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EXECUTIVE SUMMARY 

The Fourier transform has long been a standard tool in signal analysis. It per- 

forms the fundamental task of analyzing the frequencies which exist in a given function 

of time. The Fourier transform does not, however, allow one to discern at what time 

particular frequencies exist in a signal. To overcome this predicament, Gabor intro- 

duced the short-time Fourier transform which permits a "time-frequency analysis" of 

a given signal; that is, it provides a means of telling both what frequencies exist in a 

signal as well as when they exist. This time-frequency analysis led to the development 

of the Wigner-Ville distribution and its connection with the Heisenberg group. 

More recently, the desire to analyze signals at different levels of resolution has led 

to the notion of scale in signal analysis. While the analysis performed by the Gabor 

transform is "fixed scale," scaling plays a fundamental role in the emerging field of 

wavelet theory. This emphasis on dilation naturally leads to the consideration of the 

affine group and the Mellin transform. 

In this report, we begin with a review of the Fourier transform and some of 

its characteristics. We then introduce the Mellin transform, showing its relationship 

to the Fourier transform and developing its analogous properties. In the following 

section, the Paley-Wiener theorem is stated and proved, and the Hubert transform is 

introduced. In particular, conditions which restrict the support of a function's Fourier 

transform are explored. 

With this background, the stage is set for the introduction of the K-transform 

as the composition of the Fourier and Mellin transforms. We define this transforma- 

tion, derive its explicit expression as an integral operator, and obtain an asymptotic 

estimate for the transform kernel. Some properties of the K-transform are explored, 

and the application of this transform to the work of Altes on mammalian hearing is 

noted. 



In the final section, we develop a unified setting for Fourier and wavelet analysis. 

The connection of the Heisenberg group with the Gabor transform and Wigner-Ville 

distribution is shown, as is the connection of the affine group with the wavelet trans- 

form. We then combine these notions in a single setting, the affine-Heisenberg group. 

In this setting, we close by introducing an affine version of the Wigner-Ville distribu- 

tion in terms of the K-transform. 

VI 



1.    FOURIER AND MELLIN TRANSFORMS 

For a finite energy signal, a function / = f(x) in the space L2(R) of all square- 

integrable functions on M, its Fourier transform F(f) = f is defined by 

(*7)(0 =/(fl = /     f(x)e-2^dx (1.1) 
J—oo 

and its Fourier integral representation by 

/oo    A 

my^dc. (i.2) 
-oo 

Strictly speaking, for X2-functions these integrals must be interpreted as the limit 

/(0=Hm/_B
n/(a;)c-^dx 

taken in norm (analogously for the inverse Fourier transform). Plancherel's theorem 

/oo      A /-oo 
\f(0\2d{     =     /     |/(x)|2^ (1.3) 

-oo J—oo 

for Fourier transforms ensures that T is an isometry from L2(M.) onto L2(M); on the 

other hand, Parseval's theorem 

/oo   /-oo    A          
f(x)g(x)dx     =      /     /(O^)« (1.4) 

-oo J—oo 

for Fourier transforms ensures that T is a unitary mapping from L2(lR) onto L
2
(M). 

The Fourier transform is a fundamental tool in signal analysis. By using a com- 

plex exponential as the transform kernel, this analysis allows the decomposition of 

a signal into its individual frequency components and establishes the relative inten- 

sity of each component.[1] In mathematical discussions of the Fourier transform, time 

and frequency are often distinguished by writing K for the time domain and M for 

the frequency domain; also we shall usually use Roman letters x,t, ... for the time 

variable and Greek letters £,77, ... for the frequency variable. Whether on the time or 

frequency side, however, the Fourier transform exploits the additive property of real 

numbers through use of the fundamental property e
27rt(x+y) = e^^e2^y jn establishing 

the convolution property 

T :f*9^r(J"oof(x-v)g(v)dJ) = (Ff){Fg) (1.5) 



as well as the properties 

F:f{. + s)—»e2™^/ (1.6) 

F-.e-^f—»(JF/Jtf + Tj) (1.7) 

describing the interchange of translation and modulation. A simple change of variables 

yields the property 

^:/(r.) —V/K-) (1-8) r r 
describing the effect of dilation. Two other useful results, 

r:f'—*2xitrf (1.9) 

and 

follow immediately from integration by parts. Lastly, 

where f*(x) = f(—x). In order to see the action of T on some specific examples, let 

us consider two very important functions, the Gaussian kernel and the Poisson kernel. 

Gaussian kernel 

T : e"™2 —» e-*2 (1.12)(i) 

We see this fact by completing the square in the exponent of the integrand: 

I"0 e-™2e-2*ixidx=  r e-^x2+2ixt-e)e-*i2dx=  f° e-<x+*)2e~*2 dx 
J—oo J—oo J—oo 

Ji(.-oo J-oo 

/°°       _      2 
e WJ/ rfy = 1. The change in the limits of integration i£ ± oo —> ±oo is 

-OO 

readily verified by applying Cauchy's Theorem to the contour integral around the box 

in C with vertices —R, R,R + i£, -R + i£, and then taking the limit as R —> oo. 

Poisson kernel 

j:: L(-LJ) -^ e-™ (1.12)(«) 
7T \1 + X2/ 

Here we observe that f(x) — l/ir(l + x2) is a rational function whose denominator is 

two degrees greater than the numerator, so we may apply the Residue Theorem for 

rational functions (from complex analysis)[2] and exploit the fact that / is even: 

f° f(x)e~Mxi dx = r f(x)cos2n\t\xdx = Re[2™Rea(»,/(z)e2,r,'K|2)] 
J—oo J—oo 



since i is the only pole of / in C+. Now calculate the residue 

IU*(iJ(z)e*»to) = lim {Z      ]l = lim-f-— = *-—. 
z-*i     7T(1 + Zz) z-»t 7T(Z + I) liri 

Therefore, 

f{x)e-2*txUx = e-2*M. 
-oo 

Let us now introduce the Mellin transform. Set 

£+=max(£,0)    ,    £_=max(-£,0)        (£ € R) (1.13) 

and define Mellin transforms 

/oo /*oo 

^(OÖ"'"1/2df,        M-<Kt)=[    HOCmt-1/2d(. (1.14) 
-oo J—oo 

Observe these are simply a slight modification of the "classical" definition [3] 

too Mm= / mr'dt, ci.is) 
JO 

where we have set z = 2Tü + 1/2 to make A^+^f» and M-(ß functions of t € R. Also 

note the obvious relationship .A/f+[^(—£)] = -M_<^. The corresponding inverse Mellin 

transforms are given by 

t=w* - Sm    tt > 0)' 

and 

r M+mW^F2dt = \^)    4>Uj' (Lie) /_«,     +nw \o (£<0); V       ' 

r^_«()e^*={f'   «<•'• (1.,7) 
Now we point out the fundamental relationship between the Fourier and Mellin 

transforms: 
/OO 

<KeV/2e2^ 
-co -co 

/■CO 

= f «Kfl W* T 
(by mapping £ —► log£). Thus, 

jT-i : e^(e«) _  r ^^-1/2^ = ^+^t). (L18) 

J—oo 

similarly, 
jr-i . e^(_e€) _   r ^(0^-i/2^ = M_m (1 19) 

J—oo 



From this relationship we readily establish the analogue of Plancherel's theorem for 

the Mellin transforms: 

/oo /-co HD 

\m\2dt=   \m\2dc+    woia# 
-oo JO J—oo 

/OO /'OO 

\eU2<Ke*)\2dt+[    \eWt(-e*)\2dt 
-oo J—oo 

/oo /-oo 

|[e^V(^)]V|2^+/     |[e<'2#-e«)]v|3<tt 
-oo J—oo 

by Plancherel's theorem for the Fourier transform. Thus, from Eqs. (1.18) and (1.19), 

/oo />oo /"CO 

\m\2d(=    \M+m
2 dt +    \M-Ht)\2dt.       (1.20) 

-oo J—oo J — oo 

In the same way we derive the analogue of Parseval's theorem 

/oo   /-co   /•oo   

#O0(£K= /    AM(<)A<+M)<ft+ /    M-i(t)M-m<lt-       (1-21) 
-co J—oo J — oo 

In relating the Fourier transform to the Mellin transform, it is the mapping £ —-> 

log£ taking the positive reals to R (and £ —► log(—£) taking the negative reals to R) 

which suggests that multiplication on the half-line in the Mellin setting corresponds 

to addition on the whole line in the Fourier setting, since logx + logy = logxt/. 

This crucial property becomes evident as we work out the following results (we only 

demonstrate results for M+ here; those for M- are essentially identical): 

Let 

1 

and observe 

(<^*V)(0= fV(%M 
Jo CO 

WO CO UJ  / JO      JO iO LO 

/•oo poo ,        , Ai.) 

=   0(W)/ mm™-112«"*- 
Jo Jo to 

Thus 

M+:<f>*il>^>M+<l>(t)M+il>(t). (1.22) 

This establishes that the convolution property for the Mellin transform comes from 

dilating one of the convolved functions (compare to Eq. (1.5) for the Fourier transform, 

which comes from translating one of the convolved functions). 



Now observe that for r > 0, 

J-oo Jo r r1/^ 

/•oo 

Jo 

/•oo 

= r 

Consequently, 

M+ : r1'2^.) —> r-2*HM+(t>(t) = e^10*^^). (1-23) 

Also, 

Jo 
/*oo 

Jo 

so 

M+:e™<f>(O^M+<f>(t + r). (1.24) 

Thus, the Mellin transform sends dilation to modulation, and (logarithmic) modu- 

lation to translation (compare to Eqs. (1.6) and (1.7), where the Fourier transform 

sends translation to modulation and modulation to translation). 

Finally, for h > 0, 

M+ : i(h-l)l2<j>{ih) —* I" £(*-i)/3^)£2*ft+i/2 ff£ 
Jo £ 

Jo hu      h Jo 
1/2 du      1   f°° 

Jo 
and so 

Thus we see that the Mellin transform acts upon exponentiation as the Fourier trans- 

form acts upon dilation (see Eq. (1.8)). 

We conclude this section with a few more examples which will be useful in later 

discussion: 

r°° 
M+ : r<K0 —* /    C<t>(0(2mt-1/2dt = M+<f>(t + a/2«), (1.26) 

y*oo 

M+ : e-'«l —► /    c-KI^«*-i/2 ^ = r(2^ + 1/2), (1.27) 
Jo 



and from Bateman [3], for Rea > 0, 

M+ : e-ai*-K —► y/2^"T(s)e^/8aD.s[ß/V2^\        {s = 2irit + 1/2),        (1.28) 

where D-s is the parabolic cylinder function 

/?..(,:) = 2-/V^*(|,i;^), 

and ty is the confluent hypergeometric series with integral representation 

1      f°° 

1(a) Jo 

We have seen thus far a brief introduction to Fourier and Mellin transforms. In 

particular, we notice that T acts on a function along all of (—00,00), while M+ 

and A4- look only at (0, 00) and (—00,0), respectively. In the next section, we shall 

characterize when exactly T takes a function on (—00,00) to (0,00) (or (—00,0)), in 

order that we might consider the composition of these two transformations. 



2.    THE PALEY-WIENER THEOREM 

Define the Hardy space H2(C+) of functions / as those functions which are ana- 

lytic in the upper half-plane C+ = {z £ C : Imz > 0}, and whose L2 norms along the 

lines Imz = y (constant) are bounded, i.e., 

aoo \l/2 

\f(x + iy)\  dx)      < oo        (x,y £R). 
•oo / 

Similarly, define its companion space i/2(C_) as those functions which are analytic in 

the lower half-plane C_ = {z £ C : Im.z < 0}, and 

aoo \l/2 
\f(x + iy)\  dx)      < oo        (x,y£R). 

- _ -oo / 

Functions / = f(x) which may be analytically extended to C+ or C_ are referred to 

in signal analysis terminology as analytic signals. The Paley-Wiener theorem charac- 

terizes precisely when a function belongs to H2(C+) or i/2(C_) (we prove the case for 

H2(C+) here)[4]: 

(2.1) THEOREM (PALEY-WIENER). F € H2(C+) if and only if there exists <f> € L'2{R) with 

</> = 0 on (—00,0) such that 

f°° 
F(z) = f   m^liz d(. 

Jo 
(2.1) 

Let us precede the proof of the theorem with the following lemma: 

(2.2) LEMMA. Given any z0 in C+, 

1        yoo      p2iriwx 

2717 J-oo (u> (w - Z0) 
du 

02T%ZQX 

0 

(x > 0), 

(x<0). 
(2.2) 

Proof,    (a) Suppose x > 0.  Let T+ = 7+ U [—fi, R], where the curve 7+ is given by 

7+(0) = R(eie),    0 < 0 < 7T. Let g(u) = e2lTiuix. Then g is analytic on C and 

Lf M dz 
2m /-,+ (z - z0) 

1     r e2^Reie>iReie 

LI 
Im J*i 

02itizx 

2m y7+ (z - z0) 
dz 

I 2m Jo     (ReiS - z0) 
de < 

1 

2^ Jo 

e2.i(Re«)xiReie 

(Reie - z0) 
dO 



< 
1 I 

.—2irxRs'mB R 

2TT JO    \Reie - z0\ 

1   r 

de 
1       .jr  .— 2TrxRsm6 D 

_ 2ir Jo 

7T JO 

-27rai?sinö de 

R/2 

2   r/2 

d0 (for    R>2\z0\) 

= -/ 7T JO 

—2TrxRs'm6 de. 

Observe now that sinö > 20/n on [0,7r/2], SO 

2   W2 

-/ ■K JO 

^—2^xRsm9 de 
2 W2 

■K JO 

e-2irxR(2B/ir) ^ 1 -e 2irxR 

2-KXR 

as R —► oo. By the Cauchy integral formula, then 

liri J- 2ni J-oo (UJ — z0) 
du 

1     /■«>     g(u>) L 2iri J-oo (UJ — z0) 
duj 

= lirn 
R—»oo Ml 2m \L 

M dz + J J-R 

R   g(z) 

7+  (z - ZQ) """   '   J-R (z - ZQ) 

9(z) 

dz = Hm ± I R-*oo 2iti JT r+ (z - z0) 
dz 

= -/ 2ITI Jr r+   (Z - ZQ) 

= g(z0) ■■ 

dz        (Vfi > |z0|) 

^Trizox 

(b) Suppose x < 0. Let T_ = 7_ U [-R,R] {R > 0), where the curve 7_ is 

given by 7_(0) = Äe"80, 0 < 0 < TT. Again, let g(u) = e2viu3X. Then g is analytic on 

C. Notice first that z0 G C+ is always outside the curve T_ and g is analytic, so by 

Cauchy's theorem 

So, 

liri J~i- (z 

L 
M 

9(z) 

(z ~ ZQ) 

2-Kl J-y-  (z - Z0) 

I 

dz 

dz = 0. 

lltl J-y. 

„2-jrizx 

1     r* e2^Re~ie^(-iRe-ie) 

2jriJo (Re~ie - z0) 

2lfi J-y-  (z — ZQ) 

de 

< 
1   r 

2% Jo 

e2^Re~'^(-iRe-ie) 

< 

(Re-iS - ZQ) 

•j        »jr  _—27r|a;|Bsinö D 

de< 
1   r 

2TT JO 

^TrxRsinO R 

2TT Jo 
de 

R/2 

—>0    as    R 

ße-*9 - 

(for    R > 2\z0\) 

de 

oo 

by part (a). Therefore, 

e2 

Im J- 2-ni J-oo (u> — zQ) 
du> =  lim 

1 »a. ~2irizx 

R^oo 2wi \JV-  (z — ZQ) 

8 

dz I 
Jlvizx 

1-  \6 (Z - ZQ) 

dz 0. 



Hence, 

r 
2iri J-oo (a? -ZQ) [0 (x < 0); 

proving the lemma. 

j       ^oo      e2Ä» ( e2iriz0x (x > 0), 

Proof of theorem.    Suppose there exists <f> € L2(R) with <j> = 0 on (-00,0) such that 

/•OO /-00 

Jo Jo 

where z = x + iy € C+. To see that F is analytic on C+, we shall show that 

lim F{Z + Zo) " F(Z) 

exists for all 2GC+. So, choose any z € C+ and observe that 

lim F(* + z°) ~ F(z) = Hm /o°° <KQe2^+'°> ff - /0°° flfle**' ff 
20-+O 20 *o->-0 ^o 

We can bring the limit inside the first integral by the dominated convergence theorem, 

since 

/•oo /   /-oo \ 1/2 /   i-oo \ 1/2 

/o    l^)e2^+Zo)|^<(/o    WOftf)     (/o    |e^^)|2df) 

a00 \ 1/2 /   /.oo , , \ 1/2 

WOI2«)     (/o    le-4^^^!^) 

< 00        for    |Imzo| < Imsr, 

since (j> £ L2(R). Thus, 

*o-0 0O Jo     *0^0V ZQ J    ^   ' S 

/•oo 

JO 

Hence, F is analytic on C+. On the other hand, by Plancherel's theorem, 

/oo /-oo /-oo 

\F(x + iy)\2dx= /    |e-2^^(a;)|2rfu;< /    |(^(u;)|2^. 
•00 Jo Jo 

Thus, since <^> G Z/
2
(M) 

/OO TOO 

|F(x + ij/)| dx < /    |^(u;)|2da;     <     00. 
-00 Jo 

So, Fe#2(C+). 



Now suppose F e H2(C+). Define Fb by 

Fb(z) = F(z + ib),    b>o,   zec+. 

First we wish to show that Fb satisfies 

Ft(x) 
dx. (2.3) 

(x-z) 

To do this, we will select a function ka which approximates Fb, invoke Cauchy's 

integral formula for ka, and then show that this carries over to Fb. Fix b > 0, and 

define ka by 

ka{z) =  /   Fb(z + x)dx (2.4) 
a  Jo 

for O! > 0. Notice here that since Fb is continuous, lim kJz) = i^(z). Let T+ and 7+ 
a-+0 

be as in the lemma above. By the Cauchy integral formula, 

/ N        1    /     kM 
Kn 

/r+ (u - 2; 
ofu 

for all i?. For any z£C+, 

1     /•     A;0(u) 

< 

f     ka[\ 

2TT 7O Ä/2 

1    r 

27ri A+ (u — z) 

1    /* |lba(Äew)|Ä 

~ 2n Jo 

ka(Reie)iRei$ 

Consequently, 

Now observe that 

-L/ 
27™ 77+ 

fca(") 
(u-s) 

du 

(Äeiö - z) 

d9        (for    fi > 2\z\ 

<- I* \ka(Reie)\d0. 
■K JO 

de 

-aR sin 9 

-aR sin 9 

IMJ2e'"')| <  /   |n(ßeiö + x)\ dx 
a       Jo 

-otnsmo  i   ra        \ 1/2 /   ,a \    ' 

<- U    dx)     [I   \Fb(Rete + x)\2dx)      < 
s~< „-otRsmQ 

a 1/2 

where C = sup||F(,||2 < oo. Thus 
6>0 

1   r - r \ka(Rei6)\de < JL- re-°R™M < -^r f*'* e-°»WM 
TT Jo na1'2 Jo xa1'2 Jo 

de 

C 
Ra3/2 (1 - e~aR) —► 0    as    R oo. 

10 



As a result, 
1     /     ka(u)    , 

2-KI Jv± (U — z) 

lim (7 
R-*oo \J*y+ (u-z) 

du + 
J-R 

R   ka(x) 

(x - Z) 
dx 

J—oo (X 

ka[x) 
dx 

To see that this result goes over to the Cauchy integral formula for Ff,, observe that 

ka(x) /OO     t'     ( ■»• I 

-oo X - Z 

lim —T 
ka\x) j f ka\x) 

J\x\<n X — Z J\x\>n X 

2.1TI J\x\<n X — Z a-"0 27T? J\x\>n X — Z 

({or    all    n) 

in X — Z a-"U 2TTI J\x\^, 

since ka is continuous on [—n,n]. To estimate the second term, note that 

1/2 , const... „.. 
I      <r II p. II . /      \^ldx<\\ka\\ Jf 

J\x\>n\X-Z \J\x\ 

1 
dx 

>n    X ?i 

But ||F6||2 < oo for all b > 0. Thus 

fi(*) = lim f-L /      ^dx + lim _L /      Mf) d\ 
71-+00 \27Tl yia;|<n X — Z «—0 27T« ./|;r|>n X — Z        J 

1_  Z100   Ft(x) 

'2 J—oo [ X — 
dx. 

2iri J-oo (x — z) 

With this, the proof of the theorem is nearly complete. Observe that 

Z7TZ 7-oo    U — Z J-oo 27TIIU — 2) \J-oo J 

-oo w—c 

=27riu^ 

-oo 2iri(u — z) 

by Lemma (2.2). Consequently, setting z — x + ic € C+, 

rr£c   27ri£;r 
df. F6(x + ic)= Fb(Oe-2v> 

Jo 

Note now that for all 6, c > 0, 

A foo roo 

Fh{£)e~2*ic = /     Fb(t)e~2^ee-2viti dt = /     F6(0e-2,r,'(t-,'c){ 

J—oo J—oo 
dt 

11 



/oo roo . 

Fb(t + ic)e~2^ dt = /     Fb+C(t)e-2^ dt = Fb+C(0. 
-oo J—oo 

Finally, set 

m'U «<0). 
The previous result ensures that </> is independent of e > 0. So, for Rez > e, 

roo /*oo    A /*oo    A . 

/    4>{i)e2Tii" di = I    Ft{i)t
2^e2^zd(=        Fc{Oe2mi(z~ll) d{ 

Jo Jo Jo 

= F(z-ie) = F(z). 

To see that <j> € L
2
(R), we note that 

/OO /"OO 

WO|3de = Hm/    e-^6|^)|2^ 
-oo o->0 Jo 

/•OO /"OO        A 

= iim/ |C-^v(or^ = fm/ \m)\2dt 
/oo 

|jF£,(a:)|2 <3?a7        (by    Plancherel) 
-oo 

< oo    since    F £ H2(C+). 

Hence, we have determined (f> as desired, and the proof is complete. I 

By the same method of proof, the following analogous result holds: 

(2.5) THEOREM. F € //2(C_) if and only if there exists <f> € L2(m) with </> = 0 on (0, oo) 

such that 

n*)= f° <Kty**'<it- (2-5) 
J—oo 

From Eqs. (2.1) and (2.5) it follows immediately that 

L2(m) = H2
+(R)®H2_(R), (2.6) 

where #£(») ={/:/ = lim F(x ± iy),    3F € i/2(C±)}, and that 
y—*0 

/oo /-oo /"CO 

\f(x)\2dx = \f+(x)\2dx+        \f-(x)\2dx, (2.7) 
-OO J—oo J—oo 

where 
/•oo   A yO      A . 

/(*) = /+(*) + /_(*) = /    /(Oe2^ df + /     /(flea,rM* «• (2.8) 
JO ./-oo 
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In the same vein, given any function / e L
2
(R) we are able to construct from it 

a function F in #2(<C+) or #2(<C_) by means of the Hubert transform, 

(Hf)(x) = PV- r M-dy. (2.9) 
7T J-oo X — V 

1 [°° f(y) 
-oo x — y 

This integral is a Cauchy principal value, by which we mean 

-oo x — y 

We proceed as follows: Define gt by 

pviriw^=limi/    mdy. 
-K J-oo X — y £—0 7T J\x-y\>( X — V 

*«-{f  UlIL, 
and note that 

lim<7£(£) = lim /       dy 

_2.  /-sin 2^   = ( -2*(f) (£ > 0) 

Vo j/ y     \-2i(^)        (£<0) 

-tVs</n(0        (£ ^ 0). 

So, 

7T J-oo X — y t-»0 7T y|a;_y|>t a; — y 

= limI /      /(x~y)<fy = lim-(/*ffe)(:r) 

= HS^(/(fl&(0)V(*) = ^(/(0(-^)s^(0)V(^), 
and thus 

(W/)(x) =-i(/(0s^n(0)v(x). (2.11) 

We see then by letting 

f + Mf f- Mf 

that p,q e L2(M) and 

J—oo J—oo 2 

/■°°        A 

= /    f(t)e2**'dt     G//2(C+), 
«/ U 
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while 

J—oo J—oo Z 

= 1° }(&**'#    e//2(c_). 
J—oo 

Up to this point, we have concentrated on the L2 theory of the Fourier transform, 

utilizing the fact that T maps L2
(R) unitarily onto L2(w). Before moving on, we make 

some remarks about L1 theory: Let p and q be conjugate exponents (^ + ^ = 0 such 

that 1 < p < 2. From the Hausdorff-Young inequality 

one concludes that 

T : Lp{m) —► L?(M). 

For the case p = 1, the stronger result 

holds, where CQ(R) is the space of continuous bounded functions on M. 

We now define the space H1(C+) in the same fashion as we did H2(C+): Let 

H1(C+) be the space of all functions F which are analytic in the upper half-plane C+, 

and whose L1 norms along the lines Imz = y (constant) are bounded, i.e., 
/CO 

\F(x + iy)\dx < oo        (x,y€R). 
,^ -    "°° 

A function / € Ll(w) is said to be an analytic L1-signal if / extends analytically to a 

function F £ H1(C+). We define the //^-norm of an analytic L'-signal to be 
/oo 

\F(x + iy)\dx, 

where F is the unique analytic extension of / to i/1(C+). With these definitions we 

have the following theorem, similar in content and proof to the more difficult half of 

the Paley-Wiener theorem: 

(2.13) THEOREM, i// is an analytic L1-signal, then 

/ = 0on(-oo,0]. (2.13) 

We also state the following results, due to Hardy, without proof: 
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(2.14) THEOREM. If f is an analytic L1-signal, then 

and 

Jo 4 

1/(01  y)      <C3||/||Wi (2.14)(») 

wiiere Ci and C2 are constants independent of f. 

These results will be necessary in our discussion of the classical Mellin transform and 

convolution in the next section. 

So, via the Paley-Wiener theorem and the Hubert transform, we see what is 

necessary to restrict the support of a function's Fourier transform to the half-line. The 

following section builds upon this notion as we move on to consider the composition 

of the Fourier and Mellin transforms. 
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3.    THE K-TRANSFORM 

(3.1) DEFINITION. The K-transform is the composition 

K = {M+ © M-) o T : L2(M) —-* L2(M) © L2(m) (3.1) 

of the Fourier and Mellin transforms. 

As fC is the composition of unitary mappings, it too will be unitary and it will take 

L2(R) onto L2(M.) © L2
(M). There is an explicit expression for tC as integral operator. 

Set 

K(x, t) = (2irix)-^it+1/2)T(2Trit + 1/2). (3.2) 

(3.3) THEOREM. On L2(R) the K-transform is given by 

A fOO 

F+{t) = (M+f)(t) =        f(x)K(x,t)dx, (3.3)(.) 
J—oo 

and 
/•oo 

F-(t) = (M.f)(t) = f(x)K{-x,t)dx; (3.3)(«0 
J —oo 

furthermore, on L2(M.) © L2(lR) the inverse K,-transform is given by 

/oo   i-oo   

F+(t)K(x,t)dt +        F-(t)K(-x,t)dt (3.3)(m) 
-oo J—oo 

where in all cases K(x,t) is defined by (3.2). 

Proof.    In the right half-plane {z € C : Rez > 0} the T-function is defined by [5] 

r(z) = s' r 
Jo 

e~suuz —, (3.4) 
u 

where -7r/2 < Arg(s) + 6 < ir/2, or Arg(s) + 6 = ±n/2 and 0 < Rez < 1. Wo wil 

consider only the case where 6 = 0. Now by definition, 

F+(i) = (A<+/)(t) = /_~ ( jH /(x)e-2^ dx)eJ"'*-,/a <*£ 

= r /wf r e-2-^f<+i/2 %.) dx. 
J—oo \ J—oo £   / 
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The inner integral can be evaluated using the definition given above for the T-function, 

setting s = 2nix, u = £, and z = 2irit + 1/2 (and 6 = 0, remember). For these choices 

mvit + 1/2) = (2-Kix)2^1'2 r e-2^emW/2 ^, 
Jo 4 

so 
°°     -..-.... d£ /*00 

K(x,t) = (2mx)-(2"t+1^T(2Trit + 1/2) = /    e-
2^2™t+1/2 

Jo £ 

Thus 
/oo 

f(x)(2Trix)-{2*it+1/2)T(2Trit + 1/2) dx. 
-oo 

Similarly, 

F.(t)=(A<_/)(*) = r (r t(x)e-2™t dx)e-it~i12 d( 
J — OO   \ J—oo / 

= r fW(l°  '-Ma*(-t)2wit-1,2dt)dx 
J—oo \ J—oo / 

Thus 
/oo 

-oo 

To determine the inverse transforms, observe that 

Thus 

K(x,t) =   /" e-2-^^+1/2 fj£ =   f°° eMxt£-2*it+l/2 <ÜL = K(_x^ _ty 

f+(x) = jf    /(Oe2^ d£ = T'x o M;1 o ^(x) 

= ptj00 F+(t)(-
2lTit-1/2 dt)e2™* d£ 

= J°° F+(t)(j°° e2^r2«*+i/2 ^ dt 
di 

t 
Consequently, 

/OO /"CO   

F+(t)K(-x,-t)dt = /     F+(t)K(x,t)dt. 
-oo «/ — OO 

Similarly, 

/_(*) = /°   /(Oc2^ df = ^_1 o AC1 o F_(z) 
J—oo 

= f°  ([°° F-{t)C2*H~1'2 dt)e2™t d( 
J—oo \J—oo / 
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dt = J°° F-(t)([°  e27r,^(-0~W_1/2dA 

= J°° F-(t)(r e-
2^r2,r,'i+1/2 —) dt. 

Consequently, 
/OO /-OO   

F.(t)K(x, -t) dt=        F_{t)K(-x,t)dt . 
-OO J — oo 

This completes the proof. 

Using the asymptotic estimate 

r(2nit + 1/2) ~ y/2^e**i*"9(Mt+m-**it-i/2(1 ,  1  
V '   ' \       12(2™'*+ 1/2), 

for the T-function, we can derive a corresponding asymptotic estimate for the kernel 

K = K(x,t): 

K(x,t) = (2irix)-^it+1/2)T(2Trit + 1/2) 

~ v^27re-(2,rit+1/2)Lop(27rtr)e2irttLo3(25rit+l/2)-27rit-l/2/i    , \ A 

V       I2(2irit + 1/2)J ' 
But for z in C, 

Log(z) = log \z\ + i Arflf(z), 

and so 
2nitLog(2irit+l/2) _    2-!rit(log\2wit+l/2\+iArg(2mt+l/2)) 

= \2wit + i/2|2™V2*<Ar5(2,"'t+1/2) 

while 
-(27rit+l/2)Lo3(27rei) _ p-(27rt't+l/2)log|2ira;|   -(27ni+l/2)t Arg(27rj'x) 

a7r2t S5«(a;)   -tirs3n(a;)/4 
1       N 27rit+l/2 

,2TT\X\ 

Consequently, 

 /       1        \ 2irit+l/2 

K(x,t)^V2^(——1) \2nit+l/2\2irite-"S3^x)/4 (3.5) 
\2Tre\x\J 

x       e-Kt(Tt sgn(x)-2 Arg{2irit+l/2)) f 1    , f A 

V 12(27Tt«+l/2)/' 
Thus the asymptotic behavior of K depends critically on the sign of both x and t 

because these will determine the boundedness of the exponential term. First, suppose 

that x > 0. Then 

lim Trt(irsgn(x) -2krg(2irit + 1/2)) = lim irt(ir -2Arg(2wit + 1/2)) 
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,.     7T - 2 arctan(47rt)      ,.     8TT/(1 + (4TT<)
2
) 

hm ; = lim ;—  

= hm — , „  . .. = 1/2, 
*-«> (1 + 167T2*2) '    ' 

while 

lim TTt(Trsgn(x)-2Arg(2Trit + l/2)) =   lim TT^TT - 2 krg(2int + 1/2)) 
i—►—oo £—*■—oo 

= lim -Trt(ir + 2Arg(2irit + 1/2)) = -oo, 
t-*oo 

since Arg(2nit + 1/2) > 0 for all t > 0. Now suppose that x < 0. In the same fashion 

as above, we see 

lim7T*(7rs£n(x)-2Ar#(27r^ + 1/2)) = lim 7ri(-7r - 2 Arg(2%it + 1/2)) 
£—»■00 £—»oo 

lim -71-% + 2 Arg(2irit + 1/2)) = -oo, 

while 

lim 7r<(7T8flfn(x)-2Ar5f(27rt< + l/2)) =   lim 7ri(-7r - 2 Arg(2irit + 1/2)) 
£—► — oo £—> — oo 

= lim -7ri(-7r + 2Ar#(27ni + l/2)) = lim 7r/(7r - 2 Arg(2irit + 1/2)) = 1/2. 

In particular, therefore, the term 

wt(xsgn(x)-2 Arg(2irit+l/2)) 

in the asymptotic estimate for K is a bounded function of x and t and so A' itself is 

uniformly bounded in both x and t. 

As the /C-transform is less familiar than its individual components, some examples 

will perhaps make its fundamental properties clearer. 

(3.6) EXAMPLES. 

(i) The /C-transform sends dilation to modulation; that is, 

M± o T : a1/2f(ax) —> a2vit(M±f)(t) = a2ntF±{t). (3.6)(i) 

This result follows directly from Eqs. (1.8) and (1.23), by which 

1     rfC M+oT: al'2f{ax) —> M+ [^/(f) 
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= a2vit(M+f)(t) = a2^F+(t). 

The case for A4- o T is identical. 

(ii) For the .smc-function, 

M±oF 
sin 2irx 1 

(3.6)(st) 
nx 2irit + l/2' 

This result follows by direct calculation. Letting \ De the characteristic function on 

the interval [-1,1], we obtain 

_   sin27rx , _   r   _.. 
M+oT:—-_ >M+[X(t)] 

■KX 

J-oo J0 

t2irit+l/2 

2nit + 1/2 

Again, M- o T follows identically. 

1 

o     2nit + l/2' 

(iii) For the Poisson kernel, 

M±oT:-(—1-~) —> T(2nit + 1/2). 

Here we reference Eqs (1.12)(n) and (1.27), by which 

M+ °T '■ \ (IT?) ~~* •M+[e-kl] = r{2nü+1/2)- 
Once more, the same follows for M- o F. 

(3.6)(m) 

(iv) For the normalized Gaussian with mean b and variance a, 

av27T  H*-x2'2a2) 
a\/2Tr 

(by Eq.    (1.6)) 

M + 
p-2iribt 
 We-ir(l/avÄ)2 

av27T 
= M + [c-2,r,^c-,r(a^Ff>a]        (bytfc/.    (1.8)) 

Now we substitute directly into Eq.   (1.28) with a = ^(2ira)2,ß = 2nib, and s - 

2irit + 1/2 to obtain 

A4 + [e-2<2™^2-2^] = (2ira)-sT(s)eW2af2-s'2e-W2afy(-, -; ^) 
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= 2-*"(2™rrw*(|,i;^)- 
Note that we may rewrite this result as 

F+(t) = 2-(*it+1^K(-ia,t)y(irit+l/i, I; ^-). 

To determine M- o T', we utilize the identity M+[</>(-£)] = M-<f>, so substituting 

£' = — £ above yields 

F_(t) = A<+[e-^2-)2^')2+2^'] = 2-s/2(27ra)-T(,)^(^ 1; ^) = F+(i). 

In Eq. (3.6)(i) we observe the critical property that the /C-transform sends scaling 

to modulation. Let's investigate the action of K upon translation (regarding now only 

the case of M+ o f); 

A^+ o jr : /(„ + x) —> A4+(ewV) = /    e*"*/^2™«-»/» df. 
JO 

Representing / by the inverse Mellin transform of F+ (where F+ = (M+ o'F)f), this 

expression becomes 

(M+ o r) : f(v + x)^ Jo°° e2** (|~ F+(s)CM'-1/2 dsy™-1'2 di. 

If Fubini's theorem is applicable here, one obtains the result 

(M+ o f) : f(v + x)^l°0 F+(s) QH c2'^^,-(t-,)-i d^ ds 

Without further restrictions on F+, the inner integral is singular and so only converges 

for 0 < Ke{2-Ki{t — s)) < 1 (see Eq. 3.4), which is not the case here since s,t € M. 

But if, for instance, F+ = Kf where / is an analytic La-signal, then /(0) = 0 and the 

singularity of the inner integral may be compensated for. If we interpret this integral 

formally as a gamma function, we then have a kernel % given by 

%(s) = (-27rix)-27risT(2nis) 

such that 

/oo 
F+(s)Tx(t -s)ds = %* F+. (3.7) 

-oo 

We observe that the term £2m(t-s)-i [s suggestive of the kernel of the classical Mellin 

transform 
/•oo 

mm = M<K-2*it) = / mc2M dt (3.8) 
Jo 
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with inversion formula 
/oo 

M<t>{t)tH dt. (3.9) 
-oo 

Notice that ffl<f> exists if 

r I^(OI f <oo, 
Jo £ 

which is precisely Eq. (2.14)(i) when <f) = f and / is an Z^-analytic signal. This 

classical Mellin transform turns out to be a nice setting in which to look at convolution 

with respect to the JC-transform. If / and g are Z^-analytic, then their convolution is 

also Z^-analytic. Denning A = 9Jt o f, we obtain the interesting result 

aoo A /-OO 

mf(u)t2*iu du /   mg(v)t2™ dv 
-oo J—oo 

aoo      /-oo A \ 

= m(r ([°° mf(u)mg(v - u)du\(2™dv 

= m o m'1 o (mf * mg); 

*--f*g—>*f**g. (3.10) 

consequently, 

In other words, Ä sends convolution to convolution. By the same argument, one 

deduces the similar result for K.: 

>C(f*g)(t) = ()Cf*lCg)(t-±-i). (3.11) 

This framework with convolution and the ^-transform is tied in directly with Altes' 

pursuit of a signal representation which is independent of time shift and scale change..[Q] 

Let / and g be analytic signals such that f,g e £J(K) n L2(m). Recall that f*(x) = 

f(-x). By the Paley-Wiener theorem, if a function h = h(x) is in //±(ffi), then 

h* € //±(M) since conjugation does not effect Th supported only on (0, oo) or (-oo, 0). 
Observe that 

aoo —  , \ /-OO     A 

/(or™-1 df) = I KOC2^-1 #, 
thus 

*:/* — (*/)*• (3.12) 
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From Eq. (3.10), then, 

*:/*</• —*/*(*/)*. (3.13) 

Altes presents the "l^l2 —|9Jt|2 transform" (denoted here by 0) to be the magnitude- 

squared (classical) Mellin transform of a signal's energy density spectrum [6]; that is 

<öf = \m(\ff\2)\ =\jo   \f(0\2C2Mdt 
2 

This idea arises in the context of work to model mammalian hearing. The purpose of 

such a transform is to "wipe out" time shift and scale change in a signal, utilizing the 

properties that \Tf\ is invariant under translation of / and |OT<^| is invariant under 

dilation of <f>. We have in fact captured this transform in a more general setting with 

the ^-transform, since 

*|2 KW$) f = la» o HI * 9*)\2 = W * 9*)\2 = \*f * (*g) 

(Altes' transform is the special case / = g.) 

We note here that Altes, in the same paper, presents one other slightly more 

complicated transform involving composition of the Fourier and Mellin transforms 

(the ""J- — 2R transform"), which preserves some phase information (unlike the \T\2 — 

|97t|2 transform). It may be of interest to see if this second transformation may be 

interpreted in the context of the K. and Ä transforms. We leave this question as an 

open problem at present. Now our interests turn to the wavelet transform and the 

Wigner-Ville distribution, as we attempt in the next section to incorporate these two 

concepts with the /C-transform. 

24 



4.    WAVELETS AND WIGNER-VILLE 

We have so far seen an introduction to the Fourier and Mellin tranforms, some 

basic properties of each, and the presentation of the /C-transform as a composition 

of these first two. Now let's investigate how this all might be tied in with wavelet 

analysis and the Wigner-Ville distribution. First, recall that the Gabor transform 

(or short-time Fourier transform) is defined by the mapping 

/oo   
f(x)g(x-t)e-2™*dx, (4.1) 

-oo 

sending the signal / into a two-dimensional function living in the time-frequency 

plane (£,£).[7] The basic idea of the Gabor transform is that if you want to know the 

particular time at which particular frequencies exist in a signal, then look at a small 

piece of the signal around the desired time t and take its Fourier transform.[8] Many 

properties of the Fourier transform carry over to the Gabor transform; however, the 

analysis here depends critically on the choice of the window g (when Gabor introduced 

this transform, the special case he considered was a Gaussian window).[7] Given a 

window function g(t), define its bandwidth A£ by 

A,   (r«, e \m i2 dt) 
&( = —  

1/2 

11*11» 

where the square of the denominator is the energy of g(t). Two sinusoids will be 

discriminated in frequency only if they are more than A£ apart.[7] Thus A£ is referred 

to as the frequency resolution of the short-time Fourier transform analysis with window 

g. Similarly, define the "time spread" At of g(t) by 

A+    (/Too*3 MO I3*) At - -— ' 

1/2 

II0II2 

where once again the square of the denominator is the energy of g{t). Two pulses will 

be discriminated in time only if they are more than At apart.[7] So, At is referred to 

as the time resolution of this same analysis with window g. Now, by the Heisenberg 

uncertainty principle, the product AiA£ of time resolution and frequency resolution is 

bounded below, so one may attain either arbitrarily good time or frequency resolution, 

but not both. Once the selection of g has been made, the resolution over all time and 

frequency is fixed. Therefore, an alternative to the Gabor transform is necessary if we 

desire varying levels of resolution in the analysis of a given signal. Recently, wavelet 
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analysis has been presented as one such alternative. So, let us introduce at this point 

the idea of a "wavelet": 

We shall speak of a function 0 in Z/1(]R) as being normalized and wavelike if 

(i)    ^I2(l),        («)     /    hK«fl|2^ = l    (f€K). (4.2) 
Jo t 

By "wavelike," we are actually referring to the characteristic that if> has average zero; 

that is 

iß(0) =  /     ^(z)ete = 0. 
J —oo 

But ?/> 6 LX(]R) implies that 0 is continuous, so the existence of the integral in (4.2)(ü) 

is enough to ensure that ^(0) = 0. This prompts the following definition. 

(4.3) DEFINITION. When i> is a normalized, wavelike function in L1^), the mapping 

f — T*f(r,x) = -ijjT /(V)^(l_f) cfo (4.3)(i) 

is caiied tie continuous wavelet transform, while 

T.J — /(,) = f£ -ijr,/(r,x)V.(^) ^ (4.3KÜ) 

is called the inverse continuous wavelet transform. 

The critical idea here is this: We devise a xj) with wavelike properties (fulfilling 

a role much like the complex exponential in the Gabor transform), but then we in- 

tegrate translations and dilations of this function against the signal to be analyzed. 

Resultingly, we obtain varying levels of resolution as r ranges over M. 

Now, the Gabor transform and its properties are very well known. One very 

important idea associated with it is the Wigner-Ville distribution. Define the 

"voice transform" V/i3 to be 

/oo   
f(v+p)g(v)e2^+^2Uv. (4.4) 

-oo 

By a simple change of variables, we observe 

Vf>,?)= r f{v+P)wy*i(v+vl2)qdv 
J — OO 
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= /_~ /(« + §M» ~ \y™q dv, (4.5) 

which is also referred to as the cross ambiguity function of / and g. It is worth 

noting here the relationship between V/i5 and Sgf: 

/oo   
f(v+p)g(v)eM^'^dv 

-oo 

/oo   /-oo   

/(*>)$(" - p)e2"(,;-p/2)9 dv = e~*tpg /     /(v)(/(t; - p)e2mvg dv 
-oo J—oo 

= e-^Sgf(p, -q). 

We obtain the Wigner-Ville distribution, W/,a, by taking the two-dimensional 

Fourier transform of V/i3 [8]: 

/oo      roo 

-CO  J—OO 

= /_~ /(* + §M* - P-)e~2^ dp. (4.6) 

This distribution has been studied extensively and has served as the prototype of 

all time-frequency distributions. [9] Our goal is to carry over this idea to the wavelet 

transform. We take the following approach: 

Represent the Heisenberg group, H, associated with R as the group of matrices 

of the following form 

n= { 

1 x    t 25 " 

0 1    0 i 
0 0    1 — X 

0 0    0 1 

x,(,s e 

For ease of notation, we express the group elements by 

1 X I 25" 

0 1 0 i 
0 0 1 —x 

0 0 0 1 

so matrix multiplication corresponds to the group operation 

(x,t,s).(y,rj,t) = (x + y,( + r),s + t + far] - y£)) . 

(4.7) 

(4.8) 

(4.9) 
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It is quickly verified that H is in fact a group, with element inverses given by 

(x,*,*)-1 = (-*,-£,-*). (4.10) 

Now we introduce the Schrödinger representation w of H, which is a representation 

extending to H the basic operations 

7r(x,0,0):/(t>)—►/(v + x) x G (4.ir 

and 

TT(0,£,0) : /(«) —> e2^/(^)        (* € R). (4.12) 

These are the operations of translation and modulation which underlie the Euclidean 

Fourier transform. Now, since 

(x,0,0).(0,^,0).(x,0,0)-1.(0,e,0)-1 = (0,0, a*) , 

conditions (4.11) and (4.12) completely determine -K on the subgroup Z = {(0,0, s) : 

s £ M} of 7i; indeed, a simple calculation shows that 

ir(0,0,xt):f(v) 02-wix£ 
/(«), 

and so, in general, 

ir{x,t,s)f(v) = T(0,C,S + ±xt)*(x,0,0)f(v) 

= TT(0,0,5 + ^)ir(0,(,0)f{v + x) = g^V^+H)/^ + .T). (4.13) 

Notice that this representation is well-suited to express the Voice transform, since 

J — OO 

/OO   

*(p,q,0)f(v)g(v)dv. (4.14) 
-oo 

Likewise, the Gabor transform may be represented by 

Sgf(p,-q) = empc,Vf,g(p,q) = f 7r(p,q^)f(v)gJ^)dv. (4.15) 
J — oo ^ 

In the very same fashion, we represent the affine group, A, associated with R as a 

group of matrices of the following form 

'1 x 0         0 

0 r 0         0 

0 0 1/r -x/r 

0 0 0         1 

A=l x,r € M,r > 0 (4.16) 
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Again, we simplify notation by expressing the group elements by 

1x0 0 

(x,r) 
0    r      0 0 

0    0    1/r    -x/r 

0    0      0 1 

(4.17) 

The more common (and indeed simpler) way to represent this group is with 2x2 

matrices, so that 
"1    x 

(x,r) 
0    r 

but it is a simple task to show that these are equivalent, and the form in Eq. (4.17) 

is more appropriate for our purposes here. Matrix multiplication corresponds to the 

group operation 

(x,r).(y,p) = (px + y,rp). (4.18) 

The element inverses in A are given by 

(x,r)  * = (-x/r,l/r). (4.19) 

Let us now incorporate the Heisenberg and affine groups into a single representation, 

and expand the -K representation so as to include the wavelet transform. Introduce 

the affine-Heisenberg group, Q, of which both the affine and Heisenberg groups 

are subgroups by letting 

^ 1    x     £        25 

g = :i,(,s,rB, r > 0 (4.20) 
0    r      0        r£ 

0    0    1/r    -x/r 

.0    0     0 1 

Once more, it will be notationally convenient to write (x,£,s,r) for an element of 

Q instead of its matrix realization. With this notation, the group operation on Q 

becomes 

(x,£,s,r).(y,77,<,/))= (px + y, C/p + V, * + * + \{px*l ~ v(/p), rp). (4.21) 

We extend the TT representation from the Heisenberg group to Q by the operation 

TT(0, 0,0, r) : f(v) —> r1/2f(rv)        (r > 0). (4.22) 

Consequently, when we combine Eq. (4.22) with Eqs. (4.11) and (4.12), we determine 

7T on all of Q to be 

ir(x,£,s,r) : f(v) —> ri/2c2«.e2«(n*+i*o *xUf(rv + x) . (4.23) 

29 



To verify that ir is in fact a well-defined representation on Q, observe that 

TT(X, £, s, r) (*(„, r,, i, ,)/(i;)) = ir(x, (, *, r)p^2e2^e2^^+^ f(pv + y) 

= r1/2p1/2e2ni^+t)e2^r<+^h2viMrv+x)v+2y^f(p(rv + x) + y). 

On the other hand, 

*((x,t,s,r).(y,T),t,pf)f(v) 

= ir(px + y, (IP + TI, s + t + \(pxr} - y$/p), rp)f(v) 

= (r/9)1/2e2"(s+'+2(p^~^/p))e
2"(r^^/p+'')+2('':,;+!')(«/''+r'))/(r/9U + px + y) 

= r1/2 p1/2
e

2vi(s+t) e
2™(rvtHxO e2™(p(™+x)n+5yv) ft p<rv + x\ + y\ 

Hence, 7r(a:,£,s,r)(7r(?/, ?/,£,/?)/(?;)) = n((x,t,s,r).(y,ri,i,p))f(v). 

Now we finally have a representation which puts the Gabor and wavelet trans- 

forms "under one roof," so to speak. Observe that in the case s = ^ and r = 1, Q 

reduces to the Heisenberg group and by Eq. (4.15) the Gabor transform is represented 

as 

*(p,<i,-x-,o)f(v)g(v)dv. 
-oo Z 

On the other hand, letting £ = 0 and s = 0, we obtain 

/CO   /-OO   

ir(x,0,0,r)f(v)if>(v)dv = r1'2 /     f(rv + x)ifi(v)dv 
-oo J—oo 

which gives us a representation of the wavelet transform. 

So, let us refer back to the Wigner-Ville distribution and try to find some analo- 

gous setting in the wavelet domain. Recall that 

where T here denotes the two-dimensional Fourier transform on IR2. In this case, Vj>g 

takes signal / and window g to a function on the plane {(p, q) : p, q 6 K}. The group 

structure with regard to both variables p and q is additive, hence T is the "natural" 

transform to apply to V/)S. 

Now consider 
/oo   

Tr(x,0,0,r)f(v)ip(v)dv. 
-oo 
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Here T^f takes signal / and wavelet ip to a function on the upper half-plane {(r, x) : 

r, x € M,r > 0}. But we observe that r plays a scaling role here, and hence the group 

structure with regard to this variable is multiplicative. As we have seen, the action of 

the Mellin transform on the multiplicative group is analogous to that of the Fourier 

transform on the additive group. This leads us to consider the effects of the Mellin 

transform on the scale variable in T^f (we will utilize both art and M+ here): 

Let / and ip be in #£(M). Then 

M'.T+f —► r(r fffoO^rJ/M^duV2"'-1 dr 

= r(r r1/2f(rv + x)J^)dv\-2*H-1 dr. 

By Parseval's theorem, and since f,i/>E. H+(M), 

r(r ri/2j-(TO + xj^y^V-2»«*-1 dr 

\r 
r 

Now we change the order of integration and make the variable change u — £/?■ to 

obtain 

= (/°° J(ÖC2nit~1/2 d() (J°° e2*ixuf{u)u2*lt-"2 du^j 

= K${t)(Tx*Kf){t) 

(since K = A4+ o T for functions in H+(M)). Thus, 

art : T+f —> (£?)(Tr * JCf). (4.24) 

This result is of particular interest for at least two reasons. First, notice that 

taking the Mellin transform with respect to the scale variable in T^f allows us to 

"factor out" the wavelet transform, i.e., ffl(T^f) is a product of a transform of if) with 

a transform of /. Second, Eq. (4.24) allows a representation of T^f which is entirely 

analogous to the standard representation of the Wigner-Ville distribution. Indeed, 

taking the Fourier transform of the voice transform V/i9 with respect to both variables 
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we obtained the Wigner-Ville distribution, most commonly written, as in Eq. (4.6), 

as 

Wfjx, 0 = jT /(x + P-)g{x - P-)e~2^ dp. (4.25) 

Analogously, taking the Mellin transform with respect to the scale variable and the 

Fourier transform with respect to the shift variable of the wavelet transform T+f we 

obtain 
/oo 

m(T1i>f)(t,x)e-2rix(dx 
-oo 

/oo   
(% * JCf)(t))Cxß(t)e-2vi^ dx 

-co 

= ^J°°JTx*ICf)(t)e-2irixUx^{t). 

Because this mapping is exactly the affine analogue of the Wigner-Ville distribution, 

we shall call the function 

W/,*(U) = (J~J%*Kf){t)e-2™Ux}K$(t) (4.26) 

the affine Wigner-Ville distribution of / and ip- 

Previous attempts at affine versions of the Wigner-Ville distribution have been 

made by Altes[10], Flandrin [11], and Parks and Shenoy [8], but none utilize the 

/C-transform. What we have done is begin an analysis of the £-transform in a setting 

which unifies both the Gabor transform and the wavelet transform. Its application to 

this unified setting, and its suitability to the work of Altes mentioned in the previous 

section, indicate that the /C-transform, as the composition of Fourier and Mellin 

transforms, is perhaps a worthwhile topic for further investigation. In fact, it appears 

this transformation may be an underlying element in the realm of wavelets and other 

such methods of time-scale analysis; as these areas are further pursued so might, also 

the /C-transform be more thoroughly considered. 
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