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Abstract 

When standard control charts are applied to a process whose measurements of quality 

exhibit autocorrelation, the performance of those charts can be considerably different than 

that expected when no autocorrelation is present. To model this performance, we extend 

the existing definitions of assignable and chance causes of variation to account for the 

variation induced by the autocorrelation structure. The application of statistical thinking 

toward continuous process improvement is discussed using the proposed taxonomy. We 
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the absence of assignable causes of variation. 

The current paradigm for process improvement is centered around monitoring the state 

of statistical control. A new paradigm, based upon monitoring process capability instead 
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capability. 
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and variance. The results are compared to previously published results for other methods. 
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Methods for Monitoring 

Process Control and Capability 

in the Presence of Autocorrelation 

/.   Introduction 

The birth of Statistical Process Control (SPC) can be traced to Shewhart's 1931 book, 

"Economic Control of Quality of Manufactured Product." In that seminal work, Shewhart 

set forth principles for monitoring a process which remain in use today. In the days between 

World War I and World War II, manufacturing processes were relatively slow and were 

plagued by inconsistent product quality. Shewhart delivered functional tools that enabled 

industry to gain a measure of understanding and control over these processes. Shewhart's 

principles and tools have led, over time, to a wide range of methods for monitoring and 

controlling processes that are integral to the quality revolution in industry today. 

Since World War II, two gradual changes in manufacturing processes have impacted 

upon the utility of strict application of the Shewhart control charts. First, production rates 

have increased, and second, automatic sensing devices to measure and record product qual- 

ity characteristics have become prevalent. While quality measurements in the past could 

often be adequately modeled as independent and identically distributed, these two changes 

have produced more situations in which observations exhibit autocorrelation, particularly 

in continuous-process industries such as chemicals, pulp and paper, and mineral processing 

(MacGregor and Harris, 1990). Numerous other examples of autocorrelated processes can 

be found in Montgomery (1991) and Box and Jenkins (1976). Although Shewhart control 

charts were developed under the assumption of independence, they have proven to be robust 

1 



to small degrees of dependence in the observed quality measurements. However, the high 

level of dependence routinely found in many processes today often results in unpredictable 

performance by a Shewhart control chart and incorrect inferences about the process. These 

inferences may, in turn, result in a decrease in the level of understanding and control over 

the process. 

Even when a suitable control chart is used and the monitored process is found to be 

operating in a state of statistical control, the products produced by that process may not 

be suitable for their intended purpose. The state of statistical control is related to the 

capability of a process, but is not the only factor determining capability. A significant 

amount of recent work we discuss in Chapter II centers on measuring the capability of an 

in-control process. A natural question we raise in this research is whether process capability 

can be monitored directly in lieu of assessing capability indirectly by monitoring process 

control. 

In this research, we attempt to take another step in the evolution of Statistical Process 

Control by developing a practical method for monitoring the capability of processes that 

generate autocorrelated observations. To do so, we develop three major themes. First, 

we develop a method for determining fixed control limits with known performance char- 

acteristics for a low order autoregressive moving average model. Second, we present the 

theoretical background and motivation for changing the focus from monitoring the state of 

statistical control of a process to monitoring the capability of a process. Third, we develop 

and test a practical method for monitoring process capability. 

1.1    Dissertation Overview 

This dissertation is organized into six chapters. This chapter includes a brief introduc- 

tion and a set of basic definitions. The next chapter provides detailed background informa- 

tion about the SPC techniques in use today and their associated limitations. Chapter III 

presents a method for determining appropriate control limits for a known low order autore- 



gressive moving average model. Chapter IV then develops the mathematical foundation 

for monitoring process capability, and Chapter V proposes a methodology for the practical 

implementation of a capability monitoring system. Chapter VI contains the conclusions of 

this research and recommendations for future work. 

1.2    Basic Definitions 

In this section, we define the basic concepts used in this research, starting with the 

definition of a process. Our examination of the concept of process quality leads to an 

exploration of process variation. We define statistical process control and establish its 

relationship to statistical thinking. We also explore the emphasis placed on the 'state of 

statistical control' in the literature. Finally, we examine the concept of process capability. 

1.2.1 Process and Process Measurements. Pritsker (1986) defines a process as "a 

time-ordered sequence of events (which) may encompass several activities." Beauregard 

(1992) similarly defines a process as "a sequence of events with an input, value-added, and 

an output." While not mathematically rigorous, these two definitions of a process provide 

the basic level of understanding germane to this research. 

We make the implicit assumption that some aspect of a process related to the quality 

of its output can be observed and measured over time. For example, in a parts production 

process the diameter of a hole drilled in a wing rib may be of critical importance to the 

final product (Montgomery and Friedman, 1989). In this example, measurements are made 

on every hole drilled and are recorded in the time order of production. Inferences about 

the underlying process are then tested by analyzing the recorded measurements. 

As another example, the ozone concentration level in downtown Los Angeles is mea- 

sured over time to provide information about the greater 'process' defined as the air quality 

in Los Angeles. Inferences can be made about the effects new environmental laws have on 

air quality by analyzing the sequence of monthly averages of hourly ozone readings (Box 



and Tiao, 1975). In this case, although it is theoretically possible to continuously measure 

the ozone concentration level, the measurements have been taken only at discrete intervals 

of time. The discretization of data is a common practice in the continuous process indus- 

tries (MacGregor, 1988; MacGregor and Harris, 1993) and, thus, we will assume that the 

performance of a process can be measured via a discrete sequence of observations taken 

on the process. Further, when the phrase 'the process' is used in this dissertation, it will 

generally refer to the measurements or observations that come from the process. 

1.2.2 Process Quality. The available process measurements are assumed to relate 

to the quality of the process. Quality is best defined as the "fitness for use" of a product 

or service (Montgomery, 1991). In this context, process observations provide a measure of 

some quality characteristic that reflects the fitness for use of the end product. In general, 

the quality characteristic will have an associated target value, r (Taguchi and Wu, 1980). 

This target value represents an ideal state and deviations from the target indicate lower 

quality. In the wing rib example, there is an ideal diameter for a drilled hole. A hole that is 

either too large or too small increases the risk of failure. In the air quality example, lower 

ozone concentrations are considered better and the ideal would be no measurable ozone, 

although this may be an unattainable state. Typically, the target value is finite, although 

two exceptions exist: smaller values may always imply higher quality or larger values may 

imply higher quality. In these cases, the ideal state can only be reached in a limiting sense. 

For simplicity, the remainder of this research will only consider the case of a finite target 

value. 

1.2.3 Process Variation. All real processes exhibit some variation (Box and 

Kramer, 1992). This process variation directly implies a loss of quality due to deviations 

from the target value of the quality characteristic. In order to gain an understanding of 

the reasons for a loss of quality in a process, it is convenient to partition the total variation 

found in the process based upon the sources of that variation. The American Society for 



Quality Control (ASQC) (1983) divides the sources of process variation into two classes: 

chance cause variation and assignable cause variation. Chance (or common) causes are 

defined by the ASQC as 

"factors, generally numerous and individually of relatively small importance, 
which contribute to variation, but which are not feasible to detect or identify." 

On the other hand, an assignable (or special) cause is defined by the ASQC as 

"a factor which contributes to variation and which is feasible to detect and 
identify." 

The variation in the process is manifested through the dispersion of the process observations 

about some value. The owner of the process may be able to discern a pattern in that 

dispersion, or, detect a cause of variation. By analyzing the pattern, the owner may also 

be able to attribute the variation to some specific source, or, identify the cause of variation. 

By expending enough resources (e.g., time, effort, money), the owner of the process may be 

able to detect and identify (almost) all of the causes of variation. Therefore, the dividing 

line between chance and assignable causes of variation is an economic decision made by the 

owner of the process and is unique to each process. 

These two classes of variation provide an adequate foundation for examining sim- 

ple processes. Observations from such processes exhibit only chance cause variation until 

some assignable cause occurs. The occurrence of an assignable cause implies the addi- 

tion of assignable cause variation which is detectable in the process observations. Because 

assignable causes increase the variability in a process and, thus, produce a loss in qual- 

ity, they typically are corrected or removed once they have been detected and identified. 

Indeed, although not explicitly defined as such, an assignable cause is regarded most com- 

monly in practice as a factor that contributes to variation and which is feasible to detect, 

identify, and remove. 



More complex processes exist, however, in which the observations exhibit some non- 

random structure, such as autocorrelation, which is detectable and identifiable, but which 

is not feasible to remove. Many such processes can be found in the continuous process 

industries, such as chemicals, pulp and paper, and mineral processing (MacGregor and 

Harris, 1990). Some authors prefer to treat the variation resulting from an autocorrelative 

structure as special cause variation, while other authors implicitly regard it as chance cause 

variation. 

To avoid confusion and stay within the intent of the ASQC definitions of chance and 

assignable causes, a third source of variation due to structural causes is proposed in this 

dissertation. In the proposed taxonomy, assignable cause variation is the variation 

in the process measurements which is due to changes in the system that can be detected, 

identified and eliminated. For instance, a slightly bent drill bit in the wing rib example may 

cause an increase in the variability of the measured hole diameters. The added variation 

can be detected by analyzing the process measurements, traced to the drill bit, and removed 

by replacing the drill bit. On the other hand, structural cause variation is variation 

that can be detected and identified, but which is not feasible to remove. Structural cause 

variation is integral to the mechanics of the process. A good example of structural cause 

variation is the seasonal increase in the ozone concentration levels in the summer months. 

While the seasonal effects can clearly be detected and identified, it is unlikely that they can 

ever be removed from the process. In contrast, assignable cause variation due to loosened 

environmental laws can be detected, identified and removed by re-tightening the laws. In 

both examples, chance cause variation remains as the variation that is not feasible to 

detect or identify. 

Table 1 on page 9 provides examples of a variety of processes that exhibit various 

combinations of the three components of variation described above. In these examples, xt 

denotes the process observation made at time t and chance cause variation is included via 

et, an independent observation from a normally distributed random variable with zero mean 



and variance equal to 0.04. Assignable cause variation is included via St, a step function of 

magnitude 0.2 occurring after the fiftieth observation. Structural cause variation is included 

via ft, a sinusoid function with magnitude A/2/5 and period 100/3. In the absence of any 

causes of variation, the observations are a constant, \i, equal to zero. For these examples, 

we will use the long-term mean square deviation from zero, denoted MSD, as the measure 

of variation of the observations about their target. MSD is defined via 

MSD(X)= limj£(X,--0)2. (1) 

The mean square deviation associated with the process equals 0.04 when a single source of 

variation is present. That is, 

MSD(e) = MSD{6) = MSD(f) = 0.04. (2) 

In addition, each source is uncorrelated with the others so that, when combinations of two 

sources are present, the process variation increases to 0.08. When all three are present the 

process variation equals 0.12. That is, 

MSD(6 + e) = MSD(f + e) = MSD(8 + f) = 0.08, (3) 

and 

MSD{8 + f + e) = 0.12. (4) 

Figure 1 on page 8 graphically depicts instantiations consisting of 100 observations for each 

process in Table 1 on page 9. 

1.2.4 Statistical Process Control. Given that we have a measurable process which 

exhibits variation, Statistical Process Control (SPC) is a way of thinking and a set of 

tools used to improve the quality of the process (Wheeler and Chambers, 1992). In large 

measure, SPC aims to improve quality by reducing the variability of the process about the 

7 
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Figure 1. Instantiations of the processes in Table 1. 
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Table 1. Examples of processes with various causes of variation 

Causes of Variation 
Model Chance Assignable Structural 

Xt = ß 

V Xt = ß + et 

V Xt = ß + St 

V V Xt = ß + St + et 

V Xt = ß + ft 

V V Xt = ß + ft + et 

V V Xt = ß + St + ft 

V V V Xt = ß + 6t + ft + et 

ß = 0; 

et ~ N{0,1/25) 

St = 

ft = 5m(67ri/100)v^/5. 

1/5    if  t > 50 
0        if t < 50 ' 

target value (Doty, 1990; Montgomery, 1991). Along similar lines, Beauregard, Mikulak 

and Olson (1992) say that SPC attempts to achieve stable, predictable process performance. 

The combination of a stable predictable process and reduced variability is at the heart of 

SPC. 

In a sentence, SPC is "a statistically based approach for monitoring, controlling, eval- 

uating, and analyzing a process" (Beauregard et al., 1992). Implicit in this definition is 

that action is taken to improve the process. Without action, statistical process control 

reduces to statistical process monitoring. 

The value of SPC is found in its potential to improve the total quality produced by 

an organization. To understand this potential, consider statistical process control in its 

relationship to statistical thinking. Snee (1990) defines statistical thinking as 



"... thought processes, which recognize that variation is all around us and present 
in everything we do, all work is a series of interconnected processes, and iden- 
tifying, characterizing, quantifying, controlling, and reducing variation provide 
opportunities for improvement." 

Snee considers variation and quality as strategic concepts that must be understood in 

order for an organization to achieve total quality. SPC is one system of tools that align the 

organization's operational activities with its strategic direction. 

Figure 2 on page 11, adapted from Snee, schematically depicts the application of 

statistical thinking to statistical process control. The diagram is intended to provide a broad 

understanding of the concepts and systems essential to maximizing the contribution of 

statistical thinking to total quality without focusing on the tools employed in implementing 

those systems. The diagram begins by reiterating the basic premises that 'all work is a 

process' and 'all processes are variable.' We include these two tenets to emphasize that 

SPC should be considered in terms of continuous process improvement. By analyzing the 

variation that must exist in the process, knowledge about the sources of the variation can 

be developed. Depending on the identified source of variation, one or more courses of 

action can be taken. In the rightmost path, the figure reflects the possibility of reducing 

chance cause variation by changing the process, but also implies the impossibility of totally 

eliminating variation. On the other hand, the leftmost path shows that assignable cause 

variation can be totally eliminated at a point in time by removing assignable causes. The 

identification and removal of assignable causes can be considered to be controlling the 

process, or, maintaining the process at the level of variation prior to the introduction 

of the assignable cause. The middle path shows that structural cause variation may be 

either reduced or eliminated by changing the process. Note that structural and chance 

cause variation cannot be reduced or removed by controlling the process. However, process 

knowledge gained by applying statistical thinking may enable the owner of the process to 

change to a new process with less structural or chance cause variation. All three paths lead 
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to a reduction in process variation and, hence, an improvement in process quality. Finally, 

the figure portrays the iteration required to continually improve the process. 

1.2.5 The State of Statistical Control. Walter Shewhart is credited with originating 

the field of Statistical Process Control. He was primarily interested in maintaining a process 

in a state of control and said that 

"a phenomenon will be said to be controlled when, through the use of past 
experience, we can predict, at least within limits, how the phenomenon may 
be expected to vary in the future. Here it is understood that prediction within 
limits means that we can state, at least approximately, the probability that the 
observed phenomenon will fall within the given limits." 

At the time Shewhart first published his ideas in 1939 this was a grand and novel concept. 

While mass production techniques had existed for over a century, the standardization of 

production was just entering the picture (Shewhart, 1986). The standards imposed upon 

the production processes demanded some method for "minimizing the number of rejec- 

tions" while at the same time "minimizing the cost of inspection required to give adequate 

assurance of quality." Shewhart saw the need to bring the production systems of his day 

into a state of control as a first step toward improving their quality and profitability. 

More recently, the American Society for Quality Control (1983) defined a process to be 

in a state of statistical control "if the variations among the observed sampling results (from 

the process) can be attributed to a constant system of chance causes." Chance causes refer 

to the built-in chronic variation found in the process. It will remain as a part of the process 

unless the process is changed. By a constant system, the definition implies that the chance 

causes occur in a manner that does not vary with time. The strictest and most widely 

accepted interpretation of the ASQC definition is that the observations from an in-control 

process should be independent and identically distributed (iid) with a constant mean and 

variance. 
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A corollary definition also exists for the state of being out of statistical control. A 

process is said to be out of statistical control when there exists some variation in the process 

that can not be attributed to a constant system of chance causes. That is, some variation 

in an 'out-of-control' process can be attributed to either an assignable or structural cause of 

variation. More recent ideas that challenge and expand these interpretations are discussed 

in the next chapter. 

Figure 3 illustrates the counterintuitive nature of the definition of control. It shows 

100 observations from two simulated processes. In one of the processes, the observations 

arise from a Normal distribution with a mean of 0 and a variance of 1, which is sometimes 

referred to as a white noise process. The other process consists of discrete samples from 

a simple sinusoid centered at 0 with an amplitude of 1/A/2 and a period of 2w. Under 

the strict interpretation of the ASQC definition, it is clear that the white noise process is 

'in control' since all of the variation exhibited by the process is due to independent and 

identically distributed errors. The sinusoid, however, exhibits structural cause variation 

that is not attributable to a constant system of chance chances. The sinusoidal process is 

therefore 'out of control' according to a strict interpretation of the ASQC definition. On 

the other hand, future values of the sinusoid process can be quite accurately predicted and 

so, by Shewhart's original definition, the sinusoid process is also 'in control.' These two 

cases illustrate the care that must be taken when using the phrase 'in control.' For the 

remainder of this dissertation, the ASQC definition of control will be used. 

The use of one of the key techniques used in Statistical Process Control, the control 

chart, implicitly relies on the interpretation that the observations from an 'in-control' pro- 

cess are independent and identically distributed. In this case, the addition of an assignable 

cause of variation to the process should be reflected in observations that do not fit the 

in-control distribution. That is, the change should be reflected in observations that do not 

appear to be samples from the in-control distribution or do not appear to be independent. 

Using statistical techniques, the observed changes in process variation can be quantified 
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Figure 3. Samples from a Normal(0,l) Distribution and a Sinusoid Function 

and an assessment can be made as to whether or not the process is still 'in control.' If there 

is sufficient statistical evidence that process observations no longer match the in-control 

distribution, we conclude that the process is 'out of control.' The graphical display of this 

type of statistical test for the state of control is commonly referred to as a control chart. 

1.2.6    Capability. The control chart aims to improve quality by maintaining a 

process in a state of statistical control and thus controlling the variation exhibited by the 

process. While the control chart indicates the state of statistical control, it does not indicate 

how suitable the output of the process is for its intended purpose. Process capability is a 

measure of suitability, and hence, also measures the quality of a process. In addition to the 
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previously discussed target value, a process will generally have associated Upper and Lower 

Specification Limits (USL and LSL) which define the range of quality characteristic values 

that are acceptable for use by the owner of the process. Any output from the process whose 

quality characteristic lies outside of the specification range is deemed to be unacceptable 

for use. In a manufacturing environment, that condition results in scrap or rework. 

Beauregard defines process capability as a "measure of the total variation in the process 

output against the specifications." All else being equal, a process with a higher variability 

will produce more items outside of its specification limits, and so will be said to be less 

capable. A capable process generates (almost) all of its output inside of its specification 

range. As a rule of thumb, a capable process produces not more than 0.1% outside of its 

specification limits (Bissell, 1990). 

Wheeler and Chambers (1992) connect the concepts of control and capability. When 

a process is operating in a state of statistical control, it is possible to quantify the variation 

that exists in that process and, therefore, to quantify the capability of the process. They 

point out that any stable process can be said to possess a well-defined capability, although 

the variation in the process may be quite large compared to the specifications. Further, 

they assert that a reliable prediction of future variation cannot be made for a process which 

is currently subject to assignable causes of variation. This unpredictability leads to their 

conclusion that a process must be reasonably in-control before it can be considered capable. 

1.3    Chapter Summary 

In this chapter, we introduced basic concepts that are used throughout this research. 

These concepts are unified by the objective to maximize process quality. Statistical thinking 

provides the framework to achieve that objective. Statistical thinking recognizes that all 

processes exhibit some variation and this variation directly leads to a reduction in the 

quality derived from the process. An improved understanding of the process can be gained 

by analyzing the variation exhibited by the process. Understanding the causes of variation 
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allows those causes to by controlled or eliminated and, therefore, allows quality to be 

improved. 

We propose a taxonomy of three causes of variation to aide in understanding complex 

processes. The three causes of variation are chance causes, assignable causes and structural 

causes. By analyzing the statistical properties of a process in terms of these causes of 

variation and taking the appropriate corrective actions, process variation can be reduced 

and product quality improved. 

Statistical process control is one set of tools used to improve quality. An important 

assumption used in many SPC techniques is that quality improvement can be achieved by 

maintaining the process in a state of statistical control. In Chapter II, we review currently 

accepted SPC techniques and discuss their limitations in the presence of autocorrelated 

observations. In Chapter III, we develop a new technique for selecting control limits for 

low order models. Finally, we develop new techniques for quality improvement based upon 

monitoring process capability, rather than the state of statistical control, in Chapters IV 

and V. 
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II.   Background 

In Chapter I, we introduced the conceptual framework for improving quality with SPC. 

In this chapter, we provide a detailed review of generally accepted SPC techniques which are 

in use today. The first step in our review is an examination of the design and assumptions 

behind the standard control charts. We highlight the limitations of the classic techniques 

when applied to autocorrelated observations and present some techniques proposed in the 

literature for addressing those limitations. We also discuss current techniques for quantify- 

ing the capability of a process. Finally, we give some background on the economic aspects 

of SPC. 

2.1    Standard Control Charts 

The basic SPC tool is the control chart. The standard control charts that we discuss 

in this section are designed to sequentially test the hypothesis that a process is in a state of 

statistical control versus the alternative that it is not. We generally assumed that when a 

process is in a state of statistical control, the observations from that process will appear as 

independent and identically distributed samples from a distribution with a fixed mean, fi0, 

and a fixed positive standard deviation, <r0. If the true underlying distribution is known, 

then an exact statistical test can be developed which enables us to infer whether or not a 

given sample is from the known distribution. The graphical display of this statistical test 

over time is called a control chart. 

2.1.1 The Design of Tests for SPC. The null hypothesis for a standard control 

chart is that the process is in a state of statistical control. According to the definition of 

statistical control, the variations among the observations taken from an in-control process 

are attributable to a constant system of chance causes. Even though Shewhart's definition 

of control is less restrictive than the ASQC definition, the tools he developed rely upon 

17 



the assumptions found in the strict interpretation of the ASQC definition. If we let xt 

denote the observation recorded at time t from a random variable Xt, then the standard 

assumptions made in developing the statistical tests that underlay standard control charts 

can be given as 

E(Xt)   =   ß 

Var(Xt)   =   a2 

Cov(Xt,Xt+k)   =   OVi/0 (5) 

where fj, and a2 are the mean and variance of the process, respectively. Most SPC control 

charts are designed to signal an out of control event when the one of the first two conditions 

in expression 5 is deemed to be statistically unlikely given the evidence provided by sampled 

observations. The control chart does not test the third condition; it is implicitly assumed 

to hold. 

The design of a particular statistical test generally requires a tradeoff between two risks. 

First, when the process is truly in control, we would like the probability of falsely concluding 

that the process is out of control to be as low as possible. Rejecting a null hypothesis when 

it is true is referred to as a type I error. We generally denote the probability of a type I error 

as a and refer to a as the level of significance. In contrast, the power of a statistical test 

is a measure of how well the test will correctly determine that the null hypothesis is false. 

For instance, if the variance exhibited by the process increases due to the occurrence of an 

assignable cause, then the process is out of control and we would like the probability of 

detecting the change to be as high as possible. A type II error is committed if we "accept" 

(i.e., fail to reject) the null hypothesis that the process is in control when, in fact, it is not. 

The probability of a type II error is denoted as ß, while the power of the test is defined 

to be (1 — ß). Adjustments to test parameters, such as the sample size, which increase 

the test's power will also tend to increase the test's level of significance, and vice versa. 

18 



In general, a fixed level of significance is specified and the test parameters are chosen to 

maximize the power of the test (Montgomery, 1991). 

In the simplified environment defined by expression 5, the probability of a type II error 

is closely tied to one of two types of changes that may take place in the process. The first 

is a change in the process mean, also called a mean shift. The second is a change in the 

process standard deviation. 

A standard method for reporting how well a particular test performs is to tabulate the 

average run length (ARL) of the test for a variety of conditions. The average run length is 

defined as the expected number of samples tested before a shift in the process is signaled 

(Aroian and Levene, 1950; American Society for Quality Control, Statistics Division, 1983; 

Page, 1954). Notationally, when a process parameter (say the mean) has shifted by an 

amount, A, the average run length immediately after the change is given as ARL(A). 

When the process is in control, its average run length is given as ARL(O). Naturally, we 

would like the average run length when the process is in control to be large; we do not 

want to falsely signal an out of control situation very often. Similarly, we would like the 

average run length to be small when the process is out of control. These two preferences 

are analogous to minimizing the level of significance while maximizing the power of the 

test, respectively. 

2.1.2 ' Estimating /i0 and a0. When the exact underlying distribution of the in- 

control observations is known, well established statistical tests can be used to construct 

tests for the state of control. Unfortunately, the true underlying distribution is generally 

not known. A first step toward constructing the standard control charts is to estimate the 

mean and the standard deviation of the true distribution from a set of observations which 

are assumed to be in control. 
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Suppose we have m subgroups of process observations, each of equal size, n. The mean 

of each subgroup, s,-, can be computed via 

1   n 

Xi = -Y]xij. (6) 
n    , 

The mean of the underlying distribution, //0, can then be estimated with the grand mean, 

1 
x -!>• (7) m ,-=i 

The standard deviation is usually estimated in one of two ways. The first estimate of 

the standard deviation is the average standard deviation of the subgroups. That is, the 

standard deviation of each sample is first calculated via 

\ 

1       n 

Then an estimate of cr0 is given by the mean of the subgroup standard deviations, 3, 

1 
s = 

m 2 
£*>• (9) 
=i 

It is a fact that the grand mean is an unbiased estimator of the true mean (DeGroot, 1989, 

pg 412): 

E{x) = fxo- (10) 

It is also a fact that s2 is an unbiased estimator of (TQ (DeGroot, 1989, pg 413). However, 

Montgomery (1991) states that s is a biased estimator of a0- Further, when the underlying 

distribution is normal,   

*<«> = ra E " (n) 
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where F(-) is the "complete gamma function" defined by 

T(a) = /    xa-le-xdx. (12) 
Jo 

A constant, C4, which is a function of the sample size, n, is defined as 

_      r(n/2) 2 
C4=r[(n-1)/2]V^I- (13) 

Thus, s/c4 is an unbiased estimator of <70, i.e., 

E(s/c4) = a0. (14) 

The average range provides an alternative method for estimating CTQ.  The range of a 

subgroup is defined as 

Ri =   max {x{j} —   min [xij] (15) 
i=l,...,n j=l,...,n 

and the average range is defined as 

1      m 

R=-Y,Ri- (16) 

Like s, the average range is biased. Fortunately, when the underlying distribution is normal, 

there exists a constant, d2-, corresponding to C4 such that R/d2 is an unbiased estimator of 

cr0, i.e., 

E(R/d2) = a0. (17) 

Tabled values of c$ and d2 for various sample sizes can be found in most SPC textbooks 

(e.g. Appendix VI of Montgomery). 

2.1.3   X-Chart.       Estimates of the mean and standard deviation for the in-control 

process are used to construct control charts.   The most common control chart is the X- 
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chart. Ideally, we would like to test the hypothesis that the process is in control and, hence, 

that the observations arise from independent and identically distributed samples. In an 

X-chart, however, we only test the more restrictive null hypothesis that the mean of the 

observations is equal to the mean of the in-control distribution, fi0: 

H0 : [i = no 

versus 

EA-ii + /*„. (18) 

Suppose the process is in control. Then, under the strict interpretation of the ASQC 

definition of statistical control, the observations will be independent and identically dis- 

tributed. In addition, when the observations are normally distributed, the means of the 

subgroups will also be normally distributed. Although the theory underlying the X-chart 

is based on normal theory, normally distributed averages are not a prerequisite of their 

use. According to the Central Limit Theorem, the sample averages will have a limiting 

distribution that is normal (Hogg and Craig, 1978, pg 193). Schilling and Nelson (1976) 

also report that, for most practical applications, samples of size four or more ensure that 

sample averages follow the approximately normal distribution required of an X-chart. Al- 

though the sample averages are approximately normally distributed, the parameters of the 

approximate distribution are unknown. A natural estimate for /i0 is the grand mean, x. 

Similarly, a0 can be estimated with either s/c4 or R/d2. The hypothesis given above re- 

quires a two-sided test. An approximate critical region for this test is the area outside of 

the range: 

Mo ± ka/2 —F^ (19) 
Vn 

or, with the estimates substituted in: 

x ± ka/2 ~^= (20) 
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where a is the desired level of significance for the test and ka/2 is a corresponding value 

from the cumulative density function of the normal distribution, denoted $(•), such that: 

a 
*(*«/*) = 1"2 (21) 

When the average of a subgroup falls outside of this range, there is statistical evidence 

that the observations do not come from a distribution with a mean of ß0. We refer to 

the endpoints of the critical region as the upper and lower control limits (UCL and LCL). 

The plot of this test over time it is referred to as an X chart. An example of an X chart 

is depicted in Figure 4. In practice, a value of 3 is frequently specified for ka/2 and the 

resulting control limits are referred to as 3<r control limits. Since the test statistic defined 

above relies upon a constant standard deviation, the X chart is also somewhat sensitive 

to changes in the standard deviation. Additionally, the assumption of normality due to 

the Central Limit Theorem is relied upon in practice while, in theory, a more correct test 

based upon the t-distribution could be called for, especially when estimates of parameters 

are used. 
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Figure 4. X-chart for white noise with samples of size 4 
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2.1.4 S and R Charts. The X-chart explicitly tests the hypothesis that the mean 

of the sample is equal to the in-control mean. Since the normal distribution is defined 

by two parameters, the mean and the variance, we can also test the hypothesis that the 

variance or standard deviation is constant, that is: 

H0 : a — a0 

versus 

HA : a + a0. (22) 

We have already seen two methods for estimating a0 for the X-chart. Each method has a 

corresponding control chart. Recall that, when the observations are normally distributed, 

E(s) = c4a0. (23) 

Montgomery (1991) further states that 

Var(s) = (1 - c\) 4 (24) 

Then control limits may be constructed which have the form: 

c4a0 ± ka/2 (Toyjl - c\ (25) 

or, with the estimator substituted: 

Jl-c\ 
s±ka/2s± -. (26) 

c4 

This control region is the basis of the S chart.  The R chart is very similar.  Recall that, 

when the observations are normally distributed, 

E(R) = d2 (T0. (27) 
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In addition, the variance of R can be expressed in terms of d3, a known function of the 

sample size n, via 

Var(R) = d2
3 a*. (28) 

The control region for the R chart is then determined to be 

5 
R±ka/2d3--. (29) 

«2 

Tabulated values of d2 and d3 for various sample sizes can be found in most SPC textbooks 

(e.g. Appendix VI of Montgomery). 

2.1.5 Individuals Chart. It may be undesirable or infeasible to group the process 

observations. In this case, the X-chart is no longer appropriate for monitoring control. 

In particular, the two previously described estimates of the process standard deviation 

(s/c4 and R/d2) require subgroups with more than one observation. Additionally, when 

only one observation is available per group, the central limit theorem can no longer be 

applied to ensure the approximate normality of the sample averages. The individuals chart 

therefore assumes that the distribution of the individual observations themselves is, at least 

approximately, normal. In order to create a control chart for individuals, called an X-chart, 

we can estimate CTQ as the standard deviation of the entire set of data from the in control 

process with s via 

1     "' - (30) ^g(*»-*>! 

where n is the total number of observations. The moving range is an alternative estimator 

for CTQ. The moving range is defined as 

MRi = \x{ - Xi-X\ (31) 
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and the average moving range is defined as 

1 
MR = —-E?=2MR,- (32) 

where n is the total number of available observations. It should be noted that MR possesses 

a bias similar to that of R. The same bias correction applied to R can be applied to MR 

by dividing MR by d2. Similarly, the simple mean is used as an estimate of //0: 

X = ]^U^- (33) 

Using X as an estimate of fx and MR/d2 as an estimate of a, a control region for the 

X- chart is defined as 

X±ka/2—. (34) 
«2 

2.1.6 MR Chart. Just as the X chart had a companion chart to test for changes in 

the variance (the S or R charts), the X chart has a companion chart (the moving range or 

MR chart). The centerline for the MR chart is naturally chosen to be the average moving 

range, MR. The distribution of MR is not simple. Fortunately, factors D3 and D4 are 

available (see Montgomery, Appendix VI) to construct a control region for the MR chart 

via 

D3 MR < MRj < D4 MR (35) 

where MRj is the observed moving range that is being tested. The factors D3 and D4 

provide a control region that is equivalent in power to a 3cr control region for an X-chart, 

when the observations are independent and normally distributed. 

2.1.7   Supplementary Runs Rules. One method for improving the power of a 

standard control chart is to augment the chart with one or more supplementary runs rules. 

Recall from Section 2.1.3 that a standard rule for the X-chart is to generate an out of 

control signal whenever a sample mean falls outside of the 3cr control limits. Graphically, 
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the expected pattern of sample means clustering around the grand mean is broken by a 

sample mean that is too far away from the grand mean. When a process is in control 

and its observations are independent and identically distributed, no pattern other than a 

general clustering and fluctuation around the centerline is expected in the control chart. 

A supplementary runs rule is simply an additional rule for signaling an out of control 

condition based upon detecting patterns that are unlikely to occur when the plotted points 

are independent and identically distributed. 

Champ and Woodall (1987) discuss the most generally accepted supplementary runs 

rules. These include signaling an out-of-control condition when one or more of the following 

occur: 

• eight plotted points in a row are to one side of the center line, 

• two plotted points out of three are between either 2a and 3a or — 2a and —3d, 

• four plotted points out of five are between either la and 3a or —la and —3a. 

Note that these are just some possible supplementary runs rule and that the rules are not 

themselves independent. These particular rules were developed in the context of enhancing 

the X-chart. Also note that the addition of a supplementary runs rule will increase the 

probability of a false alarm and, therefore, decrease the average run length. For example, 

applying the three listed rules individually to a normally distributed in-control process with 

3a control limits causes a decrease in the average run length from 370.4 to 152.7, 225.4 and 

166.1, respectively. Adding all three rules to the original process decreases its average run 

length to 91.8. 

2.1.8 CUSUM Chart. One of the problems with the X chart is that it is insensitive 

to small shifts in the mean. When the mean shift is less than ±<To, the average run length 

does not drop significantly (Montgomery, 1991). The cumulative sum (CUSUM) control 

chart is designed to detect a shift in the mean but is based upon a different statistical test. 
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In practice, the CUSUM chart performs better than the X chart for detecting small shifts 

in the mean. 

The CUSUM test was first described by Page (1954, 1955). The basic idea behind 

the CUSUM test is that the cumulative effects of a small shift in the process mean can be 

detected more quickly than waiting for a single sample average to be extreme enough to 

generate a signal from the X chart. 

A two sided CUSUM is used when the parameter may shift in either direction. The 

CUSUM statistics at time t are defined as 

SH(t)   =   max[0,xt-(iio + K) + SH(t-l)] 

SL(t)   =   max[0,-xt + (fiO-K) + SH(t-l)] (36) 

with the starting values S#(0) = SL(0) = 0. xt is the average of the subgroup sample 

taken at time t. K is called the reference value and is usually chosen to be about one-half 

of the size of shift to be detected. An out-of-control condition is signalled when either of 

the CUSUM statistics exceeds a critical value which is based on the size of the shift to be 

detected. 

Lucas and Crosier (1982a) propose a modification to the CUSUM to permit a more 

rapid response to an initial out of control situation. In their scheme, S#(0) and SL(0) are 

set to some initial 'head-start' value. When the process is in control, the CUSUM statistics 

will tend to return to 0. However, when the process is out of control, the modified CUSUM 

statistic will tend to exceed the reference value more quickly than an unmodified CUSUM. 

In a later paper (1982b), they discuss robust procedures for handling outliers with the 

CUSUM. 

2.1.9 EWMA Charts. Like the CUSUM chart, the exponentially weighted moving 

average (EWMA) control chart was designed to detect smaller shifts in the mean more 

28 



quickly than the Individuals and X charts. The EWMA statistic is defined as 

zt = Xxt + (1 - A)zt_! (37) 

where 0 < A < 1 is a constant. The starting value, z0, is usually chosen to be the mean of 

the observations, x. Montgomery (1991) shows that the control limits for the EWMA are 

UCL   =   x + A2R       X 

2-A 

LCL   =   X-A2RJ^J (38) 

where A2 (see Montgomery, Appendix VI) is a factor to convert subsample ranges to 3cr 

ranges, when the observations are independent and normally distributed. 

Roberts first proposed the EWMA control scheme in 1959. More recently, Lucas and 

Sacucci (1990) provided design considerations for parameter selection. They also discuss 

enhancements to the EWMA control scheme including a combined Shewhart-EWMA, a 

robust EWMA, and a fast initial response feature. They conclude that average run length 

characteristics of the EWMA are comparable to the CUSUM control scheme. 

2.1.10 Use of Control Charts in Practice. The most widely used control charts 

are the X and R charts. According to Montgomery (1991), "the X and R (or S) charts are 

among the most important and useful on-line statistical process control techniques." All of 

the control charts discussed so far are appropriate when process observations are, at least 

approximately, independent and normally distributed. Furthermore, the control charts can 

be easily implemented using only paper, pencil and calculator. The EWMA and CUSUM 

charts are generally only used when it is important to detect relatively small shifts in the 

mean (i.e. shifts of less than one standard deviation.) 
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2.2    Relaxing the Assumption of Independence 

The standard control charts we described in the previous section all implicitly assume 

that the process observations are independent. However, Box and Kramer (1992) make the 

assertion that, in their experience, "all processes are autocorrelated." Certainly, there are 

a large number of case studies in which real world data sets exhibit autocorrelation. This 

naturally raises the question of how well the standard control chart techniques perform 

with autocorrelated processes. We describe some attempts to address that question in this 

section. 

Over the past decade, a significant portion of the research documented in the statistical 

quality control literature has challenged the assumption of independence. In most of those 

studies, the independence assumption is replaced by an assumption that the process can be 

adequately modeled by a particular type of autocorrelated time-series model. The effects 

of the autocorrelation specified in the time-series model account for the dependence found 

in the original observations. 

2.2.1 The Effects of Autocorrelation. The correlation between two random vari- 

ables X and Y with finite variances ax and aY, is denoted by p(X, Y) and defined as (Hogg 

and Craig, 1978) 

p{XX) = 9^Ml. m 

Correlation is a measure of the tendency of two random variables to vary linearly together. 

For a stationary time-series, Xt, with mean ßx and finite variance ax, the autocorrelation 

at lag k is defined as (Box and Jenkins, 1976): 

E[(Xt - fix)(Xt+k - fix)] 
Pk   — 

y/E[{Xt - ßxy]E[(Xt+k - ßl 

E[(Xt - ßx)(Xt+k - iix)\ 

a 
(40) 

x 
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Autocorrelation is a measure of the tendency of neighboring observations from a time-series 

to vary linearly together rather than independently. 

Maragah and Woodall (1992) show that, in the presence of positive first-lag autocor- 

relation, R/d2 provides a biased estimate for <T0. They derive the equality 

E(R/d2) = ax jl-Pl (41) 

for a stationary process where ax is the process variation and p\ is the first lag autocorre- 

lation. Clearly, 

E(R/d2) <ax  for  0 < Pl < 1 (42) 

and 

E(R/d2) > ax  for   - 1< Pl < 0. (43) 

The effect of using Rjd2 to estimate ax when p\ > 0 is to narrow the control region. This, 

in turn, will result in a higher than expected false alarm rate. The opposite effect will occur 

for negative first lag correlation. 

2.2.2    Engineering Process Control Approaches. Engineering process control is 

a significant alternative strategy to statistical process control for quality improvement. 

Engineering process control specifically addresses processes which exhibit autocorrelation. 

Statistical process control approaches tend to intervene in the process only when some sta- 

tistical evidence indicates a source of removable or reducible variation. Engineering process 

control approaches, on the other hand, adjust the process after every observation. Rather 

than attempting to remove sources of variation, engineering process control approaches 

attempt to reduce process variation "by transferring the variability in the output to an 

input control variable" (Montgomery et al., 1994). The operation of a household thermo- 

stat in winter provides a good example of an engineering process control system. Variation 

from the ideal temperature of 68 degrees Fahrenheit is reduced by turning on and off the 
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furnace. A statistical process control approach might recognize a persistent drop in tem- 

perature has occurred, prompting for a search for an assignable cause, and result in the 

closing of an open window. Some recent work has proposed a unified approach combining 

engineering and statistical process control (Montgomery et al., 1994; Box and Kramer, 

1992; Vander Wiel et al., 1992; MacGregor, 1988). 

Engineering process control approaches are not without their problems. A significant 

amount of human expertise may need to be required to design and implement the control 

system. It may also be too expensive or infeasible to adjust the process after each observa- 

tion. In addition, frequent adjustments may mask the influence of a significant assignable 

cause of variation. 

2.2.3 Model Fitting Approaches. Another proposed method for dealing with cor- 

related data is fitting an appropriate time-series model to the data. The residuals from an 

adequately fit model may be treated as independent and identically distributed observa- 

tions. The standard control chart approaches can then be applied to the residuals. Alwan 

and Roberts (1988) describe this concept. They call the control chart of the residuals a 

Special-Cause Chart (SCC) and the control chart of the fitted values a Common-Cause 

Chart (CCC). Each point in the Common-Cause Chart is an estimate of the local level of 

the process. Alwan and Roberts propose that the Common-Cause Chart can be used to 

help determine when a process ought to be re-centered. Montgomery and Friedman (1989) 

report that applying standard control charts to the sequence of residuals is effective at 

detecting shifts in both the location and dispersion in the original process. 

The autoregressive integrated moving average (ARIMA) class of models is frequently 

chosen as a time-series model because it has been shown to be capable of modeling, at least 

approximately, the behavior of a large variety of processes. The ARIMA(p,d,q) model has 

the form 

*p(B)VdXt = Qq(B)et (44) 
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where B is the backshift operator (B Xt = Xt-i), $P(B) = (1 - faB — (f>2B
2 -... - <f>pB

p) is 

the autoregressive polynomial of order p, Qq(B) = (1 — 91B — 92B
2 —.. . — 6qB

q) is the moving 

average polynomial of order q, V is the backward difference operator (Vd = (1 — B)d), and 

et is a sequence of normally and independently distributed random "shocks" with mean 

0 and constant variance a2. Box and Jenkins (1976) show that the. residuals from an 

appropriately identified and fit ARIMA model will behave like independent and identically 

distributed random variables. Some useful examples of the ARIMA model include the 

ARIMA(p,0,0) or AR(p) model; the ARIMA(0,0,q) or MA(q) model; the ARIMA(p,0,q) 

or ARMA(p,q) model; and the ARIMA(0,1,1) or IMA(1,1) model. 

Several studies have demonstrated the usefulness of the ARIMA model fitting approach 

for process control. Bagshaw and Johnson (1977) use a CUSUM chart on the residuals from 

an IMA(1,1) model to detect changes in the underlying process governing IBM stock prices. 

Berthouex, Hunter and Pallsen (1978) fit a seasonal ARIMA model to Sewage Treatment 

Plant data and successfully use the residuals in a control chart. Ermer, Chow and Wu 

(1979) fit the data from a nuclear reactor using an ARMA(n, n-1) model. They show that, 

for their highly autocorrelated data, a chart based on the sum of square residuals is much 

more sensitive to changes in the process than a standard control chart. Yourstone and 

Montgomery (1989) similarly propose a test based upon examining the residuals from a 

moving window of 50 observations using a known initial low order ARMA model. The 

residuals from the known model should be independent and normally distributed and, 

therefore, should not exhibit significant autocorrelation. Yourstone and Montgomery argue 

that a change in the process will be reflected by significant sample autocorrelation and, thus, 

can be tested for. They further elaborate that their proposed control chart is more sensitive 

to small changes in the process mean than equivalent standard control charts. 

Model fitting approaches also have associated problems. Fitting models is expensive, 

especially in time and required expertise. In addition, since the effects of a significant 

assignable cause of variation may only be reflected in a single residual, the assignable cause 
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may never be detected if that residual does not cause a signal from the control chart. The 

assignable cause is most likely to be detected during a window of opportunity and, after 

that window, the effects of the assignable cause may be incorporated by the model. Other 

assignable causes may be reflected by a series of relatively small changes in the residuals 

that are individually unlikely to cause a signal from the control chart. 

2.2.4 EWMA Approaches. An alternative to fitting a model is the use of an EWMA 

control chart. This approach is proposed by Montgomery and Mastrangelo (1991). They 

point out that the EWMA is actually a subset of the ARIMA model fitting approach. The 

EWMA (with a properly selected parameter) provides an optimal one-step ahead forecast 

for the IMA(1,1) model. They cite other research that concludes the AR(1) model is also 

well-predicted by the EWMA. 

More recently, Wardell, Moskowitz and Plant (1992) compared the EWMA control 

chart with the Special-Cause Chart and Shewhart control chart. They examined how 

quickly each chart would detect a mean shift in an ARMA(1,1) model as measured by 

the average run length. By varying the parameters of the ARMA(1,1) model, they tested 

many interesting sub-models, including the AR(1), MA(1) and Normal(0,l) models. They 

concluded that for a large range of models the EWMA provided better detection capabilities 

than either the Special-Cause Chart or the Shewhart control chart. 

Choosing the parameters for an EWMA control chart requires detailed knowledge 

about the model. It this regard, the EWMA approach incurs the same expenses associated 

with model fitting approaches. In addition, the EWMA is specifically designed to detect 

shifts in the process mean, not in the process variance. It may not be a good technique 

when the impact of an assignable cause is unknown. 

2.2.5 Recap. The presence of autocorrelation in process observations has been 

shown to cause problems with standard control charts.   For example, an X-chart con- 
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structed with ±3<7e control limits on an autocorrelated process will have a higher false 

alarm rate, and hence, shorter average run length, than would be expected for a process 

with independent and identically distributed observations. In Chapter III, we present a 

method for selecting control limits for a large family of autocorrelated processes that result 

in a known average run length in the absence of assignable causes of variation. 

A variety of approaches for monitoring autocorrelated processes have been proposed, 

including the model fitting and EWMA approaches. These approaches have stretched the 

generally accepted definition of the state of control by accounting for other than chance 

and assignable causes of variation (i.e. structural cause variation). In Chapters IV and V, 

we present a new approach for monitoring autocorrelated processes based upon monitoring 

the capability of the process. Our approach incorporates chance, assignable and structural 

causes of variation. 

2.3    Capability Indices 

While maintaining a process in a state of control is of obvious importance, it is also 

important to determine how well the process is meeting the needs of the customer. Capa- 

bility indices quantify the performance of the process relative to the needs of the customer. 

Kane (1986a, 1986b) describes the most widely used capability indices. This section draws 

heavily upon that work. 

2.3.1 Process Potential Index. The process potential index, denoted Cp, measures 

whether the natural tolerance of the process is within the specification limits for that 

process. Natural tolerance is arbitrarily defined as six times the process standard deviation, 

a. Cp is then defined as the allowable process spread divided by the actual process spread 

(natural tolerance): 
_       USL-LSL ,AK. 
Cp = . (45) 
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The general guideline is that a process with a Cp greater than or equal to 1.0 is judged 

to be capable. Kane recommends a minimum Cp of 1.33 to give "some assurance that a 

Cp = 1 will be possible when additional sources of variance are experienced in production 

processing." For a normally distributed in-control process, a Cp exactly equal to 1 equates 

to producing 99.865 percent within the specification limits. Since a is usually estimated, 

the process potential can be estimated by Cp via 

A      USL-LSL ,    , 
Cr = —j£— (46) 

where s is the sample standard deviation. Note that the process potential index only 

relates the process spread to the specification limits and that the location of the process 

spread relative to the specification limits is not considered. A process with a mean that 

is much greater than its upper specification limit may produce everything outside of the 

specification limits while having a potential index greater than one. 

2.3.2    Cpk Index. The second major process index accounts for the location of 

the process mean relative to the specification limits by combining the upper and lower 

capability indices. The upper capability index, denoted CPU, is a one-sided version of the 

process potential index that incorporates the mean and variance of the process along with 

the upper specification limit. The allowable upper spread is the difference between the 

upper specification limit and the mean, while the actual upper spread is one-half of the 

natural tolerance: 

CPU=^^. (47) 
3(7 

A similar lower capability index is defined as: 

CPL^^lElL. (48) 
6<J 
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The Cpk index combines the CPL and CPU indices via 

Cpk = mm{CPL, CPU} (49) 

and thus measures the scaled distance between the process mean and the closest specifica- 

tion limit. 

2.3.3    The k Index.        The final index that Kane describes relates the deviation of 

the process mean from the midpoint, m, of the specification limits via the equations 

USL + LSL ,    x 
m =  (50) 

and 
2|m — fi\ 

k= USL -LSL' (51) 

This index isn't very interesting by itself, although it does relate the Cp and Cpk indices by 

the relationship: 

Cpk = Cp(l - k). (52) 

When the mean is equidistant from the specification limits, Cpk equals Cv.   That is, the 

maximum process potential is realized by centering the process inside of the limits. 

2.3.4    The Cpm Index.       The Cpm index is a refinement of the Cpk.  While the Cpk 

index relates the location of the process mean to the specification limits, the Cpm index 

relates the location of the process mean to the target value.   Chan, Cheng and Spiring 

(1988) propose the index 
_     USL - LSL 

6^/<72 + (/* - r)2 

Boyles (Boyles, 1991) discusses the benefits of the Cpm index.  Specifically, he shows that 

while the Cpk index measures the proportion of items produced inside of the specification 
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limits, it can fail to distinguish between off-target and on-target processes. The Cpm index 

simultaneously monitors process variability and centering on the target. 

2.3.5 Estimating Capability Indices. The equations for all three major capability 

indices (Cp, Cpk, Cpm) include the process standard deviation, a. In practice, a is usually 

estimated by s. For the latter two indices, the process mean must also be estimated, 

generally with x. When a capability index is computed in this way, the result is actually 

a point estimate of the true capability. Marcucci and Beazley (1988) provide formulas for 

determining approximate confidence intervals for these estimates when the process is in 

control. 

More recently, Cheng (Cheng, 1994) has proposed a statistical test for capability, as 

measured by Cv and Cpm, assuming the process measurements follow a normal distribution. 

He states "a process is not considered capable until its capability is proven with an a-risk 

of making an erroneous decision." He provides the procedure and tables to test Cp and 

Cpm for various sample sizes. 

2.3.6 Assumptions Used in Capability Indices. Kane points out that capability 

indices implicitly assume the process is in control. This point reinforces Wheeler and 

Chambers conclusion that a process must first be stable before it can be considered to be 

capable. Kane also points out that, in practice, the capability index relies heavily upon the 

statistical properties of the estimate of the process standard deviation. We have seen that 

for an autocorrelated process, this estimate can be grossly biased downward. The impact 

of this bias is to exaggerate the capability of the process. In addition, the interpretation of 

the capability indices generally assume the process is normally distributed. When the as- 

sumption of normality is violated, Franklin and Wasserman (1992) show that the confidence 

intervals developed under the assumption of normality for standard capability indices may 

be overly narrow, exposing the user to the risk of overestimating the true process index. 
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2.3.7 Tool Wear and Modified Control Charts. It is easy to imagine a process in 

which the specification limits are quite large relative to the natural tolerance limits. For 

example, Long and DeCoste (1988) discuss capability studies involving tool wear. They 

examine a process in which the observations tend to have an upward or downward slope 

over time due to the effect of tool wear. The mean of the observations is conditioned 

on time. The process is started with a new tool and has a conditional mean near one 

specification limit. Over time, the conditional mean shifts towards the other specification 

limit. A control chart based upon the short-term variation about the conditional mean 

for this process will have excessively narrow control limits and will therefore generate false 

alarms as the conditional mean shifts. On the other hand, a control chart based upon the 

standard deviation of the unconditional distribution as seen over time will be overly wide 

and may miss significant shifts. Long and DeCoste propose a control chart and capability 

index that vary with time, similar to using the residuals from a fit model. Quesenberry 

(1988) also discusses control with regards to a tool wear process. 

Montgomery (1991) describes the modified control chart. The modified control chart is 

intended for monitoring a process in which the natural process tolerance is small compared 

to the specification limits. It assumes that small shifts in the process mean that do not 

appreciably affect the fraction of product outside of the specification limits are allowable. 

In this case, control limits are proposed that are near the specification limits. 

2.3.8 Recap. The identification of process capability is recognized as an important 

tool for quality improvement. Process capability is generally measured by a static capabil- 

ity index, although recent research has recognized that capability can be considered as a 

dynamic aspect of the process. In Chapter IV, we present the mathematical foundation for 

dynamically assessing process capability. We use that foundation in Chapter V to develop 

a method for monitoring a process by monitoring the capability of the process. 
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2.4    Economic Analysis 

All of the control chart techniques described thus far have relied upon 'rule of thumb' 

design decisions. For example, an X-chart requires the user to specify the sample size, n, 

the control limit width factor, &, and how often samples should be taken from the process. 

A more rational design of a control chart can be accomplished by taking into account the 

costs associated with the process. For example, a larger sample size may decrease the 

cost of running a process by detecting any shift in the process sooner, but presumably 

will increase the cost due to the additional sampling. Economic analysis is concerned with 

determining the design parameters that minimize the total expected cost of the process. 

2.4-1    Shewhart Control Charts. Lorenzen and Vance (1986) provide a general 

economic design approach for control charts using a renewal reward process. They assume 

a memoryless process in which the length of time the process stays in control is a negative 

exponential random variable. They also assume that when the process goes out of control, 

the mean of the process will shift by a known amount. They cite other research that covers 

the case for multiple assignable causes. Using the following input variables, they derive the 

optimal sample size, time between samples and width of the the control limits: 

• Time related variables 

— time to sample and chart one item. 

— expected search time for a false alarm. 

— expected time to discover an assignable cause. 

— expected time to repair the process. 

• Production decision variables 

— continue production during search? 

— continue production during repair? 

• Cost variables 

— quality cost per unit time while in control. 

— quality cost per unit time while not in control. 
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— cost per false alarm. 

— cost to locate and repair the assignable cause. 

— fixed cost per sample. 

— cost per unit sampled. 

2.4-2 Other Control Charts. Goel and Wu (1973) present a procedure for the eco- 

nomic design of a CUSUM chart using the same concepts as Lorenzen and Vance. However, 

Goel and Wu rely upon a numerical search technique to find the design parameters. Chung 

(1992) presents a simpler search technique to find the design parameters of a CUSUM con- 

trol chart. They both assume independent and identically distributed observations and a 

known mean shift. 

2.4-3 The Loss Function. One of the input variables that Lorenzen and Vance 

use is the quality cost per unit time while either in or out of control. They assume that 

this value is known. Recently, Taguchi (Taguchi, 1985; Taguchi and Wu, 1980) has put 

forth the idea that the quality cost is a function of the deviation from the process ideal. 

By his definition, the ideal target value, r, for the process is the value which provides the 

maximum benefit to society as a whole. For a manufacturing process, the ideal target value 

is generally the same for both the owner of the process and their customers. Any output 

produced by the process at other than the ideal value will provide less than maximum 

benefit. It is commonly assumed that the loss of benefits due to the process output being 

at some point x, where x ^ r, can be quantified by a nonnegative function, L{x). L(x) 

is called a loss function or a cost function. Without loss of generality, the ideal loss is 

assumed to be exactly zero (i.e. L{T) = 0). 

The two most commonly used loss functions are the Kronecker-delta style loss function 

and the Taguchi loss function. These functions are depicted in Figure 5. The Kronecker loss 

function penalizes any output outside of the specification limits the same while treating any 

output inside of the specification limits as having no loss-cost. The Taguchi loss function, 

on the other hand, assumes that any deviation from the target value will incur a loss. 
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Figure 5. Taguchi and Kronecker delta loss functions. 

Taguchi goes further by asserting that any loss function can be approximated by a second 

order Taylor series expansion, resulting in the equation: 

L{x) = k(x — T) (54) 

where k is a constant. Neither the Kronecker loss function nor the Taguchi loss function 

can reasonably be expected to exactly match the true loss function, but both are standard 

ways of modeling it. 

2.5    Chapter Summary. 

The primary purpose of this chapter was to present the statistical process control 

tools in use today and to highlight their limitations when applied to processes that ex- 

hibit autocorrelation. All of the standard control charts we discussed (i.e. the X, X, 

S, R, CUSUM and EWMA control charts) are specifically designed to test the state of 

statistical control given independent and identically distributed observations. When ap- 

plied to observations exhibiting autocorrelation, standard control chart procedures result 

in unexpectedly reduced average run lengths in the absence of assignable cause variation. 
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In the next chapter, we present a method for selecting the control limits for an X-chart 

given an ARMA(1,1) process that provides a specified average run length in the absence of 

assignable cause variation. 

The second purpose of this chapter was to provide background on the use of capability 

indices. Given the variance of the process, capability indices, such as Cpk and Cpm, measure 

its capability. In practice the process variance, and hence, the capability index is estimated 

for a process that is assumed to be in a state of statistical control. Using statistical 

techniques, the process capability can be characterized by its mean and a corresponding 

confidence interval. In Chapter IV we assert that a process can be capable while not 

necessarily meeting the strict definition of control and that capability can vary over time. 

For example, both Long and DeCoste's tool wear control chart and the modified control 

chart recognize that the mean and variance of a process can change over time. In Chapter 

V, we propose a monitoring system based upon capability. 

The final purpose of this chapter was to provide a broader picture of the field of 

quality improvement so that this research might be kept in perspective. For example, 

engineering process control approaches take a fundamentally different approach to variation 

than statistical process control approaches. Both approaches have proven value in different 

applications. Like the engineering process control and model fitting approaches, the method 

we propose in Chapter IV for monitoring process capability directly accounts for chance, 

assignable, and structural causes of variation. We also show in Chapter IV that capability 

can be considered to measure the economic costs of a process due to deviations from the 

process target value. This measure is another approximation of the true cost, much like 

the Kronecker or Taguchi loss functions. 

In this and the previous chapter, we explored some of the standard statistical monitor- 

ing techniques for quality improvement and identified limitations of those techniques when 

the process observations exhibit autocorrelation. In the remaining chapters, we develop new 

methods for monitoring process control and capability in the presence of autocorrelation. 
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The first new method we develop extends the standard individuals chart to account for au- 

tocorrelated observations, specifically for observations arising from ARMA(1,1) processes. 

In the next chapter, we establish a means for selecting control limits for an ARMA(1,1) 

process that result in a known in-control average run length. 
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777.   Selecting Control Limits for an ARMA(1,1) Process. 

3.1.    Introduction 

When process measurements are independent and identically distributed, the ability 

of the standard control charts (i.e. X, X, R, S, CUSUM and EWMA) to detect shifts in 

process quality are generally well known. In particular, control limits can be chosen such 

that a specified in-control average run length is achieved. However, when process measure- 

ments exhibit autocorrelation, the standard control charts do not perform as expected. For 

example, Montgomery and Mastrangelo (1991) report that positive autocorrelation results 

in an increase in the false alarm rate. This, in turn, implies that the presence of such 

autocorrelation results in a shorter average run length than would occur for independent 

and identically distributed process measurements. 

The main objective of this chapter is to provide a technique to allow a quality practi- 

tioner working with an autocorrelated process to gain the benefits and simplicity of using an 

X-chart while avoiding the uncertainty caused by the autocorrelation in the process obser- 

vations. Since the ARMA(1,1) model contains both an autoregressive and moving-average 

component, it is capable of modelling, at least approximately, the behavior of many real 

world processes. In this chapter, we develop a method for approximating the average run 

length for an ARMA(1,1) model with specified upper and lower control limits. We present 

a table to aid the quality practitioner in choosing appropriate control limits to achieve a 

desired average run length in the absence of assignable cause variation for an ARM A (1,1) 

model. Results from this chapter provide the basis for evaluating the capability monitoring 

approach developed in the following chapters. 

Another major objective of this chapter is to better assess the impact of autocorrela- 

tion on the average run length. For independent and identically distributed observations, 

the probability of an observation falling outside of the control limits is a function of the 
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probability density function of the observations, i.e. 

fUCL 
Pr(x < LCL  or  x > UCL) = 1 - /        f(x)dx (55) 

where /(a?) is the probability density function of the observations. The average run length 

is a function of the probability of observations falling outside of the control limits, and 

therefore, depends on this probability density function. However, when the observations 

exhibit autocorrelation, that probability may change as conditional knowledge about ob- 

servations is gained over time. In this chapter, we are interested in determining the average 

run length of an ARMA(1,1) process, which may exhibit autocorrelation. We show that 

the state of an ARM A (1,1) process can be represented by an ordered pair consisting of 

the current observation and its underlying error term. The distribution of the state of 

an ARMA(1,1) process can be described by the joint probability density function of that 

ordered pair. Then, the probability of an observation from an ARMA( 1,1) process falling 

outside of control limits is a function of that joint probability density function. We further 

show that the average run length of an ARMA(1,1) process can be expressed as a func- 

tion of a set of related joint probability density functions. The joint probability density 

functions are related by each function being successively conditioned on the previous ob- 

servation falling within the control limits. We show that the average run length can be 

determined by establishing a relationship between the conditional joint probability func- 

tion of the state of an ARMA(1,1) process at some time, 2 + 1, and the (conditional) joint 

probability density function of the state of the process at the previous time, t. 

This chapter proceeds as follows. In the next section, we provide some background 

information about the ARM A (1,1) process. After that, we derive the conditional joint 

probability density function for the state of an ARMA(1,1) process given the joint density 

function of the previous state. Then, we develop a recursive relationship which identifies 

the changes in the probability density function over time by incorporating conditional 

information gained about the process through time.   We use that recursive relationship 
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is used to derive the average run length for an ARM A (1,1) process with specified control 

limits. We also present some illustrative examples, followed by tables which summarize 

the key results. For easy reference, the notation used in this chapter is summarized in 

Appendix A. 

3.2   Background on the ARMA(1,1) Model. 

We present some background, notation and important features of the ARMA(1,1) 

model in this section. The ARMA(1,1) model is important because many real world 

processes can, at least approximately, be modelled with the ARMA(1,1) model. An 

ARMA(1,1) process is characterized by the relationship 

xt+i =£ + <f>xt- 9et + ei+i (56) 

where xt is the process observation at time t, et is the zero mean random error at time t, 

£ is a constant that adjusts for the mean of the process, cj> is the autoregressive parameter 

and 9 is the moving average parameter. For simplicity and without loss of generality, we 

further assume that the process is centered at zero and, thus, is characterized by 

xt+1 = <f>xt -6et + et+1. (57) 

From this equation it is clear that the state at some time, t, of a zero mean ARMA(1,1) 

process can be specified by the ordered pair (xtlet): the observation and underlying error 

at time t. All future states can be expressed as a function of the current state and future 

unknown errors by recursively applying equation 57. For instance, 

xt+2   =   <f)2xt - <f>6tt + (/>et+1 - 9et+1 + ei+2, 

Xt+3   =   (l>3xt - (f>29et + 4>2tt+1 - 4>9et+i + </>ei+2 - 9et+2 + et+3, (58) 
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and, in general, for k > 1, 

k—\ 

xt+k = <f>kxt - <t>k-l6tt + J2(<f>h~l ~ i^1 &)<«+* + et+k. (59) 
j=i 

In order to ensure that the process has a stable mean, we will restrict ourselves to 

stationary ARMA(1,1) processes. Stationarity implies that — 1 < <f> < 1 (Box and Jenkins, 

1976). From equation 59, it should be clear that the influence of the current state on a 

future state decreases as the time until the future state, k, becomes large. In the limiting 

case, we have 

lim <f>k = 0 (60) 

so, when xt and et are finite, 

fc-i 

lim xt+k   =    lim <f>kxt - lim <f>k~xtt + lim VY^' - (f)k~i~1e)et+i + lim et+k 
k—*oo k—KX> k—>oo k—KX>  .—; k-+co 

%=1 

fc-1 

=    lim £(/"'■-<^-i-10)ei+8+ limet+fc. (61) 
k—K» .—" fc—i-oo 

The reduced contribution of the current state can also be seen by considering the conditional 

mean and variance of the observation to be made k time steps into the future: 

A:—1 

E[xt+k\xt,tt] = E[cf>kxt-4>k-1e£t + Y,((i>k~i-(t)k~i~le)£t+i + £t+k\^tt} 
*=i 

=   tfxt-tf-Htt (62) 
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and 

k-i 

Var[Xt+k\xt, et]   =   Var[<t>kXt - cf>k-i0£t + £(^*-« ~ i^-tySt+i + £t+k\xu et] 
■j=i 

=   <t>2^Var[Xt\xuet] + ^k-^e2Var[£t\xt, et] + 

fc-i 

^(^-- _ ^-^efVariSt+ilx^et] + Var[£t+k\xt,et] 

fc-1 

=    E(/_i - ^-^ef + 1] a2. (63) 
j=i 

Both the expected value and the variance of future observations are clearly influenced 

by the current state. However, the influence of the current state drops rapidly even when 

|</>| is close to one. For example, suppose we have an AR(1) process with <j) = -95 and let xt 

and et be samples from the random variables Xt and £t, respectively. From Montgomery 

(1990) we know that the unconditional variance of Xt, denoted of, is related to the variance 

of the errors, denoted of, via 

** = a"r^ = 10-26 *<• (64) 

The ratio of the variance of the fc-step ahead observation to the unconditional process ob- 

servation, Var(Xt+k\xt,et)/Var(Xt), for this AR(1) process is depicted in the top half of 

Figure 6. The ratio rapidly approaches its limit of 1. In addition, the ratio of the con- 

ditional expected value of the future observation to the current observation is depicted in 

the bottom half of the figure. That ratio approaches zero as the number of time steps into 

the future increases. In other words, the conditional expected value of the process obser- 

vations approaches the unconditional mean of the process, and, the conditional variance 

approaches the unconditional variance. 

The decreasing influence of conditional information extends to the full ARMA family 

of models.  In general, any ARMA process can be represented by the general linear filter 
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conditional mean to zero for an AR(1) process with <f> = 0.95. 
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(Montgomery, 1991) 
CO 

xt = (i + J^^t-i (65) 
»=o 

where \i is the mean of the process, the sequence of weights, {V>;}, are constant, and the 

random shocks, {e;}, which drive the system are independent and identically distributed 

random variables with mean 0 and variance of. When the process is stationary, the sequence 

{'{pi} is either finite or infinite and convergent. A finite sequence implies that the influence 

of the current state on future states disappears after a specified number of time steps, while 

a convergent sequence implies that the influence of the current state decreases over time. 

Thus, for any stationary ARMA process, the impact of previous process states on current 

and future states diminishes over time. Later on, we will use this property to approximate 

the average run length of an ARM A (1,1) process with fixed control limits. 

3.3    Defining the State of an ARMA(1,1) Process and Deriving its Probability Density 

Function. 

In this section, we present the mathematical foundation for approximating the average 

run length for an ARM A (1,1) process. First, we define the state of an ARM A (1,1) process in 

terms of the process observation and underlying error. Then, we derive the joint probability 

density function of the next state of the process given the joint probability density function 

of the current state. 

Let the process observation and underlying error at time t, denoted xt and et: be 

samples from the random variables Xt and £t, respectively. The process state at time t + 1 

can be described by these two random variables where 

Xt+1 = <f>Xt - 0£t + £t+1 (66) 

and £t+i represents an error distribution with zero mean and finite variance. Define f(xt, et) 

as the joint probability density function of the state of the process at time t. Further denote 
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the marginal probability density function of the process observations at time t as f*(xt). 

It is clear that Xt+1 and £t+i depend only on (Xt,£t, £t+i) where, by definition, £t+1 is 

independent of Xt and £t. Thus, the joint probability density function of (Xt,£t, £t+i) is 

given by f(xt, et)$'(ei+i) where $' is the probability density function of the error distribu- 

tion. The joint probability density function of (Xt+1, £t+i) will be developed from the joint 

probability density function of (Xt,£t, £t+i)- Let G(yi,y2) denote the cumulative density 

function of (Xt+i, £t+i) evaluated at the point (yl5 y2). We will use yi and y2 instead of 

xt+i and ei+i for now to avoid confusion with the limits of integration. Then, we can write 

(DeGroot, 1989) 

G{yi,V2) = JjJ   f(xutt)&{et+i)dxtdetdet+1 (67) 

where Ay is defined as the subset of R3 containing all (xt, ef, et+1) such that 

<t>xt - 6et + et+i < j/i 

Q+i < 2/2- (68) 

Note that the order of integration will be determined by the definition of Ay. Three 

cases must now be considered which depend on the autoregressive and moving average 

parameters, <j> and 9 respectively. The first case, with <f> = 0 and 0 = 0, considers a simple 

processes in which the observations are independent and identically distributed. The second 

case, with 6^0, considers both mixed ARMA(1,1) processes and pure MA(1) processes. 

The third case, with <j> ^ 0 and 0 = 0, considers pure AR(1) processes. 

3.3.1    Case 1:  <ß = 0 and 9 = 0. When both </> and 9 are equal to zero, the 

observations are simply the independent and identically distributed errors. Recall from 

Chapters I and II that this is the base model that much of the SPC techniques were 

developed for. Since Xt+i = £t+i for this case (see equation 66), the joint probability 

density function is a degenerate case. The marginal probability density functions of Xt+1 

and £t+i are the same and will be denoted as g*(y). We will immediately proceed to derive 
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9*(y) by first deriving the marginal cumulative density function, G*(y). The region Ay is 

constrained by et+i < y\ from equation 68. Therefore, 

/y       roo     /•oo 

/      /     f(xt,et)§'(6t+1)dxtdetdet+1 
-oo -/-co J—CO 

/y /»co      /-co 

$'(ei+i)dei+1 /      /     f(xt,et)dxtdet 
-co J—oo J—oo 

=  $(y), (69) 

and, as expected, the probability density function is 

<?*(</) = *'(y). (70) 

5.5.5 Case 5: 0^0. This case includes both the mixed ARMA(1,1) model and 

the pure MA(1) model. First, consider the sub-case in which 9 < 0. To identify the region 

Ay, allow xt to take on any value and then apply the second constraint in equation 68 

to limit ei+i to be less than y2. Then from the first constraint, et < ((f>xt + et+i — yi)/0. 

Therefore, from equation 67 

/oo    fV2     r('ßxt+et+i-yi)/0 

/      / f{xt,et)&{et+1)detdet+1dxt. (71) 
-oo J—oo J—oo 

The joint probability density function of (Xt+i,£t+i) can then be computed by taking the 

derivative of the cumulative distribution function with respect to ?/i and y2. A sufficient 

condition for differentiating under the first two integral signs is for the joint density function 

/ to be continuous almost everywhere and to decay to zero in the limit of x. That is, 

lim f(xt,et)   =   0    Vei 
xt—>oo 

lim   f(xt,et)   =   0    Vet. (72) 
xt-^—oo 
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Given that condition, 

ß    d 
9(yuV2)   =    «    o    G{yuy2) 

oy2 dyi 

ß    ß    [°°   pi    r{<t>xt+£t+i-yi)/0 
=    TT~^— /      /      / f(xt,et)^'(et+1)detdet+idxt 

oy2 oy\ J—oo J—oo J—oo 

ß     yoo     ry2     ß      r(4>xt+et+i-yi)/t) 
=   ^~ /     "H- / f(xuet)$'(et+i)detdet+idxt        (73) 

Oyi J-°° J-oo Oyi J-oo 

And, by applying Liebnitz's Rule for differentiating under the integral, 

**.») = ^£ jT a(*-+7;~w)/8)/(«..(*.+«+, - y^iem^v^ 
ß      /-oo     /-y2   —1 

~^~ /     ~~F~f(xti (fat + e*+i ~ 2/i)/Ö)$'(et+i)c?ei+i^t 
-oo Cj/2 J-oo    f 

/•CO     _j^ 

=    /     -rf(xti (fat + y* - yi)/B)&(y2)dxt 
J—oo     U 

=    — &(y2) J     f(xt,(<t>xt + y2-yi)/9)dxt. (74) 

The second sub-case, for 0 > 0, follows the same line of development but includes a sign 

change to yield 

1 f°° 
9{yuV2) = 7$/(s/2) /     f(xt, (fat + 2/2 - yi)/0)dxt. (75) 

The two sub-cases can therefore be combined into the single case when 0^0 via 

1 t°° 
9(yi,V2) = |d$'(y2) /    f(xt, (fat + y2- yi)/9)dxt. (76) 

U J-oo 
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yi and y2 can now be replaced by xt+i and ei+i to yield 

,1.*// 1 Z"00 

g(xt+u et+i) = |-|$'(et+1) y     /(x(, (^ + et+1 - xt+1)/9)dxt, (77) 

or, 

or, 

1 f00 

#(^> e0 = U$'(e*) /     /(x*-i> (M-i + £i - xt)/8)dxt_u (78) 
1/ J —OO 

1 z-00 

flf(^»et) = lfll$,(e*) /     /(^-i,et-i)^t-i- (79) 
f J-CO 

5.5.5 Case 5; </> ^ 0 and 0 = 0. The final case to be considered is when 0 = 0 and 

<f> / 0. This is the AR(1) case. First, consider the sub-case in which </> > 0. The region 

Ay can be identified by allowing et to take on any value and using the second constraint in 

equation 68 to limit et+1 to be less than y2. Also, from the first constraint, xt < (2/1 —ei+i )/</>. 

Then from equation 67 

/oo     /"2/2     f(yi-tt+l)/<t> 
/      / /(x(,et)$'(et+i)dxtdet+idet. (80) 

-oo J—oo J—oo 

The joint probability density function of (2/1,2/2) can then be computed by taking the 

derivative of the cumulative density function with respect to 2/1 and y2: 

d    d 
#(2/1,2/2)    =    ——G(y!,2/2) 

#2/2 #2/1 

9    d    [°°   fV2    r{yi-tt+i)/</> 

Q     yoo    fj/2     Q     r(yi-£t+i)/4> 
=    ^~ /      /     ^~ / f(xt,et)$'(et+1)dxtdet+1det. (81) 

02/2 i-00 J-00 ayi J-00 

55 



And, by applying Liebnitz's Rule for differentiating under the integral, 

$(yi,y3)   =  #- r T d{yi~et+l)/(/)f((yi-tt+i)/<l>,ztW(zt+i)det+1det 
oyi •'—°° J—<x>        oy\ 

ß       z-oo      ry2    I 

=    d~ J-oo J-oo 6^^Vl ~ e*+1)/^' ei)$'(ef+iMe<+i^e* 

-oo C/J/2 ^-00 <? 

/•oo    1 
=    /     jfdyi-ViyhetWWdet 

=   -7$'(y2)/    /((yi-yOM^de, 

=   V(y2)/*(Q/i - y2)/#. (82) 

Similar to the previous case, a sign change occurs when </> < 0 so that the general case 

becomes 

5(yi,y2) = |^'(y2)r((yi-y2)/^). (83) 
9 

Since future observations from an AR(1) process depend only on the current obser- 

vation and not the current error, it is useful to consider the marginal distribution of the 

observations. Using the definition of marginal distribution, 

/oo 
g(yi,y2)dy2 -oo 

/oo      1 
H*'(y2).f((vi-v2)/Wy3. (84) 

-oo    (p 

Later, it will be convenient for numerical evaluation of this expression to transform the 

variables such that the function / is directly evaluated over the range of the integral rather 

than being evaluated as a function of the range. To that end, let Q = (?/i — y2)/\(f>\. Then 
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2/2 = 2/1- \<f>\Q, dy2 = -\<f>\dQ, and 

g'ivi)  =   [Q=~°° -Al®
,(y2)f*((yi-y2)/4>)WQ 

jQ=oo \<p\ 

/oo 

*'(yi - 4>Q)r(Q)dQ. (85) 
-oo 

A better understanding may be gained by now substituting xt+\ for y\ and replacing Q 

with a:*, so that the previous equation becomes 

/oo 
&(xt+1 - <j>xt)f*(xt)dxu (86) 

-oo 

or, 
/oo 

$'(ei)f(**-i)^-i- (87) 
-oo 

3.4    Recursive Representation of Density Function for the State of an ARMA(1,1) Model. 

In the previous section, we showed how the unconditional probability density function 

for the next state of an ARM A (1,1) process can be expressed as a function of the proba- 

bility density function of the current state. The next step in determining the average run 

length for an ARM A (1,1) process with fixed control limits is to develop a recursive rep- 

resentation for the state of the process which also incorporates information gained about 

process observations over time. In the previous section, we developed formulas to express 

the density function of the next ARMA(1,1) state in terms of the current density func- 

tion. In this section, we use those results to develop the conditional density function of 

the next ARMA(1,1) state given that the next observation is between predetermined lower 

and upper control limits. 

Define fn(xt,tt) to be the conditional joint probability density function of the state 

of an ARMA(1,1) process at time t given that the n most recent observations (i.e., those 

observed between time t — n + 1 and t) have been within the specified control limits. That 
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is, given upper and lower control limits, denoted LCL and UCL respectively, 

fn(xt, et) = f(xt, et\LCL < xt < UCL,..., LCL < xt-n+1 < UCL), 

and 

fn+i(xt,et) = f{xt,et\LCL < xt < UCL,...,LCL < xt_n < UCL). (89) 

fo(xt, et) is interpreted as the unconditional joint probability density function of the state 

of an ARMA(1,1) process at time t. Further, define gn+i(xt,et) as the conditional joint 

density function of the state of an ARM A (1,1) process at time t given that the previous n 

observations (i.e., those observed between times t — n and t — 1) were between the control 

limits, via 

gn+1(xt,et) = f(xt,et\LCL < xt-\ < UCL,...,LCL < xt_n < UCL). (90) 

Thus, fn+i(xt, et) is related to gn+i(xt, et) by incorporating the conditional information that 

the observation at time t is between LCL and UCL. This relationship can be written as 

gn+i(xt, et\LCL < xt < UCL)   =   f(xt, et\LCL < xt < UCL  AND 

LCL < xt-i < UCL,..., LCL < xt_n < UCL) 

=   f{xt,et\LCL<xt<UCL,...,LCL<xt_n<UCL) 

fn+l(xt,£t) (91) 

which can be rewritten as 

fn+1(xt,et) = < 

gn+1(xt,et) 
Pr(LCL <Xt< UCL) 

0 otherwise 

if  LCL <xt< UCL 
(92) 
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or 
gn+i(xt,et) 

rUCL 
ILCL S-oo9n+i(xt,et)detdxt 

0 otherwise 

if   LCL <xt< UCL 
fn+l(xt,tt) =  < 

The relationship for the marginal distributions can be similarly written as 

(93) 

/;+i(*o = 
9n+l(Xt) 

ILCL Sn+i(xt)dxt 
if  LCL <xt< UCL 

otherwise. 

(94) 

A recursive relationship for each of the three cases from the previous section can now 

be identified. 

3.4.I    Case 1: <f> = 0 and 9 = 0. 

9n+i(xt)   =   $'(**) 

K+i(xt)   =    < 

*'(**) 
<S>(UCL) - $(LCL) 

0 otherwise 

if   LCL <xt< UCL 
(95) 

3.4.2    Case 2: 9^0. 

1 

gn+1(xt,et)    = 

fn+1(xt,et)   -- 

'#' 
$'(e<) /     fn(xt-i, (xt - (f>xt-i - et)/9)dxt_1 

gn+i(xt,et) 
rUCL 

ILCL IZo9n+i(xt,et)detdxt 

0 otherwise 

if  LCL <xt< UCL 
(96) 
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3.4-3    Case S: <f>^0 and 6 = 0. 

/oo 
$'(xt - tQ)rn(Q)dQ 

-oo 

/;+iW 
if LCL <xt< UCL 

ILCL 9n+i(xt)dxt (97) 

0 otherwise 

It is not difficult to see in equation 96 that fn+i(xt,et) can be expressed in terms of 

fn(xt-i, e*-i) rather than gn+1(xt, et) by combining equations 96 and 79. Similarly, f*+1(xt) 

can be expressed in terms of f*(xt-i) in equation 97. However, the functions gn+i(xt,et) 

and g*+1(xt) provide both an intuitive intermediate step and a convenient computational 

breakpoint for numerically evaluating the equations. As an example, Figure 7 on page 61 

depicts a series of marginal probability density functions for an AR(1) process with high 

autocorrelation (</> = 0.9) and narrow control limits (±2ax). The sequence begins in the 

upper right with the unconditional probability density function of Xt, f£(xt). The standard 

deviation of the measurements from this process is 2.29 and its natural tolerance limit, de- 

fined as ±3<7j;, is therefore -6.87 to 6.87. Note that since g*(xt) is defined as the conditional 

distribution of Xt given that the n — 1 previous observations were within the control lim- 

its, gl(xt) actually does not incorporate any conditional information and so gl(xt) equals 

/o*(*0- 

Figure 7 also provides visual evidence of the convergence of both /„ and gn as n gets 

large. That is, as n becomes large, the probability distribution function fn approaches 

some limiting function. We will use this property later on to approximate an average run 

length. Looking at the sequence {fo, fi, f2, fs}, we can see that the incremental changes 

decrease significantly in only a few iterations. While this example is purposely exaggerated 

for visual appeal by the choice of very narrow control limits, it is our experience for that 

a similar pattern of convergence can be expected for wider control limits and for a variety 

of ARMA(1,1) processes.   The incremental changes are most significant near the control 
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fO(x) 

LCL    UCL 8 

Figure 7.    Probability Density Functions for the state of an AR(1) process with standard 
normal errors, (/> — .9, LCL = —2ax, and UCL = 2ax. 
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Figure 8. Graphical illustration of the recursive relationship between / and g. 

limits, thus, when control limits are chosen in the tails of the distributions, the changes are 

simply difficult to show graphically. 

Figure 8 further breaks down the mechanics underlying one iteration. The transi- 

tion from g*(xt) to fi(xt) can be graphically recreated in two steps. First, the tails of 

gl{xt) are truncated at the control limits to incorporate the conditional information that 

LCL < xi < UCL. Second, the truncated curve is rescaled such that the area under it 

equals one, turning it into the probability density function fi(xt). The transition from 

fi(xt) to #2 (xt) can also be envisioned as first applying the autoregressive equation and 

then adding in the normal error. Similar physical constructs can be envisioned for a full 

ARMA(1,1) model, albeit in three dimensions rather than just two. 
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3.5    Determining the Average Run Length 

We will proceed to show that the recursive relationships developed in the previous 

section can be used to compute an average run length for an ARM A (1,1) process with 

given control limits. However, Three major problems arise in trying to do so. First, the 

average run length until an out of control signal for an ARM A (1,1) process depends upon 

the conditional false alarm rate, which changes as the number of in-control observations 

increases. Second, the initial density functions, fo(xt,et) and fo(xt), are not necessarily 

known. Third, although the relationships are concisely stated in equations 95, 96 and 97, 

they are not directly solvable. Some numerical method must be used to approximate the 

exact solution. Each of these points will be discussed in turn. 

3.5.1 Average Run Length for ARMA(1,1) Models. The first problem is how to 

use the conditional joint probability density functions to compute an average run length. 

For the independent and identically distributed model, the average run length is quite 

simple to calculate. In the absence of any assignable cause variation, the false alarm rate 

at every time is equal to the probability of a type I error, denoted a, or, the probability 

of an observation being outside of the control limits. For the independent and identically 

distributed case 

a = l-$(UCL) + $(LCL). (98) 

For this case, the average run length, starting at any time, can be computed via the infinite 

sum 

oo 

ARL   =   Yl i ^KRun length = i) 
! = 1 

OO 

=   J2 i <* (1 - «r1 (99) 
! = 1 

which simplifies to ARL = 1/a. 
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For more complex ARMA(1,1) models, in which either <j> / 0 or 9 ^ 0, structural cause 

variation will be present. This variation influences the joint probability density functions, 

gn and /„. In the absence of assignable cause variation, the probability of the observation 

at time t + n falling outside of the control limits given that the observations between time 

t and t + n — 1 were within the control limits, denoted at+n, is a function of the joint 

probability density function, gn(xt+n, et+n), via the equation 

rUCL 

<xt+n = l- /     gn{xt+n,£t+n)det+ndxt+n. (100) 
JLCL   J — OO 

Clearly, at+n is conditioned upon the observations between time t and t + n — 1 falling 

within the control limits. The run length is defined as the number of observations until 

the first observation which falls outside of the control limits. The probability that the first 

i — 1 observations after t are all within the control limits and the ith observation is outside 

of the control limits can be expressed via 

i-l 

Pr(Run length = i) = at+z n(l — at+j). (101) 

Then, the average run length starting at time t, denoted ARLtl can be computed via 

oo 

ARLt = Y, i Pr(Run length = i) (102) 

or 

ARLt = J2 i a*+i IK1 - «*+;)• (103) 

The preceding equation is similar to the independent case (equation 99). However, since 

the CKt+j's are not generally constant for the dependent cases, ARLt is not, in general, equal 

to l/at. 

A key observation will greatly clarify this situation.   For all stationary ARMA(1,1) 

models, past observations have increasingly smaller impacts over time on the present obser- 
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vations. That is, the change in the marginal distribution of X due to conditional knowledge 

about a particular past observation diminishes as the time since that observation grows, 

or, 

lim g*(xt+n\xt) = g*(xt+n). (104) 
n—too 

Similarly, 

limg*n(xt+n) = lim g*+m(xt+n+m)      V m > 0. (105) 
to        ' OtJ lb       ' OO 

which, in turn, implies that 

lim an = lim an+m       Vm>0. (106) 
n—>oo n—f-oo 

Based on computational experience (to be discussed later in this chapter), we have found 

that the distribution of the observations can be reasonably approximated by a limiting 

distribution for n as small as 30 for stationary ARMA(1,1) models. Thus, the false alarm 

rate any time after 30 in-control observations can be reasonably approximated by the false 

alarm rate after exactly 30 in-control observations. Therefore, the conditional average run 

length starting at time t given that 30 or more observations immediately prior to time t 

were within the control limits, denoted as ARLt\30, can be approximated via 

OO 2 — 1 

ARLt\30   =   Y, i at+i II(1_a<+i) 
! = 1 j = l 

oo i—1 

~   J2 i a30  III1 ~ "so)       for n > 30 
»=i j=i 

w   1/aso      for n > 30 (107) 

where a30 is the false alarm rate after 30 observations within the control limits. The 

validity of this approximation is shown in section 3.6.1. This convergence is important 

since it allows us to approximate the average run length for an ARM A (1,1) process by 

applying the recursive relationships only 30 times. 
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3.5.2 Initial Probability Density Functions. The second problem arises since, for 

the two dependent cases, the recursive relationships cannot be applied without knowing the 

unconditional joint probability density function, f0. We can exploit the properties of the 

ARMA(1,1) process in order to obtain the unconditional joint probability density function. 

The ARM A (1,1) process is a special case of the general linear process. Therefore, if the 

errors are normally distributed, Montgomery (1991) states that arbitrary observations from 

an ARMA(1,1) process will also be distributed according to a normal distribution. The 

variance of the distribution is given as (Box and Jenkins, 1976) 

°l = -I     x_/ (108) 

where of is the variance of the independent normally distributed error term and <f> and 

9 are the parameters of the ARMA(1,1) model. Then, assuming that the errors are nor- 

mally distributed, the unconditional marginal probability density function of an arbitrary 

observation, denoted fo(x), is 

1 If  *  \2 
j*(x) = -j=^e-W . (109) 

'27T<7, 

The marginal distribution is sufficient to apply the recursive relationship for the AR(1) case. 

However, for the full ARMA(1,1) case, we will need the unconditional joint probability 

density function. The unconditional joint probability density function can be found by 

noting that the marginal distribution of the error is also normally distributed, implying 

that the joint distribution is bivariate normal 

/°(*. £) =   o       /A-2 ^^^(-2  ~ — + 4)] (110) 27TV1 - P2<rxcre        2(1 - pz)   aj.      axac      <J2t 
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where 

p   = Cov(Xt,£t)/axac 

= E[(Xt - ßx)(£t - ßt)]/axat 

= E[Xt£t]/axa, 

= E[(( + $Xt_x - OSt^ + £t)£t]/axae 

= E[£2
t]/axac 

vJ(7xVe 

<j,l<y* (ill) 

3.5.3    Solving the Recursive Relationships. The final problem arises since the 

recursive equations cannot be directly solved. A variety of numerical methods can be used 

to solve those equations given the initial probability density functions. The Matlab code 

used to generate the results documented in this paper for the mixed ARM A (1,1) model 

(case 2) is contained in Appendix B and for the pure AR(1) model (case 3) in Appendix C. 

3.6    Results for False Alarm Rates. 

In this section, we present the effects of autocorrelation on the false alarm rates of the 

X-chart. As discussed in Chapter II, quality practitioners construct control charts based, 

in part, on a false alarm rate which is deemed acceptable for their process. An economic 

tradeoff is made between the false alarm rate and the power of the control chart to detect 

the introduction of an assignable cause. 

The traditional ±3ax control limits for an X-chart on independent normally distributed 

observations result in a false alarm rate of 1/370.4 or .0027 and an average run length of 
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370.4. Since ax is generally not known, the X-chart is constructed using an estimate of 

the standard deviation of the error term, cre. For the independent case, ot is equal to the 

standard deviation of the measurements, ax. 

However, when process measurements are autocorrelated, at is not necessarily equal 

to ax. For a stationary ARMA(1,1) model, ae < ax (see equation 108). Unconditional ob- 

servations from an ARM A (1,1) process with normally distributed error terms are normally 

distributed with a variance of <JX. These observations will fall outside of control limits set 

at ±3ax with a probability of 1/370.4. On the other hand, control limits set at ±3cre will 

necessarily be narrower and, therefore, these observations will have a higher false alarm 

rate. With the exception of the independent and identically distributed case, it turns out 

that neither ±3ax nor ±3ae control limits achieve a false alarm rate of 1/370.4. 

The conditional false alarm rate for an autocorrelated process with fixed control limits 

changes as additional conditional information about the process is acquired. The basic unit 

of conditional information used in this chapter is whether or not an observation is within 

the control limits. Since a process should be stopped to search for an assignable cause of 

variation whenever an observation plots outside of the control limits, a practical summary 

of the conditional information is simply the number of consecutive observations within the 

specified control limits since the process was started. Initial control length is defined as 

the number of consecutive observations that have fallen within the specified control limits 

to date. 

3.6.1     Tables of False Alarm Rates. The change that occurs in the theoretical 

conditional false alarm rate is illustrated in Table 2. This table shows the theoretical false 

alarm rate and inverse false alarm rate for three ARM A (1,1) models with various initial 

control lengths. The control limits were specified at ±3<JX. These limits were chosen to give 

equal false alarm rates when no conditional information is known. That is, the false alarm 

rates with no initial control points are equal for all three models as can be seen in the first 
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row of the table. Numerical approximations of g*(x) and gi(x,e) were used to generate 

the theoretical false rates in the table. The theoretical false alarm rates were generated by 

applying equation 100 after each iteration of equation 97. 

Similar information can be derived by simulation. Each simulated run begins with a 

random draw from the unconditional distribution of the ARMA model. As long as the 

successive observations remain within the control limits, the ARMA model is applied to 

extend the time series. A maximum of 30 additional observations are generated for each 

run. The false alarm rate for an initial control length, say n, is simply given as the number 

of runs in which the first n observations are within the control limits but the n + 1th 

observation is outside of the control limits divided by the number of runs in which the first 

n observations are within control limits. The results generated from one million simulated 

runs are listed in Table 3 on page 72. 

The benefit provided by the theoretical approach can be appreciated by comparing the 

results in Tables 2 and 3 (on pages 71 and 72). This information is graphically depicted 

in Figure 9 on page 70. Both the theoretical and simulated results portray the same 

basic pattern. However, the simulated results are afflicted with additional 'noise'. Since 

the theoretical results are actually a numerical approximation, another important benefit 

of comparing the theoretical results to simulated results is to verify the accuracy of the 

theoretical results. 

3.7   Results for Average Run Lengths. 

In the previous section we saw that the false alarm rate may change dramatically prior 

to approaching its limiting value. Figure 9 provides strong visual evidence of the changes 

that may occur in the false alarm rate. In the absence of any changes to the process, the 

false alarm rate remains approximately constant after nearing its limiting value. Thus, the 

average run length from that point can be calculated as the inverse of the limiting false 
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Figure 9. Inverse false alarm rates for various initial control lengths with 3crx control 
limits. ARMA(1,1) with a) 4> = .0 and 6 = .0h)<f> = .95 and 0 = .45 c) (p = .95 
and 9 = .0. 
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Table 2.    Theoretical false alarm rates and inverse false alarm rates for various ARMA 
models and various initial control lengths. 

Initial Control Indepen dent Normal Mixed ARM A (1,1) AR(1) 
Length + = 0,0 = 0 cf> = 0.95, e = 0.45 <^ = 0.95, 9 = 0 

n an (iK) an (iK) a„ (iK) 
0 0.00270 370.4 0.00270 370.5 0.00270 370.4 

1 0.00270 370.4 0.00187 533.9 0.00108 923.3 

2 0.00270 370.4 0.00160 624.4 0.00094 1069.0 

3 0.00270 370.4 0.00147 680.9 0.00087 1146.4 

4 0.00270 370.4 0.00139 718.8 0.00084 1195.1 

5 0.00270 370.4 0.00134 745.6 0.00081 1228.7 

6 0.00270 370.4 0.00131 765.4 0.00080 1253.2 

7 0.00270 370.4 0.00128 780.4 0.00079 1271.8 

8 0.00270 370.4 0.00126 792.1 0.00078 1286.2 

9 0.00270 370.4 0.00125 801.4 0.00077 1297.8 

10 0.00270 370.4 0.00124 809.0 0.00077 1307.1 

11 0.00270 370.4 0.00123 815.2 0.00076 1314.8 

12 0.00270 370.4 0.00122 820.4 0.00076 1321.3 

13 0.00270 370.4 0.00121 824.7 0.00075 1326.7 

14 0.00270 370.4 0.00121 828.3 0.00075 1331.2 

15 0.00270 370.4 0.00120 831.4 0.00075 1335.1 

16 0.00270 370.4 0.00120 834.1 0.00075 1338.5 

17 0.00270 370.4 0.00120 836.4 0.00075 1341.4 

18 0.00270 370.4 0.00119 838.3 0.00074 1343.9 
19 0.00270 370.4 0.00119 840.0 0.00074 1346.1 

20 0.00270 370.4 0.00119 841.5 0.00074 1348.0 
21 0.00270 370.4 0.00119 842.8 0.00074 1349.6 
22 0.00270 370.4 0.00118 843.9 0.00074 1351.1 

23 0.00270 370.4 0.00118 844.9 0.00074 1352.3 

24 0.00270 370.4 0.00118 845.7 0.00074 1353.4 

25 0.00270 370.4 0.00118 846.5 0.00074 1354.4 

26 0.00270 370.4 0.00118 847.1 0.00074 1355.3 

27 0.00270 370.4 0.00118 847.7 0.00074 1356.0 

28 0.00270 370.4 0.00118 848.2 0.00074 1356.7 

29 0.00270 370.4 0.00118 848.6 0.00074 1357.3 

30 0.00270 370.4 0.00118 849.0 0.00074 1357.8 
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Table 3.    Simulated false alarm rates and inverse false alarm rates for various ARMA 
models and various initial control lengths. 

Initial Control Independent Normal Mixed ARMA(1,1) AR(1) 
Length cj) = 0, 9 = 0 <t> = 0.95, 6 = 0.45 ^ = 0.95, e = 0 

n OLn UK) czn (IK) Ot-n (iK) 
0 0.00272 368.1 0.00272 368.1 0.00272 368.1 
1 0.00264 378.2 0.00178 561.5 0.00105 950.7 

2 0.00268 373.6 0.00157 635.7 0.00091 1097.2 

3 0.00263 380.9 0.00150 666.2 0.00088 1136.2 

4 0.00271 369.2 0.00139 721.8 0.00083 1198.1 

5 0.00268 373.5 0.00132 756.5 0.00085 1181.5 
6 0.00266 376.5 0.00127 789.3 0.00079 1269.5 
7 0.00277 360.4 0.00127 785.2 0.00080 1257.3 
8 0.00273 365.7 0.00124 805.3 0.00073 1369.1 
9 0.00260 384.0 0.00121 829.3 0.00077 1303.3 

10 0.00272 368.2 0.00122 817.3 0.00077 1295.5 

11 0.00282 354.1 0.00122 817.6 0.00075 1331.0 
12 0.00267 373.9 0.00117 852.1 0.00074 1351.9 
13 0.00272 367.7 0.00124 803.7 0.00071 1400.7 
14 0.00272 367.8 0.00118 850.0 0.00076 1310.5 
15 0.00271 369.2 0.00115 869.4 0.00076 1318.2 

16 0.00279 358.5 0.00124 808.7 0.00076 1310.2 

17 0.00268 373.6 0.00118 847.7 0.00074 1350.5 
' 18 0.00269 371.2 0.00117 851.1 0.00071 1403.4 

19 0.00271 368.7 0.00122 819.4 0.00080 1254.0 
20 0.00273 366.7 0.00113 885.4 0.00074 1360.5 
21 0.00284 352.1 0.00119 843.0 0.00073 1372.9 
22 0.00273 366.0 0.00116 861.4 0.00072 1391.3 
23 0.00272 367.1 0.00117 852.1 0.00073 1365.1 
24 0.00264 379.3 0.00124 807.8 0.00072 1385.4 

25 0.00275 363.0 0.00113 886.7 0.00073 1363.2 

26 0.00274 365.4 0.00118 846.9 0.00076 1323.4 

27 0.00280 357.7 0.00119 840.7 0.00073 1361.1 
28 0.00273 366.0 0.00118 846.3 0.00072 1395.1 
29 0.00268 372.5 0.00116 864.3 0.00073 1372.5 

30 0.00267 374.2 0.00120 835.6 0.00076 1308.9 
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alarm rate via equation 107.   In this section, we present additional results that further 

verify these conjectures. 

Using the same techniques as in the previous section, the probability density function 

for the next observation after a initial control length of 30 observations can be numerically 

approximated. The theoretical false alarm rate can then be computed by integrating that 

probability density function outside of the control limits. A theoretical average run length 

can then be computed as the reciprocal of the false alarm rate. Table 4 on page 75 contains 

the theoretical average run length for a variety of models and a variety of control limit 

multipliers. For ease of comparison to other results in the literature, this table mirrors the 

layout used in Wardell, Moskowitz and Plante (1994) . 

As in the previous section, we can both verify the numerically approximated theoretical 

results and demonstrate their value by generating comparable results using simulation. 

Table 5 on page 76 mirrors Table 4 and contains the mean run length from 10,000 simulated 

runs for for each combination of ARM A parameters and control limits. As in the previous 

section, each run began with a random draw from the unconditional distribution of the 

ARMA(1,1) process. Additional observations were generated to achieve a initial control 

length of 30. If any observation fell outside of the control limits in this phase, the run was 

restarted. Once a initial control length of 30 observations was achieved, the time series was 

extended until an observation was generated outside of the control limits. The value listed 

in the table is the arithmetic mean of the run lengths achieved. The limits for a (l-a)100 

percent confidence interval can be constructed around each simulated average run length 

via 
cor 

ARL±ta,2—r (112) 

where ta/2 is the appropriate value of the t distribution with n — 1 degrees of freedom, ARL 

is the average run length, and SRL is the sample standard deviation of the simulated run 

lengths. Tables 6 and 7 (on pages 77 and 78) contain lower and upper limits for a 90 percent 

confidence interval about the average run length. The numerically approximated theoretical 
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average run length is within the confidence interval for 175 out of the 200 design points, 

or, for 87.5 percent of the design points. Furthermore, the theoretical average run length is 

within a 99 percent confidence interval for every design point. These results confirm that 

the numerically approximated theoretical average run lengths are not inconsistent with the 

average run lengths from a large scale simulation effort. That is, the statistical evidence 

tends to confirm that the numerically approximated average run lengths are correct. 

While the results in Tables 4 or 5 allow the average run length for a variety of 

ARMA(1,1) processes to be identified, it would be more practical for somebody setting 

up a control chart to have a table indexed on the average run length. Three average run 

lengths are used in Table 8: 110, 370 and 1000. An average run length of 370 is commonly 

used due to the prevalence of ±3<r control limits on independent normal data. Some au- 

thors suggest using the more responsive average run length of 110 (Wardell et al., 1992). 

We also include an average run length of 1000 corresponding to a false alarm rate of .01 

percent for independent observations. The control limit multipliers presented in Table 8 

were found by interpolating the results in Table 4 on a log-log scale. The use of Table 8 is 

discussed in the next section. 

3.8    Using the Results for Quality Control. 

A quality control practitioner with an autocorrelated process may be unwilling to 

use standard control charts due to the unacceptable increase in the false alarm rate. The 

research in this chapter provides a basis for selecting control limits for a known ARMA(1,1) 

process to achieve a desired average run length in the absence of any assignable causes of 

variation. Although it can be argued that we never have a known ARMA(1,1) process, we 

typically assume that our process can be adequately modelled as a ARM A (1,1) process. 

Suppose we want to select control limits for a process that can be approximated by an 

ARMA(1,1) process with mean ß and parameters </> and 0. The control limits corresponding 

to a variety of average run lengths can be constructed by selecting the appropriate control 
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Table 4.    Numerically Approximated Average Run Length for control limits set at various 
multiples of ax after 30 initial control observations. 

l->x ARL30 

<j> = 0.95 (f> = 0.475 (j> = 0.0 <p = -0.475 <j> = -0.95 
1.50 7.6 8.0 8.9 11.6 50.2 
1.75 12.8 13.2 14.7 18.9 82.6 

9 = 2.00 22.4 23.0 25.1 32.3 138.5 
0.90 2.25 41.6 42.3 46.1 57.9 .   239.4 

2.50 81.4 82.3 87.7 109.3 430.2 
2.75 168.7 169.9 180.7 218.1 812.3 
3.00 370.7 372.4 386.6 464.3 1622.9 
3.25 863.6 866.6 901.7 1043.6 3440.6 

<j> = 0.95 4> = 0.475 <f> = 0.0 <f> = -0.475 <t> = -0.95 
1.50 26.7 7.5 8.2 10.8 48.8 
1.75 44.9 12.5 13.7 17.7 80.4 

e = 2.00 75.8 22.0 23.7 30.4 134.7 
0.45 2.25 130.6 40.9 43.4 54.5 232.4 

2.50 232.4 80.5 84.7 103.2 417.3 
2.75 432.3 167.6 173.6 206.9 786.4 
3.00 849.0 370.1 377.5 440.1 1567.3 
3.25 1772.1 866.4 883.8 996.5 3318.9 

<?S = 0.95 <j> = 0.475 ^ = 0.0 4> = -0.475 <j> = -0.95 
1.50 43.0 8.9 7.5 8.9 43.0 
1.75 71.0 14.7 12.5 14.7 71.0 

e = 2.00 118.8 25.4 22.0 25.4 118.8 
0.0 2.25 204.5 46.3 40.9 46.3 204.5 

2.50 365.6 89.0 80.5 89.0 365.6 
2.75 685.6 181.3 167.8 181.3 685.6 
3.00 1358.9 392.4 370.4 392.4 1358.9 
3.25 2862.7 903.3 866.5 903.3 2862.7 

<j> = 0.95 <p = 0.475 <j6 = 0.0 <f> = -0.475 <P = -0.95 
1.50 48.8 10.8 8.2 7.5 26.7 
1.75 80.4 17.7 13.7 12.5 44.9 

9 = 2.00 134.7 30.4 23.7 22.0 75.8 
-0.45 2.25 232.4 54.5 43.4 40.9 130.6 

2.50 417.3 103.2 84.7 80.5 232.4 
2.75 786.4 206.9 173.6 167.6 432.3 
3.00 1567.3 440.1 377.5 370.1 849.0 
3.25 3318.9 996.5 883.8 866.4 1772.1 

<j> = 0.95 <fi = 0.475 <j> = 0.0 0 = -0.475 <j> = -0.95 
1.50. 50.2 11.6 8.9 8.0 7.6 
1.75 82.6 18.9 14.7 13.2 12.8 

9 = 2.00 138.5 32.3 25.1 23.0 22.4 
-0.90 2.25 239.4 57.9 46.1 42.3 41.6 

2.50 430.2 109.3 87.7 82.3 81.4 
2.75 812.3 218.1 180.7 169.9 168.7 
3.00 1622.9 464.3 386.6 372.4 370.7 
3.25 3440.6 1043.6 901.7 866.6 863.6 
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Table 5.    Average Run Length from simulation for control limits set at various multiples 
of ax after 30 initial control observations. 

Lx ARL30 

<£ = 0.95 <£ = 0.475 (£ = 0.0 (£ = -0.475 (£= -0.95 
1.50 7.7 7.9 8.9 11.7 49.7 
1.75 12.8 13.3 14.6 18.8 83.0 

9= 2.00 22.9 23.2 25.8 32.8 139.4 
0.90 2.25 41.5 42.3 46.4 58.0 235.8 

2.50 80.6 83.7 88.3 109.7 431.2 
2.75 169.8 172.9 177.5 217.4 810.3 
3.00 376.8 374.3 394.5 462.1 1623.1 
3.25 879.9 863.4 877.0 1035.4 3531.9 

<?i = 0.95 <£ = 0.475 (£ = 0.0 <£ = -0.475 (£ = -0.95 
1.50 26.8 7.4 8.2 10.8 48.1 
1.75 44.5 12.6 13.7 17.9 80.1 

6= 2.00 76.5 22.2 23.6 30.2 135.4 
0.45 2.25 129.8 41.1 43.4 54.8 231.8 

2.50 231.5 80.5 84.1 103.1 419.2 
2.75 436.3 166.2 177.4 205.0 779.2 
3.00 867.5 377.1 374.3 441.1 1555.1 
3.25 1791.2 859.3 874.1 986.8 3382.3 

<?i = 0.95 <£ = 0.475 (£ = 0.0 <£ = -0.475 <£ = -0.95 
1.50 43.1 8.9 7.5 8.8 42.4 
1.75 69.8 14.6 12.5 15.0 69.7 

6= 2.00 119.8 25.4 22.3 25.6 119.0 
0.00 2.25 202.2 46.1 41.3 46.6 202.1 

2.50 363.5 90.0 80.1 88.5 363.4 
2.75 687.3 182.6 166.0 180.7 675.9 
3.00 1353.3 398.4 374.7 392.7 1358.1 
3.25 2909.7 901.4 860.8 905.1 2841.6 

(£ = 0.95 </> = 0.475 (£ = 0.0 <£ = -0.475 <£ = -0.95 
1.50 49.2 11.0 8.4 7.4 26.3 
1.75 79.4 17.8 14.0 12.6 44.4 

9= 2.00 135.7 30.4 24.0 22.2 75.4 
-0.45 2.25 231.0 54.8 42.8 41.4 131.9 

2.50 421.1 103.8 87.1 79.9 230.9 
2.75 789.5 209.5 172.7 165.1 439.1 
3.00 1588.5 450.4 372.5 374.3 843.8 
3.25 3409.6 995.6 897.0 865.5 1783.6 

<f> = 0.95 <£ = 0.475 <£ = 0.0 <£ = -0.475 (£ = -0.95 
1.50 50.7 11.8 9.1 8.1 7.7 
1.75 81.9 18.9 14.9 13.1 12.9 

6= 2.00 138.0 31.5 25.7 23.2 22.7 
0.90 2.25 239.2 57.3 45.9 42.9 41.7 

2.50 433.8 109.3 88.2 81.7 81.5 
2.75 814.8 219.5 182.1 170.7 166.0 
3.00 1635.3 473.7 394.8 374.3 380.4 
3.25 3540.3 1041.3 915.5 871.0 876.0 
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Table 6. Lower limit of a 90 percent confidence interval for the Average Run Length from 
simulation for control limits set at various multiples of ax after 30 initial control 
observations. 

J-ix ARL30 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 7.6 7.8 8.8 11.5 48.9 
1.75 12.6 13.1 14.3 18.5 81.6 

e= 2.00 22.5 22.8 25.4 32.3 137.1 
0.90 2.25 40.9 41.6 45.6 57.1 231.9 

2.50 79.3 82.3 86.9 107.9 424.2 
2.75 166.9 170.1 174.6 213.9 797.1 
3.00 370.7 368.1 388.0 454.4 1596.8 
3.25 865.4 849.3 862.5 1018.6 3474.7 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 26.4 7.3 8.1 10.6 47.3 
1.75 43.8 12.4 13.4 17.6 78.8 

9= 2.00 75.2 21.8 23.3 29.7 133.2 
0.45 2.25 127.7 40.5 42.7 53.9 228.0 

2.50 227.7 79.2 82.8 101.5 412.4 
2.75 429.1 163.6 174.5 201.7 766.5 
3.00 853.1 371.0 368.2 433.9 1529.7 
3.25 1761.9 845.1 860.0 970.8 3327.1 

<j> = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 42.3 8.8 7.4 8.7 41.8 
1.75 68.6 14.4 12.3 14.7 68.6 

9= 2.00 117.9 25.0 22.0 25.2 117.1 
0.00 2.25 198.8 45.3 40.7 45.9 198.7 

2.50 357.5 88.5 78.8 87.1 357.5 
2.75 675.9 179.6 163.3 177.7 665.0 
3.00 1331.2 391.8 368.7 386.3 1336.0 
3.25 2861.9 886.7 846.5 890.6 2794.6 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 48.4 10.8 8.3 7.3 25.9 
1.75 78.1 17.6 13.8 12.4 43.7 

9= 2.00 133.5 29.9 23.6 21.8 74.2 
-0.45 2.25 227.2 53.9 42.1 40.8 129.8 

2.50 414.2 102.1 85.7 78.6 227.1 
2.75 776.6 206.1 169.9 162.5 431.9 
3.00 1562.7 443.0 366.2 368.2 830.0 
3.25 3352.9 978.9 882.4 851.1 1754.5 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 49.9 11.6 8.9 7.9 7.6 
1.75 80.6 18.6 14.7 12.9 12.7 

9= 2.00 135.7 31.0 25.3 22.8 22.3 
0.90 2.25 235.3 56.4 45.2 42.2 41.1 

2.50 426.7 107.5 86.8 80.3 80.2 
2.75 801.4 215.9 179.1 167.8 163.3 
3.00 1608.6 466.1 388.2 368.0 374.2 
3.25 3481.0 1023.9 900.4 856.4 861.6 
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Table 7. Upper limit of a 90 percent confidence interval for the Average Run Length from 
simulation for control limits set at various multiples of ax after 30 initial control 
observations. 

bx ARL30 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 7.8 8.0 9.1 11.9 50.5 
1.75 13.0 13.5 14.8 19.1 84.3 

6= 2.00 23.3 23.5 26.3 33.4 141.6 
0.90 2.25 42.2 43.0 47.1 59.0 239.7 

2.50 81.9 85.0 89.8 111.5 438.2 
2.75 172.6 175.8 180.5 220.9 823.5 
3.00 382.8 380.4 401.0 469.7 1649.5 
3.25 894.3 877.5 891.5 1052.2 3589.0 

<?i = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 27.2 7.6 8.3 11.0 48.8 
1.75 45.2 12.8 13.9 18.2 81.4 

6>= 2.00 77.7 22.5 24.0 30.7 137.6 
0.45 2.25 131.9 41.8 44.2 55.6 235.6 

2.50 235.3 81.8 85.5 104.8 426.0 
2.75 443.6 168.9 180.3 208.4 791.8 
3.00 881.9 383.2 380.5 448.2 1580.4 
3.25 1820.5 873.4 888.2 1002.8 3437.6 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 43.8 9.1 7.6 8.9 43.1 
1.75 70.9 14.8 12.7 15.2 70.9 

9= 2.00 121.8 25.8 22.7 26.0 121.0 
0.00 2.25 205.6 46.8 42.0 47.4 205.4 

2.50 369.5 91.5 81.4 90.0 369.3 
2.75 698.7 185.5 168.7 183.7 686.8 
3.00 1375.3 405.1 380.8 399.2 1380.3 
3.25 2957.4 916.1 875.1 919.6 2888.6 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 50.0 11.2 8.6 7.5 26.8 
1.75 80.7 18.1 14.2 12.8 45.2 

0= 2.00 137.8 30.9 24.4 22.6 76.7 
-0.45 2.25 234.8 55.7 43.5 42.1 134.1 

2.50 428.1 105.5 88.5 81.2 234.6 
2.75 802.5 213.0 175.5 167.8 446.2 
3.00 1614.4 457.7 378.8 380.3 857.6 
3.25 3466.3 1012.3 911.5 879.9 1812.7 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
1.50 51.6 12.0 9.2 8.2 7.8 
1.75 83.2 19.2 15.2 13.4 13.1 

9= 2.00 140.2 32.0 26.1 23.5 23.0 
0.90 2.25 243.2 58.2 46.7 43.6 42.4 

2.50 440.9 111.1 89.6 83.0 82.8 
2.75 828.3 223.2 185.1 173.5 168.7 
3.00 1662.1 481.3 401.4 380.6 386.6 
3.25 3599.6 1058.7 930.6 885.5 890.4 
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Table 8.    Equivalent control limit multipliers of ax and at corresponding to desired average 
run lengths after 30 initial control observations. 

<f> = 0.95 <t> = 0.475 4> = 0.0 <t> = - -0.475 4> = -0.95 
Desired 

ARL L>x Le Lx Lt Lx Le Lx Le Lx Le 

0 = 110 2.61 2.64 2.60 2.89 2.58 3.47 2.50 4.64 1.89 11.36 
0.90 370 3.00 3.04 3.00 3.33 2.99 4.02 2.93 5.43 2.44 14.65 

1000 3.29 3.33 3.29 3.65 3.28 4.41 3.24 6.01 2.83 16.99 
9 = 110 2.17 4.10 2.61 2.61 2.59 2.84 2.52 3.66 1.90 8.74 
0.45 370 2.69 5.08 3.00 3.00 2.99 3.28 2.94 4.27 2.45 11.26 

1000 3.06 5.77 3.29 3.29 3.28 3.60 3.25 4.72 2.84 13.04 
e = 110 1.96 6.29 2.58 2.93 2.61 2.61 2.58 2.93 1.96 6.29 
0.00 370 2.51 8.02 2.98 3.39 3.00 3.00 2.98 3.39 2.51 8.02 

1000 2.89 9.26 3.28 3.73 3.29 3.29 3.28 3.73 2.89 9.26 
6 = 110 1.90 8.74 2.52 3.66 2.59 2.84 2.61 2.61 2.17 4.10 

-0.45 370 2.45 11.26 2.94 4.27 2.99 3.28 3.00 3.00 2.69 5.08 
1000 2.84 13.04 3.25 4.72 3.28 3.60 3.29 3.29 3.06 5.77 

6 = 110 1.89 11.36 2.50 4.64 2.58 3.47 2.60 2.89 2.61 2.64 
-0.90 370 2.44 14.65 2.93 5.43 2.99 4.02 3.00 3.33 3.00 3.04 

1000 2.83 16.99 3.24 6.01 3.28 4.41 3.29 3.65 3.29 3.33 

limit multiplier from Table 8.   The table includes three generally accepted average run 

lengths: 110, 370 and 1000. The control limits can be calculated via 

UCL   =   fi -\- Lxax 

LCL   =   ji — Lxcrx (113) 

or 

UCL   =   ß + Ltat 

LCL   =   fj, — Leae (114) 

The tables implicitly assumes a initial control length of at least 30. This requirement is 

reasonable in practice since the ARMA model parameters cannot generally be adequately 

estimated with less than 30 observations.  If the initial control period is less than 30, the 
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average run length will tend to be shorter than desired. On the other hand, if the process 

is centered prior to monitoring, the average run length should approximate the desired 

average run length. Of course, selecting a multiplier corresponding to a lower average run 

length (implying narrower control limits) can be expected to detect the introduction of 

an assignable cause more quickly than a multiplier corresponding to a higher average run 

length. 

In our experience, a control limit multiplier for an ARMA(1,1) process with autore- 

gressive and moving average parameters that are within the ranges contained in Table 8 can 

be succesfully determined using a cubic interpolation of the tabulated values. Of course, 

we do not advise extrapolating outside of the range of parameters listed in the table. Nor 

are enough data points provided to determine control limit multipliers corresponding to 

desired average run lengths other than the three listed. 

3.9    Verifying the Results for Quality Control 

We conducted simulations using the tabled control limit multipliers to verify Table 8. 

An estimate of the average run length was computed as the arithmetic mean of the run 

lengths from 10,000 runs. The results of the simulations are listed in Tables 9, 10 and 11. 

The desired average run length was within the confidence interval in 62 out of the 75 design 

points, or 82.67 percent of the time. The desired average run length was outside of a 99 

percent confidence interval at only one design point (for the desired average run length of 

1000 with <j> = -0.475 and 6 = 0.45). The simulated average run length for this case was 

1027.8 and had a 99 percent confidence interval of (1001.3, 1054.3). These observations 

demonstrate that there is no strong statistical evidence to say that the tabulated control 

limit multipliers do not generate the corresponding average run lengths. That is, the 

results of the simulated runs tend to confirm that the tabulated control limit multipliers 

do generate the corresponding average run lengths. 
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Table 9.    Simulation results for control limit multipliers of ax corresponding to desired 
average run lengths after 30 initial control observations. 

0 = 0.95 0 = 0.475 0 = 0.0 0 = -0.475 0 = -0.95 
Desired 

ARL ARL ARL ARL ARL ARL 

6= 110 112.1 112.4 111.5 111.0 110.9 
0.90 370 364.8 372.1 376.4 369.6 371.4 

1000 1023.4 1019.7 995.5 1004.3 995.5 
0= 110 110.5 112.0 110.5 112.0 109.8 

0.45 370 371.8 364.3 370.1 369.4 371.2 
1000 1008.4 1007.4 1003.5 1027.8 994.3 

9= 110 109.4 110.2 111.7 110.7 109.1 
0.00 370 368.5 367.6 364.6 367.4 370.1 

1000 1012.9 996.1 1010.0 1016.4 994.6 
0= 110 110.4 112.1 110.1 111.3 110.9 

-0.45 370 371.0 368.9 373.6 364.3 375.0 
1000 1015.1 •   1025.7 990.0 1007.3 1002.7 

9= 110 111.0 111.7 110.9 111.4 111.5 
0.90 370 369.0 367.1 377.4 368.6 372.0 

1000 1019.6 1024.8 999.7 1005.6 991.8 

3.10    Chapter Summary. 

Using standard techniques to select fixed control limits for an autocorrelated process 

results in unpredictably high false alarm rates. The false alarm rates are manifested by 

a shortened average run length in the absence of assignable causes of variation and, in 

turn, an excessive number of searches for nonexistent assignable causes. In this chapter, we 

developed and tested a method for selecting fixed control limits for an ARM A (1,1) model 

to achieve a specified average run length in the absence of assignable cause variation. The 

method is an improvement over existing techniques since it provides a known average run 

length and should, therefore, reduce the number of searches for nonexistent assignable 

causes. We used the method to develop a table of control limit multipliers corresponding 

to a diverse set of ARMA(1,1) models that achieve standard average run lengths. A quality 

practitioner with a process, approximated by an ARMA(1,1) model, can identify control 

limits corresponding to a given average run length by interpolating the tabulated results. 



Table 10.    Lower limit of 90 percent confidence interval on average run length after 30 
initial control observations. 

(j> = 0.95 cf> = 0.475 </> = 0.0 (j, = -0.475 <j> = -0.95 
Desired 

ARL ARL ARL ARL ARL ARL 

B= 110 110.2 110.6 109.7 109.1 109.2 
0.90 370 358.9 366.1 370.1 363.6 365.4 

1000 1006.5 1003.4 979.6 987.8 979.2 
0= 110 108.7 110.2 108.7 110.1 108.0 

0.45 370 365.7 358.3 364.0 363.2 365.1 
1000 991.8 991.0 987.4 1011.0 978.1 

e= 110 107.6 108.4 109.8 108.9 107.3 
0.00 370 362.5 361.7 358.6 361.4 364.1 

1000 996.3 979.9 993.6 999.7 978.4 
0= 110 108.5 110.3 108.3 109.5 109.1 

-0.45 370 364.9 362.9 367.6 358.3 368.8 
1000 998.3 1008.8 973.7 990.8 986.3 

6- 110 109.2 109.9 109.1 109.6 109.6 
0.90 370 362.9 361.1 371.2 362.5 365.9 

1000 1002.7 1007.9 983.4 989.0 975.8 

Table 11.    Upper limit of 90 percent confidence interval on average run length after 30 
initial control observations. 

<j> = 0.95 4> = 0.475 </> = 0.0 <t> = -0.475 <f> = -0.95 
Desired 

ARL ARL ARL ARL ARL ARL 

9= 110 113.9 114.2 113.3 112.8 112.7 
0.90 370 370.8 378.2 382.6 375.7 377.5 

1000 1040.3 1035.9 1011.5 1020.7 1011.8 
6= 110 112.3 113.9 112.3 113.8 111.6 

0.45 370 377.9 370.3 376.2 375.5 377.2 
1000 1024.9 1023.8 1019.6 1044.7 1010.5 

6= 110 111.1 112.0 113.5 112.6 110.9 
0.00 370 374.6 373.6 370.6 373.4 376.2 

1000 1029.5 1012.4 1026.5 1033.0 1010.8 
9= 110 112.2 114.0 111.9 113.2 112.8 

-0.45 370 377.1 374.8 379.7 370.3 381.1 
1000 1032.0 1042.6 1006.3 1023.7 1019.2 

0= 110 112.9 113.6 112.7 113.2 113.3 
0.90 370 375.1 373.0 383.6 374.7 378.1 

1000 1036,5 1041.8 1016.0 1022.1 1007.8 
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IV.   A Theoretical Foundation for Assessing Process Capability 

The majority of statistical process control techniques in use today are based upon 

monitoring the state of statistical control. We presented the tools and techniques currently 

used to do so in the first two chapters of this dissertation. In the previous chapter, we 

presented an extension to the Shewhart control chart to account for autocorrelated process 

observations. Beginning in this chapter, the focus of our research shifts to a new paradigm 

based upon monitoring the capability of a process over time rather than monitoring its 

state of statistical control. 

The conceptual shift to a new paradigm requires a theoretical foundation to build upon. 

We develop that foundation in this chapter. The theory we develop in this chapter departs 

from the existing literature by emphasizing the notion that the capability of a process can 

vary over time. The time-varying aspect of capability can be used as a means for process 

control. Furthermore, in this chapter we show that the capability of a process at some time 

in the future can be estimated by fitting a model to a known set of observations from that 

process. In the next chapter, we apply these theoretical concepts in the development of a 

practical method for monitoring process capability. 

4-1    Overview 

In the first part of this chapter, we extend the definition of capability to account 

for the long-term aspect of capability implied in the existing definitions as well as the 

time-varying aspects of capability developed in this chapter. We illustrate these aspects 

of capability by applying them to three cases: an independent and identically distributed 

process; a deterministic sinusoidal process; and a more general process. Next, we develop a 

method for estimating the process capability for the very next observation for each of the 

three cases. The results derived for estimating capability one time step into the future are 
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followed by more general results for estimating process capability at an arbitrary number 

of time steps into the future. 

4-2    Assumptions, Notation and Definitions 

The definitions and assumptions prevalent in the statistical process control literature 

are centered around the paradigm of monitoring the state of statistical control. In this 

section, we present a minimal set of background assumptions which will be used within the 

rest of the chapter. We also make the distinction between time-specific, time-average and 

long-term capability. Finally, we define time-specific expected loss, time-average expected 

loss and long-term expected loss. 

4-2.1 Background Assumptions and Notation. Consider a process with some mea- 

sure of quality evaluated at discrete time intervals. Given the N most recent process 

observations at time T, the period of time during which the future behavior of the process 

is of interest is defined by the index set {T + 1, T + 2,..., T + s}, where T + s is the time 

associated with last observation of interest. The measure of quality at some time, T + k, 

in the index set can be considered to be an observation from a random variable, denoted 

Xx+k, whose (conditional) probability density function is denoted fr+k\T- The conditional 

expected value of the process at time T + k given the N most recent observations at time 

T, denoted fiT+k\T, is given by 

ßT+k\T   =   E[XT+k\xi,...,xN] 

/oo 

xfr+k\T(x) dx. (115) 
-00 

Note the minor notational shorthand:   E(XT+k\xi,---,XN) is used instead of the more 

cumbersome E(XT+k\X\ = Xi,... ,XN = XN). The variance of the process at time T + k 
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given the observations up to time T, denoted 0y+fcir, is similarly given by 

aT+k\T   —   Var[XT+k\x1,...,xN] 

=   E[Xj.+k\x1,...,xN] - E2[XT+k\x1,...,xN] 

=    E[XT+k\xli---ixN]-l4+k\T- (116) 

4-2.2 Time-specific, Time-average and Long-term Capability Defined. Capability, 

as defined in Chapter I, is a measure of the ability of a process to produce items within 

the process specification limits. Under this definition, one process is more capable than 

another if it produces fewer items outside of its specification limits. While this definition is 

sufficient for independent and identically distributed process measurements, it is ambiguous 

when applied to more complicated real world processes. These modern processes, charac- 

terized by autocorrelated measurements, may produce a high percentage of items within 

the specification limits over a long period of time while producing high numbers of items 

outside of the specification limits during short intervals of time. For example, consider the 

two processes depicted in Figure 10 on page 86. The bottom process is independent normal 

while the top process is AR(1) with </> = .97. The variance of the independent normal 

errors for the AR(1) process was scaled so.that the unconditional distributions for both 

processes are equal. The histograms on the left side of the figure provide visual evidence 

of that equality. However, on the right side of the figure, the tendency of the observations 

from the AR(1) process to vary together is evident. If the lower control limit were set 

to -1.5, the observations from the independent normal process would be below the lower 

specification limit 21 times during the 400 observations. Those observations are spread 

out over the 400 observations and, in general, occur independently. Observations from the 

AR(1) process are below the lower specification limit 12 times between observation 356 and 

373, but never at any other time. In general, the observations outside of a specification 

limit will be clustered since the observations are positively autocorrelated.   If the period 
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Figure 10.    Comparison between an independent process  and a highly autocorrelated 
process. 

of time during which the process measurements are of interest is likely to include such a 

run of out-of-specification observations, the process should not be considered as capable as 

the independent normal process. The current definition of capability does not adequately 

address whether such a process is capable or not. In this subsection, we provide extended 

definitions that accommodate the multifaceted nature of capability. 

Suppose that the quality characteristic has a specified ideal target value denoted r, an 

upper specification limit denoted USL, and a lower specification limit denoted LSL. One 

of the key concepts proposed in this research is that capability can be viewed as varying 

over time.   Recall from Chapter I that capability is a measure of the total variation in 
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the process against the specifications. Under a strict interpretation of the specification 

limits, the capability of the process at a given time can be defined as the probability that 

the observation at that time will fall within the upper and lower specification limits. The 

time-specific process capability at some time, T + k, given the TV most recent observations 

at time T, can be expressed as 

CT+k]T 4 p[LSL < XT+k < USL\xu ..., xN}. (117) 

In other words, the time-specific capability at time T + k is a function of the distribution 

of the random variable XT+^T, via 

rUSL rU SL 

CT+k\T = /       h+k\T(x)dx. (118) 

Although process capability may vary with time, we still want to be able to express 

the capability of the process over a period of time. In this case, the total variation of the 

output during the period of interest can be considered a combination of the variations from 

each time in the period of interest. Again, under a strict interpretation of the specification 

limits, the time-average process capability during the period of interest can be defined as the 

proportion of observations during the period of interest which are expected to fall within 

the upper and lower specification limits. In order to evaluate the capability of the process 

throughout the period of interest, we will construct a probability density function over 

the entire index set as a weighted linear combination of the individual probability density 

functions via 

fi{x) = l/s J2fT+k\T(x). (119) 
k=l 

The density function, //, concisely incorporates the total variation of the process output 

throughout the period of interest. Time-average capability is a function of the total vari- 

ation throughout the period of interest, and thus, can be considered as a function of the 

combined density functions.   Using equal weights is a natural choice, although it is not 
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required. Unequal weights may be desired when economic concerns emphasize particular 

times (e.g. when added importance is placed upon the measurements in the immediate 

future). In this case, 

fi{x) = TltT+kfT+k\T(x) (120) 
k=l 

where 

E7T+fc = l (121) 
k=i 

and jT+k > 0 for all 1 < k < s. In either case, the probability density function, /j, defines 

a random variable Xj. We will use the more general notation allowing for unequal weights 

from here on. The time-average expected value of the process during the period of interest, 

denoted ^/, can be expressed via 

M   =   E[Xj} 

/CO 

xfi(x) dx 
-co 

/oo s 

x^2lT+kfT+k\r(x) dx 
■°°    k=\ 

s roo 

Yl^T+k /     xfT+k\T(x) dx 
k-\ 

=     Y.7T+kVT+k\T- (122) 
k=l 
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The time-average variance of the process during the period of interest, denoted crf, can be 

similarly expressed via 

aj   =   VarlXr] 

=   EiX^-E^Xr] 

/oo s 

X2fi(x) dx - (Y,lT+kßT+k\T)2 

Jfc=l 

/CO s s 

X2 Y, KT+kfT+k\T(x) dx - (J2 lT+kßT+k\Tf 
■°°       fc=l k=l 

s yco s 

=     YslT+k X2fT+k\T{x) dx-(Y,lT+kßT+k\T)2 

I i J— oo i    - fc=l " -°° k=l 

s s' 

=     J2^T+kE[^T+k\T\x^ • • • >
X

N] -(Y.^T+kßT+k\Tf 
k=l k=l 

s 

-    /L 7T+fc0T+fc|X + Z] 7T+fc/4+fc|T - (J2 lT+k^T+k\r)2- (123) 
fc=l fc=l fc=l 

Using the notation developed in the previous section, the time-average process capability 

during the period of interest can be expressed as 

Ci   4   P[LSL <Xr< USL] 

[USL 
=    /       fi(x)dx. (124) 

>/ Lao Li 

It is very important to note that CT+k\T does not necessarily equal Cj.  Examples of this 

will be seen in the following sections. 

When the observations throughout the index set are independent and identically dis- 

tributed, fx+k\T = // for all 1 < & < 3. In this case, the conditional expected value of the 

process at time T + k given the observations up to time T is equal to the expected value of 

Xi (i.e. ßj+k\T = ßi)- Furthermore, the conditional variance of the process at time T + k 

given the observations up to time T is equal to the variance of Xj (i.e. u^,+k,T = aj). 
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More generally, the observations over the index set are not independent and identically 

distributed. We do, however, typically impose a structure upon these observations. For 

instance, in the next chapter, process measurements are assumed to be observations from a 

stationary ARMA(1,1) process. Given a set of known observations and the parameters of 

the ARMA(1,1) model, the conditional probability density function of future measurements 

can be identified. In this chapter, we assume that the process is stationary, or, fo+i = fr+m 

for all T + / and T + minl < I < m < s. Clearly, the conditional probability density 

functions of a stationary process are not necessarily equal (i.e. fr+i\T / /T+TO|T)- How- 

ever, we will assume that the impact of additional information about process observations 

decreases over time such that, after a sufficiently large time, /x+fc|T approaches a limiting 

density function fx. Indeed, for any stationary ARMA(1,1) process, lim^oo fx+k\T = fx, 

where fx is the unconditional probability density function of the process observations. More 

precisely, for any x and any positive real number 8, there exists an integer K such that 

\fT+k\r(x) - fx(x)\ < 8 for every k > K. 

When the conditional probability density functions approach a limiting function, fx, 

then the function // also approaches fx as the size, s, of the index set increases (i.e. 

lim^oo fj = fx). To see this convergence, suppose we are given a value, x, in the domain 

of fx and a positive real number 8. Since fr+k\T approaches fx, we know there exists an 

integer Kl such that \fr+k\T(x) — fx(x)\ < 8/2 for all k greater than K\. Choose A'2 such 

that 

E \(fT+k\T(x) - fs(x))\ < Kl + K2S (125) 
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and let N = K1+ K2. Then, for any s > N, and given that {jx+k} is a sequence for which 

lT+i < 1/s for alii < Kl, 

s s 

\fl(x) - fx(x)\     =     \J2^T+kfT+k\T{x)-J2^T+kfx(x)\ 
k=l k=l 

s 

=     \^2lT+k{fT+k\T{x) - fx{x))\ 
k=l 

Kl s 

=     \J2lT+k(fT+k\T(x) ~ fx{x))+      J2     lT+k(fT+k\T(x) ~ fx(x))\ 
k=l k=Kl+l 

Kl s 

< I £ 1/S(fT+k\T(x) ~ fx(x)) | +      Yl     lT+k\(h+k\T(x) ~ fx(x))\ 
k=l k=Kl+l 

K\ 4- K2 s 

< l/s±±±^6 +    £    TT+kS/2 
1 fc=A"l+l 

2s 2 

< S. (126) 

Thus, lim^oo//=/j;. The condition placed upon the sequence {jx+k} is a sufficient 

condition for the proof of the convergence of // to fx and explicitly provides for the two 

intuitive weighting schemes: equal weighting and exponential weighting. 

The density function fx corresponds to the long-term capability. When the period of 

interest is long enough, the capability of the process is best described as a function of the 

limiting or unconditional distribution of the observations. Long-term process capability, 

denoted C, is defined as the ability of the process to produce items within its specification 

limits at some arbitrarily distant point in time. Using the previously developed notation, 

the long-term capability can be expressed as 

C = P[LSL < X < USL]. (127) 
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Similarly, the long-term expected value of the process can be expressed as 

P* = E[X] (128) 

and the long-term variance of the process can be expressed via 

al 4 Var[X). (129) 

The notation introduced so far in this chapter recognizes the possibility that, given a set 

of known observations, the conditional expected process location at some future time may 

differ from the time-average expected process location during the period of interest or the 

unconditional process location. Similarly, process spread, as measured by the conditional 

variance of the observations, may also change with time. A simple case showing these 

differences is presented in section 4.4. These differences are important because they directly 

lead to the ambiguity that is present in the current, static measures of capability. 

4-2.3 Redefining Some Common Capability Indices. Capability indices are a pre- 

ferred method for reporting the capability of a process. The two most generally accepted 

capability indices are Cpk and Cpm. These two key process capability indices can be ex- 

pressed as the long-term capability indices 

kpfc = 

and 

c =: 

mm 
USL — fj,x  fix — LSL 

3ax 3ax 

USL - LSL 

N(P* - r)2 + al 
(130) 
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At some future time, T + k, the corresponding time-specific capability indices given condi- 

tional knowledge about the observations up to time T are 

C. pk,T+k\T =     mm 
USL — /J-T+k\T   ^T+k\T — LSL 

3aT+k\T 3(7T+k\T 

and 

USL-LSL ,      N 
Lpm,T+k\T       = , (131) 

6^J{ßT+k\T ~ rf + a^+k]T 

Finally, when a period of interest for the process is known, the time-average capability 

indices for the period given the observations up to time T are 

Cpk,i     =     rnin 

and 

USL — HI  ßi — LSL 

3(7/ 3(7/ 

USL - LSL 

It is important to note that the time-average capability indices are not necessarily equal 

to the average of the time-specific capability indices over the period of interest. However, 

time-average capability indices do provide a measure of the total variation exhibited by the 

process throughout the period of interest that is not unduly influenced by the variation at 

isolated times in the period of the interest. 

The multifaceted nature of capability is recognized and accounted for by this notation. 

Time-average capability is a measure of the ability of a process to produce within speci- 

fication limits throughout the entire period of interest. On the other hand, time-specific 

capability is a measure of the ability of the process to produce within the specification 

limits at a given future point in time. Finally, long-term capability is an unconditional 

measure of the ability of the process to produce within the specification limits. 

93 



4-2.4    Time-Specific,   Time-average and Long-Term Expected Loss Defined. The 

major alternative to considering capability in terms of the probability of observations being 

within the specification limits is to consider capability in terms of the expected loss per 

observation. The measure of expected loss per observation possesses the same three aspects 

associated with the probability based measure of capability. Expected loss is frequently 

approximated by the Taguchi Loss Function, L(x) = K(x — r)2 where K is a constant. 

Similar to long-term capability, the long-term expected loss per observation, denoted £, 

given a specified Taguchi loss function can be written as: 

C   = E[L{X)} 

= E[K(X-T)
2

} 

= K(E[X
2

]-E[2TX] + E[T
2
]) 

= L<(Var[X] + E2[X]-2T E[X] + T
2
) 

= K(Var[X] + (E[X] - rf) 

= K(a2
x + (ßx-r)2). (133) 

The time-specific expected loss per observation at time T + k given observations up to time 

T follows, via 

£-T+k\T    =    E[L(XT+k)\xi,...,xT] 

=     K{vT+k\T + (»T+k\T-T)2), (134) 

and the time-average expected loss per observation during the period of interest via 

d   =   E[L{XI)\x1,...,xT] 

=   A>2 + (M7-r)2). (135) 
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The time-average expected loss per observation during the period of interest is equal to the 

weighted average of the time-specific expected loss per observation. 

Boyles (1991) describes an inverse square relationship between the (long-term) Cpm 

and the Taguchi loss function. When 

K = ml{USL - LSLf (136) 

then 

C = 7T- (137) 
pm 

That relationship is preserved under our definitions of time-average and time-specific ca- 

pability and loss, via 

Cr   = 
C2 

pm,I 

£T+k\T   =   —^ • (138) 
^pm,T+k\T 

4-3    Independent and Identically Distributed Case. 

The expanded definitions of capability and expected loss per unit address issues raised 

by applying the existing definitions to modern processes which exhibit autocorrelation. The 

existing definitions adequately handle independent and identically distributed processes. 

In this section, we verify that the long-term capability, time-average capability and time- 

specific capability are all equal when process observations are independent and identically 

distributed. 

Suppose we have independent and identically distributed process observations, denoted 

by the random variable X. The presumed truth model for this case is 

Xt = [ix + et (139) 
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where jix is a constant and et is a random noise component such that 

E(et)   =   0     Vt 

Var{et)    =   a\    V< 

Cov(euet+k)   =   0      V i, V k > 0. (140) 

The noise component is frequently assumed to follow a normal distribution, although that 

assumption is not relied upon in this chapter. It is easily seen that the following relations 

are true for this case: 

E(Xt) = ßx Vi 

Var(Xt) = a\ Wt 

Cov{XuXt+k) = 0 Vt, Vfc>0 

^ = ^2- (141) 

It is also straightforward from the independence of the process that future observations do 

not rely upon previous observations. For instance, suppose observations up to time T are 

known. The relations from above still hold given the conditional information, as 

E(xT+k\Xl,...,xN) = nx vt>r + i 

Var(XT+k\xi,...,xN)   =   o\    Vi>T + l 

Cov(XT+i,XT+k\x1,...,xN)   =   0      V/>0, Vfc>0. (142) 

The time invariance of the independent and identically distributed case extends to the 

capability of the process. Knowledge about past observations does not affect expectations 
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about future events, so 

P[LSL<XT+k<USL\x1,...,xN]=P[LSL<X<USL]    V k > 0, (143) 

and in general, given the observations up to time T, for any k > 1, the long-term, time- 

average and time-specific capability indices are equal, via 

Cr+k\T     = C =     Ci 

Cpk,T+k\T     = Cpk —     Cpk,I 

^pm,T+k\T     — *~pm —     ^pm,I- V / 

In other words, when the observations are independent and identically distributed, there is 

no ambiguity when using static measures of capability. In the following sections, we show 

how ambiguity arises when the observations are not independent and identically distributed. 

4-4    Deterministic Case 

Another simple case can be used to show that the long-term and time-specific ca- 

pabilities are not necessarily equal. A deterministic process shows this quite easily. For 

instance, consider a sinusoidal process that generates the repeating sequence of observa- 

tions {0, .7, 1, .7, 0, -.7, -1, -.7, 0, ... }. Further suppose that the upper specification limit 

for the process is .8 and the lower specification limit is -.8. This process is depicted in 

Figure 11. It is easy to see that two out of every eight observations will be outside of the 

specification limits. Thus, the long-term capability as measured by C equals .75. How- 

ever, at any given time the process is either inside or outside of the specification limits. 

Therefore, CT+k\T will equal either 0 or 1 and CT+k\T ^ C. Note that for a deterministic 

seasonal process like this one, it is not correct to say that JT+k\T approaches a limiting 

distribution. However, we can say that the linear combination of probability distribution 
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Figure 11. Example of a sinusoidal process. 

functions over the season approaches a limiting function, and so, fx still does approach a 

limiting function. 

4-5    General Case 

As discussed in Chapter II, the independence assumption does not hold for a large 

variety of real world processes. The more general case allows for future process observations 

to depend upon past process observations as well as past values of the error component. 

In this case, the truth model can be expressed as 

Xt = f(x1,...,xt-Uei,... ,e4_i) + tt (145) 
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where / is some function of past process observations and errors. For example, an ARMA(1,1) 

model can be defined by 

/(zi, i£*-i) ei, , e*-i) = 
£ + 4>XQ — 6e0 for t = 1 

£ + <M-i - 0e*-i   for t > 2 
(146) 

where £, ^ and 0 are the ARMA model parameters; and x0 and e0 account for the model's 

initial conditions.. A slightly more general formulation of the truth model would include 

ef as a variable in the function, but it will be convenient later to assume the error term is 

added at each time step. 

Suppose the N most recent observations at time T from a general process that can be 

described by equation 145 are known. We already know that the expected value of X at 

time T + k given the observations up to time T, denoted ßT+k\T, is n°t necessarily equal 

to the long-term expected value of the process observations, 

ßT+k\T    =    E(XT+k\xii- ■ ■ ,£jv) 

^T+k\T     /    ßx- 

Nor will the conditional process variance, denoted cry+fc|T, necessarily equal cr^, 

(147) 

aT+k\T   -   Var(XT+k\xi, ,XN) 

a. T+k\T +     °l (148) 

The long-term capability of the general process can be assessed by determining values 

for C, £, Cpk or Cpm, just as the long-term capability can be assessed for the independent 

and identically distributed case. However, the time-specific capability of the process in the 

more general case does not necessarily equal the long term capability of the process. That 
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is, 

P[LSL < XT+k < USL\Xl, ...,xT]^ P[LSL < X < USL}. (149) 

4-5.1    An Example.        Suppose we have an AR(1) process with autoregressive pa- 

rameter </> = .9, standard normal errors, and a mean of zero. The process is characterized 

by 

Xt+1 = <f>Xt + et. (150) 

The long-term standard deviation of the process is given by 

ax   =   1/(1 -f) 

=   5.26. (151) 

Further suppose that the specification limits are set at ±3ax = ±15.78. Then, the long-term 

capability of the process can be expressed by 

■'pk mm 
USL-0  0-LSL 

3ax 3ax 

(152) 

In addition, suppose that the process observation measured at time t = 1 was 15.8. Then, 

the conditional expected value of the second observation is 

M211   = E[X2\Xl = 15.8] 

= E[.9xl + e2\x1 = 15.8] 

= .9(15.8)+ 0 

= 14.2 (153) 
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and the conditional variance is 

a\x   =   Var[X2\Xl = 15.8] 

=   Var[.9a;i + e2|a;i = 15.8] 

=   Var[e2] 

=   1. (154) 

Therefore, the conditional time-specific capability of the process at time t = 2 is given by 

Cpjfe,2|i    =■ min 
USL - fi2\i  AMi ~ LSL 

3(72|i        '        %<Tx,2\i 

=   min[.531,10.0] 

=   .531. (155) 

This example shows that there can be quite a large difference between the long-term ca- 

pability, Cpk = 1, and the time-specific capability, Cp^,2|i = -531. If our measurement of 

the observation at time t = 2 is 0 (a highly unlikely event given the truth model), then 

£pfc,3|2 = 5.26; the time-specific process capability can be much larger than the long-term 

process capability. 

4-6    One-Step Ahead Process Capability. 

In the preceding sections, we demonstrated the need for considering time varying 

capability. In the following sections, we will develop techniques for examining time varying 

capability. Consider the natural question, what is the time-specific capability of the process 

for the next observation? That is, when the N most recent observations at time T are 

known, what is the probability that the observation at time T + 1 will be within the 
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specification limits? The one-step ahead capability at time T is given by 

CT+I\T = P{LSL<XT+I <USL\Xl,...,xT). (156) 

The one step ahead capability can be determined directly if the conditional distribution 

of XT+I is known. More generally, XT+I can be assumed to arise from a known family of 

models. By fitting a general model to the N known observations, we are able to estimate 

C-T+1\T via 

CT+I\T = P{LSL<XT+1 <USL\XU...,XT). (157) 

4-6.1    General Case. For the general case, XT+I can be expressed using equa- 

tion 145 via 

XT+i = f{x1,...,xN,e1,...,eT) + eT+1. (158) 

Unfortunately, neither the parameters of the function / nor the distribution of the error 

component are generally known. However, an estimator for the one step ahead capability 

can be constructed using estimates of the parameters of the truth model. Suppose a 

candidate function, #, is being considered as an approximation for the truth model described 

by the function /. Since an observation is known for each of the first T time periods, the 

relationship 

Xi = g(x1,...,xi-i,ei,...,ei_1) + ei,      (1 < i < T) (159) 

can be established with some estimates, {e}, replacing the true error components, {e}. (In 

the forecasting literature, e is frequently used in place of e.) A commonly used technique is 

to choose parameters for g which minimize the sum of the square of the estimated errors. 

That is, the parameters of function g can be fitted by solving the minimization problem: 

T 
minimize :       J^ e? 

i=l 

subject to :       xi = g(xi,..., cct-_i, ei,..., e;_i) + e;  V 1 < i < T (160) 
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The solution of the minimization problem yields the parameters for g and a set of esti- 

mated error components, {e}. Then, g(xi,..., XT, ei,..., ex) can be used as an estimate of 

f(xi,..., XT-, £i,..., ex). The expected value of the next process observation is given by 

(*T+I\T = E[f(xi, ...,xT,eu...,eT) + eT+1 \xu ...,xN] (161) 

and can be estimated via 

ßr+i\T   =   E[g(x1,...,xT,e1,...,eT) + eT+1\x1,...,xN] 

=   E[g(x1,..., xT, ei,..., eT)\xu ..., xN] + E[eT+1\xu ...,xN] 

=   g(x1,...,xT,e1,...,€T). (162) 

Using this new information, Cx+i|x can be expressed via 

CT+i|x   =   P(LSL < Xx+i < USL) 

=   P(LSL - fiT+i\T < ex+i < USL - AT+I|X)- (163) 

As would be expected, the one step ahead process capability can be estimated using esti- 

mates of the one step ahead process location and the variance of the errors. An estimate 

of the one step ahead process location can be directly obtained from the fitted model and 

errors. However, in order to derive a value for the estimated capability using equation 163, 

some assumptions must be made about the distribution of ex+i- In the next chapter, we 

propose a method for doing so. 

4-6.2 Independent and Identically Distributed Case. Suppose that the candidate 

model for the process is chosen from the family of independent and identically distributed 

processes with an unknown mean.   That is, choose g(-) = K.   Then the minimization 
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problem 

X 

minimize:        >   e2 

simplifies to 

with the solution 

i=l 

subject to :       Xi = K + h  V 1 < i < T (164) 

X 

minimize : ^(a;,- — A')2 (165) 

K = J2xi/T (166) 
! = 1 

and yields the set of estimated errors {a;,- — K}.   For this process, the one-step ahead 

capability is given by 

CT+i\T = P(LSL-nx<eT+1<USL-iix). (167) 

The estimated one-step ahead capability for this case is given by 

Cx+i|x   =   P(LSL — fix+i\T < ex+i < USL — Ax+i|x) 

T T 
=   P(LSL-Y,Xi/T<tT+1 <USL-^2xi/T). (168) 

j=l 8 = 1 

It is clear that as the number of observations increase, the estimate of K will approach fj,x, 

via 

X 

lim K   =    lim Y^ x;lT 
T-*oo X^oo f-f      ' 

J=l 

=   /**• (169) 
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Further, the set of estimated errors approach the true errors, since, 

lim e;   =    lim (xi — K) 
T—s-oo T—s-oo 

=   Q. (170) 

Finally, the estimated one step ahead capability estimate approaches the true long-term 

capability, or, 

lim CT+1\T = C. (171) 

This is an intuitively appealing result. Given a large enough sample of independent and 

identically distributed observations, the probability density function of the observations 

and, hence, of the error terms, can be approximated to an arbitrary degree of accuracy. 

Process capability can, in turn, be approximated from that unconditional distribution. 

4-6.3 Deterministic Case. The deterministic case retains its intuitive simplicity 

when estimating the one step ahead capability. When the deterministic pattern is known, 

the one step ahead forecast errors are uniformly equal to zero. In addition, the location 

of the process at the next time step is known. Therefore, the one step ahead capability is 

given by 

CT+I\T   =   P(LSL — HT+I\T < er+i < USL — [J,T+I\T) 

=   P(LSL — ßT+i\T < 0 < USL — HT+I\T) 

=   P(LSL < fiT+1{T < USL). (172) 

Since the location of the process at the next time step is known, the one step ahead 

capability will equal either 0 (if the location is outside of the specification limits) or 1 (if 

the location is inside of the specification limits). 
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4-7   k-Step Ahead Process Capability. 

In this section, we generalize the results from the one-step ahead capability section. 

Specifically, we modify the equations for assessing one-step ahead process capability to 

assess the k-step ahead process capability. 

4-7.1 General Case. Following the same development used in the one-step ahead 

case, 

ßr+k\T   = E[XT+k\xi,. ..,xT] 

= E[g(x1,...,xT+k_1,eu...,eT+k_1) + eT+k\xi,. ..,xT] 

= £[#(^1, • ■ •, xr+A-i, ei, • • ■, h+k-i)\xi, ■ ■ ■, xT] + E[eT+k\xi, ...,xT] 

= gk(x1,...,xT,ell...,eT), (173) 

where gk(xi,..., rcy, ei,..., ey) is recursively defined by 

gk(x1,..., xT, ei,..., eT)   =   g{xi,..., xT,g1(x1,..., xT, £i, • • •, er), • • •, 

gk~1(x1,..., xT, e1}..., eT), ex,..., eT, 0,..., 0) 

flr3(a;i,...,XT,£i,-.-,eT)    =   #(^1, • • ■, xT,g1(x1,... ,xT, e1?..., er), 

5r2(xi,..., xT, el7..., eT), ex,..., eT, 0,0) 

g2(xi_,. ..,xT,eu...,€T)   =   g{xx,..., xT,g1(xu ..., xT, £i, • • •, eT), e1;..., er, 0) 

^(a;i,...,a;r,ei,...,eT)   =    (/(^i, ■ • • ,xT, el5..., eT). (174) 

That is, the forecasting equation is successively evaluated for each time step forward using 

previous forecasts along with an expected error of zero.   Then, the k-step ahead process 
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capability becomes 

Cr+k\T   =   P(LSL < Xr+k < USL\xi,... ,xT) 

=   P(LSL - nT+k\T < tT+k < USL - fiT+k\r) (175) 

and is estimated via 

Cr+k\T = P(LSL - ßT+k\T < er+fc < USL - ßr+k\T)- (176) 

4-7.2    Independent and Identically Distributed Case. For the independent and 

identically distributed case, the k-step ahead capability estimate is equal to the one-step 

ahead capability estimate. This is an intuitive result since the process location and process 

spread do not change. Indeed, since g(-) is defined as a constant K, it is clear that gk{-) 

is also equal to the same constant. Furthermore, CT+k will have the same distribution as 

tT+i- Therefore 

C-T+k\T = P(LSL - ßx,T+k\T < e-r+k < USL - p,XjT+k\T) 

= P(LSL - ßXjT+i\T < er+i < USL - ßXtT+i\r) 

=   CT+1|T. (177) 

4-7.3 Deterministic Case. The deterministic case is also straightforward. Succes- 

sive application of the fitted model yields an estimate of the process location k time-steps 

forward. Since the sequential pattern of observations is known, there is no variance about 

the process location. Therefore, as with the one-step ahead estimate, the k-step ahead 

estimate of capability will equal either 0 or 1. 
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4-8    Other Measures of Capability. 

The techniques and notation used to describe the k-step ahead process capability can 

be directly applied to other measures of process capability. The Cpk process capability 

index statically describes the overall process capability. Using the time-varying techniques 

proposed in this paper, the k-step ahead Cpk index can be defined 

Cpk,T+k\T = min 

and can then be estimated via 

USL — ßT+k\T   ßT+k\T — LSL 

-pk,T+k\T mm 

3vT+k\T 3<TT+fc|T 

USL — ßT+k\T   ßT+k\T — LSL 

3&T+k\T 3&T+k\T 

Similarly, the k-step ahead Cpm index can be defined via 

:i78i 

(179) 

USL-LSL 
^pm,T+k\T - , = (180) 

and estimated via 

fi USL-LSL 
Cpm,T+k\T ~ , =• (181) 

6yJ{HT+k\T - r)2 + <4+fc|T 

Finally, the k-step ahead expected loss per observation is given by 

^T+k\T = K[v2T+k\T + (HT+k\T ~ T)
2

} (182) 

and is estimated by 

CT+klT = K[&T+k\T + (ßr+k\T - T)
2
]. (183) 

4-9    Chapter Summary. 

The concept of capability is generally understood by quality practitioners. However, 

the static measures currently used to measure capability do not adequately address the 
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Table 12. Summary of measures of capability for different time frames. 

Basis for Measuring 

Capability 

Time-Frame 

Long-term Average Time-specific 

Measure Estimate Measure Estimate Measure Estimate 

Probability Based 

Loss Based 

Cpk Based 

Cpm Based 

C 

c 
^pk 

c ^pm 

C 

C 

^-pk 

c ^pm 

Ci 

CI 

^pk,I 

^pm,I 

Ci 

CI 

^■pk,I 

^pm,I 

Cr+k\r 

Cr+k\T 

Cpk,T+k\T 

Cpm,T+k\T 

Cr+k\T 

Cr+k\T 

Cpk,T+k\T 

Cpm,T+k\T 

time varying aspects of capability required by modern processes which exhibit autocor- 

relation. The explicit definitions for time-specific, time-average and long-term capability 

we presented in this chapter fill a void in the current literature by addressing the issue of 

how to define capability for autocorrelated processes. We presented numerous examples in 

this chapter to demonstrate the need for time varying measures of capability. The time 

varying definitions we presented in this chapter lead to a diverse set of measures of capabil- 

ity. Table 12 summarizes these measures. We also showed how time-specific, time-average 

and long-term capability can be estimated by fitting a candidate model to known process 

observations. The concepts we developed in this chapter provide the foundation for the 

development of a capability monitoring system in the next chapter. 
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V.   A System for Monitoring Process Capability. 

Taguchi (1985) considers the two key problems in quality improvement to be how to 

measure quality and how to improve quality. One way to measure process quality is to 

quantify process capability. Traditionally, capability indices provide static estimates of 

process capability. In this research, we propose considering capability as a time-varying 

aspect of the process. Looked at in this way, process capability can be monitored in the 

same manner as statistical control and has the added benefit of directly tracking a measure 

of quality. In the previous chapter, we presented the mathematical foundation for predicting 

process capability. In this chapter, we use that foundation to develop a practical method 

for monitoring process capability. 

The objective of this chapter is to demonstrate the potential value of a capability 

based monitoring system. In the first section of this chapter, we discuss some general goals 

for a capability monitoring system. That discussion is followed by our description of a 

general capability monitoring system. The basis for the capability monitoring system is a 

statistical test to determine whether a process lacks capability at a given time. We discuss 

the theory and definitions underlying that statistical test. Then, we present a proposal 

for a specific capability monitoring system. We test the proposed system by Monte Carlo 

simulation for a variety of ARMA(1,1) models. Finally, we explore the added value gained 

by knowing the exact parameters for the truth model. 

5.1    Goals for a Capability Monitoring Method 

For much of the past century, the Shewhart control chart has proven to be a practi- 

cal method for monitoring the state of statistical control. It was successfully applied to 

industrial processes which often lacked even the most basic control over the quality of out- 

put. That control, provided by the Shewhart control chart, is required as one of the first 
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steps toward quality improvement. To that end, the Shewhart control chart has met the 

needs of the people who have used it. The Shewhart control chart worked best when the 

observations it was applied to could be reasonably modeled as independent and identically 

distributed. For such processes, the Shewhart control charts were able to detect the kinds 

of assignable causes of variation that were occurring in the processes and, thus, assisted 

in the identification and removal of those causes. Finally, the Shewhart control chart was 

appropriate to the level of computational power available in the field. It only required 

simple mathematics that could be done by hand. 

The objective of the capability monitoring system proposed in this chapter is to satisfy 

the quality improvement requirements for a broader class of processes, including processes 

that exhibit autocorrelation. While keeping a process in a state of statistical control remains 

an important consideration, an increased emphasis is being placed upon process capability. 

We propose direct monitoring of process capability. A limitation of the Shewhart control 

charts is its unpredictable performance when process observations are autocorrelated. A 

practical monitoring system should be applicable to a wide variety of processes, including 

processes that generate autocorrelated observations. When applied to a process that has 

both chance and structural cause variation, the system should have a predictable average 

run length in the absence of assignable causes of variation, yet should be able to detect to 

the addition of an assignable cause of variation. The computers found in today's workplace 

are an increasingly powerful tool for quality improvement. A capability monitoring system 

should be allowed to take advantage of that power, and should provide for frequent on-line 

evaluation of observations. The goals for the capability monitoring system proposed in this 

chapter can be summarized as: 

• Monitor the capability of the process. 

• Respond to a variety of assignable causes, including a shift in the process mean. 

• Apply to any process from the family of stationary ARMA(1,1) models. 
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• Be computationally efficient; able to be implemented on-line using readily available 

hardware platforms (e.g., within times that are small relative to the sampling inter- 

val). 

5.2    A General Method for Monitoring Process Capability 

Monitoring process capability can be considered an application of statistical thinking. 

The primary benefit of monitoring process capability is the detection and identification 

of assignable causes of variation, leading to the elimination of those assignable causes. 

Statistical information about the process gained coincidentally by a capability monitoring 

system can also aide in identifying potential system changes that could reduce or eliminate 

chance or structural causes of variation. The relationship between statistical thinking 

and capability monitoring is analogous to the relationship between statistical thinking and 

monitoring the state of statistical control. 

A flowchart for a general capability monitoring system is depicted in Figure 12. Each 

block in the figure represents a logical step in the system and the connecting arrows identify 

the flow of steps taken. Each step in the general capability monitoring system depicted in 

Figure 12 is described in this section. This general system described in this section will be 

expanded in following sections into our proposed system for monitoring process capability. 

5.2.1 Parameter Definition. A number of parameters must be specified for any 

process monitoring system. The topmost block in the flowchart represents the definition 

step of the process. At the most basic level, we must know which quality characteristic 

of the process is to be measured and the range of allowable values for the measurements. 

For the system proposed in this chapter, and for most others, the process measurements 

are assumed to be real-valued observations taken at fixed intervals. In addition to defining 

the process, some quality related parameters must be specified in order to measure the 
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Figure 12. Flowchart of a general method for monitoring process capability. 
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capability of the process.  For instance, upper and lower specification limits and a target 

value for the process measurements allow an estimate of process capability to be made. 

5.2.2 Process Start-up. After any necessary parameters are defined, the process 

can be started. The second block in the flowchart represents this step. At this step, 

the process may be physically started or 'reset' to its nominal configuration. In addition, 

depending on the implementation of the system, some variables may need to be reset to 

their starting values. 

Three additional arrows point into this block. The first alternative path invokes the 

initialization step after the removal of an assignable cause of variation. In this case, the 

process may or may not have been temporarily stopped during the search for and removal 

of the assignable cause. When an assignable cause is identified and removed, it is likely 

that some re-initialization of variables will be required, although the parameters defined in 

the top block should remain valid. The second alternative path to enter this block follows 

a process adjustment to temporarily reduce the effects of structural cause variation. In this 

case, the process can be considered to be re-started. Finally, this block may be entered 

after the indicated lack of capability is deemed to be a false alarm. The process may need 

to be re-started due to time spent in evaluating the signalled lack of capability. 

5.2.3 Sampling from the Process. The sampling strategy plays an important role 

in defining the system. The sampling strategy may include determining sample sizes, the 

frequency with which observations are to be taken, and any transformations to be applied 

to the observed quality measurements. The samples are used to compute an appropriate 

test statistic. 

5.2.4 Compute the Capability Test Statistic. The test statistic is the major dif- 

ference between a capability monitoring system and a control monitoring system. In a 

capability monitoring system, the test statistic is assumed to provide some measure of the 
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true capability of the process. In a control monitoring system, the test statistic provides a 

measure of state of statistical control indirectly by measuring some aspect of the distribu- 

tion of the observations (e.g. the mean or variance of the observations). In either case, the 

distribution of the test statistic should change following the introduction of an assignable 

cause of variation. 

5.2.5 Perform the Capability Test. A test is performed using the test statistic which 

leads to a decision to either accept or reject the hypothesis that the process is capable. The 

subset of the range of the test statistic which, in accordance with the capability test, leads 

to the rejection of the capability hypothesis is called the critical region of the test. The 

capability hypothesis will be discussed in detail in Section 5.3. When the test statistic 

falls within the critical region, the hypothesis of capability is rejected. In this case, an 

assignable cause of variation may have arisen, so the flow through the system passes down 

to search for an assignable cause. If the test statistic does not fall in the critical region, then 

insufficient evidence for the lack of capability exists to reject the hypothesis of capability. 

In this case, no remedial action is called for and the flow through the system loops back 

up to continue sampling. 

5.2.6 Search for an Assignable Cause. Although this step is only invoked when 

statistical evidence of the lack of capability exists, that evidence does not necessarily mean 

an assignable cause of variation is present. Since the test statistic is a random variable, 

some false alarms are expected. The search for an assignable cause of variation generally 

requires a human interpretation of conditions which may have affected the process. The 

search may be facilitated by examining a time-history of the test statistic and other process 

statistics, such as local mean and variance estimates. If an assignable cause of variation is 

found, the flow through the general system proceeds down to the removal step. In control 

monitoring systems, when an assignable cause of variation is not found, we assume that the 

signal from the statistical test is a false alarm.  However, since the capability monitoring 
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system explicitly allows for structural cause variation, the capability monitoring system 

reflects the possibility of proceeding by examining the short-term variation. 

5.2.7 Investigate Short-Term Variation. The presence of structural cause variation 

might be exploited to reduce the short-term variation. An indication of lack of capability 

might reflect that an autocorrelated process has wandered away from its target value. This 

step determines whether process changes, such as re-centering the process to the target 

value are feasible. If changes are feasible, we proceed to adjust the process. If not, we 

conclude that the signal is truly a 'false alarm.' 

5.2.8 Removal of an Assignable Cause. The removal of an assignable cause of 

variation is a step that is highly specific to both the process and the source of the assignable 

cause. Like the search for an assignable cause, the removal of an assignable cause generally 

requires human intervention. After removal, the monitoring system resumes, following any 

necessary re-initialization. 

5.2.9 Adjust the Process to Reduce Short-Term Variation. As with the removal of 

an assignable cause, this step is highly dependent upon the process being monitored. It is 

possible that changes to the process to reduce short-term variation simply cannot be made. 

5.3    The Capability Hypothesis. 

The capability monitoring system we propose in this chapter tests the null hypothesis 

that the process is capable. We will use the phrase 'capability hypothesis' to refer to this 

null hypothesis.   In this section, we describe the capability hypothesis and the rationale 
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leading to a capability test statistic. The capability hypothesis can be expressed via 

H0 : The process is capable. 

versus 

HA ■ The process is not capable. (184) 

Our intuitive understanding is that a capable process is a process which will produce 

almost all of its output within the specification limits. Capability is thus a predictive 

statement about the process. Recall that Shewhart originally described control in terms of 

predictability. Later, Wheeler and Chambers concluded that a process must be in control 

in order for it to be capable. We can logically connect these statements and say that a 

process must be predictable in order for it to be capable, or, more precisely, a process must 

be statistically predictable in order for it to be judged capable. Given some knowledge 

about the chance and structural causes of variation, the location and spread of the process 

at some time in the future can be estimated. However, the introduction of an assignable 

cause of variation may result in actual observations quite different from the predicted 

observations. 

According to the Principle of Parsimony (Tukey, 1961): "It may pay not to try to 

describe in the analysis the complexities that are really present in the situation." On face 

value, this principle seems to point to accepting the assumption of independence. How- 

ever, given the difficulties caused by the assumption of independence in the presence of 

autocorrelation, it appears reasonable to resort to a different base model that can account 

for the autocorrelation. To rephrase Tukey, it may pay not to try to describe the com- 

plexities of the real process with a model beyond a low order ARMA model. In fact, the 

ARMA(1,1) model appears to be sufficient for the vast majority of processes cited in the 

literature. The notable exceptions to this claim are those processes with a strong seasonal 

component (Berthouex et al., 1978). Note that the ARMA(1,1) model encompasses several 
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other common models including the independent normal, AR(1) and MA(1) models. For 

these reasons, the scope of this research is limited to the ARMA(1,1) family of processes. 

The ARMA(1,1) process is described in Section 3.2. 

One exploitable aspect of the ARMA(1,1) family is the explicit assumption that the 

underlying error terms, denoted ei? are independent and identically distributed observations 

from a normal distribution. When our estimates of future process properties are based 

upon an assumption about the distribution of the error terms, then statistical evidence 

that the errors do not come from that distribution indicates that the statements about the 

future properties cannot be trusted. When our estimates of future process capability are 

based upon the assumption that the errors driving an ARMA(1,1) process are normally 

distributed, then statistical evidence that the errors are not normally distributed indicates 

that the statements about the future capability cannot be trusted. As we have already 

stated, predictability precedes capability. Under the assumption of normally distributed 

errors, the predictability of an ARMA(1,1) process can be considered to be diminished 

when the underlying errors are not normally distributed. The capability hypothesis, which 

will be used for the remainder of this chapter, is given by 

H0 : The process is both a capable and predictable ARMA(1,1) process 

versus 

HA : The process is either not capable or not predictable. (185) 

A test statistic related to both capability and predictability will be used to test the ca- 

pability hypothesis. We will proceed by identifying a sub-hypothesis for capability and 

predictability separately, and then combine the two sub-hypotheses into a single hypothe- 

sis. 

Capability is routinely expressed in terms of a capability index. Without loss of gen- 

erality, we assume that the true process capability can be expressed by the capability 
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index, C, with the property that larger values of C imply greater capability. We further 

assume that the minimum acceptable process capability can be expressed as C0. Then, the 

sub-hypothesis that the process is capable can be expressed as 

Ho : C > Co 

versus 

HA:C< C0. (186) 

In the previous chapter, we showed that the true process capability, C, can be esti- 

mated. We will refer to the estimated capability as C. The sub-hypothesis that the process 

is capable can be tested at the ac level of significance by comparing C with an appropri- 

ately selected critical value, Ccrn. If C is found to be less than Ccrit} then there is sufficient 

statistical evidence at the ac level of significance to refute the sub-hypothesis and conclude 

that the process is not capable. In general, a one-to-one relationship exists between the 

level of significance and critical values. 

Unlike capability, predictability cannot be captured as easily in a statistic. However, for 

the ARMA(1,1) process we are interested in, the underlying errors of an adequately specified 

and estimated model are normally distributed, and we can test that normality in order to 

test the predictability of the process. In order to do so, suppose the underlying errors, et, 

are independent and identically distributed according to some unknown distribution, F. 

Further suppose a measure of normality is given as W and its estimate is given as W. The 

predictability sub-hypothesis can be tested at the ap level of significance by comparing W 

with an appropriately selected critical value, Wcrit. If W is less than Wcr;<, then there is 

sufficient statistical evidence at the ap level of significance to refute the sub-hypothesis of 

normality and conclude that the process is not predictable.   That is, the sub-hypothesis 
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that the process is predictable can be expressed as 

H0:W>W0 

versus 

HA : W < W0. (187) 

The two null sub-hypotheses for capability and predictability can be easily combined 

into a bivariate hypothesis. A test space, V, can be defined as the set of ordered pairs (c, w) 

such that c is an element in the range of C and w is an element in the range of W. The 

true capability and predictability of the process is given by P = (C,W). The acceptable 

range for the test space corresponding to the null hypothesis, PQ = {(co,Wo)}, is defined as 

the subset of V such that CQ > Co and u>o > Wo- Then, the combined capability hypothesis 

can be stated as 

Ho : P G Po 

versus 

HA : P i Po. (188) 

The test statistic, P is defined as the ordered pair (C,W).   The critical region for the 

statistic is the subset of V for which either C < Ccrit or W < Wcrn, or both. 

Although critical values, Cc„t and Wcrit, corresponding to a specific levels of signifi- 

cance, ac and ap, can be selected for C and W, determining the overall level of significance 

for the bivariate test is a complex task. If the individual tests were independent, then the 

overall level of significance would be given as 1 — (1 — ac){\ — ap). However, the predictability 

and capability of the process are generally related, and therefore, the individual tests are 

most likely dependent. In addition, if the test is applied sequentially to an autocorrelated 
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process, the levels of significance corresponding to fixed critical values may change over 

time. 

5.4    A Practical Method for Monitoring Process Capability 

In this section, we propose a specific capability monitoring system which expands 

upon the general method introduced earlier. The proposed capability monitoring system 

depicted in Figure 13 incorporates specific design considerations into the general method 

shown in Figure 12. A more detailed description of the proposed system follows. 

5.4.I Parameter Definition. The parameters which must be explicitly specified 

are listed in the top block of Figure 13. These include upper and lower specification limits 

as well as a target value for the process. It is assumed that a measurable process exists. In 

addition, critical values for the statistical test of the capability hypothesis are assumed to 

be specified. Selecting appropriate critical values is not a trivial task and will be discussed 

in Section 5.4.4. 

5.4-2 Process Start-up and Sampling Strategy. The next two blocks in Figure 13 

capture the essence of the sampling strategy. In the proposed method, a moving window of 

the 30 most recent observations is maintained as the basis for computing the test statistics. 

At every iteration, the oldest observation in the window is dropped and the time-series 

of observations in the window is augmented by the current observation. The number of 

observations in the window is set at 30 to balance two conflicting objectives. First, a 

sufficient number of observations is required to adequately fit an ARMA(1,1) model. Here, 

an adequate fit is loosely defined as a fit which yields the ability to assess process capability. 

That is, we are not trying to determine the true parameters of the model so much as we are 

gathering information suitable for computing a capability statistic. This is much different 

than Box and Jenkins (1976) goal of determining the correct model from the family of all 

ARIMA models. For their much more difficult problem, they recommend a sample size of 
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Figure 13. Flowchart of a proposed method for monitoring process capability. 
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at least 50 observations. In our experience, a sample of 30 observations provides estimates 

for (j> and 9 which are almost as good as estimates based on 50 observations. Second, a small 

window size is desired to allow the method to respond more quickly to the introduction 

of an assignable cause. A large window size can be expected to hide to initial effects of 

an assignable cause until a sufficient number of observations affected by that cause are 

included in the window. 

5.4.3 Compute the Capability Test Statistic. As mentioned for the general capabil- 

ity monitoring system, the capability test statistic fundamentally determines what is being 

monitored by the system. We develop the test statistic for the proposed system in this 

subsection. As a preliminary step, an ARMA(1,1) model is fit to the moving window of 

observations. The fitted model is then used to construct the test statistic. 

5.4-3.1 Fitting an ARMA(1,1) Model. The capability hypothesis asserts, in 

part, that the observations arise from a process that can be approximated reasonably well by 

an ARMA(1,1) process. In order to construct a test statistic, we assume that the capability 

hypothesis is true, and estimate the parameters of the assumed ARMA(1,1) model. Given 

a set of consecutive observations from a time-series, it is relatively straightforward to fit 

an ARMA(1,1) model to those observations. The fitted model will yield estimates of the 

autoregressive and moving average parameters of the time-series, <f> and 6 respectively, as 

well as a location parameter, £. In addition, the residuals from the fitted model can be 

used to estimate the underlying error terms. However, some criteria must be chosen by 

which to fit the model. 

A frequently used criteria by which to fit an ARMA(1,1) model to a time-series is 

to minimize the sum of the square residuals from the fitted model. For the experiments 

documented in this chapter, the Matlab routine 'armax' is used to fit an ARMA(1,1) 

model to the moving window of observations. The 'armax' routine robustly minimizes the 

quadratic prediction error using an iterative Gauss-Newton algorithm (Ljung, 1992) and 
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provides estimates of <f> and 0. The 'armax' routine also provides an estimate of the variance 

of the error terms. Since we are limiting ourselves to the family of stationary ARMA(1,1) 

processes, we know that the true value of the parameter (f> has magnitude less than one. In 

the implementation of the proposed system, the estimate of </> is limited to the range 

- .97 < I < .97. (189) 

This restriction is imposed to avoid problems encountered when the 'armax' routine at- 

tempts to fit parameters on the boundary of the feasible range for the parameters. When 

</> has a magnitude greater than one, the fitted ARM A (1,1) process is not stationary and 

thus cannot be said to have an unconditional variance. When </> is very close to one, the 

estimated unconditional variance becomes excessively large, and, for the proposed method 

results in false alarms. 

The fitted model can be directly used to create a test statistic. However, since the 

fitted model is based upon a relatively small number of observations, the estimates for any 

given parameter tend to exhibit large variances. If the test statistic is directly calculated 

from the fitted model, it will also tend to have an unacceptably large variance and so lower 

critical values for the test statistic will have to chosen. This, in turn, will lead to less power 

when the test statistic is impacted by the occurrence of an assignable cause. The proposed 

system addresses this concern by smoothing the fitted parameters prior to computing the 

test statistic. For a given window size, the test statistic calculated from the smoothed fitted 

parameters exhibits less variance than does the test statistic from the unsmoothed fitted 

parameters. In our experience with ARMA(1,1) processes, the variance of the smoothed 

test statistic based upon a window of 30 observations is equivalent to the variance of the 

unsmoothed test statistic based upon fitting the ARMA(1,1) model with 50 observations. 

The smoothed parameter estimates, denoted (j), 0, £ and <xe, of the true process parameters, 

denoted (/>, 0, £ and <re, are computed as the exponentially weighted moving average of the 
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fitted parameters, denoted cf), 9, £ and at, via 

I = A^ + (l-A)<^ 

Ö = Aö + (1-A)ö 

| = A| + (l-A)| 

ae = Arfe + (1 - A)<7£ (190) 

where A is the smoothing constant. Montgomery (1991) recommends selecting A from the 

interval 0.05 < 0.25. For the proposed system, we chose A = 0.15. The use of Equation 190 

requires initial values to be specified for each smoothed parameter. Initial values can naively 

be set to zero. However, when the true mean of the fitted parameter is not zero, that choice 

causes a delay of several observations before the smoothed parameter approaches its non- 

zero mean. A potentially better alternative is to use the true non-zero mean value as 

the initial value. The obvious problem with this alternative is that the mean may not 

be known. However, the fitted parameter from the start-up period (i.e. from the first 30 

observations) are available. The fitted parameters from the process start-up period are 

used in the proposed method to select initial smoothed parameters, via 

4>   =   0.8 <j> 

0 =   0.9 6 

1 =   0 

ae   =   0.9de. (191) 

Note that £ is initially set to zero since we assume that the process is well centered at 

start-up. The other initial fitted parameters are chosen close to, but slightly less than, the 

fitted parameters from the first window of observations in order to approximate the mean 

of the parameter estimates while avoiding the potential for overly large initial values due 
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to variability in the estimates. We biased the initial fitted parameters in order to lessen 

the possibility of a false alarm on the first few observations. 

5.4-3.2    Definition of the Proposed Capability Test Statistic. The proposed 

capability test statistic has two components: an estimate of process capability and an 

estimate of the process predictability. Both of these components are supported by our 

choice to fit an ARMA(1,1) process with a window of 30 observations. There are several 

choices of capability indices available to estimate the true process capability. The two most 

popular of these are Cpk and Cpm. This research uses the Cpk index as the basis for its test 

statistic. 

Another decision that is critical to the development of the proposed system is selecting 

the time frame. In Chapter IV, we described time-specific, time-average and long-term 

capability. Since we don't know which future times might be of interest to the owner of the 

process, we chose not to implement our system using time-average capability. We also did 

not select the time-specific capability at the next time step since it ignores the behavior of 

the process in the distant (and not so distant) future. Instead, we chose to use long-term 

capability as the basis for our capability test statistic. Recall that the long-term analogue 

to the Cpk index is given by 

CT = min 
USL — fix  ßx — LSL 

3o~T 3crT 
(192) 

where ßx is the long-term mean of the process and ax is the long-term variance of the 

process. 

Under the null hypothesis that the observations arise from an ARMA(1,1) process, we 

know that the unconditional process variance, o^, is related to the variance of the error 

terms, a^, via 

o-x =     _   ,2 crt. (193) 
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Using the results from fitting the ARM A (1,1) model, we can estimate long-term process 

variation via 

a* =  i 17^" (194) 1 — <pz 

Similarly, an estimate of the long-term mean of an ARMA(1,1) process is given by 

A = -^T (195) 
1 - (p 

Finally, long-term process capability is estimated as 

USL — jl  ß — LSL 
■'pk mm 

3cx 3<r. 
(196) 

The normality of the errors cannot be directly tested since the error terms are unknown. 

However, the normality of the residuals from the fitted model can be tested. As we discussed 

earlier, we are not interested in normality, per se. Instead, we are interested in whether 

or not we have statistical evidence to indicate the appropriateness of predicting the future 

based upon the fitted model. If the residuals from the fitted model are (approximately) 

normally distributed, the statistical evidence tends to indicate that we can use the model 

for predicting. If they are not, then we have evidence suggesting it is not appropriate 

to predict the future using the model. The Shapiro-Wilk test for normality is a very 

general statistical test for testing the normality of a distribution with an unspecified mean 

and variance (Conover, 1980; Shapiro, 1980). In some instances, an assignable cause of 

variation will be reflected as one or more outliers in the stream of errors. Igelwicz and 

Hoaglin (1993) present the Shapiro-Wilk test as one method for identifying such outliers. 

The Shapiro-Wilk test statistic is suitable for small samples; tables of critical values 

for samples of up to 50 observations are available (Conover, 1980). Given a random sample 

£\,£2i ■ ■ ■ ,Sn of size n with some unknown distribution function F(e), the Shapiro-Wilk 

test for normality tests the null hypothesis that F(t) is a normal distribution function with 
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unspecified mean and variance against the alternative hypothesis the F(e) is non-normal. 

In order to compute the Shapiro-Wilk test statistic, first, let £ be the sample mean and let 

5(i) denote the ith. order statistic so that 

£(i)< £(2) <•..<£(„)• (197) 

Then, the denominator D of the Shapiro-Wilk test statistic is given via 

n 

D = £(£ - £? (198) 

and the test statistic T is given by 

i=i 

*-h 
k ^ 

Y, at(£(n-i+l) ~£(i)) (199) 

where k is approximately n/2 and the coefficients al5 a2,..., ß/t are provided (e.g. Table A17 

in Conover). The Shapiro-Wilk statistic can be converted to one that has an approximate 

normal distribution via the transformation 

G = bn + cn ln{(T - dn)l{\ - T)} (200) 

where bn, cn and dn are provided (e.g. Table A19 in Conover). In this form, it is straight- 

forward to select a critical value based upon any specified level of significance using the 

properties of the normal distribution. For example, the critical value for G corresponding 

to an a level of significance is $_1(a), where $_1 is the inverse cumulative distribution 

function of the standard normal distribution. 

Since the true underlying error terms are unknown, the Shapiro-Wilk test statistic, T, 

cannot be directly determined. Instead, the statistic will be computed as a function of the 
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fitted residuals and will be denoted W. For the proposed system, 

W = $(G) (201) 

where G is computed using the residuals of the fitted model. 

Although we assume that the errors driving the ARMA(1,1) model are independent 

and normally distributed, we generally cannot make that assumption about the residuals 

from the fitted model. Since the model is fit so as to minimize the sum of the square 

residuals, the fitted residuals may not be normally distributed. However, as discussed in 

Chapter 4, when enough observations are available and the errors are normally distributed, 

the residuals from a properly specified model will approach the true errors, and so will 

approach a normal distribution. For the proposed system, we make the assumption that 

the residuals from the fitted model do approach a normal distribution in the absence of any 

assignable causes of variation. An assignable cause of variation may have (but is not limited 

to) two effects on the residuals. First, the assignable cause may be reflected by a small, 

persistent change in the residuals. In this case, while the time at which the assignable cause 

occurred is within the moving window, the residuals may not be (approximately) normally 

distributed. After the moving window has completely passed the time of the assignable 

cause, the residuals may return to a normal distribution and so would not be detected by 

the Shapiro-Wilk test. However, this shift should be reflected in a change in the estimate 

of the variance of the errors, and thus in the estimate of capability. Although the change 

in estimated capability may not result in an immediate signal indicating the presence of an 

assignable cause, it should increase the chances of such a signal in the future. The second 

way an assignable cause may be reflected in the residuals is by a (hopefully) large increase 

in one or more of the residuals. The large change in one (or perhaps a few) residuals is the 

case we are hoping to detect by using the Shapiro-Wilk statistic. This type of large change 

in the residuals is also what the special cause chart is designed to detect. 
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5.4-4 Comparing the Test Statistic to its Critical Region. In order to compare the 

results from our proposed system to other methods that attempt to monitor autocorrelated 

processes, and in particular ARMA(1,1) processes, we attempted to achieve an average run 

length of at least 370 in the absence of any assignable causes of variation over the range of 

ARM A (1,1) models. Achieving such average run lengths required a balance between the 

critical regions for the test statistics C and W. To maintain a constant average run length 

in the absence of assignable cause variation, any increase in one critical value must be offset 

by a decrease in the other critical value. Our original desire was to achieve some parity 

between the number of false alarms attributable to each portion of the test. However, 

through trial and error, we learned that it would not be possible to achieve that parity. 

A Shapiro-Wilk test applied to an independent normal set of observations with a critical 

value of Wcrit = 1/370 will, by definition, result in a false alarm approximately 1 out of 

370 times. This critical value was selected for its intuitive value, although, when applied 

to residuals it generally would produce fewer false alarms. The critical value, C, was then 

chosen to give an average run length for the combined test of at least approximately 370 

throughout our design region. The method proposed in this chapter uses Ccr{t = 0.90 and 

Wer* = 1/370. 

5.5    Results. 

The capability monitoring system proposed in this chapter was tested by monitoring 

simulated ARMA(1,1) time-series subjected to a variety of assignable causes. A copy of 

the Matlab code used to both implement the system and conduct the simulation runs 

is contained in Appendix D. At the start of this section, details of the simulation are 

presented and are followed by analysis and interpretation of the results obtained for a 

variety of assignable causes. 

5.5.1 Details of the Simulation. In order to test the proposed capability monitor- 

ing system, we ran a series of simulated experiments. Each design point for the experiment 
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consisted of a combination of the autoregressive and moving average parameters for the 

process truth model and an assignable cause of variation. For ease of comparison to results 

from other approaches to monitoring ARMA(1,1) models, we selected the design points 

previously used by Wardell, Moskowitz and Plante (1990, 1994). The design points span 

the family of stationary ARMA(1,1) models. Experimental settings for <f> are from the set 

{-.95, -.475, 0, .475, .95} and settings for 8 are from the set {-.90, -.45, 0, .45, .90}. 

We conducted one thousand runs at each design point to estimate an average run length. 

This number of runs proved sufficient for the analysis that follows, giving 90 percent con- 

fidence intervals of approximately ±10 percent of the average run length in the absence of 

assignable causes and much tighter intervals in the presence of large assignable causes. 

Each run began by randomly selecting an observation using the unconditional density 

function of the truth model. Additional observations were generated by applying the truth 

model using simulated standard normal errors. This procedure was repeated until a series 

of 30 observations were generated within the specification limits. In the event one or more 

of the initial 30 observations occurred outside of the specification limits, the observations 

were discarded and the run was restarted. 

Once a initially controlled time-series was generated, the applicable assignable cause 

was imposed upon subsequent observations. Additional observations were generated until 

the capability monitoring system signaled a lack of capability. The number of additional 

observations was recorded as the run length for the run. The average run length was 

computed as the average of the run lengths at each design point. A 90 percent confidence 

interval for the mean run length is given by 

ARL±t(m,n-l)SRL 
\/n 

where ARL is the average run length, SRL is the sample standard deviation of the run 

lengths, n is the number of runs, and t(.05, n — 1) is the a = .05 value of the t distribution 

with v = n — 1 degrees of freedom. 
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5.5.2 Average Run Length Results when No Assignable Cause is Present. In any 

monitoring system, we would like the average run length in the absence of any assignable 

cause to be large while the average run length in the presence of the an assignable cause 

to be small. In practice, an average run length of 370 observations in the absence of any 

assignable cause is often used. 

Table 13 contains results for the proposed system in the absence of assignable causes 

of variation. Each average run length presented in the table is derived from one thousand 

simulated runs. Since no assignable cause of variation is present, each run is stopped when 

a false alarm is signaled. The false alarm can arise from either a low estimate of process 

capability or an indication that the fitted model is not suitable for prediction. The percent 

of false alarms arising from each part of the capability test is listed in the table. 

In Table 13, we can see that the average run length exceeds the desired minimum of 370 

in 23 of the design points. In 2 design points, the average run length is slightly below 370 

(i.e. 366.9 and 361.0), however, the 90 percent confidence interval for the ARL includes 370 

at every design point. The capability portion of the test accounts for approximately half 

for the false alarms at several design points, although, at most design points, the majority 

of the false alarms are due to the predictability portion of the test. 

5.5.3 Average Run Length Results in the Presence of an Assignable Cause. While 

it is important to provide a dependable minimum average run length in the absence of 

assignable causes of variation, the ultimate test of the proposed method is its ability to 

react to the introduction of an assignable cause of variation. A standard assignable cause 

prevalent in the literature is a shift in the mean of the process. The magnitude of the mean 

shift is generally measured in multiples of the standard deviation of the process. Table 14 

contains the results derived by simulating two hundred runs for the proposed system in the 

presence mean shifts ranging in size from one-half standard deviation to three standard 

deviations. 
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Table 13. Simulation results for ARL in absence of any assignable causes of variation. 

^ = 0.95 <f> = 0.475 0 = 0.0 <f> = -0.475 (j>= -0.95 
9 = ARL 688.0 747.7 695.2 481.2 610.2 
0.90 FAP 98.0 97.0 88.5 63.5 75.0 

LO 90 620.2 663.7 625.2 427.5 537.9 
HI 90 755.8 831.7 765.2 534.9 682.5 

9 = ARL 517.3 704.2 714.3 538.6 515.8 
0.45 FAP 75.5 99.0 95.0 70.0 61.5 

LO 90 463.0 634.2 637.6 485.1 459.0 
HI 90 571.7 774.2 790.9 592.1 572.6 

9 = ARL 539.1 623.4 716.9 684.5 380.7 
0.00 FAP 67.0 78.0 99.0 82.0 49.5 

LO 90 482.1 549.4 644.5 613.9 336.2 
HI 90 596.2 697.4 789.3 755.1 425.2 

9 = ARL 499.2 471.0 684.6 695.6 366.9 
-0.45 FAP 70.5 59.5 87.5 99.5 53.0 

LO 90 433.3 412.2 613.0 631.4 326.5 
HI 90 565.0 529.8 756.3 759.9 407.3 

9 = ARL 640.8 361.0 586.9 717.0 719.0 
0.90 FAP 65.5 47.0 73.0 95.0 100.0 

LO 90 562.7 316.2 523.3 636.0 646.0 
HI 90 719.0 405.9 650.5 798.1 792.0 

ARL is the average run length from one thousand runs. 
FAP is the percent of false alarms due to the predictability portion of the capability test. 

LO 90 is the lower limit of a 90 percent confidence interval on ARL. 
HI 90 is the upper limit of a 90 percent confidence interval on ARL. 

A direct comparison to the documented results for other monitoring methods is not ap- 

propriate since those other results generally assume that the parameters of the ARM A (1,1) 

model are known. For instance, the results published by Wardell, Moskowitz and Plante 

(1994) were developed with full knowledge of the truth model for every design point. A 

copy of their key results, documenting the average run length after various mean shifts for 

the special cause, X, and EWMA control charts is contained in Appendix E. They acknowl- 

edge that "the limits of the Shewhart and EWMA charts had to be modified, sometimes 

substantially, to obtain an in-control ARL of about 370 for each (design point)." In effect, 
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we are comparing our single proposed system against twenty-five different versions of the 

special cause chart, X chart and EWMA chart each incorporating additional information 

about the parameters of the truth model that our proposed system does not have available. 

In the next section, we examine the added value of perfect model information. 

General trends, common to the results documented in both Table 14 and Appendix E, 

can be identified. However, the reader is cautioned that point-by-point comparison is akin 

to comparing apples and oranges. While the proposed capability monitoring system does 

not use knowledge about the parameters of the truth model, we contend that it provides 

a predictable response over the entire range of stationary ARMA(1,1) models which is, in 

a broad sense, similar to that of other charts that do use the additional knowledge. That 

is, in the absence of assignable causes of variation, the average run lengths for all of the 

compared techniques are at least 370, while the introduction of a significant assignable 

cause (e.g. a shift in the mean) results in average run lengths that are significantly less 

than 370. 

5.6    The Value of Knowing the Parameters of the Truth Model. 

In this section, we examine the value of perfect model information to a capability 

monitoring system. There are two major benefits to knowing the truth model. First, the 

error terms do not have to be estimated, instead, exact residual values can be determined 

based upon the model and the observations. Second, critical values can be selected to ensure 

a desired average run length in the absence of assignable cause variation. In addition, if 

a particular assignable cause can be anticipated, then the statistical test can potentially 

be optimized to respond to that exact assignable cause. In effect, a control chart is an 

optimized version of a general capability monitoring method. 

5.6.1 Comparing Control Charts to a General Capability Monitoring Method. In 

a very real sense, the general capability monitoring method can be considered a superset 
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Table 14. Average Run Length from simulation for mean shifts of various multiples of ax 

Aax </» = 0.95 <j> = 0.475 <^ = 0.0 <f> = -0.475 ^ = -0.95 
0.0 688.0 747.7 695.2 481.2 610.2 
0.5 524.9 435.6 314.2 188.7 72.4 

9 = 1.0 150.7 99.6 78.0 61.0 1.7 
0.90 1.5 43.6 30.2 31.1 23.7 1.1 

2.0 20.2 18.1 17.5 10.8 1.0 
2.5 15.1 14.1 12.6 5.1 1.0 
3.0 11.8 11.3 9.9 3.1 1.0 

Aax <f> = 0.95 <t> = 0.475 (/> = 0.0 <j> = -0.475 (j> = -0.95 
0.0 517.3 704.2 714.3 538.6 515.8 
0.5 432.0 542.3 400.5 234.3 103.2 

9 = 1.0 226.6 126.8 95.6 77.5 2.6 
0.45 1.5 113.0 35.8 32.2 25.8 1.3 

2.0 47.2 19.2 17.8 12.9 1.0 
2.5 15.7 15.0 14.4 9.1 1.0 
3.0 5.6 11.3 10.8 4.5 1.0 

Aax <f> = 0.95 <f> = 0.475 ^ = 0.0 (f> = -0.475 <f> = -0.95 
0.0 539.1 623.4 716.9 684.5 380.7 
0.5 459.5 337.5 537.8 352.0 201.7 

9 = 1.0 206.8 109.2 128.9 100.0 28.0 
0.00 1.5 42.9 39.0 36.8 32.3 2.7 

2.0 4.0 18.4 19.6 18.8 1.2 
2.5 2.1 13.3 14.7 13.4 1.0 
3.0 1.0 10.3 11.1 9.4 1.0 

Aax </> = 0.95 <f> = 0.475 (f> = 0.0 4> = -0.475 <j> = -0.95 
0.0 499.2 471.0 684.6 695.6 366.9 
0.5 371.3 246.8 358.6 517.2 247.0 

9 = 1.0 104.2 95.1 99.2 125.5 125.4 
-0.45 1.5 3.9 38.2 35.2 35.2 49.9 

2.0 1.0 17.7 18.4 19.2 14.9 
2.5 1.0 11.1 13.4 14.2 3.8 
3.0 1.0 7.4 10.6 11.6 1.6 

Aax <j> = 0.95 <f) = 0.475 ^ = 0.0 <j> = -0.475 <j>= -0.95 
0.0 640.8 361.0 586.9 717.0 719.0 
0.5 409.7 196.5 292.3 407.3 525.7 

9 = 1.0 45.6 79.1 78.1 96.6 140.3 
0.90 1.5 1.0 33.7 30.2 32.7 36.3 

2.0 1.0 16.1 15.6 17.3 18.8 
2.5 1.0 7.7 10.9 12.5 14.4 
3.0 1.0 4.3 8.6 10.4 12.0 
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which spans all of the standard control charts. Our intuitive reliance on capability indices 

helps to explain this relationship by expressing capability as a function of both process 

spread and process location. Control charts, on the other hand, monitor the state of 

statistical control by monitoring either process spread or process location. Consider the 

three control charts examined by Wardell, Moskowitz and Plante (1994): 

• The Special Cause Chart. The special cause chart tracks the residuals of a known 

model. It signals an alarm when the magnitude of the current residual exceeds three 

times the variance of the underlying errors. In effect, the special cause chart monitors 

the one step ahead variance while assuming that the one step ahead expected value 

is equal to the target value. Thus, the special cause chart can be considered a simple 

instantiation of a one step ahead capability monitoring system. 

• The X-Chart. The X-Chart tracks the actual process observations. It signals an 

alarm when the current observation falls outside of predetermined control limits. The 

current observation can be considered to be a naive estimate of the process mean. 

A capability monitoring system equivalent to the X-chart can be identified in which 

the current process observation is used as the one step ahead expected value of the 

process and the one step ahead variance of the process is fixed. Thus, the X-chart 

can be considered to be an instantiation of a one step ahead capability monitoring 

system. 

• The EWMA Chart. Like the X-chart, the EWMA chart tracks an estimate of the 

process location. By incorporating information from (all) previous observations, the 

EWMA is intended to provide a more robust estimate of the process location. At its 

heart, however, the EWMA is still just an estimate of the one step ahead expected 

value of the process. Like the X-chart, the process variance is assumed to be fixed 

and the EWMA chart can be considered to be an instantiation of a one step ahead 

capability monitoring system. 
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The implied benefit of the capability monitoring approach is that monitoring both process 

location and process spread should provide more robust abilities to detect a variety of 

assignable causes. 

5.6.2    Capability Monitoring Applied to an Independent Normal Process. The 

X-chart and EWMA chart were originally created to detect changes from an independent 

normal process. To demonstrate the value of additional information about the truth model, 

a modified capability monitoring method will be compared with those charts for both shifts 

in the process mean and process variance. Note that the special cause chart is equivalent to 

the X-chart under the assumptions of independence and normality. The modifications to 

the proposed monitoring system are three-fold. First, the estimate of the process variance 

is computed using the adjusted mean absolute deviation, or MAD, of the moving window 

of n underlying error terms, denoted ex to e„, via 

MAD = 1.25- V)|e,-|. (203) 
ni=i 

The adjusted MAD is an unbiased estimator of the true standard deviation of the errors 

when the errors are independent and normally distributed (Montgomery et al., 1990). Sec- 

ond, since model fitting is not required, there is also no need to smooth model parameters. 

Finally, the critical region for the capability test was changed to give an in-control average 

run length of approximately 370. The critical values used for this experiment, Ccrit = .96 

and Wcri-t = 1/400, were chosen by trial and error. 

The average run length from one thousand simulated runs of the modified capability 

monitoring method for a variety of shifts in the mean and shifts in the process variance 

are contained in Tables 15 and 16. Table 15 includes results for the special cause chart, 

X-chart and the EWMA chart from Appendix E. Note that, for the case of independent 

and identically distributed observations, the special cause chart is identical to the X-chart. 

Table 16 includes theoretic results for the special cause and X-charts with 3cr control limits 
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and simulated results from 10000 runs of an EWMA chart with a critical value of .622. 

The same information is graphically depicted in Figure 14. In the figure, the average run 

lengths are normalized by dividing the tabulated average run length for each combination 

of method and assignable cause by the average run length for the method that detects the 

assignable cause fastest. For example, a value of one indicates that the method is the best 

at detecting that assignable cause, while a value of two indicates that the method takes, 

on average, twice as long to detect that assignable cause as the best method. 

Not surprisingly, the EWMA is clearly superior at doing what it was designed to 

do: detect shifts of 2ax or less in the process mean. The special cause and X-charts 

provide a shorter average run length than the EWMA for larger shifts in the process mean. 

Furthermore, the special cause and X-charts provide a shorter average run length than 

the EWMA for any size increase in the process standard deviation. Like the EWMA, the 

modified capability method outperforms the special cause and X-charts for mean shifts of 

2ax or less, but does not equal the EWMA's performance in that region. However, the 

modified capability method is superior to the EWMA for any size change in the process 

variance. It also outperforms the special cause and X-charts for increases of 50 percent 

or less in the process standard deviation. In total, the modified capability monitoring 

attempts to strike a happy medium, being able to detect a variety of shifts in either the 

process location or the process spread. 

5.6.3 Capability Monitoring Applied to a Known ARMA(1,1) Process. When the 

parameters of the truth model which generates the process observations in the absence 

of assignable cause variation is known, a monitoring system can be tailored to that truth 

model. For example, the ARMA(1,1) model can be defined by the parameters <j>, 9, £ 

and at. Given an initial observation and its associated error, the residuals from all future 

observations can be directly calculated from equation 57. Since the special cause chart 

monitors the residuals from a process, all of this information is required in order to apply 

it to an ARMA(1,1) process.  While the parameters and initial underlying errors are not 
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Table 15.    Simulation and previously published results for ARL given independent normal 
observations for a variety of mean shifts using process knowledge. 

Mean Shift in 
Multiples of ax 

Method 
Capability0 sec6 

Xb EWMA6 

0.0 380.3 370.4 370.4 369.0 
0.5 48.8 155.2 155.2 28.2 
1.0 14.5 43.9 43.9 9.7 
1.5 8.4 14.9 14.9 5.8 
2.0 5.8 6.3 6.3 4.2 
2.5 4.4 3.2 3.2 3.3 
3.0 3.3 2.0 2.0 2.8 

a Listed ARL is from 1000 simulated runs. 
b Listed ARL previously published (see Appendix E). 

Table 16.    Simulation results for ARL given independent normal observations for increases 
in the standard deviation of the process error. 

Increase in 
Std Dev (%) 

Method 
Capability SCCC X EWMA 

0 
25 
50 

100 
200 
300 

380.3 
41.0 
19.4 
9.7 
4.9 
3.2 

370.4 
61.0 
22.0 

7.5 
3.2 
2.2 

370.4 
61.0 
22.0 

7.5 
3.2 
2.2 

370.6 
99.8 
46.8 
19.3 
8.0 
4.9 
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Independent Normal Observations 

0 0.5 1 1.5        2        2.5        3 
Size of mean shift (multiples of standard deviations) 

Capability 

SCC 

X-Chart 

EWMA 

Capability 

SCC 

X-Chart 

EWMA 

0 25        50       100      200      300 
Size of increase in standard deviation (percent) 

Figure 14.    Comparison between capability monitoring system, Special Cause Chart, X- 
Chart and EWMA Chart for independent normal observations. 
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generally known, in practice they are estimated by fitting an ARMA(1,1) model to historical 

data. In this section, we develop a capability monitoring system for an ARMA(1,1) process 

with known parameters. The average run length of that system after a variety of assignable 

causes is compared to the average run lengths from the special cause, EWMA and X-charts. 

In order to effectively use the additional knowledge about the model parameters and 

to keep in the spirit of the special cause, EWMA and X-charts, the capability monitoring 

system in this section will use one-step ahead capability rather than long-term capability. 

An estimate of the one-step ahead capability, CT+I\T, requires an estimate of the one- 

step ahead expected value and one-step ahead variance. Given the known parameters, 

the current observation, and the current error (residual), the conditional one step ahead 

expected value is easily calculated. For the general capability monitoring system presented 

earlier in this chapter, the residuals from a moving window of 30 observations are used to 

estimate the one-step ahead variance. As the window passes over a given observation, 30 

different residuals are generated for that time. When the model parameters are known, a 

single residual is determined for each point in time. In this case, an exponentially weighted 

moving variance can be used to estimate the one-step ahead variance. The exponentially 

weighted moving variance at time t, denoted s^, is given by 

s] = Xr2
t + (1 - X)sl1 (204) 

where A is a smoothing constant generally chosen between 0.05 and 0.3 and rt is the residual 

at time t (MacGregor and Harris, 1993). The one-step ahead standard deviation can then 

be estimated by 

<rc,T+i\T = sT- (205) 

The exponentially weighted moving variance provides two benefits over the mean absolute 

deviation. First, since recent residuals are weighed more heavily than past residuals, a 

change in the residuals due to an assignable cause may be reflected in the estimate of 

the standard deviation of the errors more quickly than waiting for the moving window to 
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accumulate enough of the affected residuals. Second, a single large residual due to the 

introduction of an assignable cause may increase the estimate of the error sufficiently to 

signal the assignable cause immediately. Thus, the predictability portion of the capability 

hypothesis may not need to be tested separately. A single test statistic for this case is 

-                 min(USL - fiT+i\T, ßT+i\T~LSL) 
<->pk,T+l\T =  ö • {Mb) 

We tested the modified capability monitoring system for an ARM A (1,1) process with 

(j> = .95 and 6 = .45 (and, without any loss of generality, £ = 0 and ae = 1). The 

critical value and smoothing constant used for this experiment, Ccrit = .85 and A — 0.3, 

were chosen by trial and error in order to achieve an average run length of approximately 

370 in the absence of any assignable causes. Tables 17 and 18 depict the results from one 

thousand runs of the modified capability monitoring system and the results published for 

other methods. The same information is graphically depicted in Figure 15. As Figure 15 

clearly shows, the modified capability monitoring system has the potential to respond 

rapidly to a variety of assignable causes. In particular, when compared to the special cause, 

EWMA and X-charts, the modified capability monitoring system has a lowest average run 

length for shifts in the mean of between 1.5ax and 2ax. More significantly, the average 

run length from the modified capability monitoring system is within 25 percent of the best 

average run length from any of the three other methods. Furthermore, the modified method 

clearly outperforms the special cause chart for shifts in the mean of between 1.5er.,, and 2crx, 

outperforms the X-chart for any size increase in error variance or shifts in the mean larger 

than 1.5ax, and outperforms the EWMA for shifts in the mean larger than l.5ax. While 

the modified method is not superior to every other standard method for every assignable 

cause, it may be fair to say that, when compared to any one of the other methods, it 

is competitive for every type assignable cause and is superior for at least some types of 

assignable causes. 
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Table 17. Simulation and previously published results for ARL given observations from 
an ARMA(1,1) process with known parameters </> = .95, 9 = .45, £ = 0 and 
ae = 1 for a variety of mean shifts. 

Mean Shift in 
Multiples of ax 

Method 
Capability" sec6 

X6 EWMAb 

0.0 367.8 370.4 392.9 362.9 
0.5 253.0 349.7 262.7 232.2 
1.0 122.9 274.7 108.7 93.8 
1.5 46.5 147.6 50.9 45.6 
2.0 14.1 43.5 20.8 23.6 
2.5 3.9 6.6 7.3 13.5 
3.0 1.5 1.3 2.2 8.8 

a Listed ARL is from 1000 simulated runs. 
h Listed ARL previously published (see Appendix E). 

Table 18. Simulation results for ARL given observations from an ARMA(1,1) process with 
known parameters <f> = .95, 9 = .45, £ = 0 and ae = 1 for a variety of increases 
in the standard deviation of the process error. 

Increase in 
Std Dev (%) 

Method 
Capability" sec6 

Xa EWMAC 

0 
25 
50 

100 
200 
300 

367.8 
74.3 
28.3 
10.3 
4.5 
3.0 

382.0 
61.0 
22.0 

7.5 
3.2 
2.2 

370.4 
107.1 
49.7 
20.2 

7.2 
4.2 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Listed ARL is from 1000 simulated runs. 
b Theoretically derived results: ARL = 1/(1 - $(3//) + $(-3//)); I =1 + % increase. 

c Appropriate parameters for the EWMA chart are not available. 
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Mixed ARMA(1,1) Observations 

0        0.5 1 1.5        2        2.5        3 
Size of mean shift (multiples of standard deviations) 

J— Capability 

SCC 

X-Chart 

EWMA 

U— Capability 

[]— SCC 

B— X-Chart 

EWMA 

0 25        50       100      200      300 
Size of increase in standard deviation (percent) 

Figure 15. Comparison between capability monitoring system, Special Cause Chart, X- 
Chart and EWMA Chart for mixed ARMA(1,1) observations with </» = 0.95 
and 6 = 0.45. 
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5.7    Chapter Summary. 

Capability monitoring is an evolutionary step in the field of statistical process control. 

In this chapter, we demonstrated the feasibility of monitoring process capability by com- 

paring the results from a proposed capability monitoring method to published results for 

standard control charts. In general, capability monitoring methods differ from control chart 

methods by explicitly accounting for chance, assignable and structural causes of variation. 

In addition, capability monitoring methods directly monitor a measure of process quality 

rather than the state of statistical control. We showed that control charts are a subset of 

capability monitoring methods. 

The proposed capability monitoring method achieved the goals we established for 

practical quality improvement tools. Over the range of stationary ARMA(1,1) models, 

it possesses an average run length of greater than 370 in the absence of assignable cause 

variation, while responding to changes in the process mean. Further, an initial implemen- 

tation of the proposed system was able to process more than one observation per second 

on a Sparestation 2, demonstrating the suitability of implementing the method on-line. An 

important advantage of the method over the special cause, X, and EWMA charts is that 

the parameters of the true ARMA(1,1) process do not need to be known prior to starting 

the system. 

Even more compelling, when information about the parameters of the truth model is 

known, a capability based method for monitoring a process can respond as well as, and 

sometimes better than, existing methods based on statistical control. We demonstrated 

this comparison for both an independent normal process and a mixed ARMA(1,1) process. 

For these cases, a capability based monitoring system performed (almost) as well as the 

best of the standard control charts for any size mean shift or increase in error standard 

deviation. Furthermore, the capability system was clearly superior to each standard control 

chart for some assignable causes. 
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VI.   Summary and Recommendations 

6.1    Summary 

The research documented in this dissertation has demonstrated the ability to monitor 

the capability of a process. The shifting emphasis from the 'state of statistical control' to 

'capability' reflects a new paradigm. The need for this paradigm is evident in the docu- 

mented limitations of control-based monitoring systems in the presence of autocorrelated 

process observations. The new paradigm fits within a larger philosophy of continuous 

process improvement based upon statistical thinking. 

The standard control charts were developed based upon a two-source model of pro- 

cess variation. We propose a new taxonomy of three causes of variation. Our taxonomy 

explicitly accounts for structural cause variation, that is manifested by autocorrelation, as 

well as chance and assignable causes of variation. By breaking out variation in this way, a 

deeper understanding of the time-varying aspects of autocorrelated processes can be gained. 

By correctly analyzing the statistical properties of the process and taking the appropriate 

corrective actions, process variation can be reduced and product quality improved. 

By accounting for structural cause variation, fixed control limits for processes from 

the family of stationary ARM A (1,1) models that achieve specified average run lengths in 

the absence of assignable cause variation can be determined. The control limits can be 

selected by incorporating conditional information gained about the process over time into 

the probability density function of the state of the process. The results of this part of the 

research can be used by quality practitioners to choose appropriate control limit multipliers 

for ARMA(1,1) processes. 

A more significant aspect of this research is the development of a capability based 

monitoring method. The mathematical foundation for this method reveals that capability 

can be viewed as a time-varying attribute of a process.   In this light, capability at some 
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time in the future can be estimated using estimates of future process variation and location. 

Capability can be monitored by identifying the expected long-term capability of the process. 

Significant changes to the process will be reflected by a decrease in the estimated long-term 

process capability. A specific capability monitoring system is proposed which addresses the 

practical needs for quality improvement. The proposed system is shown to be comparable to 

a gamut of standard control charts over the family of ARMA(1,1) models. In addition, the 

utility of a capability based monitoring system that uses knowledge about the parameters 

of the truth model for the process is demonstrated for both an independent normal model 

and a mixed ARM A (1,1) model. The performance of the capability based systems are 

comparable to, and in some cases better than, the special cause chart, X-chart and EWMA 

chart. 

6.2    Recommendations 

The capability monitoring method proposed in this paper represents a first step in the 

new capability based paradigm. The opportunities for improving the method are numerous. 

Some opportunities include: 

• Application of the method to real world data sets to demonstrate its suitability. The 

worth of any quality monitoring system is shown by its profitability. 

• Conducting sensitivity analysis of the proposed system. For example, testing the 

system for processes other than those generated by the ARMA(1,1) model. 

• Taking advantage of knowledge gained about the process over time to dynamically 

select the critical values for the capability test. Using additional knowledge might 

further enhance the detection capabilities of the system to allow direct comparison 

with documented results for other systems. 
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• Further development of the system under perfect process knowledge. This might 

include optimizing a capability monitoring system for a real world data set as well as 

conducting sensitivity analysis for a known model. 

• Delivery of a packaged system able to be run in the field by a quality practitioner for 

real-world processing. 
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Appendix A.   Summary of Notation used in Chapter III. 

xt Observation at time t 

Xt Random variable for the observation at time t 

et Underlying error at time t 

£t Random variable for the underlying error at time t 

<f> Autoregressive parameter for an ARMA(1,1) model 

0 Moving average parameter for an ARMA(1,1) model 

£ Location parameter for an ARMA(1,1) model 

a\ Unconditional variance of the observations 

of Unconditional variance of the underlying errors 

ß Location parameter for the general linear filter 

■0 Coefficients for the general linear filter 

f(xt) Probability density function of Xt 

f(xt,tt) JPDF of (A^) 

g(xt+1,et+1) JPDF of (Xt+1,£t+1) 

f*(xt) Marginal PDF of Xt 

g*(xt+1) Marginal PDF of Xt+1 

fn{xt,et) Conditional JPDF of (Xt,£t) given that 

the n most recent observations have been within the specified control limits 

gn+i(xt,et) Conditional JPDF of (Xt,£t) given that 

the n previous observations have been within the specified control limits 

$ Cumulative density function of the error terms 

j/i Placeholding variable equivalent to xt+i 

y2 Placeholding variable equivalent to ei+i 

Ay Region of integration 
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a False alarm rate (for the iid case) 

ARL Average run length (for the iid case) 

a-t False alarm rate at time t 

ARLt Average run length at time t 

a30 False alarm rate after at least 30 initially controlled observations 

ARLt\30 Average run length at time t given at least 30 initially controlled observations 

PDF Probability density function 

JPDF Joint probability density function 

iid Independent and identically distributed 
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Appendix B.   Matlab Code for Numerically Approximating the Joint 

Probability Density Function for an ARMA(1,1) Process. 

start=clock; 

phipoints = [0.95 0.475 0 -.475 -.95]; 

limpoints = [1.5 1.75 2 2.25 2.5 2.75 3 3.25]; 

phipoints = [0.95]; 

theta  = .9 

nrx    = 361 

nre    = 123 

nrloops =30; 

disp (sprintf ('nrx = %i nre = °/0i nrloops = 0/oi',nrx, nre, nrloops)); 

nrphipoints = size(phipoints,l)*size(phipoints,2); 

nrlimpoints = size(limpoints,l)*size(limpoints,2); 

indexsize = nrphipoints*nrlimpoints; 

arl = zeros (indexsize, nrloops+1); 

for phiindex = 1:nrphipoints, 

for limindex = 1:nrlimpoints, 

index = (phiindex-l)*nrlimpoints + limindex; 

phi = phipoints(phiindex); 

lim = limpoints(limindex); 

phicode(index) = phi; 

limcode(index) = lim; 

gamO = (1 + theta~2 - 2*phi*theta) / (1 - phi~2); 

sigmax = sqrt(gamO); 
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corr= 1/sigmax; 

rho = (l-theta*phi)*(phi-theta)/(l+theta~2-2*phi*theta); 

lcl = -lim*sigmax; 

ucl = lim*sigmax; 

lcle = -5.5; 

ucle = 5.5; 

dopt = 1 - (normcdf(ucl) - normcdf(lcl)); 

d2 = dopt / (dopt+1) ; 

tiny = d2 / (nrx * nre); 

% tiny = 0.0000000000001; 

j = (l:nre-l) / (nre); 

j = [lcle lcle+(ucle-lcle)*j ucle]; 

e = j(l:nre)+diff(j)/2; 

ep = [e(l:nre-l)+diff(e)/2 ucle]; 

em = [lcle e(2:nre)-diff(e)/2] ; 

norme = diff (normcdf([em(l) ep])); 

i = (l:nrx-l) / (nrx); 

i = [lcl lcl+(ucl-lcl)*i ucl]; 

xp = i(2:nrx+l); 

xm = i(1:nrx); 

x = i(l:nrx)+diff(i)/2; 

dx = x(2) - x(l); 

o = (xp-xm)'*(ep-em); 

g = l/(2*pi*sqrt(l-corr~2)*sigmax) * exp( (-l/(2*(l-corr~2))) * 

( (x'*ones(l,prod(size(e)))/sigmax)."2   ... 

- 2*corr*x'*e/sigmax + ... 

(ones(prod(size(x)),l)*e).~2)); 
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P = 0.*g; 

arl(index,l)=l/(l-sum(sum(p))) 

disp (sprintf ('phi = °/,6.3f theta = °/„6.3f lim = %6.3f 

sigmax = %5.3f rho = °/5.3f' ,phi, theta, lim, sigmax, rho)); 

°/, compute the Markov transition matrix T 

% where the columns in T correspond to 

% (old x, old e, new x, new e) 

disp('Making Markov Transition Matrix') 

T = zeros( prod(size(find(p>=tiny)))*nre ,4); 

count = 0; 

for k = l:nrx, for 1 = l:nre, 

if (p(k,l) > tiny) 

xnew = phi*x(k) - theta*e(l) + e; 

kk = ceil ((xnew-lcl)/dx); 

for 11 = 1: nre, 

if (kk(ll) > 0) 

if (kk(ll) > nrx) 

break; 

else 

count = count+1; 

T(count,l:4)=[k 1 kk(ll) 11]; 

end; 

end; 

end; 

end; 
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end; end; 

elapse = etime(clock,start); 

disp(sprintf ('Elapsed time (in min) : 7,6.If ,  elapse/60)) 

% Run thru, the loops 

dispCStarting Loops') 

for loop = l:nrloops, 

if (nrloops == 0) break; end; 

% do the markov conversion 

pin = p / sum(sum(p)); 

p = zeros (nrx, nre); 

for c = 1:count, 

p(T(c,3), T(c,4)) = p(T(c,3), T(c,4)) + pin(T(c,1),T(c,2)); 

end; 

p = p .* (ones(nrx,1)*norme); 

temp = sum(sum(p)); 

arl(index, loop+1) = l/(l-temp); 

disp('ARL3'); disp(arl); 

end; % loop loop 

perc  = ((phiindex-l)*(nrlimpoints) + limindex) / (nrphipoints * nrlimpoints); 

elapse = etime(clock,start); 

left  = ((elapse/perc)-elapse)/60; 

disp  (sprintf ('°/„5.3f pet done °/,6.1f min left. (°/,6. If min in)', ... 

perc, left, elapse/60)) 

end; % limindex loop 

end; °/0 phi index loop 
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% display run time info 

elapse = etime(clock,start); 

disp(sprintf('Total time (in min): %6. If , elapse/60)) 
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Appendix C.   Matlab Code for Numerically Approximating the Joint 

Probability Density Function for a Pure AR(1) Process. 

start=clock; 

phipoints = [0.95 0.475 0 -.475 -.95]; 

limpoints = [1.5 1.75 2 2.25 2.5 2.75 3 3.25]; 

theta  = 0 ; 

nrx    = 1001; 

nre    = 33; 

nrloops = 31; 

disp (sprintf ('nrx = %i nre = %i nrloops = "/.i^nrx, nre, nrloops)); 

nrphipoints = size(phipoints,l)*size(phipoints,2); 

nrlimpoints = size(limpoints,l)*size(limpoints,2); 

indexsize = nrphipoints*nrlimpoints; 

arl = zeros (indexsize, nrloops+1); 

for phiindex = 1:nrphipoints, 

for limindex = 1:nrlimpoints, 

index = (phiindex-l)*nrlimpoints + limindex; 

phi = phipoints(phiindex); 

lim = limpoints(limindex); 

phicode(index) = phi; 

limcode(index) = lim; 

gamO = (1 + theta~2 - 2*phi*theta) / (1 - phi~2); 

sigmax = sqrt(gamO); 

rho = (l-theta*phi)*(phi-theta)/(l+theta~2-2*phi*theta); 
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lcl = -lim*sigmax; 

ucl = lim*sigmax; 

lcle = -6; 

ucle = 6; 

dopt = 1 - (normcdf(ucl) - normcdf(lcl)); 

d2 = dopt / (dopt+1); 

j = (l:nre-l) / (nre); 

j = [lcle lcle+(ucle-lcle)*j ucle]; 

e = j(l:nre)+diff(j)/2; 

ep = [e(l:nre-l)+diff(e)/2 ucle]; 

em = [lcle e(2:nre)-diff(e)/2] ; 

norme = diff (normcdf([em(l) ep])); 

i = (l:nrx-l) / (nrx); 

i = [lcl lcl+(ucl-lcl)*i ucl]; 

xp = i(2:nrx+l); 

xm = i(l:nrx); 

x = i(l:nrx)+diff(i)/2; 

dx = x(2) - x(l); 

g =  l/(sqrt(2*pi)*sigmax) * exp( (-1/2) *(x/sigmax).~2); 

p = dx.*g; 

arl(index,l)=l/(l-sum(p)); 

disp (sprintf ('phi = °/.6.3f theta = °/„6.3f lim = °/.6.3f 

sigmax = °/5.3f rho = °/05.3f' ,phi, theta, lim, sigmax, rho)); 

% compute the Markov transition matrix T 
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°/q where the columns in T correspond to 

% (old x, old e, new x, new e) 

disp('Making Markov Transition Matrix') 

T = zeros( nrx, nrx); 

for k = 1:nrx, 

T(:,k) = dx*normpdf(x(k)-phi*x'); 

end; 

elapse = etime(clock,start); 

disp(sprintf ('Elapsed time (in min) : %6.1f, elapse/60)) 

% Run thru the loops 

disp('Starting Loops') 

for loop = lmrloops, 

if (nrloops == 0) break; end; 

% do the markov conversion 

pin = p / sum(p); 

p = pin*T; 

temp = sum(p); 

arl(index, loop+1) = l/(l-temp); 

°/„ disp('ARL'); disp(arl); 

end; °/0 loop loop 

% disp('ARL'); disp(arl); 

perc  = ((phiindex-l)*(nrlimpoints) + limindex) / (nrphipoints * nrlimpoints); 

elapse = etime(clock,start); 

left  = ((elapse/perc)-elapse)/60; 

disp  (sprintf ('°/,5.3f pet done °/06.1f min left. (°/.6. If min in)', ... 

perc, left, elapse/60)) 
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end; % limindex loop 

end; '/,  phiindex loop 

dispCARL'); disp(arl); 

disp ([phicode' limcode' arl(:,l) arl(:,nrloops+l)]) 

% display run time info 

elapse = etime(clock,start); 

disp(sprintfC'Total time (in min): %6.If , elapse/60)) 
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Appendix D.   Matlab Code for Implementing and Testing the Method for 

Monitoring Process Capability. 

% Set the parameters for this run 

designpt = 1; 

nrruns    = 200; 

acsize    = 0; 

maxobs = 5000; 

stime = cputime; 

window = 30; 

cpktrig = .90; 

SCCtrig = 1/370; 

maxphi = .97; 

maxtheta = 2; 

lambda = .15; 

% load design point info 

load -ascii datalime 

load -ascii dataphitheta 

% Initialize arrays and variables 

phi   = dataphitheta(designpt,1) ; 

theta = dataphitheta(designpt,2); 

Le    = datalime(designpt,:); 

tau   =0; 

gamO  = (1 + theta*theta - 2*phi*theta) / (1 

sigmax = sqrt(gamO); 

phi*phi); 
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usl = 4*sigmax;  ucl = Le(2);  upl = usl; 

lsl = -4*sigmax;  lcl = -Le(2);  lpl = lsl; 

truespace = [phi theta 0 0] ; 

signal   = zeros (nrruns, 2); 

for i = 1:8, 

Zi(i) = phi~(i-l)*(phi-theta); 

Smult(i) = sqrt(l + sum(Zi(l:i-l).~2)) ; 

end; 

% set up the smoothing variables 

disp (sprintf ('designpt %i acsize %4.1f maxobs %i',designpt,acsize,maxobs)); 

for run = 1:nrruns, 

% generate an initially controlled time series 

x= inf; 

while (max(x) > usl I min(x) < lsl), 

[x e] = armagen(truespace, window); 

end; 

xac = x; 

°/, set the starting values for smoothing variables 

th = zarmax (xac-mean(xac), [1 1]); 

smphi  = -th(3,l)*.8; 

smtheta = -th(3,2)*.9; 

smse   = sqrt(th(l,1))*.9; 

smxi = 0; 
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% loop until a signal is generated 

obs = 0; 

while (signal(run,l) == 0 & signal(run,2) == 0), 

'/„  extend the time-series one observation 

obs = obs+1; 

if (obs > maxobs), 

signal(run,l) = maxobs+1; dispCEXCEEDED MAXOBS'); break; 

end; 

[xout eout] = armaextend (truespace, x(window), e(window), 1); 

x  = [x(2:window); xout(l)]; 

e  = [e(2:window); eout(l)]; 

xac = [xac(2:window); xout(l)+acsize*sigmax]; 

°/„ fit an ARMA(i,l) model 

meanxac = mean(xac); 

th = zarmax (xac-meanxac,   [1  1]); 

fitse        = sqrt(th(l,l)); 

fittheta = -th(3,2); 

fitphi      = -th(3,l); 

fitxi        = meanxac *   (1-fitphi); 

if   (fittheta > maxtheta)  fittheta= maxtheta;  end; 

if   (fittheta <-maxtheta) fittheta=-maxtheta;  end; 

if   (fitphi > maxphi) fitphi= maxphi;   end; 

if   (fitphi Omaxphi) fitphi=-maxphi;  end; 

fitspace =   [fitphi fittheta fitxi 0]; 

fitel = fmin  ('armaerre',  -3,  3,   [],  fitspace,  xac); 
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fitspace(4) = fitel; 

% compute Cpk and SWalpha 

smphi   = lambda*fitphi  + (l-lambda)*smphi; 

smtheta = lambda*fittheta + (l-lambda)*smtheta; 

smse    = lambda*fitse   + (l-lambda)*smse; 

smxi    = lambda*fitxi   + (l-lambda)*smxi; 

smsigmax = sqrt( (1+smtheta.~2-2*smtheta.*smphi)./(l_smphi."2) ); 

smmean = smxi / (1-smphi); 

smcpk = min(usl-smmean, smmean-lsl)./(3*smsigmax*smse); 

% test for lack of capability 

if (smcpk < cpktrig) 

signal(run,1) = obs; 

end; 

% FIR code 

if (signal(run,2) == 0), 

[xhat, ehat]=armafit (fitspace, xac); 

swalpha = sw30(ehat); 

if (swalpha < SCCtrig) 

disp(sprintf('SCC ALARM at obs+°/.i  1/swalpha = %6.1f   ... 

,obs,1/swalpha)); 

signal(run,2) = obs; 

end; 

end; 

y, End of FIR code 
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end; 

end; 

disp (sprintf ('designpt °/,i acsize %4.1f maxobs %i' ,designpt ,acsize,maxobs)) ; 

etime = cputime; 

disp (sprintf ('Elapsed time (in min) °/,7.1f For %i  runs', (etime-stime)/60, nrruns)); 

rlsig = max (signal'); 

arl = mean(rlsig); 

srl = std(rlsig); 

disp (sprintf ('ARL °/„8.1f  SRL °/,8. If' , arl, srl)); 

disp (sprintf ('pet FAC °/„4.1f  pet FAN °/,4.1f, ... 

100*sum(signal(:,1)>0)/nrruns, 100*sum(signal(:,2)>0)/nrruns)); 

disp (sprintf ('90 pet CI on ARL: (°/,8.1f - %8.1f)\ ... 

arl-1.645*srl/sqrt(nrruns), arl+1.645*srl/sqrt(nrruns) ) ); 

164 



Appendix E.   Copy of Key Results (Wardell, Moskowitz and Plante, 1994)- 
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