
* 

AFML-TR-66-149 

PARTI 

MECHANICS OF COMPOSITE MATERIALS 

PART I - INTRODUCTION 

STEPHEN W. TSAI 

TECHNICAL REPORT AFML-TR-66-149, PART I 

JUNE 1966 

Distribution of this 

document is unlimited V 

jyyiC QUAINT BiSP^Gll 

AIR FORCE MATERIALS LABORATORY 

RESEARCH AND TECHNOLOGY DIVISION 

AIR FORCE SYSTEMS COMMAND 

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 

DEPARTMENT OF DEFENSE 
-ASTICS TECHNICAL EVALUATION C£J*Tf!* 

PICA-TINNY ARSENAL. DOJflER. N. J. 



NOTICES 

When Government drawings, specifications, or other data are used for any 
purpose other than in connection with a definitely related Government procure- 
ment operation, the United States Government thereby incurs no responsibility 
nor any obligation whatsoever; and the fact that the Government may have 
formulated, furnished, or in any way supplied the said drawings, specifications, 
or other data, is not to be regarded by implication or otherwise as in any 
manner licensing the holder or any other person or corporation, or conveying 
any rights or permission to manufacture, use, or sell any patented invention 
that may in any way be related thereto. 

Copies of this report should not be returned to the Research and Tech- 
nology Division unless return is required by security considerations, 
contractual obligations, or notice on a specific document. 

200  - February 1967 - C0192-25-554 



AFML-TR-66-149 

PARTI 

MECHANICS OF COMPOSITE MATERIALS 

PART I - INTRODUCTION 

STEPHEN W. TSAI 

Distribution of this 

document is unlimited 



AFML-TR-66-149 
Part I 

FOREWORD 

This report covers a portion of the notes prepared for a seminar, "Mechanics of Composite 
Materials," presented at the Air Force Materials Laboratory in April and May 1966. The 
work was initiated under Project No. 7340, "Nonmetallic and Composite Materials," 
Task 734003, "Structural Plastics and Composites." The seminar consisted of Part I- 
Introduction, and Part II - Mathematical Theory. 

The manuscript of this report was released by the author 5 May 1966 for publication as an 
RTD Technical Report. 

This technical report has been reviewed and is approved. 

R. T. SCHWARTZ, Chief 
Nonmetallic Materials Division 
Air Force Materials Laboratory 
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ABSTRACT 

The principles of mechanics are utilized for the description of the behavior of fiber- 
reinforced composites. Principal components of elastic moduli and strength for an orthotropic 
material are established as the intrinsic macromechanical properties. Micromechanics 
analyses provide a rational design basis of these properties from the material and geometric 
properties of the constituent materials. A bridge between the properties of the constituent 
materials and the structural behavior of a laminated anisotropic composite can then be 
established. Combined materials and structural design becomes feasible. Finally, test methods 
of composite materials are evaluated. The principles of mechanics can be used to select the 
material properties to be tested and the appropriate test procedures to be followed. 

in 
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SECTION I 

MACRO AND MICRO MECHANICS OF COMPOSITES 

THEORY OF THE MECHANICS APPROACH 

The purpose of this report is to introduce the basic principles of mechanics and their 
relevance to composite materials. The work is planned for workers in the field of composite 
materials who are not interested in the rigorous mathematic derivation of the principles of 
classical mechanics. A basic understanding of the mechanics approach to composite materials 
is indispensible because most composite materials are designed for structural applications. 

Mechanics of materials is concerned with the distributions of stress and strain in a body 
when external loads are applied to it. From the knowledge of the stress and strain, the strength 
and deflection of a structural member may be determined. The cases of uniaxial tension or 
compression of a bar and pure bending of a beam are very easy to understand. For these 
simple cases, the meanings of stress, strain, displacement, and strength are unambiguous. 
These terms, however, have more general and precise definitions for cases other than simple 
loading, but their generalization involves some conceptual difficulty. In the cases of composite 
materials, these basic terms in a generalized context have sometimes been improperly used. 
It is the intent of these notes to illustrate the application and usefulness of the mechanics 
approach to solve the problems of design and utilization of composite materials. 

Materials  can be  viewed with different levels of magnification. Although, the common 
2 3 composite materials and metals appear homogeneous, with 10  to 10   magnifications, individual 

fibers and crystals become visible. With greater magnifications, molecular and lattice struc- 
tures may be revealed., These facts are of particular importance in the mechanics analysis, 
which in general requires a mathematical model. The model is intended to depict a behavior of 
an actual material. Since the mathematical representation of the actual material depends on 
the level of visual magnification, the mathematical model deduced from it will be directly 
affected. 

A material may be represented by a model consisting of a continuous medium, or discrete 
bodies interconnected by various means. For a continuous medium, a spring or dashpot is 
often used to represent elastic or viscous materials, respectively. 

TYPES OF MATHEMATICAL MODELS 

For composite materials, it is convenient to use two different but interrelated mathematical 
models. 

The first model is constructed on the macroscopic scale; this corresponds to the case with 
no magnification. On this scale, a composite material is treated as a homogeneous material. 
The actual fibers, their orientation and packing arrangement, the lamination, and the binding 
matrix are all indistinguishable by the unaided eyes. The stiffness and strength of this material 
can be characterized by making a number of tests from which gross or macroscopic properties 
are determined. Once these property data are known, macromechanics analysis will supply 
answers as to the load-carrying capacity and stiffness of a structure consisting of this 
material. 

Macromechanical analysis is nothing more than the classical structural analysis, except in 
the case of composite materials, where the material properties are controllable and are 
presumably designed with a purpose. The stiffness and strength can be varied not only in 
magnitudes but in directions as well. 
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The other mathematical model frequently used in composite materials is the micro- 
mechanical model. This model requires magnification sufficient to cause its individual fibers 
to be visible. The actual material with this level of magnification can no longer be called 
homogeneous; both the existence of fibers and the matrix must be included in the mathematical 
model. In fact, the cross-sectional shapes and the packing arrangement of the fibers, and the 
relative volumes of the constituent materials must all be properly represented. 

As an approximate distinction, macromechanics deals with composite materials on the order 

of 10° inch; micromechanics, l(f3 inch. The usual mathematical model for macromechanics 
is an in-plane homogeneous, transversely heterogeneous (due to lamination), and anisotropic 
(due to fiber orientation) medium; for micromechanics, a heterogeneous, isotropic medium. 
(The problem of interface is considered sub-microscopic, where molecular interaction is 
visible. In the present mechanics analysis, sub-micromechanics is not treated.) 

The basis for the separation of macro and micromechanics is a matter of choice. With 
this separation, existing knowledge of macromechanics, e.g., the theory of plates and shells, 
can be directly utilized. The selection of a proper combination of constituent materials is the 
concern of micromechanics. With this framework of macro and micromechanics, the inter- 
relation between the two approaches can be linked by a mathematical equation. This inter- 
connecting equation, which will be explored later, provides a logical perspective for the 
mechanics analysis of composite materials. 

In the remaining part of this section, the definitions of a number of basic terms and their 
relevance to composite materials will be described, since composites are our principal 
interest. 

STRESS 
Stress is a measure of internal forces in a continuous medium. Stress is difficult to under- 

stand because it is a tensor which is a mathematical entity one step beyond a vector. This is 
parallel to the case of a vector which can be treated as an entity one step beyond a scalar. If 
we start from the most basic entity, the scalar, it possesses magnitude only. Mass, tem- 
perature, length, and speed are examples of scalars. Each one is described completely by a 
numerical value in some physical unit; e.g., 3grams, 10°F, 2 inches and 35 mph, respectively. 
A vector is more complicated than a scalar because an additional characterization is required. 
An orientation (or direction) is required in addition to the magnitude. Weight, temperature 
gradient, displacement, and velocity are examples of vectors. Each one is described by a 
magnitude (3 lbs, 10°F/in., 2 inches, and 35 mph) and a direction. 

The  direction  of  a vector  can  best be described in a coordinate system as in Figure 1. 

y-axis 

x-axis 

Figure 1.   A Vector in a Coordinate System 
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A vector F can be resolved into two components F   and F , along the x and y coordinate axes 
From simple trigonometry: 

F    cos <fi 

F     sin <f> 

(I) 

(2) 

So far, there is no conceptual difficulty. The resolution of a vector into two or more vectors 
may be performed without hesitation. The next conceptual exercise deals with coordinate trans- 
formations, which is required for the understanding of vectors and tensors of higher ranks. 

It should be recognized that the choice of a reference coordinate system is perfectly 
arbitrary. For vector F in Figure 1, other equally valid coordinate systems can be used. This 
is shown in Figure 2. 

(a) (b) (c) 

Figure 2.   Coordinate Transformation of a Vector 

Figure 2(a) is identical to Figure 1. In Figure 2(b), a new reference coordinate system 1-2 is 
used. The angle between the 1-axis and the original x-axis is 9. The components of F in the 
new (or transformed) coordinate system are F   and F_ with the following relations: 

F,    = F cos (<f>-6   ) (3) 

But, 

F2    = F   sin i(f> - 6   ) 

cos (<£ - 9  )   - cos<£     cos#   4-  sinc£  sinö 

(4) 

(5) 

and sin(<£- 9 )     =sin</>      cos 9    — cos<£     sin 9 (6) 

Substitute (5) and (6) into (3) and (4), respectively, and then use relations of (1) and (2) to obtain: 

F,       =   Fx     cos0     +   Fy    s'm9     =  mFx    4- nFy (7) 

9     -   F„     sinö   = -nF,       +mF„ (8) =   F cos 
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where   m = cos 8, n = sin#. Equations (7) and (8) are known as the transformation equations 
of a vector. They give the new components F^^ and F2 as functions of the original Fx and F , 

and the angle of rotation 8. The reference coordinate system is transformed from x-y to 1-2 
by a rotation of 8. 

E<p - 8 from (3) and (4) we obtain: 

= F n = 0 (9) 

This is shown in Figure 2(c). Now the transformed coordinate system is I - II, instead of 1-2. 
The same result can be obtained from (7) and (8) by letting 

Fy   / Fx    =  s\r\(f> / cos<f>   =   sinö/cosÖ     = n/m (10) 

Substituting this into (7) and (8), we obtain: 

Fx   +  n Fy    = [ m +  (n2 /m ) ]  Fx = Fx / m = F 

0 

Fj-    = ml 

FJJ    = - n Fx   + m F      = (- n + n )  Fx 

(ID 

(12) 

The last step in (11) required (1) and <f> = 8. In the I-II coordinate system, the components Fj 

and F.. reach maximum and minimum values, respectively. The orientation of this system is 

called the principal direction, which is characteristic of vectors and other tensors. 

As a simple example of reference coordinate systems, Figure 3 shows that we are traveling 
toward  Columbus at 100 mph, as shown by a vector Fin coordinate system x-y, where 
F   - F = 100, F   = 0. 

x y 

-O 
Columbus 

Figure 3.   A Practical Example of Coordinate Transformation 
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If we transform to system 1-2, we may obtain it by putting 6 = IT in (7) and (8); the results are: 

F  = - 100 mph 

=  0 

(13) 

(14) 

(15) 

which states that for the same vector F   (going toward Columbus), the vector becomes -F1 in 
X X 

the 1-2 system, which means that we are going away from Indianapolis at the same speed. A 
coordinate transformation can be regarded as a change in reference system, in this case, 
from Columbus to Indianapolis. 

What is stress? It is incorrect to say that stress is P/A. Stress, by definition, is a tensor. 
A tensor is defined by its peculiar transformation equations. They are different from those 
for a vector, shown in (7) and (8). In two dimensions, a stress tensor has four components, 
of which two shear stresses are assumed to be equal (a symmetric tensor); thus, a stress 
tensor has three independent components, i.e., or, a , and <r . A vector, as illustrated previ- 

ously, has two components in a two-dimensional space, i.e., F and F . Only in a special case, 

such as a uniaxial tension, is the normal component of stress,   a , equal to P/A. 
X 

We can easily develop the transformation equation for stress, similar to (7) and (8) for a 
vector. The resulting equations are: 

2 Z 
m     crx 

z 
n     a 

+  n +• 2mncr_ 

+  m    O"     4- 2 mncr 

= - m n <r     + m n <x 
2 2 

+ ( m     - n    ) <r_ 

(16) 

(17) 

(18) 

The relation between coordinates x-y, 1-2, and I-II is the same as that shown in Figure 2 and is 
repeated in Figure 4. 

(o) (b) (c) 

Figure 4.   Stress Components and Coordinate Transformation 
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Equations (16), (17), and (18) show the relations among the stress components of reference 
coordinate systems x-y and 1-2. By letting a& = 0 in (18), we can solve for an angle of orien- 
tation <fc from a 

tan   2 <p - (19) 
2 (crx - cry ) 

This is called the principal direction, for which   eg - 0,  c^ = o^, and c?2 =  o^, when  o-j and 
cc, reach maximum and minimum values. 

As the reference system changes, the stress components will change accordingly. Thus, in 
describing a state of stress in a body, we must refer to a particular reference coordinate 
system. For vectors, a reference system must also be specified. But for scalars, they are, 
by definition, independent of the reference system, and they are invariant. 

Instead of being P/A, stress is defined by (16), (17), and (18). This is similar to the case of 
a vector defined by (7) and (8). The physical significance of stress can be illustrated by its 
normal components   a  and  a  and shear component   cr. The normal components are forces 

that tend to extend or compress a body. Positive normal stress is usually assigned to exten- 
sional forces; negative stress, compressive forces. Shear stress is associated with dis- 
tortional forces. Normal stresses may also be related to forces that tend to change the volume 
of a body; while the shear stress, the shape. 

A uniaxial or simple state of stress can be defined as a state of stress of having only one 
nonzero stress component. A state of simple tension or compression, as represented by <xx ^ 0 

or   o-^O, and pure shear   a # 0 are examples of simple stresses. A multiaxial, combined 
*y ^ 

or complex state of stress exists when two or more stress components are not zero. For the 
two-dimensional case, all three independent stress components maybe present. Homogeneous 
stress is a uniform state of stress throughout the entire body. The stress is independent of 
location. Several examples of the state of stress will now be cited. The uniaxial tension of a 
bar will produce a state of stress both homogeneous and uniaxial (simple). The hydrostatic 
pressure applied to a body of arbitrary shape will produce a homogeneous but multiaxial state 
of stress. The pure bending of a beam will produce a uniaxial (tension or compression) but 
nonhomogeneous state of stress. The nonhomogeneity is caused by the change in stress along 
a transverse plane of a beam. A cantilever beam supporting a transverse load will produce 
both an inhomogeneous and a complex state of stress. The transverse load will produce a 
shear stress across the beam. The state of stress will have both normal and shear components, 
thus making it complex. 

The state of stress as being simple or complex, homogeneous or nonhomogeneous is of 
fundamental'importance to the determination of material properties. For composite materials, 
methods for property determination or quality control are in general more complicated than 
for homogeneous materials. At the same time, an understanding of the difference between 
macro and micromechanics must also be clear. A state of stress on the macroscopic scale 
may be both simple and homogeneous; this can be achieved by imposing a uniaxial load on a 
unidirectional composite. The same loading will, in general, induce a state of stress both 
complex and nonhomogeneous on the microscopic scale. In fact a complex state of stress is 
always present on the microscopic scale because of the complicated interaction between the 
constituent materials. 
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STRAIN 

Strain is a measure of the dimensional change in a body. It is also a tensor, which, by def- 
inition, transforms according to (16), (17), and (18), except for one minor modification of a 
factor of 1/2 in the shear strain component. 

= m   ex 4-n2ev4( mnes /2 ) (20) 

2 .       2 n   e   + m   e 
* y 

( mnes/2) 

e  /2 = -mne„ + mne   + 6 x y [< m n   )es/2 

(21) 

(22) 

The physical significance of the normal components of strain, e   and e , can be illustrated as 

a measure of unit extension or contraction along the x and y axes* respectively. The shear 
strain e is a measure of distortion which is the change of an original right angle to an oblique 
angle. 

Similar to the case of stress (a symmetric tensor), strain at each point within a continuous 
medium is completely specified by three independent strain components. What the magnitudes 
of these strain components are depends on the reference coordinate system. As the reference 
coordinates change, the strain components change according to (20), (21), and (22). 

The strain at a particular point may be simple, complex, or in its principal direction, for 
which the shear strain is zero. The strain, like stress, may be homogeneous, i.e., constant 
throughout a body, or nonhomogeneous. As a simple and useful exercise, the strain at a point 
can be determined by three independent measurements. This is often done by using a three- 
element strain rosette with either 0° -45° -90° or 0° -60° -120° orientations for the individual 
strain gages. The problem is the reduction of these strain gage readings to a state of strain 
relative to some coordinate systems. Let the x-axis run parallel to the 0° gage, as shown in 
Figure 5. 

y 

120 

(a) (b) 

Figure 5.   Strain Rosettes 
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For the first rosette, as shown in Figure 5(a), we can obtain the following results from (20): 

1) For 9 = 0°,    m =  I,   n  = 0 

2) For  9 = 90°,   m = 0,   n =   I 

3) For 9  = 45°, m = n = IA/2~ 

hence   ex   = eQ 

hence  e. 

hence   e. 

:  690 

2e 45 e0      e90 

For the rosette in Figure 5(b), we again obtain from (20): 

1) For   9  =0°, 

2) For 9 = 60°, 

m =   I, 

hence   e 

n = 0 ; 

= e. 

3) For 9 = 120°, 

x  " "o 

m =/3~/2,    n=  1/2 ; 

hence   eg0 =(3ex+ey +y3es)/4 

m = VT/2,  n = -1/2 ; 

!y 
hence   el20  = (3ex+e„  ~y3ec)/4 

From these simultaneous equations, we obtain: 

e
y = 2{eso +ei20) _3eo 

e« = 2(ecn -e.9n)/^/T '60 

(23) 

(24) 

(25) 

Once the state of strain as expressed in (23) or (25) is known, strain for other reference coor- 
dinates can be obtained directly from (20), (21) and (22). 
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SECTION II 

MACROSCOPIC ELASTIC MODULI 

STRESS-STRAIN RELATION 

The stress-strain relation is an equation that describes the mechanical constitution of a 
material. For this reason, the stress-strain relation is one form of a general constitutive 
equation. On the macroscopic scale, the governing constitutive equation for a unidirectional 
composite can be described as follows: 

a,  = (e |   + v2| e2) E11 / ( I - vl2 v2|) 

<T2   =(v|2 e,  +e2)E22 /( I - v12 v2|) (26) 

^6     =     Ge6 

The same equations can be expressed in an inverted form: 

e    = (cr    — v      <T  )/E 
i        *   I 12       2 II 

e2   = (-v2, cr, +a2)/E22 (27) 

e6  = %  /G 
These stress-strain relations represent a macroscopically homogeneous and orthotropic 
material which can be applied to plate-form unidirectional composites. 

The definitions of the elastic moduli are as follows: 

E11 = axial stiffness (in the direction of fibers) 

E22 = transverse stiffness (transverse to fibers) 

v.» = major Poisson's ratio (transverse contraction due 
to an axial extension) 

v21   = minor Poisson' s ratio (axial contraction due to 
a transverse extension) 

G     = shear modulus 

The major and minor Poisson's ratio are related by a reciprocal relation: 

V,2
/E.,        =V2./E22 (28) 

There are four independent elastic constants. For isotropic material, on the other hand, there 
are only two independent constants. The isotropic material can be seen as a special case of 
the orthotropic material if: 

E„    =   E22   =  E 

v,2  =   v2|   = v (29) 

G      =  E/2 (1+ v ) 
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Substituting these   relations into (27), the stress-strain relations for an isotropic material 
become: 

e,    =  ( cr, - v <JZ ) / E 

e = (-VC7-,    +cr, )/E (30) 
2    -   i      .-,      ■   -2 

e6   =  2( I 4-v  ) cr6 /E 

For isotropic materials, we have only to determine two elastic moduli, say, Young's 
modulus E and Poisson's ratio v. The shear modulus G can be computed from E and v 
using   (29).   The  bulk modulus   K  can  also  be computed from the relation K = E/3(l - 2v). 

For orthotropic materials, there are four independent elastic moduli. For property data, 
more tests are required than for the isotropic material; e.g., shear modulus must be measured 
independently and it cannot be computed from knowing E -, v^> and E^. 

TRANSFORMATION PROPERTY 

Isotropy of a material property (for the present case we are concerned with the stiffness of 
a material) implies that the stiffness is independent of the orientation of the material. Stating 
it more precisely, isotropy of a property implies that this property is invariant unde^ coor- 
dinate transformation. This condition is satisfied if the material constants in a constitutive 
equation are scalars.  Equation (30) satisfies the condition of isotropy; E and v are scalars. 

Orthotropic material is a simple type of anisotropic material that possesses three orthogonal 
planes of material symmetry. A unidirectional composite can be represented, on the macro- 
scopic scale, by an orthotropic material because planes parallel and perpendicular to the 
fibers are planes of symmetry. 

As stated before, the number of independent elastic constants is four for a plate-form 
orthotropic material. The material constants in equations (26) through (27) are no longer 
scalars. They are not invariant. Thus, when the reference coordinate system changes, so will 
the elastic moduli. In fact, the elastic moduli of an orthotropic or anisotropic material in 
general can be defined by a tensor of the fourth rank, which is two steps beyond the stress 
tensor (of the second rank). As we have seen earlier, for each rank of tensor there is an 
appropriate set of equations that governs its transformation property. For vectors (which 
belong to a tensor of the first rank) the transformation is governed by (7) and (8). For stress 
tensors (of the second rank) the transformation is described by (16), (17), and (18). For fourth 
rank tensors, the following set of equations will govern the transformation: 

_L =J=1+(J ?!!L)  m2n2 +  -£- 
E',       E„      V G EM   ' E22 

G G V        En E22 G   ' (3|) 

vi2   - E, 
'    r       VI2         /   ' + V|2      .        ' +V2I 1^22] 
il  L~ET"l ET   +    E2I"  ""G~)m    "    J 

„'     -cr    r   2mn        2mn      , t 2v|g      x  .   2 2,       1 
n.2 =Ei. L"-F- TT. + (~G~T~ilm -n)mnl 

10 
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where primes  indicate the  transformed axial  stiffness   (E11), shear modulus (G ), major 
Poisson's ratio (v' „), and major shear coupling factor (n'2). 

These equations indicate that all the elastic moduli of an orthotropic material change with 
the orientation of the reference coordinate axes 1-2, or the material symmetry axes x-y. This 
is illustrated in Figure 6. 

(b) 
Reference Axes 1-2, Fixed; 
Material Axes x-y, Rotated 

(a) 
Material Axes x-y, Fixed; 
Reference Axes 1-2, Rotated 8 = 90° 

Figure 6.   Equivalent Transformations 

Figure 6(a) represents positive rotations of the reference coordinate system, designated by 
axes 1-2. Figure 6(b) represents negative rotations of the material symmetry axes x-y, of 
which the x-axis corresponds to the fiber axis. These two transformations are equivalent and 
the resulting transformed properties, as shown in Equation (31), are applicable to both 
transformations. In short, for a coordinate transformation, we can either rotate the reference 
system (1-2) in one direction or the material system (x-y) in the opposite direction. 

Equation (29) shows the relationships between the orthotropic and the isotropic moduli. By 
substituting those relationships into (31), we obtain, respectively, values as given in 
Equation 32. Thus, for isotropic materials, E, v, and G are independent of the angle of rotation, 
or they are invariant. The shear coupling factor n is identically zero which must be the case 
for isotropic materials. 

11 
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jf,{ 2( l + v )     _   _2v   ^   _2_e_,__tL 
E 

Z  .   „2  ,2 

\        2   2J_ ■ j   m n   +- 

(mz+n* J" 

_L 
G 

+  «   ("^   +      E E 
l+V 2 (I+V) >   „2    2 J m  n 

12 ^[V(^^ + -i^-^^d K^ 

(32) 

=   v 

2m3n     2mr?     ,  2( I +v ) 2v 
12 

■ + ] mn  (m   - n   ) j 

= 0 

BORON AND GLASS COMPOSITES 

Numerical examples of the transformation property of boron-epoxy (solid lines) and glass- 
epoxy (dashed lines) are shown in Figure 7. The basic input data to (31) are as given in Table L 

TABLE I 

PRINCIPAL ELASTIC MODULI 

Moduli Boron Composite Glass Composite 

Eu 40.0 x 10   psi 8.00 x 10   psi 

E22 
4.0 x 10   psi 2.70 x 10   psi 

V12 
0.25 0.25 

G 1.5x10   psi 1.25 x 106 psi 

These unidirectional composites have an approximate fiber volume of 65 percent. All the data 
are the results of actual experimental measurements. They are not predicted from the micro- 
mechanics analysis, although excellent agreement between the theoretical predictions and the 
data in the table does in fact exist. 

The predicted transformation property of the elastic moduli for both composites agree 
reasonably well with actual experimental data. These properties can be determined experi- 
mentally as shown in the following discussion. 

Take a unidirectional composite and cut a tensile coupon with 30° fiber orientation, for 
example. The specimen will look like the one shown in Figure 6 for 8 = 30°. Bond a three- 
element strain rosette, like that shown in Figure 5(a) with the elements oriented 0°-45°-90°, 
to the tensile coupon with the 0° element parallel to the direction of the uniaxial load, i.e., 
along the 1-axis in Figure 6. Under uniaxial tensile load, the state of strain relative to the 
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1-axis will be complex, meaning that all three strain components will not be zero. By using 
the relation in (23), strain components er e2> and eß, which correspond to ex, ey, and eg, 

respectively, in (23), can be computed directly from eQ, e^, and ego for a given level of 

uniaxial stress a (for this case ar% = a& = 0). The following elastic moduli can now be de- 

termined directly: 

E'.     =   ^   /e. 

v 

n 

'      =   e    /e (33) 
12 2 I 

',2       =    e6    /e. 

The determination of G' for a fiber orientation of 30° can be achieved by twisting a square 
plate which is made of the same composite material and has the same fiber orientation as the 
tensile coupons. 

Figure 7 shows that for orthotropic materials all elastic moduli vary drastically as a function 
of fiber orientation. For Isotropie materials, all the elastic moduli E, v, or G will be horizontal 
lines across the graph. This means that the moduli are invariant. The condition that the 
Poissons's ratio cannot be greater than 1/2 applies only to isotropic materials. It is not appli- 
cable to orthotropic materials. In fact, for 8 = 30°, the major Poisson's ratio for boron com- 
posite is more than 1/2. This is predicted theoretically from the transformation equation in (31) 
and has been experimentally verified as well. 

The importance of the experimental verification of the curves shown in Figure 7 is twofold: 
First, the boron and glass composites are shown to be orthotropic; secondly, the elastic 
moduli are shown to be a tensor of the fourth rank. Both conclusions are important inde- 
pendently because a material property can be orthotropic but not a fourth rank tensor. The 
thermal expansion coefficients of unidirectional composites, e.g., are orthotropic and a second 
rank tensor, like stress. Then the governing transformation equation will be (16), (10» ana (i.a), 

instead of (31). 

The elastic moduli of a laminated composite consisting of layers of orthotropic materials 
can be theoretically derived. The number of independent elastic moduli increases from four 
for the unidirectional composite to 18 for the laminated composite. But the concept of ortno- 
tropy and the governing transformation equation remains the same. 

14 



AFML-TR-66-149 
Parti 

SECTION III 

MACROSCOPIC STRENGTH 

STRENGTH CRITERIA 

Macroscopic strength, like macroscopic elastic moduli, is based on a phenomenological 
approach. Measurements of stiffness and strength are experimentally determined and no 
reference is made to the actual mechanisms of deformation and failure on the microscopic 
scale. This approach may sound unsophisticated but it is normal procedure for the property 
determination of most materials. Gross properties of metals are usually measured rather 
than predicted from a model of lattice distortion or the propagation of dislocations. Until a 
reliable model for the microscopic mechanism is developed, the phenomenological approach 
will remain in use. 

The strength of a unidirectional composite is considerably more complicated than the 
elastic moduli. A satisfactory strength theory must take into account the anisotropy of the 
composite materials and the behavior of the material under complex states of stress and 
strain. If we restrict the strength theory to a plate-form material, a state of two-dimensional 
stress (plane stress) is reasonably accurate. There are three components each for the stress 
and strain tensors. For simple loading, we can establish three strength properties, two 
normal   strengths   and  one shear strength, corresponding to the components of stress,   q^, 

a ,   and   a ,  or  strains,   e ,  e ,  and e .   It is convenient to refer the normal and shear y» s x      y s 
strengths to the material symmetry axes. This means that the normal strengths are the axial 
and transverse  strengths, X  and Y,  in the  case of a unidirectional composite. The shear 
strength, S, is associated with the in-plane shear stress or strain,   cr or e . These principal 

strengths may be experimentally determined from the stress-strain relations. In Figure 8 we 
show typical experimental results of glass-epoxy composites. 

The crucial question is the existence of a strength criterion that can describe the strength 
of a unidirectional composite under combined or complex loading or straining, as illustrated 
in the upper right-hand corner of Figure 8. This strength criterion, hopefully, can be related 
to the three principal strengths X, Y, and S. If a strength criterion can be found, the strength 
of both unidirectional and laminated composites for an arbitrary orientation of the material 
axes can be readily deduced from the transformation property of stress or strain components. 

A few of the most common strength criteria for homogeneous materials will now be 
discussed. We hope that generalizations of these criteria will produce suitable ones for com- 
posite materials. The most common strength criteria are based on some maximum levels of 
stress, strain, or distortional work. A generalized strength criterion that automatically takes 
into account the anisotropy of strength can be obtained by the use of dimensionless stress or 
strain  components  as the variables. Typical dimensionless components are:   <r/X,  a /Y, 

cr/S,   En1e /X,   E    e /Y,   Ge /S, where  the x-y  coordinates  coincide with the material 

symmetry axes. 

Based on limited experimental evidence obtained from glass and boron composites, a strength 
criterion based on a generalization of the maximum distortional work appears reasonable. The 
resulting equation is:        2 

(-T-J " \ (-T-) (-^ + <^-' + <-?"> ■ ' ,34> 
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This equation states that if the stress components satisfy this equation, the strength of a 
unidirectional composite, with principal strengths X, Y, and S, would have been reached. If 
the numerical value of the right-hand side of this equation is less than 1, the material has 
not been stressed to its strength. Combining (34) with the transformation equations for 
stress components (16), (17), and (18), we can readily derive the uniaxial tensile strength of 
a unidirectional composite with an arbitrary fiber orientation. The final equation becomes: 

I _    m4      .    /    I I     \     2   2 n4 .,_. 

(a!f X2 V   S* 

where <x' is the uniaxial tensile strength of a unidirectional composite with a fiber oriented 

9 degrees from the loading direction, m = cos 8 , and n = sin 9. 

The principal strengths for both glass and boron composites with epoxy resin are very close 
to one another. Their numerical values are: 

X = axial   strength = 150 ksi 
Y = transverse  strength =     4 ksi (36) 
S = shear   strength =     8 ksi 

Substituting these values into (35), the uniaxial strength for any fiber orientation can be 
computed. The theoretical result is shown in Figure 9 as a solid line. Experimental data for 
glass and boron composites are shown as circular dots and squares, respectively. 

A strength criterion based on maximum stress can also be derived. The strength for a 
given fiber orientation is governed by the following three equations, whichever gives the 
lowest strength: 

or 

or 

1 
- X / m2 

V = Y/n2 

< 
= S /mn 

(37) 

Again using the principal strengths in (36), the resulting theoretical prediction is shown as a 
dashed line in Figure 9. Note that the prediction of the maximum stress theory does not agree 
with the data as well as the distortional work theory. The former theory predicts a higher 
strength than the latter. 

A strength criterion based on maximum strain can be similarly derived. The strength for 
a fiber orientation is governed by the following three equations, whichever gives the lowest 
strength: , 2 2 

<7,    =   X /(m    - v|2   n     ) 

or ,22 
a'   = Y/( n     - v„ n    ) (38) 

i 

or 
n 

I 

12 

o\    =  S / m n 

Again using the principal strengths in (36) and a major Poisson's ratio of 0.25, the uniaxial 
strength   is   shown  as   a  dash-dot  line  in  Figure 9. Between 0° to approximately 30°, the 
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Figure 9.   Uniaxial Strength Criteria 

predictions of (37) and (38) coincide with each other. Above 30°, the predictions of the maximum 
strain is even higher than the maximum stress theory. 

The maximum stress and strain criteria imply different modes of failure depending on the 
fiber orientation. Up to a fiber orientation of approximately 5°, the primary mode is an axial 
failure; from approximately 5° to 30°, a shear failure; and from 30° up to 90°, a transverse 
failure. The three modes of failure are assumed to operate independently of one another. The 
distortional work criterion takes into account an interaction among the principal strengths and 
thus results in a continuous curve in Figure 9, instead of segmented curves for the other 
criteria. Based on available data, the distortional work criterion gives the best prediction. 

MECHANICS APPROACH 

The study of the stiffness and strength of unidirectional composites for various fiber orien- 
tations may appear unrelated to the actual use of these materials in common structures. It is 
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obvious that the greatest stiffness and strength of a unidirectional composite are obtained 
along the direction of the fibers, i.e, E and X. Why should we be bothered with all the other 
properties, e.g., E    , G, Y, and S? 

First of all, a mechanics analysis requires a mathematical model. The validity of the model 
must be checked experimentally. Both stiffness and strength are anisotropic and require a 
more complicated mathematical model than an isotropic material. Experimental results shown 
in Figures 7 and 9 have demonstrated the fact that the theoretical predictions of the uniaxial 
stiffness and strength thus far have passed their tests. The macroscopic property data can be 
used subsequently in structural design. One would like to be certain that those material proper- 
ties are reasonably accurate. Netting analysis, on the other hand, would not have passed the 
test on either the stiffness or strength prediction. 

Secondly, both homogeneous and composite materials in actual structures are usually sub- 
jected to complex states of stress and strain. Thus, a complete characterization of the material 
properties is necessary. For composite materials, the stiffness requires four principal 
components; and the strength, three components. There is no reason to emphasize the axial 
stiffness and strength over the other stiffness and strength components. Each component 
deserves equal respect regardless of its numerical value. 

Thirdly, the results of mechanics analysis will provide information for materials and struc- 
tural optimization. For upgrading current composite materials, we can either concentrate 
on improving the axial properties E^ andX, or the possibly more effective plan of remedying 

current weaknesses in transverse and shear properties. Mechanics analysis will produce quali- 
tative and quantitative information to guide both materials development and structural 
applications. 

The emphasis thus far on the validity of the mathematical models is justified by the impor- 
tance of the models to the mechanics analysis. The description of the macroscopic stiffness 
and strength of unidirectional composites is reasonably accurate. Laminated composites can 
also be adequately described from the behavior of their constituent layers. 
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SECTION IV 

MICROMECHANICS 

A GENERAL DEFINITION 

Micromechanics is a study of the mechanical interaction between the constituent materials 
of a composite. An understanding of this interaction can be used to establish the bridge between 
the constituent and composite properties. The components of the composite or macroscopic 
stiffness and strength, i.e., E^, E22> v12, G, X, Y, and S, represent the intrinsic macro- 

scopic material properties of a unidirectional composite. The elastic moduli are the coef- 
ficients of the generalized Hooke's law which is the governing constitutive equation. The prin- 
cipal strengths may be regarded as the limits of applicability imposed on the constitutive 
equation. Thus, macromechanics analysis has delineated the intrinsic properties that govern 
the stiffness and strength of unidirectional composites. An important role of the micro- 
mechanics is to establish how these macroscopic properties can be controlled deliberately by 
the geometric and material properties of the constituents. 

MATHEMATICAL FORMULATION 

The problems of solid mechanics can be divided into two basic areas: strength-of-materials 
and theory of elasticity. The former includes the theory of beams, plates, and shells; the latter, 
the theory of viscoelasticity and plasticity. In general, the strength-of-materials is a more 
elementary theory than the theory of elasticity. It deals with the behavior of thin-walled 
structures and is based on an assumption that the normals to the middle surface remain 
undeformed. This assumption has been found experimentally to be reasonable if the deflections 
of the plate or shell are small relative to the thickness. In fact, for laminated anisotropic 
plates and shells, the assumption of the nondeforming normals still remains reasonable and 
thus an entire body of existing knowledge and techniques of the theory of plates and shells can 
be fully utilized for the composite materials. Most macromechanics problems of filamentary 
structures can be solved using the elementary approach. 

In problems of micromechanics, however, the theory of elasticity must be used. The elemen- 
tary approach often gives questionable results because rather subjective assumptions con- 
cerning the distribution of stress and strain are often required. Yet, a surprising number of 
problems of micromechanics is still being solved by the strength-of-materials approach. 
Unlike the theory of elasticity, the elementary approach in micromechanics involves no gov- 
erning partial differential equations but relies on sometimes arbitrary selections of math- 
ematical models, examples of which include: the dissecting technique (removal of a segment 
of a composite for examination); the rearrangement technique (reshaping of the constituent 
materials to a form solvable by elementary analysis); the isolation technique (reduction of a 
many-fiber problem to a single-fiber problem, thereby bypassing the problem of interacting 
fibers), etc. Some of these techniques are difficult to justify and often lead to erroneous 
answers. 

The theory of elasticity also requires assumptions. But they can usually be specified explic- 
itly and with mathematical precision. Subjective interpretation is considerably less than that 
required for the elementary approach. It is considered essential to use the theory of elas- 
ticity for micromechanics problems because of the complexity of the problem. It is almost 
impossible to visualize the exact distribution of Stressor strain before the problem is solved. 
Thus, the results of micromechanics analysis based on the elementary approach must not be 
accepted without some critical examination; e.g., many of the micromechanical relations do 
not satisfy a necessary condition that they remain valid in the limiting cases, such as when 
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the fiber volume goes to 0 or 100, or fiber stiffness goes to zero or infinity. The fact that the 
relations produce good numerical results for glass and boron composites is necessary but 
is not always sufficient to guarantee their validity in general. 

AXIAL PROPERTIES 

The axial properties of a unidirectional composite include the axial stiffness E 1 and axial 

strength X. The relations between these macroscopic properties and the micromechanical 
parameters is commonly described by the rule-of-mixtures equation, as follows: 

Ei.    = Vf   Ef   + Vm Em <39> 
X      = Vf   Ff    + Vm Fm (40) 

where V, = fiber volume, V     = matrix volume, E. = fiber stiffness, E    = matrix stiffness, f m f m 
Ff = fiber strength, and F     = matrix strength. 

Equations (39) and (40) are derived using the following assumptions: 

1) Fibers and the matrix are strained by the same amount (homogeneous strain) up to 
the ultimate failure. Fibers have uniform strength, i.e., there is no scatter in the strength 
measurement. 

2) The constituent materials can be rearranged and reshaped as homogeneous materials 
connected in parallel. The axial properties are not affected by the cross-sectional shapes of 
the fibers, since they will be reshaped and rearranged in the development of the mathematical 
model. The interfacial bond strength is also of no significance as long as homogeneous strain 
is assumed. 

3) The differences in the Poisson's ratio and the thermal contraction between the con- 
stituent materials are small, and the stresses induced by these differences are considered 
secondary. 

These assumptions are reasonable within certain limits, and are not in violation of the 
elasticity theory. Based on available data, homogeneous strain is apparently valid up to a 
certain point depending on the constituent materials. The predictions of E^ by (39) will at 

least correspond to the initial elastic modulus. For some metal-metal composites, e.g., 
steel-silver and tungsten-copper systems, the rule-of-mixtures relation apparently remains 
valid even in the nonlinear range. The implication is that the steel and tungsten fibers each 
have nearly uniform strength. The state of homogeneous strain can be maintained up to the 
ultimate failure. 

Where fibers have a large scatter in their strength, a number of complications arise. There 
is a difference between the monofilament strength F   and the bundle strength F,. As a bundle 

of filaments is loaded, the weaker ones will fail first. The remaining fibers must assume the 
load released by the fibers that have failed. For this reason, the bundle strength Ffo will be 

lower  than  the  monofilament  strength  F .   The  reduction in strength of Fb can be related 

directly to the scatter in the F , which may be represented by the standard deviation (s) or 

the  coefficient of variation (s/F ). Some numerical values of this strength reduction based 

on two statistical distributions of the monofilament strength are shown in Table II. 
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TABLE II 

BUNDLE STRENGTH 

Coefficient  of 
Variation 

s/Fo 

Dimensionless Bundle Strength Fb/FQ 

Normal Distribution Weibull Distribution 

0 1.00 1.00 

0.1 .78 .76 

0.2 .67 .65 

0.4 .56 .52 

0.8 .50 .40 

Table   II can be  used  as follows.   Assuming that for boron filaments, we can obtain 
experimentally: 

F        = 400 ksi 
o 

s =80 ksi 

Then: 

s/F    = 80/400 = 0.2 

From Table II, for s/F   = 0.2, wefindFb/FQ 0.67 or 0.65, depending on the assumed statis- 

tical distribution. Then we can compute immediately: 

F,_ = .67 x 400 = 268 ksi 
b 

or 

.65 x400 = 260 ksi 

The question now is what governs the axial strength. The monofilament and bundle strengths 
are interesting, particularly when they behave in accordance with the predicted results listed 
in Table II, but it is the axial strength X that is needed for structural applications. What value 
of  F. should be used in (40): F  , Fb> or something in between? For perfect fibers, there is 

zero standard deviation; then Ff = FQ = Ffe. In fact, for metal composites mentioned earlier, 

fibers are fairly uniform. This may explain the fact that the rule-of-mixtures equation is rea- 
sonably good. But for imperfect fibers, like glass and boron, we may be able to use FQ and 

F, to derive the upper and lower bounds for X using (40). The implication is that Ffe< Ff <FQ. 

In a bundle, the load released by a broken fiber is distributed evenly among the fibers still 
intact. In a composite, the matrix can somehow localize the load distribution around a fiber 
break Away from the break, all fibers can continue to carry the same load. Thus, the presence 
of matrix contributes more than its share, as indicated by the second term in (40). In fact, the 
direct contribution of the matrix according to (40) is negligible in composites with high fiber 
loading. 
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It is the ability of the matrix, together with neighboring fibers, to isolate the effect of local 
fiber failures that makes the matrix appear to contribute more than its share. This is some- 
times referred to as a synergistic effect or a composite efficiency higher than 100 percent. 
The definition of efficiency is questionable in this instance. A theoretical prediction of the 
role of the matrix in a composite is apparently not available at this time. This problem is 
complicated because we can no longer assume a state of homogeneous strain. 

The total effect of the matrix, however, can be readily measured by applying strand tests to 
specimens with and without matrix, i.e., to a composite and a bundle. Rewriting (40) by ignoring 
the   direct   contribution   of   the matrix  (the  V   F     term, because V.> V_ and F. > F   ), mm I       m I       m 

X  = Vf  Ff (41) 

In terms of the maximum load of the composite P : 

X   =   Pc  /Ac (42) 

where A    = cross-sectional area of the composite. For the bundle test, the bundle strength 

in terms of the total load P,  is: 
Fb =  Pb /A (43) 

where A is the original cross-sectional area of the fibers, when A = V- A . Combining (41), (42), 
and (43), we obtain: 

Ff   =X/Vf   =PC/Vf Ac=   Pc/A (44) 

= (PC  /Pb>Fb (45) 

= ß Fb (46) 

where ß = P /P. = matrix effectiveness in a composite. This is the ratio of the maximum 

loads and also the apparent maximum stresses in strands with and without matrix. 

If the matrix contributes nothing, the beta factor would be unity. Thus, beta is always equal 
to or greater than 1. An upper limit of beta may be conceived when Ff = F , i.e., the average 

fiber stress in a composite reaches monofilament strength. The reciprocal of the Fb/
F

Q listed 

in Table II may be used as the upper limit of beta. Thus, the range of beta is related to the 
scatter in the strength of the fibers. Other parameters that would influence the beta factor 
would certainly include the elastic and strength properties of the constituents, and the inter- 
facial bond strength. Volume ratio of the constituent materials is apparently not important, 
so long as the composite is a dense composite, which is assumed in (41). The numerical value 
of beta is very easy to determine experimentally; it is merely P /P., the ratio of the ultimate 

load of strands with and without matrix. Typical values of tests performed on glass, boron, 
and carbon composites with epoxy resins yields beta factors from 1.2 to a maximum of 2.1. 
The boron composites covered the lowest range, say from 1.2 to 1.4; carbon composites, 
about 1.5; and glass composites, 1.5 to 2.1. Glass-polyurethane and glass-rubber composites 
yielded lower beta values than glass-epoxy composites. 

If the beta factor can in fact be predicted from the constituent properties, the axial strength 
can then be derived from combining (41) and (46): 

Fb (47) = /3vf 
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Although an educated guess is still required at this time, the numerical values of beta will 
range from 1 to 2 for most composite materials. 

Based on the proposed theory, the beta factor can be used to compare the effectiveness of 
different matrix systems for a given fiber. Presumably, the higher beta factor would indicate 
a higher matrix effectiveness in a composite. 

The axial compressive strength is likely to be entirely different from the tensile strength. 
In compression, local buckling may occur. The scatter in the fiber strength is probably less 
critical for compression than for tension. The role of the matrix is to hold the fibers in 
position, so that axial load can be supported by the fibers. This mechanism is different from 
the role of the matrix in the tensile case, where the matrix is an agent that transfers the load 
released by a broken fiber to adjacent fibers, and thereby localizes the break. 

To understand the axial properties more exactly than as generally reflected by the state of 
the art, a few considerations may be helpful. First of all, an elasticity solution of a many-fiber 
problem will be very enlightening. Many current investigations are concerned with the load 
transfer by the matrix to a single fiber that has broken. It appears that in a dense composite 
(high fiber loading) the fibers adjacent to the fiber that has the break may carry most of the 
load released by the broken fiber. Some of the current photoelastic investigations of the load 
transfers mechanism of the matrix in a dense composite may yield important qualitative 
results. A second important consideration in obtaining a better understanding of the axial 
properties involves a more exact mathematical characterization of the interface than that 
which is currently available. Finally, the mechanics of fracture and crack propagation in a 
dense composite must also be investigated. 

TRANSVERSE PROPERTIES 

Transverse properties that have direct bearing on the macroscopic behavior of a unidirec- 
tional composite are the transverse stiffness E22 and transverse strength Y. Other transverse 

properties, e.g., the Poisson's ratio and shear modulus in the transverse plane, have secon- 
dary  influence  on the  macromechanical  behavior and will not be discussed in this report. 

Until recently, the transverse stiffness and strength were believed to be approximately 
those of the matrix. This conclusion was based upon an argument that the matrix would have 
to assume all of the deformation since the glass fibers, for example, are 20 times higher in 
stiffness and strength than the resin and can therefore be considered rigid. 

The argument is correct, but the conclusion is not. The key technical point is the existence 
of a complex and nonhomogeneous state of stress in the matrix of a composite. The behavior 
of a pure matrix (without fiber) under a simple and homogeneous state of stress would be 
entirely different. With the inclusion of fibers, the gross stiffness E22 is higher than that of 

the pure matrix. But the macroscopic strength Y will probably be lower than that of the matrix. 
The reason for this decrease in strength may be traced to a weak interfacial bond, and/or the 
effect of fibers as inclusions that cause stress concentrations in a brittle matrix or resistance 
to flow in a ductile matrix. Figure 8 shows the stress-strain relations of a unidirectional glass- 
epoxy composite, E-glass and pure epoxy resin. The stress-strain relation in the transverse 
direction is significantly different from that of the pure resin. The test data are indicated in 
Table III. 
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TABLE III 

MATRIX AND TRANSVERSE PROPERTIES 

STIFFNESS STRENGTH 

Resin 

Composite 

E     =0.5xl06psi 

E22=2.7x 106psi 

F     =15 ksi m 

Y     = 4 ksi 

In what follows, we will attempt to outline a procedure for predicting the macroscopic 
transverse properties from the constituent properties. A number of simplifying assumptions 
must be made at this time to formulate an elasticity problem that can be solved: 

1) Both constituents are linearly elastic up to their failure stresses. 

2) Interfacial bond is perfect (infinite bond strength). 

3) Fibers are arranged in a regular array. 

With these assumptions, a reasonably simple mathematical model can be constructed. The 
fibers are arranged in a square array shown in Figure 10, so as to take advantage of the 
symmetry properties, i.e., square elements are deformed into rectangular elements under 

ELEMENTAL   SQUARE 

Figure 10.   Idealized Fiber Packing 
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the influence of a transverse load. The fiber cross section may be any shape as long as it re- 
mains symmetrical with respect to the x and y axes. The governing differential equations 
of this idealized transverse plane of a unidirectional composite are, using a two-dimensional 
formulation (plane strain): 

a2     i-2v   a2 i 
(JL.  +    '""    -^V)U   +—■    r-7-   V = 0 (48) 
* <3x2      2(l-v)   <3y2' 2(l-v)  dtdy 

a2       , i-2v   a2     a2 
u+(77ir^ä^+ä^)v=o 

2(l-v)  dxdy V2(l-v)   ax2      dy2 
(49) 

where U and V are the components of the displacement vector along the x and y axes, 
respectively. Solution of these simultaneous equations subject to appropriate boundary con- 
ditions (uniform stress at infinity p^ , and perfect interfacial bond) will give information 
concerning the transverse stiffness E     and the distribution of stress and strain throught the 

composite material. From the stress distribution, the transverse strength Y may be estimated. 

Although the mathematical detail is beyond the scope of the present report, it will be helpful 
to describe explicitly what is actually done to obtain a solution. It is also hoped that the fol- 
lowing description will show some of the limitations of the strength-of-materials approach. 

The use of a square packing of the fibers, as shown in Figure 10, permits a significant 
simplification that can be derived from the symmetry consideration. It is not too difficult 
to conclude that under a load acting along the x-axis at infinity, p^ , the elemental squares, 
each of which contains a fiber, will be deformed to a rectangle. The deformed shape must 
be rectangular; otherwise, the deformed elemental areas will not be compatible, i.e., cracks 
will develop between the boundaries of the elemental areas. If we use a mathematical model 
that has a hexagonal packing arrangement, the symmetry properties of the elemental hexagon 
will be quite different from the square packing. If we assume no regular packing arrangement, 
there will  be no symmetry at all. The problem of transverse loading becomes intractable. 

Returning to the square packing, if we know that the undeformed square can go into a rectan- 
gle under a transverse load, then, from symmetry considerations, the state of stress and 
strain must be identical in each elemental square, within which the stress and strain must also 
be symmetrical with respect to the x and y axes. Thus, there remains only to solve the problem 
of one quarter of each elemental square, shown as the shaded area in Figure 10. The state of 
stress and strain is repeated everywhere throughout the entire composite. 

The undeformed elemental square and the deformed rectangle are shown in Figure 11, in 
solid  and  dotted  lines,   respectively.   Displacements  UQ and VQ imposed at the boundaries 

x = a and y = a, respectively, must satisfy the loading conditions, i.e., the average normal 
stress along the x-axis must be equal to p^, , and the average normal stress along the y-axis 
must be zero. The normal stress distribution is shown qualitatively in Figure 11. With these 
boundary conditions imposed on the elemental area, (48) and (49) can be solved to provide 
the distribution of stress and strain throughout the entire area, including the condition at the 
fiber-matrix interface. 
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Figure 11.  Deformation of the Elemental Square 

The transverse stiffness E_2 of the composite can be derived from the solution just obtained. 

The  transverse   stiffness is approximately the ratio between the average transverse load p^ 
and the transverse strain.   For the present case, the transverse strain e? is: 

(50) 

Thus: 

e2 suo' a 

hz =   P. /e
2 

= ap 
CO 

/uo 
(51) 

The Poisson's ratio in the transverse plane, v , is approximately: 

V
2   =   V0     '  U0 (52) 

The numerical results of the solution of (48) and (49), in conjunction with the boundary con- 
ditions   shown  in  Figure  11, are shown in Figure 12. This diagram shows a dimensionless 
transverse  stiffness,   Eori/E   ,   as   a function of the stiffness ratio of the constituents, for 22    m 
selected fiber volumes. The Poisson's ratio for both constituents is 0.3. The spacing between 
fibers  for  various  fiber volumes is drawn to scale on the right-hand margin. This gives a 
visual indication of the packing density. 

Figure   12  can be  used to  estimate  the  transverse stiffness for various composites as 
follows. Assume that for: 

1) Boron-epoxy composites 

Then: 

Ef     = 60.0 X   10     psi 

Em   = 0.5 X  I06   psi 

Ef/Em   = 120 
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Figure 12.   Transverse Stiffness 
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Follow the stiffness ratio in Figure 12 to the desired fiber volume, say, Vf = 70%; the rein- 
forcing factor E00/E     is 8. 

Thus: 
E22=   8 X  0.5 X   10      = 4.0 X I06 psi 

This predicted value agrees well with available data. 

2) Glass-epoxy composites 

Ef / Em    = 10 /0.5   = 20 

From Figure 12, for V- = 70%; 
E22/Em=   6 

Thus: 
E22=  6 X 0. 5 X   I06    =  3. OX I06   psi 

This predicted value also agrees well with available data. 

3) Boron-aluminum composites 

Ef / Em = 60/ 10   =6 

From Figure 12, for V. = 40% (for metal-matrix composites, Vf is likely to be lower than that 

of organic-matrix composites): 
Ezz/ Em    =   2 

Thus: 

E22 =  2 x 10 x   I06 = 20 x  I06  psi 

This prediction, although not verified experimentally, points out an important potential of 
metal-matrix composites,  that the transverse stiffness is very close to the axial stiffness 

(30 x 106 psi for Vf = 40%). 

Equations (48) and (49) can be solved for a hydrostatic pressure imposed at infinity. Three 
fiber spacings, corresponding to three fiber volumes, of rigid circular fibers are solved. The 
dimensionless  normal stress     cr/p along one  side  of an elemental square, say, x = a, is 

shown in Figure 13. In a dilute composite with a fiber volume of 20 percent, the normal stress 
is nearly equal to the pressure at infinity. The fibers for this volume ratio are spaced ap- 
proximately 2 diameters apart. At this spacing, the interaction among fibers is small. It may 
be concluded that the stress distribution around each fiber is very close to that of a single 
fiber in an infinite matrix. In fact, the packing arrangement of the fibers, in a dilute com- 
posite, whether it is square, rectangular, hexagonal, or random, will not have significant 
effect on the transverse stiffness or possibly the transverse strength. 

As the fiber spacing is reduced, say to 1.14 or 1.06 diameter, which corresponds to fiber 
volumes of 60 to 70 percent, respectively, the normal stress along x = a deviates drastically 
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HYDROSTATIC PRESSURE p 

Figure 13.   Microscopic Stress Induced by Hydrostatic Pressure 
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from the uniform pressure at infinity. For the latter case (Vf = 70), a stress concentration 

of 2.5 is introduced as a result of interacting fibers. The effect of a complex stress on the 
microscopic scale induced by a simple stress on the macroscopic scale (hydrostatic pressure) 
is clearly demonstrated in Figure 13. 

Figure 13 can also be used to illustrate the limitation of the strength-of-materials approach 
in solving the micromechanics problem. The dissecting technique is valid if we can duplicate 
the load acting on the segment after its removal from the composite. The reshaping or 
rearrangement of the constituents will in general change the distribution of stress. Finally, 
the isolation technique is only permissible for a dilute composite. Only from an elasticity 
solution can we be certain of the magnitude of the error introduced by ignoring the fiber 
interaction. Subjective interpretation of the stress distribution which is often required in the 
strength-of-materials approach should be avoided whenever possible. 

The elasticity solutions of (48) and (49) for different fiber packing arrangements, e.g., hex- 
agonal and diamond, and noncircular fibers, can also be solved. These predictions of the 
transverse   stiffness   E_~   are  similar  to  the   results  shown in Figure 12. The problem of 

random packing has not been solved. 

Being considerably more difficult than the transverse stiffness, the theoretical prediction 
of the transverse strength is not reliable at this time. The use of a stress or strain con- 
centration factor, which for the dense glass-epoxy composites is approximately 2 to 3, has 
not been successful in predicting the transverse strength. 

Additional information derived from inelastic analysis, imperfect interfacial bond, and 
fracture mechanics will be very useful in deriving a procedure for the prediction of the 
transverse strength. The random fiber packing, although not particularly important in the 
transverse   stiffness,   may  also  be   an  important factor  affecting the transverse strength. 

SHEAR PROPERTIES 

Shear properties of importance to macromechanics analysis are the shear modulus G and 
shear strength S. These properties are the longitudinal shear   a   or   a    associated with a 

unidirectional composite. The shear stress and strain are in the plane of the fibers. The 
longitudinal shear is different from the transverse shear, which acts in the plane transverse 
to the fibers, and the interlaminar shear, which acts between the layers of a laminated 
composite. Various possible shearing actions are illustrated in Figure 14. The shear prop- 
erties of immediate importance are the longitudinal shears, modulus G and strength S. The 
transverse shear is apparently of secondary importance. The interlaminar shear may be 
related to the interlaminar failures in laminated composites. This will be discussed again 
later in this section. 

Returning to  the  longitudinal  shear properties, an elasticity problem can be formulated 
with the same assumptions as those employed for the transverse properties. The stress at 
infinity for the shear problem will be   <x    which is the same as   a. Again, a square packing xz s 
arrangement of the fibers is used. The symmetry properties of an elemental square will 
simplify the elasticity problem. By assuming that W, the displacement along the z-axis, 
which coincides with the fiber direction, depends only on the x and y coordinates, and the dis- 
placements U and V along the x and y axes are zero, each elemental square will remain square 
after the shear loading is applied. Each point, however, will move in or out of the transverse 
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Figure 14.   Shear Stresses 

plane  by  an amount described by W. The shear loading causes a warping of the transverse 
plane. The partial differential equation that governs the displacement W is: 

a2 w       a2 W 

dxz ÖY2 
(53) 

This is one of the simplest partial differential equations, and is called the Laplace's equation. 
Its   solution,   subject to  appropriate boundary conditions, is relatively simple to obtain, as 
follows: Let w   be the displacement at x = a; the shear strain es is: 

es   = W0/a (54) 

The composite shear modulus G is: as /es 

aas /W0 

(55) 

The numerical results of the solution of (53) for various shear modulus ratios and fiber 
volumes are shown in Figure 15. The results are very similar to the transverse stiffness 
curves in Figure 12. This diagram can be used as follows. For: 

1) Boron-epoxy composites 
Gf    =  24.0 X   10    psi 

0.2 X I06psi 

Hence: 
m 

G* /Gm T        m 
24/0.2   =  120 
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From Figure 15, for V. = 70% 

G/Gm=7 

Therefore: 
G   =  7 X 0.2 X I06   =   1.4 X   I06    psi 

This agrees well with experimental data. 

2) Glass-epoxy composites 6 
Gf  = 4.0 X 10 psi 

G_ =  0.2 X I06 psi 'm 

Hence: 
Gf /Gm =  4.0/0.2    = 20 

From Figure 15, for Vf = 70%: 

G/ Gm= 5.5 

Therefore: 
G = 5.5 X 0.2  X I06    =   I.I  X I06 psi 

This also agrees well with the experimental data. 

3) Boron-aluminum composites 

G,   =   24 X I06  psi 

Hence: 

Gm =   4X I06 psi 

G,/G    =  24/4 = 6 
T     m 

From Figure 15, for Vf = 40% (a dilute composite): 

G    /Gm = 2 m 

Therefore: s 6 
G   =    2 X 4 X  10        = 8X  10     psi 

The prediction of shear strength S from this micromechanics analysis has not been 
successful. A stress or strain concentration factor of approximately 2.5 exists for a dense 
glass-epoxy composite. The shear strength of the matrix is approximately 8 ksi. If we use 
the stress concentration factor of 2.5, a shear strength of 8/2.5 = 3.2 ksi is predicted. The 
measured shear strength S is at least twice the predicted value. An inelastic model for the 
constituent   materials  may  shed  some  light on the   inaccuracy of the strength prediction. 
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Figure 15.   Longitudinal Shear Modulus 
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INTERLAMINAR PROPERTIES 

A discussion on the interlaminar properties may be pertinent at this point. Delamination is 
known as one mode of failure in composite materials. It is usually attributed to poor inter- 
laminar shear strength of the composite when delamination occurs. Interlaminar shear is an 
elusive term and its relation to delamination is equally vague. Therefore, the experimental 
determination of the interlaminar shear and its relevance to the structural behavior of com- 
posite materials remain uncertain. 

By treating delamination as a macromechanical behavior, certainly permissible from the 
phenomenological standpoint, the stress components that may induce delamination are either 
shear stress   a or normal stress  <x , shown in Figure 16. 

s y & 

INTERLAMINAR   ZONE^ 

LAYER 

Figure 16.   Interlaminar Stresses 

Normal stress   a   is not likely to contribute much to delamination. Without knowing pre- 

cisely what stress component or components are responsible for a failure by delamination, 
it may be more appropriate to refer to the property responsible for the prevention of delam- 
ination, the interlaminar strength, without specific reference to shear as such. In cantilever 
beams, and plates with transverse loading, delamination may be attributed to a transverse 
shear failure. In pure bending of curved beams and plates, delamination may be due to a 
tensile stress in the radial direction (a in Figure 16). 

The mechanics approach can provide important information as to the state of stress that 
exists at the interlaminar zone for a given structural configuration and loading condition. 
Following the notations of Figure 14, where the z-axis runs along the fibers of a unidirec- 
tional   composite,   the  longitudinal  shear  is  governed by   a   or   a  ,   and the transverse xz yz 
shear, by   a   . If this unidirectional beam is bent by a terminal load P as a cantilever beam, 

with the beam axis running parallel to the fiber axis, as shown in Figure 17, the shear stress 
induced by the transverse load P is   a . The only other nonzero stress component is   a . 

If a shear failure is induced in this beam, the shear strength should be the same as the 
longitudinal shear strength S, the value for which is approximately 6 to 8 ksi in the case of 
glass-epoxy composites. This shear strength can be obtained by twisting a thin-walled tube 
with circumferential windings only. The shear strength here is not the interlaminar shear 
since the beam is a unidirectional composite which can be treated as a homogeneous material. 
For the same reason, the failure in the segmented NOL (Navy Ordnance Laboratory) ring test 
should not be referred to as interlaminar. As stated previously, the interlaminar strength in 
this report refers to a property of a laminated composite. 
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Figure 17.   Cantilever Beam 

In a laminated beam, the interlaminar shear, following the notations of Figure 17, will be 

yz 
The distribution of this shear stress across the beam will depend on the properties of 

the "constituent layers, e.g., the thickness and stiffness of each layer. We cannot use the simple 
formula derived for isotropic homogeneous materials (where, at y = 0): 

a      - 3P / 2A <565 

where P = lateral load and A= cross-sectional area; this formula is intended for a rectangular 
shape and the maximum shear occurs at the neutral axis of the beam» A more complicated 
formula than (56) must be used for a laminated beam. If some of the constituent layers of a 
laminated beam are anisotropic, an in-plane shear is induced by the shear coupling term n. 
This shear is different from both the longitudinal and interlaminar shears. The point which 
must be emphasized again is that formulas intended for homogeneous isotropic materials 
cannot be applied to composite materials indiscriminantly. The intrinsic properties of 
anisotropy and heterogeneity usually require fundamentally different formulas for stress and 
strain determination. In composite materials, a distinction between the micro and macro 
behavior must also be recognized. Merlaminar strength is treated as a macroscopic property. 
Little can be stated concerning the micromechanical behavior, i.e., what the fibers and the 
matrix are contributing to the interlaminar strength, because micromechanics analyst: c 
this problem has not been solved. 

In the case of the elastic moduli and deformation, a reasonably complete knowledge exists 
on both the micro and macroscopic scales. Design optimization and test methods for the 
elastic properties can be derived in a straightforward manner. The lack of understanding in 
the interlaminar properties and the predictions of the strength components X, Y, and S is 
partially responsible for the uncertainties and disagreements that exist in the design meth- 
odology and test methods of composite materials. In the next section, test methods will be 
discussed from the viewpoint of mechanics. The lack of knowledge in the theoretical pre- 
dictions of strengths, however, does not in any way permit arbitrary selections of test 
methods, particularly if they are in conflict with the basic principles of mechanics. 
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SECTION V 

TEST METHODS 

As a class of structural materials, composite materials require a number of tests for var- 
ious purposes; among them are design data generation, product assurance, manufacturing 
control, and sub- and full-scale structural performance check. An understanding of the prin- 
ciples of mechanics will be helpful in the evaluation of test methods. In particular, mechanics 
will provide guidelines as to what properties should be tested and how the tests should be 
carried out. A few of the fundamental principles of mechanics that are relevent to test 
methods of composite materials will now be discussed. 

INTRINSIC AND INTENSIVE PROPERTIES 

Intrinsic properties are properties that reflect the constitution of the materials. They are 
presumably independent of surrounding states. For example, mass is an intrinsic property, 
and weight is not, because the latter is dependent on the gravitational acceleration of the 
location where the weight is measured. 

Intensive properties are properties that are independent of the dimensions of the material. 
The density of a body is intensive, and the mass is not, because the latter depends on the size 
of the body. 

It is very important to know the intrinsic and intensive properties of a structural material. 
These properties are presumably independent of the size and shape of the structure. They 
will also be independent of the loading conditions. Once these properties are known, the analysis 
and design of complex structures subjected to combined loadings can, in theory, be carried out. 
Scaling of structures from one size to another will not present any problem so long as the 
mechanics are concerned. Process variations, manufacturing tolerances, and deviations from 
idealized loading conditions all will affect the accuracy of the scaling process. They are impor- 
tant but separate problems and may be dealt with effectively as factors that cause perturbations or 
modifications of the basic intrinsic and intensive properties. It should be realized that the 
problems associated with the design and manufacturing of structures cannot be solved without 
the benefit of the principles of mechanics. 

In composite materials, only in recent years has the mechanics principle been widely ac- 
cepted as a useful approach. From this principle, which includes both the micro and macro- 
mechanics, basic guidelines can be established for the design and manufacturing of both the 
materials and the finished structures. In particular, what the intrinsic and intensive properties 
are for composite materials must be established first. From the preceding sections of this 
report, macromechanics can be utilized for the establishment of what these properties are. 
Based on the current knowledge, these properties must include the four independent elastic 
moduli, E--, E--, v.«, and G, and the three strengths, X, Y, and S. Other important prop- 

erties which have not been accurately assessed from the mechanics standpoint but are being 
actively investigated include the interlaminar strength, creep, fatigue, and fracture toughness. 

Workers in the composite materials field should at least be aware of the elastic moduli and 
strengths which have already been established as intrinsic and intensive properties. Despite 
what netting analysis implies, axial stiffness and strength alone will not be adequate. Any 
standardization of test methods prior to a reasonable understanding of what the properties 
to be evaluated are may be considered premature. Since the stiffness and strength components 
of unidirectional and laminated composites are reasonably well understood, their experimental 
determination can be properly standardized. 
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SAINT VENANT'S PRINCIPLE 

Saint Venant's principle is one of the most important principles in the field of mechanics. 
This principle is invoked explicitly or implicitly in every problem of macro and micro- 
mechanics. It has a particular relevance to test methods. 

This principle states that if the forces acting on a small portion of the surface of a body are 
replaced by statically equivalent forces and moments, this replacement will change the stress 
distribution locally but has a negligible effect on the stresses away from this local region. 
This principle permits the idealization of forces acting on a body. The actual forces can be 
replaced by statically equivalent forces which can be more easily described mathematically. 
In other words, the actual forces may be too complicated to be described, but Saint-Venant s 
principle states that the detailed distribution of the forces only have influence in a localized 
region For example, the actual forces exerted by the grip of a testing machine to a uniaxial 
tensile specimen is impossible to ascertain, except that the net effect of all the forces is 
equal to the axial load. For this reason, it is a common practice to have a specimen designed 
such that the test section is far removed from the loading points or the grips. 

Another aspect of the Saint Venant's principle can be applied to short specimens. A short 
specimen may be defined as one having a length that is no more than twice its width. For 
short specimens, the actual forces that exert on the specimens cannot be replaced by stati- 
cally equivalent forces because the actual stress distribution will most likely permeate 
throughout the entire specimen. Since the actual forces are either unknown or too complicated 
for the determination of stresses in the specimen, the analysis and reduction of test results 
obtained from short specimens are very difficult. If we choose to ignore Saint Venant s 
principle, we may find: (1) a large scatter in his test results; (2) that he is not measuring 
intrinsic and intensive properties; and (3) data analyses of stress from load, and strain 
from displacement become very difficult. 

NONHOMOGENEOUS STRESSES 

A nonhomogeneous stress is a nonuniform stress distribution throughout a body. Stress 
varies from point to point. A change in shape, cross-sectional area, or materials will in 
general induce nonhomogeneous stress. Test methods of composite materials should be 
based on homogeneous stress on the macroscopic scale whenever possible. As stated earlier 
in these notes, the state of stress on the microscopic scale for practically all types ol 
macroscopic loadings (simple or complex) will be complex and nonhomogeneous. Any delib- 
erate introduction of complex and nonhomogeneous stress on the macroscopic scale will be 
difficult to justify. 

The objection to the nonhomogeneous state of stress consists of two parts: (1) the inability 
in a mechanics analysis to determine the exact state of stress and strain, which makes the 
data reduction of the test results impossible; and (2) that several intrinsic and intensive 
properties of the material are tested simultaneously. A test of this type may be classified 
a structural test as opposed to one for property determination. 

EXISTING TEST METHODS 

It appears that an understanding of the principles of mechanics will be helpful in the eval- 
uation of existing test methods. We must first understand what macroscopic properties need 
testing before test methods can be selected, designed, and standardized. Violations aiid 
deviations from ideal specimen configuration and loading conditions are often unavoidable, 
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but we should at least be fully aware of the inherent limitations and the lack of generality of 
these tests. The principles of mechanics may be used to derive the following guidelines 
on test methods: 

1) Intrinsic and intensive properties should be established first, whenever possible. Test 
methods should be designed so that only one of those properties is being evaluated at a time. 
One way of achieving this will be the use of a simple and homogeneous state of stress or 
strain. The determination of the independent elastic moduli and strengths can be carried out 
using tabs, plates, or tubes subjected to simple loading. 

2) Short specimens should be avoided whenever possible, because end conditions and 
constraints cannot be specified for the purpose of data reduction (from load to stress, and 
displacement to strain) nor can they be disregarded as local irregularities with no effect on 
the rest of the specimen. 

3) The use of the theory of beams, plates, and shells has definite limitations. A beam is 
a one-dimensional body. A short beam (with length no more than twice the width) is a two- 
dimensional body and is not a beam anymore. By the same token, a thick plate is not a plate 
as defined in the strength-of-materials approach. The deflection of beams and plates must be 
kept small to stay within the realm of the theory of beams and plates. 

4) Formulas developed for isotropic homogeneous materials cannot, in general, be used 
for anisotropic heterogeneous materials. 

5) Introduction of notches, holes, or other geometric irregularities will induce complex 
and nonhomogeneous stress (stress concentrations). They make the test data reduction 
considerably more complicated, and the intrinsic and intensive properties are no longer 
separable. 

6) A distinction between the macro and microscopic stress and strain must be maintained 
at all times. Intuitive description of the stress distribution on the microscopic scale should 
be avoided. The state of stress in the fibers and the matrix is not clearly understood at this 
time, and any oversimplified description, particularly derived from netting analysis, may 
be very misleading. 

An evaluation of individual test methods is beyond the scope of this report. The difficulties 
associated with the test methods on ordinary materials are multiplied in composite materials 
for two primary reasons: (1) composite materials are anisotropic and heterogeneous; and 
(2) there is a distinction that exists between the macro and microscopic viewpoints. A con- 
siderable amount of scientific research on test methods of composite materials remains to 
be done. The mechanics principle can and shouldplay a major role in the selection and design 
of test methods. Composite materials cannot be accepted as engineering materials unless 
test methods are adequately understood and properly executed. 
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