AD

TECHNICAL REPORT ARCCB-TR-95043

THERMAL STABILITY OF EPOXY COMPOSITE MATERIALS

MARK F. FLESZAR

DTIC QUALITY INSPECTED 2

DECEMBER 1995

US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER CLOSE COMBAT ARMAMENTS CENTER BENÉT LABORATORIES WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

			Form Approved
REPORT DOCUMENTATION PAGE			OMB No. 0704-0188
Public reporting burden for this collection of inf gathering and maintaining the data needed, and collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 22202	formation is estimated to average 1 hour per d completing and reviewing the collection of i for reducing this burden, to Washington Hea 4302, and to the Office of Management and	response, including the time for re nformation. Send comments rega dquarters Services, Directorate foi Budget, Paperwork Reduction Proj	viewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan		3. REPORT TYPE AN	
	December 1995	Finel	5. FUNDING NUMBERS
4. TITLE AND SUBTITLE			
THERMAL STABILITY OF EPO	T COMPOSITE MATERIALS		AMCMS: 6111.01.91A1.100
6. AUTHOR(S)			
Mark F. Fleszar			
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army ARDEC			
Benet Laboratories, AMSTA-AR-C	CB-O		ARCCB-TR-95043
Watervliet, NY 12189-4050			
9. SPONSORING / MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Army ARDEC			
Close Combat Armaments Center			
Picatinny Arsenal, NJ 07806-5000			
11. SUPPLEMENTARY NOTES			I
Presented at the 24th Annual North	American Thermal Analysis Con	ference, San Francisco, Ca	A, 10-13 September 1995.
Published in Proceedings of the Co	nference.		
12a. DISTRIBUTION / AVAILABILITY	CTATEMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.			
13. ABSTRACT (Maximum 200 word	ts)		
·····	1 1. 771 () () () () () () ()		
The thermal oxidative stability of Fi	berite //14A (glass/epoxy), 9/0 (c ass transition temperatures. Comp	osite samples were subject	carbon/epoxy) was studied at temperatures cted to both short- and long-term heating.
The first set of samples was heated			mples was cycled for 30-minute intervals
from 200 to 400°C.			
The samples were tested in a Perkin	-Elmer TGA7 Thermogravimetric	Analyzer and weight loss r	ecorded. Weight loss data were compared
based on temperature and time at	temperature. The results showed	good thermal stability for	or each epoxy material through its glass
transition temperature with a weight	t loss of 1.5% or less. The results w	ere comparable for both lo	ong- and short-term temperature exposure.
14. SUBJECT TERMS			15. NUMBER OF PAGES
Composites, Thermal Stability, Epoxy, Decomposition			16 16. PRICE CODE
	TO. PRICE COUL		
	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ICATION 20. LIMITATION OF ABSTRAC
OF REPORT UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

NSN	7540-01	-280-5500

٦.

٠

4

•

TABLE OF CONTENTS

Page

INTRODUCTION	. 1
EXPERIMENTAL PROCEDURE	. 1
RESULTS AND DISCUSSION	. 2
CONCLUSION	. 3
BIBLIOGRAPHY	. 4

4

TABLES

l.	Material properties	5
2.	Weight loss after 4 or 6 hours at temperature	6
3.	Cumulative weight loss for 12 cycles at 30 min/cycle	7

LIST OF ILLUSTRATIONS

1.	Plot of weight loss after 4 hrs versus temperature	8
2.	Plot of weight loss after 6 hrs versus temperature	9
3.	Cumulative weight loss at 200, 225, and 250°C	10
4.	Cumulative weight loss at 200, 250, and 300°C	11
5.	Cumulative weight loss at 200, 250, and 300°C	12
6.	Cumulative weight loss for 7714A, 976, and 977-2 at 200°C	13
7.	Cumulative weight loss for 7714A, 976, and 977-2 at 250°C	14
8.	Cumulative weight loss for 976 and 977-2 at 300°C	15

i

INTRODUCTION

Projectile launchers afford a unique application for composite materials. Organic composite materials can be used to increase dimensional stability and stiffness. Polymer blends can increase impact strength and thermal stability. Unlike other high-temperature applications, cannons can withstand both sustained and short-term heating at elevated temperatures. They are frequently fired for relatively short periods of time and undergo repeated cyclic heating. Based on the current and future performance requirements for present and future projectile launchers, a true service temperature for composite materials for each application should be established. Manufacturer specifications generally recommend a maximum service temperature for an extended period of time and do not address any effect experienced by short-term cyclic heating. Depending on the composite system, cannon minimum service temperature requirement of 300°C may exceed the recommended service temperature.

Development of composite structures for use in projectile launchers requires knowledge of thermal degradation of composite materials after continual thermal cycling. Materials may or may not be satisfactory for the thermal application of projectile launchers. Once the thermal stability of a material is established, the effect of degradation on the mechanical properties must be identified to determine a true service temperature.

EXPERIMENTAL PROCEDURE

Test specimens were prepared from three Fiberite resin systems [7714A (glass/epoxy), 976 (carbon/epoxy), and 977-2 (carbon/epoxy)] as specified in the manufacturer's product guide. The specimens were sectioned and analyzed by a Perkin-Elmer Differential Scanning Calorimeter, Model DSC7, to determine their glass transition temperature (Tg). Samples of 10-15 mg were sealed in standard aluminum pans and heated in a nitrogen atmosphere at a scanning rate of 20°C/min. The Tg was determined by extending the pre- and post-transition baseline and taking the midpoint of the transition region.

The thermal stability of each composite material was evaluated in a Perkin-Elmer Thermogravimetric Analyzer, Model TGA7, using a 15-20 mg sample heated in an oxygen atmosphere. Two methods of isothermal analysis were performed to simulate different firing scenarios. First, a set of samples was heated at a rate of 20°C/min to a specific testing temperature, then held at constant temperature; in the case of 7714A, for 4 hours at 100°, 150°, 200°, 250°, and 275°C, while 976 and 977-2 were heated for 6 hours at 200°, 250°, 300°, 325°, and 350°C. Next, a sample set was heated at a rate of 20°C/min, then held at constant temperature (200°, 225°, 250°, and 300°C) for 30 minutes, and cooled at a rate of 20°C/min to 25°C. The procedure was repeated for a total of 12 cycles. In each case, the weight loss was measured for each cycle and temperature.

RESULTS AND DISCUSSION

All three Fiberite prepreg materials analyzed were epoxy resins, reinforced with either glass or carbon fibers (Table 1):

Fiberite 7714A, a brominated epoxy resin with glass fibers, is a flame-resistant polymer with a recommended service temperature of 71°C. The samples had an average resin content of 27.4% and a Tg of 120°C.

- Fiberite 976 is an epoxy prepreg reinforced with carbon fibers; its recommended service temperature is 177°C. TGA analysis revealed an average resin content of 37.5% and a Tg of 212°C.
- Fiberite 977-2 is a toughened epoxy/carbon prepreg with a recommended service temperature of 149°C. The prepreg had an average resin content of 35.8% and a Tg of 174°C.

Fiberite 7714A when heated in an oxygen environment for 4 hours at constant temperatures up to 150°C showed good thermal stability with a weight loss of 0.35% (Table 2 and Figure 1). The observed weight loss is most likely the result of a loss in absorbed water. When the temperature was increased from 150°C to 200°C, the weight loss increased to 1.08%, which indicates an onset of thermal decomposition of the sample. When the temperature was increased beyond 200°C, the decomposition of the resin (not the glass fibers) increased dramatically, indicating severe material decomposition.

As seen in Figure 2 and Table 2, when Fiberite 976 was heated in oxygen at a constant temperature of 150°C for 6 hours, the weight loss was approximately the same as that observed in Fiberite 7714A, which had been heated for 4 hours. The weight loss of Fiberite 977-2 was 0.71%, twice that observed in 976. However, when the temperature was increased to 200°C, its weight loss remained constant, while 976 increased to 1.11%. This supports the theory that the observed weight losses up to 150°C were the result of moisture absorption and in the case of 977-2 was probably true up to 200°C. Increasing the temperature to 200°C again showed the onset of thermal decomposition for the 976 resin with 977-2 remaining stable. When the temperature was increased above 200°C, the rate of decomposition increased significantly for both resins.

The second set of samples was subjected to cyclic heating for a total of twelve 30minute cycles. At 200°C, the 7714A samples showed a cumulative weight loss of 1.64% for 12 cycles (Figure 3 and Table 3); however, 46% of the total weight loss was observed in the first cycle. Increasing the temperature to 225°C showed a 60% increase in the total weight loss; however, the rate of decomposition was almost the same, being displaced only by the increased weight loss observed in the first cycle as seen in Figure 6. When the temperature was increased to 250°C, both the cumulative weight loss and rate of decomposition were dramatically increased. Comparing the 4-hour weight loss with the cumulative weight loss after eight 30-minute cycles showed (Figure 6) that in each case, the weight loss was more severe for cyclic heating than that observed during constant heating.

Fiberite 976 when heated for 12 cycles at 200°C showed a cumulative weight loss of 0.88%, with 48% of the weight loss occurring in the first cycle (Figure 4 and Table 3). Increasing the temperature to 250° C showed a cumulative weight loss of 4.40%, or a 400% increase. The rate of decomposition also showed a large increase. At 300°C, the weight loss increased to 6.32%, and a slight increase in the decomposition rate was observed. Comparing the 6-hour weight loss with the cumulative weight loss after 12 cycles showed that at 250° C and 300° C, the cyclic decomposition was more severe, while at 200° C the cyclic weight loss decreased by 0.23%.

Fiberite 977-2 when heated for 12 cycles at 200°C showed a cumulative weight loss of 0.78%, with 44% of the weight loss resulting from the first heating cycle (Figure 5 and Table 3). Increasing the temperature to 250° C increased the weight loss to 3.52%, or a 450% increase. The rate of decomposition increased but not as much as that observed in the 976 resin. At 300°C, the total weight loss increased to 8.25%, or a 234% increase compared with 250°C. Also, the rate of decomposition showed a large increase. In comparison with the 6-hour weight loss, at 250°C and 300°C, the cyclic weight loss was again much greater; however, at 200°C, the results were almost identical.

CONCLUSION

Fiberite 976 and 977-2 (Figure 6) both showed good thermal stability at 200°C based on both the continual and cyclic heating data. This is 23°C above the recommended service temperature for the former and 51°C above for the latter. The 7714A resin system, however, began to show significant decomposition at this temperature. Based on the 4-hour weight loss data, this material could probably sustain temperatures up to 150°C, which is 70°C above the recommended temperature.

Increasing the temperature to 250°C (Figure 7) increased the material weight loss significantly for all three resins. Fiberite 977-2 showed the best stability, but all three materials showed permanent decomposition.

At 300°C (Figure 8) both 976 and 977-2 showed a substantial weight loss and significant decomposition. Fiberite 7714A was not tested at this temperature for obvious reasons.

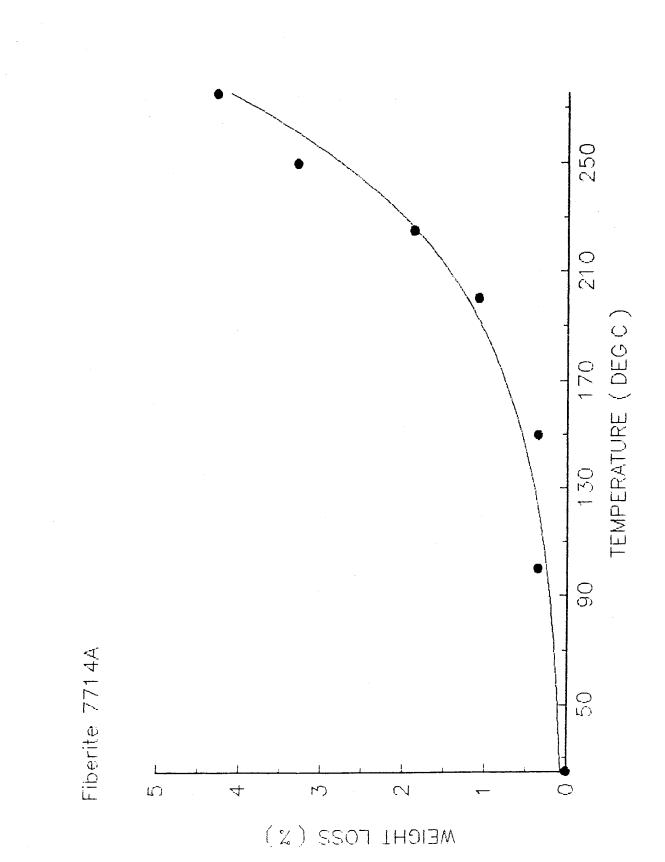
In summary, based on the data:

- The onset of thermal decomposition begins between 150°C and 200°C for Fiberite 7714A and 977-2, with decomposition beginning between 200°C and 250°C for 977-2.
- The effect of cyclic heating appeared to be more deleterious to the resin systems than continual heating, once the onset of decomposition begins.

BIBLIOGRAPHY

- 1. Turi, E. A., *Thermal Characterization of Polymeric Materials*, Academic Press Inc.: Florida, **1981**.
- 2. Wendlandt, W. W., *Thermal Analysis*, 3rd ed.; Wiley: New York, 1986.
- 3. <u>Engineered Materials Handbook</u>, Vol. 1: Composites, American Society for Metals, Metals Park, Ohio, **1987**.

RESIN	PREPREG	RECOMMENDED SERV TEMP	Tg	AVE RESIN CONTENT
7714A	Epoxy/glass	71°C		27.4%
976	Epoxy/carbon	177°C	212°C	37.5%
977-2	Epoxy/carbon	174°C	174°C	35.8%


Table 1: Material properties

TEMP (°C)	7714A (4 HRS) WEIGHT LOSS	976 (6 HRS) WEIGHT LOSS	977-2 (6 HRS) WEIGHT LOSS	
100	0.35%	NA	NA	
150	0.35%	0.34%	0.71%	
200	1.08%	1.11%	0.72%	
225	1.87%	NA	NA	
250	3.29%	2.36%	2.16%	
275	4.28%	4.28% NA		
300	NA	5.76%	5.01%	
325	NA	10.85%	9.61%	
350	NA	26.34%	22.60%	

 Table 2: Weight loss after 4 or 6 hours at temperature

CYCLE	7714A 200°C WT. LOSS	7714A 225°C WT. LOSS	7714A 250°C WT. LOSS	976 200°C WT. LOSS	976 250°C WT. LOSS	976 300°C WT. LOSS	977-2 200°C WT. LOSS	977-2 250°C WT. LOSS	977-2 300°C WT. LOSS
1	0.75	1.65	2.42	0.42	1.50	2.66	0.34	1.58	3.46
2	0.90	1.83	2.88	0.54	1.99	3.24	0.41	2.01	4.15
3	1.00	1.93	3.18	0.61	2.35	3.64	0.46	2.28	4.70
4	1.09	2.02	3.46	0.63	2.60	3.93	0.49	2.48	5.16
5	1.19	2.11	3.72	0.68	2.94	4.31	0.54	2.87	5.65
6	1.26	2.20	4.07	0.72	3.20	4.69	0.57	2.97	6.08
7	1.33	2.28	4.29	0.75	3.43	4.97	0.60	3.08	6.49
8	1.39	2.35	4.51	0.77	3.59	5.20	0.62	3.18	6.86
9	1.48	2.42	4.71	0.82	3.95	5.58	0.68	3.30	7.24
10	1.53	2.49	4.86	0.83	4.11	5.82	0.75	3.38	7.58
11	1.59	2.55	4.97	0.86	4.21	6.09	0.77	3.45	7.81
12	1.69	2.60	5.08	0.88	4.40	6.32	0.78	3.52	8.25

Table 3: Cumulative weight loss for 12 cycles at 30 min/cycle

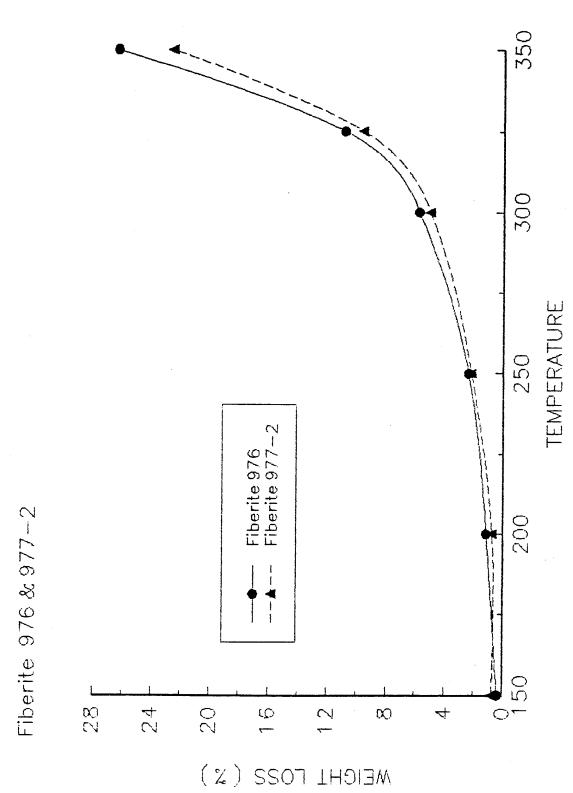


Figure 2. Plot of weight loss after 6 hrs versus temperature

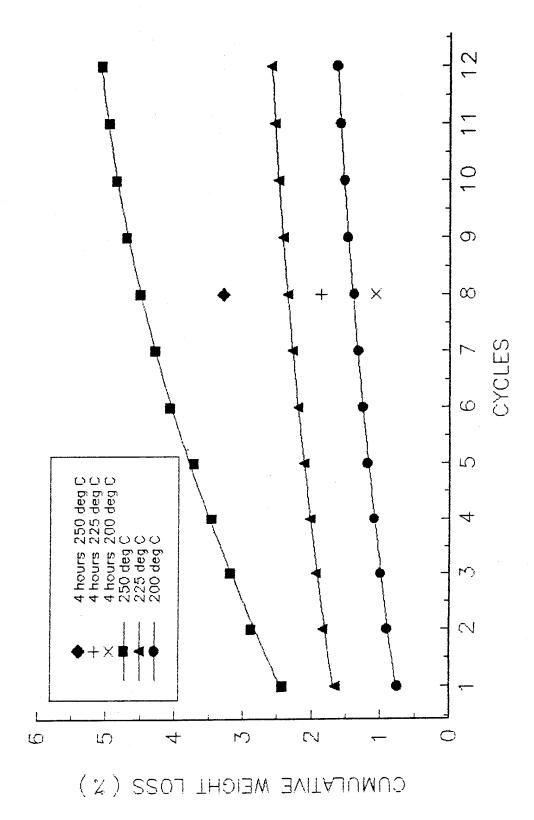
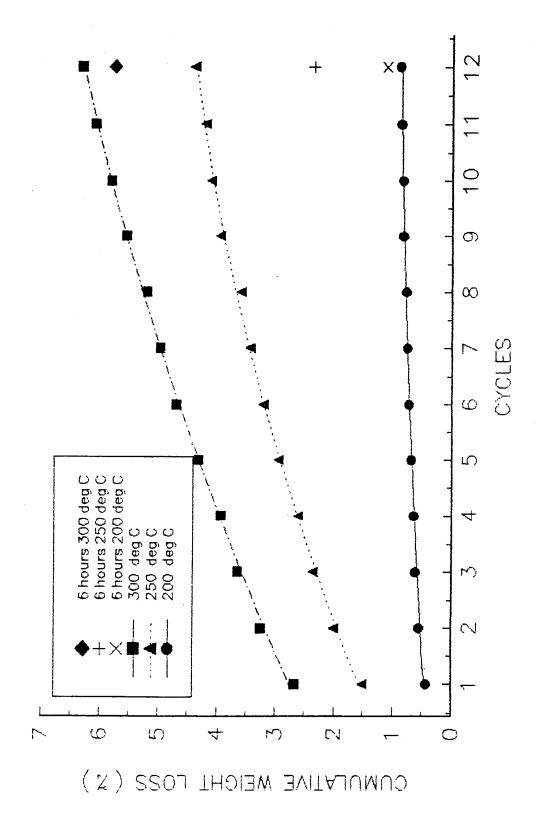
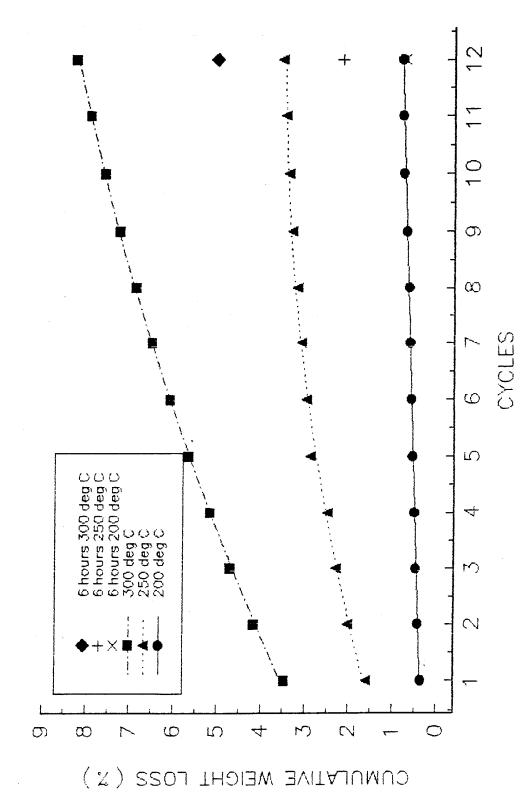
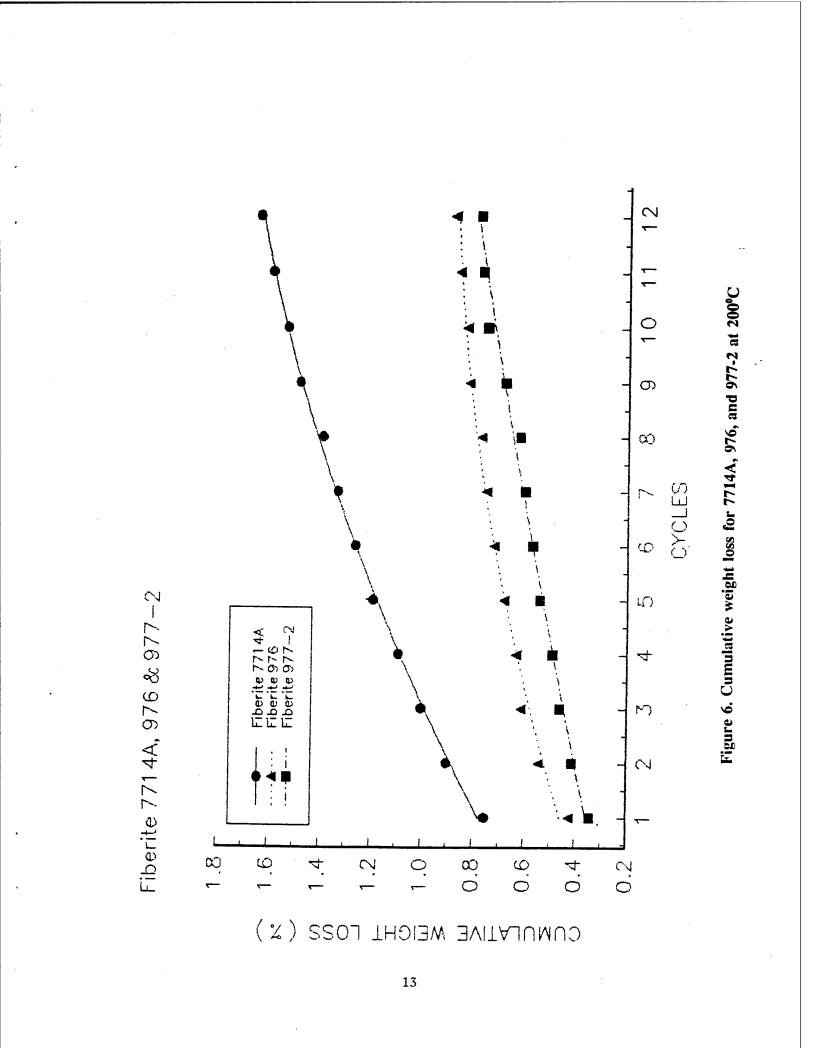
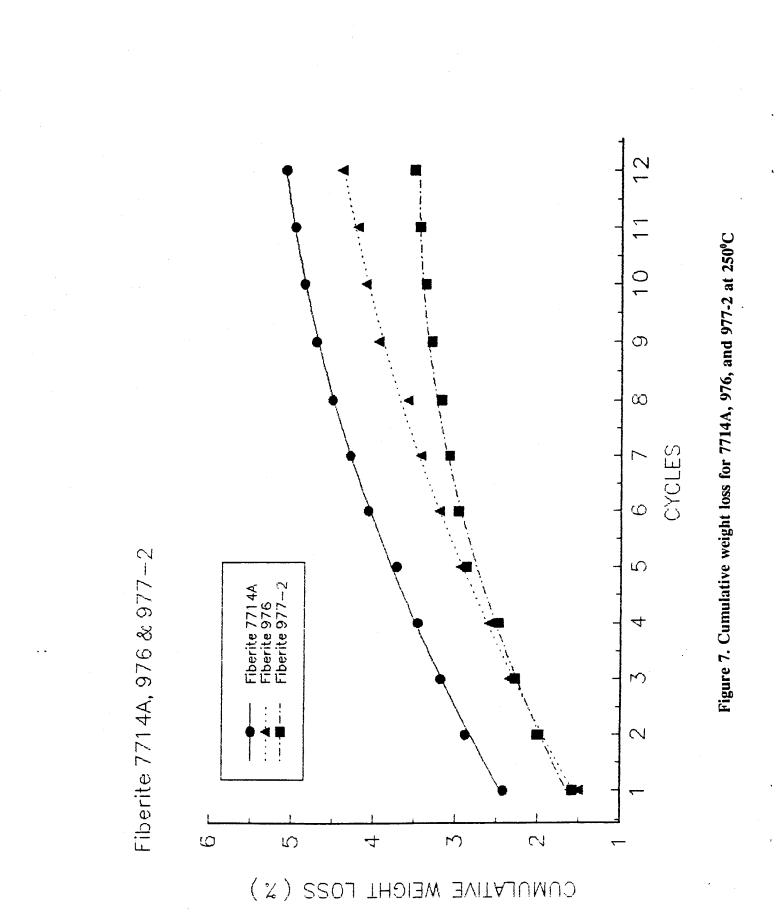
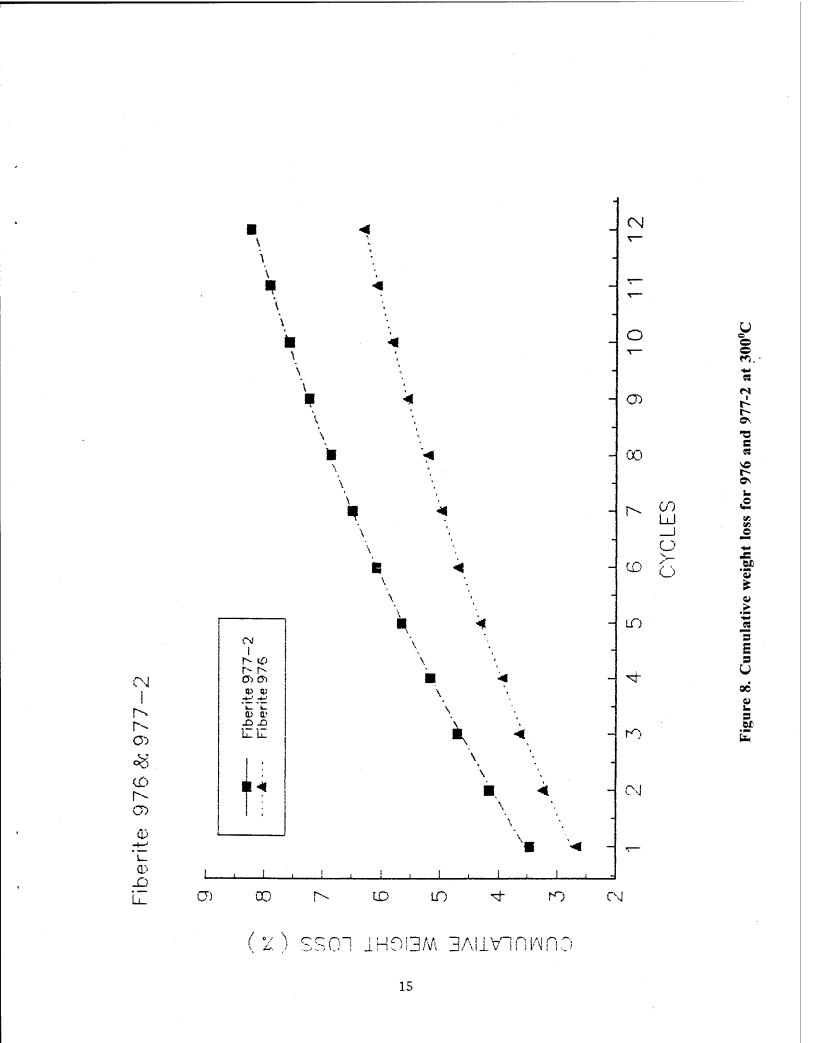



Figure 3. Cumulative weight loss at 200, 225, and 250°C


Figure 4. Cumulative weight loss at 200, 250, and 300°C


Fiberite 976



Fiberite 977-2

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

		O. OF <u>OPIES</u>
CHIEF, DEVELOPMENT ENGINEER ATTN: AMSTA-AR-CCB-DA		1
-Dl -D	-	1
-DI	D	1
-DI		1
CHIEF, ENGINEERING DIVISION ATTN: AMSTA-AR-CCB-E		1
-E/ -Eł		1 1
-E1 -E0		1
CHIEF, TECHNOLOGY DIVISION		_
ATTN: AMSTA-AR-CCB-T -TA	4	2
-TI	3	1
-T(1
TECHNICAL LIBRARY ATTN: AMSTA-AR-CCB-O		5
		5
TECHNICAL PUBLICATIONS & EDI ATTN: AMSTA-AR-CCB-O	HING SECTION	3
OPERATIONS DIRECTORATE		
ATTN: SMCWV-ODP-P		1
DIRECTOR, PROCUREMENT & COM	NTRACTING DIRECTORATE	1
ATTN: SMCWV-PP		1
DIRECTOR, PRODUCT ASSURANCE ATTN: SMCWV-QA	E & TEST DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENÉT LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

۰.

4

	D. OF DPIES	NO. <u>COPI</u>	
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH THE PENTAGON WASHINGTON, D.C. 20310-0103	1	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM ROCK ISLAND, IL 61299-5000	1
ADMINISTRATOR DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-OCP (ACQUISITION GROUP) BLDG. 5, CAMERON STATION	2	MIAC/CINDAS PURDUE UNIVERSITY P.O. BOX 2634 WEST LAFAYETTE, IN 47906	1
ALEXANDRIA, VA 22304-6145 COMMANDER U.S. ARMY ARDEC ATTN: SMCAR-AEE	1	COMMANDER U.S. ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIBRARY) WARREN, MI 48397-5000	1
SMCAR-AES, BLDG. 321 SMCAR-AET-O, BLDG. 351N SMCAR-FSA SMCAR-FSM-E SMCAR-FSS-D, BLDG. 94	1 1 1 1 1	COMMANDER U.S. MILITARY ACADEMY ATTN: DEPARTMENT OF MECHANICS WEST POINT, NY 10966-1792	1
SMCAR-IMI-I, (STINFO) BLDG. 59 PICATINNY ARSENAL, NJ 07806-5000 DIRECTOR U.S. ARMY RESEARCH LABORATORY	2	U.S. ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CENTER ATTN: DOCUMENTS SECTION, BLDG. 4484 REDSTONE ARSENAL, AL 35898-5241	2
ATTN: AMSRL-DD-T, BLDG. 305 ABERDEEN PROVING GROUND, MD 21005-5066 DIRECTOR U.S. ARMY RESEARCH LABORATORY	1	COMMANDER U.S. ARMY FOREIGN SCI & TECH CENTER ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1
ATTN: AMSRL-WT-PD (DR. B. BURNS) ABERDEEN PROVING GROUND, MD 21005-5066 DIRECTOR U.S. MATERIEL SYSTEMS ANALYSIS ACT	1	COMMANDER U.S. ARMY LABCOM MATERIALS TECHNOLOGY LABORATORY ATTN: SLCMT-IML (TECH LIBRARY) WATERTOWN, MA 02172-0001	2
ATTN: AMXSY-MP ABERDEEN PROVING GROUND, MD 21005-5071	1	COMMANDER U.S. ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 2800 POWER MILL ROAD ADELPHI, MD 20783-1145	1

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, BENÉT LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND, AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. <u>COF</u>	OF <u>PIES</u>	
COMMANDER		WRIGHT LABORATORY
U.S. ARMY RESEARCH OFFICE		ARMAMENT DIRECTORATE
ATTN: CHIEF, IPO	1	ATTN: WL/MNM
P.O. BOX 12211	•	EGLIN AFB, FL 32542-6810
RESEARCH TRIANGLE PARK, NC 27709-22	11	
		WRIGHT LABORATORY
DIRECTOR		ARMAMENT DIRECTORATE
U.S. NAVAL RESEARCH LABORATORY		ATTN: WL/MNMF
ATTN: MATERIALS SCI & TECH DIV	1	EGLIN AFB, FL 32542-6810

1

CODE 26-27 (DOC LIBRARY) WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, BENÉT LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND, AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

NO. OF COPIES

1

1

.