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ABSTRACT

The objective of this study was to review the existing theory
and concepts pertaining to the use of backpacking materials around
deeply buried protective structures and to provide a limited evalu-
ation of a number of commercially available products in order to
determine their suitability for use as backpacking.

The basic theory, concepts, and applications pertaining to the
use of backpacking around buried structures were compiled and are
reviewed. Based on the premise that a one-shot, one-material
backpacking system will be adequate for the reguirements of a
deeply buried structure, a number of backpacking design consider-
ations were established.

A cursory examination and review were given to 42 materials
from 9 groups of materials to determine their practicality for
use as backpacking. The groupings of materials by types include:
granular materials, honeycombs, low-density concretes, flexible
and rigid foamed plastics, and foamed rubber, glass, metal, and
sulfur. None of the materials investigated and reviewed appear
to satisfy all of the design considerations established for a
backpacking material; however, this does not discount their being
used as backpacking. The ultimate selection of a backpacking

material should depend on the actual service conditions the

-



material will be subjected to, and these conditions may preclude
some of the design considerations that the material in gquestion

cannot satisfy.
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a,b

NOTATION

displacements of cavity walls

end area of finite slice at original liner-backpacking
interface

end area of finite slice at original cavity wall-
backpacking interface

modulus of elasticity

unit length

pressure at elastic yield point of the material
original pressure

varying component of packing pressure on liner
pressure at the locking state of the material
uniform component of packing pressure on liner
original radius of liner

original radius of cavity

thickness of backpacking

strain energy per unit volume of backpacking

total strain energy capacity of backpacking volume, Vb
strain energy per unit volume of rock

total strain energy capacity of rock core volume, Vr
volume of additional voids in V;

volume of backpacking

volume of finite backpacking slice
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a

volume of material at elastic yield point
original volume

volume of rock core

volume of solids in V%

volume of voids in V%

volume of material at the locking point
deformation of liner

relative backpacking thickness

strain

required backpacking strain

yield strain

3.1h16

stress

yield stress

average stress
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CHAPTER 1

INTRODUCTION

The applied forces for which a blast-resistant, deeply buried
structure must be designed are transient in nature and their prob-
ability of occurrence is small. The magnitude of these forces de-
pends on a number of factors over which a designer has no control.
To eliminate some of the many unknowns imposed on the structural de-
sign of a buried structure, the designer may employ various struc-
tural systems in selected environments which will increase the
probability of survival of the structure and its contents. One
technique that can be used for controlling the magnitude of the
forces being applied to a buried structure is the use of shock-

absorbing backpacking materials around the structure.

1.1 OBJECTIVE

The general objective of the shock-absorbing materials pro-
gram is to investigate existing materials and possibly develop new
materials which could be satisfactorily used as shock-absorbing
backpacking for deeply buried protective structures. The materials
are to be investigated for desirable properties, including possible
second-shot loading capability, avallability, ease of handling and
placement, and cost.

The objective of the first phase of this investigation was

13




to review the existing theory for the application of backpacking
materials and to provide a limited evaluation of a number of com-
mercially available products in order to determine the suitability
of certain types of materials as backpacking. This report describes

this first phase.

1.2 SCOPE

To accomplish the objectives of the initial study of back-
packing materials, a cursory examination and review were given to
L2 materials from 9 grouping of materials by types to determine
their practicality for use as backpacking materials. The types of
materials include: granular materials, honeycombs, low-density
concretes, flexible and rigid foamed plastics, and foamed rubber,
glass, metal, and sulfur. In all cases when samples of the materials
were avallable, the static stress-strain behavior of the materials
was determined. When samples were not available, stress-strain
curves for the materials in question were located in published re-
ports. In some cases, additional properties and characteristics
of the materials were also determined.

In addition, the basic theory, concepts, and applications per-
taining to the use of backpacking materials around buried structures
were compiled and are reviewed. This report will be limited to the

premise that a one-shot, one-material backpacking system will be

1k




adequate for the protective needs of a deeply buried structure.

1.3 BACKGROUND

Interest in the use of backpacking for shock isolation of entire
buried structures has generated many ideas as to the feasibility
and composition of wvarious systems and materials that could be sat-
isfactorily used as backpacking. As early as 1953 it was suggested
in Reference 1 that: 'The space between the lining and the tunnel
surface should be filled with a material of low density that will
absorb the energy of the flying rock, distribute pressure from
fallen rock, and provide a mismatch of acoustic impedance so that
reflection will take place at the tunnel surface rather than at the
surface of the lining."

The beneficial use of a frangible backfill in isolating and
protecting underground structures in Operation Plumbbob from violent
ground motions in thelr vicinity was reported in Reference 2. During
Operation Plumbbob, vertical concrete pipes covered with concrete

4
slabs were lined one layer thick on the sides and bottom with empty
glass quart bottles. When compared with the contrel pipe for the
experiment, which had soil backfilled directly against it, it was
found that the peak accelerations produced by shear forces exerted
on the sides of the isolated pipes were reduced to 26 percent of

those of the control pipe. This reduction was attributed in part
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to the collapse and crushing of the glass which dissipated a portion
of the shock energy.

In two related studies (References 3 and M), various methods
were employed on or about cylinders buried in silica sand in order
to alleviate shock-induced motions of the cylinders. These methods
consisted of: (1) wrapping the cylinders in flexible and rigid
polyurethane foams, (2) using air voids between the sand and the
cylinder, (3) using preexpanded polystyrene beads as a crushable
backfill aggregate, and (U4) using sands of varying densities as
backfill aggregate separated from the overall bed by a stove pipe.
It was concluded that polyurethane foams placed around a cylinder
and other materials functioning as a loose backfill aggregate were
effective in attenuating the response of the isolated structures.
In a study on the influence of mechanical shielding on the response
of buried cylinders (Reference 5), a crushable layer directly over
the buried cylinder was introduced. The use of this crushable
material greatly reduced the magnitudes of the loads reaching the
cylinder.

In presenting theoretical descriptions of the propagation of
a pressure pulse in a potential backpacking material, it was sug-
gested in Reference 6 that foamed or distended materials are effec-
tive in reducing the peak pressures delivered to a structure when

an impulse is applied to the opposite surface of the foam.
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In discussing the methods of mitigating the effects of shock for
lined tunnels in rock, it was stated in Reference 7 that the current
design concept for protective liners in competent rock includes the
provision for a highly deformable material between the face of the
rock and the liner: "It would appear that the magnitude of...forces
(generated by spall impacts) reaching the lining could be signifi-
cantly reduced if a crushable material is introduced between the face
of the rock and the lining."

In Reference 8 it was suggested that the shock energy reaching
a buried structure in rock can be partially dissipated by (1) reflec-
tion of energy and (2) energy absorption; these actions can be
enhanced by interposing a material between the structure and the
confining medium that has a low shock impedance with respect to that
of the confining medium. The impedance mismatch that occurs will
cause some energy to be reflected. If the low shock impedance
material 1s also very deformable under applied stresses, it will
absorb the energy present in the form of ground motions and

accelerations.

1.4 DESIGN CONSIDERATIONS
A review of the investigations cited above and other similar
projects provides an insight to what is necessary in designing a

backpacking system for shock-isolating purposes. 1In general, a
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sultable backpacking should be a frangible or crushable material )
possessing a low breaking or crushing stress level and a high degree
of compressibility. The material should (1) dissipate and reflect

a portion of the shock energy, thereby reducing the magnitudes of
the forces reaching the structure, (2) limit the forces transmitted
through the backpacking to the structure to a defined magnitude and
range, and (3) accommodate the deformations of the cavity in which
the structure has been placed.

In support of these three primary considerations, the material
should also (U4) possess a second-shot loading capability, (5) be
resistant to age effects, (6) be resistant to the infiltration of
groundwater, (7) be insensitive to strain-rate changes, (8) be
readily available, (9) be easy to handle and place around a buried
structure, and (10) be economical.

These secondary considerations are often as important as the

three main considerations. A material that is only partially failed
when subjected to a single-burst loading should be capable of ex-

hibiting the same type of behavior for the remaining unfailed ma-
terial when it is subjected to a second-burst loading. If it does
not, the design of the structure will be further complicated. The
material should also resist changes in mechanical properties with
age and with straining rate as it would be difficult to design struc-

tures for continually varying behavior of the backpacking. The "
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material must resist the infiltration of groundwater to ensure that
the shock waves are not transmitted through a water medium to the
structure. In keeping with item (10) (economy), the materials should
be readily available in most areas and be easy to handle and place,
thus reducing shipping and labor costs.

In satisfying one or all of the above considerations, it should
be kept in mind that the ultimate selection of any material for use
as backpacking should depend on the service conditions to which the
material will be subjected and the final in-place cost of the
material.

Because of the large relative costs of construction versus
design overpressures (References 9 and 10), the scope of this investi-
gation will be restricted to design overpressures less than 1,000 psi;
that is, the magnitude of stress transmitted to the structure through
the backpacking material will be less than 1,000 psi. Assuming
single-burst loading where closure of the cavity is imminent, de-
formations of the backpacking to accommodate this closure should be

approximately 50 percent.
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CHAFPTER 2 \

THEORY

2.1 FPRESSURE-VOLUME, STRESS-STRAIN RELATIONS

Most of the materials that have been or are being investigated
generally fall into two distinct categories: (1) materials having
no distinet yield point and some degree of compressibllity, and (2)
materials possessing a distinct yield point plus some degree of com-
pressibility. Tdeally these materials can be represented by pressure-
volume curves for a bilinear locking solid (Figure 2.1) and a linear-
plastic-linear locking solid (Figure 2.2), respectively (References 6,
11, and 12).

Consider first the case of a bilinear locking solid (Figure 2.1).
The original volume is designated VO . Under a small applied pres-
sure the specific volume decreases to V at no appreciable increase

1
in the pressure. At V. the material locks, with only small addi-

1
tional decreases in volume occurring for additional large increases
in pressure.
In the case of the linear-plastic-linear locking solid (Fig-
ure 2.2), the initial specific volume 1s again represented by VO .
Under the application of pressure the material behaves as an iso-

tropic elastic solid until Pe s the elastic yleld pressure, is

reached with Ve corresponding to the volume of the material at

20
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the elastic yield point of the material. The material then decreases
in volume at no further increase in pressure until Vl , the locking
point, is reached. Only large increases in additional pressure will
cause additional small decreases in the volume after locking has
occurred.

Under blast-loading conditions the loaded area is normally so
great that the portion of the medium under consideration and its
inclusions can be assumed to be laterally confined with displacements
occurring only in the direction of loading. By applying this assump-
tion of lateral restraint to the ideal pressure-volume curves, they
can readily be converted to stress-strain curves for bilinear and
linear-plastic-linear locking solids subjected to one-dimensional
compression (Figures 2.3a and 2.3b). This conversion to a stress-
strain relation provides a convenient tool for evaluating the energy-
dissipating capability of the materials. To simplify the discussion
of the bilinear and linear-plastic-linear locking solids throughout
this report, they will hereafter be referred to as plastoelastic and

elastoplastic materials, respectively.

2.2 ENERGY ABSORPTION
The energy absorbed by a material depends on two factors: (1)
the deformation of the material, and (2) the forces in the material

during the deformation (Reference 13). The product of the strain and

21




the unit force results in the amount of energy absorbed by the

material:

area under the stress-strain curve (Figure 2.L4) (2.1)

i

UB i1s expressed as the energy per unit volume of material and can be

shown for all cases to be:

€
U= ,f o x de (2.2)

0
The total strain energy capacity, Ubt , of a given volume of

backpacking, Vb s can then be expressed as

U = Vb X Ub (2.3)

Where Ub is strain energy per unit volume of backpacking.

Before proceeding, a distinction should be made between the
terms energy absorbed and energy dissipated. Figure 2.5 represents
a typical stress-strain curve for a material possessing elastoplastic
properties. The entire shaded area represents the energy absorbed
Per unit volume by the material to a given strain €. . When the

2

applied forces are removed from the material, some strain (62 - el)

may be recovered due to the elastic properties of the material. The

22
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energy regained during this recovery is known as rebound energy.
The actual energy dissipated by the material then is equal to the

absorbed energy minus the rebound energy (Reference 13), or
Absorbed energy = dissipated energy + rebound energy (2.4)

In general, the backpacking is assumed to be most effective
when designed to have an energy-absorbing capacity equal to that of
the core of material removed to form the cavity (Reference 1L). This
assumption is contingent on the fact that the structural system must
have the proper strength and stiffness to develop the energy-
absorbing capacity of the backpacking.

In determining the energy absorbed by the rock core, it is
assumed that the rock, when subjected to a plane wave of stress, may
behave either elastically or elastoplastically (Figure 2.6). The
latter behavior is assumed (Reference 14). The strain energy in the

rock for a free-field strain € > ey can then be expressed as:
U =¢€0 - % o€ (2.5)

where Ui is expressed as the strain energy per unit volume of rock,
Gy as yield stress, and €y as yield strain. For the elastic

condition, € < ey , the strain energy is:

1
U = ’é‘ o€ (206)




or

The total strain energy capacity, U , of a given volume of

rt

rock, Vr , can then be expressed as

- 2.
Urt Vr X U% (2.8)

Based on the assumption that the energy-absorbing capacity of
the backpacking should be equal to that of the core of material

removed to form the cavity, Equations 2.3 and 2.8 can be equated:

U, = U, (2.9)
or
VX U =V XU (2.10)

2.3 THICKNESS DETERMINATION
The actual thickness of a backpacking should inciude: (1) the

required strain (e to satisfy the energy-zbsorption requirements

»
(Equation 2.10), and (2) the solid material volume and possible addi-
tional void content comprising the backpacking. Both of these re-

quirements must also satisfy a third requirement, i.e., that the back-

packing be sufficiently thick to provide enough clearance between

the cavity wall and the structural system to accept rock motions

ol




(bulking and spalling)l without impacting the structural system
(Reference 15).
The volume of backpacking (Vb) for any given barrel-type liner

(Figure 2.7) can be expressed as:

2 2
v, =l (ro -r) (2.11)
Where: = 3.1416
1 = unit length
r, = original radius of cavity
r = original radius of liner
The thickness of the backpacking (tf) is then ro - r = tf , OT
r=1r -1 (2.12)

Substituting Equation 2.12 into Equation 2.11, a different expression

for Vb results:

b o
v o= nlfer b, - t° (2.13)
b of f :

A reduction in diameter (of the cavity) occurs, arising from the
fact that the rock is crushed and displaced around the outside of
the cavity. In the process of doing so, it bulks and increases in

volume, thereby decreasing the volume of the cavity (Reference 15).
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If & represents the relative backpacking thickness and is expressed

as:
t
- £
a= o (2.14)
o
Equation 2.13 can be modified to appear as:
V. = ol (20 - of) (2.15)
b o]
or:
=V 2 - Q) o 2.
v, =V« ) (2.16)

where ﬂril is equal to the volume (Vr) of rock core the back-
packing and liner are replacing.
Equation 2.10 in the preceding section can also be expressed

as:

U = (2.17)

By substituting the expression for Vb from Equation 2.16 into
Eguation 2.17, neglecting spatial distribution and higher order
terms, an energy expression in terms of the relative backpacking

thickness is derived:

U, =0 (2 - a) o (2.18)

Ub , in Equation 2.1, was expressed as the product of the

26




average force, 0 , and total strain, €b , in the backpacking:

U =0 X e (2.1)

By substituting this expression into Equation 2.18 and solving for
eb , an expression for the total required strain in the backpacking

is obtained:

U =oe (2-0a)o (2.19)
or
U
e, = S S (2.20)

o (2 - )«

Equation 2.20 allows the average stress (), total required
strain (eb), and relative packing thickness (@) to be determined by
trial-and-error procedures based on the total strain energy that
would have existed in the core of the rock now occupied by the back-
packing and a structural system. In the absence of actual free-
field strain values for the media in question, procedures similar to
those described in Reference 16 can be pursued to obtain a computed
value for free-field strain.

The volume of any material is determined by the sum of the
volumes of all of its constituents. In order to satisfy the energy-

absorption reguirement, the material in question must be very
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deformable at the crushing stress level of the material. This .
deformebility is best achieved by ensuring that the material has a
high void content. Once the material crushes, the voids will col-
lapse and give the desired deformation.
By assuming that the total volume in question is a small radial
slice of finite length of the backpacking as shown in Figure 2.7,
such that the end areas of the slice (Ar and Aro , at original
liner- and cavity wall-backpacking interface, respectively) are

~

approximately equal, Ar A , the composition of the backpacking

ro
slice can then be pictured as seen in Figure 2.8.

The total volume of the slice is Vg and is composed of the
volume of voids (V&) and the volume of solids (V;) . The volume
of voids can be expressed as the sum of the voids (ebV£) necessary

to produce the required strain, eb , and any additional voids

(Vév) remaining in the material after eb has been reached:
1 — 1 + 1
Vv ebVB Vav |

In practice, the additional voids (Vév) are necessary to provide
additional deformations as the material departs from its constant or
guasi-constant stress level and locks up (Figure 2.9). The addi-
tional voids may also be necessary to satisfy the third requirement

for thickness determination, i.e., be thick enough to accommodate
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the rock motions (bulking and spalling) without impacting the struc-
tural system.

The total amount of voids in a potential backpacking material
is unique to that material and within limitations can be varied to
satisfy the total deformation requirements of a backpacking, provided
the strength properties of the material containing the voids are
similarly tailored to satisfy the crushing strength requirements of
the backpacking.

No good theoretical solution to the problem of bulking and
spalling exists; however, empirical expressions for rock-face dis-
placements have been developed (Reference 17) and can be used for

design purposes.

2.4 STRESS TRANSFER

When the closure of a cavity containing a backpacked liner is
uniform, the deformation of the backpacking will also be uniform;
if the backpacking is homogeneous and isotropic, the circumferential
stress transferred to the structure will also be uniform. The mag-
nitude of the load reaching the structure will depend on the load-
deformation characteristics of the backpacking plus the amount of
deformation occurring. If, however, the deformation or stress in
the backpacking is nonuniform, the liner will tend to deform into

an oval or elliptical shape as shown in Figure 2.10.
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In a discussion of the factors to be considered in designing
blast-resistant and ground-shock-resistant structures (Reference 15),
this problem was approached by permitting the liner to deform to
such an extent as to develop in the backpacking appropriate resisting
stresses against the deformation. In this case, the liner must
have requisite strength in compression and in buckling, and must be
able to deform sufficiently without failure or fracture in order to
develop the required resistance.

In developing the stress-transfer theory (Reference 15), a and
b (Figure 2.10) were allowed to represent the displacement of the
cavity walls. However, because of the deformations, vy , of the
liner, the net change in thickness of the backpacking at the sides is
b -~y and at the top is a + y . By assuming a general situation of
load deformation for an elastoplastic material (Figure 2.11), it can
readily be seen that the magnitude of the net differential pressure
between points b and a , assuming the liner does not deform, is
much greater than the net differential pressure between points b -y
and a + y when the liner does deform. If the loads at deformations
b~y and a +y are expressed as ¢ + Py and g =~ p, , respec-
tively, the average of these pressures is the uniform component of
load, g , and the difference from the average is Py s the inward or
outward component of load. It is this component of load, Py > which

produces the elliptical or oval deformation of the liner. As can be
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seen from the ideal curve in Figure 2.11, the larger the net differ-
ential pressure is, the greater Py is. When Py is large, the
deformations of the liner are large; when liner deformations are
large, the backpacking 1s compressed more. This causes the pressure
differential to become smaller, which in turn reduces Py and thus
the deformations of the liner, until an equilibrium is reached at a
uniform pressure g . If the deformations of the cavity are such
that point b lies on the yield plateau of the load-compression
curve for the backpacking, the maximum stress transferred to the
structure will be equal to or less than the yield strength of the
backpacking.

This same approach to stress transfer can be implemented using
a load-deformation relation for plastoelastic materials but with a
little more difficulty as it is relatively impossible for a liner
interacting with the progressively increasing stress-strain relation
of a plastoelastic material to develop a resistance characterized by

a nearly uniform compression on all sides.
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Figure 2.5 Ideal stress-strain relation showing absorbed
energy, dissipated energy, and rebound energy.
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CHAPTER 3

DESCRIPTION OF MATERTALS

3.1 GRANULAR MATERTIALS

Low-density granular materials, when subjected to one-
dimensional compression loading, generally yield a stress-strain
relation that approximates the plastoelastic curve shape. This
behavior, while not as ideal as an elastoplastic behavior, is
still attractive from an economic viewpoint since granular mate-
rials are often considerably cheaper than the materials that can
produce the ideal behavior.

Some naturally occurring materials (volcanic cinders) can
often be put in the desired aggregate form by the simple appli-
cation of a mechanical crushing and sieving process, while other
naturally occurring materials (clay, shale, perlite, vermiculite)
require the application of both a thermal expanding process and
then the crushing and sieving process.

Because of their aggregate shape, low strength, and high
deformability, many synthetic materials (phenolic microballoons,
expanded polystyrene beads, ethylene-vinyl acetate copolymer
beads) manufactured for purposes other than that of a backpacking
aggregate can be pressed into service in that capacity. The

waste or scrap from various industrial processes is often in an
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aggregate form (foamed aluminum scrap, expanded polystyrene .
plastic scrap, expanded polyvinylchloride scrap) and, depending
on the properties of the original material, may be suitable for
backpacking use.
The following paragraphs on granular materials do not en-
compass all of the types of mate~ials that could be used as
backpacking aggregabe, but describe some typical varieties that
are availabl: in most areas.

3.1.1 Volcanic Cinders. Lightweight rocks of volcanic

origin (scoria) occur in many parts of the world. Their
lightweight structure was formed by escaping gases when the
material was still iﬂ a molten state. The resulting rock is
highly vesicular, coarsely cellular rock which is petro-
graphically classified as the glassy equivalent of the mafic
rocks.

The vesicular rock investigated in this program was a
volcanic cinder (SM—35) obtained from a cinder cone about i
150 miles north of Las Vegas, Nevada. The reddish-brown (
cinders were very friable and had an irregular and angular
shape. The cinders had a bulk density of 47.9 pef and follow-

ing particle-size distribution:




Sieve Analysis

Sieve Size Cumulative
Percent Passing

3/L inch 100
1/2 inch 7h
3/8 inch Lo
No. k4 1

3.1.2 Expanded Perlite. DPerlite aggregate is a naturally

ocecurring siliceocus rock which has been expanded to from 4 to 20
times its original volume by heating. DPerlite rock is found
throughout the Rocky Mountain area, but no two deposits produce
expanded perilite with the same physical properties.

Expanded perlite aggregate from two different sources but
with identical densities and gradations can produce two widely
different aggregate crushing strengths (Reference 18). Before
using perlite aggregate as a plastoelastic shock-absorbing mate-
rial, it is advisable to thoroughly evaluate and control (1) the
aggregate source, (2) methods of expanding, and (3) uniformity
of the expanded material in order to achieve a satisfactory
backpacking system.

The perlite aggregate (sM-22) investigated had an as-
received bulk density of 10.2 pcf with the following particle-

size distribution:
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Sieve Analysis (As-Received)

Sleve Size Percent Passing
No. 8 100.0
No. 16 57.0
No. 30 27.4
No. 50 12.2
No. 100 L.o

3.1.5 Expanded Vermiculite. Vermiculite is a hydrated

magnesium-aluminum-iron silicate that is thermally exfoliagted in
special furnaces to form a lightweight expanded aggregate of the
same neme. The expanded vermiculite marketed in this country is
available in four gradations and is generally obtained from two
major domestic sources in Libby, Montana, and Travelers' Rest,
South Carolina. The aggregate used in this study was vermiculite
standard-grade No. 3 (SM-25) and had a bulk density (as—received)
of 8.0 pef and a gradation as shown below. It is normally used

Tor plastering and insulating concrete operabions.

Sieve Analysis (As-Received)

Sieve No. Size Opening Cumulative
Percent Passing
inches
L 0.187 100.0
8 0.0937 95.8
16 0.0k69 bo.7
(Continued)
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Sieve Analysis (As-Received)

Sieve No. Size Opening Cumulative
Percent Passing
inches
30 0.0232 15.2
50 0.0117 7.6
100 0.0059 3.4
200 0.0029 1.5

3.1.4 Expanded Shale.

When certain clays and shales are

heated in rotary kilns or sintering hearths to a semiplastic stage

often referred to as 'the point of incipient vitrification,” they

expand to as much as seven times their original volume due to the

formation of gas within the material at the fusion temperature

(Reference 19).

The cellular structure is retained upon cooling,

thus giving rise to a material with a desirable void content

from the shock-dissipation viewpoint.

The expanded shale (SM-2) used in these tests was obbained

from a local supplier and had a bulk density of 49.5 pef with the

following gradation:

Sieve Analysis (As-Received)

Sieve Size

Percent Passing

1/2 inch
3/8 inch
No. &
No. 8
No. 16
No. 30
No. 50

100
85
33
15

L
o
1
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3.1.5 Expanded Clay. A lightweight aggregate made from

expanded clay (SM-1) was obtained locally in a gap-graded con-
dition. The material was evaluated in this condition because
the gap grading would provide additional voids in any large
volume of the aggregate, thus allowing more consolidation of
the volume when loaded. The aggregate received was both of the
normal lightweight structural concrete variety and also a
variety of the same type of material which had been left in the
expanding kiln too long and had become overburned. This over-
burning resulted in a frangible material that is somewhat
weaker at comparable strains when compared with the normally
expanded aggregate.

Three gradations of each variety were evaluated in this
study, and the as-received properties are shown in Table 3.1.

3.1.6 Phenolic Microballoons. Syntactic foams are made

with conventional polyester or epoxy resins as the binder and
prefabricated microscopic hollow spheres as a filler. These
hollow spheres or microballoons are made from phenolic resin
and are filled with an inert gas, primarily nitrogen.

Phenolic microballoons (SM-20) with a bulk density of
8.3 pef and the following particle-size distribution were

evaluated for this study:
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Sieve Analysis

Sieve Size Percent Passing
No. 50 100.0
No. 100 91.3
No. 200 30.2
No. 325 7.5

Hollow glass microspheres resembling the phenolic micro-
balloons in particle-size distribution and bulk density are also
commercially available.

3.1.7 Expanded Polystyrene Beads. The usual practice in

manufacturing polystyrene beads is to polymerize styrene, which
contains a blowing agent (05 to C7 saturated hydrocarbons) in
an aquecus emulsion. The resulting products are granules or
beads of unexpanded polystyrene. The application of one of a
number of thermal processes to the unexpanded beads causes the
volatilization of the blowing agent present in the unexpanded
granules, thus causing expansion into a bead form. The type of
thermal process used and its control determine the final density
of the expanded bead. The polystyrene beads (SM-21) used as
aggregates in this program were expanded commercially using an

infrared heating system; resulbting expanded density was 2 pef.

A typical analysis of the unexpanded beads is as follows:
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Typical Analysis of Unexpanded

Polystyrene®

Bulk density, pcf 38

Real density, pcf 65.6

Moisture, pct 0.05 to 0.10

Monomer content, pct 0.1 to 0.2

Relative viscosity (1 pct in toluene) 2.0 to 2.1

Volatile content, pct 5.0 to 6.0

Blowing agent n-pentane or
isopentane

& Furnished by the manufacturer.

The expanded beads utilized in this program were both white and

colored, nonself-extinguishing pellets with the following physical

properties:
Actual Analysis of Expanded Polystyrene
Bulk density, pcf 1.98
Bead colors White and blue
Standard sieves:
Cumulative
Sieve No. Size Opening Percent Passing
inches

b 0.187 100.0

8 0.0937 17.5

16 0.0469 0.0

3.1.8 Ethylene-Vinyl Acetate Copolymer Beads. By polymeriz-

ing certain chemical compounds to form copolymers, thermoplastic

resins with properties similar to rubber or plasticized
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polyvinylchloride resins can be developed and designed to have
many combinations of physical characteristics advantageous to
shock-isolation techniques. The resin used in this investiga-
tion was ethylene-vinyl acetate copolymer (SM-29(1) and (2))
and was obtained in an almost uniform bead form with 98 percent
of the beads being retained on a No. 8 sieve. SM-29(1) had a
bulk density of 35.9 pef, and SM-29(2) a bulk density of

37.1 pcf.

3.1.9 Foamed Aluminum. The development and application of

foamed plastics as a construction material have prompted the
development of similar metal base materials (Reference 20).
Careful design of cellular metals to utilize the full potential
of the characteristics of the base material has resulted in a
number of foamed metals that satisfy a wide variety of needs,
one of which is energy absorption (Reference 21). Normally
occurring industrial waste from a foamed metal process or the
deliberate manufacture of foamed metal in an aggregate form
provides two more sources of materials that could be satis-
factorily used as backpacking.

The material investigated in this study was a deliberately
manufactured foamed aluminum aggregate (SM-3) with a bulk density

of 9.0 pcf and the following particle-size distribution:
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Sieve Analysis (As-Received)

Sieve Size Percent Passing
3/l inch 100.0

1/2 inch 8h.6

3/8 inch 10.3

No. L4 0.0

3.1.10 Expanded Polystyrene Plastic Scrap. The waste

products resulting from manufacture of foamed plastics can also be
utilized as a granular-type backpacking material. Two different
expanded polystyrene plastic waste aggregates were investigated
for this study. Type A was deliberately manufactured from the
material (SM-4) described in Section 3.3.3 by pulverizing the
material in a hammer mill. The resulting aggregate form had the
following particle-size distribution and a bulk density of

0.81 pef:

Sieve Analysis

Sieve Size Percent Passing
3/8 inch 100
No. 4 61
No. 8 20
No. 16 10
No. 30 >

The other expanded polystyrene plastic waste aggregate, Type B

(8M-6); is the result of an actual manufacturing process and had
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the following particle-size distribution and a bulk density of

1.06 pcf:

Sieve Analysis

Sieve Size Percent Passing
3/8 inch 100
No. 4 80
No. 8 Ll
No. 16 8
No. 30 2

3.1.11 Expanded Polyvinylchloride Plastic Scrap. The ex-

panded polyvinylchloride plastic waste (SM-8) in the granular or
aggregate form used in this study was the result of a manufac-
turing process that utilized the same type of material described
in Section 3.2.1. This waste material had a bulk density of

0.35 pef and the following particle-size distribution.

Sieve Analysis

Sieve Size Percent Passing
1/2 inch 100
3/8 inch 72
No. L 13
No. 8 3
No. 16 1

3.2 FLEXTBLE FOAMED PLASTICS

A foamed plastic is an expanded, spongy resinous material
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having a distinctly cellular structure which may be either open-
or closed-cell. Most liquid resins or plastic melts can be made
into a foamed form by introducing a gaseous blowing agent at an
opportune time in the process, and then freezing or setting the
expanded mass by cooling or curing (Reference 22).

Flexible foamed plastics subjected to compressive loads
exhibit non-Hookean behavior and begin deforming plastically
under the slightest increases in loading, thus resembling the
plastoelastic behavior described earlier. Vinyl copolymers,
silicone, and linear polyurethane plastic resins are most
commonly used in the production of the flexible group of foams
(Reference 23).

3.2.1 Vinyl Foams. The most common vinyl foam is the

open-cell or flexible foam made from vinyl chloride copolymers.
It is made by incorporating a chemical blowing agent or dispers-
ing an inert gas under pressure into a liquid plastisol mixture
of the vinyl resin and plasticizer. The resultant mixture is
then preheated to cause an expansion of the gas that forms a
frothy semiliquid gel which is cured at higher temperatures to
a flexible spongy solid. Closed-cell vinyl foams can also be
made by pressure-blowing with an inert gas and curing under
pressure in closed molds, thus restricting the size of the

finished foam to the size of the mold (Reference 23).
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The flexible vinyl foams are commercially available in a wide
range of densities; however, the average strength range does not
vary appreciably. In a density range from 4 to 12 pef, the average
compressive strength at 25 percent deformation will vary from
0.1 to 10 psi.

The material investigated in this study was a flexible, ex-
panded, modified polyvinylchloride closed-cell material (SM-9)
with a density of 3.0 pef.

3.2.2 8ilicone Foams. There are three basic types of

silicone foams: premixed powders, room-temperabure-curing foams,
and silicone rubber foams (References 22 and 23).

Silicone foaming powders are expanded by means of a blowing
agent which decomposes into nitrogen gas and an alkaline by-
product at about 300 F. The silicone resins used are solventless
polysiloxanes with a melting point of 120 to 140 F. In the
presence of an appropriate catalyst, they become thermoset through
the condensation of hydroxyl groups. To make a foam, the powder
is simply heated above 300 F. Expansion and gelation are
synchronized, and the resin gels when maximum expansion is
attained.

The room~temperature-curing type is based upon chemical re-
action between two silicone components in the presence of a

catalyst. The reaction is slightly exothermic, but temperatures
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seldom exceed 150 F even in very large pours. Hydrogen gas is
liberated as the expanding agent. The expansion factor is in the
range of seven to ten times.

The production of a silicone rubber foam is very similar to
that of the room-temperature-curing foams in that they are made
by mixing two components. The expansion is instantaneous with the
material developing 80 percent of its ultimate strength within
five minutes after blending has begun. By varying formulation
and foaming techniques, it is possible to produce either open- or
closed~-cell foams.

No silicone foams were tested in this program. A stress-
strain curve for a silicone foam can be found in Reference 2.

3.2.3 Flexible Polyurethane Foams. Flexible polyurethane

foams are produced by polymerizing a di-isocyanate and a polyether
or polyester resin in the presence of a blowing agent. The di-
isocyanate reacts with the resin, converting it to a high-
molecular-weight elastomer, and at the same time reacts with any
water present to generate carbon dioxide which foams the plastic.
Fluorocarbons are sometimes used as auxiliary blowing agents.
Catalysts and surfactants (primarily silicone) are also needed to
control the rate of foaming and the cell structure (Reference 23).
The commercially available, predominantly open-cell, flexible

polyurethanes have a density range from 1 to 6 pcf, with average
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compressive stresses less than 10 psi.
Two flexible polyurethane samples were investigated.
The first sample (SM-55) had a bulk density of 1.4 pcf, the

second (SM-57) a bulk density of 4.0 pef.

3.3 RIGID FPOAMED PLASTICS

Rigid foamed plastics subjected to compressive loads
approach Hooke's law in behavior, i.e. stress is linearly pro-
portional to strain until the crushing strength of the material
is reached. The material then behaves like a viscous liguid.
This behavior duplicates the elastoplastic behavior described
earlier. The epoxy, phenolic, cellulose acetate polystyrene,
and polyurethane plastic resins are most commonly used for the
production of rigid foams (Reference 22).

3.3.1 Epoxy Foams. A typical formulation for a rigid

epoxy Toam contains a liquid epoxy resin, a welting agent, a
solid heat labile compound, and an aliphatic polyamine curing
agent. When this formulation is heated to approximately 212 F,
the heat labile compound decomposes and, depending on the formu-
lation, provides either carbon dioxide or nitrogen gas which
expands the resin into a closed-cell foam. The aggregate heat
of the resin, which should be maintained for 15 minutes after
foaming begins, and the heat of the exothermic reaction should

accomplish the curing (Reference 22).
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This is a free-rise foam with volume expansion limited only
by the thermodynamics and reaction rate of the system. The re-
sulting foams have densities from 5 to 13 pcf and compressive
strengths from 100 to 450 psi. A new technique currently under
development utilizes chlorofluorocarbon as a blowing agent in the
foaming process and resulbs in densities from 2 to 3 pef with
strengths reduced to 10 to 30 psi. Epoxy foams can be either
poured in place or utilized in a spray-type application.

The epoxy foam (8M-18) evaluated in this study had a density
of 5 pef.

3.3.2 Phenolic Foams. There are two basic types of phenolic

foams commercially available: (1) reaction type and (2) premixed
cellular mortar or syntactic foam (see Section 3.1.6). Since

the syntactic foams normally produce compressive strengths well
in excess of the upper stress 1imit of this investigation, the
discussion is limited only to the reaction-type foam.

The reaction-type phenolic foams are made from a thermosetting
liguid phenolic resin mixed with an acid catalyst just prior to
use., The catalyst causes a rapid exothermic reaction which
vaporizes some of the volatiles and causes the resin To expand.
The entire expansion process to a volume as much as 200 times the
original liquid resin volume may take less than 1 minute

(Reference 23).
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Densities varying from 0.33 to 25 pcf can be produced using
poured-in-place techniques wifh compressive strengths ranging
from 2 to 1,500 psi for that density range. The phenolic foam
(SM-36) used in this study had a density of 15 pcf.

3.3.3 Cellulose Acetabe Foams. Expanded cellulose acetate

is produced by a continuous extrusion process wherein the molten
plastic resin is converted to a semirigid foam by a flash vapor-
ization of a volatile solvent (Reference 22). Since it is an
extruded product, it cannot be foamed in place and is presently
available in limited shapes and sizes. The density ranges from
4 to 8 pef with average compressive strengths of up to 150 psi.
The material is easily pieced together by simple gluing to form
any desired configuration.

The material used in this study was a closed-cell, expanded
cellulose acetabte (SM-61) with a density of 6.4 pef.

3.3.4 Polystyrene Foams. Polystyrene foams are of two

types: (1) an expanded foam produced by dispersion of a gas in
the melted plastic resin, and (2) the expandable polystyrene
resin which contains a blowing agent and upon heating will expand
into a unicellular structure or individually expanded beads or
pellets (see Section 3.1.7) if suspended in a suitable medium
(Reference 25).

The polystyrene foams in either form are generally available
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in a density range from 1 to 6 pcf with a respective compressive
strength range from 10 to 300 psi. The closed cells, controllable
density, and low water absorption make this a desirable material
even though at present it cannot be poured in place but has to be
prefabricated.

Both types of polystyrene foam were investigated during this
study. Type A (SM-33) was the homogeneous type with a density of
1.6 pef; Type B (8M-L4) was composed of molded and fused expanded
polystyrene beads and had a density of 1.0 pcf.

3.3.5 Rigid Urethane Foam. Rigid urethane foams are made

by two processes: (1) the quasi prepolymer method and (2) the
one-shot method. In the first process, the di-isocyanate is
reacted with a portion of the polyether to give an NCO-terminated
prepolymer. The prepolymer is then reacted with the rest of the
polyether, catalyst, surfactant, and fluorocarbon to produce the
foaming action. In the second process, no prereaction step is
required. Each component can enter the mixing head separately or
all components except the di-isocyanate can be premixed. In this
process a modified di-isocyanate providing increased functionality
must be used (Reference 25).

Rigid polyurethane foams are available in a wide range of
densities and strengths, but for the level of interest of this

study they can be restricted to a density range from 1.5 to 18 pef
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with respective compressive strengths from 15 to 1,100 psi. The
foam has a low controllable density, excellent dimensional sta-
pility, low water absorption, and can be poured in place.

Two different rigid polyurethane foams were investigated
for this study. Type A (SM-19) is normally used as an expansion
Soint filler and had a density of 1.9 pcf; Type B (sM-3L4) was
prefabricated for use as backpacking on Operation NOUGAT, Shot

HARD HAT (Reference 26), and had a density of 6.2 pcf.

3.4 FOAMED RUBBER

Foamed rubbers are available in two principal types. The
basic or original type is a sponge rubber variety that is made
by subjecting a rubber polymer to the action of a blowing agent,
primarily nitrogen. These polymers can be either gas blown or
chemically blown. In the first case, the blowing gas 1s
mechanically forced into the polymer melt; in the second case,
a chemical that contains the blowing agent is introduced into the
melt and under the combined action of heat and pressure releases
the blowing gas into the melt. In either case, foamed rubber can
be closed-cell or open-cell. When a closed-cell rubber is desired,
the expansion process is regulated so that the blowing gas does
not explode the rubber cells that contain it. In open-cell

rubber, the gas is allowed to explode the cells, thus resulting in

61




an interconnected cell system.

The second type of foamed rubber 1s a by-product of the
first type. The waste material from the fabrication processes
applied to the gas-blown rubber is retrieved and chopped into
small pieces. An adhesive is then added to the pieces, and the
entire mass is subjected to a heat and pressure treatment. The
resulting product is a bonded mass of foamed rubber. The waste
material used in this process is derived predominantly from the
closed-cell gas-blown rubber. It is not uncommon to mix various
foamed polymers together to form a single variety of bonded
foam rubber.

Only the bonded foam rubber (SM-31(B) and (C)) was investi-
gated for this program. SM-31(B) had a bulk density of 26.0 pcf,

and SM-31(C) a bulk density of Lo.L pef.

3.5 CELLULAR METATS

Cellular metal is generally produced by a foundry process.
Prepared molds are packed with a suitable grade of soluble
granules in the most effective manner permitted by the particle
shape. All of the particles touch many adjoining particles. The
entire mold and the granules are preheated. Molten mebal is then
poured over the granules and by use of various techniques is

forced into all available voids. The composite mass is allowed %o
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solidify. After removal from the mold, the soluble granules are
dissolved or leached away from the composite mass by various
processes and only the cellular metal remains. By this process
the size, geometry, and distribution of the voids or cells can
be controlled (Reference 21).

Cellular metals can also be made by incorporating a material
containing a blowing agent into the melt. The heat of the melt
releases the blowing gas which can be trapped in the metal if the
metal is cooled rapidly. Higher densities are usually obtained
with this process than those achieved with the process discussed
in the preceding paragraph.

Aluminum foams with two different sizes of mesh (SM-3) were
evaluated during this study and will be referred to as coarse
mesh and fine mesh with densities of 10 and 13 pcf, respectively.
The foamed aluminum aggregate described in Section 3.1.9 was
manufactured from the coarse mesh variety. Because of size
limitations on the material received, the samples evaluated for

compressive strength were only l-inch cubes.

3.6 CELLULAR GLASS
Cellular or foamed glass is composed of borosilicate-type
glass processed by fusion to form a homogeneous rigid mass of

hermetically sealed cells. The glass ingredients are melted at
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a. temperature of approximately 2,900 ¥. The resulting glass is
drawvn off in solid foxrm and then finely ground. During this
crushing operation a very small amount of pure carbon is thoroughly
mixed with the glass. This mixture is then reheated to approxi-
mately 1,700 F, during which period the cellulation takes place.
The material evaluated for this study (SM-30) had a bulk density

of 9.1 pecf.

3.7 HONEYCOMBS

3.7.1 Paper Honeycomb. Paper honeycomb is a kraft fiber

cellular structure fabricated to form nested, hexagonal-shaped
voids. It is avallable in a number of paper weights, cell sizes,
and densities. The paper can be elther untreated kraft or a
phenclic or other plastic resin-impregnated paper. The treated
kraft provides greater permanence and wet strength. Additional
varieties that furnish quantities of urethane foam at the ends of
the honeycomb cells are also available. These varieties provide
stronger cells and a more watertight system. No paper honey-
combs were tested in this program.

3.7.2 Metallic Honeycombs. Metallic honeycomb is a stable,

naturally vented, rigid-core material which is made of cross-
laminated corrugations of any one of several types of sheet metals.

It is available in various foil thicknesses, corrugation heights,
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and lamingtions. Two aluminum honeycombs (SM-6L4) were evaluated.
Type A had a foil thickness of 0.003 inch, a corrugation height
of 3/16 inch, a bulk, unfaced density of 4.0 pcf, and was
laminated at an angle of 45 degrees. Type B was identical with
Type A except the corrugations were only 3/32 inch with a re-

sulting bulk density of 8.3 pcf.

3.8 FOAMED SULFUR

Foamed sulfur normally is not commercially available but
has been developed (References 27 and 28) for use as a shock-
isolation material for deeply buried structures. The technique
used in its production is simply the manner in which a plasticizer,
stabilizer, and blowing agent are combined with a sulfur melt in
order to produce a foam.

Specifically, foamed sulfur is made by melting sulfur and
heating it to 180 C; then a styrene monomer is added, mixed, and
allowed Lo react with the sulfur. While still at the same
temperature, a polysulfide plasticizer is added and mixed.

Talc, used as a mechanical stabilizer, is added next. The tem-
perature is then reduced to 160 C and phosphorus pentasulfide, an
additional stabilizer, and calcium carbonate, used as a part of
the expansion process, are added. An acid is then added, and an

immediate expansion process occurs as a result of the gas
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generated by the acid-carbonate reaction. The expanded mass 1is
allowed to harden.

A sample evaluation of the foamed sulfur was made by the
Southwest Research Institute, San Antonio, Texas. The testing
technique varied from that used in this study in that the com-
pressive strengths and deformations were determined by Tforcing
a l-inch penetrometer into a confined 2-inch cube. The two foamed
sulfur formulations used to fabricate the samples (see curves in
Figures 5.27 and 5.28) are as follows:

Formulation A:

Constituent Percent
Sulfur 89.7
Phosphorus Pentasulfide L.h
Talc Lh
Calcium Carbonate 0.9
Phosphoric Acid 0.67

Formulation C:

Constituent Percent
Sulfur 90.1
Phosphorus Pentasulfide h.5
Talc L.5
Sodium Bicarbonate 0.9
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3.9 LOW-DENSITY CONCRETES

Low-density concrete, as used in this report, is defined as
concrete made with or without aggregate additions to portland
cement, water, and air to form a hardened material that will have
2 unit weight of 50 pef or less when oven-dried. Low-density con-
crete is normally available in two forms: (1) the lightweight
aggregate type, which is made predominantly with low-density
mineral aggregates, and (2) the cellular type, which is made by
forming a cement mabrix around ailr voids that are generated by
preformed foams or special foaming agents with or without the
addition of mineral aggregate. Both types of low-density con-
cretes were evaluated in this study.

3.9.1 Low-Density Aggregate Type. The lightweight aggre-

gate type, which normally utilizes mineral aggregates, was modi-
fied to include two low-density, synthetic aggregates: expanded
polystyrene beads (Section 3.1.7) and deliberately manufactured
expanded and molded polystyrene scrap (Section 3.1.10). The
mineral aggregate used was expanded vermiculite (Section 3.1.3).
The mixture using the deliberately manufactured scrap polystyrene
also included a cement-replacement material, friant pumicite
(AD-6(L)). The replacement material:cement ratio was 2.33 by
weight.

In all, three different low-density aggregate-type concretes
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were evaluated.

They were proportioned on the basis of a

cement :aggregate ratio (cubic foot of loose cement per cubic

foot of loose aggregate) and s water:aggregate ratio (gallons

of water per cubic foot of loose aggregate).

The actual mix-

ture proportions used to fabricate the concretes (see Figure 5.29

for test results) are as follows:

Vermic-  Expanded Manu-
ulite Polysty- factured
Concrete rene Polysty-
Bead rene
Concrete Scrap
Concrete
Cement:aggregate ratio 0.127 0.128 0.124 ‘
Water:aggregate ratio 3.5 1.8 4.6 -
Replacement material:cement ratio -- -- 2.33 ’
Unit weight, pef Lh7.6 36.0 35.3
Slump, inches 8 10 11 l
Air content, percent Lo 29 25

3.9.2 Low-Density Cellular Type.

density concrete used in this investigation was made by mechanically

blending a preformed foam into a suitable slurry and allowing the

The cellular type of low-

slurry to harden around the air bubbles in the foam.
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Two varieties of cellular concrete were prepared and evaluated:
(1) two mixture designs of the neat cement variety that used only
Type III cement (RC-519) and water to form the slurry, and (2) a
cement-filler material variety that had a mineral filler added to
the cement normally used. The actual mixture proportions used to

obtain the concretes evaluated are as follows:

WES Water: Filler: Unit Alr Cement Filler Water
Mix Cement Cement Weight Content Content Content Content
No. Ratio Ratio

pef pct bags/yd3 bags/yd3 gal/yd3

64k 0.97 1.0 Lo.6 63.5 3.93 3.69 L3.0
128 0.93 -- 1.0 57.5 6.10 -- 64.0
130 0.9 -- 35.0 63.3 5.12 - 55.7

1. Admixtures. To facilitate handling and increase work-

ability, the low-density aggregate-type concretes required the use of
an air-entraining admixture. The admixture used was laboratory stock
AEA-535, neutralized vinsol resin solution.

2. Foaming Agents. A foaming agent, AD-186, was used to

provide the stable air-bubble system necessary for the fabrication
of the cellular concretes. A spectroscopic analysis of the foaming
agent indicated the presence of decomposition products of proteins

reacted with aliphatic fabtty acids or salts of diaphatic fatty acids.
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The foaming agent is marketed as a hydrolyzed, stabilized protein
foaming agent.

3. Cement. Type III portland cement (RC-519) was used
for all six mixtures designs and had the following chemical and

physical characteristics:

Chemical Analysis Physical Properties
Constituents Percent
8102 19.9 Normal consistency 27.2
A1203 5.5 Setting time, Gillmore,
hours:minutes
Fe203 L.6
Initial 2:25
Ca0 63.2
Final 5:25
MgO 1.8
Autoclave expansion, pct 0.01
so3 2.6
Alr content of mortar,
Tgnition loss 1.6 pet 7.2
Total 99.2 Compressive strength of
mortar, psi
Insoluble residue 0.12 1 day 2,175
Nago 0.13 3 days 3,808
K0 0.26 7 days 5,164
Total alkalies Surface area, Blaine
as Na,0 0.30 fineness, cm2/g 4,305
Specific gravity 3.13
C3A 7
(Continued)
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Chemical Analysis Physical Properties

Constituents Percent
CSS 55 Heat of hydration,
cal/g

C_8 16

7 days 81.6
CMAF 14

28 days 91.7
CaSOu L

ly, Mineral Filler. The mineral filler used in the cement-

replacement type of cellular concrete was a finely powdered silica
flour which had 100 percent passing a No. 200 sieve and a specific
gravity of 2.66.

5. Cement-Replacement Materials. Friant pumicite is a

finely divided pozzolanic material which can be used as a substitute
for a portion of the portland cement in concrete. The pumicite used
as a replacement material in the polystyrene scrap aggregabe mixture
was AD-6(L4) and had a specific gravity of 2.36 with 98.4 percent pass-

ing a No. 325 sieve.
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CHAFTER L

TEST EQUIRPMENT AND PROCEDURES

L.1 TEST EQUIPMENT

To provide adequate lateral restraint to the materials that
would be tested in one-dimensional compression, a specially designed
confining chamber was fabricated from a solid core of stainless
steel. The chamber has a 6-inch inside diameter with l-inch-thick
chamber walls and is seated in and bolted to a baseplate of the same
material. The large wall thickness resulted in negligible lateral
strain for the largest vertical loads contemplated for the proposed
tests. The confining chamber can accommodate materials up to 7 inches
in height; however, for this program only 6-inch-high samples were
tested in the chamber.

Loads were applied to all samples by means of a 30,000-pound
Universal testing machine operating at a constant straining rate of
3 percent strain per minute for all samples tested. The load was
transmitted from the testing machine to the sample by means of a
nominal 6-inch-diameter loading piston for all 6-inch-diameter and
6-inch-square samples. A standard 3-inch-diameter loading head
was utilized on all 1- and 2-inch cube samples. The testing config-
uration for a 6-inch-diameter fully confined sample is shown in

Figure L.1.
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L.2 TEST PROCEDURES

4.2.1 Granular Materials. All granular materials were tested

at their as-received bulk densities. The confining chamber was
filled in three equal layers, and the chamber was lightly tapped
with a rubber mallet after each layer was placed. It was found that
this procedure enabled the as-received bulk density to be duplicated
in the confining chamber. The materials were placed to a total
sample height of 6 inches.

The load was applied to the granular samples by means of a
nominal 6-inch-diameter loading piston traveling at a constant rate
of 0.18 in./min (3 percent strain per minute). Where practical,

2ll samples were loaded to a final stress of 1,000 psi.

Prior to the one-dimensional compression test, sieve analysis

of each material was made in accordance with The Corps of Engineers

Handbook for Concrete and Cement Test Method CRD-C 103-60, "Method

of Test for Sieve Analysis of Fine and Coarse Aggregates for Use
in Portland-Cement Concrete." A similar analysis was made of the
crushed expanded clay aggregate resulting from the one-dimensional
compression test.

L.2.2., Foamed or Distended Materials. All foamed or distended

materials not in a granular form, with the exception of the honey-
combs, foamed sulfur, and low-density concretes, were prepared and

tested in accordance with ASTM Specification D-1621-64 Standard
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Method of Test for Compressive Strength of Rigid Cellular Plastics,

with the following modifications:

1. All materials were allowed to deform, if practical, until a
total load of 1,000 psi had been placed on the material.

. All materials were deformed at a constant straining rate of
3 percent of the initial height of the sample per minute.

The materials tested were in a cube form and had a height of
2 inches with the exception of the foamed aluminum, which was avail-
able only in l-inch pieces.

4.2.3. Paper Honeycombs. Curves for paper honeycombs are

presented in Figure 5.25 (Reference 29). Honeycomb pads 16—1/2 inches
by 17-1/2 inches with thicknesses of 1 inch and U4 inches were tested
statically. The l-inch-thick pads were deformed at a rate of

0.62 in./hin; the U-inch pads were deformed at rates of from 0.08

to 0.10 in./min.

L.2.4 Metallic Honeycombs. The metallic honeycombs were

tested using the same procedures described in Section L. 2.2 for
foamed or distended materials with the exception that all specimens
were 6-inches square by 2-inches thick. A 6-inch-square steel
plate covered the surface to be loaded on each sample. The lcad
was transferred from the testing machine to the steel plate by means
of the nominal 6-inch-diameter loading piston. Samples were loaded

at a straining rate of 3 percent strain per minute (0.06 in./min)
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until 80 percent total strain had occurred.

4.2,5 Foamed Sulfur. The sample evaluation of the foamed

sulfur was made by the Southwest Research Institute, San Antonio,

Texas. The testing technique varied from that used in this study

in that the compressive strengths and deformations were determined
by forcing a l-inch penetrometer into a confined 2-inch cube. The
cubes were sawed from larger pieces of foamed sulfur.

L.2.6 Low-Density Concretes. Because of the brittle nature of

the low-density concretes, lateral restraint is necessary to elim-
inate spalling and crumbling of the material after its elastic
yvield point is reached. The concept of lateral restraint also
approximates the condition of the material in a prototype situation.
The restraint was provided by the same confining chamber used to
evaluate the granular materials.

The samples tested were sawed from cast 6-inch-diameter by
12-inch-high cylinders with each cylinder yielding two nominal 6-inch
samples. The original cylinders were cast and allowed to cure in
the mold for 2L hours, after which they were removed and placed in
polyethylene bags. The bags were sealed and placed in an ambient
temperature of 73 + 2 F for 13 additional days, at which time the
cylinders were removed, sawed, and tested.

Loads were applied to the 6-inch-diameter by 6—inch~high
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concrete samples by means of a nominal 6-inch-diameter loading
piston traveling at a straining rate of 0.18 in./ﬁin (3 percent

strain per minute).
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CHAPIER 5

DISCUSSION OF RESULTLS

5.1 GRANULAR MATERTALS

As shown in Figures 5.2 to 5.12, granular materials of the
varieties investigated in this study generally exhibit a plasto-
elastic behavior. These materials are only typical samples of a
large population of granular materials that exhibit that same be-
havior under the same loading conditions. The general stress-strain
relation in granular materials is very complicated, however, and
is to a large extent dependent on the type of material and the
magnitude of the applied pressure. Reference 30 provides a descrip-
tion of a typical stress-strain curve and consequently the energy-
absorbing mechanisms for granular materials which, although con-
cerned with materials subjected to much higher stress levels, il-
lustrate the phenomena necessary for backpacking using granular
materials (Figure 5.1).

The behavior in Region 1, the very low-stress range, reflects
rearrangement of the particles. When vesiculated granular particles
are subjected to the same low stresses, fragmentation by shearing
and crushing also occurs during the particle rearrangement, thus
resulting in a concave upward curve for the same region

(Reference 31).
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The absorbed energy in both cases is usually nonrecoverable. -

As the stress increases (Region 2), the particles begin to
lock together in a stable matrix of elastic particles. Some re-
arrangement is still taking place; but the overall behavior is
essentially nonlinear elastic in nature, therefore allowing most
of the energy absorbed to be recoverable.

In Region 3, the stress magnitude is such that the particles
begin to crush and further rearrange themselves. Most of the energy
dissipated here in forming new surface and consolidating the particle
is nonrecoverable.

Region L behavior is similar to that of Region 2 with some
additional crushing taking place. -

The average stress required for compaction depends on many
factors, including the initial void ratio of the granular mass, the
angularity of the particles, the duration and magnitude of the load-
ing, and the inherent strength of the mineral or material which
composes the grain (Reference 31). As the interest in granular
materials for backpacking is at low stress levels and large strains,
Region 1 and perhaps the lower portions of Region 2 as shown for the
curves in Figure 5.1 are the regions of primary interest.

The stress-strain relation for granular materials does not
produce the flat crushing-stress plateau necessary for transferring

a constant stress to the liner. This is not desirable as it is
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relatively impossible for a liner interacting with the progres-
sively increasing stress-strain relation of a plastoelastic material
to develop a resistance characterized by a nearly uniform compres-
sicn on all sides. Some granular materials, however, do yield a
gradually increasing stress plateau (Figures 5.5, 5.6, 5.8, and 5.10)
that does not produce large stress increases for small increases in
deformation until very large total deformations have already oc-
curred. As will be shown later, these materials may have an eco-
nomic advantage over materials that possess an elastoplastic stress-
strain relation and therefore might be considered for use as back-
packing when cost is a governing factor.

Normally the strength of the grains of competent naturally
occurring material is too great to provide the large deformations
required before high applied pressures are reached. Some naturally
occurring grains, however, do possess this deformation capability
because of the very friable, vesicular nature of their grain. Vol-
canic cinders (Figure 5.2) are one such material and require only
mechanical processing before they can be used. Other naturally
occurring materials such as clay, shale, coal, vermiculite, and
perlite can be altered by various mechanical and thermal methods
(Reference 19) to produce grains of a composition suitable for back-

packing purposes. The stress-strain relations for a few samples of
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an expanded clay, shale, vermiculite, and perlite are shown in

Figures 5.3, 5.4, 5.5, and 5.6, respectively.

Often the expanded variety of a naturally occurring material can

be tailored to meet certain strength or deformation requirements by

varying the duration of the expanding process. In so doing, the

strength of the final product will be varied and in turn will affect

the deformations, as the amount of crushing that occurs depends on
the strength of the grain. Figure 5.13 shows the effect of over;
burning a normal lightweight expanded clay aggregate. The over-
burning appears to reduce the amount of competent material in the
aggregate, increase its void ratio, and slightly increase its
porosity. By comparing the particle-size distribution for a par-
ticular gradation of both aggregate varieties after crushing to
1,000 psi, it can be seen (Figure 5.14) that the frangible, over-
burned material resulted in more fines than the normal aggregate
which contributes considerably to the maximum consolidation of a
given volume of aggregate.

Artificial grains can also be used for backpacking purposes.
Industrial waste as well as artificial grains manufactured in the

form of chips or aggregate often exhibits plastoelastic behavior in

one-dimensional compression (Figures 5.7 to 5.12). The curves shown

in Figures 5.7, 5.8, and 5.9 represent the behavior of grain-size

materials that were produced for use in variocus industrial processes.
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Numerous other varieties of both solid and hollow grain materials
that exhibit the plastoelastic behavior are also commercially
available.

Figures 5.10, 5.11, and 5.12 depict the behavior of a few
varieties of industrial waste products. The foamed aluminum ag-
gregate, although manufactured in the laboratory from the parent
material, is representative of what might be expected from an indus-
trial processing method. The two varieties of expanded plastic
waste (Figures 5.11 and 5.12) are the result of actual industrial
processing. Many waste materials might prove to be adequate, but
because waste is only a by-product and is not deliberately manufac-
tured, availability at the time and place the material might be
needed could be a limiting feature.

The amount of moisture the foamed or expanded aggregates may
absorb should also be considered when selecting a granular material
for backpacking. If the voids in the aggregate can become filled
with liquid, their effectiveness in absorbing energy and providing
large deformations is greatly reduced. Most expanded varieties of
the naturally occurring materials will absorb water in varying de-
grees depending on the material. Attempts to coat the natural
grains with waterproofing materials have been partially successful.
The artificial grains, however, absorb very little water, if any,

compared with the naturally occurring expanded grains. The amount
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of moisture absorbed by the waste aggregates will depend, of course,
on the composition of the parent material.

All of the grains discussed above could be incorporated into
various types of binders or matrices. Upon hardening, the matrix
could result in composite material that would possess elastoplastic
characteristics with the matrix and the aggregate providing a defined
crushing stress, while the voids in the aggregate provide the plastic
deformation. Examples of this are described in Section 3.9.1 which
discusses incorporation of natural, artificial, and waste aggregates
in a portland-cement matrix. The resulting behavior of these com-

posite materials is shown in Figure 5.29.

5.2 FOAMED PLASTICS

Cellular or foamed plastics are of two general types struc- -
turally: the closed-cell or rigid foam type, in which each indi-
vidual cell, more or less spherical in shape, is completely enclosed
by a wall of plastic; and the open-cell or flexible type, in which
all of the cells are intercommunicating. The closed-cell or rigid
type generally exhibits an elastoplastic stress-strain behavior, as
shown in Figures 5.15 to 5.19. The open-cell or flexible type
generally exhibits a plastoelastic stress-strain behavior, as shown
in Figures 5.20 and 5.21.

There are eight primary chemical types of cellular plastics
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that could possibly be used as backpacking material: (l) cellulose
acetate, (2) epoxy, (3) polystyrene, (4) silicone, (5) urea
formaldehyde, (6) urethane, (7) vinyl, and (8) phenolic.

Table 5.1 contains a summary of some of the published informa-
tion on these plastics that pertains to the backpacking interest
(References 22, 23, 25, and 32). From the curves shown in Figures
5.15 to 5.21, it can be seen that the energy absorption, stress
transfer, and deformation criteria for a backpacking can be satis-
fied. The information in Table 5.1, however, indicates that some
of the other criteria governing the backpacking selection may be
more difficult to satisfy. The properties of any foamed plastic
should be given careful consideration when selecting it for use as
backpacking. The ultimate selection of the foam should depend upon
service conditions (which may preclude some of the desired criteria)
and the final cost of the in-place material.

As evidenced from the information in Table 5.1, foamed plastics
are available in a wide range of densities and strengths. The con-
stituents of foamed plastic can be selected and formulated to obtain
a desired density and strength within the limitations of the basic
ingredients.

The constituents, formulation, and mechanical and chemical
processes involved in obtaining a foamed plastic will in most cases

determine the type of cell structure of the foamed material; the

85




type of cell structure, in turn, determines to a large degree the
water-absorption characteristics of the finished material. Heed
must also be paid to the constituents of the plastic as water may
adversely affect them over long periods of time (Reference 34).

When a material is to be used in a water environment, it is important
that the percentage of closed cells in the foam be as high as pos-
sible since a relation exists between the percentage of open cells

in a foam and the water absorption. Water absorption can thus be
minimized by careful selection of the ingredients (Reference 35).

In general, foamed plastics are age-resistant in that they do
not appear to become stronger once the curing of the resin is
completed. Some varieties may, however, exhibit strength deteriora-
tion with age when subjected to long-duration adverse environments.

Conflicting data have been published on the strain-rate effect
in foamed plastics, but it is generally believed that they are
strain-rate sensitive (References 24 and 36 to 41). A foamed plastic |
under consideration for use as backpacking should be evaluated for /
this phenomenon before it is used to ensure that its response to
increased straining rates is known.

Some foamed plastics cannot be foamed-in-place but must be
preformed and fitted .around a structure. This may be desirable when
the working environmment does not lend itself to Proper ventila-

tion. TIn most cases, the blowing agents that cause the expansion
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of the plastic resin and its added ingredients release only the rela-
tively harmless nitrogen gas; but in some cases, other toxic gases
may be given off., It should alsoc be noted that most blowing agents
are highly flammable and may even be explosive if proper precautions

are not observed (Reference 23).

5.3 FOAMED RUBBER

Figure 5.22 indicates that the bonded foamed rubber generally
exhibits a plastoelastic behavior. Investigations (References 24
and 36) have shown that the same type of behavior will be obtained
from the gas-blown foamed rubber.

The water-absorption capability of the foamed rubber depends
on its cell type. The open-cell variety would take much more water
than the closed-cell type. The absorption for the closed-cell
variety is generally very low. The absorption of the bonded type
depends on the compactness of the mass of rubber pieces forming
the variety in question. As closed-cell foamed rubber is normally
used in its makeup, 1t would be expected that the absorption would be
low; but 1f the pleces forming the mass are loosely packed together,
water will percolate into the system of voids between the individual
pleces.

Foamed rubber is age-resistant within the limitations of the

environment in which it is placed. It can be subjected to chemical
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attack under certain conditions, at which time its strength will
deteriorate with age if tThe chemical attack persists.

Very little information 1s available as to the sensitivity of
foamed rubber to strain-rate effects.

Currently, foamed rubbers cannot be foamed-in-place but would
have to be preformed and fitted about a structure. Excellent ad-
hesives have been developed for the purpose of bonding rubber to
rubber or, for that matter, bonding rubber to most surfaces.

A point which should be kept in mind is the very resilient
nature of foamed rubber. In most cases, it resumes its original
volume after being loaded and subsequently unloaded. A structure |
that is encased in foamed rubber and shock-loaded may tend to .
oscillate for extended periods of time before finally coming 4o

rest. This behavior would not be desirable.

5.4 CELLULAR METALS

Cellular metals can be made with a number of different types
of metals; however, foamed or cellular aluminum appears to pre-
dominate when energy absorption is required. The curves shown in
Figure 5.23 for the two different mesh aluminums depict an elasto-
plastic behavior.

As the basic aluminum has a defined strength range, density is

used as the governing factor when foamed material is made. The
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lower densities provide lower strengths and, understandably, higher
void contents as the void content controls the density. The converse
is true of higher densities. Because the void system is inter-
communicating, the possibility of water infiltration would be high.

It has not been measured, however, under the conditions that might
prevail in a backpacking environment. Foamed aluminum appears to

be strain-rate sensitive and is definitely age-resistant. Fabrication-
control problems 1limit the foamed aluminum to small pieces that would

have to be stacked and fitted arocund a buried structure.

5.5 CELLULAR GLASS

As can be seen from the curves in Figure 5.24, cellular or
foamed glass generally exhibits an elastoplastic behavior. The
material does not appear to be isotropic, however, as there appears
to be a considerable difference in the stress levels when the mate-
rial is tested both parallel and perpendicular to the direction of
foam rise.

The cellular glass has a low water absorption; however, long-
time effects of increased water pressures are not known. The mate-
rial appears to be strain-rate sensitive. It is age~resistant with
no strength changes occurring once the expanded melt has hardened.
It is obvious from the extremely high melt temperatures described

in Section 3.6 that the material cannot be foamed-in-place but must
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be preformed in small pieces that could be fitted around a structure.

5.6 HONEYCOMBS

5.6.1 Paper Honeycombs. Investigations of various types and

grades of paper honeycombs have shown them to be effective energy
absorbers (References 29, 42, and 43). They exhibit elastoplastic
behavior with the crushing stress plateaus generally being less than
100 psi (Figure 5.25). The honeycombs usually bottom and begin to
lock up after 60 percent deformation has occurred.

The performance strength of the paper honeycomb depends on the
quality of the paper, its resin treatment if any, the cell size,
and the type of facing used. The amount of moisture in the material
will also be a contributing factor (References LU, 45, and U46).
Indications are that the performance strength is also strain-rate
dependent (Reference L2).

The thickness of the honeycomb is limited because of manufac-
turing problems. This means that smaller thicknesses than those re-
quired for backpacking a liner may have to be pleced or stacked to
obtain the final desired thickness. Rapid loading tests on stacked
pieces of paper honeycombs indicate that the response of the stacked
pieces is similar to that of a single piece at comparable stress
levels (Reference 43).

The type of material (kraft paper) and the basic structural
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configuration of the honeycomb will probably preclude its use by
itself in an enviromment that may even remotely encounter ground-
water. The treatment of the kraft paper with phenolic or other
plastic resins an@/or the sealing of the honeycémb cell ends with
a closed-cell, foamed polyurethane plastic may reduce or eliminate
the infiltration of water into the material and the cells. The
use of these techniques for this purpose has not been thoroughly
investigated, and no degree of certainty of water exclusion can
now be attributed to their use.

5.6.2 Metallic Honeycombs. The behavior of metallic honey-

combs under load is similar to that of paper honeycombs. They also
exhibit elastoplastic behavior (Figure 5.26) but with crushing-
stress plateaus generally greater than those of the paper honeycombs
(References 47, L8, 49, and 50).

The performance of the metallic honeycomb depends on its
fabrication., Various foil thicknesses, corrugation heights, and
lamination patterns can be combined to design a honeycomb that will
satisfy the load and energy requirements of a given application.
Generally, however, the crushing stress of a metallic honeycomb is
a function of the density of the honeycomb.

As in the case of the paper honeycombs, metallic honeycombs
are limited in size and would have to be stacked or placed around

a buried structure.
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The construction of the metallic honeycomb makes it highly .
susceptible to groundwater infiltration; however, the absorption of
water by the basic material itself is nil. The metallic honeycomb
is age-resistant. Whether or not it is strain-rate sensitive is not
clearly defined in the published literature, but indications are
that if the material is strain-rate sensitive, the resulting dif-

ference is very small,

5.7 FOAMED SULFUR

Foamed sulfur is a recent development primarily designed to
complement the family of materials that could possibly be used as
backpacking. The basic sulfur foam formulations and resultant
properties of the foams have not been fully optimized as of this
writing; however, the preliminary information available (References -
27 and 28) indicates that the material, with further development
work, could be satisfactorily used as backpacking.

The foamed products resulting from the initial development
work possess a good cell uniformity with compressive strengths vary-
ing from 125 to over 500 psi. Figure 5.27 shows two curves for dif-
ferent foam formulations. The curves generally depict elasto-
plastic behavior. For most of the samples evaluated, locking of
the material does not appear to occur until 40 to 70 percent de-

formation, depending on void content, has occurred. As can be seen
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in Figure 5.28, strengths can be varied by varying the density
(changing the void content) or by changing the foam formulation.
Water absorption as low as 10 percent has been measured after
submergence under water at 50 psig for 2h-hour periods. No long-
term submergence information is available. The long-term effect of
water on the foam constituents also is not known.
Based on the behavior of the basic ingredients of the foam,
it seems feasible that the material will be age-resistant; however,
this phenomenon has not been evaluated. Limited testing at the
Concrete Division of the U. S. Army Engineer Waterways Experiment
Station has shown that the foamed sulfur is strain-rate sensitive.
Unfortunately, the present foam formulations are not odorless.
The odor does not affect the physical properties of the material but
does develop an unpleasant working enviromment. The odors are
generated by currently used plasticizers, and indications are that
odorless foams could be produced using more suitable plasticizers.
Additional development work has shown that foamed sulfur can be
produced on a continuous basis with equipment that is simple and
capable of being scaled up to any size. A pilot model of the equip-
ment has been developed and has proved successful. Foamed sulfur

can also be sprayed on some surfaces (Reference 28).

5.8 LOW-DENSITY CONCRETES

The low-density concretes investigated in this study generally
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exhibit an elastoplastic behavior (Figures 5.29 and 5.30). The
strength of the hardened matrix and, in part, the strength of the
aggregate in most cases where aggregate is used contribute to the
development of a defined crushing point of the material. After
initial crushing has begun, the voids in the aggregate and/or other
voids in the matrix begin to collapse, thus allowing the concrete
to deform at nc appreciable increase in stress level.

The crushing-stress plateau of the cellular concretes (Fig-
ure 5.30) appears to be flatter than the plateau of the low-density
aggregate-type concretes (Figure 5.29). The progressively locking
plateau of the low-density aggregate-type concretes may be due to
the presence of the aggregate and its contribution, if any, to the
overall strength of the concrete. If an aggregate is used in the
portland-cement matrix, it should be very weak and friable and
contain a large number of collapsible-type voids. Experience has
shown that the addition of too much aggregate into a matrix in order
to obtain more deformation adversely affects the workability of the
concrete. The solubion is that most insulating concretes, such as
vermiculite (References 8, 39, 51, and 52) and perlite (References 18
and 19), require as much as 20 to 30 percent entrained air in order
to be suitable for backpacking use. Cellular concretes (Refer-

ences 19 and 53), which may or may not contain a fine sand or filler,




can often be found with air contents as high as 75 percent of the
total concrete volume.

These air voids, while desirable from the point of view of
deformation, tend to absorb moisture when it is available from the
surroundings. The water-filled voids would, of course, reduce the
effectiveness of the backpacking system. Tests (Reference 53)
have indicated that very large water pressures are necessary to
saturate these concretes over a short period of time, but the long-
time saturation effect of a considerably smaller pressure is not
known. When the concretes are removed from the water-pressure en-
vironment they appear to drain freely and to reach a point con-
siderably less than complete saturation.

The low-density concretes appear to be strain-rate sensitive
and generally are not age-resistant. The increase in the strength
of the concrete with age is influenced by a number of additional
factors so that strength gain, if any, cannot be predicted until the
actual jobsite conditions are known.

A large number of low-density aggregates such as those discussed
in Section 5.1, along with varying air contents and possible addi-
tions of fillers, could be utilized in a portland-cement matrix to
produce a low-density concrete. The type of low-density aggregates
and mixture designs must be established by experimentation. Gen-

erally, most low-density concretes of both types discussed in this
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investigation can be fabricated and placed in most environments .

using conventional construction equipment.

5.9 MULTIPLE-SHOT LOADING CAPABILITY

The multiple-shot loading capability of the materials investi-
gated herein has not been discussed because very little work has been
done in this area with these materials. Specifically, the problem
is: If a backpacked structure has survived an initial loading of
a single weapons burst, what are the chances that the structure will
survive additional loadings occurring in the same locale at varying
time intervals?

If the structure survives the effects of the first loading and
the deformations of the cavity walls were within the elastic strain
region (Figure 2.6) of the medium, the backpacking should retain "
almost all of its original potential; if the deformations of the
cavity wall were in the elastoplastic strain region (Figure 2.6) of
the medium, partial closure of the cavity probably resulted (Fig-
ure 2.10). Assuming the backpacking does not lock under the initial
loading and partial closure of the cavity, some of the potential of
the backpacking theoretically should be available for additional
loading. It is doubtful that the backpacking would be able to
rebound and regain any appreciable amount of its original volume as

the forces in the backpacking would not be great enough to force and
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compact the crushed rock into some semblance of its original form.

After the initial loading, assuming partial closure of the
cdvity has occurred, it is unlikely that the backpacking would
achieve its original state of stress before loading because of the
dead load of rock mass it would now have to support. Given suf-
ficient time, the backpacking would probably attempt to creep out
from under any stress concentrations, thus resulting in a somewhat
uniform stress throughout the material., The time it would take to
accomplish this, if at all, would depend on the properties of the
material in gqguestion.

The portion of the remaining unlocked backpacking, then, is the
area of interest for multiple-shot loading of a single-material
backpacking system. Little published information has been located
on behavior of the materials mentioned herein when reloaded after
being partially failed. It is hoped that the materials used as
backpacking, when reloaded, will resume the same stress plateau of
the original loading and continue until locking begins to occur.
This behavior should be proven for any material contemplated for

actual use as a backpacking.

5.10 ECONOMIC CONSIDERATIONS
No detailed examinations of the costs of the various materials

that could possibly be used as backpacking can be made in a report
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of this nature as the ultimate in-place cost of any material will .
depend on the (1) basic material cost which will be related in

most cases to the volume of material required, (2) availability
which would be related to shipping costs, (3) storage and handling
costs, and (L) placing costs which would include men, materials,

and equipment. All of these factors will vary from job to Job and
will be influenced by the actual material used.

The materials discussed in this report are only representative
samples of what could concelvably be used as backpacking under a
given set of conditions. The actual materials discussed are compared
on a relative cost basis in Figures 5.31 to 5.3Lk. All values shown
are relative to the other values in the same figure. These values
are general and approximate and should not be construed as absolute
or binding values. They are presented solely to give the reader
an ldea of the relative costs of the materials in this study. ‘
The values used in deriving Figures 5.31 and 5.33 were obtained /
from the sources from which the materials cited were obtained. (
The values in Figure 5.32 were obtained from Reference 25.

The values in Figures 5.31 to 5.34 are expressed as the rela-
tive cost per unit volume of material. Many of these materials are
sold on a unit-weight basis but for the sake of this presentation

have been equated to a volume basis for the range of backpacking
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interest in order that a more realistic comparison of the costs for
a volume job could be made.

As can be seen in Figure 5.31, the expanded naturally occurring
aggregates appear to cost less than the granular materials produced
artificially. Some scrap items, however, compare favorably cost-
wise with the expanded naturally occurring aggregates.

Most foamed plastics are in the same general cost range as can
be seen in Figure 5.32. The actual cost of any foamed plastic would
depend on basic solid material costs and the density that is desired
in the foamed plastic.

Figure 5.33 includes the remainder of the materials in the
investigation not mentioned in Figures 5.31 and 5.32. From this
figure it can be seen that the foamed sulfur and low-density con-
cretes generally cost less than the other materials in that grouping.

In Figure 5.34 typical materials from each of the major material
groupings of this report are compared on a relative cost-per-unit-
volume basis. From this figure it appears that the expanded natural
aggregates and the lower densities of certain types of low-density
concretes are the most economical from a materials cost standpoint,
while the foamed plastics and the upper density range of the low-

density concretes cost more for the same unit volume.
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TABLE 5.1 SUMMARY OF PUBLISHED INFORMATION ON FOAMED PLASTICS

Material Density Compressive Water Fabrication
Strength Absorption
Foam-in-
Place Spray Molded
pef psi
Cellulose
Acetate 6 -8 125 Low X
Epoxy :
Preformed 5 - 38 50 - 6,000 Low X
Pack-in-place 15 - 25 600 - 3,000 Low X
Foam-in-place 5-8 82 - 110 Depends on X
cell type
Polystyrene
Molded beads 1-10 20 - 220 Low X
Reaction type 1.3 -45 35-18  ILow x>
Silicone
Powder type 12 - 16 100 - 325 Low X X
Resin type 3.5 - 4.5 0.1 - 8.0 Low X X
Elastomeric b
type 7-15 3-5 High X X X
Urea
Formaldehyde 0.5 -1.5 1.5 -5 Very high X X
Urethane c
Flexible, molded 1.5 - L4 0.2 - 2.0 Very high X
Flexible, foam- e
in-place 2-20 0.3-1L4o0 Very high X X
Rigid 1.5 - 18 15 - 1,100 Low X X X
Vinyl b
Flexible 3-10 1.5-28 Very high X
Rigid L - 25 80 and up Low X
Phenolic 0.4b - 20 0.8 - 1,100 High X X

% See Reference 33.
commercially available,

At the time of this writing, process is not yet

Compressive strength at 50 percent deflection.
€ Compressive strength at 25 percent deflection.
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STRESS

REGION 4
LOCKING MEDIA

REGION 3
CRUSHING AND
COMPACTION

l

REGION 2
/
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(REFERENCE 31} /

/
/

/
Y /

//
—_ REGION 1

_— COMPACTION

STRAIN

Figure 5.1 Qualitative one-dimensional stress-strain
curve for granular material (Reference 30).
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Figure 5.13 Comparison of stress-strain curves for normal
and overburned 3/4- to l/ 2-inch expanded clay aggregate.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Based on the results of the limited testing in this investiga-
tion and the information obtained from published reports and papers
reviewed during the investigations, the following conclusions appear
warranted:

1. The response of the backpacking and that of the liner
are completely interdependent, and the design of one cannot be con-
sidered without the design of the other.

2. None of the materials investigated and/or reviewed in
this work appear to satisfy all the design considerations set forth
for a backpacking material.

3. The granular materials, flexible foamed plastics, and
foamed rubbers investigated generally exhibit a plastoelastic
behavior.

4. The foamed or cellular materials (which include rigid
foamed plastics, metals, glass, sulfur), low-density concretes, and
honeycombs investigated generally exhibit an elastoplastic behavior.

5. According to the design considerations set forth in
this report, the elastoplastic behavior would be more desirable in

a material than the plastoelastic behavior.
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6. The solid-particle or grain portion of the materials
reviewed generally contributes most of the strength to the back-
packing system, while the voids encased in and around the solid
particles provide the deformation capability.

7. Within the limitations of the materials' strength,

most of the foamed elastoplastic materials and the honeycombs can

be Tabricated to provide a required deformation and crushing-stress

level. The finished product may, however, be limited in size in
order to assure product uniformity and/or accommodate the limita-
tions of the fabricating process and/or equipment. The granular
materials are somewhat limited as each material in question has
its own unique strength properties and deformation capability
which cannot be appreciably altered without changing the basic
composition or form of the material.

8. Insufficient published information precludes a
thorough understanding of the strain-rate sensitivity, multiple-
shot loading capability, and water-absorption capacity under
Jjobsite conditions for the materials reviewed. Generally, most
of the materials investigated appear to be strain-rate sensitive
and appear to be receptive to water infiltration when subjected
to short-term, small static heads of water.

9. From a unit volume of materials cost standpoint for

elastoplastic materials, the low-density concretes and foamed
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sulfur are generally more economical than the foamed plastics,
metals, rubbers, and glass investigated.

10. From a unit volume of materials cost standpoint,
the expanded granular forms of naturally occurring materials
(plastoelastic materials) investigated, while not possessing an
ideal behavior response, are generally more economical than the
elastoplastic materials investigated.

11. The ultimate selection of a backpacking material
should depend upon the actual service conditions and the final

cost of the in-place material.

6.2 RECOMMENDATIONS

Since the final selection of a suitable backpacking should
be based on the service conditions that the backpacking will be
subjected to, a number of suitable backpacking materials should
be investigated and documented. None of the materials investi-
gated and reviewed in this study appear to be entirely satisfactory
as backpacking. The search for other existing materials and the
modification of those materials already reviewed, plus the develop-
ment of new materials, should be continued.

The elastoplastic behavior generally is more desirable in a
backpacking material. As is evidenced from the artificial

aggregate type of low-density concrete, the inclusion of a crushable
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ageregate in a suitable binder can produce this behavior. Investi-
gations of suitable aggregates in various types of binders should
lead to the development of some materials that are more satisfactory
than those already in existence.

The application of existing methods of producing and fabricating
elastoplastic materials such as foamed plastics, foamed metals,
foamed glass, foamed sulfur, and low-density concretes to jobsite
placement conditions should be investigated with possible modifica-
tions in the technigues and procedures being developed.

Suitable backpacking materials should be thoroughly investi-
gated for strain-rate sensitivity, wabter-infiltration capacity, and
multiple-shot loading capability.

The concept reviewed in this report is based on the premise
that under a given set of Jjobsite conditions one material can be
used as backpacking around a buried structure. It is wholly
conceivable that perhaps a multimaterial system could be used in
which each of the materials in the system could be designed to
perform a certaln function with the performance of the entire
system ultimately satisfying the design considerations of a back-
packing material. All the materials in the system need not be
backpacking materials. This approach warrants some consideration
as none of the materials investigated in this study, when acting

singly, will satisfy all of the backpacking design considerations.
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Sufficient data have not been accumulated to date to evaluate
quantitatively the combined response of backpacking and the
structure. Analytical models of the combined backpacking-liner
response, supported by the measured response of backpacked models

subjected to blast loading, are needed to alleviate this deficiency.
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