.—SS-88-S5-88 plate.

VIBRATION OF PLATES

a0
30b
20
» 10
[=]
~
Q.
| 1 1 | | |
gL o [ 2 3 0 [ 2 3
15 -
0|
5
| 1 i 1 |
0 | 2 3 0 i 2 3

FicUure 9.5.—Frequency parameter wabyp/D,,/m® for
88-88-88-88, C-C-S8-88, and C-C-C-C five-ply
maple-plywood rectangular orthotropic plates. (After
ref. 9.8)

A,=0) and both A; and A, are given in table
9.3 for five-ply plywood and veneer square
plates of birch with the orthotropic constants
determined experimentally.

Extensive experimental results are also given
in reference 9.10 for several types of wood ve-
neers and plywoods. In references 9.7 and
9.11, this experimental work is extended to
study the effect on the frequencies when the
grain of the veneer or plywood is not parallel to
the sides of the plate.

Hoppmann, Huffington, and Magness (ref.
9.12) simulated a stiffened plate by taking a
steel plate and milling longitudinal grooves into
it. In one case, the grooves were on only one

TaBLE 9.3.—Fundamental Frequency Parameters for a SS-SS-SS-SS Square Orthotropic Plate

Properties \ watyp
Material
D, D, l D,, \ 1 term 2 terms Exact
Plywood. - - - . 19. 1X108 7. 1X108 4, 4% 108 | 0. 5920 10% | 0. 5917105 | 0. 5916X 10
Veneer- . . ___________ 2.97 .21 . 69 . 2137 . 2136 . 2135
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side of the plate, and, in the other, they were
on both sides.
the grooves are given in figure 9.6. The plate
was then considered orthotropic for purposes
of calculation. The statically measured ortho-
tropic constants are set forth in table 9.4.
Nine experimentally measured cyclic frequen-
cies for each of the plates are listed in table 9.5,
along with theoretical results as determined
from equation (9.32) by using the data of
table 9.4.

This work was further extended in reference
9.13 wherein an aluminum plate 11 by 11 inches
by 0.275 inch thick had grooves 0.625 inch wide
and 0.210 inch deep milled into one side of it.
A typical repeating section of the plate was
0.75 inch wide, thereby giving 15 integral
stiffeners each 0.125 inch wide across the width
of the plate. Fifteen cyclic frequencies, both
theoretical and experimental, are exhibited in
table 9.6, where the grooves are assumed to run
in the y-direction (i.e., D,>D,). The corre-
sponding measured mode shapes are depicted
in figure 9.7. The problem was discussed
further in reference 9.14.

TaBLE 9.4.—Orthotropic Constants for Grooved
Plates

Orthotropic constants, 1b-in.
Type of plate

Dz Du Dzy Dk
1 side grooved____{ 33 300 | 26 300 | 25 210 8920
Both sides
grooved..._____ 23 250 | 11 660 | 18 050 6480

The dimensions and spacing of

TaBLE 9.5.—Cyclic Frequencies for Grooved
SS-SS8-8SS-SS Square Plaies

Cyclic frequency, cps, for plate—
Grooved on 1 side Grooved on both
Mode m/n sides

Theoret- | Experi- | Theoret- | Experi-

ical mental ical mental
i 3 336 366 294 302
12 ___.__ 821 820 657 644
/3. .. __ 1640 1620 1250 1216
2/ __ 884 870 799 810
2/2_ . ___ 1345 1330 1175 1152
2/3_ .. '_ 2145 2100 1782 1760
31 ____ 1806 1700 1643 1580
3/2..____.. 2251 2180 2022 2040
3/3_ . 3026 2900 2645 2570

TaBLE 9.6.—Euxperimental and Theoretical Cy-
clic Frequencies for a Grooved SS—-SS-SS-SS
Square Plate

[Theoretical values (from eq. (9.32)) are in parentheses]

Cyclic frequency, eps, for values of m of~—
n
1 2 3 4 5
1__._. 244 340 538 800 1152
) (238) (336) (534) (831)| (1220)
2. .. 794 940 1020 1268 1580
(800) (954)| (1100)| (1344)| (1689)
3 ... 1700 1800 1840 2110 2340
(1950)] (2020)| (2150) (2349)] (2638)

'«o.m

0.2568"

lg\w-jﬁs—oj_i_
kD o1946" ¥

Cross Section of Plate Grooved
on One Side Only

0.2630

. ’n—o.m——-—
_}_ 1716 R -|o.250<-

——
¥ TO.I378"

Cross Section of Plate Grooved
on Both Sides

Fieure 9.6.—Dimensions and spacing of grooves in a stiffened plate. (After ref. 9.12)
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Ficurs 9.7.—Experimentally observed nodal patterns for grooved SS-8S-SS-SS square plate. (After ref. 9.13)

Wah (ref. 9.15) made a study in which he
evaluated the accuracy of simulating the gross
vibration modes of a beam-plate system by
means of an orthotropic- plate. The cross
section of a plate having stiffeners of a particular
size and spacing is shown in figure 9.8. The
stiffeners are parallel to the z-direction. Both
materials are assumed to be mild steel. First,
an “exact”’ solution to the beam-plate structure
is four.d by using classical isotropic plate theory
for the plate and beam theory for the beams,
including twisting. Continuity conditions are
enforced across the stiffeners. This solution is
compared with the results of orthotropic-plate

"Half " Stiffener

X . N
Tr e N

—>Y

" rg
LIy
'Er \? xF -
Plate Stiffener or Beam Simple Support

Ficure 9.8.—Cross section of a stiffened plate. (After
ref. 9.15)

theory as displayed in table 9.7. The ortho-
tropic constants used in the orthotropic-plate
idealization were D,/D=3.396, D,/D=1, and
D,,/D=1.08, where D is the flexural rigidity of
the unstiffened plate. The quantity p, is de-
fined as the mass density per unit volume of
stiffener, and R is the number of stiffeners. It
would appear from table 9.7 that orthotropic-
plate theory gives frequencies that are approxi-
mately 3 percent too high regardless of the
stiffener spacing.

A method for representing a simply sup-
ported gridwork of beams as an orthotropic
plate is discussed in reference 9.16. The
vibration of a SS-SS-SS-SS rectangular ortho-
tropic plate is also discussed in references
9.8 and 9.17 to 9.20.

9.2.2 Two Opposite Sides Simply Supported

Let a rectangular plate have its sides =0,
z=aq simply supported as shown in figure 9.9.
It is easily seen that the solution originally
suggested by Voigt in 1893 (ref. 9.21) for the-
vibration of an isotropic plate having two
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2
TaBLE 9.7.—Frequency Parameters wsz‘\/pb/D Jor a Stiffened SS-SS-SS-SS Rectangular Plate

b2
%7'21/pb/D for values of bja of—
Mode R
1.0 0.5 0.333
Exact Eq. (9.32) Exact Eq. (9.32) Exact Eq. (9.32)
3 2. 602 2. 660 1. 345 1. 375 1. 150 1. 176
4 1. 464 1. 496 757 .774 . 647 . 662
m=1,n=1 7 . 478 . 488 . 247 . 252 . 211 . 216
12 . 163 . 166 . 0841 . 086 . 072 . 074
. 20 . 0586 . 0599 . 0303 . 0309 . 0259 . 0265
3 5. 375 5. 501 4, 346 4. 453 4, 181 4. 284
4 3. 026 3. 094 2. 447 2. 505 2. 354 2. 410
m=1,n=2 7 . 988 1. 010 . 7995 . 818 . 769 . 787
12 . 336 . 344 . 272 . 278 . 262 . 268
20 L1211 . 1238 . 098 . 1002 . 0942 . 0964
3 8. 043 8. 310 1. 649 1. 686
4 4, 556 4. 674 . 928 . 948
m=2, n=1 7 1. 492 1. 526 (») (® . 303 . 310
12 . 508 . 519 . 103 . 105
20 . 183 . 187 . 0367 . 0379
3 10. 34 10. 64 4. 593 4. 706
. 4 5. 847 5 985 _ 2. 587 2. 647
m=2 n=2 7 1. 912 1. 954 Q) ©(®) . 8450 . 8643
12 . 651 . 665 . 2815 . 2941
20 . 2343 . 2394 . 1035 . 1059
»Same as for bja=1, m=n=1.
bSame as for bla=1, m=1, n=2.
y with a=mn/a, which clearly satisfies the
— a boundary conditions w=M_,=0 at 2=0, a.
T Substituting equation (9.34) into equation
i T g eq q
i i (9.22) yields
i I
| ] d¢ Y 4y
! i D, & —20?Dy, ra 4+ (atDy—pw?) Y =0
| b
| 1
| arbitrary edge conditions ! (9.35)
! ' ] which has a general solution
: ! g :
i .
! ! . Ym=Ansin Yuy+By cos Yny
+ O, sinh ¢,y+D,, cosh ¢,y (9.36)

FigUre 9.9.—Rectangular orthotropic plate having two
opposite sides simply supported.

opposite sides simply supported is also ap-
plicable here. That is, assume

W(z,y)zz;Y,,,(y) sin azx (9.34)

where

o[-
wee{[(3)-G

2p 1/2 DZ‘V 1/2

Dy] -3}

1/2 Dzu 1/2
+(E>}

(9.37)

D
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Tt is seen that equations (9.34) and (9.36) are
of exactly the same form as equation (4.21)
for isotropic plates, the only difference being
in the definitions of the frequency parameters
¥m 80d P

The standard procedure for satisfying the
boundary conditions along the sides y=0 and
y=b, whatever they may be, is substitution of
equation (9.36) into these conditions. The
determinant of the resulting four homogeneous
equations in A, B, C., and D, is then set
equal to zero for a nontrivial solution. This
yields an exact solution for the frequencies.
This procedure was followed by Huffington
and Hoppmann (ref. 9.19), who presented
frequency equations and mode shapes for all
six cases arising from the sides y=0, b being
either clamped, simply supported, or free, and
the case of the sides elastically supported.

Tt is easily seen that the boundary conditions
for simply supported or clamped sides are
identical to those of the isotropic case. It
was previously mentioned that the solutions
to the governing differential equations also
take the same form. Thus, substitution of
the solution into the boundary conditions for
the three sets of boundary conditions (SS—SS—
SS-SS, 8S-C-8S-C, and SS-C-SS-SS) would
yield the same . characteristic determinant
in terms of ¥ and ¢ as that for the isotropic
case. However, ¥ and ¢ are related differently
than they are in the isotropic case; conse-
quently, the eigenvalue results (w’p/e*D) ob-
tained for the isotropic problems in the dis-
cussion of SS-SS-SS-SS, SS-C-8S-C, and
SS-C-SS-SS  rectangular plates (secs. 4.1,
4.2.1, and 4.2.2) cannot be directly applied here.

It should be noted that the form of solution
given by equation (9.36) depends upon ¥ and
¢ being real, positive constants. However, by
looking at equations (9.37) it. is seen that,
depending upon the ratios D,/D, and D./D,
the constants ¢ and ¢ may also take on zero,
imaginary, or complex values. In these cases
the form of equation (9.36) must be modified.
A careful study of this phenomenon was done
in the case of isotropic plates (see the discussion
of rectangular plates with two opposite sides
simply supported (sec. 4.2)), but no systematic

investigation of this has been made for ortho-
tropic plates.

By using the Rayleigh method, Hearmon
(ref. 9.20) gave an alternate form of equation
(9.29) for determining the fundamental fre-
quency parameters of rectangular orthotropic
plates having two opposite sides simply sup-
ported. Accordingly, the fundamental fre-
quency parameter is determined from

o GGy
Vi \/ [ (Be) oL ()]

(9.38)

where J, K, and L are given in table 9.8 for
the various cases. Fundamental frequency
parameters for a five-ply maple-plywood plate
determined by equation (9.38) are also given
there.

For the SS-C-SS-C plate (fiz. 4.4) the
boundary conditions are given by equation
(4.25). The frequency equation is given in
reference 9.19 as

oDy . .

o D, sinh ¢b sin by (1—cosh ¢b cos ¢b)=0

(9.39)

with ¢ and ¢ as given in equations (9.37).
The mode shapes are

Y )_cosh ¢y—cosyy ysinhoy—¢ sinyy
Y= cosh pb—cosyb ¢sinhpb—e¢sinygd
(9.40)

where ¢ and ¢ are the roots of equation (9.39).
The fundamental frequency parameters of a
five-ply maple-plywood plate determined by
this method in reference 9.22 are given in
table 9.8.

Kanazawa and Kawai (ref. 9.23) solved this
problem by an integral equation approach and
gave numerical results for the fundamental
frequency parameters of a square having vari-
ous ratios of D,/D, and D,/D,,. These are ex-
hibited in table 9.9. The values computed from
equation (9.29) are found in reference 9.8; these
can be compared with the footnoted values in
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TaBLE 9.8.—Fundamental Frequency Parameters for a 6-Ply Maple-Plywood Rectangular Orthotropic
Plate Having Various Boundary Conditions

Constants in eq. (9.38) wa?y, o/D, .
Boundary conditions Physical
parameters
J K L Ref. 9.20 Ref. 9.22
PIITIIII a 2.0
b 500.56 | 121.5 121. 5 94. 57 94. 56 b
o] D,
777777777 D—=3.117
v
D,
=£—0,12
1 LLLLLLLL V”D,,
b 1 2371.81 113. 4 113. 4 68. 53 68. 52 Dav_ 648
a Dv
P 7
| g bl 97, 41 97. 41 97. 41 48. 65 48. 65
]
. o 12. 37 —85 45.9 26. 22 26. 06
77777777 )
4 __bl 0 0 29. 61 20. 70 20. 65
1
! . b 0 0 0 17. 42 17. 39
1

TaBrLe 9.9.—Fundamental Frequency Parame-
ters wa/p/D,, for SS-C-SS-C Square Ortho-
tropic Plates Having the Sides x=0 and x=a
Simply Supported

D waz\/p/D,,, for values of D./D., of—
¥

D,

% % 1 2 3

Yoo . a21. 052 | 21,440 | 22. 567 | 24. 664 | » 26. 595
Yool 23. 049 | 23. 406 | 24. 442 | 26. 397 28. 226
1. 28. 124 | 28.422 | 29. 285 | 30. 968 32. 507
2. ___. 36. 160 | 36. 383 | 37. 062 | 38. 384 39. 662
3._-._ 242, 690 | 42. 878 | 43. 444 | 44. 589 | 2 45. 696

s Compare with values from ref. 9.8.

table 9.9. The values from reference 9.8 are
waX/p/D,,=21.0, 26.5, 42.2, and 45.1.

Frequencies for this problemi may also be
determined from equation (9.29).

For the SS-C-SS-SS plate (fig. 4.8) the
boundary conditions are given by equation
(4.32). The frequency equation is given in
reference 9.19 as

¢ tan b=y tanh ¢b (9.41)
with ¢ and ¢ as given in equations (9.37). The
mode shapes are

( )__sinh¢y_ sinyy (9.42)

" sinhgb sinyb
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where ¢ and ¢ are the roots of equation (9.41).
The fundamental frequency of a five-ply maple-
plywood plate determined by this method in
reference 9.22 is given in table 9.8. The case
when a/b=10 was also analyzed for the same
material and gave wa®/p/D,=1546.68 when
equation (9.41) was used and 1546.96 from
equation (9.38).

For the SS-C-SS-F plate (see fig. 4.10) the
boundary conditions are given by equation
(4.36). The.frequency equation is given in
reference 9.19 as

(P2 — $?6%) sinh ¢b sin ¥b

+Y[(v2+ 6% cosh ¢b cos ¥b+2v8]=0 (9.43)
with ¢ and ¢ as given in equations (9.37) and

y=Dp*—ao’ zv,,}

=D+ oDy, (9.44)

The mode shapes are

Y (y)— cosh ¢y—cosyy  ¢sinhgy—¢sinyy
Y " ycosh¢b+é8cosyb Pysinh ¢b—i—¢6 sinyb

(9.45)

Several roots of equation (9.43) were found
in reference 9.22 for a five-ply maple-plywood
plate having ¢/b=2.0 and having the material
properties listed in table 9.8. The frequency
parameters for this plate are given in table 9.10.
The corresponding values obtained by the
Rayleigh method from equation (9.29) are also
given in reference 9.22 and are listed in table
9.10. It should be noted that for m=1 and
n=3 the “exact” value is not lower than that
of the Rayleigh method; this indicates round-off
error in these calculations.

For the SS-SS-SS-F plate (see fig. 4.11) the
boundary conditions are given by equation
(4.40). The frequency equation is (ref. 9.19)

tanygb _ yvy*
tanh ¢b  ¢6? (9.46)
with ¢, ¢, v, and & given by equations (9.37)
and (9.44). The mode shapes are

Y(y)= Sin ¢y +'ysm|,l/y

V) =ginheb ssinyb (9.47)

TaBLE 9.10.—Frequency Parameters wa%/p/D,
for a SS-C-SS-F 5-Ply Magple-Plywood
Rectangular Orthotropic Plate

watV p/D,
m n

Exact value Rayleigh method

(eq. (9.43)) (eq. (9.29))
1 1 26. 06 26. 22
1 2 97. 68 97.70
1 3 254. 68 254. 65
1 4 490. 98 491. 00
3 1 161. 72 162. 67
3 2 212. 04 213. 67
5 1 439. 74 441. 14

Some numerical results for this problem are
given in table 9.8.

For the SS-F-SS-F plate (see fig. 4.12) the
boundary conditions are given by equation
(4.44). The frequency equation (ref. 9.19) is

(PPy*— ¢*8*) sinh ¢b sin ¥b
+2¢yY~?8*(cosh ¢b cos Yb—1)=0 (9.48)

with ¥, ¢, v, and § given by equations (9.37)
and (9.44). The mode shapes are

& cosh ¢y—+7v cos Yy
Y “~8(cosh ¢pb—cos yb)

Yy sinh ¢y-+¢s sinyy
Yy?sinh ¢b— 8% sin b

(9.49)

Some numerical results for this problem are
given in table 9.8.

Naruoka and Yonezawa (ref. 9.24) rewrote
the differential equation (eq. (9.27)) as

4 2
(9.50)
where
x=D¢,/\D.D, (9.51)

In this form it is clear that equation (9.50) is
factorable if « is either 1 or 0, and these values

are used in reference 9.24. Furthermore,
symmetry is taken advantage of by using
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the Z and y-axes (see fig. 4.12) through the
plate centroid. Finally, the two cases

pr i 4

D, m7r> >0

ot @\ (9.52)
D) 1

are considered, and eight specialized frequency
equations are given which consider «=0, k=1,
the separate cases of equations (9.52), and
symmetric and antisymmetric modes in ¥.
Particular attention is devoted in reference
9.24 to the first antisymmetric mode and the
second symmetric mode, both taken with
respect to . These modes are shown in figure
9.10. Variation in frequency parameter with
D,/D, ratio is shown in figure 9.11 for «=0,
k=1, and beam theory. Poisson’s ratio »=
vay=vy: is taken as zero and a/b=2. Further
results for varying a/b ratios are given in figure
9.12 for the second symmetric mode. Finally,
the ratio of second and third frequencies to the

TasLe 9.11.—Ratio of Second and Third Fre-
quencies to the Fundamental for SS-F-SS-F
Rectangular Orthotropic Plates

a Dz‘/Dll
b
4 100 200
1. ... 1:1.5:2.6 1:1.1:1.4 1:1.1:1.3
.. 1:2.4:6.4 1:1.3:2.2 1:1.2:1.9
4 _________ 1:4.8:20 1:2.1:5.1 1:1.9:3.9
8 . 1:7.1:73 1:4.0:17 1:3.4:13

fundamental is set forth in table 9.11 for various
a/b and D,/D, ratios. Poisson’s ratio and «
are not given in table 9.11 but are presumed
to be 0 and 1, respectively.

For the plate elastically supported on the
edges y=0 and y=a (fig. 4.59) and simply
supported on the other two edges, the boundary
conditions are given by equations (4.71). The
frequency equation is (ref. 9.19)

(P — K Kaa*) — ¢°6*(8*— K. Koa*) + Ko K a6 (8°— K Ka?) — P (vP— Ki Ko )]
+a*(v+8)2(K K1 — K K ,a*)} sinh ¢b sin yb+ 9276 — K, Ksa* (v*+ &)
— KK a* (8 ++*— 2K, Ksa*) —a* (K K+ K, K)) (y-+8)?] cosh ¢b cos ¥b
+ay (Y +0)[— Koy’ + K168 — K0’ (v*— K1 K0 ) + K* (8 — K, K )
+ KK, a*(Kya?— K,¢?)] sinh ¢b cos yb+ae(y+9)[Ka**+ K™y
+Ka2(8*— K Kza*) + Kb (v*— K Kat) — Ko K (Ka*+ Kip?)] cosh ¢b sin ¢b |

—2¢¥ (vo+ K Ky0?) (vé+ K Ka*)=0 (9.53)

with ¢, ¢, v, and & given by equations (9.37) and (9.44) and the spring constants K;, . . ., K,
determined by equations (4.71). The mode shapes are

Y (y) =¥ (v6+ K K:a*) (y sinh ¢b+Krae cosh ¢b) —¢(6°— K K,at) (3 sin yb— Kaay cos yb)
+ K0y (v+5) (6 cos ¥b+Kaay sin ¥b)] cosh ¢y |
+[¥(*— K Ksa*) (y sinh ¢b+Krae cosh ¢b)+Kiagy(v+9) (v cosh ¢b
+ K¢ sinh ¢b) — ¢(v8+ K Ksa*) (6 sin yb— Kaay cos ¥b)] cos Yy
+[—y(vé+ K Kat) (y cosh'¢b+K2a¢ sinh ¢b) +¢(v*— K, K;a*) (8 cos yb+ Kaay sin ¢b)
+ K303 (y+6) (8 sin yb— Ksay cos yb)] sinh ¢y [Kza®(y+6) (v sinh ¢b
+Ksa¢ cosh ¢b)—¢(8°— K 1 K3a*) (y cosh ¢pb-+Ksag sinh ¢b)
+ o (vo+ K Ksa®) (8 cos yb+Koay sin ¢b)] sin vy  (9.54)
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Figure 9.10.—Modes of a SS-F-SS-F rectangular
orthotropic plate. (a) Tirst antisymmetric mode
taken with respect to 3. (b) Second symmetric mode
taken with respect to . (After ref. 9.24)
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Ficure 9.11.—Frequency parameters for SS-F-SS-F
rectangular orthotropic plates having »=0 and
a/b=2; k=D.nD.D, (a) First antisymmetric
mode with respect to 5. (b) Second symmetric mode
with respect to y. (After ref. 9.24)

9.2.3 All Sides Clamped

The problem for the plate with all sides
clamped is described by figure 4.18. Frequency
parameters may be calculated from a formula
based upon the Rayleigh method given previ-
ously as equation (9.29). Plots of frequency
parameter variation with a/b ratio for four
modes were given previously in figure 9.5 for a
particular maple-plywood plate.
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Freure 9.12.—Frequency parameters for the second
symmetric mode (with respect to 7) of SS-F-SS-F
rectangular orthotropic plates for various afb ratios;
k=1. (a) afb=1. (b) a/b=2. (¢) afb=4. (d)
a/b=38. (After ref. 9.24)
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Another Rayleigh solution is obtained in
references 9.10 and 9.17 by taking the deflection
function

W(E, )= I:zz—(g)z]z [yt(%)T (9.55)

which yields the fundamental frequency

N oD G

This result was also obtained in reference 9.16
by using the Galerkin method and equation
(9.55). In reference 9.17 the function

W(E,i])z(l—}—cos%)(l—i—cosg%y (9.57)
is used, giving

wzy\/lp[pﬁp,(%>4+§ny(%>2] (9.58)

by the Rayleigh method. Finally, reference 9.8
gives the Rayleigh solution using beam func-
tions described previously as

w=220;f’6\/ % [D,—i—D,, (%>4+ 0.605D,, <‘—;>2
(9.59)

this latter clearly being the best of the three
results listed, because it gives the lowest upper
bound unless D,, is considerably larger than
D, and D,.

Further improvement of the theoretical fre-
quencies was obtained in reference 9.10 by
taking the two-term deflection function

e[ ]{r- )]
{eal= - T} oo

and using the Rayleigh-Ritz procedure. The
convergence of frequency parameters when
equations (9.55) and (9.60) are used can be
seen in table 9.12 for two types of square
plates made of birch. Results are also in-
cluded for the isotropic case for comparison
with Tomotika’s “exact” solution (ref. 9.25).
(See discussion of the C-C-C-C rectangular
plate (sec. 4.3.1).)

TaBLE 9.12—Frequency Parameters way/p for
C-C-C-C Square Orthotropic Plates Made of
Birch

waZ\/; for—
Method
Isotropic case | 5-ply plates Veneer
. plate®
.Rayleigh_| 36.000yD | 12.026X10° | 4.244X105
Rayleigh-
Ritz_ .- 35. 996\[[_7 12. 013 X105 4. 241X 108
Exact__ ... 35.984VD || _.

8 D,=19.1X108; D,=7.1X108; D,,=4.4X108.
b D.=2.97X108; D,=0.21X108; D,,=0.69X 108.

Many experimentally determined funda-
mental frequencies are also given in reference
9.10 for plywood and veneer plates made of
various wooden materials, In references 9.7
and 9.11 this experimental work is extended
in order to study the effect on the frequencies
when the grain of the veneer or plywood is not
parallel to the sides of the plate.

Huffington (ref. 9.26) postulated the exist-
ence of nonparallel node lines for clamped
orthotropic plates; this idea was based upon
his observations of the numerical behavior of a
two-term Ritz solution using beam functions.
This phenomenon is predicted by the curves
of figure 9.13 which show frequency parameters
as functions of a/b ratio for the case when

-D,D,,—1.543 and D,/D,=4.810. The nu-

merical results show that the curves (each
associated with a mode shape) do not cross but
approach each other and veer away. In the
vicinity of the location where the curves ap-
proach each other, there is a rapid change in
nodal patterns, as depicted in figure 9.14. It
must be remarked that this phenomenon has
been observed elsewhere (see discussion of the
C-C-C-C rectangular plate (sec. 4.3.1) and
that of the C—F-F-F rectangular plate (sec.
4.3.12)) and the question exists of whether it
is the result of numerical truncation.
Kanazawa and Kawai (ref. 9.23) solved
this problem by an integral-equation approach
and gave numerical results for the funda-
mental frequency parameters of a square having
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FicUrE 9.13.—Frequency parameters wa?y/p/D,, against

a/b ratio for a clamped orthotropic plate. D./D.,=
1.543; D,/D,,=4.810. (After ref. 9.26)
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Ficure 9.14.—Nodal patterns in the vicinity of a
transition point. (a) Nodal patterns for mode
3/1—1/3. (b) Nodal patterns for mode 3/1+1/3.
(After ref. 9.26)

various ratios of D,/D,, and D,/D,,. These are
exhibited in table 9.13. An interesting plot of
the results of table 9.13 is given in figure 9.15.
It would appear from this figure that the varia-
tion in the square of the frequency with either
D, or D, is linear.

VIBRATION OF PLATES

TasLE 9.13—Fundamental Frequency Parameters
wa®y/p/Dy, for O-C-C-C Orthotropic Square
Plates

D waVp/D., for values of D,/D,, of—
=V
D,y
3 ¥ 1 2 3
g ____ 25.034 | 26.741 | 31. 235 | 38. 674 | 44. 837
1 . 26. 741 | 28.346 | 32. 625 | 39. 775 | 45. 820
1 __ 31. 235 | 32.625 | 36.408 | 42. 939 | 48. 584
2 _____ 38.674 | 39.775 | 42. 939 | 48 604 | 53. 661
3__._..| 44. 837 | 45. 820 | 48. 584 | 53. 661 | 58. 283
45
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30 . / /
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Figure 9.15.—Fundamental frequency parameters
w?atp/D, ., against D,/D,, and D,/D,, for C-C-
C-C orthotropic square plates. (After ref. 9.23)

9.2.4 Other Boundary Conditions

Frequency parameters for C-C-C-SS and
C-C-SS-SS rectangular orthotropic plates may
be determined from the Rayleigh formula given
previously as equation (9.29). Plots of fre-
quency parameter against a/b ratio for four
modes are given for the C-C-SS-SS case in
figure 9.5.
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An integral-equation approach (ref. 9.23)
gave pumerical results for the fundamental
frequency parameters of square plates having
C-C-C-SS and C-C—SS-SS edges. These are
listed in tables 9.14 and 9.15.

TasLE9.14.—Fundamental Frequency Parameters
wa2y/p/Dyy for C-C-C-SS Orthotropic Plates
Having the Sides x=0 and x=a Clamped

D, waVp/D., for values of D./D, of—
Dy :
¥ % 1 2 3

14 . 22, 848 | 24. 706 | 29. 516 | 37. 239 | 43. 652
Yo . 23. 796 | 25. 587 | 30.261 | 37. 864 | 44. 162
| 26. 361 | 27. 989 | 32. 328 | 39. 542 | 45. 576
2 ... 30. 786 | 32.191 | 36. 031 | 42. 634 | 48. 330
3. 34. 604 | 35.891 | 39.393 | 45.494 | 50. 874

TasLe 9.15.—Fundamental Frequency Param-
eters wa’/p/D,, for C-C-SS-SS Orthotropic
Square Plates

D, waVp/D,, for values of D,/D,, of—
D.,
b3 14 1 2 3

e ____ 20. 428 | 21. 483 | 24. 302 | 29. 061 | 33. 056
4.} 21.483 | 22.493 | 25.194 | 29. 794 | 33. 749
1. 24. 302 | 25.194 | 27. 647 | 31. 910 | 35. 599
2. 29. 061 | 29.794 | 31.910 | 35. 681 | 39. 064
3. - 33. 057 | 33.749 | 35.599 | 39. 064 | 42. 184

9.2.5 Circular Plates Having Rectangular Orthot-
ropy

The boundary conditions for a circular plate
dictate that solutions must be obtained in polar
coordinates. In this case the differential equa-
tion for the case of rectangular orthotropy
(eq. (9.22)) must be transformed into polar
coordinates. It has been shown by Hoppmann
(ref. 9.27) that the resulting equation is

a4w 0_52 a4w (22} 64 Oy b4w (243 a4w

r e + r Or? 00+r2 or? 02+r3 or 003+r"‘ 00t

4 0*w , a; Q'w | oy O*w
T trartrer o
ay O%Ww | oy O -, ay O°W
TrAoE T B o6t of

dw ow, ow '
s T

S11 S12 S16
D(s)=/s1, Sa2 Sa6
S16 Sa6 Se6

where

t1=P (822865 S35
z=43(812825— S22815)
g =—2[ (812856 S26515) — 2(S11820— 812)]
o= —4(811825— 812815)
a5:ﬂ(811866_8?6)
5= 23(832855— 826)
a7=—B(suSe— 3?6)
s = 2B[ (81286 — S26515) — 2(811822— 85)]
0g=4(81:825— S12515)
10=4P[ (812825 — S16822) — (811825 S12816)]
= —2B[(S12865— S12825) — 2 (S11822— S3)
— (S1186—51o)]
g =B(SuSes— Sfe)
a1g=—4B[ (812526 S1822) — (S11826— S16512) ]

B=h3/12D(s)

- ‘

1 ( vy 1) .,
S11==o cos* -+ —2 £ += )sin?0 cos?6
11 Ez + Ez-l_G
1.,
—I-E”sm 0
i .., vy 1\ .o, 2
SQZTZFSID 8-+ -—2E+—é sin® @ cos* @
1 4
-{—Eycos 0
s =4<i+—1—+2—”l sin?6 cos? 6
8 E,'E,' K,
+1E’ (cos?8—sin’§)?
A S S WV
slg——<Ez+EH sin‘f cos* @
__IV;Z’”— (cos —sin*0)

. 2 . 2
s16=sInf cos I:E sin? B_E cos?d

of

+<—2 —E,’——{—%) (cos? §-—sin’ 0)—

i 2 e 2 .
szﬁ—smecosoI:E”cos (] E’,Sln [0}

-—(—2 %+1@) (cos? 6—sin? 0)—

(9.62)
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where 9 is the angle measured from the z-axis.
Because of the formidability of equation (9.61)
it appears that no solutions to it exist in the
literature. Nevertheless, it would appear that
convergent solutions in the form of equation

(1.15) are certainly possible.

-~ Experimental results were obtained in ref—
erence 9.27 for a clamped circular plate of
aluminum having longitudinal slots milled
into it to approximate an orthotropic plate.
The cross section of the plate is shown in
figure 9.16. Measured frequencies and nodal
patterns are given in figure 9.17. It can be ex-
pected that the frequencies for higher modes
will be considerably different from those of a
homogeneous, orthotropic plate.

A one-term Galerkin solution (ref. 9.16)
gave the fundamental frequency for the clamped
orthotropic circular plate as

wzz‘%—ff(pz+§pw+py> (9.63)
(see discussion of rectangular plate with two
opposite sides simply supported (sec. 9.2.2)).
The identical result was obtained in reference
9.17 by using the Rayleigh-Ritz method.
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Ficure 9.16.—Cross section of stiffened plate; dimen-
sions are in inches. (After ref. 9.27)
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Parallel Stiffeners
Clamped Boundary

Q
o

Fundamental Mode
Frequency = 530¢ps

Frequency = 710 cps Frequency=1020 cps

Frequency=1380 cps Frequency=1870 cps

Frequency = 2380cps Frequency = 2900 cps

Ficure 9.17.—Experimentally observed cyeclic frequen-
cies and nodal patterns for a clamped cireular plate
having stiffeners. (After ref. 9.27)

9.2.6 Elliptical Plates Having Rectangular Orthot-
ropy

In reference 9.16 the Galerkin method is
used with the one-term deflection function

2 2\ 2

(see fig. 3.1) to analyze the clamped ortho-
tropic elliptical plate. The resulting frequency
is

(9.64)

o=21:52 (25 2D i D) (05)

In reference 9.27 experimental results were
obtained for clamped elliptical plates of alumi-
num having longitudinal slots milled into them
parallel to the axes as shown in figure 9.18. A
cross section showing slot dimensions is seen
in figure 9.16. The a/b ratio for the ellipses
was apparently 2.0. Resulting frequencies
and nodal patterns for the two plates are shown

in figures 9.19 and 9.20.
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FiaurE 9.18.—Elliptical plate with slots milled parallel
to major and minor axes to simulate an orthotropic
plate. (From ref. 9.27)
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0

Clamped Boundary

$

Fundamental Mode
Frequency =850 cps

Frequency =1150 cps Frequency=1360 cps

0

Frequency=1490¢ps Frequency=1960 cps

G

Frequency =3320 cps

Frequency = 2630 cps

FigurE 9.19.—Experimentally observed cyeclic frequen-
cies and nodal patterns for a clamped elliptical plate
having stiffeners parallel to the major axis. (After
ref. 9.27)
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Plates With Inplane Forces

In this section the effects of forces acting in
the plane of the undeformed middle surface of
the plate will be considered. The differential
equation of motion expressed in rectangular

coordinates in this case becomes (see the
appendix) :
w w w
D’W+ZD’”W+D“W+pW
”ax2+2N”a by+N” (10.1)

where D,, D,, and D,, are the constants of
rectangular orthotropy, as used extensively in
the discussion of rectangular orthotropy of
anisotropic plates (sec. 9.2). Because no pub-
lished results are known for plate vibrations
when both inplane forces and orthotropy are
present, only the isotropic constant D will
appear in the remainder of this section.

The inplane force intensities N,, N,, and N,
are assumed to be functions of only the spatial
coordinates z, y or r, . That is, they do not
depend upon time nor upon the transverse
deflection w. These assumptions are required
in order that—

(1) The vibration be free, not forced

(2) The equation of motion remains linear

Inplane forces not depending upon w can be
realized in one of the following two ways:

(1) The boundary conditions provide no
fixity in the plane of the plate

(2) The deflection is sufficiently small relative
to the initial tension or compression in the
plate so that the inplane forces are not signifi-
cantly affected.

The normal forces N, and N, are-positive in
equation (10.1) if the plate is in tension; the
shear force N,, is positive according to the
accepted convention of the theory of elasticity

Chapter 10

(see the appendix). It is emphasized that the
inplane forces are generally found by first
solving the plane elasticity problem for known
boundary values of N,, N,, and N,,. If these
quantities are constant around the boundary,
it is well known that they are also constant
throughout the plate, and equation (10.1) is
further simplified to the case of constant
coefficients. In the special case of uniform
boundary tension (N,=N,=N; N,,=0), the
equation for the isotropic plate simplifies to

: o*w
DV*w—NV2w+pa—t2=O (10.2)
Assuming sinusoidal time response, equation

(10.2) becomes

N

VAW — pVW— ”“’W 0 (10.3)

where W is solely a function of the spatial co-

ordinates. Furthermore, it can be seen that
equation (10.3) can be factored into
(Vi+o?) (V2= W =0 (10.4)
where
N 4pu? D2 A
=gp (H57) 1]
4psz 1/2
2D|:<1+ 1] - (10.5)
gi—at=N/D
a?Bi=pw*/D ]

10.1 CIRCULAR PLATES

The main results available for circular plates
are for the case of hydrostatic inplane force.
When V2 is expressed in terms of polar coordi-
nates by means of equation (1.10) and Fourier
components in 6 are assumed as in equation
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(1.15), equation (10.4) yields the two second-
order equations

? n de
W L+ 1 ‘—-(——a )W,,l_o

dr? r dr

&w, 1dw (108
wy 1AW, /n?

dr? +; dr _<%+Bz W,,=0

These equations have solutions

Wnl :Aan(oﬂ‘)-*- BnYn(ar)

(10.7)
Wa,=C,1(8r)+D,K,(Br)

respectively, where J,, Y, I, and K, are
Bessel functions, as discussed in the section
covering solutions of the classical equations
(sec. 1.1.2), and A,, . . ., D, are undetermined
constants. Thus, the general solution to equa-
tion (10.4) in polar coordinates is

W(r,0)= 33 [As] (o) + BuY o(ar)+ Cul,(6r)

+D,K,(8r)] cos no+ﬁl [A%T (o) + BLY ,(or)
+CEL(Br)+ DK, (Br)]sinnd  (10.8)

10.1.1 Clamped Circular Plates

The problem of clamped circular plates is
defined by figure 2.1 and boundary condition
equations (2.2). Because all modes of vibra-
tion have symmetry with respect to at least one
diameter, the terms of equation (10.8) involving
sin nd can be discarded. Furthermore, in
order to avoid singularities at the center of the
plate, B, and D, must be set equal to zero.
The deflection function therefore becomes

W(r, 8) =“§ (AT o(ar)+ Cua(Br)] cosnd  (10.9)

Substituting equation (10.9) into equations
(2.2) yields, for a nontrivial solution (refs.
10.1 to 10.4), the characteristic equation

n 1(0[(1/) In 1((104)_
e ety o

Wah (ref. 10.1) determined the roots of
equation (10.10) for mode shapes having 0, 1,

(10.10)

VIBRATION OF PLATES

and 2 nodal circles and nodal diameters for a
range of inplane forces varying from tension to
compression. These results are given in table
10.1. Herein the quantity ¢ is used as a
multiple of the critical buckling load in com-
pression; that is,
__N&
$=12.68D

(10.11)

Accordingly, the, vibration frequency of the
fundamental mode goes to zero as ¢ goes to
—1. Frequency parameter values for inter-
mediate values of ¢ not found in table 10.1
may be obtained from figure 10.1 by using the
last of equations (10.5). - In this figure, n identi-
fies the number of nodal diameters and s, the

TaBLE 10.1.—Frequency Parameters wa%/p/D
for @ Clamped Circular Plate Subjected to
Inplane Force N

waz\/p—/b for values of

I\ﬁumbexl' Naz n of—
of noda ==
circles, s 14.63D
0 1 2
O ___ 2. 00 17. 37 30. 61 45. 67
. 50 15. 92 28. 59 43. 39

o=l
=)
=]

14.30 | 26. 41 40. 91
. 50 12. 44 | 24.00 38. 07
.25 11.39 | 22.81 36. 72
10. 21 21. 25 35. 05

(=]

. 50 7.28 17. 94 31.75
00 0 14. 31 28. 08
00 | 50.60 | 71.87 97. 11
50 | 48.17 | 69.27 94. 09
00 | 45.52 | 66.38 91. 31
.50 | 42.75 | 63.47 88. 04
.25 | 41.29 | 62 02 86. 39
39.77 | 60.37 84. 82
—.25 | 3819 | 5881 83. 34
—.50 | 386.55 | 57.21 81. 81

1.00 | 33.03 | 5379 78. 25
2o 2.00 | 101. 81 | 128. 52 166. 06

1

1

—

1

|

1

1

|

I

|

|

1

|
il

o

.50 | 98.77 | 125. 20 162. 93
.00 | 95.44 | 121.99 159. 70
.50 | 92.33 | 118.89 156. 39
.25 | 90.59 | 117. 39 154. 84

0 89.09 | 115. 78 153. 26
—.25 | 87.45 | 114.16 | 151.65
—.50 | 85.76 | 112.48 | 150. 04
—1.00 | 82.28 | 108. 82 | 146.48
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2.0 T [TV 1 P number of internal nodal circles. On this
— 2 Rl w figure are also shown the limiting values of the
2 Bl 2T 4 e gure are also s g values o
B i A A o 5l é?'L % membrane frequency parameter u, where
— (P — 2l 3 A4
\ \ o A // = /N
1.0 o =wa 10.12
‘ \%0/// o M \/P/ ( )
405 A e/ These limiting values would apply as the in-
\ AL AR plane force becomes extremely large; in partic-
| ol L LT INAT \ /‘/r{ 510 IHEEN ular, the plate frequency approaches that of
} 88 3;3/1 ARV A aggc‘i I i:g_jgz the membrane as aa—p and if
~os [t = \< AN \\ " (1/2)a2D/N< <1 (10.13)
1 AN | Reference 10.1 is the most recent k
Lo . work on
@ this problem which solves the exact character-
istic equation (eq. (10.10)). However, much
’ earlier work (refs. 10.2, 10.3, and 10.4) preceded
20 i ’[,\ Tl " this and also used equation (10.10). Bickley
{ §'§ - i;‘ S P e (ref. 10.3) in an early paper determined the
1S [ N Y 5| 3 AV frequencies for a clamped circular plate in ten-
B S aahl i B \ 77 // sion by means of equation (10.10). These are
} 1.0 \ /// /’ the exact values listed in table 10.2. Lower
| T A /‘ and upper bounds on the frequency parameter
b 05 \ Lgo\ w\" are calculated in reference 10.3 by means of the
U /@\f Southwell (ref. 19.5) and Rayleigh (ref. 10.§)
0se— 53 TR R etz i T method§, respectively. .These are also dis-
72 | 76 o |/Ba /\s-s szl 56 | 160 o S played in table 10.2. It is observed from table
-05 v ///\ / bl 10.2 that the Southwell method gives less per-
a4 ,/ 1 \ cent error as the mode number is increased.
o \ The Rayleigh method is well known. A de-
flection function of the form
w=(a?*—r?)?r" cosnh (10.14)
20 " [e] | /' 4
% —s| o el . WA / was used in conjunction with the Rayleigh
LSh g - :%' 3 e § Va4 method. Equating maximum ‘potential and
" = ) 7 A 4 kinetic energies of the system yields
. ]
23,1/ 58D D00 0tD) (D
s 05 Q‘} q‘;/ = p(]}
/ // </ Na¥/D
} O2e RS o3 2| %2 /'.?:2 L TR TN [1+2(n+2)(n+4) (1015)
10.6 no b [} L8 |2., [} 13.0 al:s.; - B"Isog—&z . .
05 7 Y, // The Southwell method uses the inequality
V.|
LA Gt i< o? (10.16)
(

FIGURE 10.1.—Frequency parameters an, and 8,, for a

clamped circular plate subjected to inplane force N;
a?f=pw?/D. (a) Zero nodal circles. (b) One nodal
circle. (¢) Two nodal circles. (After ref. 10.1)

where o is the exact frequency of a system
having two forms of strain energy and «; and
wy are the frequencies of the system when each
form of the strain energy is taken separately.
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TaBLE 10.2.—Frequency Parameters way/p/D of a Clamped Circular Plate Subjected to Inplane

Force N
watyVp/D derived by—
n s Ne? )
D Exact method Southwell method Rayleigh method
(ref. 10.3) (ref. 10.5) (ref. 10.6)
0 0 0 10. 216 10. 216 10. 328
1 10. 552 10. 495 10. 646
4 11. 486 11. 291 11. 547
25 16. 527 15. 778 16. 533
100 27. 483 26. 128 27. 809
400 50. 792 49. 169 52. 662
© | 2. 4048y Na?/D 4. 4721V Na*/D
1 0 39. 772 39.772 e
1 40. 190 40,152 | e
4 41. 419 41.272 |
25 49. 146 48.396 |
100 69. 916 67.996 |
400 120. 59 17.25 |
S 5. 5151WNat/D  |occomoo oo
2 0 89, 104 89.104 oo
1 89. 550 89.523 e
4 90. 875 90.770 | e
25 99. 648 99. 054 oo
100 126. 01 124.21 |
400 198. 53 194,67 | e
O | 8. 6537V NaD oo
1 0 0 21. 260 21. 260 21. 909
1 21. 652 21. 603 22. 271
4 22,783 22. 600 23. 324
25 29, 447 28. 619 29. 665
100 45, 563 43. 820 45. 607
400 82. 146 79. 529 82. 946
® | 3. 83174/ Na?/D 4VNa*/D
1 0 60. 828 60.8284 | oo
1 61. 263 61 2807 |
4 62. 550 62. 4259 |-
25 70. 891 70. 2182 |
100 94, 733 92. 8547 oo eeeeees
400 156. 49 152,931 |
R N 7. 01555V Na?D |ec oo oo
2 0 0 34, 877 34. 877 36. 661
1 35. 296 35. 253 37. 040
4 36. 529 36. 358 38. 158
25 44, 117 43. 310 45. 211
100 63. 994 57. 043 64. 374
400 111. 64 108. 47 112. 00
@ e 5. 1357y Na?/D 5. 2915y Na?/D
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In the present problem, «; can be taken as the
frequency of a clamped circular plate with no
inplane force and w,, as the frequency of a
circular membrane (no flexural stiffness) having
a fixed boundary and membrane tension T
Equation (10.16) then gives a lower bound on
the exact fundamental frequency; for example:
Na?

D
2 e
w Zpa‘* 104.3645.783 D

(10.17)

Federhofer (ref. 10.4) obtained solutions to
equation (10.10) for a wide range of inplane
forces. These are summarized in table 10.3.
This table is more complete than table 10.1 in
the sense that it utilizes a range of compressive
forces up to the limiting buckling load for each
axisymmetric mode, instead of the fundamental
mode only. Reference 10.4 gives the radii of
the nodal circles for $>>0, and these are also
presented in table 10.3. A plot of the variation
of the frequency parameter as a function of the
inplane force is shown in figure 10.2 for the
first three axisymmetric modes.

A perturbation technique was developed for
the problem in references 10.7 and 10.8. The
parameter N/D was used as a perturbation
parameter, and the plate with no inplane force
was the starting point upon which the pertur-
bation was based. In addition to obtaining
frequency parameters which compared reason-
ably well with the exact values given earlier in

wa?/p/D
\\
.
80 S\\
170 ™S
60 \
50
] 40
—
Lao \\
l-20 \
\\- \
10 \\
+4 +3 +2 + 0 -l -2 -3 -4 -5 -6 -7 -8 -9 -I0
a./N/D

Ficure 10.2.—Frequency parameter wa?+/p/D for a
clamped circular plate subjected to inplane force N.
(After ref. 10.4)

TaBLe 10.3—Frequency Parameters wa%/p/D
and Nodal Circle Radii for a Clamped Circular
Plate Subjected to Inplane Force N

n s Na*/D watVp/D | Nodal ci}‘cle radii,
rla
0| o 16 14. 6028 | __|o_______
9 12,8851 | ___|o____.__
4 11.4855 | ___|_______.
1 10. 5478 |- | __.____
0 10. 2150 |- oo | __
—1 9.8712 || ___
—4 87460 || ____
—9 6.4129 | ____| __.____
—14. 682 0 ||l
1 16 45.9954 | 0. 38550 |________
9 43. 3848 L 38207 o ______._
4 41.4179 | . 38086 |__.._____
1 40. 1909 | .37947 |._______
0 89.7707 1 . 37900 |________
—4 38. 053 . 37690 |_.___.___
—16 32. 350 .36952 |__.____.
—36 19. 663 .33830 |_______.
—49. 219 0 . 26634 |__.___ o
2 16 95. 9824 | 0. 25593 | 0. 58632
9 93. 0392 . 25546 . 58505
4 90. 8766 . 25511 . 58409
1 89. 5514 . 25490 . 58349
0 89. 1042 . 25483 . 58329
-9 84. 985 . 25415 . 58134
— 36 71. 226 . 25179 . 57370
—81 39. 222 . 24952 . 54473
—103. 50 0 .. . 46875
1 0 0 21261 | oL
—1 20. 862 | __.____ oo .a.
—4 19.611 ||
-9 17.821 || ..
—16 13.427 | e ___.
—26. 368 0 | |eal___.
1 0 60. 829 | 0.48968 |.__..__.
—4 59,056 | ______|eee_o ..
—16 53. 390 . 48399 |________
—36 42,295 | ___ il _______
—70. 846 0 . 42228 |________
2 0 120. 078 | 0. 34974 | 0. 63902
-9 116.476 |- oo |
—36 102. 418 . 34707 . 63293
—81 74,775 ||
—135. 02 0 . 34760 . 56604
2 0 0 34.876 1.l ._
—4 33. 148 ||
—16 27.267 | __
—36 11.972 |l ____
—40. 692 0 ||
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this section, the modes having 3, 4, 5, and 6 nodal diameters were also investigated, but the per-
turbation technique did not give accurate results. The Rayleigh and Southwell techniques were
also employed, thereby obtaining bounds. Resulting frequency parameters are given in table
10.4.

The problem was also discussed from a variational standpoint in reference 10.2. A method
for including translational and rotational springs acting at discrete points within the interior of
the plate was proposed and demonstrated for the case of a translational spring of stiffness & at
the center. All terms applying to cos nf are retained in equation (10.8). In addition to the
boundary condition equations (2.2), the conditions of transverse force equilibrium and null slope
at the center are enforced. For the axisymmetric modes, the resulting characteristic determinant

takes the form
o neein®) o)
%(22%2) I:Jo(;) 5; I, (§>+zJ1(z)Io (%2)]: O ACRE: );Kl (l;) Z‘; I, (%2)

2. (2\?

where Frequency parameters («?a‘p/D)V* obtained
N.Z NN as the lowest roots of equation (10.18) are
32=—2—g—-|—,\/ Z—g NBY plotted in figure 10.3 as functions of the inplane

loading parameter Na*/D and the spring con-

__ka? : (10.19)  stant parameter { (ref. 10.2). The inplane

{=%D forces are entirely in the compressive range,

. . as indicated. The broken curve indicates fre-
N'=aa’yp/D quency parameters for the mode having one

nodal diameter. Hence, for a given inplane
compressive force, as the spring constant is
increased the fundamental mode of vibration
will abruptly change from axisymmetric to
antisymmetric. It is obvious that a transla-

(10.18)

TABLE 10.4.—Frequency Parameters wa’/p/D
for the Higher Mode Shapes (Having no Nodal
Circles) of a Clamped Circular Plate Sub-
jected to Inplane Force N

waaTD dorived by— tlo.nal spring at the center affects only the
n Na? axisymmetric modes of the plate.
D
Southwell Rayleigh 10.1.2 Simply Supported Circular Plates
method method . .
The problem of simply supported circular
. 0 5102 5120 plate.s'ls deﬁne.d by figure 2.2 and boundary
1 51. 42 51. 64 condition equations (2.9).
100 81. 68 83. 82 The only known solution to the problem
R 0 69. 72 70.06  wag derived by Wah (ref. 10.1). Using the
1 70.13 70. 50 deflecti £ . . he f . b
100 103. 03 105. 49 eflection function 1in.the form .glven y
S 0 90. 71 91.47  equation (10.9) and substituting it into equa-
1 9113 9L 90  tjons (2.9) and (1.11) yields the characteristic
100 126. 24 128. 71 4
B 0 115. 13 115 g0 Gquation
1 115. 56 115. 79
100 152,12 155. 79 aJ "+1(°‘“)+5] "+‘(‘8“)=“(“2+52) (10.20)
Ja(aa) I.(Ba) 1—v
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{w2a%p/D)4

5=

Ficure 10.3.—Frequency parameter A= (w?a¢p/D)¥% as
a function of the spring constant parameter {=ka?/
2xD for a clamped circular plate having a transla-
tional spring at the center and subjected to inplane
force N. (After ref. 10.2)

The roots of equation (10.20) were determined
in reference 10.1 for mode shapes having 0, 1,
and 2 nodal circles and nodal diameters for a
range of inplane forces varying from tension
to compression. These results are given in
table 10.5 for »=0.3. Herein the quantity ¢
is used as a multiple of the critical buckling
load in compression; that is,
Na?
*=12D
Frequency parameter values for intermediate
values of ¢ not found in table 10.5 may be
obtained from figure 10.4. For an explanation
of the method of using this figure, see the
preceding section.

(10.21)

10.1.3 Completely Free Circular Plates

The problem of completely free plates is
defined by figure 2.3 and the boundary con-
ditions

Mr(a')=0

Vit N@S@=o [ 102

TasLe 10.5.—Frequency Parameters wa’/p/D

Jor a Simply Supported Circular Plate Sub-
Jected to Inplane Force N; v=0.3

waty, o/D for values of

Number —
of nodal | p=2Y2 mof
circles, s 4.2D
0 1 2
O 2,00 | 855 | 17.47| 29.55
1.50 | 7.81| 16.55| 28 62
1.00 | 6.99 | 15 57| 27 62
.50 | 6.05| 14.55| 26.64
.25 | 5.52| 13.98 | 26.12
0 4.94 1 13.47 | 25 60
—.25 | 4.27| 12.86 | 25 07
—.50 | 3.46 | 1223 | 24 53
—1.00] 0O 10.95 | 23.41
| SRR 2.00 | 33.75| 52.05| 72 97
1.50|32.79 | 51.07 | 7197
1.00 | 31.80 | 49.94| 70.96

.50 | 30.78 | 48.92 | 69.93
.25 | 30.25 | 48.41 | 69.39
.72 | 47.89 | 68. 89

(=]
Do
©

!
ot
S
)
o0

.62 | 46.78 | 67.83
00| 27.49 | 45.60 | 67.76
. 28 | 107. 54 | 138, 62
50 | 77.27 | 106. 52 | 137. 67

00 | 76.24 | 105. 50 | 136. 65
.50 | 75.21 | 104.49 | 135. 60
.25 | 74.69 | 103.94 | 135.02

0 74.15 | 103. 43 | 134. 56
—.25 | 73.62 | 102. 90 | 134. 16
~—.50 | 73.09 | 102. 37 | 133. 52
—1.00{ 72.00 | 101. 30 | 132. 36

g
3
t
1
1
1
t
1
1
1
Ll
'
[l el I e
(=]
(=]
-1
joe

with M, and V, as given in equations (1.11)
and (1.13), and NV, is the radial, inplane tensile
force.

Although the concept of a completely free
plate subjected to inplane forces may be
difficult to visualize at first, there exist at
least four distinet types of problems where
this phenomenon may arise:

(1) A boundary having a strip around it
which is prestressed into tension

(2) Spin about an axis (not necessarily
normal to the plate) causing centrifugal fields

(3) Thermal gradients in the »~ and 6-di-
rections

(4) Internal residual stresses due to cold
working or heat treatment
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=0’

Ficure 10.4.—Frequency parameters an, and 8., for a
simply supported circular plate subjected to inplane
force N; a2(2=puw?/D; v==0.3. (@) Zero nodal circles.
() One nodal circle. (¢) Two nodal circles. (After
ref. 10.1)

Indeed, the preceding discussion is not limited
to circular plates, but can apply to plates of
arbitrary shape. In the case of the circular
plate, results exist for loadings of the second
and third types.

Lamb and Southwell (ref. 10.5) examined
the problem of the completely free circular
plate spinning about its cylindrical axis with
uniform angular velocity Q. If the terms in
the differential equation (10.1) which represent
the restoring forces due to flexural rigidity are
neglected, equation (10.1) becomes, in polar
coordinates,

10,00\, Nidbu_ O
;5;<Nrrbr +r2 o Por (10.23)

where N, and N, are axisymmetric radial and
circumferential forces, respectively, determined
by first solving the uncoupled plane elasticity
problem

Ny=g (3-+) p2(@—r")
. (10.24)
No=-8— p2[(3+»)a?—(1+3w)r7]

The problem is solved by assuming a series
solution

W=

Zm) Cin <%>1 cosnf cos(wt+¢) (10.25)
=0

(=]
n=0

The frequency of the mode having n nodal
diameters and s nodal circles is given by
(ref. 10.9)

w2=§§[(n+2s+2) (n+2s) (3+)—n2(1+43)]
(10.26)

and the mode shapes are determined from
A (7Y —setstl) <£>
wero=a,) 1=t

s(s—1)(n+s+1)(n+s+2) (ﬁ)“
2" (n+1)(n+2) a

+

— ] cosnf (10.27)
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In references 10.5 and 10.9 an approximate
method is formulated for solving the problem
when the terms including the flexural rigidity of
the plate are included within the differential
equation of motion.

Massa (ref. 10.10) analyzed the problem of
a completely free circular plate subjected to
the thermal gradient

r-afi-()]

This gives rise to inplane forces of the form

=]
N

where o is the coefficient of thermal expansion.

The problem is solved by the Rayleigh-
Ritz technique. Poisson’s ratio is taken to
be 0.3. For the axisymmetric modes a deflec-
tion function

W(r)=A [1—2.6161(2)2—1—1 1090 (2)4
—0.2464 (2)6] + B<£)2[1—2.6805 G)z
+1.9940 (2>4~o.5244 G)s] (10.30)

is taken, where A and B are undetermined
constants. This function satisfies not only the
boundary conditions of the problem but also
the condition that the total momentum of the
plate be null. The first two axisymmetric
frequencies can be found from

(10.28)

(10.29)

3
wsl,wzzz% 72.07— 4342(“T°“)

2 2
/ [1——0.03489 aToa )]

hZ
+0. 000052<“T o )

(10.31)

+65.54

where the subscripts of w,, identify the number
of nodal diameters and circles, respectively.
The first axisymmetric mode shape is
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W)=, [1—2.6696 (2)2-1-1.2525 (2)4

—0.3530(2)6+0.0280<£>8] (10.32)

and has a nodal circle at r=0.6790¢ and an

amplitude at the boundary of Wy (a)=
—0.7423C,. The second axisymmetric mode
shape is

2
Wo(r)=0C, [1 —8.7097 (2) +17.4455 (2)4

-—12.3974<§>6+3.1952(2>8] (10.33)

and has nodal circles at r=0.4013¢ and
r=0.8472a and an amplitude at the boundary
of Woz(d)=0.533602.

For the modes having two nodal diameters,
a deflection function

W(r,6)= {A(g>2[1 —0.2754 (’;;)2
+0.06225 (2)4]-]-3(2)4[1—0.8195 (2)2
+0.2286 (2)4]}005 20 (10.34)

is taken, which satisfies the boundary condi-
tions. Employing the Rayleigh-Ritz procedure
gives for the squares of the frequencies

ER? oTha?
wgo,wz%l:—’;i; 59.11—1.249 _ﬁg_

548 \/ [1—0 03967 (“T"a ):I

40.000011 <"‘T o >

(10.35)

The corresponding mode shapes are

Wa(r) =0, (2)2[1—-0.2885 (2)2
+0.0730(§)4—0.0030<2>6] (10.36)
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and
Wau(r)=0, (2)2 [1 —2.523 (2)2
+1.904 (2)4—0.5138<2)6:| (10.37)

and have a nodal circle at »=0.8279a.

10.1.4 Rotating Disk, Clamped at Center, Outer
Edge Free

Southwell (ref. 10.11) analyzed the problem
of a circular disk which is clamped at its center,
is free at its outer edge, and is rotating with
constant angular velocity @. He again used the
method for finding lower bounds on the fre-
quencies which was discussed in section 10.1.1.
The frequencies are given by

D
w2=K192+K2 ‘;a?

(10.38)

where K, and K, are given in table 10.6 and
»v==0.3.

10.2 RECTANGULAR PLATES

As described in the chapter entitled ‘‘Rec-
tangular Plates” (ch. 4), there exist 21 pos-
sible combinations of simple boundary con-
ditions for rectangular plates. Results were
found in the literature for all 21 cases for
isotropic plates not having inplane forces. As
will be seen in the following discussion, pub-
lished results exist for very few cases when
inplane forces are present. Also, it will be seen

that for rectangular plates results are available
for other types of elementary inplane stress
fields, in addition to hydrostatic.

For the isotropic plate, when sinusoidal time
response is assumed,

w(z,y, )=W(z,y) sin (wt+¢) (10.39)

The differential equation of motion (eq. (10.1))
becomes

N, o'W N, O*W N, o'W

AT ATt Y2 O W o LVay Yy
VW= D ax2+2 D bxay+D oyt
(10.40)
where
.Cy
=5 (10.41)

When N, and N, are constants, say N; and N,
respectively, and N,=0, equation (10.40)
becomes

N, *W | N, o'W
AT DA e ¥ 1Y 77 2¥2Y 77
VI W=1 S+ op (1042
which is of a form particularly amenable to
solution.

10.2.1 Plates Having All Sides Simply Supported

The boundary conditions for the problem of
plates having all sides simply supported are
defined by equations (4.18) and figure 10.5. In
figure 10.5, the positive senses of the inplane
forces N, N,, and N,, are shown for the special
case when each is constant throughout the plate.

TaBLE 10.6.—Constants for Eq. (10.38) To Determine the Frequencies of a Rotating Disk Which
Is Clamped at Its Center and Free on Its Outer Edge

Nodal diameters
Nodal circles
0 1 2 3
O K1=0 K1=1 K1=235 K1=405
K;=14.1 K,=0 K,=28.97 K;=155.3
U K1= 3.3 K1= 5.95 K1= 8.95 K1= 12.3
K,=437.3 K,=421.2 K,=1212 K,=2839
2 e K1=9.9 K|= 14.2 K1= 18.85 K1=23-85
K,=3683 K,=3336 K,=7164 K,=11700
USSR K;=19.8 K,=25.75 K;=32.05 K,=38.7
i K,=14330 K,=14380 K,=23410 K,=36274
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Ficure 10.5.—Simply supported rectangular plate hav-
ing uniform inplane forces.

For N,=N,, N,=N,, and N,,=0, an ele-
mentary solution exists. Letting W(z,y) be
given by

Wz, y)= 3 Am sinlnaﬂsin@
1

iy = b

clearly satisfies the boundary conditions of the
problem. Substituting equation (10.43) into
(10.42) yields the frequency equation

o (2 )T
+ N, <%1r>2+N2(’%”>2 (10.44)

If equation (10.44) is multiplied through by
a*/D, there results the dimensionless form:

e Ol
+N11)“2 (mr)2+*N5—“2 (nﬂr)Z(%)z (10.45)

(10.43)

Simplifications that result in equations (10.44)
and (10.45) when, for example, N;=N, or N,
=0 are clearly evident. It is also obvious that
if either N; or N,, or a combination of them,
beco mes sufficiently large in a negative sense
(i.e., compression), the frequency can be re-
duc ed to zero, which yields the combinations
of N; and IV, which are critical buckling loads
for the problem. For example, let N,=0.
Then the critical buckling load is given by

=0 [(5)(5)]
Ol

(10.46)

INPLANE FORCES

277

If N, and N, are compressive (i.e., negative),
then it can be seen from equation (10.44) that
the fundamental mode does not necessarily
occur when m=n=1 but depends upon Ny, N,,
and the a/b ratio. Thiswasshown by Herrmann
in reference 10.12 for the special case when N,
=0. For this case, substituting equation
(10.46) into equation (10.44) gives

Y 2

pot= () N+ (V)] (10.47)
where (IV}),. is clearly a negative quantity.
Thus, the fundamental frequency for this
loading will always occur when n=1, but not
necessarily when m=1. This phenomenon is
illustrated in figure 10.6 (from ref. 10.12)
where the frequency ratio (w/w;)? is plotted as
a function of the ratios Ni/(NV,),, and a/b. The

quantity w, is defined by
. 4Dyt
@s= pa® b

(10.48)

and is the square of the fundamental frequency
of an unloaded, simply supported square plate.

o
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m=3 \ |

o] 0.25 0.50 075 1.00

NI
N,

Fraction of Critical Loading

Fieure 10.6.—Influence of inplane force N,=N; on
the fundamental frequency of a SS-SS-SS-SS rec-
tangular plate for various plate aspect ratios. (After
ref. 10.12)
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The influence of a body force is also con-
sidered in reference 10.12. The body force is
assumed to be acting in the z-direction and
may be due to the weight of the plate (if it is
in a vertical position), or it may arise from
acceleration in the negative 2-direction. Thus,
in this case, all the inplane forces are not
constant but are given by

Nx'——le—’be

(10.49)
N,=N_ =0

where N, is the inplane tension at the end
z=0, and v is the body force (force per unit
area). The Rayleigh method was used to
solve the problem, with the first term (m=n=1)
of the sine series expansion for deflection (eq.
(10.43)) being kept. This yielded the frequency
parameter

2 2
Sabp—mir? [(S)Nl-—%”]ﬂmw (%—I—%

(10.50)
o \\\
| N\
p— §_5 o“'“j
= A\
2 | _£=0 o €=2-/ 6'7_

N
Fraction of Critical Loading (N_)I—.
1Ce

Figure 10.7—Influence of end loading N; and body
force ratio £ on the fundamental frequency of a
88-SS-88-SS rectangular plate for a/b=3. wi=
4Dr4/pa?h?; £= yab?/«tD. (After ref. 10.12)

The frequency ratio (w/w,)? is plotted in figure
10.7 as a function of the ratio N;/(V,),, and a
parameter £ defined by

527?%%‘2’ (10.51)
for the particular aspect ratio a/b=3. The
quantity o, is defined by equation (10.48).

Frequency parameters for this problem were
computed in reference 10.13 for use in deter-
mining lower bounds for completely clamped
square plates subjected to hydrostatic tension.
These are listed in table 10.7.

Some experimental results are reported in
reference 10.14. A 24S-T duralumin plate, 12
inches by 12 inches by 0.040 inch thick, was
simply supported along all edges and subjected
to the constant inplane load N,=N; and
N,=N,,=0. It was found that the experi-
mentally measured frequency does not decrease
as rapidly as that predicted by theory when the
compressive loading is increased. This is
shown in figure 10.8. In reference 10.14 this
effect is attributed to the possibility of slight
initial curvature in the plate.

3000
2500< \\
\\ Experimental
2000 \ :
\
w® 1500 \
\Theoreticol
1000 A
N\
\\\
500 \
0 N
o] -50 -100 -150 -200 -300
N,

Ficure 10.8.—Deviation of experimentally measured
frequencies from those predicted by theory for a
S$S-88-SS8-88 square plate loaded in one direction.
(After ref. 10.14)
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TaBLE 10.7.—Frequency Parameters for a Square
Plate Subjected to Hydrostatic Tension and
Having Clamped Boundaries Compared With
Those for a Plate With Simply Supported
Boundaries

Frequency parameters Frequency param-
for simply supported eter wa?vp/D for
Na? plate clamped plate
D
wuatVplD | wia?Vp/D | Lower | Upper
bound bound
L S 36. 928 69. 788 | 49. 580 49. 847
100 48. 350 85.473 | 59.922 60. 392
15 . . 57. 549 98. 696 | 68. 580 69. 271
20 ... 65. 467 110. 34 76. 124 77. 088
30 o 78. 96 130. 56 89. 268 90. 656
50 .- 100. 65 163. 67 110. 60 112. 90
100...__. 140. 96 226. 14 148. 26 154. 98
200...__- 198. 38 315.98 | 207.79 215. 69

The perturbation technique is demonstrated
in reference 10.15 for the case of hydrostatic
tension. 'The basic problem used is that of the
unloaded plate. One perturbation gives the
exact solution for the loaded plate.

In reference 10.16 the finite difference method
is applied to the problem. The problem is also
discussed in reference 10.17.

10.2.2 Rectangular Plates Having Two Opposite
Sides Simply Supported

In addition to the case described in the pre-
ceding section, there exist five other cases of
rectangular plates having two opposite edges
simply supported and simple boundary condi-
tions on the other edges. These have been
given previously in the discussion of simply
supported rectangular plates (sec. 4.2).

For uniform inplane forces, equation (10.42)
applies. When the edges z=0 and z=a are
simply supported (as in fig. 10.5), a deflection
function which satisfies the boundary condi-
tions of zero deflection and bending moment
along these edges is given by

Wiz, y) =Z}l Ynu(¥)siner  (10.52)
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where a=mmr/a. Substituting equation (10.52)
into equation (10.42) yields

(2 2+N2 dY

+<a4-—~k4—l—%a2>Ym=0 (m=1,2,...)
(10.53)
which has 4 general solution

Y.=A,siny,y+ B, cos ¥,y
+C,, sinh ¢y+ D, cosh ¢,y (10.54)
where

S (QEECTED)
()}
e[l ]
(oY

(10.55)

It is seen that equations (10.52) and (10.54)
are of exactly the same form as equation (4.21)
for isotropic plates, the only difference being
in the definitions of the frequency parameters
Y and [ .

The standard procedure to satisfy the bound-
ary conditions along the sides y=0 and y=5,
whatever they may be, is the substitution of
equation (10.54) into these conditions. The
determinant of the resulting four homogeneous
equations in A4,, B,, O, and D, is then set
equal to zero for a nontrivial solution. This
yields an exact solution for the frequencies.

Apparently the foregoing straightforward
procedure has not been thoroughly followed in
the literature, as will be seen by the paucity
of numerical results to be presented.

Boundary conditions of plates having loads
acting on free edges are different than those of
unloaded plates because of the component of
inplane force which acts normal to the deflected
middle surface of the plate. That is, the trans-
verse edge reaction is given by

oM, ow

Vo=0Qn+ Y +N, (10.56)

"on




280 VIBRATION OF PLATES

By looking at equation (10.55), it can be seen
that ¢, and ¢, can be positive real, zero,
imaginary, or complex. The solution form of
equation (10.54) is based upon the assumption
that ¢, and ¢, are positive real numbers;
otherwise, the form would change. No study
is known in which the character and range of
applicability of the separate forms of solution
have been investigated.

The Rayleigh method is used in reference
10.12 to obtain an approximation for the funda-
mental frequency of a rectangular plate having
the edge y=b free and the others simply
supported. The loading is N,=N; and N,
=N,,=0. A deflection function

Wiz, y)=ysin7r—; (10.57)

was used. The resulting expression for the

frequency is

pw2a4=N1a2+D[:1r2+6(1—V) (%)2] (10.58)

7I'2

In reference 10.18 the case is considered when
three sides are simply supported, the other is
clamped, and two concentrated, collinear, com-
pressive forces P, act upon the two opposite
simply supported edges. No numerical results
are given.

Experimental results are given in reference
10.14 for the case when two opposite edges are
clamped. A disagreement with theoretical re-
sults was found, similar to that discussed
previously in the discussion of plates with all
sides simply supported (sec. 10.2.1).

10.2.3 Rectangular Plates Having All Sides
Clamped

The problem of plates with all sides clamped
is defined by figure 10.5 with boundary condi-
tions w=290w/On=0 on all edges.

Weinstein and Chien (ref. 10.13) used a vari-
ational technique to obtain lower bounds for
the fundamental frequency of a square plate
under the hydrostatic tension N,=N,=N and
N.,=0. Results are listed in table 10.7 for
varying degrees of inplane tension. Upper
bounds were also obtained by the Rayleigh-
Ritz method using the deflection function

W(z, §)=A cos®  cos® §+B cos® Z cos® §
(10.59)

where # and § are coordinates having their
origin at the center of the plate. (See fig. 4.18.)
For purposes of comparison, the easily deter-
mined frequency parameters when all sides are
simply supported were computed in reference
10.13 and are also given in table 10.7. Also, a
plot was made which compares the frequencies
of a clamped square plate with those of clamped
circular plates having area and circumference
equal to those of the given square plate. The
circular-plate results were obtained from refer-
ence 10.3, as discussed previously for clamped
circular plates (sec. 10.1.1). These curves are
shown in figure 10.9.

In reference 10.19 the Kato-Temple method
(refs. 10.20 and 10.21) was used to derive an
extremely accurate lower bound for the funda-
mental frequency of a clamped square plate
subjected to hydrostatic tension N=10x*D/a’.
Accurate upper bounds were obtained by using
the Rayleigh-Ritz method with beam func-
tions (see discussion of the C-C-C-C rec-
tangular plate (sec. 4.3.1)), keeping both 6 and
36 terms in the series. These results are com-
pared with those of reference 10.13 in table
10.8.

The perturbation technique is used in refer-
ence 10.15 to obtain fundamental frequency

/
V4
y/
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120

w?a*p

80

40

o 20 40 60 80 100 120
Na? .
D

F1gURE 10.9.—Frequency parameter variations of
clamped plates as functions of inplane hydrostatie
tension. (After ref. 10.13)
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TasLe 10.8.—Comparison of Lower and Upper
Bounds for the Fundamenital Frequency Param-
eter wal/p/D of a Clamped Square Plate
Subjected to the Inplane Tension Parameter
Na?/#*D=10

wa2yp/D

Lower bounds Upper bounds

Ref. 10.19
Ref. Ref. Ref.
10.13 10.19 10.13
36 terms 6 terms
59. 922 | 59. 98389 | 59. 98488 | 59. 98498 60. 392

parameters for the problem previously discussed.
Results are summarized in table 10.9.

10.3 PLATES HAVING OTHER SHAPES

Lurie (ref. 10.14) showed that for a plate of
any polygonal shape, with all its boundaries
simply supported and subjected to hydrostatic
pressure N,=N,=N=—p and N,=0, the
vibration mode shapes are independent of the
intensity of p. Hence, the mode shapes are
identical to the buckling modes of the plate and
also identical to the vibration modes of a stretched
membrane having the same shape. Further-
more, the frequency of the loaded plate can be
expressed as

= (wm) [1 (pm)c,] (10.60)

TABLE 10.9.—Fundamental Frequency Param-
eter way/p/D Derived From the Perturbation
Method for a Clamped Square Plate Subjected
to Hydrostatic Tension

M waz\/;/f)
=D
O e 35. 989
U 49. 628
10 e 60. 019
20 e 68. 566

308-337 0—70——19

where (wn,), is the frequency of the unloaded
plate in the particular mode identified by the
subscripts m, n and (pn.). is the critical
buckling pressure in the same mode.

Schaefer and Havers (ref. 10.22) showed that
frequencies of an equilateral triangular plate
simply supported on all sides and subjected to
hydrostatic pressure p can be calculated from
the equation

+w,a4p/D

=\ (10.61)

where @ is the altitude of the triangle (see
fig. 7.15) and \; are the eigenvalues of the
membrane vibration problem determined from

M=o w0 mi )

I+m—+n=0
l,mmn=+142 43,.

(10.62)

The first six values of (P4+m?4n?) are given in
table 10.10. A plot of the first six plate fre-
quency parameters as functions of the inplane
compression appears as figure 10.10.
Kaczkowski (ref. 10.23) utilized the fact that
the superposition of certain vibration modes
(having the same frequency) of a simply sup-
ported square plate will give a combined mode
which has a nodal line on the diagonal of the
square. In this way the frequencies and mode
shapes of a plate in the form of an isosceles right
triangle with all edges simply supported can be

80,000 Q\\
i DN

€0,000] N

VI

40,000

~ NN
oo AN
- T~ N
9300 =200 ° =100 : 0\- IOO\ 200\\ 300

Tension po Compression

Ficure 10.10.—Frequency parameters w?a4p/D as func-
tions of inplane hydrostatic pressure for a simply
supported, equilateral, triangular plate. (After ref.
10.22)




282 VIBRATION OF PLATES

TABLE 10.10.—Terms for Computing the First
Siz Eigenvalues for the Equilateral Triangular
Membrane

1 l m n i24-m?4-n?
1 1 1 -2 6
2 1 2 -3 14
3 2 2 —4 24
4 1 3 —4 26
5 2 3 —b 38
6 1 4 —5 42
found. The frequencies for N,=N,=N,N,,=0

are given by
Omn=(2m*+2mn-+n?)

wt \/D Na? 1/2
a® ;[1+(2m2—}—2mn—}-n2)w2D]

(m,n=1,2,3...) (10.63)

and the fundamental frequency occurs when

m=n=1:
572 [D Nda?
CuTg \/_p— <1+57r2D

The mode shapes of the triangular plate are
(in terms of fig. 10.5):

(10.64)

W (2, ¥) =Ana| sin AT in Y
a a
—(—1)mtn sin? sin M:I
a a
(m,n=1,2,3...) (10.65)
Isosceles right triangular plates having

hydrostatic inplane forces and several other
types of boundary conditions are discussed in
reference 10.23. No numerical results are
given for these problems, but the character-
istic determinants yielding the frequencies are
carefully shown. The determinants are of
infinite order and contain terms having infinite
series. 'Thus, the accuracy of a solution would
depend upon the numbers of terms kept.
Specific problems set up in detail in reference
10.23 are:

(1) The side =0 clamped, the others
simply supported
(2) The sides clamped, the hypotenuse

simply supported

(8) The side =0 free, the others simply
supported

(4) Two sides free, the hypotenuse simply
supported, and the point (0, 0) sup-
ported

(5) One side clamped, one side free, the
hypotenuse simply supported

(6) Two sides simply supported, the hy-
potenuse clamped

(7) Two sides simply supported, the hy-
potenuse free

Pan (ref. 10.24) used the method of images
to show that the square of the fundamental
frequency of a 30°-60°-90° triangular plate
simply supported on all sides (see fig. 7.17)
and subjected to hydrostatic tension N is

wzzg—f—; 338-%’;—2' N> (10.66)
and the mode shape is
W(z, y)——:sina ‘/_S_sm-——l—smzj/w_smz"’y
+s1nj—7r§sm; (10.67)
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Chapter 11

Plates With Variable Thickness

In the case of plates with variable thickness,
the governing differential equation of motion is
found to have variable coefficients, and this
fact increases the difficulty of solution. This
added complexity will be demonstrated below
in both polar and rectangular coordinates.
Results are available only for isotropic plates
having no inplane forces.

11.1 CIRCULAR PLATES

If inplane forces and rotary inertia are
disregarded, the equations of motion in polar
coordinates are

Qo b'w )
2 1)+ 22—
M,
2 (20— M- 220 1.0 + (111)
a (erg)"}‘aMo‘]“Mro rQGZOJ

Equations (11.1) correspond to equations (A.2)
and (A.8) of the appendix which were derived
in rectangular coordinates and can be obtained
from them by direct transformation; or they
can be derived by summing forces and moments
on a typical, infinitesimal, sectorial area. In
equations (11.1), v is taken to be the mass
density per unit wolume of plate, unlike the
constant p used elsewhere throughout this
work.

For an isotropic plate, equations (A.35)

become
[ St iaanJr 2002):'-‘
My=—D(1=)7, igg) )

where D=FEh3/12(1—»%); that is, D is a function
of the thickness.

To obtain a fourth-order differential equation
corresponding to equation (1.1), it is only
necessary to substitute equations (11.2) into
the last two of equations (11.1) and, in turn,
substitute these into the first of equations
(11.1). However, if the thickness is a function
of » and/or 6, the resulting differential equation
will be quite lengthy and will have variable
coefficients (i.e., functions of » and/or 6). This
expanded equation will not be presented here,
Needless to say, very little has been done
toward obtaining solutions to this differential
equation in all its generality.

Timoshenko and Woinowsky-Krieger (ref.
11.1) and Conway (ref. 11.2) showed that, for
the axisymmetric problem (no variation with
0), the equation of motion becomes

[ o%w +1 bw)
r br or\or* "' r or
oD (d%w | v Ow _
"l__’ brz‘l"r“ar):l}_{"'yh atz =0 (11 3)
Conway (ref. 11.2) gave some special solutions

of equation (11.3) when the flexural rigidity
varied according to

D:_Dorm (11 .4)
where
ER
Do—_——‘12(1;y—2) (11.5)

and when the boundary of the circular plate is
clamped. Poisson’s ratio was restricted to
1
y=5 (2m—3) (11.6)
which simplified the solution of equation (11.3)
considerably.
In reference 11.2 exact solutions to equation

(11.3) were obtained for several values of m in
285
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equation (11.4). For m=2,r=1/9, and a solid
plate, the solution takes the form

W(r)y=r-2R[CiJ(u)+CLi(u)]  (11.7)
where
u =br*#
64290732} (11.8)
ER

and J, and I, are the regular and modified
Bessel functions of the first kind of order one.
Applying the boundary conditions (eqs. (2.2))
gives the characteristic equation

Ji (uo)_I{_(ﬂ)
Jy (uo)_Il (uo)

(11.9)

where the primes indicate differentiation with
respect to the argument u and

ug=ba?”? (11.10)

where @ is the boundary radius. The first
10 roots of equation (11.9) were given in
table 2.1 (n=1), the lowest root being

2\ 1/4
6%2;") a?#=(21.26)12 (11.11)
0

Up=—

Consider a clamped circular plate having a
constant thickness equal to the maximum
thickness (at the boundary) of the variable
thickness plate previously described (m=2,
»=1/9). Then, according to reference 11.2,
the ratio of the fundamental frequency of the
constant-thickness plate to that of the variable-
thickness plate is 1.08.

For m=18/7 and »=5/21, the frequency
equation

uo(tan ue+ tanh ue) =2 tan v, tanh o (11.12)

was given, where now

2\ 1/4
Uy= %%) at’ (11.13)
The first root of equation (11.12) was given
as wy=>5.27. The ratio of the fundamental
frequency of the constant-thickness plate to
that of the variable-thickness plate having
the same thickness at the boundary was
found to be 1.13.

For m=3 and »=1/3, there is the important
case of linearly varying thickness, which is
discussed in reference 11.3 as well as in refer-
ence 11.2. The characteristic equation for a
solid circular plate is found to be

Jz(uo)fl(uo)=J1(u0)12(u0) (11.14)
with
B _5-127(02 1/4 P

Equation (11.14) is also the characteristic
equation for the transverse vibrations of a
cantilever beam having a circular cross section
and linear taper. Thus, by analogy with
results for beams, the first three roots of
equation (11.14) are found to be u,=5.906,
9.197, and 12.402.

The ratios of the first three axisymmetric
frequencies of the constant-thickness plate
to those of the variable-thickness plate having
the same thickness at the boundary are found
to be 1.17, 1.88, and 2.31.

The case when m=6 and v is arbitrary is
also discussed in reference 11.2, but no numer-
ical results are given.

It is interesting to observe that in the case
of variable-thickness plates the frequency pa-
rameter depends upon Poisson’s ratio for
clamped as well as for other boundary conditions.

In reference 11.4 the work just described
was extended to annular plates of linearly
varying thickness which are clamped on both
the inner and outer boundaries (fig. 11.1).
The solution for the linearly tapered beam
again applies when Poisson’s ratio for the
plate is 1/3. The characteristic determinant
yielding the frequencies is

J2(B) Y:(B) I:(B) K,(B)
Js(B) Y:(8) —1I:(8) K;(8) —0
J2(c) Yi(a) Iy(a) K;(a)
T Tiw) —Ll K
(11.16)
where
) 32 v \!2
FF=4wa\ - w53
8 Eh°> (11.17)

32 4 )1/2
2
Ny
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Fieure 11.1.—Annular plate with linearly varying
thickness and both boundaries clamped. (After ref.

11.4)
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TaBLe 11.1.—Axisymmetric Frequency Param-
eters (wa?/H) (2y/3E)"* for an Annular Plate
Having Linearly Varying Thickness and
Clamped on Both Boundaries; v=1/3

(wa?/H) (2v/3E)Y2 for values of
b/a of—
Mode no.
1% 1% Y Yo
) 16. 5 8. 04 5. 84 3. 32
e 45. 2 21. 9 15. 8 8. 71
R 88.4 | 42.6 30. 6 16. 7
4 . 146 70. 3 50. 4 27. 3
S 211 104. 8 75.0 40. 5
7, h
é i 2
e T
—o— 4
9 7

Ficure 11.2.—Circular plate with both constant and
linearly varying thickness and clamped on the
boundary. (After ref. 11.4)

Frequency parameters for various ratios of
b/a are listed in table 11.1.

Also examined in reference 11.4 was the solid
circular plate which has a linearly varying
thickness in the interval b <r <¢ and a constant
thickness in the interval 0 <7 <b (see fig. 11.2)
and is clamped along its edge. Using the
separate solutions for the variable- and con-
stant-thickness regions and enforcing two
boundary conditions at r=a and four con-
tinuity conditions at r=b lead to the charac-
teristic determinant:

—J() —I()

Ji(¢) —I(¢) =0
Ji(§) 1i(§)

: +Jo(s=>:| [T—Iom]

(11.18)
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where
g__32 wybt
=9 "Ine
3 EW (11.19)
k=a/b

Again, Poisson’s ratio is restricted to a value of
1/3. Frequency parameters for various a/b
ratios are given in table 11.2.

Thurston and Tsui (ref. 11.5) investigated
the problem of a linearly tapered circular
plate which is supported elastically on a central
supporting area as shown in figure 11.3. The
Rayleigh-Ritz method was used with a deflec-
tion function of the form

W(r)=A+Br+Cr (11.20)

TaBLE 11.2.—Azxisymmetric Frequency Param-
eters (wa?/h) (2y/3E)'" for Clamped Circular
Plate Having Linearly Varying Thickness in
Interval b<r=<a and Constant Thickness h
an Interval 0 <r<b; v=1/3

(wa2/h) (2v/3E)1 "2 for values of
b/a of—
Mode no.
1 1/2 13 1/4
) 2. 55 3.97 6. 33 8. 81
R 9. 95 14. 21 17. 03 20. 89
B 22,23 28. 00 37.70 44, 89

A

OF PLATES

-,

Figure 11.3.—Linearly tapered circular plate supported
elastically on a central supporting area. (After ref.
11.5)

for axisymmetric vibrations. Equation (11.20)
satisfies the condition of zero slope at the
origin; in addition, the condition

LbW(r)r dr=0

was imposed. This latter condition is designed
to relax the condition of rigid clamping along
the central core and replace it by one of “no
net volume flow back and forth” across the
surface of attachment. Equation (11.21) leads
to the relationship

——2(£+2)

and reduces the system to two degrees of
freedom. The Rayleigh-Ritz procedure yields
the two frequencies given by

(11.21)

(11.22)

£ [(88’ —20/ A— 20\ P—(4/ N —B'2) (4o —B)]? } -+ (4o’ N —§'?)  (11.23)
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where o, o/, 8, 8/, \, and A’ are given by

32
a=8(1+p){%a2+[3a_”_bk+3( bb)zk o b)ak]"’ b

3 1
- a——bk+6(a—b)2k2+3(a—b)3k3:| 3 +|:3k2(a~—b)2

bo(at—b B a—b
T 2 ety 5 }

‘ 2 3 3__h3
B=36(1+v){§a3+[3 Lkt (afb)zk%(aib)akﬂ“ . b

3 b B at—bt |
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and where the thickness is defined by
h=h,  (0=r=b)
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(11.24)

(11.25)
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Detailed calculations were made for an
aluminum disk having the following constants:
@=1.00 inch, 5=0.375 inch, E=10.6X10° psi,
and »=0.33. These results are plotted in figures
11.4 and 11.5 for various tapers k and are
compared with experimental results for k=4/5.
In figure 11.4 the theoretical values are plotted
directly as they arise in the computations.
In figure 11.5 the values are adjusted to account
for additional cement and a barium titanate
element used in the experiment.

Kovalenko (ref. 11.6) made a study of the
annular plate having thickness varying accord-
ing to the equation :

T
h=h°(1‘;;>

(11.26)

20 -

fin KC/Sec

4 o Computed Value
X Computed Value for k=#

"
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hy in inches
Freure 11.4.—Uncorrected cyclic frequencies f for a

linearly tapered, circular aluminum plate. (After
ref. 11.5) i
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Figcore 11.5.—Adjusted cyclic frequencies f for a
linearly tapered, circular aluminum plate. (After
ref. 11.5)
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(see fig. 11.6). His primary work was a direct
attack upon the differential equation by assum-
ing a series form of solution. Boundary con-
ditions led to an infinite characteristic determi-
nant, which was truncated for an approximate
solution. Detailed numerical results were given
for the special configuration where the boundary
r=b=0.1r, was clamped and the boundary
r=a=0.5r, was completely free. A Poisson’s
ratioof 1/3wasused. Byuseof theseries method
the lowest axisymmetric frequency parameter
was found to be

D,

w00=19.00 'yhorf,

(11.27)

where D, is as defined in equation (11.5). The
lowest antisymmetric frequency (i.e., cos nf
mode, with n=1) was found to be

w10=18.24

D,
St (11.28)
When equations (11.27) and (11.28) are com-
pared it can be observed that, as in the
case of certain b/a ratios for constant-thickness
annular plates (see discussion for annular
plates (sec. 2.2.7)), the fundamental mode is
antisymmetric. In table 11.3 are given the
mode shapes corresponding to these two fre-
quencies and the ratios of bending moments.
Rayleigh-Ritz solutions were also obtained
in reference 11.6 by using the radial variation
in deflection

W) =A (r—b)2+A,(r—b)®  (11.29)
giving the frequencies
_ Dy
w00—19.2 m
7 (11.30)
. 0
w)0— 1 8.47 ‘y——horg
To |
h T ‘
l e e————
- N | | TOUMTOIONSSY ==

FIGURE 11.6.—Annular plate with thickness variation
h= ho[l—' (T/To)].
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TasLe 11.3.—Mode Shapes and Ratios of Bending Moment for First 2 Modes of Linearly Tapered
Annular Plate Shown in Fig. 11.6; a=0.5r,; b=0.Ir,

. Symmetric (n=0) Antisymmetric (n=1)
o
w M. M, _w M, Mg
(’LU) r=q (Mr) r=b (Mt?) r=h (w) r=a (Mr) r=ph (Mﬂ) r=b

01 _ __ .. ___ 0 1 1 0 1 1
0.2 . ________ . 112 . 382 . 988 . 112 . 319 . 713
0.3 _______ . 362 . 149 . 552 . 359 . 120 . 334
04___________ . 677 . 032 . 245 . 671 . 025 . 121
0.5___ ______._. 1 0 . 094 1 0 . 035

An integral-equation approach to the problem
of circular plates of wvariable thickness is
presented in reference 11.7, but no numerical
results are given.

A method of handling variable-thickness
circular or annular plates is discussed in
reference 11.8 whereby the plate is represented
by circumferential strips of constant thickness
and lumped mass. A demonstration of the
method on a constant-thickness plate is given,
but no numerical results for variable-thickness
plates are included.

11.2 RECTANGULAR PLATES

In the case of rectangular coordinates it is
shown in the appendix that the governing
differential equation of motion for an isotropic
plate of variable thickness having no inplane
forces is ’

F¥Dow 3D w
2 W) — (1= 355255
V2(DVw)—(1—») oy O 2352 Oy Ox Oy
D dw o'w
ou oy op=0 (113D

where the mass density per unit volume y has
been substituted in place of p.

Very little has been done in solving equation
(11.31) as it stands because of the variable
coefficients arising when D is not constant.
Appl and Byers (ref. 11.9) studied the case
when the thickness varied only in one direction,
sayz. In that case, equation (11.29) simplifies to

dD d d2D /o*w . d*w
4 el v /] by hudihogd bl
DViw-+2 dz bxv wt- da? bw2+y 0y
O%w
Hrhgp=0 (11.32)

Furthermore, for a plate having parallel edges
simply supported, a solution in the form of
equation (1.33) can be taken, thereby exactly
satisfying the boundary conditions along the
parallel edges and reducing equation (11.32) to
an ordinary differential equation having variable
coefficients.

In reference 11.9 extensive calculations were
made for the rectangular plate having all sides
simply supported and a linear thickness varia-
tion in the z-direction given by

h=h0<1+a§)

where x is measured from one edge, the length
of the plate is @ (cf. fig. 4.4), and « is a constant
determining the rate of taper. A special tech-
nique (ref. 11.10) was used for obtaining both
upper and lower bounds for fundamental fre-
quency parameters. Results thus obtained are
presented as table 11.4 for »=0.3 and for various
aspect ratios. In this table, in addition to upper
and lower bounds, a mean value is computed
along with a maximum possible error in this
mean value. For purposes of comparison, an
upper bound was also determined by the
Rayleigh method by using a deflection function
of the form

Wiz, y)=[<§>4—2<§)3+2]sin1’—§/ (11.34)

A representative fundamental mode shape is
depicted in figure 11.7 for a¢/b=1.0 and «=0.8.
The sine curve for the case of uniform thickness
(a=0) is also shown for purposes of comparison.

(11.33)
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TapLE 11.4.—Fundamental Frequency Parameters o*a*vho/Do for Linearly Tapered Rectangular
Plates Simply Supported on All Edges; v=0.3

w?atyho/Do
a
b
Upper Lower Mean Maximum Rayleigh
bound bound value error, percent method
0.25 .1 121. 112 121. 067 121. 089 0. 0187 121. 081
.2 132, 437 132. 434 132. 436 . 00103 132. 435
.3 144. 144 143. 792 143. 968 . 122 144. 026
.4 155. 899 155. 828 155. 863 . 0228 155. 853
.5 167. 925 167. 891 167. 908 . 0102 167. 913
.6 180. 243 180. 145 180. 194 L0273 |
L7 192. 857 192. 586 192, 721 L0705 e
.8 206. 045 204. 949 205. 497 L2067 |
0. 50 .1 167. 657 167. 656 167. 657 0. 0000596 167. 656
.2 183. 585 183. 577 183. 581 . 00234 183. 579
.3 199. 979 199. 964 199. 972 . 00382 199. 970
.4 217. 902 216. 262 217. 082 . 379 216. 825
.5 234, 463 233. 968 234. 215 . 106 234. 143
.6 252. 126 251. 763 251, 944 L0728 |
.7 270. 394 269. 883 270. 139 L0946 |-
.8 289. 317 288. 256 288. 786 184 e
0.75 .1 262. 051 262. 003 262. 027 0. 00921 262. 036
.2 287. 200 287. 098 287. 149 . 0178 287. 132
.3 313. 325 312. 989 313. 157 . 0538 313. 103
.4 340. 388 339. 718 340. 053 . 0986 339. 941
.5 367. 708 367. 591 367. 650 . 0160 367. 703
.6 396. 506 395. 625 396. 066 B T 5 N U
.7 426. 062 425, 125 425, 593 L1100 o
.8 457. 397 454, 239 455, 818 . 348 |-
1. 00 .1 429, 349 429. 339 429, 344 0. 00124 429. 346
.2 470. 556 470. 521 470. 539 . 00372 470. 549
.3 513. 379 512. 930 513. 154 . 0437 513. 220
.4 557. 816 556. 573 557. 195 . 112 557. 355
.5 603. 180 602. 841 603. 011 . 0281 603. 006
.6 650. 563 649. 540 650. 051 L0788 |-
.7 699. 732 697. 235 698. 483 L1790 |
.8 751. 416 745. 011 748. 214 L4830 |-
1.25 .1 704. 866 704. 696 704. 781 0. 0120 704. 752
.2 773. 000 771. 784 772. 392 . 0787 772. 191
.3 842. 034 841, 884 841. 959 . 00892 842. 013
.4 914. 608 913. 618 914. 113 . 0542 913. 759
.5 988, 921 987. 612 988. 267 . 0663 088. 424
.6 1066. 211 1063. 428 1064. 819 L1810 i
.7 1146. 985 1139. 781 1143, 383 L8160 |
.8 1229. 929 1218. 858 1224, 393 L 454 |-
1. 50 .1 1133. 669 1133. 338 1133. 504 0. 0146 1133. 456
.2 1242. 578 1239. 000 1240. 789 . 144 1241. 395
.3 1353. 687 1350. 576 1352. 131 . 115 1352. 379
.4 1468. 157 1465. 250 1466. 703 . 0992 1467. 138
.5 1586 689 1583. 145 1584. 917 112 e
-6 1709. 603 1701. 686 1705. 645 1 % S I
.7 1837. 799 1820. 621 1829, 210 CAT2 -
.8 1967. 569 1948. 622 1958. 095 486 e emeecem -
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TaBLE 11.4.—Fundamental Frequency Parameters w?a*yho/Do for Lihearly Tapered Rectangular
Plates Simply Supported on All Edges; v=0.8—Continued

w?atyho/ Do
a
B o
Upper Lower Mean Maximum Rayleigh
bound bound value error, percent method
1.75 0.1 1771. 579 1770. 158 1770. 869 0. 0401 1770. 631
.2 1939. 753 1934. 993 1937. 373 . 123 1938. 224
.3 2110. 977 2108. 915 2109. 946 . 0489 2109. 667
.4 2288. 368 2284. 341 2286. 354 . 0882 2288. 320
.5 2471. 362 2461. 928 2466. 645 L1920 |l
.6 2660. 680 2641. 065 2650. 873 L3871 |
L7 2850. 204 2831. 734 2840. 969 L8260 ool
. 8 3054. 910 3031. 066 3042. 988 L8393 o
2. 00 0.1 2685. 834 2679. 248 2682. 541 0. 123 2681. 525
.2 2935. 362 2930. 935 2933. 149 . 0755 2935. 547
.3 3193. 446 3187. 392 3190. 419 . 0950 3203. 400
.4 3458. 506 3446. 658 3452. 582 . 172 3489. 606
.5 3734. 808 3702. 730 3718. 769 433 |-
.6 4012. 388 3979. 820 3996. 104 409 |
L7 4283. 839 4266. 413 4275. 126 204 |
. 8 4556. 204 4539. 970 4556. 204 L858 e
1.0 - -
/4 \\\._I_a:o where the constants 4, B, C, and D are given
08 7 - \\\ in table 11.5 for the types of boundary condi-
s 06 /7 N, tions depicted in the table. The thickness
3 /] N parameter A is defined by
§ 04 // /b=1.0 ¢=0.a.<\\\\
a/b=i, \ —_
02 // v=0.3 \ \ )\=}_‘/_lh__h0 (1136)
\\ 0
N\,
% 0.2 0.4 0.6 0.8 o where the thicknesses ko and k; are as shown

x/a

Ficure 11.7—Fundamental mode of a simply sup-
ported square plate having linear thickness variation
in the z-direction; v=0.3. (After ref. 11.9)

Gumeniuk (ref. 11.11) used the finite-differ-
ence method to derive a formula for the fun-
damental frequency of a simply supported
rectangular plate having linear thickness vari-
ation. This work was extended by Gontkevich
(ref. 11.12) to plates having other boundary
conditions. Fundamental frequencies are de-
termined from the formula

D, S —
5. (A+D—(A=D)+4B0)
(11.35)

w=b—2

in table 11.5.

Plunkett and Wilson (refs. 11.13 and 11.14)
measured the frequencies of linearly tapered
steel cantilever plates, with the taper occurring
between the free edges as shown in figure 11.8.
Figure 11.8 shows the variation in the frequency

parameter
¢_‘L“2 \/127(1—;12)
“ho E

with the wedge angle 6, where ko is the greatest
thickness and @ is the span of the plate (5 inches,
in fig. 11.8). The values shown for zero wedge
angle (constant thickness) were computed by
elementary beam theory. Fundamental fre-
quency parameters for the various wedge

(11.87)
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Complete Wedge

0 5 10
Wedge Angle 8 -degrees

Ficure 11.8.—Experimentally measured fundamental
frequency parameters for different values of wedge
angle 6 for linearly tapered, rectangular eantilever
plates; material, steel; numbers indicate modes.
(After ref. 11.13)

angles are tabulated in table 11.6. The effect
of changing aspect ratio is shown in figure 11.9.
In this figure a/b is varied by removing ma-
terial from the thin side of the plate, so that
the cross section becomes trapezoidal. The
wedge angle 6 remains a constant 2.4°. Fun-
damental frequency parameters for this case
are presented in table 11.7.

400

200

o0+
IO2

| { 1
4 5 6 7 8 9
a/b

O =

Ficure 11.9.—Experimentally measured fundamental
frequency parameters for different values of a/b for
linearly tapered, rectangular cantilever plates; ma-
terial, steel; 9=2.4°; numbers indicate modes.
(After ref. 11.13)

Methods for solving the free vibration
problem for rectangular variable-thickness
plates are also presented in references 11.15
to 11.18, but no numerical results are included.
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TasLE 11.6.—FExperimentally Measured Funda-
mental Frequency Parameters for ILinearly

Tapered, Rectangular Cantilever  Plates;
Material, Steel
Wedge angle, 6,° | 1.35 | 2.4 | 3.7 | 59 [ 11.8
& (eq. (11.37))-____‘ 2.52 | 2.57 ‘ 2.47 | 2.32 | 228

TaBLE 11.7.—Variation in Fundamental Fre-
quency Parameter With Aspect Ratio for Line-
arly Tapered, Rectangular Cantilever Plates;
Material, Steel

af/b 2.00
¢ (eq. (11.37))____| 2. 57

2.22 | 2.86 \ 4.00 | 6.67
2. 57 ‘ 2. 71 ’ 2. 91 [ 3. 15

11.3 OTHER SHAPES

Except for the work in references 11.19 and
11.20, virtually nothing" has been done for
variable-thickness plates when their shapes are
other than circular or rectangular. A method
is presented in reference 11.19 for analyzing
cantilever variable-thickness plates having an
arbitrary quadrilateral shape. Reference 11.20
gives a method for analyzing clamped variable-
thickness plates of arbitrary shape.
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Other Considerations

The effects of the following complications will
be considered in the present chapter:

(1) Surrounding media

(2) Large deflections

(3) Shear deformation and rotary inertia

(4) Nonhomogeneity

Generally, because of the complexity of the
resulting theory, there are not many numerical
results showing the effects of these complica-
tions. Indeed, in many cases the technical lit-
erature deals mainly with the development of
the needed theory. Nevertheless, it will not be

the purpose of this chapter to repeat those deri- .

vations; the reader is referred to the references
themselves for this. The primary purpose of
this chapter, as of the preceding ones, is the
presentation of numerical results, where avail-
able, with explanatory material as necessary for
an understanding of their significance.

It will be assumed in this chapter that the
reader will already be reasonably familiar with
the coordinate systems, notation, boundary
conditions, and so forth, used in the preceding
chapters, and so, much tedious redefinition will
be omitted.

12.1 EFFECTS OF SURRCUNDING MEDIA

In general, it has been the practice in this
work to discuss plates in bending which are
uncoupled from other elastic structures having
mass. In this way only a single differential
equation of motion—that of the plate—is
involved. Yet it is apparent that practical
experiments are conducted in air, and that the
mass of the air thus moved has the effect of
decreasing the vibration frequencies of the
system. The difference between experimental
and theoretical results for this reason has been
alluded to in many places in the preceding
chapters and, indeed, corrections of one or the
other to obtain comparable values were even
made in a few places (and so identified). In

Chapter 12

the present section some of the papers that
deal primarily with this problem will be sum-
marized. The topic is generalized to include
other media in addition to air—notably, water.

12.1.1  Circular Plates

In an early paper Lamb (ref. 12.1) considered
a clamped circular plate which is in contact on
one side with an infinite expanse of water. The
Rayleigh method is used with a deflection
function
w=C[1— (r/a)?? (12.1)
The kinetic energy is computed on the assump-
tion that the water is incompressible. The
resulting formula for the fundamental fre-
quency parameter is

10.33

\/ 1+-0.6689 (%") (%)

where v,,/v is the dimensionless ratio of the mass
density of water to that of the plate and a/h
is the radius-thickness ratio. Of course, equa-
tion (12.2) can be applied to any incompressible
fluid. If both sides are to be exposed to the
infinite fluid, then the 0.6689 in equation (12.2)
is replaced by 2<0.6689.

The frequency of the second mode (having
one nodal diameter) was also calculated in
reference 12.1 with the use of

wa*yp/D=

(12.2)

w=C[1—(r/a)*}*r cos 8 (12.3)
and resulted in
ot D= 21.909 (12.4)

\/ 1+0.3087 (—'{/1'1) (%)

Hence, the effect of the water’s inertia is less

upon the second mode than upon the first.

In order to check the accuracy of the foregoing
299
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results, a two-term Ritz solution was carried
out in reference 12.1 for the first and second
modes of a particular iron plate; this calcula-
tion yielded results which differed from those
calculated from equations (12.2) and (12.4) by
less than 1 percent. The effects of damping
due to the water are also discussed.

Experimental results for the preceding prob-
lem are given in reference 12.2.

MocLachlan (ref. 12.3) extended Lamb’s
work to the case of a circular plate having
a free boundary. For a plate having both sides
immersed in an infinite fluid, he shows that the
ratio of the frequency of the system « to the
frequency of the plate in a vacuum w, can be
determined from the formula

w 1
SVrramap 0%
where, for the case of one nodal circle,
_16_
M1—35'y,a (12.6)

and, for the case of a point support at the
center,

80

— 3
M] 63’Yfa (12.7)

and, in both cases,

Mq=7§r'ya2h (12.8)
where v, is now the mass density of the
surrounding fluid. In reference 12.3, equation
(12.5) is applied to the problems of an aluminum
plate vibrating in either air or water.

The previous work was extended further by
Peake and Thurston (ref. 12.4), who applied
the Rayleigh method to the problem of the
simply supported circular plate having water
loading on one side. A deflection function

w=1—1.245(r/a)*+0.245(r[a)*  (12.9)

was used; the result is the frequency parameter

formula
4.94

¢'1+1.045<v_;)(%> (

Bycroft (ref. 12.5) studied the problem of
transverse vibration of a circular plate which

wa’yp[D=

12.10)

is perfectly attached to a massless, elastic, infi-
nite half space. The Rayleigh-Ritz approach is
used, with the potential energy of the half space
being added to that of the plate. Clamped,
free, and simply supported edge conditions are
considered for the plate. For the clamped case
a deflection function for the plate is taken in
the form of equation (12.1). The square of the
fundamental frequency parameter is found to
be:

Watp 4.37G(1—) &
D =106.7+-——“D’—— (12.11)
where
e (12.12)
26 '

and A and G are Love’s (vef. 12.6) elastic
constants for the half space:

vE

A=

(1+») (1—2») (12.13)
A

2(14»)

For the free plate, & two-term solution function
is assumed as a constent plus the first term
of a Dini series; that is,

w=Ay+ A1 o[M(r/a)] (12.14)

where \;is thefirstroot of Jo(\) =0. By applying
the Ritz method, the two resulting frequencies
are determined from

watp

D

(9.214+4.7%+1 .5908).A2+2.24884,4, +4BA§]
1r(0.1355A?—|—0.433A0A1+0.5A3)

(12.15)

where
Ga?(1—1?)

g= D (12.16)

and the amplitude constants A, and 4; are
related by

A1 [(4.614-2.300+0.2558) = (21.24-5.68°

A
0 —}—0.298762—{—22v+4.76ﬁ+2.48ﬁ3v)1/2]
~+(3.98-+2.07v-0.3838) (12.17)
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Finally, the simply supported plate is analyzed
by using equation (12.14) with Ay=0. The
square of the fundamental frequency parameter
is found to be

w’atp

D

=21.70+11.25,+7.4608 (12.18)

12.1.2 Rectangular Plates

An interesting experimental and theoretical
study of the vibration frequencies of rectangular
cantilever plates (see fig. 4.40) immersed in
water was reported by Lindholm, Kana, Chu,
and Abramson (ref. 12.7). Cyeclic frequencies
are listed in table 12.1 for 15 plates made of type
1080 cold-rolled steel having various aspect
ratios and ratios of thickness to width. Theo-
retical values are based upon Barton’s work
(see discussion of rectangular cantilever beams
(sec. 4.3.12)), where applicable, and elementary
beam theory. These pertain, of course, to the
case of a vacuum. Frequencies are measured
both in air and in water.

A correction formula of the form given in
equation (12.5) was derived in reference 12.7 by
means of hydrodynamic strip theory to account
for the added “apparent mass’ of the surround-
ing fluid. The ratios M;/M, to be used in
equation (12.5) are given in table 12.2 for six
modes of the cantilever plate (see definition
of modes in table 12.1).

A further correction is suggested in reference
12.7 to account for the effect of plate thickness
on the apparent mass of the air. In this case
equation (12.5) becomes

— \/ 1 (12.19)
H-fm
where
__ 2(a/b)
f—m (12.20)

and K is obtained from figure 12.1 for modes 1,
3, and 6.

A comparison of theoretical and experi-
mental results for frequency parameters is
made in figure 12.2 for the six modes. The
effects of corrections for aspect ratio AR, a/b and
thickness ratio b/k are clearly seen.
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Ficure 12.1.—Thickness correction factor of a rectan-
gular cantilever plate for modes 1, 3, and 6. (After
ref. 12.7)

The variation of node-line location in going
from air to water is shown in figure 12.3.
Frequency variation with depth below the sur-
face is set forth in figure 12.4 for plate 11 of
table 12.1. Finally, the effect on frequency
due to partial immersion is shown in figure 12.5
for plate 8. It is stated in reference 12.7 that
the angle of inclination of the plate to the sur-
face seems to have an effect only for very
shallow angles. _

Greenspon (refs. 12.8 and 12.9) has proposed
a correction formula to account for the effects
of water on one side of a rectangular plate for
all boundary conditions. The frequency ratio is

)

w_

ANEEOOE

(12.21)
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TaBLE 12.2.—Mass Correction Factors for Eq.
(12.5)

Mode M,

M,

e
S — 50
S — )0
. 0.0803x(2)(%)
S — 50
S — )0

where f is a “virtual mass function’ for plates
of rectangular shape and is plotted as a function
of a/b in figure 12.6. The coefficients 4,, and
B;; are determined from the formulas

Ai,=$ L _w,d4

| (12.22)
B“za—b fmawg, d4

where the w;; are mode shapes which are the

products of beam functions (see discussion of

rectangular plates (ch. 4)); that is,

we=X(x) Y ,(y) (12.23)

and the dimensions of the plate in the z- and
y-directions are @ and b, respectively. The
integrals given by equations (12.22) are readily
evaluated by means of the tables of reference
12.10. The coefficients for seven modes of rec-
tangular plates having all edges clamped or
simply supported are given in table 12.3.

In reference 12.8, equation (12.21) was shown
to become

w

o_ I
“ \/1+0.2798(%) <%) f

(12.24)

TasLE 12.3.—Correction Coefficients for 2 Cases
of Water-Loaded Rectangular Plates

Mode C-C-C-C S85-88-88-8S

i i A B A B;;

1 1 0. 6904 1 0. 4053 0. 25
2 0 1 0 .25
3 . 3023 1 . 1351 .25
5 . 1924 1 . 0810 .25

3 1 . 3023 1 . 1351 .25
2 0 1 0 .25
3 . 1324 1 . 0450 .25

for the case of a rectangular plate having the
sides =0, ¢ simply supported and the sides
y=0, b clamped.

12.2 EFFECTS OF LARGE DEFLECTIONS

The term ‘‘large deflections’” when applied
to plate theory is somewhat misleading, for
the deflections involved are generally not
large relative to the inplane dimensions of the
plate; indeed, they are usually of a smaller
order of magnitude. Use of this term usually
implies that the transverse deflection is suffi-
ciently large to cause further stiffening of the
plate because of membrane forces generated
by the deflection. The magnitude of deflec-
tion required for this effect to be significant
depends upon, for one thing, the precise
boundary conditions of the plate. Thus, for
example, the term ‘‘simply supported” is no
longer completely definitive, for the degree of
restraint placed upon the two inplane com-
ponents of displacement must also be specified.

In deriving the equations of equilibrium in
the appendix the assumption is made that the
slope of the middle surface relative to its
undeflected plane remains small in order that
the sines of the angles between the normals
of the deformed and undeformed middle sur-
faces can be replaced by their tangents 0w/ox
and 0w/dy and the cosines can be replaced by
unity. This assumption is usually retained in
the large deflection theory of plates and
gives equilibrium equations (A.5), (A.6), and
(A.8) found in the appendix. However, strain-
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Ficure 12.2.—Ezxperimental and theoretical frequency
parameters in water, air, and a vacuum. (a) Mode 1.
(b) Mode 2. (¢) Mode 3. (d) Mode 5. (¢) Modes
4 and 6. (After ref. 12.7)

displacement equations (A.11) are generalized
to include terms of the next order; that is

_ow_ow 1wy )

“=2z “oF +2<‘a‘5

_ou__ow 10wy,
o=3a—233+5(50) - (12.25)
_on,ou_, O dww
Yor= bx+by 2szay+bzay4

Equations (12.25) are then substituted into
equations (A.18) or (A.19) and then into
equations (A.6). It isfound that the additional
terms in equations (12.25) which are even in
z drop out in the bending moment integrations,
namely, equations (A.20(d)), (A.20(e)), and
(A.20(f)), leaving the fourth-order equilibrium
equation (A.27) unchanged.

IV IIIIIIIFIIIY YOI IIIIIINIII

———— et o e e 0, ]

v
2 3
VI IIIIFIIIIVA Lo LLLLLLLLLLLLLL
| |
! ]
| |
| |
| |
| I
—]

Air  ——
Water =~~~
Figure 12.3.—Comparison of node-line locations in air
and water. Plate 10; a/b=1; h/b=0.0131. (After
ref. 12.7)

Another equation is obtained from the equa-
tion of compatibility of strains for the middle
surface. By using equations (12.25), this is
found to be:

O,
oy’

(Do vy (WY dwdw
02 0xdy \0xQy/ a*oy’

(12.26)

The formulation is simplified when an Airy
stress function ¢, defined by

% )
61:8:’}5
a2
o= gx—‘ﬁ e (12.27)
__ %
=" 3z oy J

is introduced. This guarantees that the inplane

. equations of motion (eqs. (A.5)) are identically

satisfied. Substituting equations (12.27) into
equation (12.26), using equations (A.19),
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Fieure 12.4.—Frequency variation with depth of total
immersion in water. (After ref. 12.7)
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Ficure 12.5.—Frequency change for surface-piercing
plates. Plate 8; a/b=5; h/b=0.0238. (After ref.
12.7)
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Ficure 12.6.—Virtual mass function for rectangular
plates. (After ref. 12.8)

(A.20(a)), (A.20(b)), and (A.20(c)), gives for the
isotropic plate:

5 2oy Do (D). dudly
s 2oz o o E (bxby Yy by2:|
(12.28)
The equilibrium equation becomes
o*w 0w d%p , D*wdp
4 VW (YWY ,00Ye
DVt r =M o ar H o 22
'w %
—25zog0w0y) (1229

It is observed that equations (12.28) and (12.29)
are both nonlinear.

Equations (12.28) and (12.29) were derived
for the static case by Von Kdrmén (ref. 12.11).
They were extended to the dynamic case and
generalized further by Herrmann (ref. 12.12).

12.2.1  Circular Plates

Wah (ref. 12.13) used the Berger (ref. 12.14)
simplication of the Von Kérmén equations to
study the problems of the circular plate having
either a clamped or simply supported boundary.
The plate is constrained against inplane dis-
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‘placement at the boundary in both cases. The
differential equation to be solved is
4 " o*w
Dviy—NV w—l—pa;:O (12.30)

where, for the axisymmetric modes, NV is defined

by
_12D f (bw)
P rdr
For the solution of equations (12.30) and

(12.31), a Galerkin procedure is proposed that
uses a deflection function

(12.31)

W=7 O:R,(r)r(t) (12.32)

where the terms R, are the normal modes of
the linearized, small-deflection problem (cf.
ch. 2). For the nonlinear problem, the
7¢ will not, in general, be sinusoidal functions
of time. By taking only the first term of equa-
tion (12.32), the following nonlinear differen-
tial equation in time is found:

Tt ’+[120(h> M=

(12.33)

where p is the small-deflection frequency as-

sociated with B, and

f( ' rdr
—f Rirdr

The solution of equation (12.33) is in terms of
elliptic integrals. The resulting ratio of linear
frequency to nonlinear frequency as a function
of the ratio of center deflection to plate thick-
ness is shown in figure 12.7.

Further information is given in reference
12.13 for estimating stresses during vibration.
A nondimensional radial bending stress 7/ is
plotted in figure 12.8 as a function of the
amplitude-thickness ratio. Similarly, a non-
dimensional radial membrane stress & is
plotted in figure 12.9. Superposition of these
stresses gives the total stress.

Yamaki (ref. 12.15) applied the Galerkin
method to the Von Kérmén equations (12.28)
and (12.29) themselves. When only axisymmetric

(12.34)
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FiaurE 12.7—Ratio of linear (small-deflection) fre-
quency to nonlinear (large-deflection) frequency as a
function of amplitude-thickness ratio for circular
plates; v=0.3. (After ref. 12.13)

deformations in polar coordinates are con-
sidered, they become:

Eowdw
Vip=— >
’"aa" a’;md,bz (12.35)
4 _'w w
Dviw+p P ror or

Altogether, four sets of boundary conditions
were considered; the particular ones used de-
pended upon the degree of restraint placed
upon both the transverse and inplane displace-
ments. The cases considered were

Case I(a): w=M,=N,=0
Case 1(b): w=M,=u=0
Case I1(a): w=0w/or=N,=0
Case 11(d): w=dw/dr=u=0

(on boundary)

(12.36)
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amplitude vibrations of circular plates. (After ref.
12.13)

Deflection functions were taken in the form

w(r)=hr(t) [1+01 <§>2+02(2>4] (12.37)

where C; and C; were chosen to satisfy the
transverse boundary conditions exactly; that is,

. __6+2
CaseI: = B
L1t
02—5_|_V (12.38)
CaseIl: C,=—2
02=].

Substituting equation (12.37) into the first of
equations (12.35) and letting

_ o=1() (1)
give

- [e(3)+a()

o) k)] wo

(12.39)
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Ficure 12.9.—Nondimensional membrane stress in
large-amplitude vibrations of circular plates. (After
ref. 12.13)

where C; is a constant determined from the
inplane boundary conditions of equations
(12.36) ; that is,

Cases I(a) and II{a): 1
Ov=— 57 (30TH4CL0r+203)

Cases 1(b) and T1(b): -
1 2
Oy=— m [3(8—»)C"?
(12.41)

Finally, the Galerkin technique is applied to
approximate the second of equations (12.35);
the result is the ordinary differential equation

dir | o1 ges 12.42
qp TeT =0 (12.42)
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where of and $? are given in table 12.4 for the
four cases defined by equations (12.36). The
solution of equation (12.42) results in figure
12.10, which shows the effect of amplitude-
thickness ratio upon the ratio of linear-to-
nonlinear frequency for the four cases for »=0.3.

TaBLE 12.4.—Coefficients for Eq. (12.42) for the
4 Cases Defined by Eqs. (12.36)

Value for case—
Coefficient
I(a) I(®) ‘ I1{a) ‘ 11(b)
alpad| ER3____ ___ 2. 242 2. 242 9. 768 9. 768
Bpat/ER3_______ . 591 4. 148 1. 429 4. 602

Further discussion of the application of the
Galerkin method to the problems just described
was given in reference 12.16.

The nonlinear case of the completely free
circular plate having inplane forces caused by
the thermal gradient

r-f-(2)]

was examined by Massa (ref. 12.17) as an
extension of his previous work (see discussion
of completely free circular plates (sec. 10.1.3))
for the linear problem. A deflection function

(12.43)
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Fiaure 12.10.—Ratio of linear to nonlinear frequency
as a function of amplitude/thickness ratio for circular
plates having boundary conditions defined by
cequations (12.36); »=0.3. (After ref. 12.15)

wr, )=R{@)r () (12.44)
is taken for the first axisymmetric mode,
where R(r) is the mode shape of the linear
problem; that is,

\2 N\ 7\®
R(r)=1—2.6161 (ﬁ) +1.1090 (ﬁ) —0.2464 <E,)

(12.45)

and 7(¢) is an unknown function of time. An
energy formulation of the problem is made by
means of Hamilton’s principle for »=0.3.
Solutions for the nonlinear frequencies are in
terms of elliptic integrals, but approximate
expressions of a more useful type are also
found.

For aTw?/h?<(aTw?/h?) e, or for aT@?/h?
= (aT@*/hY) ¢, in the range Wy =+2W,, the
square of the nonlinear frequency can be
approximated by

w21, 4273:@ 1—(0.2750aTa?/h)

10.6772 (Wm) :| (12.46)

where « is the coefficient of thermal expansion,
and (aToa?/h?). is the critical value of the
parameter aTqa?/h? at which buckling occurs,
according to the linear theory; that is,

(aToa?/h2) x=3.62 (12.47)

The term Wy, defines the nonlinear deflection
amplitude measured at the center, and W, is a
parameter defined by

Wo=1.0524h+/0.2759(aToa?/h*)—1 (12.48)

For aTw?/h = (aTww?/h?) ., and We<Wn=
V2W,, the corresponding expression is

wi2=3. 353Eh W"‘) [1+1 1075<W )
(0 2759"‘T oo —1)] (12.49)

In figures 12.11 and 12.12 the square of the
ratio of the nonlinear frequency to the iso-
thermal linear frequency (wg="7.4273Eh*/pa’,
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Ficure 12.11.—Effect of temperature upon the non-
linear frequeney of a completely free circular plate
for various amplitude/thickness ratios; »=0.3; one
nodal circle.
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Fieure 12.12.—Effect of amplitude/thickness ratio
upon the nonlinear frequency of a completely free
circular plate for various temperature parameters;
»=0.3; one nodal circle.

with one nodal circle) is plotted against the
parameters aTw?/h and Wy/h, respectively.
The first mode having two nodal diameters
is also studied in reference 12.17 for the same
thermal gradient given by equation (12.43). A

deflection function
w(r,0,t) =R(r) (cos 260) () (12.50)

is chosen, where

R(r)=<£>2|:1.2709—~0.3500 (2>2+ 0.07911 (2)4]

(12.51)

For aTyw*/k? = (aTo0?/h?) .=3.62, the square of
the nonlinear frequency is approximated by

(12.52)

and for aT@*/h*>(aTo@*/h?).. there results

3
wiZ=6. 2169%(1-1—0.000345“110“ ) (12. 53)

The variation in the square of the ratio of the
nonlinear frequency to the isothermal linear
frequency (@,;=2.6294Eh?/pa®, with two nodal
diameters) is depicted in figures 12.13 and
12.14.

12.2.2 Rectangular Plates

The earliest paper dealing with large-ampli-
tude vibrations of rectangular plates was pub-
lished by Chu and Herrmann (ref. 12.18) in
1956. In this paper the general equations
derived in reference 12.12 were specialized to
the Von Kérmén form of equations (12.28)
and (12.29) and were approached by means of
the perturbation technique. The problem of
all edges simply supported was studied in
detail. For this problem, the boundary con-
ditions involving w are given in equations
(4.18).
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Figure 12.13.—Effect of temperature upon the non-
linear frequency of a completely free circular plate,
for various amphtude/thlckness ratios; »=0.3;
two nodal diameters.
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Figure 12.14—ZEffect of amplitude/thickness ratio
upon the nonlinear frequency of a completely free
circular plate for various temperature parameters;
ry=0.3; two nodal diameters.

Partly in accordance with the later work by
Yamaki (ref. 12.15), four cases of inplane
restraint will be defined (see fig. 10.5):

Case (a): N,=N,,=0 on 2=0, ¢ A
N,=N,=0 on y=0, b

Case (b): u=N_,=0 on =0, ¢
v=N,,=0 on y=0, b

Case (¢): P,=N,,=0,u=Constant on =0, ¢
P,=N,,=0,v=Constant on y=0,b

Case (d): u=v=0 on =0, a
u=9=0 on y=0, b

Y

(12.54)
where P, and P, are defined by

b a
P,= f N.dy P,= f N,dz (12.55)
i) 1] .

Thus in case (c) there are edges which are kept
straight by a distribution of normal stresses,
the resultant of which is zero.

In reference 12.18, case (b) was treated. A
transverse deflection function

w=A,7(t) sm—a—sin%x (12.56)

was taken: the result is a nonlinear equation for
7 in the form of equation (12.42). The ratio of
linear frequency to nonlinear frequency is given
by

201+ (a/bYIK
{(1+ bz) +3(A°>
{3

where K=K(k) is the complete elliptic integral
of the first kind and

21-+(@/b)"F
@R8]

Equation (12.57) is plotted in figure 12.15 for
»=0.318. The maximum membrane stress is
given by

= S 2)<A°)<2+ub2 u2> (12.59)

(I/Z 1/2
5}

(12.57)

(12.58)




312 VIBRATION OF PLATES

1.00
095
0.90 \
0.85
oy
818
3|1g 080
g @« Aspect Ratio
e a/b=1.00
HE » 9% N\
e = 075 « 2025 \
3 S w =0.00 \\\
0.70 \
065
060
O 02 04 06 08 10

Amplitude / Thickness of Plate

Ficure 12.15.—Effect of large amplitudes on the
frequency of a SS-SS-8S-8S rectangular plate;
v=0.318. (After ref. 12.18)

and the maximum bending stress by

2 2
ab=§(‘%—°>(g> 1r2<1.111—l—0.353%§ (12.60)

That is, the membrane stress increases with the
square of the amplitude, whereas the bending
stress increases only linearly. The problem was
also formulated in reference (12.18) by the
principle of conservation of energy.

Yamaki (ref. 12.15) extended the work to
include the first three cases of inplane restraint
given in equations (12.54). A deflection func-
tion like that of equation (12.56) was used, and
the stress function was obtained from equation
(12.28). Equation (12.29) was approximated

by the Galerkin method. The equation in
time which results for a/b=1 is

2 3
gtz fik [3(11 rtar ]4) (12.61)
where a takes on the values 0.06492, (3—y»)/
8(1+4»), and 1/8 for cases (a), (b), and (c),
respectively. The ratio of linear to nonlinear
frequency for the square plate is plotted in
figure 12.16 for the three cases. For case (b)
the results are identical with those of reference
12.18.

In reference 12.15, the problem of all edges
transversely clamped (cf. eq. (4.25)) was also
analyzed. A deflection function

w(z, y, )y=hr(?) 00821%0082%1/ (12.62)

(see fig. 4.18) was used. The equation in time
which results is

167r4Eh3
dt2 9 ot 3(1

1'+a‘r ]—0 (12.63)

where « takes on the values 0.14903, 0.16656-
(0.14063)/(1—v»), and 0.16656 for cases (a),
(b), and (¢), respectively. The ratio of linear
to nonlinear frequency is plotted in figure 12.17
for the three cases when a/b=1.
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Ficure 12.16.—Effect of large amplitude on the
frequency of a SS-SS-SS-SS square plate for three
cases of inplane edge restraint; »=0.3. (After ref.
12.15)
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Nash and Modeer (vef. 12.19) and Wah (ref.
12.20) extended the Berger (vef. 12.14) simpli-
fied formulation for the large-amplitude static
deflection of plates to the nonlinear vibration
problem. The first paper used an energy for-
mulation with Hamilton’s principle; the second
used a modified form of the Galerkin method.
Both papers solved the problem of the rectan-
gular plate having simply supported edges of
the type given by case (d) of equations (12.54).
Both obtained results for frequency ratio versus
amplitude ratio which were in substantial
quantitative agreement and, in contrast with
those of reference 12.18, these results do not
depend upon the aspect ratio af/b of the plate.
These results are shown in figure 12.18 (from
ref. 12.20). In this figure a curve is also
plotted for the infinite strip, in accordance
with elementary beam theory.

In reference 12.20 the problems of the
SS-C-SS-SS and SS-C-SS-C plates were also
studied. Deflection functions for w were
taken which are the fundamental mode shapes
of the linear problem (see secs. 4.2.2 and
4.2.1). The effect of amplitude upon fre-
quency is shown in figures 12.19 and 12.20 for
these two problems.

The existence of normal modes for the non-
linear problem of the SS-SS-SS-SS plate is
discussed in reference 12.21. Large-amplitude

1.0
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> g 0.9
g = {b) (c) (a)
Jleo b c a
g|c 0.8 A
5[5 o7 \
2
06
0 04 08 1.2 1.6 20
Amplitude
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Fieure 12.17.—Effect of large amplitude on the
frequency of a C-C-C-C square plate for three
cases of inplane contraint; »=0.3. (After ref. 12.15)
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SS-88 plates; »=0.3. (After ref. 12.20)
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vibration of rectangular plates is also discussed
in references 12.22 and 12.23.

12.3 EFFECTS OF SHEAR DEFORMATION
AND ROTARY INERTIA

In 1877 Lord Rayleigh (ref. 12.24) showed
how the addition of “rotatory” (in the language
of his day) inertia effects to those of classical
transitional inertia affected the flexural vibra-
tion frequencies of beams. Timoshenko (ref.
12.25) in 1921 showed that the effects of shear
deformation, previously disregarded, were
equally important. It is well known that both
effects serve to decrease the computed fre-
quencies because of increased inertia and flexi-
bility of the system.

An extension of plate theory to account for
shear deformation was proposed by Reissner
(ref. 12.26) for the static deflection of plates,
and a significant number of papers by others
have followed this approach. A first presenta-
tion of a consistent theory for the dynamic
behavior of plates, including the effects of
shear deformation and rotary inertia, was made
by Uflyand (ref. 12.27). However, Mindlin’s
1951 paper (ref. 12.28) unquestionably made
the most profound impact upon the subject.

VIBRATION OF PLATES

In this paper a consistent set of equations re-
lating moments and transverse shears to
transverse deflection and bending rotations was
presented. The basic sixth-order system of
partial differential equations of motion was
derived, along with potential and kinetic
energy functions. A part of this paper will be
summarized below.

In addition to exposing the theory, Mindlin
and his colleagues have done much to apply
the theory and to develop it further, as observed
by references 12.29 to 12.46. In references
12.29 through 12.32 the theory is applied to the
cylindrical bending of AT-cut quartz crystal
plates. The erystal plates are idealized as an
anisotropic material having constants defined
by equation (A.12) of the appendix in which

Q1= 9y = 34 = (15= Oos = G5 =Ugg = Bs==0

and the thickness s taken in the z-direction.
Crystal plates are also discussed in references
12.36 to 12.46. Because of the highly special-
ized form of anisotropy involved, the numerous
results reported in these papers will not be dis-
cussed here. The only results from references
12.28 to 12.46 which will be discussed in this
section will be those dealing with isotropie
plates.

The essential features of Mindlin’s theory
(vef. 12.28) will now be discussed. The discus-
sion will be limited to the bending (with no
inplane forces) of isotropic plates. When the
effects of shear deformation are included, the
kinematic relationships given in equations

(A.9) become

’U/='—Z¢I(Z, Y, t)

D=—z‘l’ﬂ($7 y)t) } (1264)
'w‘:w(x; Y, t)

where ¥, and ¥, are the local rotations (changes
of slope) in the z- and y-directions, respectively,
of lines originally normal to the midplane
before deformations. That is, the rotations
¥, and ¢, are due to bending. The deflection
of the middle surface w is then composed of
two parts—one due to bending and the other
due to shear deformation. These modes of
deformation are shown in figure 12.21. Equa-
tions (12.64) are substituted into strain-
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Figure 12.21.—Modes of bending and shear

deformation.

displacement equations (A.10), then into stress-
strain equations (A.19), and the bending mo-
ments are integrated by means of equations
(A.20(d)), (A.20(¢)), and (A.20(f)), giving

=_D<a¢z B )

(e 2)

__Da—) oy, %)
M= 2 oz ' Yy

L (12.65)

The transverse shearing forces are obtained
by integrating the transverse shearing stress
over the thickness; that is,

= f Tez dz
n/2

h /2

Q= T dz

—h/2

(12.66)

315

Substituting the stress-strain relationships

Tox™ G’Yza: }
Tyz= G‘Yﬂz

and the sfr&in—displacement equations

(12.67)

_ou bw
~ oz +

ow bv
Ty oz

(12.68)

into equations (12.66) and using equations
(12.64) gives

Qz=—xzah(¢z———

(12.69)
Q=—«*Gh (‘h_
where «* is a constant which is introduced to
account for the fact that the shear stresses
7, and 7,, are clearly not constant over the
thickness —h/2<2< h/2 as the simple kinematic
relationships, equations (12.64), would lead
one to believe. In Reissner’s static theory
(ref. '12.26) «* was taken as 5/6. Mindlin
(ref. 12.28) chose « so as to make the dynamic
theory consistent with the known exact fre-
quency for the fundamental “thickness shear”
mode of vibration. More will be said about
this in the following discussion.
The right-hand sides of moment equilibrium
equations (A.8) are made consistent with
the present theory; they become

Q _OM, OM,, ph*d%,
“"ox Oy 12 off
0 _OM., dM, ph*d%,
v dx oy 12 ot

(12.70)

When inplane forces and transverse external
loading or body forces are neglected, equation
(A.6) becomes

0Q: , 09, aw
s T oy P or

(12.71)
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Substituting equations (12.65) and (12.69)
into equations (12.70) and (12.71) yields the
fundamental set of equations for the system

g[(l_y)vwr(lJrv)‘% %%+%)] \

ow h2 0%,
~eah(v—g; )= 3¢

D 0 (Y, , OYy
5[(1_”)V2¢u+(1+1’)a—y a'f‘—ag):l >
ow\ _ ph® 0%,
—K20h<¢,,——5?; ~ot o,
O O\ _ O'w
K20h<v2w—a—3;>—pa; ]
(12.72)

where V2 is the usual Laplacian operator. It
is observed that the system of equations
(12.72) is of the sixth order in the three de-
pendent variables ¢, ¥,, and w. Thus, with
this higher order plate theory, three boundary
conditions are enforced along each edge.

In reference 12.28, equations (12.72) are re-
written into a form much more amenable to
solution by the introduction of three potential
functions. It is from this form that many of
the useful results obtained from references
12.33 to 12.37 and given later in this section
were derived. The reader is referred to the
individual papers for the details of these ma-
nipulations and solutions. Similarly, the exten-
sions of the theory to include inplane forces,
large deformations, and thermal effects (refs.
12.12, 12.40, 12.47, and 12.48) will not be
discussed here.

Thickness-shear vibration
modes of the form (ref. 12.29)

u=f(z)e“°‘}

v=w=0

is defined by

(12.73)

It can be shown (rvef. 12.29) that, for a plate
having infinite dimensions in the z- and y-
directions, the exact frequency of the first
antisymmetric mode of thickness-shear vibra-
tion is

- q

It can be further shown (ref. 12.28) that, for
equations (12.72) to give results consistent
with equation (12.74), «* must be chosen for
an isotropic plate to be

(12.75)

Further theoretical discussion of the effects of
shear deformation and rotary inertia upon the
vibration of plates can be found in references
12.49 to 12.61. For the most part, these ref-
erences give alternative derivations of sys-
tems of governing equations, in some cases
concluding with Mindlin’s equations and in
other cases obtaining substantially different
formulations.

12.3.1

Consider first a circular plate having a
clamped boundary. (See fig. 2.1.) For axi-
symmetric modes of vibration the sixth-order
system of differential equations (12.72) (when
converted to polar coordinates) reduces to a
fourth-order system. The boundary condi-
tions are

Circular Plates

w(a) =y¢,(a)=0 (12.76)
That is, the change in slope due to bending
is zero at the boundary. Applying equation
(12.76) to the solutions of the differential
equations, which are in terms of Bessel func-
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Fieure 12.22.—Ratio of plate frequency to thickness-
shear frequency for a clamped circular plate derived
from classical theory; »=0.312. (After ref. 12.35)
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tions (see refs. 12.33, 12.34, and 12.62), yields
a set of characteristic equations for the
frequencies.

Results for the axisymmetric modes were
presented by Deresiewicz (vef. 12.35). The fre-
quency ratio w/w derived from the classical
theory of plates is plotted in figure 12.22. 'With
the use of the notation of the chapter entitled
“Circular Plates” (ch. 2), the circular fre-
quencies of the plate can be obtained from

w [GZ‘\/ p/D=>\12

where A; are the eigenvalues determined from
the characteristic equation. By using equa-
tions (12.74) and (12.77), it is easily seen that
the ratio of the plate flexural frequency to the
thickness-shear frequency w is

i <2a> 3(1 »)

where the subscript ¢ on « and X\ has been
dropped but is implied. Figure 12.22 is conse-
quently & plot of equation (12.78) for a par-
ticular value of Poisson’s ratio »=0.312.

Figure 12.23 is a corresponding plot with the
plate frequencies w obtained by the theory of
this section, although this figure is plotted over
a smaller range of w/@, thereby emphasizing
the region in the vicinity of w/@=1. In com-
paring figures 12.22 and 12.23, it is obvious that
consideration of shear deformation and rotary
inertia has the effects of—

(i=1,2,...) (12.77)

(12.78)
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Fraure 12.23.—Ratio of plate frequency to thickness-
shear frequency for a clamped circular plate derived
from the Mindlin theory; v=0.312. (After ref. 12.35)

(1) Lowering the fundamental frequency for
a given diameter-thickness ratio

(2) Rendering more frequencies in a given
range of w/w for a particular plate

(3) Completely altering the curves in the
high-frequency range w/e >1

The case when the circular boundary is
simply supported was attempted by Tomar (vef.
12.63). Again, when only the axisymmetric
modes are sought, only two boundary condi-
tions are required; namely,

w(e)=M,(a)=0 (12.79)
In reference 12.63 the equations of motion (egs.
(12.72)) are retained in rectangular coordinates,
and their finite-difference equivalents are writ-
ten. Because of the choice of coordinate
system, a rectangular finite-difference grid must
be fitted to a sector of the circular plate. This
is accomplished by using nine mesh points
within one octant obtained from a square grid
having elements of dimension ¢/4. Fundamental
frequency parameters 4w?a®p/Eh for various
thickness-radius ratios given in table 12.5 and
figure 12.24 for »=0.3 are taken directly from
reference 12.63. In addition, the frequency
parameter wa%/p/D is presented in table 12.5
for direct comparison with the classical result
way/p/D=4.977 (see sec. 2.1.2) which applied
for very small values of hfa. From this com-

- parison it appears that the accuracy of the

results given in table 12.5 and figure 12.24 is
highly questionable.

Numerical results for the completely free cir-
cular plate were found by Mindlin and Deresie-

TaBLe 12.5.—Fundamental Frequency Param-
eters for a Simply Supported Circular Plate
According to the Mindlin Theory; v=0.8

hla 4w?a?p wotVp/D
Eh
0.2 0. 43365 5. 4403
.4 1. 44326 4. 96242
.6 2. 53474 4. 38426
.8 3. 49852 3. 86308
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Ficgure 12.24—Fundamental frequency parameters
for a simply supported circular plate; »=0.3. (After
ref. 12.63)

wicz (refs. 12.33 and 12.34). In this case the
boundary conditions are

M, (a)=M,(a)=Q,(@)=0  (12.80)
The twisting-moment condition is identically
satisfied by symmetry for the axisymmetric
modes. In reference 12.34 frequency param-
oters for axisymmetric modes were deduced
when »=0.312. Plots of the frequency ratios
/& discussed earlier in this section are depicted
in figures 12.25 and 12.26 for the classical
theory and the Mindlin theory, respectively.
Results for the antisymmetric modes (having
one nodal diameter) were computed in refer-
ence 12.33 and are presented in figure 12.27,
again for »=0.312.

In reference 12.64, Callahan used the Mindlin
theory to derive characteristic determinants
corresponding to eight separate sets of con-
tinuous boundary conditions for circular plates.

All sets are presented in forms conducive to
computer programing and for general vibration
modes. No numerical results were given.

12.3.2 Rectangular Plates

Tt was shown in reference 12.28 that equations
(12.72) can be uncoupled (after the time is
taken out by assuming harmonic response) by
defining three potentials w;, w., and H by the
equations:

bt 1) 2 (41) 21 37
¢u=(A1—1)%—‘Z‘+(A2_1)?a£;_%I (12.81)
W=+ W, ‘

where

A=2[1+g—(—=1)'B}7*  (j=1,2)
B=[(1—g)*+49@/w)1"? (j=1,2) r (12:82)

g=x*(1—7)/2

and where w/@ is the ratio of plate frequency
to thickness-shear frequency used earlier in this
chapter (@ is defined by eq. (12.74)), « is
given by equation (12.75), and » is Poisson’s
ratio. Substituting equations (12.81) and
(12.82) into equations (12.72) results in the
three uncoupled equations

(V2+8)w =0
(V24 85)wy=0
(V*+HYH=0

(12.83)

TR R

ALLERMANNNNNN

IR

Y ARAANNNSNN

0.2 \\\\i‘\\\EQEE

o0 4 8 12 16 20 24 28 32 36 40
2a/h

Ficure 12.25.—Ratio of plate frequency to thickness-
shear frequency for the axisymmetric modes of a
completely free circular plate derived from eclassical
theory; »=0.312. (After ref. 12.34)
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FicUre 12.26.—Ratio of plate frequency to thickness-shear frequency for the axisymmetric modes of a completely
free circular plate derived from the Mindlin theory; »=0.312. (After ref. 12.34)
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Figure 12.27.—Ratio of plate frequency to thickness-shear frequency for the antisymmetric modes of a completely
free circular plate derived from the Mindlin theory; »=0.312. (After ref. 12.33)

where Thus the potentials w;, w, and H may be

» _ ) regarded as uncoupled vibration modes having
B=6(o/a) (1 +g— (— DB (j=1, 2)}

P (/@) — 1A

the frequencies w;, w;, and w3, respectively.
The problem of the rectangular plate simply
supported on all edges was solved by Mindlin,
(12.84)  Schacknow, and Deresiewicz (vef. 12.36) by
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means of the approach just given.  In terms of
a coordinate system z, ¥ having its origin at the
center of the plate (cf. fig. 4.4), the boundary

conditions are:
on t=+4a/2
( / )} (12.85)

w=M,==¢,=0
w=M,=y,=0 (on y=+b/2)

It is easily seen that
wy=sin oy sin B,y
wy=sin a,Z sin Byy (12.86)

H=cos a5 sin B3y
are solutions to equations (12.83), provided that
o +B=15;
o;+6,=35;
oG+Bi=7"

(12.87)

Substituting equations (12.86) into equations

(1285) giVGS
2.88

a;=r,r/a

By=s;m[b
where r; and s; are even integers. The modes
given by equation (12.86) are then odd in both
zandy. Formodes even in z, sin a;zand cos ax
are interchanged in all three of equations
(12.86) and the r, are odd integers. Similarly,
for modes even in y, sin B,y and cos B are
interchanged, and the s, are odd integers.

Substituting equations (12.88) into equations

(12.87) and solving for the frequency ratios
give

2(%)2=1+§<1+g)¢3+<—1>m, (j=1,2)
(&)

(12.89)
where
R .
2 2
ﬂ;={[1+§(1+g)ﬁ] - (12.90)
TN
4g'/’!} (.7 1’2’3)J

In figure 12.28 (taken from ref. 12.36) the
three sets of frequency ratios given by equations
(12.89) are plotted against the length-thickness
ratio as a function of the parameter ¢, where

p=[F (a2 (j=1,2,8) (12.91)

and where »=0.312. From figure 12.28 it can
be seen that for a given plate and for a given
mode number 7 the frequencies are ordered
according to w<ws<lw; and that w, and w, are
much greater than w; except for very thick
plates.

In figure 12.29 (taken from ref. 12.36) a
more detailed plot of the frequency ratios is
indicated in the vicinity of w/w =1 for a fixed
ratio s;2/b=0.2 and for »=0.312. This cor-
responds to the particular case when the dis-
tance in the y-direction between node lines
(including the boundaries) is five times the
plate thickness. In this figure ri=m, ry=n,
and r;=g; that is, the curves m, n, g=constant
give the frequencies of the w;, w,, and H modes,
respectively. In this case, each mode has a
low-frequency cutoff given by

2(Z) =1+ +(-nms G=1,2)
w* 2
(3_@)=1+(¢§“)2
(12.92)
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Freure 12.28.—Ratio of plate frequency to thickness-
shear frequency for a SS—SS-SS-SS rectangular plate
derived from the Mindlin theory; »=0.312. (After
ref. 12.36)
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Fieure 12.29.—Ratio of plate frequency to thickness-shear frequency for a SS-SS-SS-SS rectangular plate when
the distance between nodes along the width is five times the thickness; »==0.312. (After ref. 12.36)

where ¢; and Qf are given by equations
(12.90) with r/h/a=0. These formulas give
the values 1.0198 and 1.0704 shown in figure
12.29.

The mode shapes corresponding to w;, ws,
and H are depicted in figure 12.30 (taken from
ref. 12.36). The mode shape corresponding to
classical theory is shown in figure 12.31, which
is also from reference 12.36. Of the three
modes, the w, mode most closely resembles the
classical mode; hence, it is called a “flexural”’
mode. As a/h—e, this mode approaches the
classical mode, and its frequency approaches
the classical frequency given by equation
(4.20). For the w, mode the thickness-shear
deformation predominates. The H mode shape
(fig. 12.30(c)) contains no average deflection,
but twists the plate; hence, it is called a “thick-
ness twist’”” mode.

In references 12.65 and 12.66 the problem of
the simply supported plate is attacked by the
finite-difference method. Mindlin’s equations
are the basis for this method in reference 12.65,
whereas in reference 12.66 an alternate set is
used. Numerical results for frequencies are
given in both papers, but they are inconsistent

with classical theory and will not be repeated
here.

A stiffened plate was treated as an ortho-
tropic plate for purposes of analysis in refer-
ence 12.67. The effects of rotary inertia were
considered, but shear deformation was ignored.
In this case the system of governing differential
equations remains fourth order. HEquation
(9.22) is generalized to

otw otw dtw
De s t 2D et Dy
o? o%w 0w

where I, and I, are the moments of inertia of
the stiffened plate about axes parallel to the
y- and z-directions, respectively.

For a rectangular plate simply supported
along the edges z=0, ¢ and y=0, b, it is appar-
ent that the boundary conditions will be

satisfied by the deflection function
W(z, y)=sin ax sin Sy (12.94)

where a=mnr/a, B=nx/b, and m and n are
integers. Substituting equation (12.94) into
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(c)

Ficure 12.30.—Mode shapes for a SS-SS-SS-S8
rectangular plate with consideration of shear de-
formation and rotary inertia. (@) w; mode. () w.
mode. (¢) H mode. (After ref. 12.36)

equation (12.93) and assuming harmonic time
response give the frequency equation

w2 __Dza4+2Dzud262+Dyﬂ4
T et Lt L

It is seen that the effects of rotary inertia enter
as terms in the denominator of equation (12.95)
with a resultant decrease in frequency from
the classical theory.

In reference 12.67, theoretical results were
obtained from equation (12.95) and compared
with experimental data for an aluminum square
plate having the cross section and dimensions

(12.95)

2m_
a

Ficure 12.31.—Mode shape for a SS-5S5-SS-88
rectangular plate, derived from classical theory.
(After ref. 12.36)

=

a=b=(I"
hs= 0.275"

he 0.065"
o= 0063"
az 0625"

F1guRe 12.32.—Dimensions of stiffened plate. (After
ref. 12.67)

shown in figure 12.32. A comparison of
theoretical and experimental results for this
plate is given in table 12.6.

The problem of the SS-F-SS-F rectangular
plate was also analyzed in reference 12.36.
The boundary conditions are:

M,=M,,=Q,=0
w=M,=¢,=0

(on &= +a/2)
(on 7= £ b/2) (12.96)
Tt should be noted that here the simply sup-
ported edges are along y= +b/2; this is unlike
the previous convention used in section 4.2.5.
Solution functions in the form of equations
(12.86), which exactly satisfy the simply
supported edge conditions, were again used. It
is most interesting to note that the free edge
conditions are also satisfied exzactly (unlike in
the classical theory) by this simple solution
set upon substituting equations (12.86) into
the first three of equations (12.96). This yields
a characteristic determinant of the third order
which is solved for the frequencies. Thus the
modes w;, wy, and H do not remain uncoupled
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TaBLE 12.6.—Theoretical and Experimental Cyclic Frequencies for a SS-SS-SS-SS Stiffened
Rectangular Plate
Cyclic frequency, cps, for values of mode
no. m of—
Mode no. n Derivation
1 2 3 4 5
1 ___. Experimental _ . ____________________ 244 340 538 800 1152
Rotary inertia negleeted__________________ 238 336 534 831 1220
Rotary inertia included_._.__________.____ 237 332 520 793 1135
e Experimental . ___________ . __ ... 794 940 1020 1268 1580
Rotary inertia neglected..__._____________ 880 954 1100 1344 1689
Rotary inertia ineluded._ ... _____________ 877 941 1070 1282 1570
. S Experimental . _ _________________________ 1700 1800 1840 | 2110 2340
Rotary inertia negleeted__________________ 1950 2020 2150 | 2349 2638
Rotary inertia included.. . ________________ 1940 1983 2090 2238 2451

as in the SS-SS-SS-SS case discussed previ-
ously in this section.

The ratio of plate frequency to thickness-
shear frequency is plotted in figure 12.33 for the
particular ratio s//6=0.2 (as in fig. 12.29).
The broken and solid curves are for modes odd
and even, respectively, in .

12.3.3 Other Shapes

Callahan (refs. 12.64 and 12.68) treated the
problem of the elliptic plate, including the
effects of shear deformation and rotary inertia.
Mindlin’s equations were transformed into
elliptic coordinates, and series solutions to the
differential equations were found in terms of
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Figure 12.33.—Ratio of plate frequency to thickness-shear frequency for a 8S-F-SS-F rectangular plate when the
distance between nodes along the direction parallel to the free edges is five time the thickness; »=0.312.
(After ref. 12.36)
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Mathieu functions. The boundary conditions
are satisfied by finding the roots of an infinite
determinant, each element of the determinant
being an infinite series of Mathieu functions
containing the frequency within their argu-
ments. In reference 12.68 the infinite charac-
teristic determinants are displayed for eight
types of boundary conditions, but no numerical
results are given.

12.4 EFFECTS OF NONHOMOGENEITY

A brief survey of the literature dealing with
the vibration of nonhomogeneous plates will
now be given. Nonhomogeneity may arise
in many ways. Overall material properties
themselves may vary in a continuous manner
(e.g., & continuum representation of a fibrous
composite plate). Inclusions or holes may
occur within the plate. As can be seen from
earlier chapters, the effect of a ‘““classical” (i.e.,
cylindrical) hole, even if small, can cause a
significant effect upon the vibration frequencies
of a plate.

Some practical and commonly used types of
nonhomogeneous plates are sandwich plates
having a honeycomb, corrugated, or Styrofoam
core. These plates consist of a core material
bonded between two face sheets. Because of
the relative geometric complexity of these
structures, the theoretical analysis of their
vibrational behavior almost always assumes
that the core material can be represented as a
homogeneous, elastic continuum and, con-
sequently, the overall structure can be treated
as alayered plate. Indeed, if this representation
were not made, the plate would have to be
analyzed as a structure and, hence, would fall
beyond the scope of this work. Even with
these assumptions, the complexity of the
results and the number of parameters required
to describe the sandwich make it impractical
to report detailed numerical results in this
section.

In the most simple case, a layered plate is
made up of several layers bonded together, each
layer being homogeneous and isotropic, and the
Kirchhoff hypothesis of normals to the middle
surface remaining straight and normal is as-
sumed valid. In this case the mathematical
complication of the plate theory is minimal.

The necessary modifications of the theory are
discussed in the section of the appendix entitled
“Force and Moment Integrals” (sec. A.5). This
is the type of nonhomogeneity discussed in
reference 12.69.

Bolotin (ref. 12.70) generalized the model
for the layered plate by assuming that the plate
is composed of both ‘“hard” and ‘“‘soft” layers.
The hard layers obey the Kirchhoff hypothesis
while slippage occurs in the soft layers. In the
soft layers the inplane stresses o,, o, and 7,
are assumed to be zero, while the transverse
shear stresses r,, and 7, are constant within
the layer. On the basis of these assumptions,
a complete plate theory is developed in refer-
ence 12.70. Another formulation, based upon
the three-dimensional equations of elasticity, is
given in reference 12.71.

The theoretical work of Yu on layered plates
(refs. 12.72 through 12.83) is particularly sig-
nificant. This effort is primarily devoted to the
incorporation of shear deformation and rotary
inertia effects into the layered-plate theory.
1t is shown that these effects, particularly shear
deformation, are especially important when one
deals with conventional sandwich plates com-
posed of a relatively soft-core material con-
tained between two relatively rigid, thin face
sheets. The statement is made (ref. 12.79) that
shear-deformation effects can become impor-
tant for a sandwich plate at a flexural frequency
which may be only 1 percent of that of the
corresponding solid, homogeneous plate. It is
shown furthermore that, for ordinary sandwich
plates, the shear effect on the faces, the rotary
inertia of the faces about their own midplanes,
and the flexural rigidity of the core are negligi-
ble; of importance are the shear effect in the
core, the rotary and translatory inertias of the
core, the translatory inertia of the faces (in-
cluding the rotary effect of the faces about the
midplane of the sandwich plate), and the flex-
ural and extensional rigidities of the faces (ref.
12.75).

A one-dimensional theory was developed in
references 12.72 to 12.76, which is applicable
to the vibration of plates in modes of plane
strain. The transverse displacement w, as in
the Mindlin theory, was assumed to be con-
stant through the plate thickness. The dis-
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placements in the plane of the plate are assumed
to vary linearly through the thickness, with the
slope in the face sheets not necessarily the
same as the variation in the core.

The theory is generalized to a two-dimen-
sional variation in w in references 12.77 and
12.78 and is applied to the problem of a rec-
tangular plate simply supported on all edges.
In references 12.78 and 12.83, sets of formulas
are presented for the calculation of natural
frequencies of the simply supported rectangular
plate. Those formulas will not be reproduced
here because of their inherent complexity
(arising from the relatively complicated geom-
etry and material properties of the sandwich
plate) and the amount of explanation which
would be required.

The theory is extended to the nonlinear
(large-deformation) domain in references 12.80
to 12.82. It is shown that the basic behavior
is the same as that for homogeneous plates;
that is, the membrane stiffening due to large
deformations causes the overall stiffness of the
system to be like a “hard” spring, thus causing
an increase in frequency with increase in ampli-
tude. (See section 12.2 of this work for back-
ground information.) In particular, the non-
linear theory is applied to a rectangular plate
having immovable, hinged edges.

Further theoretical derivations of equations
for the vibrational behavior of layered plates
are made in references 12.84 to 12.86. In
both references 12.84 and 12.85 the analyses
are generalized to include orthotropic core
materials, and explicit frequency equations
are developed for the case of a plate simply
supported on all edges.

Experimental results for sandwich plates
having honeycomb and Styrofoam cores are
given in reference 12.87. Experiments were
conducted in a vacuum and data were compared
with analytical frequencies obtained from a
finite-difference solution of the classical plate
equations. It wasfound that the classical theory
is adequate for obtaining frequencies and mode
shapes, except in cases of extremely low core
stiffness.

Circular sandwich plates with linearly vary-
ing thickness were examined in reference 12.88.
Experimental frequencies were compared with

theoretical values obtained by a simple analysis
by using the Rayleigh method.

In reference 12.89 radial nonhomogeneity in
circular plates is accommodated by treating the
plate as a composite of homogeneous, isotropic
annuli and enforcing continuity conditions
across the internal junctions.

The plate consisting of a thin face sheet
stiffened by corrugated sheet (see fig. 12.34) is
analyzed in reference 12.90. It is shown that
this configuration cannot be treated as ortho-
tropic plate because the twisting-moment rela-
tion M,,=M,, is no longer applicable. A
theory for this case is derived.

In reference 12.91 an inflatable plate is
analyzed. This plate consists of two woven
cover membranes joined to each other by
closely spaced perpendicular filaments. The
space between the covers is pressurized, and the
filaments hold the cover membranes together
(see fig. 12.35). A variable-thickness plate is
obtained by using variable-length connecting
filaments. The theory developed in reference
12.91 was applied in reference 12.92 to obtain
natural frequencies of square plates having
simply supported edges. Results were com-
pared with experimental ones.

Ficure 12.34.—A corrugation-stiffened plate.

WOVEN COVERS

F

~t— CONNECT ING
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Ficure 12.35.—Typical inflatable plate construction.
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Plate Equations

The purpose of this appendix is to present
the notation, conventions, assumptions, and
fundamental equations upon which the main
part of this work is based. The effects of

(1) Anisotropy

(2) Inplane forces

(3) Variable thickness

will be explicitly included. Where other com-
plicating effects (e.g., large deflections) enter
the formulation, they will be pointed out.
Basic derivations are, for the sake of simplicity,
carried out in rectangular coordinates.

A.1 NOTATION

A notation will be developed which is con-
sistent with that of elasticity theory; that is, at
a point the directions of positive stress will be
taken as shown on the element of figure A.1.
Positive normal stresses are tensile. Positive
shear stresses are directed in the positive z-, y-,
and z-directions if they lie on “positive faces”
of the element; that is, those faces of the three
parallel sets whose z-, y-, and z-coordinates are
the largest. The three well-known (ref. A.1)

,/

Fieure A.1.—Notation and positive directions of stress.

APPENDIX

moment equilibrium equations r,=7,, 7,=
7o, a0d 7,,=1,, (neglecting couple stresses) have
already been introduced in figure A.1.

Figure A.2 shows a plate element of thickness
h and incremental dimensions dz and dy. The
z- and y-axes are chosen to contain the unde-
Jormed middle surface of the plate. This plane
is called the ‘neutral plane.” More will be
said later about its location when layered
plates are discussed. For a plate homogeneous
through its thickness, the neutral plane lies
midway through its thickness. The z-axis is
normal to the undeformed middle surface.
The z-axis is shown, for convenience only,
as acting along one edge of the element. Thus,
it is noted that the xyz coordinate system is
space fired. The transverse shearing force
intensities @, and @, the inplane normal
and shearing force intensities N, N, and
N., and their incremental changes are shown
acting on the sides of the element, with positive
forces acting in positive directions on positive
faces. These quantities have dimensions of
force per unit length. As will be seen later,
these forces arise from the integrals of the
even componen's of positive normal and shear-
ing stresses. The shearing forces N, are
identical on the faces =0 and y=0 because
the shear stresses causing them are equal.
Also shown is the transverse external force
g=q(z, y) which has the dimension of force
per unit area and arises from, for example, a
gravitational field or an external pressure. It
will be understood that, as the plate deforms,
all the forces shown in figure A.2 will be
measured in directions tangent to or normal to
(as the case may be) the deformed middle
surface of the plate.

Figure A.3 shows the same element with
bending moment intensities M, and M,
twisting moment intensities M,, and their
incremental changes; all these are indicated as
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FigurEe A.3.—Moments (intensities) acting on a plate element.

right-hand vectors in the figure. These quan-
tities have dimensions of moment per unit
length. As it will be seen later, these moments
arise from the integrals of the odd components
of positive normal and shearing stresses. These
stress variations are depicted typically on
two faces of theelement. Thetwistingmoments
M,, are identical on the faces x=0 and y=0

because the shear stresses causing them are
identical.

The middle surface of the element after
deformation is shown in figure A.4. The origin
of the space-fixed coordinate system is taken
at one corner of the element for convenience
only. The displacement in the z-direction is
taken as w. Slopes, along with their incre-




APPENDIX—PLATE EQUATIONS 333

Ow, 3 9w ~
ax ay (ax)d y+ \\\

ax [%7+ay dx) dy]dx

- oy

ow
PR —+X(-07)dx+

oy (3o gy exfey

Ficure A.4.—Deformed middle surface of a plate element showing slopes and their changes.

mental changes, are shown at all corners of
the element, with positive changes assumed in
positive directions. For small displacements
it will be assumed later that the slope (tangent
of the angle) and the sine of the angle are
equivalent.

A.2 EQUILIBRIUM EQUATIONS

Considering small deflections (or, more
precisely, small slopes), summing forces in the
z-direction yield the equation (refer to figs.
A2 and A4)

% 4o dy—}—aQ”dy da—N. dy 22

+(Mt 2L ar) ay (324 T o

_N,de bw-l—(N—I—bN”d )dw(bw'*’ayz )
— Ny dz 32+ N,y+°N”d )

ow , d*w ow
( +bxby Nwdya

ON,, ow
+(N+ 2 dx)dy( +bxbyd>

+qdzdy=p dxdy%—g (A1)

where p is mass density per unit area and
O*w/Ot? is the acceleration in the z-direction.
The technique of generalizing the above equa-
tion to account for large deformations (slopes)
is self-evident. Expanding the terms involving
products, discarding resulting third-order differ-
ential terms, dividing through the equation by
the area dz dy, and simplifying yield:

Y
w

+b$(Nzyay)+by(Nzﬂ Ry +e=p33z Y

(A.2)

Equation (A.2) can be simplified by consid-
ering the well-known equilibrium equations
of the three-dimensional theory of elasticity

bu’
P

_bﬂ 07y b'r,,,
bx+ +

el
d7y  O7ye , D0 O
oz T oy "oz Ty
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where u, v, and w are displacements in the
z-, y-, and z-directions, respectively, and p* is
mass density per unit volume. When the
inplane inertia forces within the plate are
neglected and the transverse shearing stresses
r,. and 7, are small relative to the other
stresses, the first two of equations (A.3) become:

Qo b'r,,y
Y

a'rx,,_l_bay (A.-4)

Because these equations must be satisfied for
every infinitesimal thickness (dz) of the plate
element, their integrals over the thickness must
also be satisfied. That is,

ON,  ONy_,
oz by (A.5)
aN,,, 2N, , N,

by

By use of equations (A.5), equation (A.2) now
simplifies to

sz DQV
bw +

”bz2+N”b :

bw

(A.6)

If one were to sum forces in the z- and y-
directions, he would arrive at the following
equations:

oN, sz,, ow A
bx+ ay (Q’ax) Dy(Q”bx> ”bt2

ooy o 455 (%oy ) o
+ dy bx(Qxby any —Patz

(A7)

Inplane inertia forces will bé considered to be
small, as before. If the transverse shearing
forces are small relative to the inplane forces,
and the slopes are also considerably less than
unity, then terms of the type @,(0w/0z) can
certainly be considered negligible compared
with terms of the type N,, for example. Equa-
tions (A.7) are thus seen to reduce to equations
(A.5), which was obtained previously.

In summing moments about the space-fixed
z- and y-axes, it is found that terms containing
N,;, N,, and N,, yield differentials of higher

VIBRATION OF PLATES

order than the others and the equations
simplify to

M, OM,, ph? dw

Q- ox dy 12 dxof A
0,_2Mey_OM, gl Dw (4.8)
"2z 0y 12 0yoF

where the terms on the right-hand sides ac-
count for the rotary inertia of the plate element
and are customarily considered small relative
to the remaining terms in the equations.

The moment equation about the z-axis is
identically satisfied.

A.3 KINEMATICS OF DEFORMATION

The assumption of elementary beam theory

that “plane cross sections remain plane” is
generalized to apply to a plate as follows:
Normals to the midplane of the undeformed plate
remain straight and normal to the midplane during
deformation.
An edge view of a portion of a plate is shown
in figure A.5. The undeformed position of the
plate is shown in solid lines, while the deformed
shapeisshownin brokenlines. Thelongitudinal
elastic displacement (due to inplane forces) of
a point P on the midplane is depicted as .
Points such as 0 not falling on the midplane
will also have, in general, displacement due to
rotation of the normal. Thus, the longitudinal
components of displacement of points within
the plate will be characterized by

U=U, Zaw
—u—2 5
o Z_ai” (A.9)
=n—z3,
-
ey

11
|
\
\
-X]
\
XN
\

P‘“o"'

Fieure A.5.—Kinematics of plate deformation.
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where % and v are measured in the z-and y-
directions, respectively.

The linearized strain-displacement equations
(obtained by assuming strains much less than
unity) for a continuum are well known:

_ou A
Gz—a—m

e}
€u='a_;)/ }

ov , du
=5z oy J

where v,, is engineering strain as differentiated
from the tensorial strain required for tensorial
manipulations. Substituting equations (A.9)
into equations (A.10) gives
buO bzw 3
oz or

oy b"’w
oy oyt

vy, Oy 02w
"2 =\3z T oy )% 570y

A.4 STRESS-STRAIN RELATIONSHIPS

For a general, anisotropic, elastic body the
stress-strain relationships may be written in
matrix form as:

(A.10)

> (A.11)

—

€ au G2 O1z Gy Q15 g Oz
€y Q12 gy Q23 Ogq o Qo oy
€ | | @13 Gz Q33 gy g5 G G2 (A.12)
Yzy A1y Qg O3q Gy Qg5 Qg Tzy
Yyz A5 Qo Ogs Qg5 G55 Agg Tyz
Yz Qg Ogg Agg (ag Osg (g Tz

where the coefficient matrix [a.;] can be proven
to be symmetric as shown. Thermal strains
will not be considered here, for it can be shown
that they do not directly influence the free
vibration problem. In the case of the plate
the transverse stresses o, 7y, and 7, are as-
sumed to be small relative to the inplane stresses,
and so equation (A.12) is reduced to

€y an a1y Q14 Oy
& |=| Q12 (a2 Q24 Oy (A-13)
Yy, (157 Aoy Gy Tay

Inverting equation (A.13) gives the stresses in
terms of the strains
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[ bu b12 b14 €y
oy |7 bis bse bos €y (A.14)
Tay b bos by Yzy
where
1 ~
bn=m (@200 —a3y)
1
anW (@1402s—@12044)
1
b14=l_aT (0/12@24—0/14“22)
q (A.15)
1
b22=m (@400, —a3y)
1
b24=m (012014 240t11)
1
b44=lzl‘(aua22—affz) )
and where |a/ is the determinant
an Q1 14
lo]=|a1s Q22 (2N (A.16)

(127 Q24 (1771

In the case when the material properties are
orthotropic, with « and y lying in the directions
of orthotropy, equations (A.13) and (A.14)
are simplified, with a;,=a,="50,,=b,,=0. Then
equation (A.13) can be written more meaning-
fully in terms of the “technical constants” of the
material. In detail,

e,,=l%,z (ox—r20,)
1
“~F (oy—w0z) ¢ (A.17)

Yzy= sz/ G

J

with v,/E,=v,/E, because of the required sym-
metry of the stress-strain equations. Thus, for
an orthotropic plate, there are four independent
elastic constants. Inverting and substituting
in equations (A.17) yield

Op=

1
m (Ez€x+ VIEVGI/)

Al
Iy= (Ey€y+ v, Fes) ( 8)

1—
Taey™= G'qu
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For an isotropic material, equations (A.17)
further simplify to

1 =
e,=—E—,(a,—-Vay)

1
€V=E("'u_1’0'x) - (A.19)

2(1
"Yz1/=_('_E_i——p_) Try

y
A5 FORCE AND MOMENT INTEGRALS

The inplane forces and the bending moments
are obtained by integrating the inplane stresses
over the plate thickness. In the case of a
homogeneous plate, these integrals are

- f ' orde (A.20(a))

= f o dz (A.20(b))

No= [ myds (42000)
h /2

M= f " zds (A.20(d))

M,,=f_h//:a,, 2dz (A.20(e))

M= f _h:{" 2dz (A200)

The detailed integrations will be carried out for
the bending and twisting moments in an ortho-
tropic plate.

When equations (A.11) and (A.18) are sub-
stituted into equations (A.20(d)), (A.20(e)),
and (A.20(f)), it becomes clear that terms con-
taining %, and v, disappear during the integra-
tion between symmetric limits, whereas those
containing w remain. Similarly, the odd func-
tions of z in equation (A.11) disappear in the
integrations of equations (A.20(a)), (A.20(b)),
and (A.20(¢)). The moment integrals become:

a2
M.==D; aZ""’”b:;UT
2
M,=— y2+»x§,;‘;) L (A21)
o W
M=—2D, 5 o )
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where
ER
12(1—v,)

ER
12(1—ww,)

G_h‘”
12 J

D=

Y

D= (A.22)

-Dk=

In the isotropic case, E,=E,=FK, v,=»,=v,
and G=E/2(1-+}v), and these equations simplify

to
2
(bx?- +Vb'w A
o*w
M,=— by2+ ax2> q (A.23)
20
M’”——D(l—v)bx—by ]
where
Eh?
D —12(1—7%)

The generalization of equations (A.21) to
the case of anisotropy is straightforward when
equations {(A.13) and (A.14) are used instead
of equations (A.17), but it will not be carried
out here.

Tt must be pointed out here that in the case
of homogeneous plates of variable thickness,
the limits of integration in equations (A.20)
simply become variables h=h(z,y), and equa-
tions (A.21), (A.22), and (A.23) still apply.

Finally, consider the layered plate shown in
figure A.6. The plate is constructed of two or
more laminas having thicknesses hy, ko, . . .
which are bonded together at their interfaces.
The material properties of each lamina will, in
general, be different. Consequently, the neutral
plane will not, in general, occur midway be-
tween the two outer faces. Its distance from

[
neutral

rd [l

- D) plane
3

._
—{ 7

=
~
o
o
-/—-J\\Ij

-

-

Fiaure A.6.—Layered plate.
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the upper surface is denoted by ¢. As before,
the transverse coordinate z will be measured
from this neutral plane.

The force and moment integrals will be
formulated for the layered plate of figure A.6,
which has three layers. Extension of this
formulation to other numbers of layers is
straightforward and obvious. Because the
stress variation in each layer will, in general,
be different, it is necessary to perform these
integrations in a piecewise manner; for example,

c—=h1=h; c=hy 9
N,= os dz+ o=, Az
c—hi—ha—hs c—h1—he

+fc £ dz
c—hl

c—hi—hz c—h1
M,= ooz dz+ o5z dz
¢

—hi—h2~hs c—h1—hs

> (A.24)

c
+ Oz, 2 dz

c—hi s

where ¢z, is the normal stress in the 2-direction
in the layer having thickness h,.

Now the location of the neutral plane will be
determined. Consider a plate bent by pure
moments (i.e., no inplane forces). The neutral
plane is that plane having no bending stresses
(i.e., ¢,=0¢,=0). Then the location of the
neutral plane is such that inplane force integrals
vanish when only the bending components of
stress (i.e., the odd functions of z) are used.
Thus, for example, the distance ¢ can be
determined by setting the first of equations
(A.24) equal to zero and using equations
(A.11) and (A.18), with du,/dz=0 in equations
(A.11).

A.6 SYNTHESIS OF EQUATIONS

Consider first & homogeneous plate having
rectangular orthotropy and subjected to inplane
forces, but let its thickness be constant. Sub-
stituting equations (A.21) into equation (A.8)
gives the transverse shearing forces in terms
of the plate deflection (neglecting rotary
inertia):

O*w
e=—2(D.35+D. 3%

A25
o' (A.25)

where

D,,=v,D,+2D, (A.26)
Combining equations (A.25) with equation
(A.6) gives the equation of plate bending

D. S+ Dy 2by2+D”by4+p o

za—wz"l"zNzym—?‘/'*'Nub—yz (A27)
where the transverse loading ¢ has been omitted
from the free vibration problem.

The inplane forces are generally functions of
z and y. For the linear problem, they are
determined first from solving the plane elasticity
problem, which involves equations (A.5) and
an equation of compatibility. Thus, in this
case the bending and stretching effects are
uncoupled from each other. When inplane con-
straints (e.g., =0 and/or ¥=0) are introduced
into the problem, the inplane forces that will
be generated will vary with w, and equation
(A.27) becomes nonlinear.

In the case of variable thickness, when equa-
tions (A.21) or (A.23) and (A.8) are substituted
into equation (A.8), the thickness is simply
regarded as a variable h=h(z, y) when carrying
out the differentiations. The resulting differ-
ential equation, which is a generalization of
equation (A.27), is relatively complicated. For
example, in the most simple case (isotropic,
homogeneous, no inplane forces, etc.) equation

(A.6) becomes:
o’D o%*w ’D o*w

VDV —(1—) (G52 25z ay dz 0y

0°D o*w w
with
Vi=(0*/02%) + (0%/0y?)

A.7T BOUNDARY CONDITIONS

Because the differential equation governing
plate deflection (e.g., eq. (A.27)) is of the
fourth order, two boundary conditions are
required along each edge. All possible bound-
ary conditions on an edge can be obtained
from the case of elastic constraints; hence,
these general conditions will be discussed first.
An infinitesimal width taken from the edge of
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a plate normal to the a-direction is shown in
figure A.7. Translational and rotational
springs having stiffnesses K, and K,
respectively, are attached to the edge. The
force K,w required to deflect the translational
spring in the positive direction and the moment
K,dw/ox required to cause a positive rotation
are shown, along with their reactions on the
edge of the plate. The ‘“‘edge reaction” V,
and the bending moment M, occur at an in-
finitesimal distance within the plate (the ‘‘edge
reaction” is discussed later). By summing
forces and moments on the infinitesimal ele-
ment and neglecting higher order terms such
as those arising from forces and moments
acting on the two planes parallel to the plane
of the paper, the following equations are found
to hold on the boundary:

Vz=—wa}
ow
M=Ky5
The inplane force component N, does not enter
this equation, for it was defined to be taken
always in the deformed neutral plane. The
generalization of equations (A.29) to arbitrary
edge directions is accomplished by using » in
place of z, where n is the direction of the outer
normal to the edge.

Special cases arise when the spring constants
K, and/or K, are zero or infinity. When
K,=K,=0, the edge is completely free. When
both K, and K, approach infinity, the edge
becomes clamped. When K,=0 and K, ap-

proaches infinity, the edge becomes simply
supported. The last possible case is that in

(A.29)

dxje—

T - w
h C lZ Ky g—:’ A+g_x
4 M e

Vx

Ficure A.7.—Elastic edge constraints.

v KW

which K, =0 and K, approaches infinity. This
last condition is physically possible but receives
virtually no treatment in the literature on
plates.

The meaning of the “edge reaction” will now
be discussed. It would appear that for a free
edge normal to the y-direction all three quanti-
ties M,, M,,, and @, would be zero. However,
as discussed previously, only two boundary
conditions are admissible per edge. It is found
that @, and AMf,, combine into a single edge
condition as will be described now. Figure A.8
depicts a free edge parallel to the z-direction.
The twisting moment M,,=M,,(z) along the
edge can be represented by pairs of vertical
forces having intensities M, and infinitesimal
changes, as shown. The vertical force resultant
from the opposing forces is thus oM,,/0z in
intensity. When this is added to the trans-
versing shearing force, the total edge reaction is

oM,
ox

In terms of arbitrary directions normal and
tangent to the boundary (n and t), equation
(A.30) is generalized to

VuzQz/"‘ (A.30)

V= Qut 2ot (A31)
Z
y
X
Myy
Moo +0Msy
xy + ax dx

Ficure A.8.—Twisting moments along an edge.




APPENDIX—PLATE EQUATIONS 339

For further discussion of the free edge con-
dition, see references A.1 (p. 84) and A.2 (p. 17).

A.8 POLAR ORTHOTROPY

A development parallel to that of the pre-
ceding sections may be carried out for the case
of polar orthotropy. That is, if the stresses
associated with plane polar coordinates (see
fig. 1.1) are g,, os, and 7,4 and the corresponding
strains are e, ¢, and v,, the stress-strain
relations are given by the equations

1
“=F (6,—v,09)

éaz_g_'o (6a—vecr) (A.32)

770=T70/G

which are analogous to equations (A.17). The
kinematic relationships between displacements
are

U=u zbw
=tz
eow (A.33)
.Y

where 4 and » now identify the radial and
circumferential displacements. The strain-
displacement equations become

% -
or

€=

100, u
o= r00+

1ou
1=y 60+rbr< )

Using moment integrals corresponding to
those of equations (A.20) with equations
(A.32), (A.33), and (A.34) gives the moment-
curvature relations (ref. A.3)

10w
[b 2t r or +r2 302>]

—_pflow, 10*w,6 0w
My=—Ds rbr+2302+v'br2

10w
Mo=— 2D, (r ao) )

. (A.34)

> (A.35)

where the flexural rigidities are defined by

E,Jba ~
D'_12(1—-u,w)
__ Ep )
Do—~—~12(1_yrw) > (A.36)
Gh?
D=4 )

When moment equilibrium equations equiv-
elent to equations (A.8) are used and rotary
inertia is neglected, the transverse shearing
forces are found to be (ref. A.3)

0 (*w 10w\ lbw 1 %\
Q== I:D'br br2+r or (

ror r2 0%
o ,
+D ”rar AL ao)]
Q[ 222 (12, LT0), Da S0 ]
T Lroo\ror "1206°)" 7 2r°08 J
(A.37)
where
D,y=Dw;+2D, (A.38)

Finally, the transverse force equilibrium
equation gives the governing differential equa-
tion of motion

bw 2 otw 2. dw
D5ty D’”ar aaz+r4D" ot D5
2 o%w w2 o%w
$D5r a0 gt H s (Dt D) o

dw , dw
+;§Do *5;+P—b? =0 (A.39)

A.9 STRAIN ENERGY

It is often useful to know the strain energy
stored in a plate due to deformation. Onesuch
instance occurs when the Rayleigh-Ritz method
is applied in order to obtain approximate
solutions.

The strain energy stored in any elastic body
during deformation is given by

U=% fv(o'zez"i' oyey o€t Ty
1yt TaVea)dV (A.40)
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where the integral is taken over the volume of
thebody. Restatement of an earlier assumption
that the transverse stresses o, 7y, and 7,; are
small relative to the others in the case of a
plate allows equation (A.40) to reduce to

U=% fV(UzEz+ 0'1161/+ Tz:/'/a:y) dV (A41)

Now the stresses are expressed in terms of the
strains by means of appropriate stress-strain
relationships, the strains are expressed in terms
of the displacements by means of equations
(A.11), and the integration over the thickness
is carried out.

For a plate possessing rectangular orthotropy,
equations (A.18) are used; and the strain
energy due to bending alone becomes

1 0%w\? O%w\? 02w 0w
U*EL[DI %) +Dﬂ(a7 2052 o7

b?w 2
4D, b—xb—y):IdA (A.42)

VIBRATION OF PLATES

where the remaining integral is yet to be taken
over the plate area, and where D,, D,, D,,, and
D, are as defined previously in equations (A.22)
and (A.26). For an isotropic plate, equation
(A.42) simplifies to

_D o*w , D'w\? O%w O*w
U—EL{(WJFW) —20-| 5757

- g%)z]}dA (A.43)
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Subject Index

Accelerometers, parallelogram plates, 171
Added mass, rectangular plates, 141-151
Admissible functions, rectangular plates, 77
Air, effects of surrounding media, 170, 299, 301
Airy stress function, large deflections, 305
Aluminum parallelogram plates, 171, 172, 180, 181, 186
Aluminum rectangular plates, 83, 86, 89, 126, 133, 143,
148

Analog computer, 77
Anisotropic elastic body, stress-strain relationship, 333
Anisotropic plates, 245-266

added concentrated mass, circular plate, 246

all sides clamped, rectangular, 260-262

all sides simply supported, rectangular, 251

annular plate, 248

Bessel function, 249

Boobnov-Galerkin method, 248

circular plates, clamped, 245-246, 264

circular plates having rectangular orthotropy,

263-264
elliptical plates having rectangular orthotropy,
264-265

Galerkin method, 261, 264

grain of veneer, 252

infinite series, 246

longitudinal slots, 264

maple-plywood plate, 256, 260

other shapes, 248

Poisson’s ratio, 259

polar orthotropy, 245-249

Rayleigh method, 250, 256, 258, 259, 261, 262

Rayleigh-Ritz method, 252, 261, 264

rectangular orthotropy, 250-266

Ritz method, 261

88-C-S88-C, 256

S8-C-88-F, 258

S8-C-S8-88, 257

SS-ES-SS-ES, 259

S8-F-SS8-F, 258

S8-8S8-SS-F, 258

SS-88-88-88, 251-254

simply supported circular plates, 246-248

spacing of grooves, 253

square plates

C-C-C-88, 263
C-C-S8-88, 263

stiffeners, 265

strain energy, rectangular coordinates, 250

two opposite sides SS, 254-260

veneer, grain of, 252
Annular plates, 19-33

anisotropic plates, 248

Bessel functions, 21, 29

clamped outside and inside, 20-21

308-387 0—70——23

Annular plates—Continued
clamped outside, free inside, 22-24, 26-27
clamped outside, rigid mass inside, 32
clamped outside, simply supported inside, 21-22
free outside and inside, 30
free outside, clamped inside, 28-29
free outside, simply supported inside, 29-30
Rayleigh-Ritz method, 20
simply supported outside and inside, 25-26
simply supported outside, clamped inside, 24-25
simply supported outside, free inside, 26-27
variable thickness, 286
Annulus. See Annular plates.
Anticlastic bending effects on rectangular plates, 89
Apparent mass, surrounding media, 301
Arbitrarily shaped triangular plates, 227
Ares integrals, replaced by double summations, 86
Asymptotic-expansion estimate, 17-19
Axes, of ellipse, 37

Beam functions
parallelogram plates, 161, 168
rectangular plates, 58, 65, 76, 81, 87, 104
surrounding medium, effects of, 303
trapezoidal plates, 195
triangular plates, 212
Beam theory, elementary, kinematics of deformation,
332
Bending and twisting moments
elliptical coordinates, 3
polar coordinates, 2
rectangular coordinates, 4
skew coordinates, 5
Bending moment intensities, 329
Bending moments, shear deformation, 315
Bending, strain energy of. See Strain energy.
Bending stress, large deformations, 312
Bessel functions
anisotropic plates, 249
annular plates, 20, 29
circular plates, 7
plates with inplane forces, 268
recursion formulas for derivatives of, 32
variable thickness, 286
Bessel’s equation, 2
Biharmonie singular function, rectangular plates, 151
Boobnov-Galerkin method, anisotropic plates, 248
Boundaries as nodal lines, 42
Boundary conditions, 335-337
elastically supported circular plate, 14
mixed, 14-15
rotary inertia, 324
shear deformation, 324
Brass plate, 11-13, 38-39, 108, 116

345




346 VIBRATION OF PLATES

Buckling
large deformations, 309
parallelogram plates, 168
polygonal plates, 237
rectangular plates, 117
Buckling loads, eritical
plates with inplane forces, 277
polygonal plates, 237

Cantilever

beam, triangular plates, 213

parallelogram plates, 168-184

rectangular plates, 76-87, 301

trapezoids, 194-196

triangles, 212-228
Centrifugal fields, plates with inplane forces, 273
Chain rule of differentiation, right triangular coordi-

nates, 194

Characteristic determinant equation, sixth order, 17
Characteristic determinant, unbounded order, 37
Circular edge, sectorial plates, 239
Circular frequeney, 1
Circular holes, rectangular plates, 152
Circular membrane plates with inplane forces, 271
Circular plates, 7-33

anisotropic, 245-248

annular. See Annular plates.

Bessel functions, 7

central mass, 17-19

clamped (see also Clamped circular plates), 7-8

clamped at center, 15-17

clamped partially, and supported, 14-15

clamped, simply supported, 14-15

coordinate system, polar, 7

elastically supported, 13-14

free, 10-13, 16

Harvard tables, 7

inplane forces, 267-276

internal holes, 7

large deflections, 306-310

mass concentrated at center, 17-19

mixed boundary conditions, 14-15

polar coordinates, 7

radii of nodal circles, 8, 9, 11

Rayleigh-Ritz method, 20

rotary inertia, 316-318

shear deformation, 316-318

simply supported (see also Simply supported

plates), 8-10

simply supported and clamped, 14-15

solid, 7-19

supported on internal circle, 17

surrounding media effects, 299-301
Circular plates having rectangular orthotropy, 263-264
Circular plates of variable thickness, 285-291
Circular plates with inplane forces, 267-276
Circular sandwich plates, nonhomogeneity, 325
Clamped circular plates, 7-8

anisotropic plates, 245-246, 264

Clamped circular plates—Continued

effects of Poisson’s ratio, 18

plates with inplane forces, 268-272
Clamped/supported circular plates, 14-15
Classical plate equations, anisotropic plates, 249
Classical plate theory, 1-5
Coarse finite-difference grids, 47
Collocation method

trapezoids, 193

triangular plates, 207, 209, 210
Confocal ellipses, 37
Constraint of zero deflection, rectangular plates, 130
Continuity conditions

circular plate, supported on ring, 17

for transverse shear, rectangular plates, 145
Coordinates

elliptical. See Elliptical coordinates.

polar. See Polar coordinates.

rectangular. See Rectangular coordinates.

skew. See Skew coordinates.
Corrugated core, nonhomogeneity, 324
Corrugation-stiffened plate, nonhomogeneity, 325
Critical buckling loads, plates with inplane forces, 277
Cutouts, rectangular plates, 151-154
Cylindrical masses, rectangular plates, 148

Deflections, infinite, circular plates, 7
Deflections, small equilibrium equations, 331
Deformation, strain energy, 337
Deformed middle surface, notation, 329
Dependence upon time, inplane forces, 267
Derivatives

in strain energy, 220

replaced by finite differences, 86
Dini series, surrounding media, 300
Dirac delta function, rectangular plates, 147
Discontinuous edge conditions, 123-130
Displacement, transverse, 1
Distributed stiffness, 13
Double Fourier sine series, 63
Double-precision arithmetic, 77
Double summations replace area integrals, 86

Eccentricity, elliptical, 37

Edge constraint, 14

Edge reactions
polar coordinates, 2
rectangular coordinates, 4
skew coordinates, 5

Edge rotation, 13

Elastic constants, 300

Elastic, discontinuous, and point supports, rectangular

plates, 114-141

Elastic edge supports, 114-123

Elastic foundation, 1

Elasticity theory
notation, 329
three-dimensional, 331-332

Elasticity, uncoupled plane, 274
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Elastic moment edge constraint, 14
Electric analog computer, 77
Electrical analogies, 77
Electrical analogies, development of, 77
Ellipse
axes, 37
eccentricity, 37
Ellipses, confocal, 37
Elliptical coordinates, 2-3
bending and twisting moments, 3
interfocal distance, 2
Laplacian operator, 2
rectangular coordinates, relation to, 2
shearing forces, transverse, 3
Elliptical plates, 37-39
clamped, 37
free, 38
Galerkin method, 38
Rayleigh method, 37, 38
Rayleigh-Ritz method, 38
rotary inertia, 322
shear deformation, 322
Elliptical plates having rectangular orthotropy, 264-265
Epicycloidal shape, 244
Epicycloidal transcendental function, 38
Equal slope restraint, 122
Equation of motion remains linear, inplane forces, 267
Equilateral triangular plates, 212
Equilibrium equations, 331-332
deflections, small, 331
elasticity, 3-dimensional theory, 331-332
inplane inertia, 332
slopes, small, 331
transverse shearing forces, 332
Euler’s constant, 16

Filing down edges of rectangular plates, 108
Finite-difference method
inplane forces, 279
rectangular plates, 58, 86, 130, 131, 136
shear deformation and rotary inertia, 314
triangular plates, 205, 220
variable thickness, 293
Finite summation replaces integral equation, 129
Five-ply maple-plywood plate, 256
Flexural rigidity
defined, isotropic plate, 1
polar orthotropy, 337
rectangular orthotropy, 250
variable thickness, 285
Flexural stiffness, no, 271
Force and moment integrals, 334-335
Foundation
elastic, 1
plate supported by, 1
stiffness, 1
Fourier components, 2, 267
Fourier sine series, 139, 145
Free membrane mode shapes, 104

Free regular pentagons, 238

Free vibrations, 1

Frequency, circular, 1

Frequency in vacuum, parallelogram plates, 170

Galerkin method
anisotropic plates, 261, 264
elliptical plates, 38
large deflections, 307, 308, 312, 313
rectangular plates, 61, 71, 88
General rectangle, rectangular plates, 89
Grain of veneer, anisotropic plates, 252
Green’s function, rectangular plates, 129

Half-sine waves, rectangular plates, 47
Hamilton’s principle, 309, 313
Hard spring, nonhomogeneity, 324
Harvard tables, 7
Hexagons
completely free, 238
simply supported, 238
Holes, internal, 7
Hub-pin plates, rectangular, 140
Hub-pin supports, 223
Hydrostatic pressure
parallelogram plates, 168
plates with inplane forces, 281
polygonal plates, 237
Hydrostatic tension, 280

Impeller blade, 240, 241
Inertia
inplane, 331-332
rotary, 314-324
rotational, added mass, 147
translational, added mass, 147
Infinite series, anisotropic plates, 246
Inflatable plate, nonhomogeneity, 325
Inplane forces, 267284
all sides S8, rectangular plates, 276-279
assumptions, 267
Bessel functions, 268
body force, 278
buckling loads, critical, 277, 281
centrifugal fields, 273
circular membrane, 271
circular plates, 267276
circular plates, clamped, 268-272
circular plates, completely free, 273-276
circular plates, simply supported, 272-273
concentrated forces, 280
critical buckling loads, 277
dependence of forces upon time, 267
elasticity, uncoupled plane, 274
equation of motion remains linear, 267
finite difference method, 279
flexural stiffness, no, 271
Fourier components, 267
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Inplane forces—Continued
hydrostatic pressure, 281
hydrostatic tension, 280
internal residual stresses, 273
isotropic plates, 279
Kato-Temple method, 195, 280
membrane tension, 271
method of images, 282
perturbation technique, 271, 279, 281
plates having other shapes, 281
Poisson’s ratio, 275
prestressed boundary, 273
Rayleigh method, 269, 270, 272
Rayleigh-Ritz method, 269, 271, 275, 277, 279
rectangular orthotropy, 267
rectangular plates, 276-281
rectangular plates, all sides clamped, 280-281
rectangular plates, all sides S8, 276-279
rectangular plates, two opposite sides SS, 279-280
rotating disk, clamped at center, outer edge free,
276
rotating disk, free, 273
Southwell method, 269, 270, 272
strain energy, 269
thermal gradients, 273, 275
two opposite sides SS, rectangular plates, 279-280
uniform inplane forces, 279
variational method, 271
Inplane restraint, large deformations, 311
Integral equation, replaced by finite summation, 129
Interfocal distance, 2
Internal cutouts, rectangular plates, 151-154
Internal holes, circular plates, 7
Internal residual stresses, 273
Isosceles trapezoidal plate, 193, 194
Isosceles triangle, C—C-C, 205
Isotropic plates, inplane forces, 279

Kato-Temple method
parallelogram plates, 161-162
plates with inplane forces, 280
trapezoids, 195

Kinematic relationships, 337

Kinematics of deformation, 332-333 .
beam theory, elementary, 332
plane cross sections, 332
strain-displacement equations, 333
tensorial manipulations, 333
tensorial strain, 333

Kirchhoff hypothesis, 324

Lagrange’s equation, 148
Laplace transform, 17
Laplacian operator
elliptical components, 2
polar coordinates, 2
rectangular coordinates, 4
skew coordinates, 5
Large-amplitude vibrations, 310

Large deflections, 303-314
Airy stress function, 305
assumption for magnitude of deflection, 303
bending stress, 312
Berger simplified equations, 306, 313
boundary conditions, 303
buckling, 309
circular plates, 306-310
compatibility of strain, 305
Galerkin method, 307, 308, 312, 313
Hamilton’s principle, 309, 313
inplane restraint, 311
membrane stress, 312
nonhomogeneous plates, 325
perturbation method, 310
rectangular plates, 310-314
static case, 306
strain-displacement equations, 303-304
thermal gradient, 309
Von K4rmén equations, 306, 310
Large error, frequency of, 73
Layers, hard and soft, 324
Legendre functions, rectangular plates, 77, 104
Longitudinal slots, 264

Magnesium, parallelogram plates, 187-189
Maple-plywood plate, five-ply, anisotropic, 256, 260
Marine propeller blades, 240, 242
Mass density ratios, critical, 33
Mathieu functions, 3, 38, 324
Membrane stress, large deformations, 312
Membrane tension, plates with inplane forces, 271
Membrane vibration, analogies, 237
Mesh widths, rectangular plates, 130
Method of images
plates with inplane forces, 282
triangular plates, 212
Mindlin theory, 318, 319, 323, 324
nonhomogeneity, 324
rotary inertia, 318, 319
shear deformation, 318, 319
Mode of vibration, shear deformation, 315
Mode shape, polar coordinates, 2
Moment-curvature equations, polar orthotropy, 337
Moment integrals, 334
Moments, bending and twisting.
twisting moments.

See Bending and

Neutral plane, 329

Nonhomogeneity, 324-325
circular sandwich plates, 325
composite material, 324
corrugated core, 324
corrugated-stiffened plate, 325
hard spring, 325
honeycomb core, 324
inflatable plate, 325
Kirchhoff hypothesis, 324
large deflections, 325




Nonhomogeneity—Continued
layers, hard and soft, 324
Mindlin theory, 324
shear deformation and rotary inertia, 324
Styrofoam core, 324, 325
Nonsquare cantilever, 77
Notation, 329-331
bending moment intensities, 329
deformed middle surface, 329
elasticity theory, 329
neutral plane, 329
positive faces, 329
positive shear stresses, 329
transverse shearing force intensities, 329
twisting moment intensities, 329

Octagon
free, 239
simply supported, 238
One-g method, parallelogram plates, 184
Orthotropy
polar, 245
rectangular, 245, 250-266
stress-strain relationships, 333

Parallelogram plates, 161-192
accelerometers, 171, 184
accuracies of solutions, 161, 164, 165
added mass, 185, 186
aerodynamic lifting surface, 161
air mass, effect of, 170
aluminum, 171, 172, 180, 181, 186
beam functions, 161, 168
buckling analogy, 168
cantilevered, 161, 168-184
C-C-C-C, 161-164
C-C-C-88, 164
C-C-88-S8, 164-165
C-F-F-F, 168-184
exact solutions, 161, 166
F-F-F-F, 184
FORTRAN program statement listing

C-F-F-F plates, 170

frequency in vacuum, 170
influence functions, statically determined, 171
Kato-Temple method, 16}-162
magnesium, 187-189
membrane vibration analogy, 168
one-g experimental method, 184
perturbation method, 165
point-matching method, 163, 167
Rayleigh method, 164
Rayleigh-Ritz method, 161, 164, 168
rhombie, compared to square, 163
simple edge conditions, 161184
S5-88-88-88, 168
stabilizing surface, 161
steel plates, 163
transition curves, 170
transition points, 171
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Parallelogram plates—Continued
Trefftz method, 161
unlike rectangle, 161
variational method, 170, 171
Pagsive element analog computer, 77
Pentagons, 237-238
completely free, 238
polygonal plates, 237-238
simply supported, 237
Perturbation techniques, 165, 271, 279, 281, 310
Plane cross sections, kinematics of deformation, 332
Planform dimensions
trapezoids, 196
triangular plates, 227, 228
Plate equations, 329-338
Plates
anisotropic. See Anisotropic plates.
"annular. See Annular plates.
circular. See Circular plates.
clamped circular. See Clamped circular plates.
elliptical. See Elliptical plates.
free circular. See Free circular plates.
free elliptical. See Free elliptical plates.
parallelogram. See parallelogram plates.
polygonal. See Polygonal plates.
quadrilateral. See Quadrilateral plates.
rectangular. See Rectangular plates.
square steel. See Square steel plates. i
triangular. See Triangular plates.
Plate theory, classical, 1-5
Point masses, rectangular plates, 145-151
Point-matching method
parallelogram plates, 163, 167
polygonal plates, 238
rectangular plates, 151
triangular plates, 210, 212
Point supports, rectangular plates, 130-141
Poisson’s ratio, 1
anisotropic plates, 259
annular plates, 19
circular plates, clamped, 8
circular plates, elastically supported, 14
plates with inplane forces, 275
rectangular plates, 41, 54, 74, 79, 86, 87, 89, 131,
1382, 133
shear deformation, 317
triangular plates, 213
variable thickness, 285, 286, 288, 200
Polar coordinates, 1-2
bending moments, 2
boundary conditions, 2
circular plates, 7
edge reactions, 2
Kelvin-Kirchhoff edge reactions, 2
Laplacian operator, 2
mode shape, 2
shearing forces, 2
strain energy, 2
twisting moments, 2
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Polar orthotropic plate, transverse bending, 245
Polar orthotropy, 245-250, 337

flexural rigidities, 337

kinematic relationships, 337

moment curvature, 337

rotary inertia, 337

strain displacement, 337

transverse force equilibrium, 337

transverse shearing forces, 337
Polygonal plates, 237-239

buekling analogy, 237

hexagons, 238

membrane vibration analogy, 237

octagons, 238

parallelogram plates, 161-192

pentagons, 237-238

point-matching method, 238

rectangular plates, 41-154

simply supported, all edges, 237, 238

trapezoidal plates, 193-196

triangular plates, 205-235
Positive faces, notation, 329
Positive shear stresses, notation, 329
Prestressed boundary, planes with inplane forces, 273
Prestretched membrane, polygonal plates, 237
Propeller blades, marine, 240, 242

Quadrilateral plates
of general shape, 196
parallelogram, 161-192
rectangular, 41-154

Radial sides simply supported, sectorial plates, 239
Rate of taper, variable thickness, 291
Rayleigh method
anisotropic plates, 250, 256, 258, 259, 261, 262
elliptical plates, 37, 38
inplane forces, 269, 270, 272
parallelogram plates, 164
rectangular plates, 41, 43, 58, 118, 132
sectorial plates, 239, 240
surrounding media, 299, 300
Rayleigh-Ritz method, 20
anisotropic plates, 252, 261, 264
circular plates, 20
inplane forces, 275-280
parallelogram plates, 161, 162, 168
rectangular plates, 58, 59, 61, 65, 69, 72, 73, 76,
77,79, 81, 86, 103, 119, 122,131-133, 141, 151, 152
surrounding media, 300
trapezoidal plates, 194, 195
triangular plates, 212, 213, 215, 216
variable thickness, 288, 290
Rectangular cantilever plates, 301
Rectangular coordinates, 4
bending and twisting moments, 4
edge reactions, 4
Laplacian operator, 4
shearing forces, transverse, 4
strain energy, 4

Rectangular orthotropy, 250, 266
circular plates having, 263-264
elliptical plates having, 264-265
plates with inplane forces, 267
rectangular plates having, 250-263
Rectangular plates, 41-154
added mass, 141-151
admissible functions, 77
aluminum, 83, 86, 89, 126, 133, 143, 148
anisotropic, 250-266
anticlastic bending effects, 89
area integrals replaced by double summations, 86
beam functions, 58, 71, 76, 81, 87, 104
behavior like beam, 54, 86
biharmonic singular function, 151
boundaries as nodal lines, 42
boundary conditions, possible combinations, 41
brass, 108, 116
buckling, 45, 46, 117
cantilever, 76-87
C-C beam, 60
C-C-C-C, 58-65, 280281
C-C-C-C square plate, 60
C-C-C-F, 65
C-C-88, 65
C-F-F, 72
C-C-88-F, 71
C-C-88-88, 65-71
C-F-C-F, 74-75
C-F-F-F, 76-87
C-F-88-F, 75-76
circular holes, 152
coarse finite difference grids, 47
constraint of zero deflection, 130
continuity condition for transverse shear, 145
C-S8-C-F, 73
C-SS-F-F, 74
C-88-88-F, 74
cutouts, other, 152
cylindrical masses, 148
deflection functions, 77, 81, 119, 131, 136, 140
Dirac delta function, 147
discontinuous edge conditions, 123-130
double-precision arithmetic, 77
elastic edge supports, 114-123
electrical analogies, development of, 77
electronic analog computer, 77
equal slope restraint, 122
extrapolation formula for finite difference method,
130, 136
F-F-F-F, 87-115
finite-difference equations, 71, 86, 130
finite-difference mesh, 86
finite-difference method, 58, 131, 136, 220
finite differences replace derivatives, 86
finite summation replaces integral equation, 129
flexural rigidity, 86
Fourier sine series, 139, 145
Galerkin method, 61, 72, 88
general rectangle, 89

C-
C-
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Rectangular plates—Continued Rectangular plates—Continued
Green s funetion, 129 “veering away’”’ phenomenon, 63, 74
V-groove simulation of simply supported edge, 124
high-frequency parameters, 51 Warburton’s formula, 86
hub-pin plate, 140 weight density, 86
inplane forees, 276-281 Weinstein method, 58, 61
integral equation, replaced by finite summation, Recursion formulas, 14, 20, 32
129 Regularity conditions, 17

internal cutouts, 151-154 Reissner’s static theory, shear deformation, 315
Lagrange’s equation, 148 Reissner’s variational method, rectangular plates, 140
large deflections, 310-314 Rhombic plates. See Parallelogram plates.
large error, frequency of, 73 compared to square, 163
Legendre functions, 77, 104 parallelogram, aluminum, 172
mesh widths, 130 triangular, 205
modulus of elasticity, 86 Rigid body translation, 31
narrow internal slit, 154 Rigidity, flexural, 1
nonsquare, 47 Rigid strip mass, rectangular plates, 141-145
nonsquare cantilever, 77 Ritz method, anisotropic plates, 261
orthotropic, 250-266 Rotary inertia, 314-324

plates with inplane forces, 276

principle of stationary total energy, 123

point masses, 145-151

point-matching method, 151

point supports, 130-141

Poisson’s ratio, 41, 54, 74, 79, 87, 89, 131, 132, 133

Rayleigh method, 41, 43, 58, 118, 132

Rayleigh-Ritz method 58, 59, 61, 65, 69, 72, 73,
76, 77, 79, 81, 86, 103, 119, 122, 131, 132, 133,
141, 151, 152

Reissner’s variational method, 140

rigid strip mass, 141, 145

rotary inertia, 318—323

series method, 58, 60, 63, 74, 79, 102, 131

shear deformation, 318-323

simple edge conditions, other, 58

soap powder, 83

Southwell’s method, 78

spring-mass system, 148

AT-cut quartz crystal plates, 314
boundary conditions, 324
circular plates, 316

effects of, 314, 317, 323

elliptical plates, 322

finite difference method, 314
inplane forces, 316

large deflections, 316

low frequency cutoff, 320
Mathieu functions, 324
Mindlin’s equations, 323
Mindlin theory, 318-319
rectangular orthotropy, 321
rectangular plates, 318-323
synthesis of equations, 335
thermal effects, 316
thickness-shear mode, 315, 316, 317, 321
thickness-twist mode, 321
variable thickness, 285

S8-C-88-C, 46-50 Rotating disk, clamped at center, outer edge free, 276
S8-C-88-F, 51-52 Rotation

S8-C-S8- SS 50-51 edge, 13

SS-ES-SS-ES, 116, 120 modes, 31

S8-F-F-T, 87

8S-F-8S-F, 53-58 Sectorial plates, 239-240

SS-SS-F-F, 87 all edges clamped, 239

85-88-88-F, 52-53

8S-S8-88-88, 43-45, 276-279

steel, 79, 83, 86

stepwise superposition of modes, 57
strain energy, 119

surrounding media, effects of, 301-303
symmetrical slope restraints, 120

boundary conditions, other, 239
circular edge, 239

completely elamped, 240

exact solution, 239

radial sides simply supported, 239
Rayleigh method, 239, 240
semicircular, 240

transcendental functions, 129 Semicircular plates, sectorial, 240
transition points, 54, 65, 75, 79, 109 Series method, rectangular plates, 60, 63, 78, 131
translational spring, 148 Shear deformation, 314-324

transverse shear, continuity of, 139

two opposite sides S8, 45-46, 279-280
uniform slope restraint, 122

variable thickness, 291-297

variational method, 47, 51, 58, 65, 79, 136, 140

i
l

anisotropic material, 314

AT-cut quartz crystal plates, 314
bending moments, 315

circular plates, 316-318

effects of, 314, 317
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Shear deformation—Continued
elliptical plates, 322
finite difference method, 317
inplane forces, 316
large deflections, 316
low-frequency cutoff, 320
Mathieu functions, 324
Mindlin theory, 318, 319
mode of vibration, 315
Poisson’s ratio, 317
polar orthotropy, 337
rectangular plates, 318-323
Reissner’s static theory, 314, 315
static theory, 314
strain displacement, 314-315
synthesis of equations, 335
thermal effects, 316
thickness-shear mode, 315, 316, 317, 321
thickness-twist mode, 321
transverse shearing force, 315
variable thickness, 285
Shearing forces, transverse, 2-5
elliptical coordinates, 3
polar coordinates, 2
rectangular coordinates, 4
skew coordinates, 5
Simple edge conditions
parallelogram plates, 161-184
rectangular plates, 58
triangular plates, 205-229
Simply supported plates
all edges, polygonal plates, 207
circular plates, anisotropic, 246-248
circular plates, inplane forces, 272-273
circular plates, isotropic, 8
parallelogram plates, 165
polygonal plates, 237
rectangular plates, 45
sectorial sides, 239
simulation by V-grooves, 123
trapezoidal plates, 193
triangular plates, 210
Sinusoidal time response, 276
Skew coordinates, 5
bending and twisting moments, 5
edge reactions, 5
Laplacian operator, 5
shearing forees, transverse, 5
strain energy, 5
Slopes, small, equilibrium equations; 331
Soap powder, rectangular plates, 83
Solid circular plates. See Circular plates.
Solutions, significant, parallelogram plates, 161
Southwell method )
plates with inplane forces, 269, 270, 272
rectangular plates, 78
Space fixed coordinate system, notation, 329
Spacing of grooves, 253
Spring-mass system, rectangular plates, 148
Springs, supporting plate, 13-14

Square plates. See Rectangular plates.
Stabilizing surface, 161
Static case, large deflections, 306
Static deflection, shear deformation, 314
Steel plates
cantilever plates, 293
parallelogram plates, 163
rectangular plates, 83
trapezoids, 195, 196
Stepwise superposition, rectangular plates, 57
Stiffeners, anisotropic plates, 265
Stiffness, distributed, 13
Stiffness of foundation, 1
Strain-displacement equations
kinematics of deformation, 333
large deformations, 303-304
polar coordinates, 337
shear deformation, 314-315
Strain energy, 337-338
anisotropic plates, 250
bending, 250
deformation, 337
derivatives, 220
plates with inplane forces, 269
Rayleigh-Ritz method, 337
rectangular coordinates, 4
rectangular plates, 119
skew coordinates, 5
transverse stresses, 338
triangular plates, 220
Stress-strain relationships, 333-334
general anisotropic elastic material, 333
isotropic elastic material, 334
polar orthotropy, 337
rectangular orthotropy, 333
shear deformation, 315
Styrofoam core, nonhomogeneity, 324, 325
Surrounding media, effects of, 299-303
air, 299, 301
apparent mass, 301
beam functions, 303
cantilever plates, rectangular, 301
circular plates, 299-301
Dini series, 300
hydrodynamic strip theory, 303
incompressible fluid, 299
partial immersion, 301
Rayleigh method, 300
Rayleigh-Ritz method, 299, 300
rectangular cantilever plates, 301
rectangular plates, 301-303
virtual mass function, 301
water, 299, 300, 301
Surrounding media, elastic constants, 300
Symmetrical slope restraints, rectangular plates, 120
Synthesis of equations, 335

Tensorial, kinematics of deformation
manipulations, 333
strain, 333




Thermal gradients, 273-275

large deformations, 309

plates with inplane forces, 267-284
Thickness

shear deformation, 315

synthesis of equations, 335

variable. See Variable thickness.
Torsional moduli of rigidity, 171
Transcendental functions, 129
Transition curves, parallelogram plates, 170, 171
Transition points

parallellogram plates, 171

rectangular plates, 54, 65, 75, 79
Translational spring, stiffness, 148
Transverse bending, polar orthotropic plate, 245
Transverse deflection

large deflections, 311

plates with inplane forces, 267
Transverse displacement, 1
Transverse force equilibrium, polar orthotropy, 337
Transverse shear, continuity of, 139, 145
Transverse shearing force

equilibrium equations, 332

notation, 329

polar coordinates, 2

polar orthotropy, 337

shear deformation, 315

strain energy, 338
Transverse stresses, strain energy, 338
Trapezoidal plates, 193-196

beam functions, 195

cantilever, C-F-F-F, 194-196

chain rule of differentiation, 194

collocation method, 193

Kato-Temple method, 195

perturbation methods, 193

planform dimensions, 196

Rayleigh-Ritz method, 194, 195

right triangular coordinates, 194

SS-8S-88-S8, 193-194

steel, 195, 196

strain energy, 194
Trefftz method, 161
Triangular plates, 205-235

analogy with vibrating membrane, 212

arbitrarily shaped, 227

beam functions, 212

beam network representation, 217

cantilever beam, 213

cantilever plate, 212-229

C-C-C, 205-206

C-C-F, 208-209

C-C-88, 206-208

C-F-F, 212-229

collocation method, 205, 207, 209, 210

C-SS8-F, 209-210

C-88-88, 209

delta cantilever plate, 215-226

derivatives in strain energy, 220

equilateral triangle, 206, 212
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Triangular plates—Continued
extrapolation formula, 206
F-F-F, 229
finite difference method, 205, 220
hub-pin supports, 230
isosceles, 208
method of images, 212
other supports and conditions, 229-233
planform dimensions, 227, 228
point-matching method, 210, 212
Poisson’s ratio, effects of, 213
Rayleigh-Ritz method, 212, 213, 213-217
sectorial plates, comparison with, 205, 208
simple edge conditions, 205-229
skew coordinates, 205
S8-F-F, 205
SS-S8-F, 212
S8-88-88, 210-212
steel, 206, 208
strain energy, derivatives in, 220
triangular coordinates, 212
Turbine, vane, 244
Twisting and bending moments. See Bending and
twisting moments.
Twisting moment intensities, notation, 329
Twisting, strain energy of, 250
Two opposite sides, SS, anisotropic plates, 254-260
Two opposite sides, SS, inplane forces, 279-280

Uniform inplane forces, 279
Uniform slope restraint, 122

Variable thickness, 285-298

annular plates, 286

arbitrary shape, 277

Bessel functions, 286

cantilever beam, analogy with, 286

circular plates, 285-291

circular plates, clamped, 285

finite-difference method, 293

flexural rigidity, 285

inplane forces, 285

polar coordinates, 285

rate of taper, 201

Rayleigh-Ritz method, 288, 290

rectangular plates, 291-297

rotary inertia, 285
Variational method, 136, 140, 170, 271
“Veering away”’ phenomenon, 63, 75, 170, 261
Veneer, grain of, anisotropic plates, 252
Von Kérmén equations, 306, 310

Warburton’s formula, 86
Water

loading, 300

surrounding media, 299, 301
Weight density, square steel plate, 86
Weinstein method, 58, 61

Young’s modulus, 1
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