

DRAFT TRAINING PACKAGE
WETLAND DELINEATOR CERTIFICATION PROGRAM
1993

FOR
WETLAND DELINEATOR CERTIFICATION PROGRAM
HEADQUARTERS, U.S. ARMY CORPS OF ENGINEERS
REGULATORY BRANCH, WASHINGTON, DC

PREPARED BY:

WETLAND RESEARCH AND TECHNOLOGY CENTER
ENVIRONMENTAL LABORATORY, EP-W
U.S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD, VICKSBURG, MS 39180-6199
TELEPHONE: (601) 634-4217; FAX: (601) 634-3664

DISTRIBUTION STATEMENT A

Approved for public release;

Distribution Unlimited

19960422 037

DTIC QUALITY INSPECTED 1

REPLY TO ATTENTION OF

DEPARTMENT OF THE ARMY

WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS
3909 HALLS FERRY ROAD
VICKSBURG, MISSISSIPPI 39180-6199

April 29, 1993

Environmental Laboratory

SUBJECT: Wetland Delineator Certification Program Training Package, Public Notice, and List of Trainers

Please find enclosed the 1993 draft training package for the Wetland Delineator Certification Program (WDCP) which you requested. Also enclosed is a copy of the public notice (Federal Register Vol. 58, No. 72/ Friday, April 16, 1993) which discusses this package.

This package has been developed for those who intend to provide wetland delineator training. Additionally, the U.S. Army Corps of Engineers intends to provide a list of potential sources for this training. This list will be provided to Corps districts nationwide for dissemination to the public. If you wish to be included on this list, please write to the Wetlands Research and Technology Center at the above address.

WDCP trainers must provide students with a "Certificate of Training" signed by responsible instructors to include at a minimum, the following language:

"This training has been based in part on the U.S. Army Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1 (1987 Manual), as provided for in the training materials developed in conjunction with Section 307(e) of the Water Resources Development Act of 1990 for the Wetland Delineator Certification Program."

Students must attach a copy of this certificate to their application to the Corps for wetlands delineator certification as of March 1994.

Sincerely,

Russell F. Theriot, PhD

Director, Wetlands Research and Technology Center

Federal Register / Vol. 58, No. 72 / Friday, April 16, 1993 (.Notices.

Department of the Army

Corps of Engineers

Watiand Delineator Cartification Program—Training

AGENCY: U.S. Army Corps of Engineers. DoD.

ACTION: Notice.

SUMMARY: The purpose of this notice is to amounce the evallability of training materials developed in conjunction with the Corps Wetland Delinestor Certification Program (WDCP). The WDCP is being developed in accordance with section 307(e) of the Water Resources Development Act of 1990 (WRDA 90), as previously amnounced in the Federal Register December 30, 1992 (57 FR 62312). A working draft of the training materials will be available this spring. This package has been developed for those who intend to provide wetland delineation training. The Corps intends to provide a list of potential sources for this training to individuals who wish to receive wetland delineation training for the WDCP. If you went to be on this list of wetlend delineation toxining sources. contact the Wetlands Research and Technology Center of the Corps Waterways Experiment Station (WES). This list will be provided to Corps districts nationwide for dissemination to the public.

FOR FURTHER PEPORISATION CONTACT: To request a copy of the draft training meterials, and/or to be included on the list of trainers of this material, contact the WES, Wetlands Research and Technology Center. 3909 Halls Ferry Road, Virksburg, Mississippi 39180—5199, (601) 834—4217. FAX: (601) 834—3584. For information on the WDCP, contact Ms. Karen Kochenbach, Office of the Chief of Engineers, Attn: CECW—CR. 20 Massachusetts Avenue NW., Washington, DC 20314—1000, (202) 272-20199.

SUPPLEMENTARY INFORMATION: Section 307(e) of WROA 90 authorizes the Secretary of the Azzry to establish a program for the training and matification of individuels as wetland islinestors, and to carry out ismonstration projects in districts of the Corps. The WDCP demonstration projects began March 1, 1993; in the states of Washington, Maryland, and Torida, administered by the Seattle, saltimore, and Jacksonville Districts, espectively. For information on the bemonstration project in the State of Veshington, contact the U.S. Army Corps of Engineers, Seattle District.

VTTN: CENPS-EN-PL-ER, P.O. Box

3755, Seattle, WA 98124-2255, or call Ms. Kathy Kunz. (206) 784-3824; in Maryland, contact the U.S. Army Corps of Engineers, Beltimore District, ATTN: CENAB-OP-RX, P.O. Box 1715. Baltimore, MD 21203-1715, or call Mrs. Deborah Nizer, (410) 962-1843; in Florida, contact the U.S. Army Corps of Engineers, Jacksonville District, ATTN: CESAJ-RD, P.O. Box 4970, Jacksonville. FL 32232-0019, or call Mr. Ron Silver. (904) 232-2502. Nationwide implementation of the final WDCP is anticipated to begin in March of 1994. at which time the demonstration projects will end. The Corpe intends to issue a proposed rule on the WDCP prior to nationwide implementation.

Corps certification of watland delineators indicates that an individual has aucrestfully demonstrated the capability to perform satisfactory wetland delineations, consistent with the 1987 Corps of Engineers Wetland Delinection Manual (Waterways Experiment Station Technical Report Y-57-1, January, 1987) (1987 Manual) and supplemental guidence. Although certification does not guarantee that future delinections submitted to the Corps by certified delineators will be approved, delineations performed by cartified delineators will take less time for the Corps to verify. The Corps districts will exercise final decisionmaking authority regarding acceptance of wetland delineations performed by cartified delinectors

Copies of the 1987 Manual are evailable from the Netional Technical Information Service, \$285 Port Royal Roed, Atta: Order Department, Springfield. Virginia 22171, Document #ADA 176 734. Copies of the supplemental guidance issued by the Corps concerning use of the 1987 Manual, which includes the October 7, 1991. Questions and Answers, and the . Merch 6, 1992, Clarification and Interpretation memoranda, may be obtained by contacting the Regulatory Branch of your local Corps district or the Office of the Chief of Engineers. (202) 272-0199.

Training in the 1987 Manual will be a prerequisite for all WDCP applicants (i.e., individuals who apply to districts to be castified) after the demonstration projects (i.e., March 1994). The prerequisite training, as well as the requirement that all training be conducted with a cartified delinestor present, is weived during the demonstration phase of the WDCP. Although participation in the demonstration projects is open to all, it is unlikely that individuals lacking

training and experience in the 1987 Manual will be able to demonstrate that they meet the minimum standards to be provisionally cartified during the demonstration projects.

In order to meet the prerequisite for training in the future, individuals may prepare during the demonstration program by one of the following means:

(1) Acquisition of a provisional certification from the Beltimore, Seattle or Jacksonville Districts; or

(2) Obtaining training in Corps 1987
Weeland Delineation Manual based on
the Corps training materials. A
certification of successful completion of
this training will be issued by the
training source and required by the
Corps.

If you feel you have had appropriate training, it is recommanded that you take advantage of the waiver during the demonstration projects and successfully complete WDCP provisional certification. Once the WDCP is implemented nationwide, no exceptions or equivalencies to the training prerequisities, nor requests of that nature, will be accepted.

Approved: John P. Elmore.

Chief, Operations, Construction and Readiness Division, Directorate of Civil Works.

[FR Doc. 93-8902 Filed 4-15-83; 8:45 am] States cope \$74-43-47

DEPARTMENT OF ENERGY

Pittsburgh Energy Technology Certar; Noncempatitive Financial Assistance Award

AGENCY: Bartlesville Project Office and the Pittsburgh Energy Technology Center, U.S. Department of Energy. ACTION: Acceptance of a Departmention of Noncompetitive Financial Assistance award with the Society of Petroleum Engineers.

SUSMANY: The Department of Energy (DOE), Bertlevills Reject Office amounces that purphent to 10 CFR 800.07(b)(2)(f) critefie (B) and (D), it intends make a notcompetitive financial assistance (grant) award through the Pittsburgh Energy Technology Center to the Seciety of Petrolsum Engineers for a research effort entitled "Colloquim Petrolsum Engineering Education."

ACQUISITION Technology Center. Acquisition and Assistance Division.

P.O. Box 10940, MS 921—118, Pittsburgh Energy Technology Center. Acquisition and Assistance Division.

P.O. Box 10940, MS 921—118, Pittsburgh, PA 19236, FONFURTHER SPORMATION CONTACT. Cynthia Y. Mitchell, Contract Specialist (f12) 892—4862.

Wetland Delineator Certification Program Authority Section 307(e) Water Resources Development Act 1990 Working Draft Training Package 1993

Summary

- 1. Section 307 (e) of the Water Resource Development Act of 1990 directs the Secretary of the Army to establish a training and certification program for individuals as wetland delineators. The Wetland Delineator Certification Program (WDCP) began February of 1993 with demonstration projects in three districts of the Corps of Engineers (Corps). The Corps will develop procedures for expediting the consideration and acceptance of wetland delineations performed by certified delineators, and plans to initiate a rulemaking on the WDCP in the fall of 1993. The WDCP is anticipated to be implemented nationwide in March 1994.
- 2. Corps certification of wetland delineators indicates that an individual has successfully demonstrated the capability to perform satisfactory wetland delineations, consistent with the methodology in use by the Corps at the time, currently the 1987 Corps of Engineers Wetland Delineation Manual (Waterways Experiment Station Technical Report Y-87-1, January, 1987) (1987 Manual) and supplemental guidance. The Corps anticipates continued use of the 1987 Manual for at least two years while the National Academy of Sciences conducts a study contracted by the Environmental Protection Agency. Modifications to the WDCP and training materials will be made consistent with any changes to the Corp's delineation procedures.
- 3. The enclosed training materials are based on the three-parameter approach to wetland delineation as described in the 1987 Manual. This training package represents the minimum standards provided for in the Corps Prospect training course "Regulatory IV Interagency Wetland Delineation". The training is intended to introduce an individual to the three parameters (i.e., wetland plants, hydric soils, and wetland hydrology) and the delineation of the limits of areas exhibiting these parameters (i.e., methods). Training, therefore, includes (as a minimum): (1) wetland hydrology, (2) wetland vegetation, (3) hydric soils and general soil taxonomy, and (4) wetland identification and delineation techniques which stress fields indicators and actual boundary determinations.
- 4. A working draft wetland delineation training package (1993) covering the required topics have been prepared at the U. S. Army Engineers Waterways Experiment Station under the auspices of the Wetland Research and Technology Center (WRTC) (Dr. Russell

Theriot is the Center Director). Copies of the draft documents may be obtained by writing the WRTC or calling (601) 634-4217 or faxing at (601) 634-3664. Review, refinement, and field verification of this package will continue throughout the demonstration period. Draft interim and final packages should be completed and available for distribution upon WDCP demonstration and nationwide implementation phases. The working draft package consists of seven sections identified as follows:

TOPIC

Section 1. Title, Summary, Contents

Section 2. Schedule of Instruction (Framework)

Section 3. Lesson Plans/Objectives

Section 4. Lecture Outlines and Slide Reference Index

Section 5. Word Slide Index

Section 6. Picture Slide Index

Section 7. Blank Routine Method Data Form with Example Provided

Contents

- Section 1. Title, Summary, and Contents
- Section 2. Schedule of Instruction (Framework)
- Section 3. Lesson Plans and Objectives
- Section 4. Lecture Outlines and Slide Reference Index
- Section 5. Word Slide Index
- Section 6. Picture Slide Index
- Section 7. Blank Routine Method Data Form/Example

SCHEDULE OF INSTRUCTION

REGULATORY IV WETLAND IDENTIFICATION AND DELINEATION ACCORDING TO THE CORPS OF ENGINEERS WETLANDS DELINEATION MANUAL

(Course Location)
(Course Dates)

Day/Date	<u>Hours</u>	Subject	Instructor
Monday (Date)	0800-0845	Introductions, Orientation, Course Objectives, Safety, Registration	
	0845-0915	Pre-Test	
	0915-1000	Introduction to the Wetlands of the Local Area (Optional)	
	1000-1015	Break	
	1015-1100	The 1987 Corps of Engineers Wetlands Delineation Manual Background Purpose Scope Technical Guidelines	
	1100-1200	Hydrophytic Vegetation	
	1200-1300	Lunch	
	1300-1415	Wetland Hydrology	
	1415-1800	Field Exercise (Vegetation Sampling, Hydrology Indicators)	All
Tuesday	0800-0830	Review of Field Exercise	All
(Date)	0830-1000	Hydric Soils	
	1000-1015	Break	
	1015-1100	Soil Color	
	1100-1200	Routine Method for Small Areas	
	1200-1300	Lunch	

Day/Date	Hours	Subject	Instructor
	1300-1800	Field Exercise (Routine Method)	Alf
Wednesday	0800-0830	Review of Field Exercise	All
(Date)	0830-0930	Soil Taxonomy	
	0930-0945	Break	
	0945-1030	Use of Soil Surveys	
	1030-1115	Routine Method for Large Areas	
	1115-1215	Offsite Method	
	1215-1315	Lunch	
	1315-1800	Field Exercise (Routine Method)	All
Thursday	0800-0830	Review of Field Exercise	All
(Date)	0830-0930	Comprehensive Method	
	0930-0945	Break	
	0945-1045	Atypical Situations	
	1045-1145	Problem Areas	
	1145-1300	Lunch	
	1300-1800	Field Exercise (Routine or Comprehensive Method)	All
Friday (Date)	0800-0830	Review of Field Exercise	All
(Date)	0830-0930	Final Questions and Answers	All
	0930-0945	Break	
	0945-1045	Written Examination	All
	1045-1130	Review of Written Examination	All
	1130-1200	Course Evaluations and Awarding of Certificates	All
	1200	Adjourn	

Subject: Wetland Identification and Delineation

Lecture Title: Introduction to Wetland Delineation

Approximate Lecture Time: 45 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand the purpose of the *Corps of Engineers Wetlands*Delineation Manual and reasons for its development.
- Understand the 3-parameter approach to wetland identification.
- Understand the wetland definition used by the Corps of Engineers and Environmental Protection Agency.
- Understand the concept of normal circumstances.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Cowardin, L. M., Carter, V., Golet, F. C., and LaRoe, E. T. 1979. Classification of Wetlands and Deepwater Habitats of the United States, FWS/OBS-79/31, US Fish and Wildlife Service, Washington, DC.

US Army Corps of Engineers Regulatory Guidance Letter No. 90-7, Subject: Clarification of the Phrase "Normal Circumstances" as it pertains to Cropped Wetlands, 26 September 1990.

Subject: Wetland Identification and Delineation

Lecture Title: Soil Color

Approximate Lecture Time: 45 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

Understand the Munsell color system and Munsell notation.

Understand how to read soil colors for hydric soil determinations.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Kollmorgen Corporation. 1975. Munsell Soil Color Charts, Baltimore, MD.

Subject: Wetland Identification and Delineation

Lecture Title: Hydric Soils

Approximate Lecture Time: 90 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand relevant soil terms, concepts, and properties.
- · Understand criteria and field indicators of hydric soil.
- Understand the development and use of hydric soil lists.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

USDA Soil Conservation Service. 1991. *Hydric Soils of the United States*, in cooperation with the National Technical Committee for Hydric Soils. Washington, DC. (also local lists of hydric soil map units)

Soil Survey Staff. 1975. Soil Taxonomy, USDA Soil Conservation Service, Agriculture Handbook No. 436, Washington, DC.

Soil Survey Staff. 1990. Keys to Soil Taxonomy, SMSS Technical Monograph No. 6, Virginia Tech, Blacksburg, VA. (and updates)

Subject: Wetland Identification and Delineation

Lecture Title: Hydric Soils

Approximate Lecture Time: 90 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand relevant soil terms, concepts, and properties.
- Understand criteria and field indicators of hydric soil.
- Understand the development and use of hydric soil lists.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

USDA Soil Conservation Service. 1991. Hydric Soils of the United States, in cooperation with the National Technical Committee for Hydric Soils. Washington, DC. (also local lists of hydric soil map units)

Soil Survey Staff. 1975. Soil Taxonomy, USDA Soil Conservation Service, Agriculture Handbook No. 436, Washington, DC.

Soil Survey Staff. 1990. Keys to Soil Taxonomy, SMSS Technical Monograph No. 6, Virginia Tech, Blacksburg, VA. (and updates)

Subject: Wetland Identification and Delineation

Lecture Title: Wetland Hydrology

Approximate Lecture Time: 75 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand basic factors affecting the hydrology of a site.
- Understand important hydrologic terms used in the Manual.
- Understand biochemical changes that occur in saturated soils and their significance to wetland identification.
- · Understand criteria and field indicators of wetland hydrology.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Subject: Wetland Identification and Delineation

Lecture Title: Atypical Situations

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand the concept of an Atypical (Disturbed) Situation.
- Understand procedures for determining whether wetlands existed in an area before it was disturbed by human activities.
- Understand how to determine whether wetland hydrology still exists in a disturbed area.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Subject: Wetland Identification and Delineation

Lecture Title: Problem Area Wetlands

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand the concept of Problem Area Wetlands.
- Understand various problem situations, and how to deal with them.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Soil Survey Staff. 1975. *Soil Taxonomy*, USDA Soil Conservation Service, Agriculture Handbook No. 436, Washington, DC.

Soil Survey Staff. 1990. Keys to Soil Taxonomy, SMSS Technical Monograph No. 6, Virginia Tech, Blacksburg, VA. (and updates)

Subject: Wetland Identification and Delineation

Lecture Title: Wetland Hydrology

Approximate Lecture Time: 75 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand basic factors affecting the hydrology of a site.
- Understand important hydrologic terms used in the Manual.
- Understand biochemical changes that occur in saturated soils and their significance to wetland identification.
- Understand criteria and field indicators of wetland hydrology.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Subject: Wetland Identification and Delineation

Lecture Title: Hydrophytic Vegetation

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand the concept of a hydrophyte, and the meaning of the term "dominant."
- Understand plant adaptations to wetlands.
- Understand the concept of plant indicator status.
- Understand criteria and field indicators of hydrophytic vegetation.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Reed, P. B., Jr. 1988. *National List of Plant Species that Occur in Wetlands: 1988 National Summary*, Biological Report 88(24), US Fish and Wildlife Service, Washington, DC. (and various regional versions)

Subject: Wetland Identification and Delineation

Lecture Title: Comprehensive Method

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

 Understand the more quantitative procedures for sampling vegetation, soils, and hydrology for comprehensive wetland determinations in situations requiring detailed documentation.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Revised and updated Data Form for Routine Wetland Determinations (3/92).

Subject: Wetland Identification and Delineation

Lecture Title: Routine Method for Large Areas

Approximate Lecture Time: 45 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

 Understand procedures for sampling vegetation, soils, and hydrology for wetland determinations in larger or more difficult situations.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Revised and updated Data Form for Routine Wetland Determinations (3/92).

Subject: Wetland Identification and Delineation

Lecture Title: Offsite Method

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand sources of information for offsite wetland determinations.
- Understand offsite procedures used by SCS for Food Security Act wetland inventories.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Subject: Wetland Identification and Delineation

Lecture Title: Routine Method for Small Areas

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

• Understand how to select an onsite sampling method.

 Understand procedures for sampling vegetation, soils, and hydrology for wetland determinations in relatively simple situations.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Revised and updated Data Form for Routine Wetland Determinations (3/92).

Subject: Wetland Identification and Delineation

Lecture Title: Soil Taxonomy

Approximate Lecture Time: 60 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand the purpose of soil classification.
- Understand the classification system used in *Soil Taxonomy*.
- Understand how to interpret soil taxonomic names.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

Soil Survey Staff. 1975. Soil Taxonomy, USDA Soil Conservation Service, Agriculture Handbook No. 436, Washington, DC.

Soil Survey Staff. 1990. Keys to Soil Taxonomy, SMSS Technical Monograph No. 6, Virginia Tech, Blacksburg, VA. (and updates)

Subject: Wetland Identification and Delineation

Lecture Title: Use of Soil Surveys

Approximate Lecture Time: 45 minutes

Target Audience: New personnel in the Corps of Engineers Regulatory Program; regulatory personnel in other federal, state, and local agencies; environmental consultants; landscape architects, engineers, and developers; land-use planners; members of public and private conservation organizations.

Learning Objectives:

Upon completion, students will:

- Understand how to use and interpret soil maps.
- · Understand kinds of soil map units.
- Understand the concept of inclusions.
- Be familiar with the contents of a typical soil survey report.

Training Aids: See Instructor's Lecture Outlines and Slide Index.

Student References: Regulatory IV Student Notebook

Instructor References:

Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*, Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Various memoranda from Headquarters USACE updating and interpreting the 1987 Manual.

A modern USDA Soil Conservation Service soil survey report.

Regulatory IV

Instructor's Lecture Outlines and Slide Index

CONTENTS

Introduction to Wetland Delineation	 	 		1
Wetland Hydrology				
Hydrophytic Vegetation	 	 	1	5
Hydric Soils	 	 		3
Soil Color				
Use of Soil Surveys				
Soil Taxonomy				
Offsite Method				
Routine Method for Small Areas				
Routine Method for Large Areas				
Comprehensive Method	 	 	6	6
Atypical Situations	 	 	7	1
Problem Area Wetlands				

	Lecture Outline: Introduction to Wetland Delineation	Slides
1.	 Background a. People differ in their perceptions of what constitutes a wetland. b. Some wetlands are easily recognizable by most people (e.g., marshes and flooded swamps), because the 	1 (desert upland), 2 (cattail marsh), 3 (cypress swamp), 4 (California mountain marsh),
	presence and influence of water is obvious. c. However, many wetlands are subject only to seasonal flooding. At such times the hydrology is obvious. But for much of the year surface water is lacking; at these times, other evidence is needed to recognize them as wetlands.	5 (Arkansas seasonally flooded bottomland), 6 (Arkansas bottomland during dry season),
	d. Still other wetlands develop in areas where the soil is saturated for long periods, but never floods. Wetland identification becomes more difficult and controversial.	7 (Wyoming alpine wet meadow), 8 (Utah riparian
	e. The diversity of wetlands across the US makes the development of consistent national standards and definitions more challenging.	community)

(Version 12/92)				
Lecture Outline: Introduction to Wetland Delineation	Slides			
 II. The Corps of Engineers Wetlands Delineation Manual Development of the Manual The need for an objective, technically sound, and consistent method of wetland identification and delineation arose with the passage of the Clean Water Act amendments in 1977. Section 404 required a permit from the US Army Corps of Engineers for the discharge of dredged or fill material into the waters of the United States, including wetlands. Primary authority for implementing the Clean Water Act rests with the US Environmental Protection Agency, while responsibility for the permitting program was given to the Corps. After several years of development and testing, the Corps published its Wetlands Delineation Manual in 1987. Since then, the Manual has been officially updated and refined through (1) memoranda issued by Corps Headquarters in Washington, DC, and (2) by published updates of collateral documents (e.g., Hydric Soils of the United States by the USDA Soil Conservation Service). One goal of this course is to point out where portions of the Manual have been superseded by more recent information. 	9			
 b. Purpose to provide mandatory technical criteria, field indicators, and recommended methods for identifying wetlands and delineating their upper boundaries for jurisdictional purposes 	10			
c. While the Clean Water Act deals with all waters of the United States, the Manual only addresses wetlands. Wetlands are one of six Special Aquatic Sites designated by EPA.	11			

(*0131011 12/32)				
Lecture Outline: Introduction to Wetland Delineation	Slides			
 d. The Manual is not a wetland classification system. It will not tell you what type of wetland you have. 1. For classification purposes, recommend the Classification of Wetlands and Deepwater Habitats of the United States developed by the Fish and Wildlife Service for the National Wetland Inventory. 	12 (cover of the FWS wetland classification), 13 (example of its hierarchical structure)			
 e. Definitions and Concepts 1. Wetlands are transitional areas between well-drained uplands and permanently flooded aquatic habitats. a. Boundaries are sometimes distinct (e.g., abrupt topographic change). b. More often, the wetland boundary lies within a gradient of change and is not readily apparent. c. The Manual allows you to draw a consistent, technically valid, and legally defendable boundary across that gradient. 	14 (diagram of upland-to-wetland gradient)			
 Joint EPA/Corps wetland definition: Those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions 	15			

Slides Lecture Outline: Introduction to Wetland Delineation b. Key features of this definition include vegetation, 16 soils, and hydrology, which have become the basis for the 3-parameter or multiparameter approach for wetland identification. 1. Vegetation -- the plant community is dominated by species that are tolerant of saturated soil conditions. Hydrophytic species exhibit a variety of adaptations that allow them to grow, compete, and reproduce in standing water or in waterlogged, anaerobic soils. 2. Soils -- there is either direct hydrologic evidence that the soils are wet, or indirect evidence (e.g., color) that demonstrate that the soils developed under permanently or periodically saturated conditions. 3. Hydrology -- there is evidence of a hydrologic regime sufficient to produce anaerobic soils and exclude a strictly upland plant community.

- According to the Manual, there must be evidence of all three parameters to identify an area as a wetland.
 - The diagram shows a typical determination of wetland boundaries in the field. Each parameter is evaluated separately as the investigator proceeds up or down the gradient.
 - 2. The wetland boundary is indicated by the highest point on the gradient where evidence of all three parameters is present.

17 (diagram of wetland boundary)

(Version 12/92)				
Lecture Outline: Introduction to Wetland Delineation	Slides			
 d. Additional concept of normal circumstances: 1. The conditions dictated by the soils and hydrology on the site, whether or not the vegetation has been altered a. Therefore, clearing of vegetation does not circumvent the wetland definition, because the normal circumstance is vegetated b. For the most part, a crop does not constitute the normal circumstance 1. Exception: Corps Headquarters has decided that areas designated as "prior converted croplands" by SCS are not subject to regulation under Section 404 	18, 19			
 Wetland definitions used by other federal agencies The definition adopted by SCS as part of its procedures for implementing the swampbuster provisions of the 1985 Food Security Act Based on the EPA/Corps wetland definition, with the addition of an exemption for certain lands in Alaska 	20 (FSA Manual), 21			
 b. The FWS wetland definition was developed for purposes of the National Wetland Inventory. 1. The main difference is its inclusion of unvegetated wet areas (e.g., beaches, stream bottoms) as wetlands. These areas are regulated as other waters of the US under the Clean Water Act. 	22			
4. Deepwater habitats permanently inundated areas lying below the deepwater boundary of wetlands. Mean water depth is generally > 6.6 ft, unless emergent or woody species grow beyond this depth. In marine and estuarine areas, deepwater habitats begin at the extreme low spring tide level (based on the FWS classification)	23			

	(Version 12/92)	
L	ecture Outline: Introduction to Wetland Delineation	Slides
f.	 Objectives of the Course Present technical criteria and field indicators for hydrophytic vegetation, hydric soils, and wetland hydrology Describe delineation methods, including those recommended for disturbed and problem wetland sites Provide supporting information, including background information and additional topics too extensive for inclusion in the Manual 	24
g.	Flexibility 1. Existence of the Manual is not meant to substitute for experience and good judgment 2. Year-round experience with wetlands in your local area is important for accurate results 3. Use of the Manual as a "cookbook" can lead to errors	25

	(Version 12/92)				
		Lecture Outline: Wetland Hydrology	Slides		
1.	a. b.	Hydrology creates and maintains all wetlands. For the most part, vegetation composition and soil morphology reflect the long-term hydrology of the site. Waterlogging of the soil produces anaerobic conditions that favor wetland-adapted plants and promote distinctive soil characteristics. Indicators of current hydrology are needed to ensure that vegetation and soil characteristics are not relics of a previous hydrologic regime.	26		
	d.	 Hydrology the science of water, its properties, distribution and circulation, both on the surface and underground. 1. In this course, we are concerned with: a. Factors affecting the water content of the first couple of feet of the soil profile. b. The chemical and physical changes that occur in the soil as a result of prolonged saturation. c. The definition and recognition of "wetland hydrology" according to the delineation manual. 	27		
	e.	 Sources of water (inputs to the water budget of a site) Precipitation Headwater flooding (flashy, short duration; less likely to promote wetland conditions) Backwater flooding (longer duration; more likely to produce wetlands) Tides (once or twice a day, depending upon location) Groundwater Combinations of the above 	28		

(Version 12/92)					
Lecture Outline: Wetland Hydrology	Slides				
 f. Factors that influence hydrology of a site 1. Precipitation (amount and timing) 2. Stratigraphy (shallow bedrock or slowly permeable soil horizons may perch water near the soil surface) 3. Topography or landscape position (depressions, drainages, and shorelines are generally the wettest parts of the landscape) 4. Soil texture (fine-textured soils retain water longer than coarser soils) 5. Plant cover may have opposing effects: a. Floodplain vegetation may impede flow and prolong soil saturation b. Transpiration, particularly by forest trees, can lower the water table 	29				
 g. Combinations of different sources of water and various factors affecting hydrology produce the familiar situations where we find wetlands, such as: Coastal marshes Floodplains Cross-section of a major river floodplain reveals variations in site elevation and hydrology and, therefore, in occurrence of wetlands Wettest areas include abandoned river channels and backwater areas Current and relic natural levee deposits, comprised of the coarser sediments that drop out first when the river overtops its banks, are often the driest portions of the floodplain Groundwater depressions, sometimes due to perching of water above slowly permeable soil layers The water table need not break the surface to produce a wetland; groundwater-dominated systems are the most difficult for delineators to deal with Slope wetlands, which are particularly common in 	30 (Connecticut coastal marsh), 31 (Missouri stream), 32 (Mississippi floodplain cross-section), 33 (seasonal groundwater depression), 34 (depression with perched water table), 35 (seep on slope)				
glaciated regions					

(Version 12/92)				
Lecture Outline: Wetland Hydrology	Slides			
II. Definitions a. Inundation a condition in which water from any source temporarily or permanently covers a land surface. We recognize two forms of inundation:	36, 37 (inundated bottomland hardwoods in Arkansas)			
 Ponding a condition in which water stands in a closed depression. The water is removed only by percolation, evaporation, or transpiration 	38, 39 (small pothole in agricultural field)			
 Flooding the soil surface is temporarily covered with flowing water from any source, such as overflowing streams or rivers, runoff from adjacent slopes, and inflow from high tides 	40, 41 (flooding on left side and ponding on right side of levee)			
 b. Saturation condition in which all easily drained pores between soil particles are temporarily or permanently filled with water 1. The soil can become saturated either from above (due to inundation) or below (due to groundwater) 	42, 43 (groundwater wetland in Maryland)			
 Water table the level at which water stands in an unlined borehole. At this level, water pressure is equal to atmospheric pressure 	44, 45 (standing water in hole)			
d. Capillary fringe a zone immediately above the water table in which water is drawn upward by capillary action (due to forces of adhesion and surface tension, which pull water upward against gravity into soil pores).	46			
 The capillary fringe is often called the "zone of tension saturation" because water molecules are being pulled in two directions (upward by capillary forces and downward by gravity) and water pressure is less than atmospheric pressure. However, all but the largest pores are filled with water, thus the soil is saturated To produce wetland conditions, the capillary fringe must extend to or near the soil surface Fine-textured soils have smaller pores and stronger capillary forces. Therefore, the capillary fringe is higher in fine-textured soils than in coarse-textured soils. 	47 (diagram of water table and zone of tension saturation)			

(Version 12/92)				
Lecture Outline: Wetland Hydrology	Slides			
 III. Biochemical changes in saturated soils a. When the soil becomes saturated, air between soil particles is replaced by water. Because the rate of diffusion of oxygen through water is 1/10,000th that of the rate of diffusion through air, soil microorganisms quickly deplete the available oxygen and the soil goes anaerobic. 1. Anaerobic situation in which molecular oxygen is absent from the environment 	48			
 b. Soil microbes metabolize (oxidize) soil organic matter as an energy source. Oxidation reactions produce extra electrons that must be accepted by other chemical elements in the organism. Under aerobic conditions, soil microbes use oxygen as the terminal electron acceptor in respiration. Thus oxygen gains an electron, declines in valence, and becomes chemically "reduced" 1. Reduction the process of giving up oxygen, gaining hydrogen, or gaining an electron 	49			

(*0131011*12/32/		
Lecture Outline: Wetland Hydrology	Slides	
 c. After oxygen is depleted, species adapted to anoxic conditions turn to other elements as electron acceptors. There is an ordered sequence of elements that become reduced under prolonged soil saturation 1. Redox potential is a measure of the reduction status of the soil and can be measured with special platinum electrodes and a millivolt meter 2. Certain reactions in the oxidation/reduction sequence have important consequences for wetland function and development of wetland field indicators a. Reduction of nitrate to nitrogen gas is called denitrification, and is one way wetlands remove nitrate from inflowing waters and reduce problems due to excessive nutrient loading of receiving streams b. Conversion of sulfate to hydrogen sulfide produces the rotten-egg odor characteristic of certain highly reduced wetland situations c. Reduction of manganic to manganous ion, and particularly ferric to ferrous ion, affect the color of wetland soils. The brownish and reddish colors of well-aerated soils are due mainly to insoluble ferric oxides that coat soil particles. During prolonged or repeated saturation, ferric ion is reduced to the grayish ferrous form. Furthermore, ferrous ion is soluble and can be leached from the soil, leaving behind the grayish colors of the uncoated mineral grains. 	50 (redox sequence)	
d. Under laboratory conditions (with well-mixed soil suspensions, addition of supplemental organic matter, and warm temperatures) it takes only a few days for a waterlogged sample to become significantly reduced. Actual rates in the field may vary widely in response to factors that affect microbial activity, such as temperature and food availability	51 (shows oxygen and nitrate depletion, and reduced manganese and iron accumulation in sequence through time)	

Lecture Outline: Wetland Hydrology	Slides
IV. Criteria for wetland hydrology a. An area has wetland hydrology if it is inundated or saturated to the surface for at least 5% of the growing season in most years 1. "In most years" means at least 51 years out of 100, or more than 50% probability in any one year	52
2. The growing season is based on the soil temperature regime, and is defined as the portion of the year when soil temperature (measured 20 inches below the surface) is above biological zero (5 C or 41 F) a. In the absence of data on soil temperature, growing season can be estimated from climatological data given in most SCS county soil surveys. Starting and ending dates generally are based on the 28 F air temperature threshold for the average year (or 5 years out of 10)	53
3. The minimum 5% duration refers to a single, continuous episode of inundation or soil saturation, and is based on the conclusions of a workshop of experts on bottomland hardwood systems in the Southeast. They studied the correlation between duration of inundation and occurrence of recognized zones of bottomland forest communities. Zones inundated more than 12.5% of the time were always wetlands. Those inundated less than 5% of the time were always nonwetlands. Zones inundated	54

between 5 and 12.5% sometimes were wetlands

and sometimes were nonwetlands

(Version	12/92)
(4 0 3 0 1 1	12/32/

(Version 12/92)		
	Lecture Outline: Wetland Hydrology	Slides
a. H w (h g g b e c 1	ologic data and sources of information dydrologic information that can be used to determine whether a site meets the wetland hydrology criteria mydrologic data sets should encompass the entire rowing season, or at least those portions of the rowing season during which conditions are expected to e wettest [generally early spring and late fall, when vapotranspiration is reduced and flooding may be more ommon]) Tide gauge data (gauge data must be related to site elevation) Stream gauge data Groundwater well data (in general, wells should be shallow and should be placed above any confining soil layers that may perch water) Aerial imagery (requires photos taken at many different times so that one can determine whether the site is inundated long enough and frequently enough to meet the criteria)	55, 56 (staff gauge in Michigan creek), 57 (shallow groundwater well), 58 (hydrograph from gauge or well data), 59 (aerial photo of flooding)
1. 2. 3. 4. 5.	ources of hydrologic data US Army Corps of Engineers District offices (for gauge data on certain navigable waters) US Geological Survey (stream gauge and groundwater well data) National Oceanic and Atmospheric Administration (tide gauge data) USDA Soil Conservation Service (hydrologic information on individual soil series) State, county, and local agencies (particularly those dealing with flood hazard) Developers (groundwater monitoring at project sites)	60

	(Version 12/92)		
	Lecture Outline: Wetland Hydrology	Slides	
a. F 1 2 3 4 5	Primary indicators 1. Visual observation of inundation 2. Visual observation of soil saturation within 12 inches of the soil surface a. Acceptable evidence of soil saturation includes standing water in the hole, observation of glistening on broken ped faces (most mineral soils), squeezing water out of a soil sample (generally organic soils), and producing free water by gently shaking the sample (sands) 3. Water marks (e.g., silt or pollen lines) 4. Drift lines (e.g., deposits of water-borne debris) 5. Sediment deposits (e.g., sediment that settled out of standing water onto tree bases or objects on the ground) 6. Drainage patterns in wetlands (e.g., braided channels in some wetlands, scouring of debris, evidence of sheet flow)	61, 62 (inundation), 63 (glistening), 64 (squeeze test), 65 (water marks), 66 (iron stains from water), 67 (large drift line), 68 (salt marsh wrack line), 69 (debris in tree), 70 (sediment deposit), 71 (area scoured of debris by flowing water)	
2.	econdary indicators (at least two secondary indicators equired) (see 6 March 1992 memo from HQUSACE) Oxidized root channels (rhizospheres) surrounding living roots within the upper 12 inches of the soil a. Oxidized rhizospheres result from leakage of oxygen from plant roots into the surrounding soil, causing any reduced iron that may be present to precipitate as reddish ferric oxides in an otherwise gray soil matrix b. Rhizospheres should be reasonably abundant in the sampled soil Water-stained leaves a. May be present in depressional wetlands in deciduous forest. Fallen leaves turn neutral black or gray in color due to prolonged inundation under anaerobic conditions Local soil survey data (e.g., typical water table depths, durations, and timing for soil series mapped in the county) FAC-neutral test of the vegetation (see Hydrophytic	72, 73 (oxidized rhizospheres), 74 (water-stained and normal leaf), 75 (soil survey), 76 (FAC-neutral test met in cypress swamp)	
	Vegetation lecture notes)		

(Version 12/92)		
Lecture Outline: Hydrophytic Vegetation		Slides
II	sition, growth form and species ation is often the investigator's of wetlands.	77
1!	by hydrophytes. To evaluate a ust understand what is meant	78
a substrate that is at least oxygen as a result of exc 1. Tolerance for occasion most plants can survi saturation, particularl 2. Only specifically adap	phyte that grows in water or on st periodically deficient in sessive water content nal wetness is not sufficient; we short periods of soil y during the dormant season. Ited plant species can survive ion and anoxic conditions	79
 Plants adapt to wetla Adaptations can be c physiological, or representation 	ategorized as morphological,	80

	Lecture Outline: Hydrophytic Vegetation	Slides
4.	In general, morphological adaptations serve to stabilize the plant in soft sediments and/or provide additional surfaces or pores for the uptake of oxygen to aerate the roots. Examples include: a. Buttressed and fluted tree trunks b. Multiple trunks (response to shallow water table; has additional causes not related to wetness) c. Pneumatophores and knees (projections of the root system that extend upward into the air or water column) d. Adventitious roots (similar function to pneumatophores) e. Shallow root systems (response to shallow water tables) f. Hypertrophied lenticels (enlarged pores on stems) g. Aerenchyma (internal air spaces that serve to transport oxygen from the aerial portions of the plant to the roots) h. Polymorphic leaves (primarily in floating and submerged plants) i. Floating leaves (serve to keep photosynthetic parts in the light and air)	81, 82, 83 (water lily), 84 (water hyacinth stem), 85 (alligator weed subject to various moisture regimes), 86 (baldcypress), 87 (slash pine), 88 (fluting), 89 (prop roots, red mangrove), 90 (pneumatophores, black mangrove), 91 (cypress knees), 92 (multiple stems and adventitious roots, black willow), 93 (shallow root system on windthrown tree)
5.	Physiological adaptations include alternate metabolic pathways that adapted plants use in the absence of oxygen a. The aerobic pathway ends at CO ₂ and H ₂ O (with 38 ATP capturing the released energy) b. The most common anaerobic pathway ends at ethanol; the energy efficiency is much lower (2 ATP per molecule of glucose) and toxic ethanol must be dealt with c. Some species accumulate malate when anaerobic, then convert to pyruvate and enter the Krebs cycle when oxygen is again available	94, 95

Lecture Outline: Hydrophytic Vegetation Slides 6. Reproductive adaptations are extremely varied. 96, They include: 97 (viviparous a. Viviparous seedlings of red mangrove, which seedlings of red germinate on the parent plant, giving them a mangrove), head start on development before dropping into 98 (flooded seedlings the water of overcup oak) b. Dispersal of seeds by water (e.g., overcup oak) c. Underwater pollination (e.g., Ceratophyllum) d. Underwater germination (e.g., Nuphar) e. Flood tolerance of seedlings (e.g., overcup oak) b. Wetland plant lists 99 1. For wetland investigations, it is unnecessary to identify the adaptations of plant species found on a site. Instead, lists of species adapted to wetlands have been compiled for each region of the US a. National List of Plant Species that Occur in Wetlands was originally developed by the Fish and Wildlife Service, and has been updated and revised by regional and national panels of experts from the concerned federal agencies and academia 2. Plant species are categorized by wetland indicator 100, status, ranging from obligate wetland (OBL) to select appropriate obligate upland (UPL) regional examples a. Categories are based on presumed frequency of from 101-140 occurrence in wetlands (i.e., percentage of random sampling plots containing the species across its entire range that would be in wetlands) b. Slides present examples of plant species by indicator status for each plant list region c. Some species are given '+' or '-' modifiers to the indicator status. A '+' indicates somewhat greater affinity for wetlands than is typical for that indicator category (e.g., FAC+); a '-' indicates lesser affinity for wetlands (e.g., FAC-)

	(101011111/02)		
	Lecture Outline: Hydrophytic Vegetation	Slides	
3.	 Map of plant list regions a. Indicator status is assigned at the regional level; therefore, a species may have a different indicator status in different regions b. State lists are also available; however the indicator status given on state lists is the same as that for the appropriate region 	141 (map of plant list regions)	
4.	If a species found on a site is not listed on the regional plant list, the two most likely reasons are: a. You are not using the correct scientific name 1. The authority for plant names is the National List of Scientific Plant Names (2 volumes) published by the Soil Conservation Service (1982) 2. Check this reference, or the synonomy section of the regional wetland plant list for the recognized scientific name b. It is an upland (UPL) plant	142 (authority for plant names)	
5.	Ecological amplitude along the moisture gradient varies by species. Furthermore, some species have recognized varieties (trinomials) that are listed under a separate wetland indicator status a. If the wetland boundary were in the middle of the gradient shown in this figure, species whose distributions were entirely to the left of the midpoint would be given OBL status, those entirely to the right would be given UPL status, and those overlapping the midpoint would be FACW, FAC, or FACU depending upon how the distribution was skewed	143 (distribution of plant species along a moisture gradient)	

Lecture Outline: Hydrophytic Vegetation	Slides
III. Plant species dominance a. Dominant plant species are those which are most abundant and contribute most to the character of the community	144
 b. Various measures can be used to express the relative dominance of the species in the community: 1. Percent cover (i.e., percentage of the ground surface that would be covered by the vertical projections of the aerial portions of that species; equivalent to the species' shadow if the sun were directly overhead) 2. Stem density (i.e., count of stems or individual plants of that species per unit of area) 3. Frequency of occurrence (i.e., percentage of sampling plots that contain the species of interest) 4. Basal area (i.e., for trees, equal to the sum of the cross-sectional areas of all trees of that species within a prescribed area, if trees were cut off at breast height [4.5 ft above the ground surface]; expressed in units of ft²/acre) 	

Lecture Outline: Hydrophytic Vegetation	Slides
c. Selection of dominant plant species 1. Dominant species are selected independently from each stratum of the community. Strata (defined later under the Routine Method) consist of trees, saplings/shrubs, herbs, and woody vines	145, 146 (example showing selection of dominant species from actual or
 For routine wetland determinations, vegetation sampling is done visually, keeping in mind one or more of the dominance measures described previously. Different measures may be appropriate to different strata 	relative percent cover data)
3. The Manual suggests that the three most dominant species be selected from each stratum of the community (five from each stratum if only one or two strata are present)	
 4. The following is an optional but recommended alternative procedure (the "50/20 rule"): a. For each stratum in the plant community, dominant species are the most abundant plant species (when ranked in descending order of abundance and cumulatively totaled) that immediately exceed 50% of the total dominance measure for the stratum, plus any additional species comprising 20% or more of the total dominance measure for the stratum b. Review example showing selection of dominants from percent cover data. Selection can be based on raw data or on relative cover (data converted so that they sum to 100%) 	
5. After the dominant species are selected from each stratum, they are combined into a single list of dominants across all strata in the community. Species dominant in more than one stratum are counted more than once in the combined list	

	Lecture Outline: Hydrophytic Vegetation	Slides
a	Criteria for Hydrophytic Vegetation The basic rule more than 50% of the dominant species from all strata are OBL, FACW, or FAC 1. FAC- species do not count A FAC-neutral option is also available, and may help to clarify the wetland determination in areas where evidence of hydric soil or wetland hydrology is weak. The FAC-neutral option can not be used to exclude areas that meet the basic rule and the hydrology and hydric soil requirements 1. For the FAC-neutral option, disregard all dominant species in the FAC category (including FAC+ and FAC-). The community is hydrophytic if the number of dominant species wetter than FAC is greater than the number drier than FAC	147
	Additional hydrophytic vegetation indicators 1. Visual observation of plant species growing in areas of prolonged inundation and/or soil saturation a. Observations must be amply documented, and should be submitted to the regional plant list panel for reconsideration of the species' indicator status 2. Morphological adaptations a. Hydrophytic vegetation is present if two or more dominant species exhibit morphological adaptations for wetlands 1. Adaptations must be observed on most individuals of the two species b. Use this indicator only after applying the basic rule, and use caution with adaptations (e.g., shallow roots) that can develop for reasons other than wetness 3. Technical literature a. Includes recent literature on plant species distributions that was not available at the time the wetland plant lists were developed. Again, submit the information to the appropriate plant list panel	148

(Version 12/92) Lecture Outline: Hydrophytic Vegetation	Slides
Lecture Outline. Trydrophytic Vogetation	000
 d. Examples of hydrophytic vegetation decision-making 1. Herbaceous community (single stratum) with 5 dominants; does it constitute hydrophytic vegetation? 2. Mixed herb and shrub community (two strata); is this hydrophytic vegetation? 3. To minimize confusion, stress that the vegetation decision is a 2-step process: a. Select dominant species (based on coverage or abundance, without regard to indicator status) b. Apply the basic rule after looking up the indicator status of each dominant species on the regional plant list 	149, 150 (examples)

 (Version 12/92)	
Lecture Outline: Hydric Soils	Slides
Background a. Definition of soil unconsolidated natural material that supports, or is capable of supporting, plant life. Upper limit is air or shallow water, and the lower limit is either bedrock or the limit of biological activity	151, 152
 Not all areas on the earth's surface are soil. Examples of nonsoil include: Badlands (highly erodible) Beaches (unstabilized sand) Rubble lands (talus and boulder fields) Rock outcrops Glaciers Deepwater habitats 	153
 b. Factors that influence soil development 1. Climate (e.g., temperature and precipitation patterns) 2. Parent material (e.g., mineralogical composition) 3. Topographical relief or landscape position (e.g., location relative to ridges, slopes, and valleys) 4. Organisms (e.g., soil microorganisms, plant roots, soil invertebrates, burrowing vertebrates) 5. Time (i.e., how long have the preceding factors been active?) 	154

Lecture Outline: Hydric Soils	Slides
c. Key soil properties the following properties may all be important in a detailed description of a soil. In this course, we will focus primarily on texture, drainage, permeability, organic matter, and color in relation to hydric soil development. 1. Texture 2. Slope 3. Drainage 4. Permeability 5. Depth 6. Structure 7. Organic matter 8. Color 9. Reaction 10. Bulk density 11. Parent material 12. Shrink-swell potential, available water capacity 13. Salinity 14. Landscape position	155, 156
 d. Most routine hydric soil determinations are done by examining the top 18 to 24 inches of the soil. 	157

Lecture Outline: Hydric Soils	Slides
 e. Soils that have been in place for a sufficient period of time develop a characteristic profile consisting of layers or horizons that are the result of (1) the incorporation of materials into the surface of the soil, (2) movement of materials downward (or upward) by percolating water, and (3) chemical changes occurring within the soil. 1. A very generalized soil profile might consist of the following horizons: a. A horizon the surface layer in a mineral soil characterized by accumulation of organic matter and/or loss of materials (e.g., clays) to deeper layers. b. B horizon the subsoil, characterized by accumulation of clays or other materials and greater structural development. c. C horizon the underlying material, unconsolidated parent material little influenced by soil-forming processes. d. R horizon bedrock 	158, 159 (example showing thin A horizon, thick B horizon, and underlying C horizon [Fox series, Michigan])
 A more detailed profile description might include some of the following: An organic surface layer (O horizon), in various stages of decomposition (Oi, Oe, Oa) Recognizable subdivisions of the A, B, or C horizons (e.g., A1 and A2) An eluvial layer (E horizon) Transitional layers (e.g., AB and BA horizons) Zone of clay accumulation (Bt horizon) 	160
f. Mineral soils are composed of various sized particles of mineral material. The smaller soil particles are classified as sand (0.05-2.00 mm), silt (0.002-0.05 mm), and clay (<0.002 mm). Larger particles are called gravel (>2.00 mm).	161
 g. The texture of a soil refers to its proportionate content of sand, silt, and clay. Soils are categorized into various textural classes based on the textural triangle (e.g., silty clay). 1. A loam refers to a soil whose properties are influenced by all three particle sizes. 	162

(Version 12/92)		
Lecture Outline: Hydric Soils	Slides	
 Other common terms include broader textural groups, ranging from the coarse-textured soils (sands and loamy sands) to the fine-textured soils (sandy clay, silty clay, and clay). 	163	
 h. Permeability a measure of the ability of air or water to move through the soil profile (measured in inches/hour) 1. Permeability depends upon soil texture, with the fine-textured soils having low permeability and coarse-textured soils having high permeability. 2. A permeability of 6 inches/hour is considered rapid, and is characteristic of sandy soils. 	164, 165 (permeability in relation to texture)	
 i. Soils are subjectively classified into seven natural drainage classes that reflect the frequency, duration, and depth of soil saturation, and the difficulty of growing typical agricultural crops without installation of a drainage system. 1. Drainage is affected by the permeability of the various horizons in the soil, depth to bedrock, slope, etc. 2. In general, soils classified as poorly and very poorly drained are nearly always hydric. Somewhat poorly drained soils generally are not hydric, but often contain hydric inclusions or may grade to hydric conditions at the lower end of mapping units. 	166	
II. Hydric Soils a. Definition a soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part	167, 168 (diagrammatic version)	

(Version 12/32)		
Lecture Outline: Hydric Soils	Slides	
 b. There are two main categories of soils, both of which have hydric and nonhydric members 1. Organic soils composed of at least 16 inches of organic material in the upper 32 inches of soil profile, or any thickness over bedrock. a. Most organic soils develop through slow accumulation of organic debris in wet areas where decomposition is slowed due to anaerobic conditions. b. Organic soils are generally called peats and mucks, depending upon degree of decomposition. 2. Mineral soils composed primarily of sand, silt, and/or clay with varying amounts of organic matter. a. Hydric mineral soils are saturated long enough to develop distinctive properties associated with an anaerobic, chemically reduced environment. 	169, 170 (organic soil [peat] in the laboratory), 171 (mineral soil with a brownish surface layer and gray subsoil)	
 c. Criteria for hydric soils 1. The criteria for hydric soils were developed by the National Technical Committee for Hydric Soils, for the purpose of creating a list of hydric soils of the US by extracting appropriate soil series from a nationwide database of soil interpretation records maintained by SCS. a. The criteria are revised periodically, and are printed in the front of each updated version of the Hydric Soils of the United States. b. The version of the criteria printed in the 1987 Corps of Engineers Wetlands Delineation Manual is outdated. Refer to the latest SCS hydric soils list. 	172 (cover of hydric soils list)	
 The hydric soil criteria address four kinds of wet soil situations Criterion (1.) organic soils Criterion (2.) mineral soils with high water tables (this criterion has several subsections) Criterion (3.) ponded soils Criterion (4.) flooded soils 	173	

Lecture Outline: Hydric Soils	Slides
3. Current hydric soil criteria (as of October 1992) are: (1.) All Histosols except Folists, or (2.) Soils in Aquic suborders, Aquic subgroups, Albolls suborder, Salorthids great group, Pell great groups of Vertisols, Pachic subgroups, or Cumulic subgroups that are: (a.) Somewhat poorly drained and have a frequently occurring water table at less than 0.5 ft from the surface for a significant period (usually more than 2 weeks) during the growing season, or a. Folists are organic soils that develop over shallow bedrock or fragmental material in cool, humid climates; they are never wet for more than a few days following heavy rains. In the US, extensive Folists exist only in Alaska and Hawaii. In the 48 contiguous states, virtually all Histosols are hydric. b. The Soil Taxonomy lecture will help clarify other taxonomic terms	174
(b.) Poorly drained or very poorly drained and have either: (1.) A frequently occurring water table at less than 0.5 ft from the surface for a significant period (usually more than 2 weeks) during the growing season if textures are coarse sand, sand, or fine sand in all layers within 20 inches, or for other soils	175

Regulatory IV

US Army Corps of Engineers Training Course in Wetland Identification and Delineation

(Version 12/92)	
Lecture Outline: Hydric Soils	Slides
(2.) A frequently occurring water table at less than 1.0 ft from the surface for a significant period (usually more than 2 weeks) during the growing season if permeability is equal to or greater than 6.0 inches/hour in all layers within 20 inches, or (3.) A frequently occurring water table at less than 1.5 ft from the surface for a significant period (usually more than 2 weeks) during the growing season if permeability is less than 6.0 inches/hour in any layer within 20 inches, or	176
 a. In general, the different water table depths are designed to bring the capillary fringe to or near the surface in soils of different texture: Sands 0.5 ft Other coarse-textured soils 1.0 ft Moderate to fine-textured soils 1.5 ft 	
(3.) Soils that are frequently ponded for long duration or very long duration during the growing season, or (4.) Soils that are frequently flooded for long duration or very long duration during the growing season.	177
 a. Clarification of terms: 1. Frequently more than 50 years out of 100, or more than 50% probability in any one year 2. Long duration a single event lasts 7 to 30 days 3. Very long duration a single event lasts more than 30 days 4. Growing season based on the soil temperature regime (see Wetland Hydrology lecture outline) 	

Regulatory IV US Army Corps of Engineers Training Course in

Wetland Identification and Delineation

(Version 12/92)		
Lecture Outline: Hydric Soils	Slides	
d. Hydric Soil Lists 1. Lists of soils meeting these criteria are compiled at various levels: a. National list Hydric Soils of the United States published by SCS b. State lists c. Local or field office lists	178	
 National hydric soils list A computer-generated list using information on the soil interpretations record for soil series in the US Limited to recognized series or special phases that are represented by a separate soil interpretations record The national list does not contain:	179	
State hydric soils lists a. Presently state lists are subsets of the national list, showing hydric soils that exist in a state	180	
 4. Local, county, or field office lists of hydric soil mapping units a. These are lists of soil mapping units that are named for soil series on the national list, for wet miscellaneous areas, or for wet soils classified at levels higher than the series b. Also listed are mapping units that potentially contain hydric soil inclusions c. Local lists are available from local, county, or state offices of the SCS d. Local lists usually contain the best available information for making hydric soil determinations 	181	

(Version 12/92)		
Lecture Outline: Hydric Soils	Slides	
 5. Therefore, the first step in a hydric soil determination is to identify the soil series (by using soil maps and profile descriptions given in the county soil survey) and see whether it is listed on the local list of hydric soils. a. Always follow up and verify by checking for field indicators of hydric soil. b. The presence or absence of field indicators can supersede the listing of that soil on a hydric soil list. 	182 (diagram of soils decision process)	
e. Field Indicators of Hydric Soils 1. Prolonged and repeated inundation or soil saturation leads to the distinctive morphological characteristics of most hydric soils a. The most important processes involved in development of these distinctive features are (1) reduction and movement of iron or other elements and (2) accumulation of organic matter under anaerobic conditions	183	
 2. Hydric soil indicators for non-sandy soils a. Organic soil the soil has more than 16 inches of organic material in the upper 32 inches, or any thickness over bedrock b. Histic epipedon soil has an organic surface layer 8 to 16 inches thick c. Sulfidic material the soil smells of hydrogen sulfide, with its characteristic rotten egg odor d. Aquic or peraquic moisture regime the soil is saturated for long periods resulting in a chemically reducing environment. 	184, 185 (organic soil, Houghton muck, Michigan), 186 (histic epipedon, organic over sand), 187 (area with peraquic moisture regime, tidal coastal marsh)	

(Version 12/92)		
	Lecture Outline: Hydric Soils	Slides
f. S f. S gl w g. S th h. <i>Ir</i> c m th	reducing soil conditions the soil contains educed iron (Fe ⁺⁺) according to the a,a,dipyridyl colorimetric test soil colors mineral hydric soils are either leyed, or have a low-chroma matrix with or without bright mottles (more details follow) soil appears on the hydric soils list verify the eries by comparing the observed profile against the profile description given in the soil survey from and manganese concretions the soil contains nodules or soft masses of iron and/or manganese oxides that are due to movement of the soluble elements under reduced conditions and precipitation in the larger air-filled pores. Concretions should be > 2 mm in diameter, accated near the soil surface, and be surrounded by a low-chroma matrix.	188, 189 (gleyed soil), 190 (mottled soil)

Lecture Outline: Hydric Soils	Slides
 i. Use of soil color as a hydric soil indicenter of the predominant colors ample as the matrix, and special contrasting color as mottles. b. A new terminology (starting in refers to all wetness color pat redoximorphic features: 1. Reddish orange blotches (concentrations) form in so are alternately wet and dry the zone of fluctuation of table. 2. Redox concentrations form reduced Fe and Mn dissolv soil solution oxidize and pralong ped faces or within lawhere oxygen is more ava 3. As Fe and Mn become conareas where Fe and Mn ha out (called redox depletion more gray. 4. Finally, a reduced matrix rematrix that changes color exposed to air (due to rapio of reduced Fe). 5. In most hydric soils, redox comprise the matrix, and renoteles. 	nost soil ninology that or in a soil ots of n 1992), terns as called redox il layers that y, such as in the water n when red in the recipitate out larger pores ilable. ncentrated, ve moved s) become efers to soil when d oxidation depletions edox

Lecture Outline: Hydric Soils	Slides
2. Typical colors of mineral hydric soils a. Matrix chroma of 2 or less in mottled soils b. Matrix chroma of 1 or less in unmottled soils 1. Matrix colors of hydric soils should be both low chroma and high value. Low values (2, 3, and sometimes 4) are produced by organic matter; high values (≥ 4) indicate reduction and movement of iron. c. The Manual says to measure colors immediately below the A horizon or at 10 inches, whichever is shallower 1. The color of the A horizon is determined mainly by organic matter that may mask any redoximorphic features in that horizon. Therefore, it is desirable to get below the A horizon to read soil colors. 2. The 10-inch limit is meant as guidance only. In soils with thick A horizons, it may be necessary to go deeper. In general, read colors in the horizon immediately below the A horizon (see the lecture outline on Problem Area	Slides

Lecture Outline: Hydric Soils	Slides
 3. Hydric soil indicators for sandy soils a. The color changes described above are mainly a function of the finer particles (silt and clay) in the soil. Sands lack sufficient fine particles and, therefore, color is unreliable as a hydric soil indicator in sands. b. Indicators of hydric soil for sandy soils 1. High organic matter content in the surface horizon the organic matter accumulates due to retarded decomposition under saturated conditions 2. Streaking of subsurface horizons by organic matter streaks form as the fluctuating water table pulls organic matter downward along paths of least resistance in the subsoil 3. Wet Spodosols (soils with "organic pans") not all Spodosols are hydric. Wet Spodosols are addressed in the lecture on Problem Area Wetlands 4. Others mentioned previously for nonsandy soils other indicators that also apply to sands include histic epipedon, aquic moisture regime, and hydric soils list c. The SCS South Region has developed a list of hydric soil indicators for sandy soils in the Southeast (particularly Florida). Individuals who work in that region should consult the list to help clarify the general guidance given the the Delineation Manual. 	194, 195 (high organic matter content in the surface horizon, Florida sandy soil), 196 (organic streaking in the subsoil, Florida Spodosol [spodic horizon at bottom])
 f. Review and wrap-up 1. First identify the soil series and look it up on the appropriate hydric soil list 2. Then verify by checking field indicators 	197 (review of soils decision process)

	(Version 12/92)		
		Lecture Outline: Soil Color	Slides
1.		Color is one of the most easily determined characteristics of soil, and it is an indirect indicator of other important soil properties. 1. Two properties affecting soil color are (1) organic matter content and (2) presence and chemical form of Fe and Mn 2. Both of these properties are important in identification of hydric soils	198
		Common names for colors (e.g., light red, grayish brown) mean different things to different people. To bring consistency to color determinations, soil scientists have borrowed from industry in using the Munsell color system Soil colors are determined by matching a soil sample to color chips contained in the <i>Munsell Soil Color Charts</i> (Kollmorgen Corporation, Baltimore, MD)	199 (using the Munsell soil color book)
		pects of soil color The Munsell color system describes three aspects of color hue, value, and chroma	200
		Hue refers to the spectral color or chromatic composition of light reflected by an object	201 (diagram of visible spectrum)
		 a. Munsell soil color books contain only those hues that are important in describing soils. Those are red (R), yellow-red (YR), and yellow (Y). Each hue is divided into 4 equal steps (e.g., 2.5YR, 5YR, 7.5YR, and 10YR) 1. In the Munsell soil color book, each page represents a different hue, and pages range from 10R through 5Y 	202
		 b. Example of the 10YR page (all chips on a page are of the same hue) 	203 (10YR page)
		c. Some additional hues are important in very wet soils, including blue-green (BG) and green-yellow (GY). These are given on the gley page of the Munsell book.	204 (gley page)

(Version 12/92)	
Lecture Outline: Soil Color	Slides
2. Value refers to the amount of light reflected from the chip.a. On a neutral gray scale, a value of 10 indicates pure white, and value of 0 indicates pure black.	205
 b. Value runs north-south on the Munsell page. All chips in a row have equal value. 	206 (7.5YR page)
3. Chroma refers to the relative purity or strength of the spectral color.a. Chroma runs from 0 (neutral gray) to 8 (highest strength of color found in soils)	207
 b. Chroma runs east-west across the Munsell page. All chips in a column have equal chroma. c. Chroma is the most important aspect of color for hydric soil determinations. Typical hydric soils have a matrix chroma of 1 or less (if unmottled), or a matrix chroma of 2 or less (if mottled), immediately below the A horizon. 	208 (2.5Y page)
d. Zero-chroma chips have no color, they are neutral gray. Therefore, they are the same no matter which hue page they are found on. Often they are simply given a hue designation N (neutral).	209
 Each color chip is designated by its Munsell notation (e.g., hue value/chroma), and each has an English name (although more than one color chip may be described by the same English name) 	210
III. Reading colors a. Read soil colors in the field by placing the sample behind the Munsell page where it is visible through the holes in the page. 	211 (using Munsell book)
b. When reading soil colors, you should consider:1. Light2. Moisture3. Surface texture	212

(Version 12/92)		
	Lecture Outline: Soil Color	Slides
c.	Light should be: 1. White enough to reflect true color 2. Intense enough for you to discriminate between chips 3. Oriented at right angles to the sample and the color chips	213
d.	 Moisture 1. Hydric soil determinations are made on moist samples. a. Soils change color as they dry, and soils that are too wet may give erroneous readings due to reflection of light from water films. 	214
e.	Optimal conditions for reading soil colors 1. Natural light (don't wear sunglasses) 2. Clear, sunny day 3. Midday 4. Light at right angles 5. Soil moist	215
IV. a.	Color patterns in soils A complete description of soil color patterns should include: 1. Matrix (predominant) color 2. Mottle colors 3. Contrast, abundance, and size of mottles	216

(Version 12/92)		
Lecture Outline: Soil Color	Slides	
 b. Contrast refers to the degree of visual distinction between the mottles and their background. Three categories: 1. Faint Mottles are evident only on close examination. Typically, faint mottles have the same hue as the matrix, and differ by no more than 1 unit of chroma or 2 units of value. 2. Distinct Mottles are readily seen but contrast only moderately with the matrix. a. If same hue, color differs by: 1. 2-4 units of chroma, or 2. 3-4 units of value. b. If hue differs by 2.5 units (one page), color differs by: 1. 1 unit of chroma, or 2. 1-2 units of value. 3. Prominent Mottles contrast strongly with the matrix. Prominent mottles typically differ from the matrix by at least two pages (5 units) of hue (if chroma and value are the same); at least 4 units of value or chroma (if the hue is the same); or at least 1 unit of chroma or 2 units of value if hue differs by 1 page. 4. For hydric soil determinations, mottles should be either distinct or prominent. Observations suggest that faint mottles can develop in a single season; soils with faint mottles should be considered unmottled. 	217, 218	
 c. Abundance of mottles (three categories): 1. Few mottles occupy less than 2% of the exposed surface 2. Common mottles occupy 2 to 20% of the exposed surface 3. Many mottles occupy more than 20% of the exposed surface 	219	

(Version 12/92)	
Lecture Outline: Soil Color	Slides
 d. Size of mottles (three categories): 1. Fine Mottles less than 5mm in longest dimension 2. Medium Mottles range from 5 to 15mm in longest dimension 3. Coarse Mottles greater than 15mm in longest dimension 	220

(Version 12/92)		
Lecture Outline: Use of Soil Surveys	Slides	
Background a. A modern soil survey report covering the site in question is the most useful single reference available to assist in making a wetland determination, if you understand how to interpret and use it.	221, 222 (cover of soil survey report)	
 II. Soil maps and map units a. The heart of a soil survey is a series of maps of soils within the survey area (usually a county). 1. The General Soil Map shows the major soil groups or associations in the county. Each association has a distinctive pattern of soils, relief, and drainage. a. The general soil map is useful for orientation and for general planning purposes, but its coarse scale limits its usefulness for wetland determinations. 	223 (general soil map)	
To locate a particular site on the detailed soil maps, consult the <i>Index to Map Sheets</i>.	224 (index to map sheets)	
3. The index leads to the appropriate Map Sheet, which has soil delineations marked on an aerial photograph. The map sheets include major cultural features, such as towns and major roads, for orientation. Soil delineations are given numerical or alphabetical codes.	225 (soil map sheet)	
 The codes are explained in the Soil Legend, which gives the names of the Map Units delineated on the map sheets. 	226 (soil legend)	
 Map units are named for the predominant soil or soils found within them. For example: Ac Alliance loam, 0 to 1 percent slopes "Ac" is the map unit symbol "Alliance" is the name of the predominant soil series in the map unit "Loam" is the texture of the surface layer (which can vary within a series) "0 to 1 percent slopes" is the soil phase, a subset of the series that affects soil management. 	227	

(Version 12/92)	
Lecture Outline: Use of Soil Surveys	Slides
 Map Unit Descriptions are found in the front of the soil survey. Map units are highly variable in their composition, and usually consist of more than one soil series or miscellaneous soil type. 	228
 7. Soil series, on the other hand, have much more narrowly defined properties. All representatives of a series have similar types and arrangement of horizons. Soil Series Descriptions for series that exist in the county are also given in the front of the soil survey, generally separate from the map unit descriptions. a. Series descriptions include a description of the typical pedon of that series found in the county, as well as the range of properties (textures, colors, thickness of horizons) expected in the county. b. It is important to remember that soil survey maps delineate map units and not series. 	229 (series description)
 b. Kinds of soil map units 1. Consociations soil map units dominated by and named for a single kind of soil a. For example: 1. Massie silty clay, 0 to 1 percent slopes (hydric) 2. Tama silty clay loam, 2 to 5 percent slopes (nonhydric) 3. Wet alluvial land (hydric) b. However, the map unit may consist of up to 49% other soils, if they are similar in interpretation, and up to 25% dissimilar soils. 	230

(Version 12/32)		
Lecture Outline: Use of Soil Surveys	Slides	
 Complexes and Associations soil map units that consist of two or more different soils that occur in a regular pattern on the landscape (e.g., one soil on ridges, another in swales). The terms "complex" and "association" are arbitrarily distinguished by mapping scale. Examples: Tryon-Valentine complex, 0 to 6 percent slopes (Tryon hydric, Valentine nonhydric) Canyon-Bridget-Rock Outcrop, steep (first two are series names; Rock Outcrop is a miscellaneous land type) Complexes and associations are identified by hyphenated names. In each map unit of a complex or association, each major soil component is normally present, although their proportions may vary from unit to unit. Again, map units may have up to 25% dissimilar inclusions. 	231	
 3. Undifferentiated groups soil map units that consist of two or more different soils that are not consistently associated and occur irregularly on the landscape a. Examples: 1. Hord and Hall silt loams, terrace, 0 to 1 percent slopes b. Undifferentiated groups are identified by the "and" between soil names. c. A delineation of Hord and Hall silt loam may contain only Hord, only Hall, or both. d. Again, map units may have up to 25% dissimilar inclusions. 	232	

	Lecture Outline: Use of Soil Surveys	Slides
4.	 Inclusions within map units soils contained within a map unit that are not part of the name of that unit. a. Areas of included soils may be too small to delineate separately at the mapping scale, or they may be too difficult to locate and delineate by practical field methods. 1. Up to 49% of the map unit can be included soils. b. The map unit description in the soil survey should list all known included soils. 	233
1.	coal lists of hydric soil map units Local lists of hydric soils are generally compiled at the county level and are designed to accompany the soil survey report. a. Local hydric soil lists are available from the county or area SCS office. Generally, the local list consists of: a. Map unit symbol b. Map unit name c. Hydric soil component (this may be one or more of the named soils, or specified inclusions) d. Landscape position	234
3.	Examples: a. The named soil is hydric (remember that there may still be nonhydric inclusions) b. Included soils are hydric c. Example of depressional landscape position d. Example of bottomland landscape position	235, 236, 237, 238

Lecture Outline: Use of Soil Surveys	Slides
 c. Orders of soil surveys 1. Soil surveys are done at different levels of detail or resolution depending upon the needs of anticipated users. a. First order surveys are made for very intensive land uses. Map units are mostly consociations and phases of soil series. Delineations have a minimum size of 2.5 acres or less depending upon scale. Base map scale is generally 1:15,840 or larger. b. Second order surveys are for intensive land uses requiring detailed information about land suitability for different uses and management requirements. Map units are mostly consociations and complexes, including phases. Minimum delineation size ranges from 1.5 to 10 acres depending on scale and landscape complexity. Base map scale generally ranges from 1:12,000 to 1:31,680. 1. Most county soil surveys are second order surveys. c. Third, fourth, and fifth order surveys are progressively less detailed. Map units are mostly associations. Minimum delineation size ranges from 4 to 10,000 acres. Map scales range from 1:20,000 to 1:1,000,000. 	239

(Version 12/92)	
Lecture Outline: Use of Soil Surveys	Slides
 III. Review of soil survey information a. Modern soil surveys contain a wealth of information useful to wetland determinations. 1. Introductory section on climate, history, and physiography 2. Map unit descriptions (describing included soils) 3. Series descriptions (containing profile descriptions and ranges of characteristics) 4. Tables, including: a. Monthly precipitation records b. Growing season information c. Physical and chemical properties (including permeabilities by horizon) d. Soil and water features (flooding and water table data by series) e. Classification of the soils 	Examine copies of a soil survey
Soil map sheets and legends	

(Version 12/92)		
	Lecture Outline: Soil Taxonomy	Slides
a.	A regulator can reduce the amount of time required to make a wetland determination on an unfamiliar site by first reviewing available information in the office. At a minimum, one should examine the USGS topographic map, NWI map, and the appropriate county soil survey report.	240
	 One can gain a great deal of information about the soils on a site by examining the final table in most modern soil surveys "Classification of the Soils". It is not the purpose of this course to teach you how to classify soils; that is the job of a soil scientist. The goal is to teach you how to translate soil taxonomic names so that you can: 1. Rapidly orient yourself to the soil conditions on an unfamiliar site. 2. Quickly identify which soil units are likely to contain wetlands. 3. Identify problem soil situations in which the typical field indicators of hydric soil may not be reliable (see the Problem Area lecture outline). 	
	A basic system of soil classification for making and interpreting soil surveys 1. The complete reference on the taxonomic system is Soil Taxonomy (Agriculture Handbook No. 436) published by SCS in 1975. The abridged version and vehicle for updates to the system is Keys to Soil Taxonomy, which is revised and reprinted every couple years.	241, 242 (photo of Munsell color book, Soil Taxonomy, and Keys to Soil Taxonomy)
b.	Objective of soil taxonomy to develop a hierarchical classification system that reflects the relationships between different soils, and between soils and the factors responsible for their distinctive characteristics	243
c.	The classification is based on soil properties observed in the field, in combination with information from other disciplines (e.g., soil temperature and moisture regimes are inferred from meteorological data)	244

(Version 12/92)		
	Lecture Outline: Soil Taxonomy	Slides
d.	A hierarchical classification starts with a few broad classes of soils having a great deal of variability within classes, and repeatedly sorts them into smaller and smaller categories in which soil types are more and more similar 1. Soil classification has six levels order, suborder, great group, subgroup, family, and series (also sometimes phases) 2. Similar to animal classification (phylum, class, order, family, genus, species, and sometimes subspecies)	245
e.	 Broadest category is the <i>order</i>, and there are only 11 of them. 1. Distinguished by presence or absence of major diagnostic horizons, which indicate the major soil-forming processes that have occurred 	246
	 The 11 orders are: Alfisols, Andisols, Aridisols, Entisols, Histosols, Inceptisols, Mollisols, Oxisols, Spodosols, Ultisols, and Vertisols (briefly describe with the help of handouts) a. Show examples of Histosol, Mollisol, Entisol, Vertisol, Ultisol, Spodosol 	247, 248 (Histosol), 249 (Mollisol), 250 (Entisol), 251 (Vertisol), 252 (Ultisol), 253 (Spodosol)
	3. Taxonomic names are comprised of "formative elements," which are assembled from right to left. The last element in a taxonomic name represents the soil order.	254
f.	 Orders are divided into suborders (53 of them) Distinguished by wetness characteristics, parent materials, and effects of vegetation This is the first point in the system where wetness may be reflected in the name Refer to handouts giving the complete list of suborder formative elements (Table 9 in Soil Taxonomy) 	255

(Version 12/92)	
Lecture Outline: Soil Taxonomy	Slides
 4. Example of four Entisol suborders (Arents not shown) a. Aquents indicating aquic conditions b. Fluvents floodplain soils c. Psamments sandy Entisols d. Orthents catch-all category for typical Entisols 	256
 g. Suborders are divided into great groups (211 of them) 1. Distinguished by kind, arrangement, and degree of expression of horizons; soil moisture and temperature regimes; and base status 	257
 Examples of great groups within the Aquents, Fluvents, and Psamments Refer to handout of great group formative elements (Table 10 in Soil Taxonomy) 	258, 259, 260
h. Great groups are divided into subgroups (>1,000 of them) 1. Three kinds of subgroups: a. "Typic" the central concept or typical representative of the great group b. Intergrades soils that are transitional toward some other recognized soil taxon c. Extragrades soils that deviate from the central concept of the great group, but not in a way that is transitional to any other recognized soil classification	261
2. Examples of subgroups, showing how soil taxonomic names are assembled from right to left a. Typic Fluvaquent b. Mollic Fluvaquent (an intergrade, toward Mollisol) c. Aeric Fluvaquent (an extragrade)	262, 263, 264
 i. Great groups are divided into families (>5,000 recognized) 1. Distinguished by physical and chemical properties that affect management (e.g., particle-size distribution, mineral [clay] content, reaction [pH], and temperature regime) 	265

(Version 12/92)		
Lec	ture Outline: Soil Taxonomy	Slides
name. C tempera tempera a. Figur zone b. In ge distri whea	mily-level descriptors may be added to a so one item of interest to us is the soil ture regime, which indicates average soil ture and approximate growing season lengte shows the broad soil temperature regimes in the contiguous US neral, these zones coincide with the bution of major agricultural crops (i.e., the at belt, the corn belt, the cotton belt, and the belt [from north to south])	temperature regime regions) h
recognized) 1. Series arranger structure 2. Generall survey r lists 3. Series n they are	divided into series (>15,000 currently re further distinguished by kind and ment of horizons, color, texture, and e y it is series names that appear on soil maps, and series are listed on hydric soils ames themselves are uninformative; usually taken from the post office nearest to the here the series was first described	267
k. Review 1. Example was ass 2. Addition What sh example a. Typi b. Aqui c. Typi	e showing how the name Aquic Fragiochrep embled hal examples What does the name mean? hould the soil look like? Then show an	Medisaprist, Torry

(Version 12/32)		
	Lecture Outline: Offsite Method	Slides
а.	With rare exceptions, wetland jurisdictional boundary determinations must be based on on-site examination of vegetation, soils, and hydrology. However, for some applications (e.g., resource inventories, advanced identification of wetlands, planning studies) offsite methods may be adequate.	277, 278
C.	 Use the offsite method when: Information is available in the office concerning hydrology, soils, and vegetation on a site. Field inspection is not possible due to time constraints or other reasons (e.g., National Wetland Inventory and Food Security Act inventories, which must be done rapidly over vast areas). 	279
d.	The accuracy of offsite wetland determinations depends on: a. Quality of the available data b. One's ability and experience to interpret these data	280
e.	If a more accurate delineation is required, then onsite procedures must be employed.	281
	ources of information for an offsite determination USGS topographic maps give site location and landmarks, topographic information and drainage (although the contour interval is generally too large for delineation purposes)	282, 283 (USGS topo map)
b.	SCS soil survey reports provide soil maps, map unit and series descriptions, hydrologic information, and growing season data	284 (soil surveys)
c.	National Wetland Inventory maps wetland maps based on interpretation of aerial photography with limited ground truthing. Wetland types are based on the Cowardin et al. (1979) classification system. NWI itself is an offsite method.	285 (NWI map)

	(Version 12/92)	
	Lecture Outline: Offsite Method	Slides
d.	Aerial photography available from both local and national sources (e.g., ASCS Aerial Photo Field Office, Salt Lake City, UT; USGS Eros Data Center, Sioux Falls, SD).	286 (CIR aerial photo)
e.	Environmental impact statements and other planning documents check Corps of Engineers planning offices and other agencies	287 (environmental impact statement)
f.	Land use and land cover maps available from USGS and local sources	288 (land use map)
g.	Permit applicant's engineering drawings and site maps may provide enough information for a preliminary wetland determination.	289, 290 (engineeering drawings)
а.	In implementing the Swampbuster provisions of the Food Security Act of 1985, SCS is inventorying wetlands in agricultural areas throughout the US. They have put considerable effort into development of offsite methods. Their procedures are also relevant to Clean Water Act wetland determinations. The procedure: 1. Step 1 Locate and delineate the area of interest on a USGS topographic map or other suitable base map. 2. Step 2 Review appropriate National Wetlands Inventory maps, or state or local wetland maps. 3. Step 3 Review SCS soil survey maps and county hydric soils list for the presence of hydric soil map units or map units with hydric soil inclusions.	291

	(Version 12/92)	
	Lecture Outline: Offsite Method	Slides
	 Step 4a Review recent aerial photos of the project area. Examples include: a. ASCS yearly compliance slides 1. These generally are low-altitude photos taken during June or July when crops are identifiable. They are used to monitor acreage restrictions for farmers participating in crop subsidy programs. Recent slides are kept at ASCS local offices; older slides at SCS county offices. b. High altitude flights c. Satellite photography Step 4b Review and evaluate climatological data to determine whether the area had high, low, or normal precipitation for at least 2-3 months prior to the date of the photography. 	292
6.	Step 4c During photo interpretation, look for one or more signs of wetlands. For example: a. Hydrophytic vegetation b. Surface water c. Saturated soils d. Flooded or drowned-out crops e. Stressed crops due to wetness f. Greener crops in dry years g. Differences in vegetation patterns due to different planting dates	293
il .	Step 5 Review available site-specific information. Step 6 Determine whether wetlands exist in the subject area. Wetlands can be assumed to exist if: a. Wetlands are shown on NWI or other wetland maps, and hydric soil or a soil with hydric soil inclusions is shown on the soil survey; or	294

(Version 12/92)	
Lecture Outline: Offsite Method	Slides
 b. Hydric soil or a soil with hydric soil inclusions is shown on the soil survey and: 1. Site-specific information confirms hydrophytic vegetation, hydric soils, and/or wetland hydrology, or 2. Signs of wetland are detected by reviewing aerial photos, or c. Any combination of the above or parts thereof (e.g., vegetated wetland on NWI maps and signs of wetland on aerial photos). 	.
 c. Analysis of remote imagery is a major part of FSA wetland inventories. To insure consistency in interpretation, each SCS region developed wetland mapping conventions. We will look at two examples: (a) for the prairie pothole region and (b) for the lower Mississippi valley bottomland hardwood region. 	296 (SCS South Wetland Mapping Conventions)
 d. Mapping conventions in the prairie pothole region 1. Mapping conventions are tailored for the tools and information available locally. Here an investigator examines ASCS compliance slides for all available years. 	297 (examining ASCS yearly compliance slides)
Prairie potholes vary considerably in size, shape, and hydroperiod.	298 (prairie potholes)
 Some potholes pond water only temporarily or seasonally. Most potholes are farmed at least during dry years. 	299 (farmed pothole)
 Some potholes are clearly wetlands, while others barely meet wetland criteria, if at all. Variability in wetness poses problems for the photo interpreter, thus the need for mapping conventions. 	300 (aerial of potholes)
 Soil surveys generally are not of much help in this region because potholes occur as inclusions within map units. None of these map units is hydric in its entirety but all have hydric inclusions. 	301 (soil map)

(Version 12/92)		
	Lecture Outline: Offsite Method	Slides
6.	ASCS slides are an invaluable tool in this region. Mapping conventions require that an area be called wetland if it exhibits a wetland signature more often than not (e.g., in 3 out of 5 yearly ASCS slides). a. These 5 slides are of the same area in 5 different years. As an example, select a pothole on the first slide and see how many years a wetland signature is visible by examining the same spot on subsequent slides.	ASCS slides of the same area in 5 different years: 302, 303, 304, 305, 306
7.	SCS mapping conventions also require that an area be called wetland if it is delineated on NWI map and is supported by any other piece of office information (e.g., ASCS slides, soil surveys, etc.).	307 (pothole on NWI map)
8.	Example of previous NWI delineation confirmed on 1:660 black-and-white photo. Notice, however, the ditch that extends to the wetland. This wetland could be partially or totally drained.	308 (1:660 photo of previous pothole)
9.	The final step in offsite determinations is a map on which wetlands are delineated.	309 (map with wetlands delineated)
1	ttomland hardwood region Next we look at mapping conventions used in the bottomland hardwood region in Mississippi	310 (bottomland forest)
2.	 This slide demonstrates three wetland categories as they might appear on the ground: a. Areas still in woody vegetation on hydric soils are assumed to be wetlands (right side of photo) b. Farmed areas converted to agriculture before December 1985 and inundated for at least 15 consecutive days during the growing season are designated "farmed wetlands" (in distance) c. Farmed areas converted before December 1985 and inundated for less than 15 consecutive days are "prior converted croplands" (in foreground) 	311 (farmed field adjacent to forest)
3.	Useful office information includes the USGS topographic map (this is the Six Mile Lake area in the delta of Mississippi)	312 (USGS topo map)

(Version 12/92)

	Lecture Outline: Offsite Method	Slides
4.	Soil surveys are much more extensively used in this region, because it is more typical for whole map units to be hydric. SCS mapping conventions in this region state that any area in woody vegetation on mapped hydric soil is assumed to be wetland.	313 (soil survey map)
5.	Another convention states that if NWI delineates an area as wetland and that is supported by any other piece of collateral data (e.g., ASCS slides, soil survey, aerial photos, etc.), delineate it as wetland. However, NWI generally doesn't delineate farmed wetlands for much of the US outside the pothole and playa regions.	314 (NWI map)
6.	Again, if wetland signatures occur more often than not on yearly ASCS slides, delineate the area as wetland. Use these 4 slides to identify wetlands in this area.	ASCS slides of the same area in 4 different years: 315, 316, 317, 318
7.	The National Aerial Photography (NAP) and National High Altitude Photography (NHAP) programs provide other useful tools. Resolution is better than ASCS slides, but timing and frequency of flights are a problem.	319 (NAP photo)
8.	Some of the best information on flooding over extensive areas comes from satellite data which, through multiple passes, can provide information on frequency and duration of flooding episodes.	320 (satellite photo)
9.	SCS has worked with NASA to identify and define satellite signatures that indicate seasonal flooding, and can be used to delineate wetlands. Yellow is farmed wetlands flooded 15 days or more. Green is wetlands still in woods.	321 (satellite mapping of wetlands)
10	 Again, the final step is the delineation. Here is the FSA inventory base map with wetland types indicated. 	322 (final FSA inventory)

The USDA Soil Conservation Service contributed many of the slides in this lecture.

<u> </u>	(Version 12/92)		
	Lecture Outline: Routine Method for Small Areas	Slides	
1.	 a. In most cases, wetland boundary determinations are made in the field using an appropriate on-site method. b. The Methods section of the Manual offers general guidance on sampling designs for identifying wetlands and determining their boundaries in the field. Investigators must use their experience and good judgment in adapting the sampling protocol to the site. Deviations from the suggested procedure should be documented. 	323	
	 c. The Manual describes three approaches for on-site wetland determinations: 1. Routine Method for small areas (≤5 acres) 2. Routine Method for large areas (>5 acres) a. The routine methods are relatively rapid procedures based on largely qualitative information. One of these methods should be sufficient in the vast majority of projects. 3. Comprehensive Method a. The comprehensive method is a much more laborious procedure based on more quantitative vegetation analysis and larger sample sizes. Intended for use only when highly detailed information is needed, such as in cases involving lawsuits. 	324	
II.	Routine Method for Small Areas a. Use this method when: 1. Project area is small (≤5 acres) 2. Plant communities are homogeneous 3. Plant community boundaries are abrupt 4. Project is not controversial a. Although the Manual suggests the 5-acre threshold, this approach also works well in larger areas if plant communities are discrete.	325, 326, 327	

	Lecture Outline: Routine Method for Small Areas	Slides
h	Equipment and materials needed for routine methods:	328
D.	 Base map (with project area identified) Copies of data form (one for each sampling point) The routine data form originally published in	
	3. Wetland plant list (for the appropriate region)4. Hydric soils list (use the local list, if available)	· ,
	5. County soil survey	
	6. Compass (for establishing transects in large areas)	
	7. Tile spade, soil auger, or probe	
	8. Measuring tape (short tape for soil measurements, long tape for laying out transects and sampling plots)	
	 Munsell soil color book Additional items one may wish to consider: stakes or flagging, plant guides, water bottle to moisten soil. 	
c.	Procedures: 1. Step 1 Locate the project area. 2. Step 2 Is the area (or any part of it) disturbed such that procedures for Atypical Situations must be used? a. Become familiar with the Atypical Situation section of the Manual.	329
	Step 3 Select a sampling approach (here we choose the routine method for small areas).	

ļ	(version 12/92)	
Le	ecture Outline: Routine Method for Small Areas	Slides
5.	Step 4 Identify and map the plant communities (if community boundaries are not obvious, use a different method). Step 5 Determine whether normal conditions are present (is it a potential Problem Area wetland?) a. Become familiar with the Problem Area section of the Manual.	330
6.	Step 6 Select a representative observation point in each plant community.a. Again, if plant communities are so variable that it is not possible to select a representative point, use a different method.	
	 Example: a small site is bounded by a road, a stream, and marked property lines. The investigator maps the plant communities and gives each a name (A, B, C, D). 	331 (map of project site, with cover types indicated)
	 c. Example: at least one representative point is selected in each plant community. More points can be sampled if desired. 	332 (map indicating representative sampling points)
7.	 Step 7 Visually select dominant species from each stratum in the community. Two options: a. Select the three most dominant plant species from each stratum (5 if only 1 or 2 strata). b. Use the 50/20 rule to select dominants from each stratum (see Hydrophytic Vegetation lecture notes). 	333
8.	Step 8 Record the wetland indicator status of each dominant species using the appropriate regional wetland plant list.	
9.	Step 9 Determine whether the vegetation is hydrophytic.a. The basic rule states that more than 50% of dominant species from all strata must be OBL, FACW, or FAC (not counting FAC-).	

(Version 12/32)	
Lecture Outline: Routine Method for Small Areas	Slides
 b. Dominant species are selected independently from each of 4 strata: Tree woody plants >3 inches DBH, regardless of height Sapling/shrub woody plants >3.2 ft tall but <3 inches DBH Herb all nonwoody plants, and woody plants <3.2 ft tall Woody vine woody climbing plants >3.2 ft tall 	334 (definitions of strata)
 c. Examples: 1. Plant community having only one stratum (herb) 2. Plant community having two strata (herb and sapling/shrub) 3. Plant community having all 4 strata 4. Record information on approved data form. 	335 (Washington tidal marsh), 336 (Alaska black spruce bog), 337 (Mississippi bottomland forest), 338, 339 (data form)
 10. Step 10 Record indicators of wetland hydrology. a. At least one primary indicator or two secondary indicators are needed. 11. Step 11 Determine whether wetland hydrology is present. 	340, 341 (data form)

(Version 12/32)		
Lecture Outline: Routine Method for Small Areas	Slides	
 12. Step 12 Determine whether soil must be characterized. Soil is assumed to be hydric if: a. All dominant species are OBL, or b. All dominant species are OBL or FACW and the wetland boundary is abrupt 13. Step 13 If needed, dig a soil pit. a. Recommend that this always be done, even in obvious cases. b. Dig the pit at least 18 inches deep. A tile spade (sharpshooter) exposes more soil and gives more reliable results than a probe or auger in most cases. 	342, 343 (data form)	
 14. Step 14 Record indicators of hydric soil. a. This includes describing the soil profile (in terms of depth, color, and texture of horizons), determining the soil series by comparing with the profile descriptions given in the soil survey for series contained in that map unit, and looking up that series on the hydric soils list. Also record other hydric soil indicators. 15. Step 15 Determine whether the soil is hydric. 		
 16. Step 16 Make the wetland determination in each plant community. a. Note the wording in the Manual: "If the entire area presently or normally has wetland indicators of all three parameters, the entire area is a wetland [p. 62]." b. In other words, be aware that certain highly seasonal wetlands may lack indicators of one or more parameters at certain times of year (see the Problem Area section). Use experience and good judgment in making your decision, and thoroughly document any departures from the letter of the Manual. 17. Step 17 Determine the wetland/nonwetland boundary. Verify by walking the boundary and making minor adjustments based on soils and vegetation. 	344, 345 (data form)	

Lectu	re Outline: Routine Method for Small Areas	Slides
a.	Example: On the base map, mark each sampling point as wetland (W) or nonwetland (N). Because these points were representative of the plant communities in which they were located, the entire community is assumed to be wetland or nonwetland.	346
b.	Example: Combine wetland communities and nonwetland communities into separate units. The wetland boundary is assumed to coincide with the boundary between wetland and nonwetland communities. Verify by walking the boundary and adjusting as needed.	347

		Lecture Outline: Routine Method for Large Areas	Slides
I.		ckground This method is particularly useful, even in small areas, if plant communities are not homogeneous, or if community boundaries are indistinct (e.g., areas where plant communities change more gradually in response to environmental gradients).	348
II.	a. b.	cedure: Steps 1 through 3 are the same as for smaller areas (locate the site, map the plant communities, select a sampling method). Step 18 Establish a baseline. 1. The baseline should be a linear feature, readily apparent on a map or aerial photograph of the site, running perpendicular to the expected moisture gradient (e.g., a road, powerline, or marked property line). Step 19 Determine the number and position of transects. 1. Divide the baseline length by the desired number of transects to determine the length of baseline segments. Establish a transect at the midpoint of each baseline segment and run them down (or up) the hydrologic gradient, perpendicular to the baseline. 2. Each plant community in the area must be traversed by at least one transect. If needed, adjust transect locations to sample all communities.	349
		 Suggested minimum number of transects. Based on baseline length: < 1.0 mile minimum of 3 transects < 1.0-2.0 miles 3-5 transects < 2.0-4.0 miles 5-8 transects > > 4.0 miles 8 or more transects 	350 (table of suggested minimum number of transects)
		4. Example: Same site used for the routine method for small areas, now demonstrating the transect approach. Four transects were selected. The position of the last transect had to be adjusted to pass through plant community A.	351 (site map, showing transects)

	(Version 12/32)		
l	ecture Outline: Routine Method for Large Areas	Slides	
1 2 3	Determine whether normal conditions are present (again, is this a Problem Area situation?). Establish an observation point at a representative location in the first plant community. Characterize the vegetation, soil, and hydrology and record information on the data form. a. For vegetation sampling, use an estimated 5-ft radius plot centered at the sampling point for herbs, and a 30-ft radius plot for all other strata (plot sizes may be adjusted as needed). Make the wetland determination at that point. a. Again, are indicators of all three parameters present, or normally present, at that point. Sample the remaining points (established at representative locations in the remaining plant communities) along that transect. Determine the wetland boundary between sampling points. a. Sample intermediate points between adjacent wetland/nonwetland points until the wetland boundary is located. Document the highest extent of wetland with another data form.	352	
7	 Example: Sampling points are established at representative locations in each plant community along each transect. 	353 (site map, showing sampling points)	
8	3. Example: Intermediate points are sampled to locate the wetland boundary along each transect (X marks the boundary).	354 (site map, showing intermediate points)	

(Version 12/32)		
	Lecture Outline: Routine Method for Large Areas	Slides
f. :	 Step 21 Sample the remaining transects. Step 22 Synthesize data and determine the wetland boundary between transects. If transects are close enough together, the wetland boundary may be approximated with a point-to-point survey. More accurate results are obtained by drawing the boundary along the topographic contour, then walking the line to make minor adjustments as needed. In field notes, record the distance along each transect from the baseline to the wetland boundary. 	355
	3. Example: The final result is a map of wetland boundaries that may or may not coincide with plant community boundaries. A point-to-point survey of the wetland boundary may be desired.	356 (site map with wetland boundary), 357 (surveyor)

	Lecture	Slides	
1.	Background a. The Comproduct Method material sampled, and involves material stratum of the stratum of the stratum of the procedure of the stratum of the st	ehensive Method differs from the Routine inly in the detail with which vegetation is nd in the larger number of sampling points. It ore quantitative analysis of the vegetation to choice of dominant species from each the plant community. In more laborious and time-consuming that is intended for detailed documentation of all decisions (e.g., court challenges).	358
	with the diamete 2. Addition	and materials is similar to that for routine determinations, e addition of a vegetation sampling frame, er tape or basal-area prism, and a calculator. hal data forms are also needed to compile and the vegetation data.	359
11.	b. Step 2 DSituations (disturbed?)	dentify the project area. Letermine whether procedures for Atypical must be used (are any areas significantly l. Lentify and map the plant communities.	360
	each plant e. Step 5 D conditions Area?). f. Step 6 E	retermine the type and number of strata in community. Retermine whether normal environmental are present (again, is it a potential Problem stablish a baseline. Retermine number and position of transects.	361
	1. The Mashould segmer result in Start tr h. Step 8 Dalong each 1. Observalong e	be located at random within each baseline of the located at random within each baseline of the located at random within each baseline of large unsampled gaps between transects. ansects at midpoints of baseline segments. Determine the number of observation points	

(VEISIOII 12/32)		
Slides		
362 (suggested minimum number of transects)		
363 (site map showing transects)		
364 (suggested spacing of sampling points)		
365 (site map showing sampling points)		
366		
367 (measuring DBH with a diameter tape)		
368 (data form)		

(Version 12/32)	
Lecture Outline: Comprehensive Method	Slides
 Filled-out data form gives basal area individual tree, and total by species. these data to select the dominant spe either by choosing the top three spe by using the 50/20 rule. 	Use pecies,
 Characterize the herb stratum Use the procedure described in the Manherb stratum is homogeneous: Place a meter-square quadrat at the point. Identify all species in the quadrat an estimate percent cover by species. 	sampling
3. Assign each species to a cover class give it a cover value equal to the minth that cover class. a. This step is optional, and may he improve the reliability of visual e of cover.	dpoint for elp
4. Record the results in the appropriate Data Form 2. Use these data to sele dominant species from the herb stra	ect
 b. Alternative procedure if the herb stratur patchy and heterogeneous that a central located plot does not give a representation sample: Divide the 30-ft radius sampling plot quarters along compass directions a randomly cast the sampling frame at two times into each quarter. A smaller sampling frame can be with this alternative procedure (emeter square). Identify all species in each quadratate estimate percent cover by species. Average these values for each special quadrats. Record the results on Data Form 2 at the dominant species. 	random placement of sampling quadrats) t into and at least e used e.g., half and ies across

Lecture Outline: Comprehensive Method	Slides
 3. Characterize the sapling/shrub and woody vine strata using similar methods. a. Sapling/shrub species can be sampled using visual estimates of percent cover within the 30-ft radius plot, or by the cumulative-height technique described in the Manual. b. Use percent cover or stem density within the 30-ft radius plot for woody vines. c. Select dominants from each stratum. 	374 (measuring a sapling/shrub)
 k. Step 11 Characterize the soil. 1. Procedures are the same as for routine methods: a. Dig a pit; describe the profile; determine the series by comparing the observed profile with profile descriptions given in the soil survey; and look up the series on the local hydric soils list. b. Record other indicators of hydric soils. l. Step 12 Characterize hydrology. 1. Record indicators of wetland hydrology. m. Step 13 Determine whether vegetation is hydrophytic. n. Step 14 Determine whether soil is hydric. o. Step 15 Determine whether wetland hydrology is present. p. Step 16 Make the wetland determination at that point. 	375
 q. Step 17 Sample additional points along that transect. r. Step 18 Determine the wetland boundary between points, by sampling intermediate points. s. Step 19 Sample the remaining transects. t. Step 20 Synthesize the data across all transects. u. Step 21 Determine the wetland boundary between transects. 1. Connect boundary locations (generally along the contour), and walk the line to verify and make minor adjustments. 	376
 Example: Sample intermediate points as needed to locate the wetland boundary (or boundaries) along each transect (X marks the wetland lines). 	377 (site map)

(Version 12/32)	
Lecture Outline: Comprehensive Method	Slides
3. Example: Connect the boundary locations to delineate the wetlands. Additional short transects may be needed to firm up the boundary in unsampled areas. Record the distances to wetland boundaries from the baseline.	378 (site map showing wetland boundary)

		Lecture Outline: Atypical Situations	Slides
1.		ckground Atypical situations is the Manual's term for areas where one or more field indicators of wetlands have been obscured by some recent change. Disturbed areas is a more descriptive term.	379
	b.	Examples of disturbances that can obscure wetland indicators include: 1. Human activities a. Removal of vegetation b. Removal of soil c. Placement of fill d. Construction of dams and levees e. Conversion to agriculture f. Channelization g. Drainage 2. Natural events a. Change in river course b. Beaver dams c. Avalanches and mud slides d. Fires e. Volcanic deposition	380, 381 (area cleared, leveled, and leveed [in distance]), 382 (ditch), 383 (conversion to agriculture), 384 (drained potholes), 385 (downcut stream), 386 (beaver dam), 387 (flood control channel)
		 This section of the Manual is designed primarily for enforcement situations, where the goal is to determine whether wetlands existed on the site before a human-induced alteration. 1. It is largely a forensic section, involving a search for missing wetland indicators. 	
	d.	If the goal is to determine whether wetlands <i>currently</i> exist on a site that was disturbed in the past, standard methods for undisturbed sites may be sufficient.	
	е.	At the end of this lecture, some methods for evaluating current hydrology on disturbed areas will be discussed.	

	Lecture Outline: Atypical Situations	Slides
II .	Procedures for disturbed areas a. The disturbance may affect any one or all of the three wetland parameters vegetation, soils, hydrology. In each case, the procedural steps are similar. 1. Perform the wetland determination using standard methods for all undisturbed parameters. Refer to the section on Atypical Situations as needed for suggestions on dealing with disturbed parameters. Then return to the Methods section to complete the wetland delineation.	388
t	 Any time an enforcement action is being considered in the case of a man-induced wetland alteration, one must first determine the date of the alteration in relation to Clean Water Act implementation dates. Dates of disturbances may be determined from: 1. Direct questioning 2. Aerial photographs 3. Building permits 	389
C	 Disturbances to the vegetation Step 1 Describe the alteration (e.g., timber was harvested, area was bulldozed, site was filled). a. Record observations and conclusions on Data Form 3 in Appendix B of the Manual. Step 2 Describe the effects on the vegetation. a. Cleared or partially cleared b. Certain layers removed (as in timber harvest) c. Selected species removed d. Burned, mowed, or heavily grazed e. Covered by fill f. Mortality due to excessive water 	390, 391 (site cleared), 392 (tree layer removed), 393 (mowed)

(Version 12/92)		
Le	ecture Outline: Atypical Situations	Slides
a. A b. O c. R d. A si e. S f. Po un g. Po h. N 4. Step	3 Characterize the original vegetation. derial photography pre-dating the disturbance ensite inspection for any surviving vegetation ecords of previous site inspections adjacent vegetation at the same elevation and on imilar soils CS records during mapping or other studies ermit applicant (e.g., in cases involving nintentional wetland disturbance) ublic interviews (e.g., ask the neighbors) ational Wetland Inventory maps 4 Determine whether the vegetation was applytic.	394
ol	xample: Data Form 3 provides spaces to record bservations and conclusions. This is the egetation section.	395 (data form)
	xample: Filled-out data form for a hypothetical tuation.	396 (data form)
1. Step a. D is 1. 2. 3. b. Si c. Re	nces to the soils 1 Describe the alteration. redged or fill material covers original soil. This indicated by: Color or texture differences Decomposing vegetation between layers Nonwoody debris at the surface (e.g., building rubble) ubsurface plowing emoval of surface layers, indicated by: Exposed plant roots or scrape scars resence of man-made structures	397
e. Ex	kample: Fill in a forested wetland in Oregon.	398 (fill in wetland)
a. Re b. Re c. De	2 Describe the effects on the soils. ecord depth of fill over buried soil ecord depth of plow zone escribe change in soil phase escribe effects of soil compaction	399

Lecture Outline: Atypical Situations	Slides
 3. Step 3 Characterize original soils. a. Soil survey information pre-dating the disturbance b. Excavate and characterize buried soils c. Characterize plowed soils below the plow zone d. Examine adjacent reference areas or the B horizon if surface layer is removed 4. Step 4 Determine whether soils were hydric. 	400
a. Example: Filled-out soil section of the data form.	401 (data form)
e. Disturbance to hydrology 1. Step 1 Describe the alteration. a. Dams (man-made or natural) b. Levees or dikes c. Ditches or subsurface tiles d. Filling of channels or depressions e. Water diversion f. Ground-water extraction g. Channelization 1. Examples	402, 403 (inflatable weir), 404 (machine for installing drain tile), 405 (land levelers), 406 (channelized stream), 407 (ditches and drains)
 2. Step 2 Describe effects on hydrology, in terms of: a. Frequency of inundation b. Duration of inundation or soil saturation 	408
 3. Step 3 Characterize previous hydrology. a. Stream or tide gauge data pre-dating the disturbance b. Field indicators of wetland hydrology that have persisted c. Aerial imagery pre-dating the disturbance d. Historical records e. Floodplain management maps f. Public or local officials 4. Step 4 Determine whether wetland hydrology was present. 	409
a. Example: Filled out hydrology section of Data Form 3.	410 (data form)

(VEISIOII 12/92)		
Lecture Outline: Atypical Situat	ions Slides	
f. Evaluating existing hydrology on distur 1. Even if the hydrology of a wetland the site may still meet wetland hydrology a. Drainage activities may not have or they may simply have made to somewhat less wet. 2. If wetland hydrology obviously is stries no need to treat the site as an Atmospherical and the following procedures may help to the following procedures may help to whether wetland hydrology still is poservations. a. Review hydrologic information poservations. b. Examine recent wet-season aerial c. Examine field indicators of wetlar. Caution: Plant morphological soil characteristics (e.g., oxion channels) may be relics of the hydrology. d. Examine a nearby undisturbed rethe same elevation and with simme. Determine the zone of influence ditches or tiles (consult an SCS of specialist). f. Conduct groundwater studies.	has been altered, rology criteria. e been effective, the wetland fill present, there typical Situation. Fas successful, to determine tresent: rost-dating the trecent fall photos and hydrology I adaptations and dized root e previous ference site at ilar soils of drainage	

Lecture Outline: Problem Area Wetlands			Slides
1.	diffi moi at le 1.	blem Area Wetlands are wetlands that are inherently icult to identify because field indicators of one or re wetland parameters may be absent or misleading, east at certain times of the year. These uncertainties exist even in the natural, undisturbed condition.	412, 413
	"rep Prol c. In t	Problem Area section of the Manual describes bresentative examples of potential problem areas." blem wetland situations are not limited to this list. his lecture, we will also discuss several problem soil ations that are only mentioned briefly in other parts	
		he Manual.	
II.	1. 2. 3. 4.	views described in the Manual: Wetlands on drumlins or other glacial deposits Seasonal wetlands Prairie potholes Vegetated flats	414, 415
	1	tlands on drumlins or other glacial deposits Description: In glaciated areas, often encounter wetland communities on side slopes where subsurface groundwater flow is constrained near the surface by impermeable soil layers. These wetlands are seasonally saturated and rarely, if ever, inundated. The problem: The unusual landscape position	
	3. 4	(slopes), potential lack of hydrology indicators during dry periods, and very stony soils. Potential solutions: During dry periods, delineate these wetlands largely on the basis of vegetation and soils.	

	Lecture Outline: Problem Area Wetlands	Slides
	easonal wetlands . Description: Many parts of the western US are characterized by pronounced wet/dry seasons. Depressional wetlands in these areas (e.g., vernal pools) may be difficult to identify during the	416, 417 (California vernal pool in February), 418 (same vernal
2.	prolonged dry season. The problem: (a) Potential lack of hydrology indicators during the dry season. (b) The pools may be dominated during dry periods by upland annuals (UPL and FACU) that can germinate, grow, flower, and set seed before the onset of the wet season; thus hydrophytic vegetation indicators may be lacking. (c) Some pools exist due to tight soils that perch water during rainy periods; therefore, hydric indicators may exist only pear the surface.	pool in May), 419 (same vernal pool in October)
3.	indicators may exist only near the surface. Potential solutions: During the dry season, identify and delineate these wetlands on the basis of depressional landscape position, ordinary high water marks, soil characteristics, and/or presence of live individuals or dead remnants of plant species known to specialize on these wetlands.	

(Version 12/32)		
	Lecture Outline: Problem Area Wetlands	Slides
2.	Description: Prairie potholes are depressional wetlands abundant in the glaciated region of the northcentral US. They are critical nesting habitat for many species of waterfowl. The prairie pothole region is subject to multiyear wet and dry cycles. During dry years, potholes are often cultivated or pastured. The problem: During dry years, potholes may not be inundated or saturated during the growing season. They may lack hydrologic indicators during dry periods, and may be invaded by upland plant species. Agricultural disturbance may make vegetation and soil decisions more difficult. Furthermore, the soils are mostly Mollisols (see later in this lecture). Potential solutions: During dry periods, delineate these wetlands largely on the basis of soil characteristics, depressional landscape position, remnant hydrophytic vegetation, and/or persistent hydrology indicators. Consult SCS concerning Food Security Act procedures for wetland identification involving examination of annual ASCS compliance photography.	420, 421 (prairie potholes)
2.	egetated flats Description: Vegetated flats are wetlands that are dominated by annual or nonpersistent wetland species (e.g., wild rice, arrowhead), which disappear completely after the growing season. The problem: Vegetated flats resemble unvegetated mudflats during the nongrowing season. Although mudflats are also regulated waters of the US, regulatory procedures may differ for vegetated wetlands. Potential solutions: Identify these areas by	422, 423 (vegetated flat during nongrowing season)
	interviews with local residents, aerial photography taken during the growing season, and/or presence of persistent below-ground plant parts.	

(Version 12/32)			
Lecture Outline: Problem Area Wetlands	Slides		
f. Problem areas noted elsewhere in the Manual 1. Man-induced wetlands 2. Wet Entisols 3. Wet soils from red or low-chroma parent materials 4. Wet Spodosols 5. Wet Mollisols	424		
 g. Man-induced wetlands 1. Description: These are wetlands that have developed characteristics of naturally occurring wetlands due to intentional or incidental human activities. a. Examples: irrigated wetlands, impoundment wetlands, constructed wetlands, and filled deepwater habitats 2. The problem: Recently created wetlands may lack typical indicators of hydric soils (e.g, gray subsoil colors), although soils meet hydric criteria based on inundation or saturation. 3. Potential solutions: Use indicators other than color to evaluate hydric soils, particularly direct information on inundation or saturation. 	425, 426, 427, 428 (mitigation wetland [center] in New Hampshire)		
 h. Wet Entisols 1. Description: Entisols are recently derived soils that show little profile development. They form in recent river deposits, sand dunes, and glacial deposits. Although many wet Entisols are easily recognized as hydric soils, some may not have had sufficient time to develop the low chromas and other characteristics seen in more typical hydric soils. 2. The problem: Hydric Entisols may lack certain indicators (e.g., low-chroma colors) of hydric soils. 3. Potential solutions: Rely on other hydric soil indicators, particularly direct evidence of inundation or saturation. Refer to Keys to Soil Taxonomy for key to Aquents (wet Entisols). 	429, 430 (wet Entisols [formed of Mount St. Helens ash] along the Toutle River in Washington)		

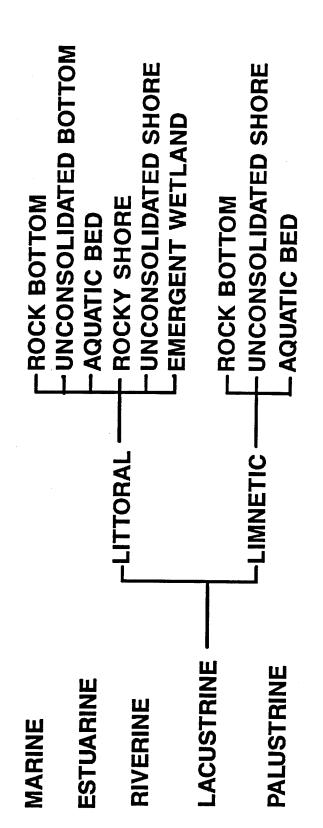
Lecture Outline: Problem Area Wetlands	Slides
 i. Wet soils from red or low-chroma parent materials 1. Description: Some soils retain the color of their parent materials even after a long history of saturation and reduction. Examples include red soils (rich in iron-containing minerals) derived from Triassic sandstones and shales. 2. The problem: Hydric components of these soils may not exhibit typical hydric soil colors. 3. Potential solutions: Rely on other hydric soil indicators. Consult the soil survey and local SCS office for assistance in identifying hydric series derived from red, green, or gray parent materials. 	431, 432 (Triassic sandstones and shales outcrop in a Colorado stream; transported alluvial deposits form red soils downstream)
 Wet Spodosols Description: Spodosols generally are coarse-textured soils associated with coniferous forests in humid regions. Organic acids from the leaf litter move downward through the soil with rainfall, cleaning the sand grains in the layer below the A-horizon (forming a gray eluvial or E-horizon), and coating the sands below with organic matter, iron, and aluminum, forming a dark spodic (Bh) horizon. The problem: Even nonhydric Spodosols have low-chroma colors in the E-horizon immediately below the A-horizon. The color is due to the inherent color of the uncoated sand grains and not necessarily due to reduction. Potential solutions: Refer to Keys to Soil Taxonomy for key to identifying Aquods (wet Spodosols). Also consult SCS for local or regional guidance. The SCS South Region has developed a list of hydric soil indicators for sandy soils that is useful for identifying hydric Spodosols throughout the southeastern coastal plain. Depending on location, hydric Spodosols may have some or all of the following: a mucky surface layer; thick, organic-rich mineral surface; organic streaking through the E-horizon; mottling in the E-horizon or upper part of the spodic horizon; and/or low-chroma colors below the spodic horizon.	433, 434 (Spodosol)

(Version 12/92)		
	Lecture Outline: Problem Area Wetlands	Slides
2	Vet Mollisols Description: Mollisols are prairie soils that develop under grass or grasslike vegetation. They are particularly common throughout the Great Basin. These soils typically have deep, dark topsoil layers (mollic epipedons) that can extend to considerable depths. The color is due to accumulation of organic matter and churning by soil organisms. The problem: Even nonhydric Mollisols can have low-chroma matrix colors "immediately below the Ahorizon or 10 inches (whichever is shallower)." Ten inches may not be sufficient to get below the Ahorizon, and the color is due to organic matter rather than reduction. Potential solution: Refer to the Aquoll key in Keys to	435, 436 (Mollisol country in North Dakota), 437 (gray mottles in a sample of mollic epipedon from a Michigan soil)
3	Soil Taxonomy and consult the local SCS office for guidance. In many situations, hydric Mollisols can be recognized by gray colors immediately below the mollic epipedon (even if deeper than 10 inches) and/or distinct or prominent mottles in the lower part of the mollic epipedon.	

WETLAND DELINEATION METHOD **CORPS OF ENGINEERS**

PURPOSE

PROVIDE MANDATORY TECHNICAL CRITERIA, FIELD IDENTIFYING WETLANDS AND DELINEATING THEIR INDICATORS, AND RECOMMENDED METHODS FOR **UPPER BOUNDARIES FOR JURISDICTIONAL** PURPOSES.


EPA SPECIAL AQUATIC SITES

WDM00099 01/30/88:ALM

- WETLANDS
- SANCTUARIES AND REFUGES
- **MUDFLATS**
- **VEGETATED SHALLOWS**
- O CORAL REEFS
- RIFFLE AND POOL COMPLEXES

CLASSIFICATION SYSTEM FWS WETLAND

WDM00022 02/25/88:AB(

WETLAND DEFINITIONS

COE/EPA - SECTION 404 CWA:

AREAS THAT ARE INUNDATED OR SATURATED BY SURFACE OR GROUND WATER AT A FREQUENCY AND DURATION SUFFICIENT TO SUPPORT, AND TYPICALLY ADAPTED FOR LIFE IN SATURATED THAT UNDER NORMAL CIRCUMSTANCES DO SUPPORT, A PREVALENCE OF VEGETATION SOIL CONDITIONS.

DIAGNOSTIC CHARACTERISTICS

WDM00025 02/25/88:ABC

- VEGETATION
- **SOILS** ○
- HYDROLOGY

NORMAL CIRCUMSTANCES

- O THE SOIL AND HYDROLOGICAL CONDITIONS THAT WOULD EXIST IF THE VEGETATION WERE NOT ALTERED OR REMOVED
- CROPPING OR CROPPING HISTORY IS NOT THE NORMAL CIRCUMSTANCE

NORMAL CIRCUMSTANCES

ARE NOT SUBJECT TO REGULATION CONVERTED CROPLANDS" BY SCS AREAS DESIGNATED AS "PRIOR **UNDER SECTION 404.** **RGL** 90-7

WETLAND DEFINITIONS

SCS - FSA "SWAMPBUSTER" PROVISIONS: CONDITIONS, EXCEPT LANDS IN ALASKA IDENTIFIED **AS HAVING A HIGH POTENTIAL FOR AGRICULTURAL** TYPICALLY ADAPTED FOR LIFE IN SATURATED SOIL BY SURFACE OR GROUND WATER AT A FREQUENCY UNDER NORMAL CIRCUMSTANCES DO SUPPORT, A SOILS AND THAT ARE INUNDATED OR SATURATED AREAS THAT HAVE A PREDOMINANCE OF HYDRIC AND DURATION SUFFICIENT TO SUPPORT, AND PREVALENCE OF HYDROPHYTIC VEGETATION DEVELOPMENT AND A PREDOMINANCE OF PERMAFROST SOILS.

WETLAND DEFINITIONS

FWS - CLASSIFICATION OF WETLANDS AND **DEEPWATER HABITATS:**

PERIODICALLY, THE LAND SUPPORTS PREDOMINANTLY HYDROPHYTES; SYSTEMS WHERE THE WATER TABLE IS USUALLY AT OR NEAR THE PURPOSES OF THIS CLASSIFICATION, WETLANDS MUST HAVE ONE (2) THE SUBSTRATE IS PREDOMINANTLY UNDRAINED HYDRIC SOIL; WATER OR COVERED BY SHALLOW WATER AT SOME TIME OF THE SURFACE, OR THE LAND IS COVERED BY SHALLOW WATER. FOR OR MORE OF THE FOLLOWING THREE ATTRIBUTES: (1) AT LEAST AND (3) THE SUBSTRATE IS NONSOIL AND IS SATURATED WITH LANDS TRANSITIONAL BETWEEN TERRESTRIAL AND AQUATIC GROWING SEASON OF EACH YEAR.

DEEPWATER HABITATS

OR WOODY PLANT SPECIES GROW BEYOND GENERALLY > 6.6 FT, UNLESS EMERGENT THIS DEPTH. IN MARINE AND ESTUARINE PERMANENTLY INUNDATED AREAS LYING THE EXTREME LOW SPRING TIDE LEVEL. AREAS, DEEPWATER HABITATS BEGIN AT BELOW THE DEEPWATER BOUNDARY OF WETLANDS. MEAN WATER DEPTH IS

OBJECTIVES

- O PRESENT TECHNICAL CRITERIA
- O DESCRIBE FIELD INDICATORS
- O DESCRIBE DELINEATION METHODS
- O PROVIDE SUPPORTING INFORMATION

FLEXIBILITY

DATA, TEMPERED WITH PROFESSIONAL **BE BASED ON THE BEST AVAILABLE** WETLAND DELINEATIONS SHOULD JUDGMENT.

WDM00156

WDM00081 02/25/88:AB

HYDROLOGY

DISTRIBUTION AND CIRCULATION, BOTH ON THE SURFACE AND UNDERGROUND. SCIENCE OF WATER, ITS PROPERTIES,

SOURCES OF WATER

- O DIRECT PRECIPITATION
- O HEADWATER FLOODING
- O BACKWATER FLOODING
- O TIDES
- **GROUND WATER**
- COMBINATIONS OF ABOVE

FACTORS THAT INFLUENCE HYDROLOGY

WDM00083 02/25/88:ABC

- O PRECIPITATION
- **STRATIGRAPHY**
- O TOPOGRAPHY
- O SOIL TEXTURE
- O PLANT COVER

INUNDATION

OR PERMANENTLY COVERS A LAND FROM ANY SOURCE TEMPORARILY A CONDITION IN WHICH WATER SURFACE. WDM00110 03/29/88:CDC

PONDED

IN A CLOSED DEPRESSION. THE WATER A CONDITION IN WHICH WATER STANDS IS REMOVED ONLY BY PERCOLATION, EVAPORATION, OR TRANSPIRATION.

FLOODED

FROM ADJACENT SLOPES, AND INFLOW FROM HIGH WITH FLOWING WATER FROM ANY SOURCE, SUCH AS OVERFLOWING STREAMS OR RIVERS, RUNOFF THE SOIL SURFACE IS TEMPORARILY COVERED TIDES.

SATURATION

TEMPORARILY OR PERMANENTLY FILLED WITH CONDITION IN WHICH ALL EASILY DRAINED PORES BETWEEN SOIL PARTICLES ARE WATER.

WATER TABLE

THE LEVEL AT WHICH WATER STANDS IN AN UNLINED BOREHOLE.

ANAEROBIC

WDM00111 03/29/88:CDC

A SITUATION IN WHICH MOLECULAR **OXYGEN IS ABSENT FROM THE ENVIRONMENT.**

REDUCTION

THE PROCESS OF GIVING UP OXYGEN, GAINING HYDROGEN, OR GAINING AN ELECTRON.

OXIDATION/REDUCTION SEQUENCE

NO 2, N 2, NH 4 → Mn ⁺² Fe ⁺² CH₄ H₂S Q H Mn +4 Fe ⁺³ $c0_2$ 50_{4}^{-2} O_2 MANGANESE **NITROGEN CARBON** OXYGEN SULFUR IRON +200 mV +350 mV +220 mV +120 mV -250 mV -150 mV

+100 +200 +300 +400 REDOX POTENTIAL (MILLIVOLTS)

0

-100

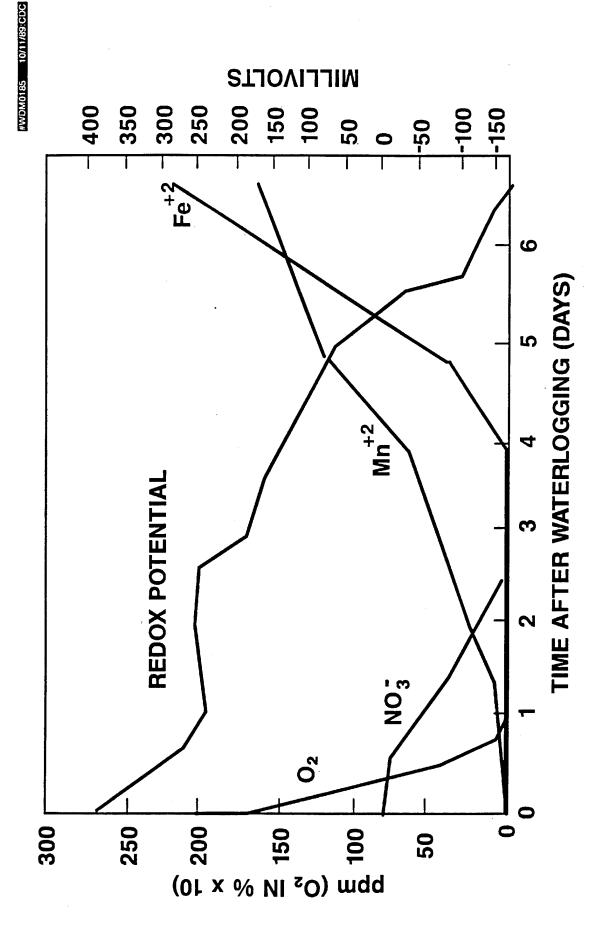
-200

-300

+700

009+

+500


OXIDIZED

MODERATELY REDUCED

REDUCED

REDUCED

HIGHLY

CRITERIA FOR WETLAND HYDROLOGY (1987)

AREA IS INUNDATED OR SATURATED TO THE SURFACE FOR AT LEAST 5% OF THE GROWING SEASON IN **MOST YEARS**

GROWING SEASON

THE PORTION OF THE YEAR WHEN SOIL TEMPERATURE (MEASURED 20 INCHES **BELOW THE SURFACE) IS ABOVE** BIOLOGIC ZERO (41°F).

HYDROLOGIC INFORMATION

WDM00197 03/09/89:HMH

- O TIDE GAUGE DATA
- **STREAM GAUGE DATA**
- **GROUNDWATER WELL DATA**
- O AERIAL IMAGERY

SOURCES OF HYDROLOGIC DATA

- CORPS DISTRICT OFFICES
- O NOAA
- STATE, COUNTY, AND LOCAL
- **AGENCIES**
- DEVELOPERS

HYDROLOGY FIELD INDICATORS (1987)

PRIMARY INDICATORS

- OBSERVATION OF INUNDATION
- OBSERVATION OF SOIL SATURATION
- **O WATER MARKS**
- O DRIFT LINES
- **SEDIMENT DEPOSITS**
- O DRAINAGE PATTERNS IN WETLANDS

WAKEDO

HYDROLOGY FIELD INDICATORS (1987)

SECONDARY INDICATORS (2 OR MORE REQUIRED)

- OXIDIZED ROOT CHANNELS
- WATER-STAINED LEAVES
- **OLOCAL SOIL SURVEY DATA**
- O FAC-NEUTRAL TEST

WDM00157 03/30/88 CDC

WETLANDS ARE DOMINATED BY HYDROPHYTES

HYDROPHYTE

ANY MACROPHYTE THAT GROWS IN WATER OR ON A SUBSTRATE THAT IS AT LEAST PERIODICALLY DEFICIENT IN OXYGEN AS A RESULT OF EXCESSIVE WATER CONTENT.

ADAPTATIONS

- MORPHOLOGICAL
- **OPHYSIOLOGICAL**
- **O REPRODUCTIVE**

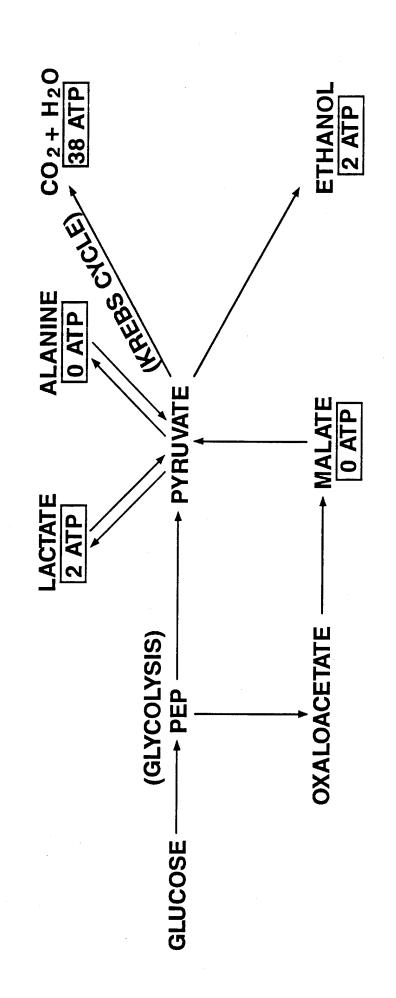
ADAPTATIONS

WDM00050 02/25/88:ABC

- **O MORPHOLOGICAL**
- **OPHYSIOLOGICAL**
- OREPRODUCTIVE

21COOMON

MORPHOLOGICAL ADAPTATIONS OF PLANTS


- O BUTTRESSED TREE TRUNKS
- **O MULTIPLE TRUNKS**
- O PNEUMATOPHORES
- O ADVENTITIOUS ROOTS
- O SHALLOW ROOTS
- O HYPERTROPHIED LENTICELS
- AERENCHYMA
- POLYMORPHIC LEAVES
- O FLOATING LEAVES

ADAPTATIONS

WIJM00051 02/25/88:ABC

- MORPHOLOGICAL
- **OPHYSIOLOGICAL**
- **O REPRODUCTIVE**

METABOLIC PATHWAYS

MUMODO

ADAPTATIONS

- MORPHOLOGICAL
- **OPHYSIOLOGICAL**
- **O REPRODUCTIVE**

PLANT INDICATOR STATUS

INDICATOR CATEGORY

SYMBOL

IN WETLANDS OCCURRENCE

OBLIGATE WETLAND PLANTS

OBL

%66 <

FACULTATIVE WETLAND PLANTS

FACW

%66-29

FAC

34-66%

FACULTATIVE PLANTS

FACU

FACULTATIVE UPLAND PLANTS

1-33%

OBLIGATE UPLAND PLANTS

UPL

< 1%

OBLIGATE WETLAND PLANTS (OBL)

(REGION 1 EXAMPLES)

ASTER PUNICEUS

SWAMP ASTER

OSMUNDA REGALIS

ROYAL FERN

CAREX STRICTA

TUSSOCK SEDGE

CEPHALANTHUS OCCIDENTALIS

BUTTONBUSH

CHAMAECYPARIS THYOIDES

ATLANTIC WHITE CEDAR

SPARTINA ALTERNIFLORA

SMOOTH CORDGRASS

WDM0026

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 1 EXAMPLES)

ALNUS RUGOSA

SPECKLED ALDER

ASTER NEMORALIS

BOG ASTER

CALAMAGROSTIS CANADENSIS

BLUEJOINT GRASS

FRAXINUS PENNSYLVANICA

GREEN ASH

ONOCLEA SENSIBILIS

SENSITIVE FERN

ULMUS AMERICANA

AMERICAN ELM

WDM00263 10/06/89:DLS

FACULTATIVE PLANTS (FAC) (REGION 1 EXAMPLES)

ACER RUBRUM*

RED MAPLE

CLETHRA ALNIFOLIA

SWEET PEPPERBUSH

KALMIA ANGUSTIFOLIA

SHEEP LAUREL

MAIANTHEMUM CANADENSE

CANADA MAYFLOWER

TRIENTALIS BOREALIS

AMERICAN STARFLOWER

VIBURNUM DENTATUM

ARROWWOOD

* VARIETY TRILOBUM AND SUBSPECIES DRUMMONDII ARE FACW.

FACULTATIVE UPLAND PLANTS (FACU)

(REGION 1 EXAMPLES)

ARALIA NUDICAULIS

MITCHELLA REPENS

PHLEUM PRATENSE

WILD SARSAPARILLA

PARTRIDGEBERRY

TIMOTHY

EASTERN WHITE PINE

MULTIFLORA ROSE

ALLEGHENY BLACKBERRY

RUBUS ALLEGHENIENSIS

ROSA MULTIFLORA

PINUS STROBUS

WDMOOSEA

OBLIGATE WETLAND PLANTS (OBL) (REGION 2 EXAMPLES)

CAREX LUPULIFORMIS

FALSE HOP SEDGE

CEPHALANTHUS OCCIDENTALIS

BUTTONBUSH

JUNCUS ROEMERIANUS

BLACK NEEDLERUSH

QUERCUS LYRATA

OVERCUP OAK

SAGITTARIA LATIFOLIA

BROADLEAF ARROWHEAD

TAXODIUM DISTICHUM

BALD CYPRESS

WDM00258

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 2 EXAMPLES)

ARUNDINARIA GIGANTEA

GIANT CANE

FRAXINUS PENNSYLVANICA

GREEN ASH

JUNCUS EFFUSUS

SOFT RUSH

LEUCOTHOE RACEMOSA

FETTERBUSH

PINUS ELLIOTTII

SLASH PINE

QUERCUS PHELLOS

WILLOW OAK

WDM00259 10/06/89:DLS

FACULTATIVE PLANTS (FAC) (REGION 2 EXAMPLES)

ARISTIDA STRICTA

PINELAND THREE-AWN GRASS

LIQUIDAMBAR STYRACIFLUA

SWEET GUM

PINUS TAEDA

LOBLOLLY PINE

POLYGONUM VIRGINIANUM

VIRGINIA KNOTWEED

QUERCUS NIGRA

WATER OAK

TOXICODENDRON RADICANS

POISON IVY

FACULTATIVE UPLAND PLANTS (FACU)

(REGION 2 EXAMPLES)

CELTIS OCCIDENTALIS

COMMON HACKBERRY

JUGLANS NIGRA

BLACK WALNUT

PINUS PALUSTRIS

LONG-LEAF PINE

PTERIDIUM AQUILINUM

BRACKEN FERN

QUERCUS FALCATA*

SOUTHERN RED OAK

SERENOA REPENS

SAW PALMETTO

* VARIETY PAGODIFOLIA IS FAC.

OBLIGATE WETLAND PLANTS (OBL) (REGION 3 EXAMPLES)

BRASENIA SCHREBERI

WATERSHIELD

IRIS VERSICOLOR

BLUEFLAG IRIS

POLYGONUM PUNCTATUM

DOTTED SMARTWEED

SALIX NIGRA

BLACK WILLOW

SCIRPUS VALIDUS

SOFTSTEM BULRUSH

TYPHA LATIFOLIA

COMMON CATTAIL

FACULATIVE WETLAND PLANTS (FACW) (REGION 3 EXAMPLES)

ACER SACCHARINUM

SILVER MAPLE

CORNUS AMOMUM

SILKY DOGWOOD

EUPATORIUM PERFOLIATUM

BONESET

LINDERA BENZOIN

SPICEBUSH

OSMUNDA CINNAMOMEA

CINNAMON FERN

PLATANUS OCCIDENTALIS

AMERICAN SYCAMORE

WDM0005

FACULTATIVE PLANTS (FAC) (REGION 3 EXAMPLES)

WDM00056 02/25/88:A

ACER RUBRUM

RED MAPLE

EQUISETUM ARVENSE

COMMON HORSETAIL

HORDEUM JUBATUM

FOXTAIL BARLEY

POPULUS DELTOIDES

EASTERN COTTONWOOD

SMILAX ROTUNDIFOLIA

COMMON GREENBRIER

TOXICODENDRON RADICANS POISON IVY

FACULTATIVE UPLAND PLANTS (FACU) (REGION 3 EXAMPLES)

PINUS STROBUS

TSUGA CANADENSIS

FRAXINUS AMERICANA

PRUNUS SEROTINA

RUBUS ALLEGHENIENSIS

RHAMNUS CATHARTICA

EASTERN WHITE PINE

EASTERN HEMLOCK

WHITE ASH

BLACK CHERRY

ALLEGHENY BLACKBERRY

COMMON BUCKTHORN

OBLIGATE WETLAND PLANTS (OBL) (REGION 4 EXAMPLES)

NUPHAR LUTEUM

TYPHA LATIFOLIA

SAGITTARIA LATIFOLIA

POLYGONUM AMPHIBIUM

JUNCUS BALTICUS

BECKMANNIA SYZIGACHNE

YELLOW COW-LILY

BROAD-LEAF CATTAIL

BROAD-LEAF ARROW-HEAD

WATER SMARTWEED

BALTIC RUSH

AMERICAN SLOUGHGRASS

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 4 EXAMPLES)

APIOS AMERICANA

ANEMONE CANADENSIS

BIDENS FRONDOSA

LILIUM CANADENSE

MERTENSIA CILIATA

POPULUS ANGUSTIFOLIA

AMERICAN POTATO-BEAN

CANADA THIMBLE-WEED

DEVIL'S BEGGAR-TICKS

CANADA LILY

STREAMSIDE BLUEBELLS

NARROW-LEAF COTTON-WOOD

WDM00250 03/15/88:CDC

FACULTATIVE PLANTS (FAC) (REGION 4 EXAMPLES)

AGRIMONIA PARVIFLORA

APOCYNUM CANNABINUM

FRAXINUS PENNSYLVANICA

PLANTAGO LANCEOLATA

SPIRANTHES MAGNICAMPORUM

STACHYS HISPIDA

SMALL-FLOWER GROOVEBUR

CLASPING-LEAF DOGBANE

GREEN ASH

ENGLISH PLANTAIN

GREAT PLAINS LADIES' TRESSES

SMOOTH HEDGENETTLE

WDM00249

FACULTATIVE UPLAND PLANTS (FACU) (REGION 4 EXAMPLES)

AMELANCHIER ALNIFOLIA

ANDROPOGON GERARDII

MEDICAGO LUPULINA

SAMBUCUS RACEMOSA

TRIFOLIUM REPENS

VULPIA OCTOFLORA

SASKATOON SERVICE-BERRY

BIG BLUESTEM

BLACK MEDIC

EUROPEAN RED ELDER

WHITE CLOVER

SIX-WEEKS FESCUE

OBLIGATE WETLAND PLANTS (OBL)

(REGION 5 EXAMPLES)

BECKMANNIA SYZIGACHNE

CAREX LACUSTRIS

IRIS VERSICOLOR

POLYGONUM HYDROPIPEROIDES

SALIX NIGRA

SIUM SUAVE

AMERICAN SLOUGHGRASS

LAKEBANK SEDGE

BLUEFLAG

SWAMP SMARTWEED

BLACK WILLOW

HEMLOCK WATER-PARSNIP

WDM00247

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 5 EXAMPLES)

ACER SACCHARINUM

AGROSTIS ALBA

RIBES AMERICANUM

SALIX BEBBIANA

SOLIDAGO GIGANTEA

URTICA DIOICA

SILVER MAPLE

REDTOP

WILD BLACK CURRANT

BEBB WILLOW

GIANT GOLDENROD

STINGING NETTLE

WDM00246 03/15/88:CDC

FACULTATIVE PLANTS (FAC) (REGION 5 EXAMPLES)

ATHYRIUM FILIX-FEMINA

CAMPANULA ROTUNDIFOLIA

HYPERICUM PYRAMIDATUM

QUERCUS SHUMARDII

SANICULA GREGARIA

VERNONIA MARGINATA

SUBARCTIC LADY FERN

SCOTCH BELLFLOWER

GREAT ST. JOHN'S-WORT

SHUMARD OAK

CLUSTERED BLACK-SNAKEROOT

PLAINS IRONWEED

FACULATIVE UPLAND PLANTS (FACU)

(REGION 5 EXAMPLES)

ACHILLEA MILLEFOLIUM

COMMON YARROW

WHITE HEATH ASTER

CERASTIUM VULGATUM

ASTER PILOSUS

COMMON MOUSE-EAR CHICKWEED

ORNITHOGALUM UMBELLATUM

COMMON STAR-OF-BETHLEHEM

QUERCUS MACROCARPA

BUR OAK

SAPONARIA OFFICINALIS

BOUNCING-BET

OBLIGATE WETLAND PLANTS (OBL) (REGION 6 EXAMPLES)

ASCLEPIAS LANCEOLATA

TYPHA DOMINGENSIS

PONTEDERIA CORDATA

CEPHALANTHUS OCCIDENTALIS

FORESTIERA ACUMINATA

NYSSA AQUATICA

FEN-FLOWER MILKWEED

SOUTHERN CATTAIL

PICKEREL WEED

COMMON BUTTONBUSH

SWAMP PRIVET

WATER-TUPELO

WDM00222

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 6 EXAMPLES)

ASTER SIMPLEX

A

BRACHIARIA PURPURASCENS

ERYNGIUM YUCCIFOLIUM

QUERCUS LAURIFOLIA

VERNONIA MISSURICA

TAMARIX CHINESIS

PANICLED ASTER

PARAGRASS

RATTLESNAKE-MASTER

LAUREL OAK

MISSOURI IRONWEED

CHINESE TAMARISK

WDM00223 03/15/88:CDC

FACULTATIVE PLANTS (FAC) (REGION 6 EXAMPLES)

ARALIA SPINOSA

ERAGROSTIS PECTINACEA

HALESIA CAROLINA

POPULUS DELTOIDES

SANICULA GREGARIA

SMILAX ROTUNDIFOLIA

HERCULES CLUB

PURPLE LOVEGRASS

CAROLINA SILVER-BELL

EASTERN COTTONWOOD

CLUSTERED BLACK-SNAKEROOT

COMMON GREENBRIER

FACULTATIVE UPLAND PLANTS (FACU)

(REGION 6 EXAMPLES)

AMELANCHIER ARBOREA

DOWNY SERVICE-BERRY

ANDROPOGON TERNARIUS

SILVER BLUESTEM

EUPATORIUM CAPILLIFOLIUM

SMALL DOG-FENNEL THOROUGH-WORT

OENOTHERA LACINIATA

CUT-LEAF EVENING-PRIMROSE

PHLEUM PRATENSE

TIMOTHY

RUDBECKIA HIRTA

BLACK-EYED SUSAN

OBLIGATE WETLAND PLANTS (OBL) (REGION 7 EXAMPLES)

ALISMA PLANTAGO-AQUATICA

ARIZONA BEGGAR-TICKS

BROAD-LEAF WATER-PLANTAIN

BIDENS AUREA

NEBRASKA SEDGE

CAREX NEBRASCENSIS

LOBELIA CARDINALIS

CARDINAL FLOWER

CEPHALANTHUS OCCIDENTALIS

COMMON BUTTONBUSH

SPARGANIUM EURYCARPUM

GIANT BURREED

WDM00226

FACULTATIVE WETLAND PLANTS (FACW) (REGION 7 EXAMPLES)

BIDENS FRONDOSA

CAREX MICROPTERA

EQUISETUM HYEMALE

POPULUS FREMONTII

SPARTINA GRACILIS

DEVIL'S BEGGAR-TICKS

SMALL-WING SEDGE

ROUGH HORSETAIL

FREMONT'S COTTON-WOOD

ALKALI CORDGRASS

WUM00227 03/15/88:CDC

FACULTATIVE PLANTS (FAC) (REGION 7 EXAMPLES)

ACER GLABRUM

ASTER FALCATUS

BACCHARIS SALICINA

PICEA PUNGENS

SAMBUCUS MEXICANA

VITIS ARIZONICA

ROCKY MOUNTAIN MAPLE

WHITE PRAIRIE ASTER

GREAT PLAINS FALSE-WILLOW

BLUE SPRUCE

MEXICAN ELDER

CANYON GRAPE

WDM00228

FACULTATIVE UPLAND PLANTS (FACU) (REGION 7 EXAMPLES)

ACHILLEA MILLEFOLIUM

BROMUS JAPONICUS

ERAGROSTIS MEXICANA

POPULUS TREMULA

PTERIDIUM AQUILINUM

SOLIDAGO CANADENSIS

COMMON YARROW

JAPANESE BROME

MEXICAN LOVEGRASS

QUAKING ASPEN

BRACKEN FERN

CANADA GOLDEN-ROD

OBLIGATE WETLAND PLANTS (OBL) (REGION 8 EXAMPLES)

CAREX AQUATILIS

ELEOCHARIS OBTUSA

NUPHAR LUTEUM

RANUNCULUS AQUATILIS

SAGITTARIA LATIFOLIA

SALIX EXIGUA

WATER SEDGE

BLUNT SPIKERUSH

YELLOW COW-LILY

WHITE WATER BUTTER-CUP

BROAD-LEAF ARROW-HEAD

SANDBAR WILLOW

FACULTATIVE WETLAND PLANTS (FACW)

(REGION 8 EXAMPLES)

ASCLEPIAS SPECIOSA

SHOWY MILKWEED

BACCHARIS VIMINEA

MULEFAT

ATRIPLEX SEMIBACCATA

AUSTRALIAN SALTBUSH

CORNUS STOLONIFERA

RED-OSIER DOGWOOD

JUNCUS BALTICUS

BALTIC RUSH

SALIX GOODDINGII

GOODDING WILLOW

WDM00255 10/06/89:DLS

FACULTATIVE PLANTS (FAC) (REGION 8 EXAMPLES)

ASTRAGALUS AGRESTIS

FIELD MILKVETCH

HERACLEUM LANATUM

COW-PARSNIP

LONICERA INVOLUCRATA

FOUR-LINE HONEYSUCKLE

RUBUS PARVIFLORUS

WESTERN THIMBLEBERRY

SMILACINA STELLATA

STARRY FALSE-SOLOMON'S-SEAL

VACCINIUM CESPITOSUM

DWARF BLUEBERRY

FACULTATIVE UPLAND PLANTS (FACU)

(REGION 8 EXAMPLES)

ACHILLEA MILLEFOLIUM

COMMON YARROW

PHLEUM PRATENSE

TIMOTHY

OENOTHERA BIENNIS

COMMON EVENING-PRIMROSE

PINUS MONTICOLA

WESTERN WHITE PINE

STELLARIA MEDIA

COMMON CHICKWEED

SALSOLA KALI

RUSSIAN THISTLE

FACULTATIVE UPLAND PLANTS (FACU) (REGION 9 EXAMPLES)

LOLIUM PERENNE

PERENNIAL RYEGRASS

POLYSTICHUM LONCHITUS

NORTHERN HOLLY FERN

GALIUM APARINE

CATCHWEED BEDSTRAW

ROSA WOODSII

WOODS ROSE

RUBUS DISCOLOR

HIMALAYAN BLACKBERRY

ACER MACROPHYLLUM

BIG-LEAF MAPLE

WDM00293

OBLIGATE WETLAND PLANTS (OBL) (REGION 0 EXAMPLES)

SCIRPUS CALIFORNICUS

CALIFORNIA BULRUSH

BATIS MARITIMA

SALTWORT

ELEOCHARIS PALUSTRIS

CREEPING SPIKERUSH

SPIRAEA DOUGLASII

DOUGLAS' SPIRAEA

POTENTILLA ANSERINA

SILVERWEED

CAREX NEBRACENSIS

NEBRASKA SEDGE

FACULTATIVE WETLAND PLANTS (FACW) (REGION 0 EXAMPLES)

DESCHAMPSIA CESPITOSA

TUFTED HAIRGRASS

CIRCAEA ALPINA

ALPINE CIRCAEA

POLYPOGON MONSPELIENSIS

RABBIT-FOOT GRASS

FRANKENIA GRANDIFOLIA

ALKALI HEATH

POPULUS FREMONTII

FREMONT COTTONWOOD

COTULA CORONOPIFOLIA

BRASS BUTTONS

FACULTATIVE PLANTS (FAC) (REGION 0 EXAMPLES)

ATHYRIUM FILIX-FEMINA

SOUTHERN LADY FERN

CHENOPODIUM AMBROSIOIDES

MEXICAN-TEA

ACER CIRCINATUM

VINE MAPLE

EQUISETUM ARVENSE

FIELD HORSETAIL

ERAGROSTIS MEXICANA

MEXICAN LOVEGRASS

JUGLANS CALIFORNICA

CALIFORNIA BLACK WALNUT

FACULTATIVE UPLAND PLANTS (FACU) (REGION O EXAMPLES)

SAMBUCUS RACEMOSA

EUROPEAN RED ELDER

BROMUS MOLLIS

SOFT BROME

LACTUCA CANADENSIS

TALL YELLOW LETTUCE

ACHILLEA MILLEFOLIUM

COMMON YARROW

LEPIDIUM VIRGINICUM

POOR-MAN'S PEPPER-GRASS

PINUS MONTICOLA

WESTERN WHITE PINE

MAKEODE

MEASURES OF PLANT SPECIES DOMINANCE

- O PERCENT COVER
- **STEM DENSITY**
- FREQUENCY OF OCCURRENCE
- O BASAL AREA

SELECTION OF DOMINANT SPECIES

DOMINANCE MEASURE FOR THE STRATUM. **MEASURE FOR THE STRATUM, PLUS ANY** 50 PERCENT OF THE TOTAL DOMINANCE (WHEN RANKED IN DESCENDING ORDER THE MOST ABUNDANT PLANT SPECIES **COMMUNITY, DOMINANT SPECIES ARE** TOTALED) THAT IMMEDIATELY EXCEED 20 PERCENT OR MORE OF THE TOTAL OF ABUNDANCE AND CUMULATIVELY FOR EACH STRATUM IN THE PLANT **ADDITIONAL SPECIES COMPRISING**

SELECTION OF DOMINANT PLANTS

		RELATIVE	CUMULATIVE
SHRUBS	% COVER	% COVER	TOTAL
* CORNUS FOEMINA	25	33	33
* SPIRAEA ALBA	20	27	09
* CORNUS AMOMUM	15	20	80
RHAMNUS FRANGULA	10	13	66
TOXICODENDRON VERNIX	2	7	100
	75	100	

CRITERIA FOR HYDROPHYTIC **VEGETATION (1987)**

- O MORE THAN 50% OF THE DOMINANT SPECIES ARE OBL, FACW, OR FAC (FAC- SPECIES DO NOT COUNT)
- A FAC-NEUTRAL OPTION IS ALSO AVAILABLE

HYDROPHYTIC VEGETATION (1987)

OTHER INDICATORS:

- VISUAL OBSERVATION OF PLANT SPECIES
 GROWING UNDER PROLONGED INUNDATION **OR SATURATION**
- O MORPHOLOGICAL ADAPTATIONS
- O TECHNICAL LITERATURE

HERBACEOUS COMMUNITY

SPECIES

OBL

INDICATOR

STATUS

REGION 3

JUNCUS EFFUSUS

ELEOCHARIS ENGELMANNI

FACW

POLYGONUM CAREYI

FACW+

TYPHA LATIFOLIA

OBL

EUPATORIUM PERFOLIATUM

FACW+

WDM00059 ,02/25/88:ABC

MIXED HERB AND SHRUB COMMUNITY

HERB SPECIES
PANICUM VIRGATUM
ACHILLEA BOREALIS
PTERIDIUM AQUILINUM

REGION 3 INDICATOR STATUS

FAC+

UPL

FACU

SHRUB SPECIES

AMELANCHIER ARBOREA CORNUS STOLONIFERA

COMPTONIA PEREGRINA

FACU

FACW

UPL

SIOS

SOIL

PLANT LIFE. UPPER LIMIT IS AIR OR SHALLOW UNCONSOLIDATED, NATURAL MATERIAL THAT SUPPORTS, OR IS CAPABLE OF SUPPORTING, WATER AND THE LOWER LIMIT IS EITHER BEDROCK OR THE LIMIT OF BIOLOGICAL ACTIVITY.

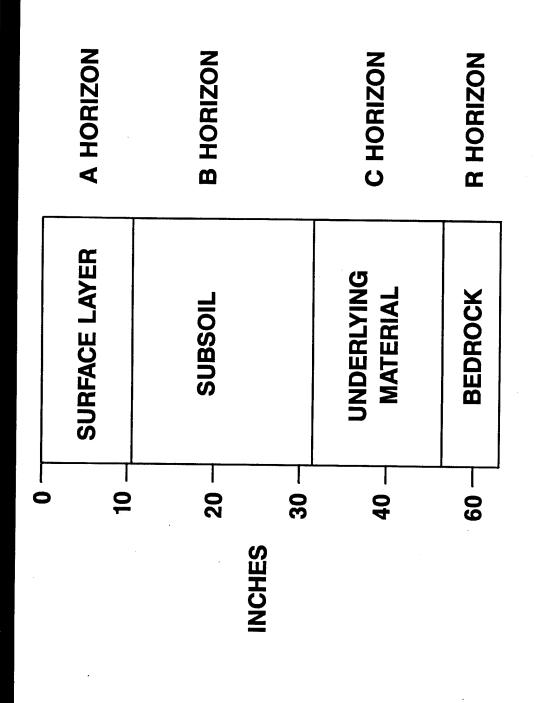
NONSOIL

- O BADLANDS
- O BEACHES
- O RUBBLE LANDS
- O ROCK OUTCROPS
- **GLACIERS**
- O DEEPWATER HABITATS

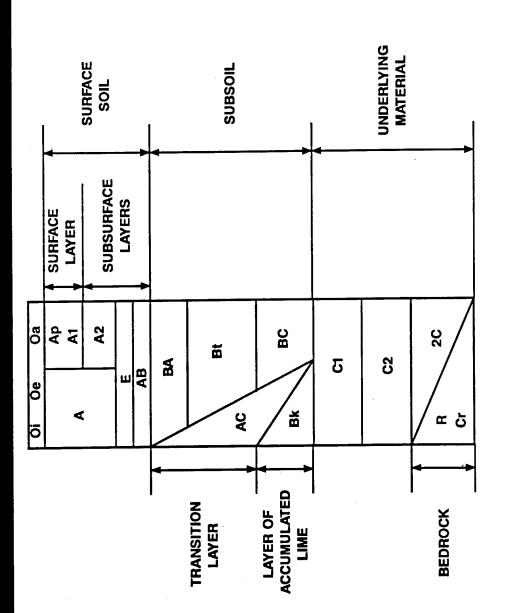
FACTORS THAT INFLUENCE SOIL DEVELOPMENT

- CLIMATE
- O PARENT MATERIAL
- O TOPOGRAPHICAL RELIEF
- OBGANISMS
- TIME

KEY SOIL PROPERTIES


- 1. TEXTURE
- 2. SLOPE
- 3. DRAINAGE
- 4. PERMEABILITY
- 5. DEPTH
- 6. STRUCTURE
- 7. ORGANIC MATTER
- 8. COLOR
- 9. REACTION

KEY SOIL PROPERTIES


WDM00268 10/19/89:RMH

- 10. BULK DENSITY
- 11. PARENT MATERIAL
- 12. SHRINK-SWELL POTENTIAL, AVAILABLE WATER CAPACITY
- 13. SALINITY
- 14. LANDSCAPE POSITION
- O UPLAND
- O TERRACE
- **O BOTTOMLAND**

MAJOR SOIL HORIZONS

HORIZON TERMINOLOGY

PARTICLE-SIZE CLASSIFICATION

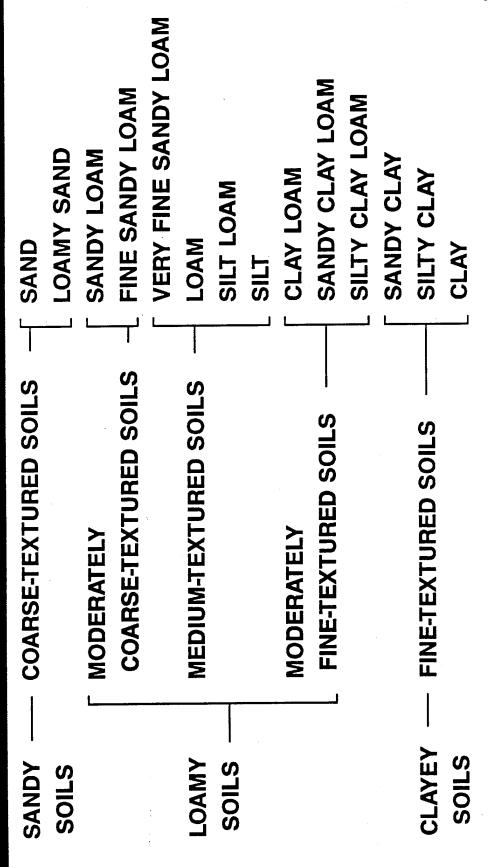
WDM00182 04/21/88:CDC

CLASS

SIZE (mm)

> 2.00

0.002 - 0.050.05 - 2.00


< 0.002

GRAVEL SAND

SILT

CLAY

SOIL TEXTURE GROUPS

PERMEABILITY

IS MEASURED IN INCHES PER HOUR. THE SOIL PROFILE. PERMEABILITY WATER OR AIR TO MOVE THROUGH A MEASURE OF THE ABILITY OF

DRAINAGE CLASSES

WDM00220 07/17/89: HMH

- **O EXCESSIVELY DRAINED**
- O SOMEWHAT EXCESSIVELY DRAINED
- **O WELL DRAINED**
- O MODERATELY WELL DRAINED
- **SOMEWHAT POORLY DRAINED**
- O POORLY DRAINED
- **OVERY POORLY DRAINED**

HYDRIC SOILS

SATURATED, FLOODED, OR PONDED LONG **ENOUGH DURING THE GROWING SEASON** TO DEVELOP ANAEROBIC CONDITIONS IN A HYDRIC SOIL IS A SOIL THAT IS THE UPPER PART. **NTCHS (12/87)**

HYDRIC SOIL

WDM00186 03/15/88 HON

SATURATED

GROWING SEASON

FLOODED

CONDITIONS **ANAEROBIC**

IN UPPER PART

PONDED

TWO MAIN CATEGORIES OF HYDRIC SOILS

OR INUNDATION AND ARE COMMONLY CALLED PEATS **DEVELOP UNDER NEARLY CONTINUOUS SATURATION** LEAST 16 OF THE UPPER 32 INCHES OF SOIL. THEY **ORGANIC SOILS - ORGANIC MATTER COMPRISES AT** OR MUCKS.

CLAY, SILT, AND/OR SAND WITH VARYING AMOUNTS HYDRIC MINERAL SOILS - COMPOSED MAINLY OF ASSOCIATED WITH A REDUCING ENVIRONMENT. **LONG ENOUGH TO PRODUCE SOIL PROPERTIES** OF ORGANIC MATTER. THEY ARE SATURATED

- 1. ORGANIC SOILS
- 2. MINERAL SOILS WITH HIGH **WATER TABLES**
- 3. PONDED SOILS
- 4. FLOODED SOILS

- 1. ALL HISTOSOLS EXCEPT FOLISTS, OR
- SUBGROUPS, ALBOLLS SUBORDER, SALORTHIDS GREAT GROUPS OF VERTISOLS, PACHIC SUBGROUPS, OR CUMULIC 2. SOILS IN AQUIC SUBORDERS, AQUIC SUBGROUPS THAT ARE:
- a. SOMEWHAT POORLY DRAINED AND HAVE A FREQUENTLY **OCCURRING WATER TABLE LESS THAN 0.5 FT FROM THE** THAN TWO WEEKS) DURING THE GROWING SEASON, OR SURFACE FOR A SIGNIFICANT PERIOD (USUALLY MORE

2.b. POORLY DRAINED OR VERY POORLY **DRAINED AND HAVE EITHER:**

1. A FREQUENTLY OCCURRING WATER TABLE LESS THAN PERIOD (USUALLY MORE THAN TWO WEEKS) DURING SAND, SAND, OR FINE SAND IN ALL LAYERS WITHIN THE GROWING SEASON IF TEXTURES ARE COARSE **0.5 FT FROM THE SURFACE FOR A SIGNIFICANT** 20 INCHES, OR FOR OTHER SOILS

- 1.0 FT FROM THE SURFACE FOR A SIGNIFICANT PERIOD 2.b.2. A FREQUENTLY OCCURRING WATER TABLE LESS THAN GROWING SEASON IF PERMEABILITY IS EQUAL TO OR (USUALLY MORE THAN TWO WEEKS) DURING THE GREATER THAN 6.0 INCHES / HR IN ALL LAYERS WITHIN 20 INCHES, OR
- 1.5 FT FROM THE SURFACE FOR A SIGNIFICANT PERIOD 3. A FREQUENTLY OCCURRING WATER TABLE LESS THAN 6.0 INCHES / HR IN ANY LAYER WITHIN 20 INCHES, OR GROWING SEASON IF PERMEABILITY IS LESS THAN (USUALLY MORE THAN TWO WEEKS) DURING THE

- 3. SOILS THAT ARE FREQUENTLY PONDED FOR LONG DURATION OR VERY LONG DURATION **DURING THE GROWING SEASON, OR**
- 4. SOILS THAT ARE FREQUENTLY FLOODED FOR LONG DURATION OR VERY LONG DURATION **DURING THE GROWING SEASON**

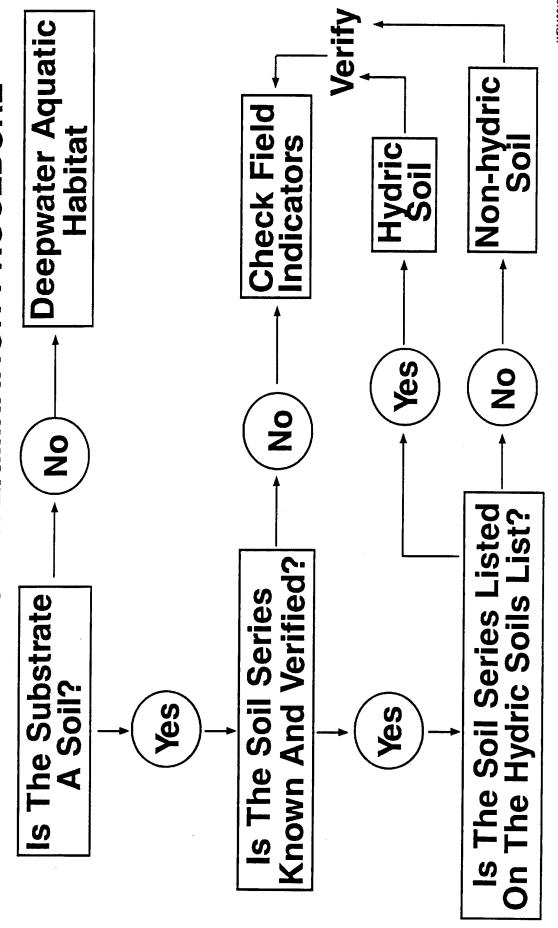
HYDRIC SOIL LISTS

- O NATIONAL
- STATE
- O LOCAL OR FIELD OFFICE

NATIONAL LIST OF HYDRIC SOILS

- INTERPRETATIONS RECORD FOR SOIL O COMPUTER GENERATED LIST USING **SERIES IN THE UNITED STATES** INFORMATION ON THE SOIL
- SEPARATE SOIL INTERPRETATIONS RECORD LIMITED TO SOIL SERIES OR SPECIAL PHASES THAT ARE REPRESENTED BY A
- O THE LIST DOES NOT CONTAIN:
- WET MISCELLANEOUS AREAS
- SOILS CLASSIFIED AT LEVELS HIGHER THAN THE SERIES

8WAKE025


STATE LISTS OF HYDRIC SOILS

LIST SHOWING SOILS THAT EXIST IN A STATE PRESENTLY STATE LISTS ARE SUBSETS OF THE NATIONAL

LOCAL LISTS OF HYDRIC SOILS

- O THESE ARE LISTS OF MAP UNITS THAT ARE NAMED BY SOIL SERIES ON THE NATIONAL LIST, BY WET MISCELLANEOUS AREAS, OR BY WET SOILS CLASSIFIED AT LEVELS **HIGHER THAN THE SERIES**
- POTENTIALLY CONTAIN HYDRIC SOIL O ALSO LISTED ARE MAP UNITS THAT **INCLUSIONS**

HYDRIC SOILS DETERMINATION PROCEDURE

DEVELOPMENT OF HYDRIC SOILS

INUNDATION OR SATURATION
ANAEROBIC CONDITIONS
REDUCING ENVIRONMENT

LOWER REDOX POTENTIAL

CHEMICAL REDUCTION

(Fe, Mn, ETC.)

DISTINCTIVE SOIL CHARACTERISTICS

INDICATORS OF HYDRIC SOILS (NON-SANDY)

WDM00072 02/25/88:ABC

ORGANIC SOILS - MORE THAN 50 PERCENT ORGANIC MATERIAL IN **UPPER 32 IN., OR ANY THICKNESS OVER BEDROCK.**

THE SURFACE THAT IS SATURATED FOR 30 OR MORE CONSECUTIVE HISTIC EPIPEDON - AN 8-16 IN. ORGANIC LAYER AT OR NEAR DAYS. REQUIRED ORGANIC MATTER CONTENT VARIES WITH CLAY CONTENT.

SULFIDIC MATERIAL - CONTAINS HYDROGEN SULFIDE WITH ITS CHARACTERISTIC ROTTEN EGG ODOR.

CONDITIONS CREATING A REDUCING REGIME VIRTUALLY FREE **AQUIC OR PERAQUIC MOISTURE REGIME - SATURATED SOIL** OF OXYGEN.

(CONTINUED)

INDICATORS OF HYDRIC SOILS (NON-SANDY)

REDUCING SOIL CONDITIONS - DETERMINE WITH FERROUS IRON TEST KIT.

SOIL COLORS - MINERAL HYDRIC SOILS ARE GLEYED OR HAVE A LOW-CHROMA MATRIX WITH OR WITHOUT BRIGHT MOTTLES. SOIL APPEARS ON THE HYDRIC SOILS LIST - VERIFY SERIES BY COMPARING PROFILE AGAINST SOIL SURVEY DESCRIPTION.

IRON AND MANGANESE CONCRETIONS

SOIL COLOR

WDM00075 02/25/88:ABC

MATRIX - PREDOMINANT COLOR.

MOTTLE - SPOTS OF CONTRASTING COLOR.

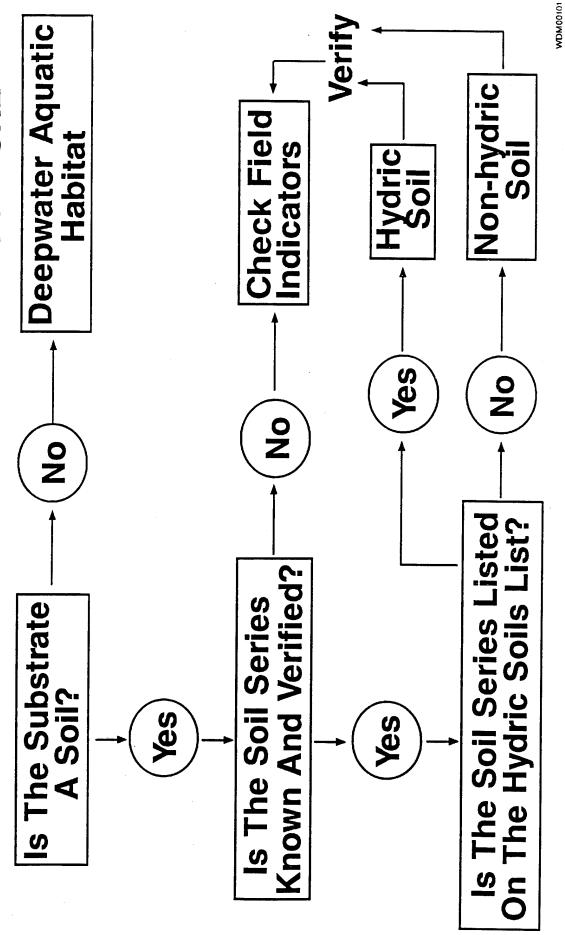
REDOXIMORPHIC FEATURES

- O REDOX CONCENTRATIONS -- HIGH-CHROMA AREAS WHERE Fe AND Mn ARE CONCENTRATED
- O REDOX DEPLETIONS -- LOW-CHROMA, HIGH-VALUE AREAS WHERE Fe AND Mn HAVE MOVED OUT
- O REDUCED MATRIX -- SOIL MATRIX THAT CHANGES **COLOR WHEN EXPOSED TO AIR**

TYPICAL COLORS OF MINERAL HYDRIC SOILS

- O MATRIX CHROMA OF 2 OR LESS IN MOTTLED SOILS.
- O MATRIX CHROMA OF 1 OR LESS IN UNMOTTLED SOILS.
- O MEASURED IMMEDIATELY BELOW THE A-HORIZON OR AT 10 INCHES, WHICHEVER IS SHALLOWER

INDICATORS OF HYDRIC SOILS (SANDY)


HIGH ORGANIC MATTER CONTENT IN THE SURFACE HORIZON.

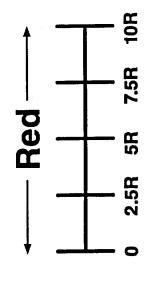
STREAKING OF SUBSURFACE HORIZONS BY ORGANIC MATTER -ORGANIC MATTER STAINS FINGERS WHEN RUBBED.

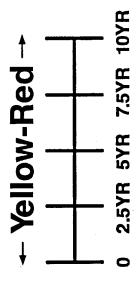
WET SPODOSOLS - ORGANIC MATTER, IRON, AND ALUMINUM ACCUMULATE TO FORM A DISTINCT LAYER (SPODIC HORIZON) COMMON WATER TABLE DEPTH (NOT ALL SPODOSOLS ARE BENEATH A LEACHED LAYER (E-HORIZON) AT THE MOST

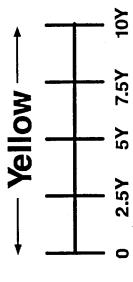
OTHERS MENTIONED PREVIOUSLY FOR NON-SANDY SOILS.

HYDRIC SOILS DETERMINATION PROCEDURE

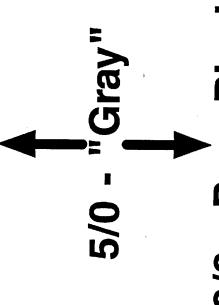
SOIL

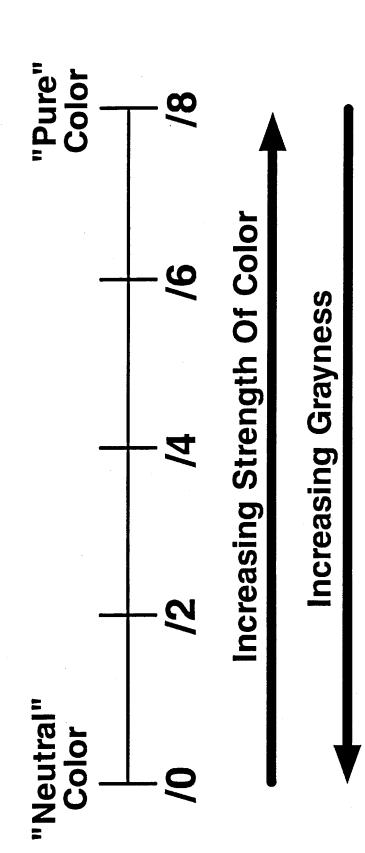

WDM00153 03/30/88:CDC


ASPECTS OF SOIL COLOR


WDM00079 02/25/88:ABC

- OHNE
- VALUE
- **CHROMA**

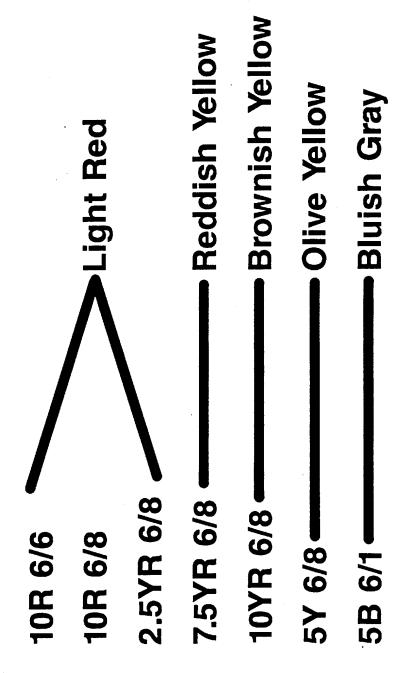

Ш О Т



10/0 - Pure White

0/0 - Pure Black

CHROMA


NEUTRAL COLOR/ZERO CHROMA

$$2.5 \text{YR} \ 5/0 = 7.5 \text{YR} \ 5/0 = 2.5 \text{Y} \ 5/0 = N \ 5/0$$

SOIL COLOR

WDM00163 03/15/88:CDC

FACTORS TO CONSIDER

- Light
- Moisture
- Surface Texture

LIGHT

- Quality Must Be White Enough For Sample To **Reflect True Color**
- **Especially Critical When Matching Soil To Chips** O Intensity - Amount Of Light Must Be Adequate For Visual Distinction Between Chips This Is Of Low Value And Low Chroma
- O Direction Light Should Be At Right Angles To Surface Of Sample And Color Chips

MOISTURE

- Record The Moisture State Of Sample (Dry/ Moist/Wet)
- Color Value Of Most Soils Decreases As Soil Is Moistened
- Because Of The Effect Of Light Reflected From Colors Read From Wet Soils May Be In Error The Water Films
- Normally Read Colors Of Moist Soil
- Moisten Sample And Read Colors As Soon As Visible Moisture Films Have Disappeared

VDM0016

OPTIMUM CONDITIONS

- Natural Light
- Clear, Sunny Day
- Midday
- Light At Right Angles
- Soil Moist

WAKEDI

COLOR PATTERNS IN SOILS

- O MATRIX (PREDOMINANT) COLOR
- O MOTTLE COLORS
- O MOTTLE CONTRAST, ABUNDANCE, **AND SIZE**

CONTRAST OF MOTTLES

CONTRAST REFERS TO THE DEGREE OF VISUAL DISTINCTION BETWEEN ASSOCIATED COLORS

- O FAINT -- EVIDENT ONLY ON CLOSE **EXAMINATION**
- O DISTINCT -- READILY SEEN
- O PROMINENT -- CONTRAST STRONGLY

9WAKE018

CONTRAST OF MOTTLES

DISTINCT

- SAME HUE
- 2-4 UNITS OF CHROMA, OR
- 3-4 UNITS OF VALUE
- 2.5 UNITS OF HUE (ONE PAGE)
- 1 UNIT OF CHROMA, OR
- 1-2 UNITS OF VALUE

ABUNDANCE OF MOTTLES

- O FEW -- LESS THAN 2%
- COMMON -- 2 TO 20%
- O MANY -- MORE THAN 20%

9WAKE020

SIZE OF MOTTLES

- O FINE -- SMALLER THAN 5 MM
- O MEDIUM -- 5 TO 15 MM
- O COARSE -- LARGER THAN 15 MM

SOIL

WDM00041 02/25/88:ABC

DEFINITION OF TERMS

Ac - ALLIANCE LOAM, 0 TO 1 PERCENT SLOPES

- **SOIL SERIES ALLIANCE**
- O TEXTURE OF SURFACE LAYER LOAM
- O PHASE 0 TO 1 PERCENT SLOPES

KINDS OF SOIL MAP UNITS

1. CONSOCIATIONS ARE SOIL MAP UNITS NAMED FOR A SINGLE KIND OF SOIL (TAXON) OR **MISCELLANEOUS AREA.**

e.g., MASSIE SILTY CLAY, 0 TO 1 PERCENT SLOPES (HYDRIC) TAMA SILTY CLAY LOAM, 2 TO 5 PERCENT SLOPES (NONHYDRIC)

WET ALLUVIAL LAND (HYDRIC)

KINDS OF SOIL MAP UNITS

2. COMPLEXES AND ASSOCIATIONS ARE SOIL MAP NAMED SOILS OCCUR IN A REGULAR PATTERN **UNITS NAMED FOR TWO OR MORE KINDS OF** SOILS (TAXA) OR MISCELLANEOUS AREAS. ON THE LANDSCAPE.

COMPLEX - 2 OR MORE NAMED SOILS - USUALLY ORDER 2 SOIL SURVEY

ASSOCIATION - 2 OR MORE NAMED SOILS -USUALLY ORDER 3 SOIL SURVEY e.g., TRYON - VALENTINE COMPLEX, 0 TO 6 PERCENT SLOPES (TRYON-HYDRIC; VALENTINE-NONHYDRIC) CANYON-BRIDGET-ROCK OUTCROP, STEEP

VDM0027

KINDS OF SOIL MAP UNITS

UNITS NAMED FOR TWO OR MORE KINDS OF SOILS (TAXA) OR MISCELLANEOUS AREAS. NAMED SOILS 3. UNDIFFERENTIATED GROUPS ARE SOIL MAP OCCUR IN AN IRREGULAR PATTERN ON THE LANDSCAPE.

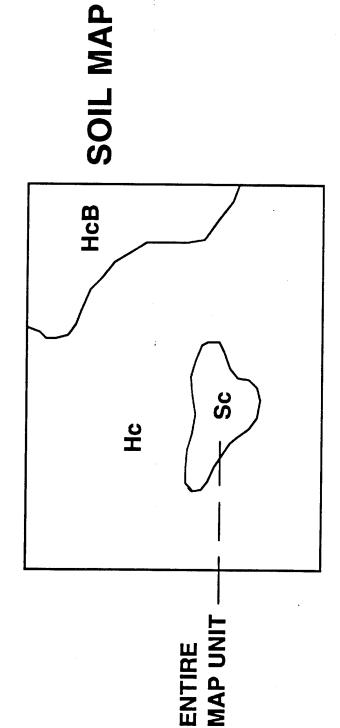
e.g., HORD AND HALL SILT LOAMS, TERRACE, 0 TO 1 PERCENT SLOPES

INCLUSIONS WITHIN MAPPING UNITS

Mixed Alluvium Under Hardwoods And Conifers 29A - Pilchuck Fine Sand. This Nearly Level Soil Is Excessively Drained. It Formed In In Major River Valleys. Most Areas Are Long And Narrow. They Range From 6 Acres To More Than 400 Acres But Average About

Other Areas That Are As Much As 8 Percent Puyallup Are As Much As 15 Percent Aquic Xerofluvents And Included With This Soil In Mapping Are Areas That Fine Sandy Loam.

ELEMENTS OF A HYDRIC SOIL MAP UNIT LIST


- O SOIL MAP UNIT SYMBOL GK
- GIBBON SILT LOAM, 0 TO 2 PERCENT **SOIL MAP UNIT NAME**
- SLOPES
- .. LAWET SOILS AS O HYDRIC SOIL COMPONENT
- INCLUSIONS
- **DEPRESSIONAL** CANDSCAPE POSITION
- AREAS

HYDRIC SOILS

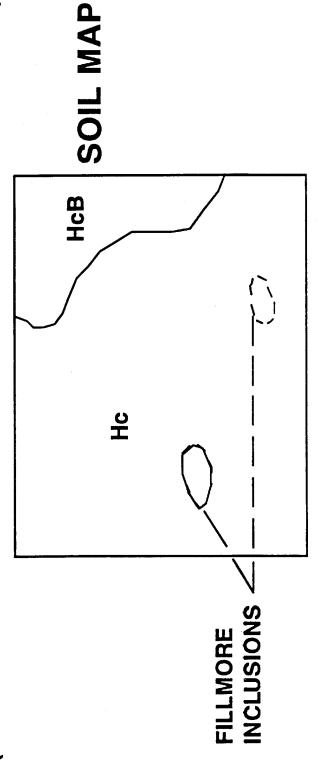
1. - ENTIRE SOIL MAP UNIT HYDRIC

MAP SYMBOL

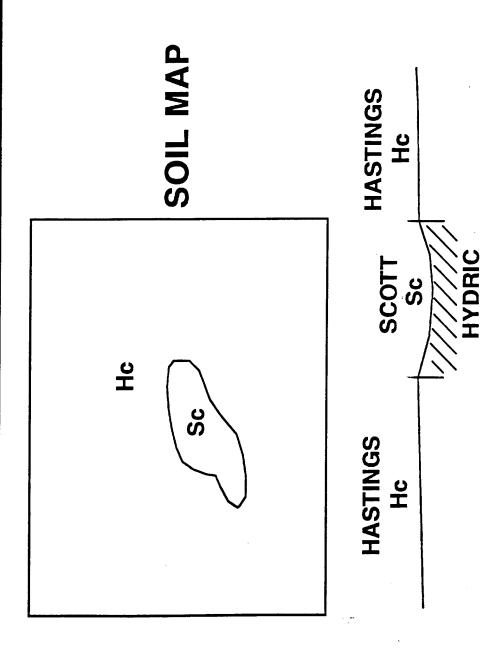
SCOTT SILT LOAM, 0 TO 1 PERCENT SLOPES SOIL NAME

WDM00278

WDM00279 10/25/89:RMR

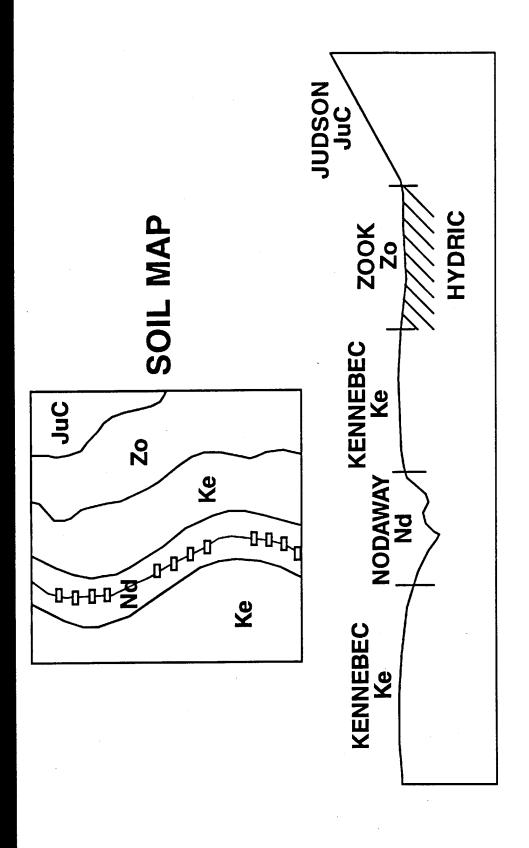

HYDRIC SOILS

2. - SOIL MAP UNITS WITH HYDRIC SOILS AS INCLUSIONS


MAP SYMBOL

HC...... HASTINGS SILT LOAM, 0 TO 1 PERCENT SLOPES (HAS INCLUSIONS OF FILLMORE SOILS IN DEPRESSIONAL AREAS)

SOIL NAME


HYDRIC SOILS IN DEPRESSIONS

WDM00280

HYDRIC SOILS IN BOTTOMLANDS

WDM00281 11/07/89:CBC

9WAKE021

ORDERS OF SOIL SURVEYS

ORDER

MINIMUM DELINEATION

FIRST

≥ 2.5 ACRES

SECOND

1.5 TO 10 ACRES

THIRD

4 TO 40 ACRES

FOURTH

40 TO 640 ACRES

640 TO 10,000 ACRES

CLASSIFICATION FOR MAKING A BASIC SYSTEM OF SOIL AND INTERPRETING SOIL SURVEYS. WDM00114 03/29/88:CDC

SOIL TAXONOMY

OBJECTIVE:

THE FACTORS RESPONSIBLE FOR THEIR CHARACTER. THAT REFLECTS THE RELATIONSHIPS BETWEEN TO DEVELOP A HIERARCHICAL CLASSIFICATION DIFFERENT SOILS, AND BETWEEN SOILS AND

PROCEDURE:

SOILS ARE CLASSIFIED ON THE BASIS OF:

- O SOIL PROPERTIES OBSERVED IN THE FIELD (E.G., SOIL HORIZONS, TEXTURE, COLOR, pH), AND
- COMBINED DATA OF SOIL SCIENCE AND OTHER DISCIPLINES (E.G., SOIL TEMPERATURE AND MOISTURE REGIMES INFERRED FROM SOIL O SOIL PROPERTIES INFERRED FROM THE SCIENCE AND METEOROLOGY).

WDM00116 03/29/88:CDC

- Order
- Suborder
- Great Group
- Subgroup
- Family
- Series

CATEGORY

Order

NUMBER OF TAXA

NATURE OF DIFFERENTIATING CHARACTERISTICS

Soil-forming Processes As Indicated By Presence Or Absence Of Major

Diagnostic Horizons.

SOIL ORDERS

ALFISOL
ANDISOL
ARIDISOL
ENTISOL
HISTOSOL
INCEPTISOL

MOLLISOL OXISOL SPODOSOL ULTISOL VERTISOL

NOMENCLATURE

ORDER

FORMATIVE ELEMENT

DERIVATION

Alfisol

Aridisol

Entisol

ALF

Pedalfer - AL & FE Enriched

Arid - Dry Soil

Recent - Little Or No Profile

ENT

<u>□</u>

Development

EPT

Inceptisol

Inception - Young; Horizons

Beginning To Develop

Mollisol

Oxisol

OLL ŏ

Spodosol

00

Podzol - Wood Ash Horizon; Acid

Oxide - Enriched With Oxides

Mollis - Soft

ULT

ERT

IST

Histosol

Vertisol

Ultisol

Invert - To Turn; Crack

Ultimate - Maximum Leaching

Leaching

Histos - Tissue; High Fiber Content

CATEGORY

NUMBER OF TAXA

53

Suborder

NATURE OF DIFFERENTIATING CHARACTERISTICS

Vary With The Order, But Include Such Things As:

- O Wetness
- Soil Moisture Regimes
- O Major Parent Material
- Vegetational Effects

ENTISOL SUBORDERS

Aquents (L. Aqua, Water) Wet Entisols

Orthents (Gr. *Orthos*, True) The Common Ones

> Fluvents (L. *Fluvíus*, River) Floodplain Soils

Psamments (Gr. *Psammos*, Sand) Sandy Soils

CATEGORY

NUMBER OF TAXA

21

Great Group

NATURE OF DIFFERENTIATING CHARACTERISTICS

- Kind, Arrangement, And Degree Of Expression Of Diagnostic Horizons (Especially Upper Horizons)
- Soil Moisture Regimes
- Temperature Regimes
- Base Status

ENTISOL GREAT GROUPS

SUBORDER

Aquents

(Wet Entisols)

GREAT GROUP

Cryaquents - Cold

Haplaquents - Simple

Hydraquents - Water

Psammaquents - Sand

Tropaquents - Tropical (Hot And Humid)

ENTISOL GREAT GROUPS

SUBORDER

Fluvents

GREAT GROUP

Cryofluvents

Torrifluvents - Torrid (Hot And Dry)

Tropofluvents

(Floodplain Soils)

Udifluvents - Humid (Not Dry In Most Years)

Ustifluvents - Dry (Between Udic-Aridic) Xerofluvents - Dry (Moist Cold Winter - Dry Warm Summer; Mediterranean Climate)

ENTISOL GREAT GROUPS

SUBORDER

Psamments

(Sandy Soils)

GREAT GROUP

Cryopsamments

Quartzipsamments - Quartz

Torripsamments

Udipsamments

Ustipsamments

Xeropsamments

NUMBER CATEGORY OF TAXA

1000+

Subgroup

NATURE OF DIFFERENTIATING CHARACTERISTICS

Three Kinds Of Subgroups:

- The Central (Typic) Concept Of The Great Group;
- Intergrades Or Transitional Forms To
 Other Orders, Suborders, Or Great
 Groups; And,
- Extragrades That Are Not
 Representative Of The Great Group,
 But Do Not Indicate Transitions
 To Any Other Known Kind Of Soil.

SUBGROUPS

Regimes That Occur On Floodplains. Typical Entisols With Aquic Moisture

1 Order 3 Great Group

Suborder 4 Subgroup

WDMOOTS

SUBGROUPS

4 Mollic

Occur On Floodplains, And That Have Thick, 1 Entisols With Aquic Moisture Regimes That Dark Surface Layers.

3 Great Group

1 Order

2 Suborder 4 Subgroup

SUBGROUPS

4 Aeric

3 2 1

Fluvaquents

Entisols, Occurring On Floodplains,

With An Aquic Moisture Regime That Are Not

7

So Wet. They Are Better Aerated In The

Upper Part Of The Soil Profile.

1 Order

3 Great Group

2 Suborder 4 Subgroup

BWAKEON

SOIL TAXONOMY

CATEGORY

NUMBER OF TAXA

5000+

Family

NATURE OF DIFFERENTIATING CHARACTERISTICS

Similar Physical And Chemical Properties That Affect Management, Including:

- O Particle-size Distribution
- Mineral Content
- O Reaction
- O Temperature Regime

CATEGORY

NUMBER OF TAXA

15,000+

Series

NATURE OF DIFFERENTIATING CHARACTERISTICS

A Series May Have Virtually The Full Range That Is Permitted In A Family In Several Properties, But In One Or More Properties The Range Is Restricted, Such As:

- O Kind And Arrangement Of Horizons
- O Color
- O Texture
- Structure

ORDER

INCEPTISOL

SUBORDER

OCHREPT

GREAT GROUP

FRAGIOCHREPT

SUBGROUP

AQUIC FRAGIOCHREPT

TYPIC MEDISAPRIST

QUARTZIPSAMMENT AQUIC

WDM00194 03/09/89:HMH

TYPIC ARGIAQUOLL

WDM00196 03/09/89: HMH

AERIC HAPLAQUOD

WDM00154 03/30/88:CDC

OFFSITE DETERMINATIONS

USE THE OFFSITE METHOD WHEN:

- HYDROLOGY, HYDRIC SOILS, AND O INFORMATION IS AVAILABLE ON HYDROPHYTIC VEGETATION
- REASONS (e.g., NWI, FSA INVENTORIES, **DUE TO TIME CONSTRAINTS OR OTHER** O FIELD INSPECTION IS NOT POSSIBLE ETC.)

OFFSITE DETERMINATIONS

ACCURACY DEPENDS ON:

- O QUALITY OF AVAILABLE DATA
- O ONE'S ABILITY AND EXPERIENCE TO INTERPRET THESE DATA

OFFSITE DETERMINATIONS

IS REQUIRED, THEN ONSITE PROCEDURES IF A MORE ACCURATE DELINEATION **MUST BE EMPLOYED**

SOURCES OF INFORMATION

OFFSITE DETERMINATION METHOD

- STEP 1 LOCATE AND DELINEATE THE AREA OF INTEREST ON A USGS TOPOGRAPHIC MAP OR OTHER SUITABLE BASE MAP.
- STEP 2 REVIEW APPROPRIATE NATIONAL WETLANDS INVENTORY (NWI) MAPS, OR STATE OR LOCAL WETLAND MAPS.
- PRESENCE OF HYDRIC SOIL MAP UNITS COUNTY HYDRIC SOILS LIST FOR THE STEP 3 - REVIEW SCS SOIL SURVEY MAPS AND OR MAP UNITS WITH HYDRIC SOIL INCLUSIONS.

WDM00030 02/25/88:ABC

OFFSITE DETERMINATION METHOD

- STEP 4(A) REVIEW RECENT AERIAL PHOTOS OF THE PROJECT AREA. EXAMPLES INCLUDE:
- O ASCS YEARLY COMPLIANCE SLIDES
- O HIGH ALTITUDE FLIGHTS (B/W OR CIR)
- O SATELLITE PHOTOGRAPHY
- DATA TO DETERMINE WHETHER THE AREA STEP 4(B) - REVIEW AND EVALUATE CLIMATOLOGICAL PRECIPITATION FOR AT LEAST 2-3 MONTHS PRIOR TO THE DATE OF HAD HIGH, LOW, OR NORMAL THE PHOTOGRAPHY.

OFFSITE DETERMINATION METHOD

STEP 4(C) - DURING PHOTO INTERPRETATION, LOOK FOR ONE OR MORE SIGNS OF WETLANDS. FOR EXAMPLE:

- O HYDROPHYTIC VEGETATION
- O SURFACE WATER
- O SATURATED SOILS
- O FLOODED OR DROWNED OUT CROPS
- O STRESSED CROPS DUE TO WETNESS
- O GREENER CROPS IN DRY YEARS
- O DIFFERENCES IN VEGETATION PATTERNS DUE TO DIFFERENT PLANTING DATES

OFFSITE DETERMINATION METHOD

STEP 5 - REVIEW AVAILABLE SITE-SPECIFIC INFORMATION. STEP 6 - DETERMINE WHETHER WETLANDS EXIST IN THE SUBJECT AREA. WETLANDS CAN **BE ASSUMED TO EXIST IF:**

O WETLANDS ARE SHOWN ON NWI OR OTHER WETLAND MAPS, AND HYDRIC SOIL OR A SOIL WITH HYDRIC SOIL INCLUSIONS IS SHOWN ON THE SOIL SURVEY; OR

OFFSITE DETERMINATION METHOD

STEP 6 (CONTINUED)

- O HYDRIC SOIL OR SOIL WITH HYDRIC SOIL **INCLUSIONS IS SHOWN ON THE SOIL** SURVEY, AND
- O SITE-SPECIFIC INFORMATION CONFIRMS HYDROPHYTIC **VEGETATION, HYDRIC SOILS, AND/OR WETLAND** HYDROLOGY, OR
- O SIGNS OF WETLAND ARE DETECTED BY REVIEWING **AERIAL PHOTOS; OR**
- O ANY COMBINATION OF THE ABOVE OR PARTS THEREOF (e.g., VEGETATED WETLAND ON NWI MAPS AND SIGNS OF WETLAND ON AERIAL PHOTOS)

DETERMINATIONS OF WETLANDS

WDM00288 12/19/89:CBC

METHODS (1987)

- ROUTINE
- AREAS < 5 ACRES
- AREAS > 5 ACRES
- COMPREHENSIVE

ROUTINE

WDM00175 03/30/88:CDC

ROUTINE METHOD FOR SMALL AREAS

ROUTINE DETERMINATIONS

USE THE ROUTINE METHOD FOR SMALL AREAS WHEN:

- O PROJECT AREA IS SMALL (<5 ACRES)
- O PLANT COMMUNITIES ARE HOMOGENEOUS
- O PLANT COMMUNITY BOUNDARIES ARE ABRUPT
- O PROJECT IS NOT CONTROVERSIAL

9WAKE012

ROUTINE METHOD

EQUIPMENT AND MATERIALS

- OBASE MAP
- **COPIES OF DATA FORM**
- **OWETLAND PLANT LIST**
- O HYDRIC SOILS LIST
- **COUNTY SOIL SURVEY**
- COMPASS
- **SPADE, SOIL AUGER OR PROBE**
- O MEASURING TAPE
- OMUNSELL SOIL COLOR BOOK

LOCATE THE PROJECT AREA STEP 1.

IS THE AREA DISTURBED SUCH THAT SITUATIONS MUST BE USED? PROCEDURES FOR ATYPICAL STEP 2.

SELECT A SAMPLING APPROACH STEP 3.

FOR AREAS < 5 ACRES IN SIZE:

- IDENTIFY AND MAP THE PLANT **COMMUNITY TYPES** STEP 4.
- **CONDITIONS ARE PRESENT (IS IT DETERMINE WHETHER NORMAL** A POTENTIAL PROBLEM AREA WETLAND?) STEP 5.
- **OBSERVATION POINT IN EACH** SELECT A REPRESENTATIVE PLANT COMMUNITY STEP 6.

WAKE036

ROUTINE METHOD (1987)

FOR AREAS ≤5 ACRES IN SIZE:

SPECIES FROM EACH STRATUM **VISUALLY SELECT DOMINANT** OF THE COMMUNITY STEP 7.

RECORD INDICATOR STATUS OF **DOMINANT SPECIES** STEP 8.

DETERMINE WHETHER VEGETATION IS HYDROPHYTIC STEP 9.

DEFINITIONS OF STRATA (1987)

TREE

WOODY PLANTS ≥ 3.0 INCHES DBH, REGARDLESS OF HEIGHT

SAPLING / SHRUB

WOODY PLANTS ≥3.2 FT TALL BUT < 3.0 INCHES DBH

HERB

ALL NONWOODY PLANTS, AND WOODY PLANTS < 3.2 FT TALL

WOODY VINE

WOODY CLIMBING PLANTS ≥ 3.2 FT TALL

FOR AREAS < 5 ACRES IN SIZE:

STEP 10. RECORD INDICATORS OF WETLAND HYDROLOGY

STEP 11. DETERMINE WHETHER WETLAND HYDROLOGY IS PRESENT

FOR AREAS < 5 ACRES IN SIZE:

- STEP 12. DETERMINE WHETHER SOIL MUST BE CHARACTERIZED. SOIL IS ASSUMED TO BE HYDRIC IF:
- O ALL DOMINANT SPECIES ARE OBL
- O ALL DOMINANTS ARE OBL OR FACW AND THE WETLAND BOUNDARY IS ABRUPT
- STEP 13. IF NEEDED, DIG A SOIL PIT
- STEP 14. RECORD INDICATORS OF HYDRIC SOIL
- STEP 15. DETERMINE WHETHER SOIL IS HYDRIC

FOR AREAS < 5 ACRES IN SIZE:

STEP 16. MAKE THE WETLAND DETERMINATION IN **EACH PLANT COMMUNITY** STEP 17. DETERMINE THE WETLAND / NONWETLAND BOUNDARY. VERIFY BY WALKING THE BOUNDARY AND MAKING MINOR **ADJUSTMENTS BASED ON SOILS AND VEGETATION**

ROUTINE METHOD FOR LARGE AREAS

FOR AREAS > 5 ACRES IN SIZE:

STEP 19. DETERMINE THE NUMBER AND POSITION OF TRANSECTS STEP 18. ESTABLISH A BASELINE

SUGGESTED MINIMUM NUMBER OF TRANSECTS

BASELINE LENGTH (MI)

NO. OF TRANSECTS

1.0

3

1.0-2.0

3-5

2.0-4.0

5-8

> 4.0

8 OR MORE*

* INTERVAL BETWEEN TRANSECTS SHOULD NOT EXCEED 0.5 MILE.

FOR AREAS > 5 ACRES IN SIZE:

STEP 20. SAMPLE POINTS ALONG THE FIRST **TRANSECT**

- O DETERMINE WHETHER NORMAL CONDITIONS ARE **PRESENT**
- **ESTABLISH AN OBSERVATION POINT IN THE FIRST** PLANT COMMUNITY
- CHARACTERIZE VEGETATION, SOIL, AND HYDROLOGY, AND RECORD ON DATA FORM
- O MAKE THE WETLAND DETERMINATION AT THAT POINT
- O SAMPLE REMAINING POINTS ON THAT TRANSECT
- **DETERMINE THE WETLAND BOUNDARY BETWEEN POINTS**

FOR AREAS > 5 ACRES IN SIZE:

STEP 21. SAMPLE THE REMAINING TRANSECTS STEP 22. SYNTHESIZE DATA AND DETERMINE THE WETLAND BOUNDARY BETWEEN **TRANSECTS**

COMPREHENSIVE METHOD

WDM00095 02/25/88'ABC

COMPREHENSIVE METHOD

EQUIPMENT AND MATERIALS

- O BASE MAP
- O COPIES OF DATA FORMS
- O WETLAND PLANT LIST
- O HYDRIC SOILS LIST
- O COUNTY SOIL SURVEY
- O COMPASS
- O SPADE, SOIL AUGER OR PROBE
- O MEASURING TAPE
- O MUNSELL SOIL COLOR BOOK
- O VEGETATION SAMPLING FRAME
- O BASAL-AREA OR DIAMETER TAPE, OR BASAL-AREA PRISMS
- O CALCULATOR

COMPREHENSIVE METHOD (1987)

STEP 1. IDENTIFY THE PROJECT AREA

STEP 2. DETERMINE WHETHER PROCEDURES FOR ATYPICAL SITUATIONS MUST BE USED

STEP 3. IDENTIFY AND MAP THE PLANT COMMUNITIES

COMPREHENSIVE METHOD (1987)

- STEP 4. DETERMINE TYPE AND NUMBER OF STRATA IN EACH COMMUNITY
- **ENVIRONMENTAL CONDITIONS ARE** STEP 5. DETERMINE WHETHER NORMAL PRESENT
- **ESTABLISH A BASELINE** STEP 6.
- STEP 7. DETERMINE NUMBER AND POSITION OF TRANSECTS
- STEP 8. DETERMINE NUMBER OF OBSERVATION **POINTS ALONG EACH TRANSECT**

WDM00093 07/27/89:ABC SUGGESTED MINIMUM NUMBER OF TRANSECTS

BASELINE LENGTH (FT)

NUMBER OF TRANSECTS

BASELINE SEGMENT (FT)

< 1,000

က

18-333

1,000-5,000

Ŋ

200-1,000

5,000-10,000

/

700-1,400

> 10,000

2,000

NOTE: IF BASELINE LENGTH EXCEEDS 5 MILES, BASELINE **SEGMENTS SHOULD BE 0.5 MILES LONG.**

SUGGESTED SPACING OF SAMPLING POINTS

TRANSECT LENGTH (FT)

NUMBER OF POINTS

BETWEEN S POINTS (FT)

INTERVAL

< 1,000

10

100

1,000-10,000

10

100-1,000

> 10,000

\ 5

1,000

NOTE: FIRST PLOT SHOULD BE ESTABLISHED 50 FT FROM

THE BASELINE.

COMPREHENSIVE METHOD (1987)

CHARACTERIZE VEGETATION AT THE FIRST OBSERVATION POINT STEP 9.

DOMINANT SPECIES FROM EACH STRATUM STEP 10. ANALYZE VEGETATION DATA AND SELECT

COVER CLASSES

COVER

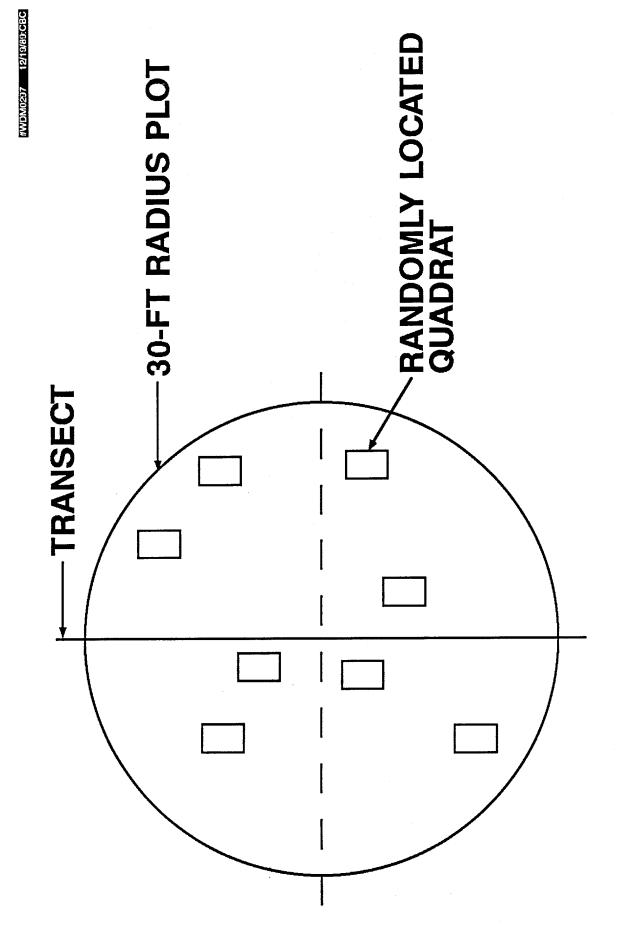
CLASS RANGE (%)

MIDPOINT OF RANGE (%)

0.0

16-25

6-15


1-5

26-50

51-75

96-100

76-95

COMPREHENSIVE METHOD (1987)

- STEP 11. CHARACTERIZE SOIL
- CHARACTERIZE HYDROLOGY **STEP 12.**
- STEP 13. DETERMINE WHETHER VEGETATION IS **HYDROPHYTIC**
- STEP 14. DETERMINE WHETHER SOIL IS HYDRIC
- STEP 15. DETERMINE WHETHER WETLAND **HYDROLOGY IS PRESENT**
- STEP 16. MAKE THE WETLAND DETERMINATION AT THAT POINT

COMPREHENSIVE METHOD (1987)

STEP 17. SAMPLE ADDITIONAL POINTS ALONG THAT TRANSECT

STEP 18. DETERMINE THE WETLAND BOUNDARY BETWEEN POINTS

STEP 19. SAMPLE REMAINING TRANSECTS

STEP 20. SYNTHESIZE DATA ACROSS ALL **TRANSECTS** STEP 21. DETERMINE THE WETLAND BOUNDARY **BETWEEN TRANSECTS**

AREAS DISTURBED

EXAMPLES OF DISTURBED AREAS

WDM00026 02/25/88:ABC

O HUMAN ACTIVITIES

- O REMOVAL OF VEGETATION
- O REMOVAL OF SOIL
- O PLACEMENT OF FILL
- O CONSTRUCTION OF DAMS AND LEVEES
- O CONVERSION TO AGRICULTURE
 - CHANNELIZATION
- O DRAINAGE

ONATURAL EVENTS

- O CHANGE IN RIVER COURSE
- O BEAVER DAMS
- O AVALANCHES AND MUDSLIDES
- **O FIRES**
- VOLCANIC DEPOSITION

DISTURBED AREAS

WUM00216 03/22/89: HMH

PROCEDURES:

- VEGETATION
- O SOILS
- O HYDROLOGY

DETERMINE THE DATE OF THE ALTERATION

WDM00027

- O DIRECT QUESTIONING
- O AERIAL PHOTOGRAPHS
- **O BUILDING PERMITS**

DISTURBED AREAS -- VEGETATION

STEP 1 - DESCRIBE THE ALTERATION.

STEP 2 - DESCRIBE EFFECTS ON VEGETATION.

O CLEARED OR PARTIALLY CLEARED

CERTAIN LAYERS REMOVED

O SELECTED SPECIES REMOVED

O BURNED, MOWED, OR HEAVILY GRAZED

O COVERED BY FILL

O MORTALITY DUE TO WATER

DISTURBED AREAS -- VEGETATION

- STEP 3 CHARACTERIZE ORIGINAL VEGETATION.
- O AERIAL PHOTOGRAPHY
- ONSITE INSPECTION
- O PREVIOUS SITE INSPECTION
- O ADJACENT VEGETATION
- O SCS RECORDS
- O PERMIT APPLICANT
- O PUBLIC INTERVIEWS
- O NWI MAPS
- STEP 4 DETERMINE WHETHER THE VEGETATION WAS HYDROPHYTIC.

DISTURBED AREAS -- SOILS

STEP 1 - DESCRIBE THE ALTERATION.

- O DREDGED OR FILL MATERIAL COVERS ORIGINAL SOIL
- O COLOR OR TEXTURE DIFFERENCES
- O DECOMPOSING VEGETATION BETWEEN LAYERS
- O NON-WOODY DEBRIS AT SURFACE
- SUBSURFACE PLOWING
- O REMOVAL OF SURFACE LAYERS
- O EXPOSED PLANT ROOTS OR SCRAPE SCARS
- O PRESENCE OF MAN-MADE STRUCTURES

DISTURBED AREAS -- SOILS

STEP 2 - DESCRIBE EFFECTS ON SOILS.

- O RECORD DEPTH OF FILL OVER BURIED SOIL
- O RECORD DEPTH OF PLOW ZONE
- O DESCRIBE CHANGE IN SOIL PHASE
- O DESCRIBE EFFECTS OF SOIL COMPACTION

DISTURBED AREAS -- SOILS

- STEP 3 CHARACTERIZE ORIGINAL SOILS.
- **SOIL SURVEYS**
- O EXCAVATE AND CHARACTERIZE BURIED SOILS
- O CHARACTERIZE PLOWED SOILS BELOW PLOW ZONE
- O EXAMINE ADJACENT AREAS OR B-HORIZON IF SURFACE LAYERS REMOVED
- STEP 4 DETERMINE WHETHER SOILS WERE HYDRIC.

STEP 1 - DESCRIBE THE ALTERATION.

- O DAMS (MAN-MADE OR NATURAL)
- O LEVEES OR DIKES
- O DITCHES OR SUBSURFACE TILES
- O FILLING OF CHANNELS OR DEPRESSIONS
- O WATER DIVERSION
- **GROUND-WATER EXTRACTION**
- **CHANNELIZATION**

STEP 2 - DESCRIBE EFFECTS ON HYDROLOGY.

- O FREQUENCY OF INUNDATION
- O DURATION OF INUNDATION AND SOIL SATURATION

- STEP 3 CHARACTERIZE PREVIOUS HYDROLOGY.
- **STREAM OR TIDAL GAUGE DATA**
- O FIELD HYDROLOGIC INDICATORS
- O AERIAL IMAGERY
- O HISTORICAL RECORDS
- O FLOODPLAIN MANAGEMENT MAPS
- O PUBLIC OR LOCAL OFFICIALS
- STEP 4 DETERMINE WHETHER WETLAND HYDROLOGY WAS PRESENT.

STEP 5 - DETERMINE WHETHER WETLAND HYDROLOGY STILL EXISTS.

- O REVIEW EXISTING INFORMATION (GAUGES, WELLS, RECENT OBSERVATIONS)
- O EXAMINE WET-SEASON AERIAL PHOTOS
- O EXAMINE FIELD INDICATORS (EXCEPT HYDRIC SOIL MORPHOLOGICAL CHARACTERISTICS)
- O EXAMINE A NEARBY UNDISTURBED REFERENCE SITE
- O DETERMINE "ZONE OF INFLUENCE" OF DRAINAGE
- O CONDUCT GROUNDWATER STUDIES

PWAKE02

PROBLEM AREA WETLANDS **WETLANDS IN WHICH INDICATORS OF** PERIODICALLY BE LACKING DUE TO ONE OR MORE PARAMETERS MAY

NORMAL SEASONAL OR ANNUAL

VARIABILITY

- O WETLANDS ON DRUMLINS OR OTHER GLACIAL DEPOSITS
- O SEASONAL WETLANDS
- O PRAIRIE POTHOLES
- VEGETATED FLATS

- O WETLANDS ON DRUMLINS OR OTHER GLACIAL DEPOSITS
- O SEASONAL WETLANDS
- O PRAIRIE POTHOLES
- O VEGETATED FLATS

- O WETLANDS ON DRUMLINS OR OTHER GLACIAL DEPOSITS
- O SEASONAL WETLANDS
- O PRAIRIE POTHOLES
- VEGETATED FLATS

9WAKE006

- O WETLANDS ON DRUMLINS OR OTHER GLACIAL DEPOSITS
- O SEASONAL WETLANDS
- O PRAIRIE POTHOLES
- O VEGETATED FLATS

OWAKEODE

- O WETLANDS ON DRUMLINS OR OTHER GLACIAL DEPOSITS
- O SEASONAL WETLANDS
- O PRAIRIE POTHOLES
- VEGETATED FLATS

8WAKE0

PROBLEM AREAS (1987)

ELSEWHERE IN THE 1987 MANUAL: OTHER PROBLEM AREAS NOTED

- O MAN-INDUCED WETLANDS
- WET ENTISOLS
- O WET SOILS FROM RED OR LOW-CHROMA **PARENT MATERIALS**
- WET SPODOSOLS
- WET MOLLISOLS

- O MAN-INDUCED WETLANDS
- O WET ENTISOLS
- WET SOILS FROM RED OR LOW-CHROMA PARENT MATERIALS
- WET SPODOSOLS
- WET MOLLISOLS

9WAKE025

MAN-INDUCED WETLANDS

EITHER INTENTIONAL OR INCIDENTAL CHARACTERISTICS OF NATURALLY OCCURRING WETLANDS DUE TO **AREAS THAT HAVE DEVELOPED HUMAN ACTIVITIES**

MAN-INDUCED WETLANDS

- O IRRIGATED WETLANDS
- O IMPOUNDMENT WETLANDS
- **CONSTRUCTED WETLANDS**
- O FILLED DEEPWATER HABITATS

WAKEON

- O MAN-INDUCED WETLANDS
- O WET ENTISOLS
- WET SOILS FROM RED OR LOW-CHROMA PARENT MATERIALS
- WET SPODOSOLS
- WET MOLLISOLS

OWA VENO

- O MAN-INDUCED WETLANDS
- WET ENTISOLS
- O WET SOILS FROM RED OR LOW-CHROMA PARENT MATERIALS
- WET SPODOSOLS
- O WET MOLLISOLS

WAVEOUR

- O MAN-INDUCED WETLANDS
- WET ENTISOLS
- WET SOILS FROM RED OR LOW-CHROMA PARENT MATERIALS
- WET SPODOSOLS
- O WET MOLLISOLS

- O MAN-INDUCED WETLANDS
- WET ENTISOLS
- O WET SOILS FROM RED OR LOW-CHROMA PARENT MATERIALS
- WET SPODOSOLS
- WET MOLLISOLS

Descriptions of Picture Slides and Drawings in the Regulatory IV Slide Set

Slide No.	Description			
1	Desert scene; obvious nonwetland.			
2	Cattail marsh; obvious wetland.			
3	Cypress swamp; obvious wetland.			
4	High elevation marsh; obvious wetland.			
5	Flooded bottomland hardwood swamp; apparent wetland.			
6	Bottomland hardwood swamp during the dry season. Is it still a wetland?			
7	Mountain meadow. Wetland?			
8	Western riparian scene. Wetland?			
12	Cover of the Fish and Wildlife Service wetland classification.			
14	Diagram of gradient from upland to deepwater habitat.			
17	Diagram of gradient showing that the wetland boundary is the highest point having evidence of all three wetland parameters.			
20	Cover of the SCS National Food Security Act manual.			
30	Aerial view of a tidal marsh.			
31	Picture of a stream and floodplain.			
32	Diagram of cross section of a river floodplain showing natural levees, backswamps, and abandoned channel.			
33	Drawing of a depressional wetland with a water table that reaches the surface during wet seasons.			
34	Drawing of a depressional wetland with water perched over a slowly permeable soil layer.			
35	Drawing of a slope wetland.			

				
37	Picture of inundated forested wetland.			
39	Picture of ponded depression (pothole) in an agricultural field.			
41	Picture of stream at flood stage.			
43	Picture of a groundwater-fed wetland.			
45	Picture of water standing in a shovel hole.			
56	Picture of a staff gauge on a small stream.			
57	Picture of a groundwater monitoring well.			
58	Example of a hydrograph plotted from stream gauge data.			
59	Aerial photo of a flooded forest.			
62	Picture of inundated swamp.			
63	Picture of water films glistening on soil sample.			
64	icture of water being squeezed out of a soil sample.			
65	ricture of watermarks on tree.			
66	Picture of watermarks (stains) on boulders.			
67	Picture of debris line made by a flooding stream.			
68	Picture of wrack line in coastal marsh.			
69	Picture of debris caught in the limbs of a tree.			
70	Picture of sediment deposits on fallen leaves.			
71	Picture of forest floor that has been scoured of litter by flowing water.			
73	Picture of oxidized root channels in a gray soil matrix.			
74	Picture of water-stained leaf compared with unstained leaf.			
75	Cover of a county soil survey.			
76	Picture of a swamp forest that passes the FAC-neutral test.			
83	Picture of floating leaves of water lily.			
84	Photomicrograph of aerenchyma in water hyacinth.			
85	Photomicrograph showing different amounts of aerenchyma in individual alligator weed plants grown in progressively wetter locations.			

86	Picture of buttressed bases of baldcypress.			
87	Picture of buttressed base of slash pine.			
88	Picture of fluted roots.			
89	Picture of prop roots on red mangrove.			
90	Picture of pneumatophores on black mangrove.			
91	Picture of baldcypress knees.			
92	Picture of multiple stems and adventitious roots on black willow.			
93	Picture of shallow root mass on windthrown tree.			
97	Picture of viviparous seedlings on red mangrove.			
98	Picture of overcup oak seedlings in standing water.			
99	Covers of Fish and Wildlife Service lists of plant species that occur in wetlands.			
142	Covers of the National List of Scientific Plant Names.			
143	Diagram showing the distribution of several plant species as bell curves on a moisture gradient.			
157	Picture of someone digging a soil pit for evaluation of hydric soils.			
159	Picture of the wall of a soil pit showing soil profile.			
162	Diagram of the soil texture triangle.			
165	Diagram relating permeability to soil texture.			
170	Picture of an organic soil.			
171	Picture of a shovel slice of a mineral soil.			
172	Cover of Hydric Soils of the United States.			
185	Picture of an organic soil.			
186	Picture of a histic epipedon.			
187	Picture of a tidal salt marsh (peraquic moisture regime).			
189	Picture of a gleyed soil.			
190	Picture of a mottled soil.			
195	Picture of a sandy soil with a dark, organic-rich surface layer.			
	· · · · · · · · · · · · · · · · · · ·			

196	Picture of a sandy soil with organic streaks in the subsoil.			
199	Picture of someone using a Munsell color book.			
201	Diagram of visible spectrum.			
203	Picture of 10YR page.			
204	Picture of gley page.			
206	Picture of 7.5YR page.			
208	Picture of 2.5Y page.			
211	Picture of someone using a Munsell book.			
222	Cover of a county soil survey.			
223	Picture of the general soil map in a soil survey.			
224	Picture of the map sheet index.			
225	Picture of a soil map sheet.			
226	Picture of the soil legend.			
228	Picture of a map unit description.			
229	Picture of a soil series description.			
242	Covers of Soil Taxonomy, the Keys to Soil Taxonomy, and the Munsell Soil Color Book.			
248	Picture of the profile of a Histosol.			
249	Picture of a Mollisol.			
250	Picture of an Entisol.			
251	Picture of a Vertisol.			
252	Picture of an Ultisol.			
253	Picture of a Spodosol.			
266	Picture of map showing the general soil temperature regime regions in the US.			
270	Picture of the profile of a Typic Medisaprist.			
272	Picture of an Aquic Quartzipsamment.			
274	Picture of a Typic Argiaquoll.			

276	Picture of an Aeric Haplaquod.			
283	Picture of a USGS topographic map.			
284	Cover of a county soil survey.			
285	Picture of a National Wetlands Inventory map.			
286	Color IR aerial photo.			
287	Cover of an environmental impact statement.			
288	Picture of a land-use, land-cover map.			
289	Engineering drawing of a proposed project.			
290	Detailed topographic map developed as part of project planning.			
296	Cover of SCS South Wetland Mapping Conventions for Food Security Act applications.			
297	Picture of investigator using multiple slide viewers to identify wetlands from ASCS annual compliance slides.			
298	Aerial view of prairie pothole country.			
299	Ground-level view of a small pothole.			
300	Aerial view showing variability in pothole size and wetness.			
301	Soil map in an area containing potholes.			
302	ASCS slide of tract containing potholes (1986).			
303	ASCS slide of same tract (1987).			
304	ASCS slide of same tract (1988).			
305	ASCS slide of same tract (1989).			
306	ASCS slide of same tract (1990).			
307	Pothole wetlands indicated on NWI map.			
308	High-altitude aerial photo of same potholes indicated in the previous slide.			
309	Completed map of pothole wetlands.			
310	Picture of southeastern bottomland hardwood forest.			

311	Picture illustrating three different SCS wetland designations: (1) wetland (forest at right), (2) farmed wetland (flooded field in background), and (3) prior converted cropland (dry field in foreground).				
312	USGS topographic map of the Sixmile Lake area in Mississippi.				
313	SCS soil survey map of the same area.				
314	National Wetlands Inventory map of the same area.				
315	ASCS slide of the same area (1986).				
316	ASCS slide of the same area (1987).				
317	ASCS slide of the same area (1988).				
318	ASCS slide of the same area (1989).				
319	High-altitude photo of the same area.				
320	Example of satellite imagery of the Mississippi Delta region.				
321	Classification of satellite imagery into wetlands (green) and farmed wetlands (yellow).				
322	Completed wetland map.				
331	Map of project site showing project boundaries, scale, and mapped cover types.				
332	Map of project site showing locations of representative sampling points in each cover type.				
335	Picture of plant community with one stratum (coastal marsh).				
336	Picture of plant community with two strata (black spruce bog).				
337	Picture of plant community with multiple strata (bottomland forest).				
338	Picture of the first section of the data form for routine wetland determinations (form approved 2/92 by Headquarters, Army Corps of Engineers).				
339	Picture of the Vegetation section of the data form.				
341	Picture of the Hydrology section of the data form.				
343	Picture of the Soils section of the data form.				
345	Picture of the Wetland Determination section of the data form.				

346	Map of project site with wetland and nonwetland sampling points indicated.			
347	Final wetland map showing wetland boundary corresponding with the boundary between wetland and nonwetland cover types.			
351	Map of the same project site with transect locations indicated.			
353	Map of project site with representative sampling points in each plant community along each transect indicated.			
354	Map of project site with intermediate sampling points and wetland boundary on each transect indicated.			
356	Final wetland map produced by connecting the wetland boundary points on each transect with a line following the topographic contour.			
357	Picture of surveyor; optional final step in the wetland determination.			
363	Map of project site for comprehensive wetland determination, showing cover types and transect locations.			
365	Map of project site with evenly spaced grid of sampling points indicated.			
367	Investigator measuring diameter of tree.			
368	Picture of the tree portion of the vegetation section of Data Form 2 (blank).			
369	Picture of the tree portion of the vegetation section of Data Form 2 (filled out).			
370	Picture of investigators using a quadrat frame to collect information about the herb stratum.			
372	Picture of the herb portion of the vegetation section of Data Form 2 (filled out).			
374	Investigators collecting data about the sapling/shrub stratum.			
377	Map of project site indicating the wetland boundary on each transect.			
378	Final wetland map developed by connecting the wetland boundary points on each transect.			

381	Picture of recently disturbed area that has been cleared, leveled, and leveed off from the stream that previously flooded the site.			
382	Picture of drainage ditch through an agricultural field.			
383	Aerial view of area that has been converted to agriculture; wetter portions are indicated by yellow and stunted corn.			
384	Aerial view of prairie potholes that have been ditched in an attempt to drain them.			
385	Picture of downcut stream that no longer overflows onto its floodplain.			
386	Picture of beaver dam and pond.			
387	Picture of concrete-lined drainage channel.			
391	Picture of totally cleared bottomland forest.			
392	Picture of partially cleared spruce/hemlock forest (understory layer still present).			
393	Picture of mowed wetland edge behind an apartment complex.			
395	Vegetation section of Data Form 3 (blank).			
396	Vegetation section of Data Form 3 (filled out).			
398	Picture of new fill placed in a forested wetland.			
401	Soils section of Data Form 3 (filled out).			
403	Picture of water-control structure (weir) on small stream.			
404	Picture of machine used to install drainage tiles.			
405	Picture of earthmoving equipment in leveled area.			
406	Picture of channelized stream.			
407	Picture of ditch and drains helping to drain a forested wetland.			
410	Hydrology section of Data Form 3 (filled out).			
417	Picture of California vernal pool in February (wet season).			
418	Same vernal pool in May.			
419	Same vernal pool in October (dry season).			
421	Aerial view of prairie potholes.			

423	Picture of vegetated flat during the nongrowing season, resembling a mudflat.			
428	Picture of a constructed wetland in New Hampshire.			
430	Picture of new alluvial deposits (Entisols) along the Toutle River near Mount St. Helens, Washington.			
432	Picture of streambank consisting of red Triassic sandstone and shale in Colorado.			
434	Picture of wet Spodosol in Florida.			
436	Picture of prairie pothole in North Dakota (Mollisol soils).			
437	Picture of sample of mollic epipedon showing gray mottles.			

[SAMPLE]

DATA FORM ROUTINE WETLAND DETERMINATION (1987 COF Wetlands Delineation Manual)

Project/Site: 45th STREET Applicant/Owner: J. JOHNSON Investigator: WAKELEY TEAFORD / Do Normal Circumstances exist on the site? Is the site significantly disturbed (Atypical Situates in the area a potential Problem Area?	Yes No Community ID: # 2		
(If needed, explain on reverse.)	165 (16) 1.66.15.		
VEGETATION			
Dominant Plant Species Stratum Indicator 1. TILIA AMERICANA T FACU 2. FRAXINUS PENNSYL. T FACW 3. CARPINUS CAROLINIANA S/S FAC 4. CORNUS FOEMINA S/S FACW- 5. VLMUS AMERICANA S/S FACW- 6. SYMPLOCARPUS FOETIDUS H OBL 7. CAREX STRICTA H OBL 8. SENECIO AUREUS H FACW 16. Percent of Dominant Species that are OBL, FACW or FAC (excluding FAC-). Remarks: SHALLOW ROOTS IN TILIA. FAC-NEUTRAL TEST = 6 WET: I NONWET			
HYDROLOGY Recorded Data (Describe in Remarks): Stream, Lake, or Tide Gauge Aerial Photographs Other No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Log (in.) Depth to Saturated Soil: Line (in.)	Wetland Hydrology Indicators: Primary Indicators: Inundated Saturated in Upper 12 Inches Water Marks Drift Lines Sediment Deposits Drainage Patterns in Wetlands Secondary Indicators (2 or more required): Oxidized Root Channels in Upper 12 Inches Water-Stained Leaves Local Soil Survey Data FAC-Neutral Test Other (Explain in Remarks)		

20 APR - 27 OCT.

SEPT TO MAY, GROWING SEASON

[SAMPLE]

SOILS

Map Unit Name HOUGHTON AND SEBENA SOILS, PONDED					
(Series and Phase): (SAMPLE IS SEBEWA MEMBER) Drainage Class: VPD					
Taxonomy (Subgroup): TYPIC ARGIAQU			CGIAQUOLL		vations Mapped Type? (Yes) No
Profile Descripti	ion:				
Depth		Matrix Color	Mottle Colors	Mottle	Texture, Concretions,
(inches) Hori	izon (Munsell Moist)	(Munsell Moist)	Abundance/Contrast	Structure, etc.
0-9	<u>A</u>	10 YR 3/1			FSL
9-14	<u> </u>	10 YR 4/1	7.5 YR 6/6	FEW, DISTINCT	CL
<u> 14- </u>	-	104R 5/1	7.5 YR 5/6	COMMON, DUT.	CL
	· .		****		
Hydric Soil Indic	ators:				
His	stosol		Cor	ncretions	·
His	stic Epipe				rface Layer in Sandy Soils
	Ifidic Odo		Org	anic Streaking in Sandy	Soils
Aquic Moisture Regime					
✓ Gle	eyed or Lo	ow-Chroma Colors		er (Explain in Remarks)	
Remarks:					

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present? Hydric Soils Present?	Yes No (Circle) Yes No Yes No	(Circle) Is this Sampling Point Within a Wetland? Yes No
Remarks:		
·		
		Approved by HOUSAGE 2/02

DATA FORM ROUTINE WETLAND DETERMINATION

(1987 COE Wetlands Delineation Manual)

Project/Site: Applicant/Owner: Investigator:	Date: County: State:		
Do Normal Circumstances Is the site significantly dis Is the area a potential Pro (If needed, explain on	sturbed (Atypical Situa oblem Area?	Yes No tion)? Yes No Yes No	Community ID: Transect ID: Plot ID:
Dominant Plant Species 1		9	s Stratum Indicator
PYDROLOGY Recorded Data (Describe in Stream, Lake, or Aerial Photograph Other No Recorded Data Available Field Observations: Depth of Surface Water: Depth to Free Water in Pit: Depth to Saturated Soil:	Tide Gauge as	Water M Drift Line Sedimen Drainage Secondary Indicate Oxidized Water-S Local So FAC-Net	: d d in Upper 12 Inches larks
Depth to Saturated Soil:	(in.)		

SOILS

Map Unit Name (Series and Phase): Taxonomy (Subgroup):			Drainage Class: Field Observations Confirm Mapped Type? Yes No		
Profile Description: Depth (inches) Horizon	Matrix Color (Munsell Moist)	Mottle Colors (Munsell Moist)	Mottle Abundance/Contrast	Texture, Concretions, Structure, etc.	
Reducing		Hig Org Lis Lis	ncretions ih Organic Content in Su ganic Streaking in Sandy ted on Local Hydric Soils ted on National Hydric S ner (Explain in Remarks)	s List coils List	

WETLAND DETERMINATION

Hydrophytic Vegetation Present? Wetland Hydrology Present?	Yes No Yes No		(Circle)		(Circle)	
Hydric Soils Present?	Yes	No		Is this Sampling Point Within a Wetland?	Yes	No
Remarks:				1		

Approved by HQUSACE 2/92