WL-TR-95-1118

AVIONICS SOFTWARE REENGINEERING
TECHNOLOGY (ASRET) PROJECT
REENGINEERING TOOL (RET)

USER’S MANUAL

D.E. WILKENING
J.P. LOYALL

TASC
55 Walkers Brook Drive
Reading, Massachusetts 01867

MAY 1995
Project Final Report for 5/1/92 — 5/1/95

Approved for public release; distribution is unlimited.

060305 115

AVIONICS DIRECTORATE _

WRIGHT LABORATORY e STTATITY TIETTOTED 8
AIR FORCE MATERIEL COMMAND v
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7409

NOTICE

When Government drawings, specifications or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility or any obligation whatsoever. The fact that the government
may have formulated or in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or
any other person or corporation; or as conveying any rights or permission to manufacture, use, or
sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Kot i /A

KENNETH LITTLESOHN/Project Engineer WILLIAM R. BAKER, Acting Chief
Software Concepts Section Avionics Logistics Branch
WL/AAAF-2 WL/AAAF

2

STEPHﬁN G. PETERS, Lt Col, USAF
Deputy Chief

System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WL/AAAF, WPAFB, OH
45433-7301 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Publicreportingburdenforthis collectionofinformationis estimatedtoaverage one hourperresponse, includingthe time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1995 May 92 to May 95

5. FUNDING NUMBERS
C F33615-92-D-1052

Form Approved
OMB No. 0704-0188

4. TITLE AND SUBTITLE
Avionics Software Reengineering Technology (ASRET)

3 PE 78012
Tool (RET) User’s Manual PR 3090
6. AUTHOR(S) Ao
WU 14

D.E. Wilkening , J.P. Loyall (TASC)

8. PERFORMING ORGANIZATION
REPORT NUMBER

TASC: TR-06661-6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

TASC, Inc.
55 Walkers Brook Drive
Reading, MA 01867

10. SPONSORING/MONITORING

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

Avionics Directorate

Wright Laboratory

Air Force Material Command

Wright Patterson AFB OH 45433-7409

WL-TR-95-1118

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report explains how to use the Reengineering Tool (RET) prototype developed under the Avionics Software Reengineering
Technology (ASRET) project. The RET prototype is a software reengineering tool that assists in improving and translating avionics
simulation software written in FORTRAN to Ada.

15. NUMBER OF PAGES
62

14. SUBJECT TERMS
Reengineering, Reverse Engineering, Reuse

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

uL

NSN 7540-01-280-5500

STANDARD FORM 288 (Rev. 2-89)
Prescribed by ANS! Std 239-18
298-102

MI009

1-22-92

TABLE OF CONTENTS

LIST OF FIGURES . ..ottt ettt ettt et e et ieae e ennannnn
LIST OF TABLES ...ttt ittt ettt e e ta et teaaaeeeannannns
1. INTRODUCTION ..ottt ittt ettt eeaeannns
11 Backgroundc.iiiiiii e e et e
1.1.1 Context ..ot i e e e e

1.1.2 Rationalecoiiiiiiiiiriiiiii ittt iiieeeieeeenaannns

1.1.3 Goals .ooviiii i e i et e

1.2 Report Organizationccoiiiiiiiiiiiiiiinie i,

2. RET OVERVIEW iiiiiiiiiiiiitteteeeteeeeennneeeaanannnn
2.1 TheGeneral Approachcouuuniiiiiiiii e,

2.2 TheUserInterfaceottt
2.2, SCL oottt e e e e

2.2.2 PACK .o e e e

2.2.3 DED .ttt e

2.2.4 O oottt e e e

2.2.5 DD .. e e et e

3. REENGINEERINGPROCESSMODELttt
4. APPLICATIONOF CONCEPTS ... it iiiieaiiiannanns
4.1 Developing Program Structure Using the Packager
4.1.1 Definitionscovitiiiii i i i i e ettt i

4.1.2 Creating a Package Structure

4.1.3 Editing the Package Structure

4.1.4 DistributingDataltemso,

42 Translating Program Statements il
4.2.1 Unstructured Control Constructs

4.2.2 LanguageFeaturesc i,

423 DataType Systemsccoiiiiiiiiiii ittt iiieineenannn.

5. RETREFERENCEttt eanereiinanaann,
51 RETMainWindowcciiiiniiiiiiiieiiiiineinneenaaannnnn.

5.2 Packager Viewttt i et et e e
5.3 DataflowDiagramcoiiiiiiiiiii ittt it e

5.4 CallDiagramoiiiiiiiiiii i i it teeneianannns

5.5 DeclarationDiagramc.oiiiiiiiiiiin it iieeinennnnn.

5.6 FORTRAN Source CodeListingciiiiiieiniiiniinnnnn...

5.7 AdaSourceCodelistingccoiiiiiiiiiiiiiiiiiiiiiieennnn.
REFERENCES ... i ittt ittt i iaaseanaennnns
APPENDIXA ACRONYMSFORVOLUMEI,

1il

Page
iv

<

00 0O-J~I0 i i NN -

10

LIST OF FIGURES

Figure Page
1 Developing Ada by Reusing FORTRAN ...,

2 Incorporating Macro and Micro Entities,

3 ASRET Reengineering Process Model 10
4 The Packager View ... 16
5 RET Main Window ...ttt ittt et iiiaennn, 24
6 Analysis Pull-Down Menucooiiiiiiiii ittt iiiin, 25
7 Views Pull-Down Menuttt 26
8 Reshape Pull-Down Menuottt it iiiieennn. 26
9 Packager View With Data Binding Edges 27
10 Packager View WithCallEdgescoiiiiiiiiiiiiii .. 28
11 Packager and Source Code Views of Intrinsic Functions 28
12 Packager and Source Code Views of External Subprograms 29
13 Dataflow Diagram Top-Level Viewc.ciiiiiiiiiiiiiiinaan.. 37
14 Dataflow Diagram With Selected NOAESnvvvrrrrrereeeeeaeeeennns, ' 38
15 Dataflow Diagram With Hidden Nodesand Edges 38
16 Dataflow Diagram for RLT OUTPUT 39
17 ImitialCallDiagramciiiiiiiiiiiiiiiiiiiiienieeennaannn. 45
18 ExpandedCallDiagramc.coiiiiiiiiiiiiiinnennnnnnnennnnn. 46
19 Further Expanded Call Diagramccoviiiiinienininnnnnnnn. 46
20 Initial Declaration Diagramciiiiiiiiiiniii it 49
21 Declaration Diagram With Selected Subprograms 50
22 Declaration Diagram With Expanded Common Blocks 51
23 Declaration Diagram With Expanded Subprograms 52
24 Source Code Listingscovviiiiiiiiiitiii ittt iieiinaneaaannns . 54
25 Modified Ada Source Code Listingccoiiiiiiiiiiiiinnninnnnn. 58

iv

Table

W 0 I O Ot B W DN =

O I I I I T S o S O S O e SN W o S o S T R
B WO N = O W®W =1 O U oW N O

LIST OF TABLES

Page

Reengineering Tool (RET) Views, 6
RET Reference Directoryccoiiiiimminiiiiii i iiiiieiannnn 23
Packager Package Pop-UpMenuooooiiiiiiiiiiiiit 30
Packager Subprogram Pop-UpMenuoooiiiiiiiiiiii.. 32
Packager Data Binding EdgePop-UpMenuc..cooiiiiitn. 33
Packager Background Pop-UpMenuciiiiiiiiiiiiiinin. 34
Packager Window Pop-UpMenucooiiiiiiiiiiiiiiiiiiinn. 36
Dataflow Diagram Pop-Up Menu for Transform Nodes 40
Dataflow Diagram Pop-Up Menu for Repository Nodes 41
Dataflow Diagram Pop-Up Menu for Background 43
Dataflow Diagram Pop-Up Menu for Window 44
Call Diagram Pop-up Menu for Objectt 47
Call Diagram Pop-Up Menu for Background 48
Call Diagram Pop-Up Menu for Windowt 48
Declaration Diagram Pop-Up Menu for Object 52
Declaration Diagram Pop-Up Menu for Background 53
Declaration Diagram Pop-Up Menu for Window 53
FORTRAN Pop-Up Menu for Statementoooiiiiit. 55
FORTRAN Pop-Up Menu for Subprogramcccoiiinnn.... 55
FORTRAN Pop-Up Menu for Backgroundcointt, 56
FORTRAN Pop-Up Menu for Windowcciiiiiiiiiiiin. 57
Modified Ada Source Code Listing, 58
Ada Pop-Up Menu for Subprogramc..iiiiiiiiiiiiian, 59
| Ada Pop-Up Menu for Backgroundccocooiiiiiiiiiii.L. 60
Ada Pop-UpMenufor Windowttt 60

1. INTRODUCTION

This report explains how to use the Reengineering Tool (RET) prototype developed
under the Avionics Software Reengineering Technology (ASRET) project. The RET proto-
type is a software reengineering tool that assists in improving and translating avionics
simulation software written in FORTRAN to Ada.

1.1 BACKGROUND
1.1.1 Context

We conducted the ASRET project under the Avionics Software Technology Support
(ASTS) program. The ASTS program is an ongoing activity of the Software Concepts
Group, Avionics Logistics Branch at Wright Laboratory (WL/AAAF-3), Wright Patterson
Air Force Base in Ohio. The objective of the ASTS program is to perform research and de-
velopment for enhancing Embedded Computer System (ECS) software development and
postdeployment support.

The main objective of ASRET was to develop an automated Reengineering Tool
(RET) prototype for avionics support software. The specific goals included investigating
existing reengineering and reverse engineering processes, techniques, and software tools,
defining a reengineering process model, and building the RET prototype software tool.

1.1.2 Rationale

The reengineering of software from one language to another is becoming a neces-
sity as Air Force organizations strive to modernize and improve the maintainability of
their systems while avoiding the excessive costs of new development. Systems that have
been in use for years often incur large maintenance costs for a number of reasons.

e Continual maintenance has made the current implementation and original de-
sign inconsistent, the code harder to understand and error-prone, and the doc-
umentation out-of-date. ’

e They are written in languages that have fallen out of favor. The limited selec-
tion of support tools for these languages, the corresponding expense of the
associated support tools, and the shrinking pool of qualified programmers to
maintain the software adds to the expense of maintenance.

e They were developed without modern software engineering practices, result-
ing in code that lacks structure and is difficult to understand.

¢ Employee turnover has reduced the staff’s understanding and intimate knowl-
edge of the systems.

Wright Laboratory initiated the ASRET project to help reduce maintenance costs for
legacy systems and to assist in the evolution to Ada. To this end, we developed an environ-
ment for reengineering software from one language to another. We concentrated on the
reengineering of avionics simulation software written in FORTRAN to Ada, and designed
the RET prototype so that additional languages could be supported in the future.

1.1.3 Goals

The objective of the ASRET project was to develop an automated RET prototype for
avionics support software. The specific goals included investigating -existing
reengineering and reverse engineering processes, techniques, and software tools, defin-
ing a reengineering process model, and building a RET prototype that supports:

e Translating avionics simulation software written in FORTRAN to Ada
e Improving the software through restructuring techniques

e Changing the design of the software so that it is consistent with modern soft-
ware engineering principles

e Adding documentation that is consistent with the software.

1.2 REPORT ORGANIZATION

Section 1 introduces the ASRET project and highlights the rationale for, and goals
of the Reengineering Tool (RET). Section 2 provides an overview of the RET approach to
reengineering and describes the views available through the RET user interface. Sec-
tion 3 presents the ASRET Reengineering Process Model. Section 4 illustrates how to ap-
ply the process model and demonstrates, in the context of reengineering a sample
application, techniques that the RET supports. Section 5 is a reference for the RET User
Interface. Appendix A defines acronyms used in this document.

The Avionics Software Reengineering Technology (ASRET) Project Final Report,
Volume I, Project Summary, Account, and Results (Ref. 1) relates the lessons that we
learned while developing the RET prototype, and provides information that may help you
fully exploit the capabilities of the RET.

The Avionics Soﬁ‘ware Reengineering Technology (ASRET) Project Final Report,
Volume II, Reengineering Tool (RET) Diagrams (Ref. 2), recounts our experiences in exer-
cising the RET prototype and provides annotated output of the RET. This information
may help you interpret diagrams that you create with the RET prototype.

2. RET OVERVIEW

2.1 THE GENERAL APPROACH

The RET comprises two distinct logical parts called the Left-Hand Side (LHS) and
the Right-Hand Side (RHS). The LHS provides views of the original FORTRAN program,
or subject system. The RHS provides views of the Ada program being developed (i.e., the
target system). The LHS allows you to navigate and view aspects of the subject system,
but does not support changing the subject system.

The RHS supports constructing, refining, viewing, and navigating the target sys-
tem. You may construct a basic structure for the RHS (macro restructuring) using in-
formation extracted from the LHS. Once the basic structure of the RHS is established, you
may refine the target system (micro restructuring) on the RHS.

Semiautomated RET components support construction activities; they suggest
large-scale reorganizations of the subject system and populate the RHS with the basic
structure of the target system. The components that support refinement allow you to in-
tervene to apply your knowledge of the subject system and application domain and in-
sight, which is beyond the semiautomated support provided by the RET, to modify and
improve the RHS representations.

The RET prototype supports engineering an Ada program by reusing and trans-
forming parts of the FORTRAN program. The process is iterative as illustrated in
Figure 1.

e You may explore views of the original FORTRAN program that the RET gener-
ates on the LHS.

e Youmay select LHS entities such as subroutines, statements, or data elements
of the original FORTRAN program.

¢ The RET transforms the LHS entities and incorporates them into the RHS.
e You may explore views representing the Ada program on the RHS.
e You may interactively or automatically refine the RHS through the views.

You may repeat the cycle, exploring the LHS to select additional FORTRAN enti-
ties to reuse in building the RHS. The graphical user interface presents the LHS and RHS
views while the object-based database manages the underlying data structures or inter-
nal representations.

Incorporate
Entities into RHS

%

Capture LHS Explore
FORTRAN Entities W Database RHS Views

X

Userinterface

Explore LHS Refine
Views the RHS

Figure 1 Developing Ada by Reusing FORTRAN

The RET approach to reengineering is to create a new program on the RHS, reusing
components of the LHS. Structured design and programming principles are compatible
with the RET prototype and the ASRET Process Model described in Section 3.

The specific steps that you may take to apply the ASRET Process Model when using
the RET prototype are illustrated in Figure 2.

1. The RET prototype constructs the package and subprogram structure for the
RHS. It captures the subprogram structure from the LHS, transfers it to the
RHS, and clusters the subprograms into Ada packages.

2. Youmayrefine the RHS structure so that related subprograms and data items
are grouped together into packages.

3. The RET prototype moves data items and type declarations from the LHS to the
packages and subprograms on the RHS to which they are most closely related.

Construct
Program
Structure
Rearrange
the Structure
Add Data item
Declarations
Redistribute
the Declarations
Add Program
Statements
Refine the
Statements

Figure 2 Incorporating Macro and Micro Entities

4. You may then refine and redistribute the declarations. For example, data items
that are closely related but used by several subprograms might be in different
packages, and thus need to be grouped together. As another example, data items
might be moved into or out of a package’s private part to reflect their scope.

5. At this point, the RHS contains the modular structure of the program. The
' RET prototype then transforms statements from the LHS and moves them to
the bodies of the RHS subprograms and packages.

6. You may then refine individual statements on the RHS to tune the RHS structure.

2.2 THE USER INTERFACE

The RET provides the views listed in Table 1.

Table 1 Reengineering Tool (RET) Views

-LHS RHS VIEW NAME DISPLAYS
v v SCL Source Code Listing FORTRAN or Ada source code
v PACK Packager Diagram Ada package structure
P DED Declaration Diagram | FORTRAN declaration nesting structure
» CD CallDiagram FORTRAN subprogram calling structure
v DFD Data Flow Diagram Data flow through the Ada program

e The Source Code Listing (SCL) shows the FORTRAN source code after proc-
essing by the SPAG component of plusFORT (Ref. 3) on the LHS and the gener-
ated Ada code on the RHS.

e The Packager view (PACK) is a graphical view that shows the package and
subprogram nesting structure, and provides an interface for developing the
Ada package structure on the RHS.

e The Declaration Diagram (DED) is a textual view that documents the
FORTRAN system declaration structure. The DED provides information on
common blocks, subprograms, and data objects.

e The Call Diagram (CD) is a textual view that documents the FORTRAN calling
structure. The CD shows which subprograms call, or are called by other
subprograms.

e The Dataflow Diagram (DFD) is a graphical view that documents the Ada sys-
tem data flow. The DFD is a hierarchy of dataflow graphs that show, in increas-
ing detail, how data repositories are transformed by the Ada subprograms.

2.2.1 SCL

The Source Code Listing (SCL) is a textual view that shows the FORTRAN or gen-
erated Ada source code. The LHS SCL displays the FORTRAN code as it was formatted
during input to the RET prototype, after it was processed by SPAG. SPAG alters the

source code, so the output format is generally different from that of the original unpro-
cessed FORTRAN code. The SCL shows individual FORTRAN subprograms.

2.2.2 PACK

The Packager view (PACK) is a hierarchy of graphs. The hierarchy corresponds to the
nesting structure of the target system. There is one graph for the Ada library, and one for
each potential package. The nodes in each graph represent modules, i.e., subprograms or
packages, and the edges represent either data binding relationships or subprogram calls.
Section 4.1.1 describes the Packager view and how it is used to cluster a sample application.

The Packager view contains two kinds of edges. Thin, undirected edges depict the
data sharing relationships between two nodes. A thin edge between two subprograms in-
dicates that the two subprograms share data. A thin edge between a package, P, and a
package or subprogram node indicates that at least one subprogram in P shares data with
the modules that the other node represents. The edge labels list the data objects or show
the subprograms in the package that share data.

A thick edge drawn as an arrow directed from one subprogram to another represents
a subprogram call in the direction of the arrow. If the edge is drawn between a package and
another node, then the edge may represent multiple subprogram calls and its label shows
either the number of subprogram calls or the names of the called subprograms.

2.2.3 DED

The Declaration Diagram (DED) is a textual view that shows the declaration struc-
ture of the subject system. The DED lists the subprograms, common blocks, and data objects
for the FORTRAN system. For each subprogram, it lists the formal parameters, local
constants and variables, and included files. For each variable, constant, and parameter, the
DED shows the data type and describes where the data object is declared and referenced.

224 CD

The Call Diagram (CD) is a textual view that shows the calling structure of the
FORTRAN system. The CD lists the subprograms that comprise the original system and
shows the subprograms that each one calls, and the subprograms that are called by each
one. The CD initially shows a list of subprograms and allows you to view the additional
calling information for the subprograms of your choice.

2.2.5 DFD

The Dataflow Diagram (DFD) view is a hierarchy of dataflow graphs. The hierar-
chy corresponds to the calling structure of the target system. There is one graph for each
subprogram declared in the target system that is called. This means that there are no
graphs associated with undefined external subprograms or intrinsic functions (because

you may not have their source code).

The DFD contains transform and repository nodes. Three kinds of transform
nodes model programs:
1. Nonterminal (or call) nodes represent subprograms that are associated
with graphs because they call other subprograms.

2. Terminal (or leaf) nodes model subprograms that don’t call any other sub-
programs and thus have no graphs.

3. Body nodes represent subprogram bodies.
Two flavors of repository nodes model data.

1. Buffer nodes represent data objects (local variables, global variables such as
those declared in Ada packages, and subprogram parameters).

2. Repository collection (or record) nodes combine sets of repository nodes.

Arrows between the transform and repository nodes indicate the flow of data.
Transform nodes are labeled with subprogram names. Repository nodes are labeled with
data item names. Repository collection nodes representing more than a few (you may
specify the threshold) data items display the total number of data items, and you may
click on the collection nodes to view the individual data item names. The collections may
be nested.

The DFD doesn’t show nodes for intrinsic functions or external subprograms. In-
trinsic functions are those listed in Appendix D.3 of the VAX FORTRAN Language Refer-
ence Manual (LRM) (Ref. 4). Examples are SIN and SQRT. External subprograms are
system routines, listed in Appendix D.4 of the LRM, that are called from the FORTRAN
system. Examples are DATE and EXIT.

The DFD automatically eliminates redundant transform nodes. For example, if
module A called module B three times and different actual parameters are supplied for
each call, then the diagram for module A would contain three distinct nocies, each labeled
“B,” representing the three calls to module B. The three nodes would only be connected to
different repository nodes in the diagram if different actual parameters were used in each
of the calls. The RET prototype only generates one “B” node if the same actual parameters
are used in each call.

The DFD may combine sets of repository nodes into collections. This is analogous
to combining several variables into a record structure. The strategy reduces the number
of repository nodes in a graph. It is most effective if each of the repository nodes in a collec-
tion are referenced more or less by the same set of modules. The capability is experimental
so the RET prototype doesn’t provide a user interface for specifying the groupings. You
may specify the grouping by following the example in the RET prototype source code file
“dfd-record-map.re” to produce collections.

3. REENGINEERING PROCESS MODEL

The software reengineering process model for the RET prototype is illustrated in
Figure 3. Steps in the process label the boxes in the figure, and inputs and outputs for
each step label the icons between boxes.

e A
| |
| Restructuring I
' = i
I Redesign I
) (Later Passes) , |
| I
| Redocumentation |
| |
Representation New Representations
I P I
I of Program of Program [
| { |
| Analyze A Generate !
nalyze Ada
i FORTRAN Coto Reveree Code |
Code f : (Forward |
| Engineering) orwar
I (Reverse Engineering) |
Engineering)
| I
| I
! Provided :
| Provide
by RET
| I
| Target]
| Structured . Code |
| Source Code o e s e . s S e e S S S e S St i e . P]} S S i e o -
| Y P e |
Fe——— :1 —————— .| M I
| - | Test |
Preliminary | Suite
{ Restructuring | }
| I Test > ———————— Testi]
estin
| Supported by | Results ’ |
| Commercial | |
| Tools and |
l Provided in I ' Coverage I
| e RET i Information ’
Source J) |
| Code !
Oy J Test |
[e e e e e e e e e e Results |
I\ : N 4 |
| Supported by Commercial Tools,]
| But Not Provided in the RET Configuration Management |
e e e e e e e e e e -

Figure 3 ASRET Reengineering Process Model

10

The process model specifies a set of tasks (the steps of the process) that should be
performed and the sequence in which they should be performed to reengineer a program
written in FORTRAN to Ada. The process model also specifies the information necessary
and desirable to support these tasks. The process model does not specify how the tasks are
to be performed (i.e., they might be automated, as many are in the RET, or they might be
performed manually).

The first step in the process model is to perform some preliminary restructuring of
the source code of the original implementation. Preliminary restructuring improves the
layout of the source code by removing unstructured program constructs, such as GOTO
statements, dead code, and implicit types. Preliminary restructuring is separated from
the later restructuring step because it can be completely automated by commercial tools,
and placed first in the process model because the structured version of the source program
is usually easier to analyze, understand, and restructure.

After preliminary restructuring is complete, the RET analyzes the improved source
code and constructs representations of the program. Some of the representations, such as
abstract syntax graphs (ASGs) and symbol tables, are machine-readable representations
used only by automated restructuring and redesign tasks. Others, such as flow graphs
and structure charts, aid in program understanding, redocumentation, and manual re-
structuring. For manual restructuring, the set of representations contains a source code
listing.

You may perform the restructuring, redesign, and redocumentation steps multiple
times, each time building upon the results of the previous pass. A multipass approach is
necessary because it is easier and less error-prone to reengineer a large program in stages,
verifying the program after each pass. Restructuring (i.e., changing the structure of the
program without changing its functionality) is performed first, possibly in several passes.
These passes perform the following steps:

1. Macro control restructuring groups statements and control structures of the
program into modules, such as procedures, functions, and packages. This in-
cludes recovering modules of the original program, generating new modules,
and specifying a declaration nesting structure for modules.

2. Macro data restructuring groups data items, such as types, variables, and
constants, and associates them with modules created during macro control re-
structuring. This includes recovering data groupings of the original program,
creating new groupings, and creating abstract data types and records.

11

3. Micro control restructuring manipulates individual control structures. This in-
cludes the translation of individual statements and functionality-maintaining
alterations, such as code lifting (Ref. 5).

4. Micro data restructuring manipulates individual data items. This includes ac-
tions such as translating, changing names, changing types, creating symbolic
constants, and changing the scope of variables.

Macro control and data restructuring should be performed first to develop a modu-
lar structure for the target system, followed by micro control and data restructuring to

restructure individual components of the program.

After restructuring is complete, the RET prototype generates code in the target lan-
guage and the program is tested to ensure that the restructuring did not introduce any
errors or undesired functional changes. The test data of the original program can be used
and the results compared with the results of testing the original program. In many cases,
the test data will need to be reengineered to work with the reengineered program.

Any differences in the results of testing indicate the introduction of an unexpected
functional change during restructuring. Coverage analysis must be performed during the
testing of the target code because restructuring can introduce or alter control and data
~ characteristics of the program. When an error in the target program is indicated, the pro-
gram can be corrected by amending the target code directly or by restructuring the repre-
sentations and regenerating the target code.

Once you have restructured the program and created a functionally equivalent pro-
gram in the target language, you may perform additional restructuring and redesign ac-
tions on the program. These steps use the same set of actions (i.e., macro control, macro
data, micro control, and micro data), but have different goals.

Further restructuring improves the structure of the program without changing its
functionality. The goal of redesign is to change the functionality of the program (e.g., to
correct design flaws or improve the design). If you edited the target program code to cor-
rect errors indicated during testing, the RET analyzes the code to generate representa-
tions before performing subsequent restructuring and redesign. The RET performs
redocumentation simultaneously with the restructuring and redesign steps and can save
the generated representations for documenting the program structure and design.

12

The RET reengineering process model includes modern software development pro-
cesses, such as continuous testing, iterative restructuring and redesign, and configura-
tion management. The process model is a specialization of the Chikofsky-Cross process
model (Refs. 6, 7). The entire Chikofsky-Cross model is represented, although there are

differences:
e Program management extensions to the process model (Ref. 8) are included,
such as configuration management and testing.

e Easily automated steps, such as preliminary restructuring, are separated so
they can be addressed by commercial tools.

e Chikofsky-Cross steps are decomposed, such as restructuring into macro con-
trol, macro data, micro control, and micro data restructuring.

e Iteration steps that are implicit in the Chikofsky-Cross process are explicitly
introduced.

13

4. APPLICATION OF CONCEPTS

The RET helps you develop an Ada system by reusing parts of the existing system. It
supports, but does not enforce, the ASRET process model by implementing macro and micro
restructuring as defined in Section 3. You may first apply macro restructuring features to
construct a skeleton of the Ada system. The skeleton provides the modular structure and the
distribution of variables among the modules. You may then explore and refine the Ada struc-
ture, and add program statements using micro restructuring features of the RET

This section describes some problems that you may face when reengineering a
legacy system, i.e., a system that has undergone many modifications through years of
maintenance, and explains how the RET helps you overcome those problems. Section 4.1
describes the use of the Packager component of the RET. Section 4.2 discusses the use of
the Transformer component and explains some of the issues involved in translating cer-

tain language features.

4.1 DEVELOPING PROGRAM STRUCTURE USING THE PACKAGER

You may peruse the FORTRAN system by navigating through several views. You
may find yourself overwhelmed with information when you initially confront an entire
legacy system if it is very large. One way to reduce the amount of information that you
must comprehend is to examine only the large-scale constructs of the program. For exam-
ple, you might first be interested in understanding the relationships between the modules
that comprise the system.

To discover the modular structure of the FORTRAN system, you may direct the
Packager component of the RET prototype to cluster subprograms into groups that will
eventually become Ada packages. The Packager iteratively applies clustering techniques
described by Hutchens (Ref. 9) and Muller (Ref. 10) to analyze the FORTRAN system and
group subprograms based upon calling relationships and patterns of data usage, mea-
sured in terms of data bindings.

During the analysis, you may gain a better understanding of each subprogram’s
purpose and why subprograms are grouped as they are. The Packager invites you to ex-
plore the most recently clustered modules after each iteration. The RET prototype orga-
nizes the subprograms and helps you explore groups of related subprograms that are, in
the sense of the clustering criteria, more closely related than others.

14

4.1.1 Definitions

The Packager uses data bindings to cluster some modules. A data binding is a tuple
(p, X, @) where p and q are subprograms that reference data object x. The RET only counts
data bindings in which the data object is written by one subprogram and read by the other.

The RET computes the Interconnection Strength (IS) and the Common Client and
Supplier (CS) sets based upon the actual data bindings. The IS is the number of data bind-
ings between two subprograms. Wherever the RET prototype displays the IS between two
subprograms, it adds one to it if either of the two subprograms calls the other.

The common clients of a group of subprograms are those subprograms which read
data that is written by every subprogram in the group. The common suppliers of a group of
subprograms are those subprograms that provide data to every subprogram in the group.

Clustering produces a tree of modules. The root module represents the Ada library,
intermediate modules represent packages, and the leaves represent subprograms. The
root is defined to be at level zero and its children are at level one.

The Packager displays one graph for the Ada library, and one for each potential
package. The Packager graph is an abstraction that presents relationships among pro-
gram modules, such as data objects shared between them. Nodes in the graph represent
nested modules, i.e., packages or subprograms, and the edges depict data binding rela-
tionships between them.

There is exactly one graph associated with any given nonleaf module, M, in the
tree; we refer to it as the graph of M. The nodes in that graph correspond to the direct chil-
dren of M in the tree. The edges between the nodes in the graph depict the data binding
relationships between the corresponding packages or subprograms. We use the term
package structure to refer to both the tree and its graphs. For simplicity, we refer to nodes
as packages or subprograms or, when the distinction is unnecessary, as modules.

The graph in Figure 4 shows one subprogram (FCR_OUTPUT), five packages
(fer_df, fer_dr, main, modes, and dead code), nine edges, and nine edge labels. An edge
between two modules indicates that they share data bindings. An edge between a package
and another module, M, indicates that at least one subprogram in the package shares data
bindings with M. The edge labels list the data objects that comprise the bindings or show
the subprograms in the package that are involved in the data bindings.

15

i © " RET Main Window
Analysis Views Reshape

fer_df fis} main
ead cr_dr - medes|
! suenz modes <=> IRSY
”:‘:cnnv b1

dead
code

<=— MOA32]
-=> NOR33I E]
—> MOREIJ
-> MDR18]
-~=> MDA13J
—> MONOS3
w~> MOR123
—> MOAeEI

-—> LIPCAq

[fer_dr
1 FCA_ADO fer_ad

1 FCRZDROSS fcr_ad
1 FCRTORSOS fcr_ad
1 FCAZORGSY

FCR_OUTPUT R fer.dr

Foa_ouTruT

Figure 4 The Packager View

The edge labels in Figure 4 provide information about the variables shared be-
tween the modules. The edge 1abel between packages modes and fer_dr lists the variable
names involved in the data bindings between them. This label lists one variable (IRSQ)
that is read and written by both packages, one variable (MDR32J) that is read by modes
and written by fer_dr, and ten variables that are read by fer_dr and written by modes.

The edge label between FCR_OUTPUT and fer_dr shows that there is one data
binding between FCR_OUTPUT and each of seven subprograms nested directly under
fer_dr, and one data binding between FCR_OUTPUT and each of three subprograms
(FCR_ADO, FCR_DR003, and FCR_DR008) nested directly under fer_ad, which is nested
directly under fer_dr.

The label between dead code and modes is similar, except that it is between two
packages. The label on the edge between FCR_OUTPUT and modes shows the total num-
ber of variables (1) shared between them.

4.1.2 Creating a Package Structure

Initially, every subprogram is at level one in the package structure and appears in
the level-zero graph. The edges in the graph are not shown by default because there are

16

generally too many of them, but you may view (or hide) the edges adjacent to any module
by choosing the appropriate menu option. You may view the original source code
associated with any module by selecting it with the mouse. You may select specific subpro-
grams to be grouped together, or apply an automatic clustering algorithm.

The RET provides two clustering metrics and each can be defined as a function of
two subprograms. The Common Clients and Suppliers (CS) metric counts the number of
other subprograms that provide data to, or accept data from two subprograms. This met-
ric is useful for locating and grouping utility or library routines, such as math or I/O rou-
tines. The Interconnection Strength (IS) metric counts the number of shared data items
that two subprograms reference. This metric is useful in grouping subprograms that ma-
nipulate common global variables or exchange data by parameters.

The automatic clustering process is iterative. To begin clustering, we recommend
that you direct the RET prototype to perform one clustering iteration using the CS metric.
We call this strategy CS-clustering. It tends to group modules that receive data from, or
pass data to the same modules. The Packager computes the common client and supplier
sets for each pair of level-one modules and identifies the group of modules that share the
greatest number of clients or suppliers. It then modifies the package structure to combine
the modules in this group.

We recommend that you perform CS-clustering one iteration at a time for several
reasons. CS-clustering only takes a few iterations to identify many of the utility subpro-
grams, and the RET prototype relies on you to determine when to stop clustering. The
RET also relies on you to manually add or remove subprograms because the heuristic

strategy is imperfect.

Once you decide that CS-clustering is not uncovering any new utility subprograms,
you may choose to initiate IS-clustering. With this strategy, the Packager computes the in-
terconnection strength between each pair of level-one modules; determines the maximum
IS, denoted ISmax, among all the modules; and groups those modules that are involved in an
ISmax relation. You may perform IS-clustering one iteration at a time, but it is faster to direct
the Packager to iterate until only one level-one module remains in the level-zero graph, i.e.,
all subprograms have been clustered into (possibly nested) packages.

We recommend that you employ CS-clustering before IS-clustering because the for-
mer identifies groups of utility subprograms that are not recognized by the latter. If IS-
clustering combined a utility subprogram with other subprograms, the CS metrics for the

17

resulting package would be different from the utility subprogram’s CS metrics and the
utility would be less likely to combine with other utilities during CS-clustering.

With either clustering strategy, when the Packager groups a set of modules, it
creates a new level-one package and moves the grouped modules to level two, i.e., under
the new package. Edges appear in the level-zero graph between the new package and any
level-one modules that share data bindings with it.

With either strategy, you may inspect and/or alter the package structure after each
Packager iteration. Alternatively, you may direct the Packager to iterate until every mod-
ule has been included in some package, automatically providing an approximation to a
reasonable package structure. You should verify the resulting package structure because
you may wish to modify the structure through the views to obtain an appropriate group-
ing. The information provided to you by the Packager facilitates this analysis, and editing

operations allow you to easily change the structure.

The clustering strategies described above produce a hierarchical organization of
packages; there are packages nested within other packages. Although the RET prototype
can generate Ada code corresponding to a hierarchical nesting structure, it may be easier
to maintain Ada code which consists of smaller library unit packages because such designs
tend to discourage redundancy and strengthen encapsulation. You may wish to "flatten” the
generated package structure, i.e., increase its width and decrease its depth. The RET proto-
type generates with context clauses for any package that references a library unit.

The Packager tries to prevent the package structure from becoming unnecessarily
deep by maintaining a threshold on the package size. When package A is to be moved into
package B such that A would be nested within B, the Packager checks the number of mod-
ules in package A. If it is below the threshold that you have specified, then the modules
in A are moved to B and the package A is eliminated.

This somewhat arbitrary heuristic is only useful for preventing the formation of
many tiny packages and, in practice, the threshold must be set quite low. The threshold
is set to five in the RET prototype. You may wish to intervene during clustering and edit
the package structure as it evolves in order to reduce nesting.

4.1.3 Editing the Package Structure

Packager graphs are interactive displays. You may open pop-up menus by position-
ing the mouse cursor over a module, an edge, the background, or the window title and

18

clicking the right mouse button. The resulting pop-up menu shows commands for the
module, edge, background, or window. We refer to this below as issuing a module, edge,
background, or window command. The RET provides commands for navigating, browsing,
and editing the package structure.

Navigation commands allow you to display different graphs by clicking on a pack-
age or the background. The descend package command causes the RET to display a pack-
age’s graph. The ascend background command causes the RET to display the parent
package’s graph.

Browsing commands alter the Packager display without changing the generated
package structure. The RET prototype provides browsing commands on the module, edge,
background, and window pop-up menus.

e Module commands allow you to select or deselect individual modules or mod-
ules in a region, show or hide individual or selected modules, drag and reshape
modules, and show FORTRAN and/or Ada source code.

e FEdge commands allow you to select or deselect individual edges, show or hide
individual or selected edges, and show global or local bindings (or both) on edges.

e Background commands allow you to arrange modules in a circle or grid, and
refresh, scroll, and zoom the display.

e Window commands allow you to move, refresh, hide, reshape, and close the
Packager display.

Editing commands allow you to edit module names and alter the Ada package
structure. You may move a module from the current graph to another package in that
graph via the push command, or to the parent package’s graph via the pop command. The
pop-to-top command moves a package all the way up to the Ada library level. The disperse
command eliminates a package from the current graph and moves all of the modules that
were nested in it up one level in the graph. The RET maintains the edges between the
packages and subprograms as you change the package structure.

You can assign navigation and source code display commands to the middle mouse
button to reduce the number of mouse or keyboard events required to effect a command.
We have found this to be very convenient when working with a large system. The left
mouse button is always assigned to the select and deselect commands. The right mouse
button is always assigned to the pop-up-menu command.

19

4.1.4 Distributing Data Items

The Packager automatically distributes global data items among the modules of
the package structure. The algorithm reduces each data item scope while maintaining its

visibility as needed. It is based upon the following criteria.

e Ifa data item is used only by subprograms in a single package, the data item
declaration is placed in the package body.

e Ifadataitem isused by subprogramsin more than one package, but most often
by subprograms in a particular package, the data item declaration is placed in
that package specification. Other packages that use the data item specify a
context clause for the package.

e Anew packageis created for each common block with remaining undistributed
data items. These data items are used by subprograms in more than one pack-
age, with no package clearly using them more often. The data item declara-
tions are placed in the new package specifications, and other packages that use
the data items specify context clauses for the new packages.

The data object distribution algorithm is most effective when there are many data
objects declared in one module, such as a common block, that are referenced by few other
modules. Embedded systems may use common blocks to map variables to specific memory
locations. Warning: distributing these variables among the packages so as to re-
duce the scope of their declarations would disperse the specification of the map-
ping throughout the code and make it more difficult to change the mapping.

The RET prototype analyzes FORTRAN EQUIVALENCE statements to check for
memory-mapped common blocks. The RET only distributes the variables from common
blocks that it determines not to be memory-mapped. The RET prompts you to accept or
override it’s choice before it distributes any variables.

4.2 TRANSLATING PROGRAM STATEMENTS

Once you have constructed and refined the package structure of the Ada system
and placed the variable declarations where desired, the Transformer component of the
RET prototype helps with micro restructuring by translating individual statements from
the source to the target programming language. You may inspect the FORTRAN Source
Code Listing view for any module and select statements with the mouse. The RET trans-
lates them to Ada and inserts them into the Ada ASG. If you have renamed variable decla-
rations, then the RET prototype generates references to those variables.

20

W

The RET prototype generates Ada code for the package structure that the Packager
produces. First the RET creates a skeleton of the Ada system, and then it transforms indi-
vidual statements. The skeleton Ada code comprises package and subprogram specifica-
tions and bodies that may include variable and constant declarations. The subprogram
bodies include a single null statement. The RET generates subunits at your option. The
RET also generates a type package that defines all of the types and subtypes referenced in
the variable declarations. The type package declares Ada types that correspond closely with
FORTRAN types, although an exact mapping is not generally available as explained below.

Translating FORTRAN statements that map readily onto Ada language features
is straightforward. For example, the RET prototype can easily translate Block IF and
DO/END DO statements into Ada IF and LOOP statements, respectively, because the se-
mantics are consistent between the languages. The fact that the control variable of a
FORTRAN DO statement remains defined after the loop is a nuisance.

There are FORTRAN constructs for which the mapping to Ada is not obvious or for
which there is a choice of translations. We have found several sources of difficulty in trans-
forming individual statements in such a way as to avoid propagating undesirable FORTRAN
constructs while taking advantage of Ada language features not present in FORTRAN. They
include the use of unstructured control constructs, the general lack of correspondence be-
tween language features and, in particular, differences in the data type systems.

4.2.1 Unstructured Control Constructs

Some FORTRAN code contains unstructured control forms, defined simply as
branches into or out of loops or decisions. While such forms do not always impede mainte-
nance, they usually make the code harder to understand and modify. Unstructured con-
trol forms exist in code that was written before the benefits of structured programming
were widely acknowledged.

Some FORTRAN language features encourage unstructured designs. Arithmetic
IF statements cause control to be transferred to any one of three locations based on a test.
Logical IF statements are only problematic when they are used with GOTO statements.
VAX FORTRAN extended ranges (in DO loops) are egregious examples of unstructured
constructs that might effectively confound maintenance programmers. The RET proto-
type assumes that you have processed the FORTRAN code with SPAG (Ref. 3), a commer-
cial control flow restructuring tool, to eliminate control structures that are difficult to
translate. The tool removes most of the objectionable constructs.

21

4.2.2 Language Features

The RET prototype generates code for Ada language features that have no counter-
partin FORTRAN, but which produce programs that are substantially easier to maintain.
For example, the RET does take advantage of Ada packages because we feel that they are
useful for encapsulating code and help to reduce the ripple effect of modifications. On the
other hand, the RET prototype does not generate Ada code which uses exceptions because
we believe that they make the code more difficult to understand and, except in select situ-

ations, are of limited value.

4.2.3 Data Type Systems

FORTRAN has fewer types than Ada and it allows implicit conversions which must
be explicit in Ada. Data types that seem to serve the same purpose may have different
implementations across languages. The application may even rely upon compiler imple-
mentation details or undocumented language features. This fact is often an important
consideration when translating embedded systems. The ASRET Final Report, Vol. I
(Ref. 1) provides details on how the RET prototype converts data types.

22

5. RET REFERENCE

This section provides reference information for the RET prototype user interface.
It assumes that you know how to start the prototype. If you don’t, ask the person who
installed it because several options may be available. If you are responsible for installing
the RET prototype, see The Avionics Software Reengineering Technology (ASRET) Project .
Final Report, Volume I, Project Summary, Account, and Results (Ref. 1). Section 8 of
Vol. I, RET PROTOTYPE PLATFORM, provides information on running the RET proto-
type under GNU Emacs (Ref. 11). You may alternatively wish to create an executable to
run stand-alone, i.e., without Emacs.

The RET prototype assumes that the FORTRAN source code was processed by
SPAG (Ref. 3) and REFINE/FORTRAN (Ref. 12) as described in the ASRET Final Report
(Ref. 1). The input to the RET prototype (Section 5.1) is the analysis file created by RE-
FINE/FORTRAN.

The reference information in this section is organized around the RET prototype
views. Each section explains how to operate a single view (Table 2). The reference as-
sumes that you are familiar with common Graphical User Interface (GUI) concepts such
as windows, the mouse cursor and buttons, and pull-down and pop-up menus. The discus-
sions on the menu options listed in Table 3 through Table 25 explain only those features
of the RET prototype that are not ubiquitous in GUIs.

Table 2 RET Reference Directory

SECTION DESCRIBES
5.1 RET main window
5.2 Packager view
5.3 Dataflow Diagram
5.4 Call Diagram
5.5 Declaration Diagram
56 FORTRAN Source Code Listing
5.7 Ada Source Code Listing

23

5.1 RET MAIN WINDOW

The Main Window in Figure 5 shows the title area at the top, the command area be-
neath it, and the workspace with three views and one pop-up window. The Packager view is
partially occluded by the PACKAGE VARIABLES pop-up window and the Declaration Dia-
gram (DED) and Call Diagram (CD) views. The command area lists the Analysis, Views,
and Reshape pull-down menus. You may activate the pull-down menus by clicking on them
with, and holding down the left mouse button, an operation referred to as “left-clicking.”

To begin an analysis, pull down the Analysis menu shown in Figure 6 by left-clicking
on Analysis in the command area. While holding down the left mouse button, drag the cur-
sor over the Perform menu option, and then release the left mouse button. The RET proto-
type pops up a window that prompts for the REFINE/FORTRAN analysis file. You may edit
the file name in this window as explained in the INTERVISTA User’s Manual (Ref. 13).

After you enter the file name, the RET prototype reads the analysis file and per-
forms initialization processing. This may take up to an hour for a system with about
twenty thousand lines of code. While the RET is processing the analysis file, it will print
messages to the Emacs *REFINE* buffer. When 1mt1al1zat10n is complete, the RET will

print the message “Analysis Complete.”

RET.Main Windawr.---.- * .~ -~

Analysis Views Reshape

PACKAGE VARIABLES
Package ZCR DR
Mo muhh dnlndm Ipec: h::.‘
1 in bedy:

WAL
MDR36J
MOROST
MDR3SI

FCR_DRUL4
KEAD_px_OXP
SuBsxYZ
PCRSAN
reR_ourRUT
Calls:
pC_ORO03 . 1
1 ser: 10
:::. PcR DRG0 1
rCR_oA009 : 1
type: DNTEGER * 2 PCR_EROL0 : 1
declared: feradp.for 134 FCROROL : 2
used: fersdp. for 327 ::':ﬁg 1
PCATDAOLS :)
azaan o PCROAO3Z : 1
RICCX PCR_ORO33 : 2
fascaL - 4 PCAADO - 1
™ rcR_snaaLs 1
ancludes c—4 ren_pa09 -
BLE SMR BLX SMXMEX. ZOR Pt eet)

Figure 5 RET Main Window

24

BErMaIWIndow .

m_\ﬂews Reshape

| Reuse RIF
Perform
Clear
Dump
Load

Figure 6 Analysis Pull-Down Menu

The Reuse R/F, Clear, Dump, and Load menu options shown in Figure 6 are no
longer in use, but remain in the pull-down menu because future versions of the RET proto-
type may use them.

You may now show the DED, CD, or Packager views by selecting the Show DED,
Show CD, or Show Packager menu options, respectively, shown in Figure 7. The RET
prototype can not produce a DFD until it generates Ada source code, so don’t select the
Show DFD or Show Ada Source options at this time. You may select the Regenerate
options at any time to cause the RET prototype to recreate one of the views. You may load
a DFD or Packager view if you have previously saved one by selecting the Load DFD or
Load Packager option.

The Reshape pull-down menu in Figure 8 provides options to change the size and
position of the “current” view. Only one view at a time is designated as the current view.
The title of the current view is enclosed by “>>>” and "<<<” as shown in Figure 5, wherein
the Packager view (the window entitled “Packager - library”) is current. The DED and CD
views in Figure 5 were reshaped via the Lower Left and Lower Right menu options,
respectively.

25

~ RET Main Window. ..

Analysis Reshape
Show DED
Regenerate DED

Show CD

Regenerate CD

Show FORTRAN Source
Show Ada Source

Load DFD

Show DFD

Regenerate DFD

Load Packager

Show Packager
Regenerate Packager

Figure 7 Views Pull-Down Menu

O RET Main Window

Analysis Views

Full Screen
Upper Half
Lower Half
Left Half
Right Half
Upper Left
Upper Right
Lower Left
Lower Right

Figure 8 Reshape Pull-Down Menu

26

5.2 PACKAGER VIEW

Figure 9 is a duplicate of Figure 4 and is explained in Section 4.1.1. Figure 10
shows a Packager view with Call edges that depict subprogram calls. The edge on the left
indicates that subprogram RLT_INPUT calls RLT_F066_IN and RLT _REF_IN, both of
which are declared in package rlt_in. The edge on the right shows, in a different format,
that RLT_OUTPUT calls RLT_RLTADO and RLT_RL001_OUT. The RET prototype pro-
vides the second format because the first does not distinguish individual subprogram calls
when the edge appears between two packages. You may alternate between the two for-
mats by middle-clicking on the edge label.

Figure 11 shows a Packager view containing five intrinsic functions generated by
the RET prototype and the corresponding generated Ada Source Code Listing for the
INTRINSICS package. The formal parameter types and the return types are given in the
nodes.

Figure 12 shows a Packager view containing four external subprograms generated
by the RET prototype and the corresponding generated Ada Source Code Listing for the EX-
TERNALS package. The formal parameter types and the return types (for the function) are
given in the nodes. Note that external subprograms may be functions or procedures.

" RET Main Window

Analysis Views Reshape

fer_df il main
'l.{llllﬂ! modes fer_dvr - medaesi
<=> 139
n:.:cuno 1

—’,u"

dead
code

<— WR3I2I
-=> MOR3IJ (1]
—> MONEYI
-> MORL83
-—> MDAL33
—> FOREE3
—> %OR123
—> MORED3

—> IFCANG
-3 1170

Ferar

17PER A0 fer_od
1 PCRZDRGOY fer_ad
1 PCRTOR00S fer_ad \

FCR_OUTPUT 1 Fin-oness fer_dr

pea_outrur

Figure 9 Packager View With Data Binding Edges

27

Figure 11

Analysis Views Reshape

RET Main Windows -

. Packager - library . . .

RLT_INPUT

1t in
AT rese N
AcToaer_In

neT_tapuT

RLT_OUTPUT

fRUT GUTPUT => RLT_ALTADO ALY _RCESL 0UT)

t_out

Figure 10

Analysis Views Reshape

Packager View With Call Edges

RET Main Window-

Packager - INT

FLOATJ
of INT_4
- HAEAL 4

ABS_X
of REAL_4
~REAL 4

HSHFT
of INT 2 INT_2
-INT_2

JIFIX
of REAL_4
~INT_4

JISHFT
of INT 4 INT_4
-INT_4

package body INTRINSICS is

function PLOATY (P_1: in out INT_4)
return REAL 4
is begin null;

end FLOATI;

function ABS_X (P_1: in ocut REAL 4)
return REAL 4
is begin null;

end ABS_X;

function JIFIX (P_1: in out REAL 4)
feturn INT 4
is begin null;

end JIFIX;

function IISHFT
(P_1: in out INT_2;

poisy

P_2: in out "2)

{P_1l: in out INT 4;
P_2: in out INT 4)

package INTRINSICS is
function FLOATI (P_1: in out INT 4)
return RIAL 4;
functien ABS_X (P_1: in out REAL 4)
return REAL 4;
function JIPIX (P_1: in cut REAL 4)
return INT &:
function IISHFT
(P_1: in out INT 2
P_2: in out INT_2)
Teturn INT 2;
function JISEET
(P_1: in out INT_4:
P_2: in out INT_4)
return INT 4:
end INTRINSICS.

28

Packager and Source Code Views of Intrinsic Functions

RET Main Window-

Analysis Views Reshape

- Packager ~ EX) Ada Source
package body EXTERNALS is
procecure MAPMEX
(P_1: in out BITS_32;
P_2: in out BITS_16.
P_3: in out BITS_32)
is begin null;

end MAPMEM:
procedure SET (P_1: in out BCOLEAN) 1s begin
oull;

MAPMEM ;
of BITS_32 BITS_16 BITS_32 end SET;
procedure RESET

(P_1: 1n out BOOLEAN)

is begin null:
end RESET;
function IS_SET

SET { P_1: in out BOOLEAN) return BOOLEAN

of BOOLEAN i3 begin null;

end I5_SET;
begin null:
end EXTERNALS,

package EXTERNALS i3
procedure MAPMEX
s e
P_2: in out BITS_16;
P_3: in out BITS_32);
procedure SET (P_1: in out BOOLEAN):
procedure RESET
(P_1: in out BOOLEAN);

IS_SET function IS_SET
of BGOLEAN (P_1: in out BOOLEAN) return BOOLEAN;
= BOOLEAN end EXTERNALS

Figure 12

Packager and Source Code Views of External Subprograms

Table 3 lists the options in the menu that pops up when you right-click on a package
node in the Packager view. The Drag options allow you to reposition a single node (also
called an icon), all selected nodes, or all nodes that have an edge to the current node by
left-clicking. Reshape lets you change the size of a node. Generate Statements causes
the RET to transform the FORTRAN code for the current node to Ada. Write Files creates
ASCII files for the current node, and Parse Files parses them without analyzing them.
Edit Name lets you rename a node. Edit Spec and Body open Emacs buffers for the
specification and body files, respectively. (De)Select Icon changes the reverse-video sta-
tus of a node, making it (in)sensitive to other menu options that operate on selected nodes.

29

Table 3 Packager Package Pop-Up Menu

PAK: PACKAGE

Drag
Drag Selected Icons

Drag Connected Icons

Reshape

Generate Statements

Write Files

Parse Files

Edit Name

Edit Spec

Edit Body

SelectIcon

Deselecticon

Mouse Left=Select

Mouse Left=Drag

Mouse Middle = View FORTRAN Code
Mouse Middle = View FORTRAN/Ada Code
Mouse Middle = View Ada Code
Mouse Middle = Navigate

Mouse Middle =Reshape

Hide Icon

Hide Edges

Show Edges

Draw Edges Manually
Draw Edges Automatically
Draw Edges as StraightLines

Show Data Bindings
Show Call Relations
Show Ada Source Code
Show Package Variables

Set Subprograms Separate False

Push Selected Icons Into Package
Push Into Package

Pop Out of Package
PoptoLibrary

Disperse

Delete
Descend
PUP
Inspect
Abort

30

The Mouse Left (Middle) options assign the specified functions to the left
(middle) mouse buttons. The Navigate function implies Ascend (Table 6) and Descend.
The other functions are explicitly listed as menu options. Hide Icon (Edges) causes the
objects to disappear. Show Edges causes all hidden edges to reappear. The Draw Edges
options provide a means to respecify the layout of the edges. Show Data Bindings and
Show Call Relations alternate the types of edges that are shown. Show Package Vari-
ables pops up a window that lists the variables in the package. Set Subprograms Sepa-
rate True (False) (re)sets flags that cause the Ada code for the subprograms to be
generated as subunits. The Push and Pop options allow you to move nodes down and up,
respectively, in the package hierarchy. Disperse dissolves the package and promotes its
nested nodes to the current graph. Descend causes the package’s graph to replace the
current graph. PUP and Inspect are debugging options. Abort closes the menu without
taking any action.

Table 4 lists the options in the menu that pops up when you right-click on a subpro-
gram node in the Packager view. The Drag options allow you to reposition a single node,
all selected nodes, or all nodes that have an edge to the current node. After choosing the
Drag option for a node, move the mouse to a clear area on the background while holding
down the left mouse button and release it at the desired position. Reshape lets you
change the size and shape of a node. Generate Statements causes the RET to transform
the FORTRAN code for the current node to Ada. Write Files creates ASCII files for the
current node, and Parse Files parses them without analyzing them. Edit Name lets you
rename a node. Edit Spec and Body open Emacs buffers for the specification and body
files, respectively. (De)Select Icon changes the reverse-video status of a node, making it
(in)sensitive to other menu options that operate on selected nodes.

The Mouse Left (Middle) options assign the specified functions to the left
(middle) mouse buttons. The Navigate function implies Ascend (Table 6) and Descend.
The other functions are explicitly listed as menu options. Hide Icon (Edges) causes the
objects to disappear. Show Edges causes all hidden edges to reappear. The Draw Edges
options provide the means to respecify the layout of the edges. Show Data Bindings and
Show Call Relations alter the types of edges that are shown. The Push and Pop options
allow you to move nodes down and up, respectively, in the package hierarchy. Disperse
dissolves the package and promotes its nested nodes to the current graph. Descend
causes the package’s graph to replace the current graph. PUP and Inspect are debugging
options. Abort closes the menu without taking any action.

31

Table 4 Packager Subprogram Pop-Up Menu

PAK: SUBPROGRAM

Drag

Drag Selected Icons

Drag Connected Icons

Reshape

Generate Statements
Write Files

Parse Files
EditName

Edit Spec

Edit Body

Selecticon

Deselectlcon

Mouse Left= Select

Mouse Left=Drag

Mouse Middle = View FORTRAN Code
Mouse Middle = View FORTRAN/Ada Code
Mouse Middle = View Ada Code

Mouse Middle = Navigate

Mouse Middle = Reshape

Hide lcon

Hide Edges

Show Edges

Draw Edges Manually

Draw Edges Automatically

Draw Edges as StraightLLines
Show Data Bindings

Show Call Relations

Show FORTRAN Source Code
Show FORTRAN/Ada Source Code
Show Ada Source Code

Push Into Package

Pop Out of Package
PoptoLibrary
Disperse

Delete

Descend
PUP
Inspect
Abort

32

Table 5 lists the options in the menu that pops up when you right-click on a data
bindings edge label in the Packager view. The Show Call and Show Binding options
change the type of edge label that the Packager displays on call and data binding edges,
respectively. The Show Global and Local options affect whether only global variables or
just local variables and parameters, respectively, are included in the edge labels. Hide
Edge causes the edge to disappear. The Draw Edge options are for respecifying the edge
layout. The Mouse Left (Middle) options assign the specified functions to the left
(middle) mouse buttons. The Draw functions correspond to the Draw menu options. The
Toggle Display function changes the type of edge label that is shown on the edge. PUP
and Inspect are debugging options. Abort closes the menu without taking any action.

Table 5 Packager Data Binding Edge Pop-Up Menu

PAK: BINDINGS
Show Call Total (CS)

Show Call Summary
Show Call Details
Show Binding Total (IS)

Show Binding Summary

Show Binding Details
Show Global Bindings Only

Show Local Bindings Only

Show Source Code
Hide Edge

Draw Edge Manually

Draw Edge Automatically

Mouse Left=Select

Mouse Left=Drag

Mouse Middle = Draw Auto

Mouse Middle = Draw Manual

Mouse Middle = View Source

Mouse Middle = Toggle Display
PUP

Inspect

Abort

33

Table 6 lists the options in the menu that pops up when you right-click on the back-
ground in the Packager view. The Cluster options invoke the algorithms that combine
nodes into packages. Create Package creates a new package node with no declarations.
The (De)Select options change the reverse-video status of nodes, making them (in)sensi-
tive to other menu options that operate on them. The Show options for Icons and Edges
cause hidden nodes and edges, respectively, to reappear. The Show options for Data Bind-
ings and Call Relations cause the specified kinds of edges to appear for All nodes, or just
for Selected nodes. The Hide options cause nodes and edges to disappear. The Push and
Pop options let you move nodes down or up, respectively, in the package hierarchy.

Table 6 Packager Background Pop-Up Menu

PAK: BACKGROUND

Clusterby IS Once

Clusterby IS Until Done
Clusterby CS Once
Clusterby CS Until Done

Create Package

- Select All Packages

Select All Subprograms

SelectIcons in Region

Deselect Icons in Region

Deselect All

Show Hidden Icons
Show Hidden Edges

Show Hidden lcons/Edges

Show Edges of Selected icons
Show All Data Bindings
Show All Call Relations

Show Selected Data Bindings

Show Selected Call Relations
Hide All Edges

Hide Edges of Selected Icons

Hide Selected Icons/Edges

Push Selected icons

Pop Selected Icons

Pop Selected Icons to Top

34

Table 6 Packager Background Pop-Up Menu (Continued)

PAK: BACKGROUND

Drag

Ascend

Refresh View

Draw All Edges Automatically

Draw Ali Edges as Straight Lines

Neutral Scroll

Normal Scale

ZoomIn

Zoom Out

Arrange Icons in Circle

Arrange Selected Iconsin Circle

Arrange Icons in Grid

Arrange Selected Icons in Grid

Mouse Left = Select

Mouse Left = Select

Mouse Left=Drag

Mouse Middle = View Source

Mouse Middle = Navigate
PUP

Inspect

Inspect

Drag moves a node. After choosing the Drag option for a node, move the mouse to
a clear area on the background while holding down the left mouse button and release it
at the desired position. Ascend replaces the current graph with the parent package graph.
The Draw All Edges options let you respecify the layout for all edges in the graph. Normal
Scroll changes the mag‘rﬁﬁcatioﬁ of the current view to a preset level. Neutral Scale
changes the magnification of the current view so that all nodes are shown. The Arrange
Icons options let you move all or selected nodes so that they form a circle or grid. The
Mouse Left (Middle) options assign the specified functions to the left (middle) mouse but-
tons. The Navigate function implies Ascend and Descend (Table 3). The other functions
are explicitly listed as menu options. PUP and Inspect are debugging options. Abort closes
the menu without taking any action.

35

Table 7 lists the options in the menu that pops up when you right-click on the win-
dow title bar of the Packager view. The Window options let you control the Packager win-
dow. Save Package Structure pops up a window to prompt you for a file name in which
to save the internal Packager representation. You can subsequently reload the file by se-
lecting the Load Packager option in Figure 7. The Delete Package Structure clears
the current Packager view. You select the following options, in the specified order, to gen-
erate Ada code after you are satisfied with the package structure. (You can change the
structure and regenerate code as often as you like.)

Distribute Global Data Items
Initialize Ada Library

Generate Ada Statements
Generate Ada Code For Implicits
Write Ada Files

Analyze Ada Files

PUP and Inspect are debugging options. Abort closes the menu without taking any

A A o

action.

Table 7 Packager Window Pop-Up Menu

PAK: WINDOW
Clusterby IS Once
Lower Window
Hide Window
Move Window

Reshape Window

Reshape Window

Refresh Window

Print Window

Save Package Structure
Delete Package Structure
Distribute Global Data ltems
Initialize Ada Library
Generate Ada Statements
Generate Ada Code For Implicits
Write Ada Files

Analyze Ada Files

PUP

Inspect

Abort

36

5.3 DATAFLOW DIAGRAM

Figure 13 shows a sample top-level Dataflow Diagram (DFD). It contains six trans-
form nodes: RLT_INIT, RLT_INPUT, RLT OUTPUT, and RLT_COMPUTE, RLT_TERM,
and RLT_SUSPEND. The rectangular nodes are buffer repositories. The arrows indicate
the direction of data flow between transform and buffer nodes.

Figure 14 shows the same top-level graph with most of the nodes selected (shown
in reverse-video). Note that we have moved the CURRENT_POWER buffer and directed
the DFD to display its edges, which were hidden in Figure 13. We captured the screen out-
put which is Figure 14 when the mouse cursor was over the RLT_OUTPUT transform.
The DFD outlines the node that the cursor is currently on and all adjacent nodes, i.e.,
nodes that share an edge with the current node. In this case, all nonselected nodes except
for RLT _RL003_OUT and RLT RL004_OUT are outlined because they are adjacent to
RLT _OUTPUT. This feature comes in handy with more complicated graphs or when some
edges are hidden.

We selected most of the nonadjacent (to RLT_OUTPUT) nodes because we want to
focus on the RLT _OUTPUT transform. Figure 15 shows the result of hiding the selected
nodes, zooming in, and reshaping the PREVIOUS_POWER node to reveal its entire label.

‘| Analysis Views Reshape

Figure 13 Dataflow Diagram Top-Level View

37

RET Main Window-

Analysis Views Reshape

P>>-- Data Flow Diagram - dfd: - .

Figure 14 Dataflow Diagram With Selected Nodes

Analysis Views Reshape

Data Flow Diagram - dfd

CURRENT_POWER

RLT_RLOOI_OUT RLT_RLO04_OUT
AL
ALT_IALL N
RLO"
IRARDG ALT_OUTPUT
MRLO1Y
PREVIOUS_POWER RLIWa

Figure 15 Dataflow Diagram With Hidden Nodes and Edges

38

The RLT_RLOOn_OUT transforms are not directly relevant to RLT OUTPUT and we
could have hidden them too, but we did not.

Figure 16 shows the effect of descending into the RLT_OUTPUT transform. The
RET has replaced the top-level graph with that of the RLT_OUTPUT transform node.
This is accomplished by middle-clicking on the RLT_OUTPUT node in Figure 15, or right-
clicking on it and choosing the Descend option from the resulting pop-up menu (Table 8).

Figure 16 depicts the same transformation as Figure 15, but in more detail. For ex-
ample, Figure 15 shows that RLT OUTPUT transforms IRARDQ into RLD001 and
RLD*, but Figure 16 shows that it does this by calling RLT RLTADO. On the other hand,
statements in the body of subprogram RLT OUTPUT transform CURRENT POWER
into PREVIOUS_POWER.

RLDO001 represents a single variable, but RLD* represents a collection (or record)
repository. A collection is a group of repositories that the DFD may form to reduce the
number of repository nodes in a graph. Another way that the DFD reduces the number of
repositories is to list more than one variable or collection in a single node, such as the one
containing RLD001 and RLD* in Figure 16.

RET Main Window-

Analysis Views Reshape

Data Flow Diagram - RLT_OUTPUT

MUX_PACKET RLT_RLOD1_OUT | CURRENT_POWER l
1RARDQ

C__ RLT_RLTADO MRLO1J RLT_OUTPUT

l I PREVIOUS_POWER
RLOoT . RLT_IFILL

Fi gure 16 Dataflow Diagram for RLT OUTPUT

39

Table 8 lists the options for menus that pop up when you right-click on call (non-ter-
minal), leaf (terminal), or body transform nodes in the DFD view. Descend causes the
package’s graph to replace the current graph. Reshape lets you change the size and shape
of a node. The Drag options allow you to reposition a single node, all selected nodes, or all
nodes that have an edge to the current node. After choosing the Drag option for a node,
move the mouse to a clear area on the background while holding down the left mouse but-
ton and release it at the desired position. Edit Spec and Body open Emacs buffers for the
specification and body files, respectively. (De)Select Icon changes the reverse-video sta-
tus of a node, making it (in)sensitive to other menu options that operate on selected nodes.

Table 8 Dataflow Diagram Pop-Up
Menu for Transform Nodes

DFD: CALLNODE
DFD: LEAFNODE
DFD:BODY NODE

Descend

Reshape

Drag

Drag Selected Icons

Drag Adjacent lcons

Drag Connected Icons
Edit Spec
Edit Body

Selecticon

Select Adjacent lcons

Select Connected Icons

Deselecticon

Deselect Adjacent lcons

Deselect Connected lcons

Mouse Left = Select

Mouse Left=Drag

Mouse Middle = View FORTRAN Code
Mouse Middle = View FORTRAN/Ada Code
Mouse Middle = View Ada Code

Mouse Middle = Navigate

Mouse Middle = Reshape

Hide Icon

40

Table 8 Dataflow Diagram Pop-Up
Menu for Transform Nodes (Continued)

DFD: CALLNODE
DFD: LEAF NODE
DFD: BODY NODE

Hide Edges
Show Edges

Show Local Variables
Show FORTRAN Source Code
" Show FORTRAN/Ada Source Code
Show Ada Source Code
PUP

Inspect
Abort

The Mouse Left (Middle) options assign the specified functions to the left
(middle) mouse buttons. The Navigate function implies Ascend (Table 10) and De-
scend. The other functions are explicitly listed as menu options. Hide Icon (Edges)
causes the node (the node edges) to disappear. Show Edges causes all hidden edges to
reappear. Show Local Variables pops up a window that lists the variables in the corre-
sponding subprogram. PUP and Inspect are debugging options. Abort closes the menu
without taking any action. _

Table 9 lists the options for menus that pop up when you right-click on variable or
record (collection) repository nodes in the DFD view. The description of the options is iden-
tical to that of Table 8.

Table 9 Dataflow Diagram Pop-Up
Menu for Repository Nodes

DFD: VARIABLE NODE
DFD: RECORD NODE

Descend

Reshape

Drag

Drag Selected Icons

Drag Adjacent lcons

Drag Connected Icons

Edit Spec

41

Table 9 Dataflow Diagram Pop-Up
Menu for Repository Nodes (Continued)

DFD: VARIABLE NODE
DFD: RECORD NODE

Edit Body

Selectlcon

Select Adjacent Icons

Select Connected Icons

. DeselectIcon

Deselect Adjacenticons

Deselect ConnectedIcons

Mouse Left =Select

Mouse Left=Drag

Mouse Middle = View FORTRAN Code
Mouse Middle = View FORTRAN/Ada Code
Mouse Middle = View Ada Code

Mouse Middle = Navigate

Mouse Middle = Reshape

Hide lcon
Hide Edges

Show Edges
PUP

Inspect
Abort

Table 10 lists the options in the menu that pops up when you right-click on the
background in the DFD view. Ascend replaces the current graph with the parent package
graph. The (De)Select options change the reverse-video status of nodes, making them
(in)sensitive to other menu options that operate on them. The Show options for Icons and
Edges cause hidden nodes and edges, respectively, to reappear. The Hide options cause
nodes and edges to disappear.

42

Table 10 Dataflow Diagram Pop-Up
Menu for Background

DFD: BACKGROUND

Ascend

Select All Transform Nodes

Select All Call Nodes

Select All Leaf Nodes

Select All Data Nodes

Select lcons in Region

Deselect Icons in Region

Deselect All

Show Hidden lcons

Show Hidden Edges

Show Hidden Icons/Edges

Show Edges of Selected Icons

Hide All Edges

Hide Edges of Selected Icons

Hide Selected Ilcons/Edges

Drag

Refresh View

Neutral Scroll

Normal Scale

ZoomIn

Zoom Out

Arrange Icons

Arrange Icons in Circle

Arrange Selected Iiconsin Circle

Arrange lcons in Grid

Arrange Selected Icons in Grid

Mouse Left=Select

Mouse Left=Drag

Mouse Middle = View Source

Mouse Middle = Navigate

PUP

Inspect

Abort

43

- Drag moves a node. After choosing the Drag option for a node, move the mouse to
a clear area on the background while holding down the left mouse button and release it
at the desired position. Normal Scroll changes the magnification of the current view to a
preset level. Neutral Scale changes the magnification of the current view so that all nodes
are shown. The Arrange Icons options let you move all or selected nodes so that they form
a circle or grid. The Mouse Left (Middle) options assign the specified functions to the left
(middle) mouse buttons. The Navigate function implies Ascend and Descend (Table 8 and
Table 9). The other functions are explicitly listed as menu options. PUP and Inspect are
debugging options. Abort closes the menu without taking any action.

Table 11 lists the options in the menu that pops up when you right-click on the win-
dow title bar in the DFD view. The Window options let you control the DFD window. Save
DFD Structure pops up a window to prompt you for a file name in which to save the in-
ternal DFD representation. You can subsequently reload the file by selecting the Load
DFD option in Figure 7. The Edit DFD Name option lets you change the window title for
the top-level DFD graph. The name is also the default file name for the Save DFD Struc-
ture option. PUP and Inspect are debugging options. Abort closes the menu without
taking any action.

Table 11 Dataflow Diagram Pop-Up
Menu for Window

DFD: WINDOW

LowerWindow
Hide Window
Move Window

Reshape Window

Refresh Window

Print Window

Save DFD Structure

Edit DFD Name

Distribute Global Data ltems

Initialize Ada Library

Generate Ada Statements

Generate Ada Code For Implicits
Write Ada Files

Analyze AdaFiles

PUP

Inspect

Abort

44

54 CALL DIAGRAM

Figure 17 shows a sample Call Diagram (CD) as it appears immediately after gen-
eration. The “c-88” at the top indicates that the names of 88 subprograms follow. You may
expand a subprogram by right-clicking on it and choosing the Show Calls or Show
Called By pop-up menu options (see Table 12).

These and other options in the menus operate on the subprogram that you right-
clicked on to pop-up the menu, i.e., the selected subprogram. You may also designate one
or more selected subprograms by left-clicking on them. Left-clicking toggles the selected
status of a subprogram. The CD distinguishes selected subprograms by displaying them

in reverse video.

Figure 18 shows the CD after expanding FCR_DR013 to show the subprograms
that call it (only FCR_OUTPUT calls FCR_DR013) and FCRS16 to show the subprograms
that it calls (FCRIC, FCRSBY, etc.). The information that the CD displays for calls in-
cludes the subprogram names and the number of calls that the selected subprogram
makes to each one. Figure 18 shows that FCRS16 calls FCRIC once and FCRMOD twice.

Figure 19 shows the same CD as Figure 18, except that it is positioned to start with
FCRS16. You may expand any subprogram in the CD to show calling information.

RET Main Window .

Figure 17 Initial Call Diagram

45

RET Main-Window:

P

Systen: c-88
YCRIFF

PCR_DRO13
Called by:

PCR_OUTPUT

ICR_DFO31

FCR_TERM

PCRSPT

PCRREQ

FCR_DRO36

FCR_DROL1

FCR_SYMBOLS

TCRMUX

FCRGXY

FCRSAD

PCROMT

FCRS16

Calls:

FCRIC . 1
FCRSBY :
PCRIN :
PCRMOD :
PCRCSR :
PCRREQ :
PCRANT :
PCRBEX :
PCRSAD :
PCRTOP
PCRSDP -
PCRVID :
PCRAXY :
PCRPRC :

A T T T

Figure

18 Expanded Call Diagram

ATAN2 : 1
cos : 1
aBs : 1
INT : 2
FCRBEX : 2
PCRSAD : 1
FCRIIP : 1
PCRSDP : 1
PCRVID : 2
PCRAXY : 1
ECRPRC : 1

Figure 19

Further Expanded Call Diagram

46

Figure 19 shows the subprograms that FCRANT calls. It calls SQRT three times, for ex-
ample. SQRT is called by FCRTWS and others. You may expand subprograms in the CD
like this to any depth.

Table 12 lists the options in the menu that pops up when you right-click on a sub-
program name in the CD view. Hide Self causes the subprogram to disappear from the
display. The pop-up menu may show either the Show Calls or Hide Calls options de-
pending on whether the CD already displays the subprograms that the selected subpro-
gram calls. The pop-up‘ menu may show either the Show Called By or Hide Called By
options depending on whether the CD already displays the subprograms that call the se-
lected subprogram. View Source pops up the FORTRAN Source Code Listing view for

- the selected subprogram. PUP and Inspect are debugging options. Abort closes the

menu without taking any action.

Table 12 Call Diagram Pop-up Menu for Object

CD: OBJECT

Hide Self

Show Calls
Hide Calls
Show Called By
Hide Called By

View Source
PUP
Abort

Table 13 lists the options in the menu that pops up when you right-click on the
background in the CD view. Hide Self causes the currently selected subprograms to dis-
appear from the display. Show Kids causes the information nested below the selected
subprograms to reappear if it has been hidden. View Source pops up the FORTRAN
Source Code Listing view for the selected subprograms. Deselect causes all selected sub-
programs to become insensitive to the options that operate on selected subprograms, such
as Hide Self. PUP and Inspect are debugging options. Abort closes the menu without
taking any action. "

47

Table 13 Call Diagram Pop-Up Menu
for Background

CD: BACKGROUND

Hide Self
Show Kids

View Source

Deselect
PUP
Abort

Table 14 lists the options in the menu that pops up when you right-click on the win-
dow title bar of the CD view. The Lower, Hide, Move, Reshape, and Refresh options
let you control the CD window. Output causes the RET prototype to prompt you for a file
name and print the CD view to the file. Hyperlink On and Hyperlink Off are disabled
in the RET prototype. Hide Self causes the selected subprograms to disappear. Show
Kids causes the information nested below the selected subprograms to reappear. Abort
closes the menu without taking any action.

Table 14 Call Diagram Pop-Up Menu
for Window

CD: WINDOW

Lower

Hide

Move

Reshape

Refresh

Output

Hyperlink On
Hyperlink Off
Hide Self
Show Kids

Deselect
Abort

48

5.5 DECLARATION DIAGRAM

Figure 20 shows a sample Declaration Diagram (DED) as it appears immediately
after generation. The “c-91” at the top indicates that the names of 91 subprograms and
common blocks (called lines) follow. The “c-4 *” on the third line indicates that four lines
are hidden below FCR. The “*” indicates that the lines under FCR are hidden, i.e., not
shown. In contrast, the absence of an asterisk in “system c-91” implies that 91 lines are

shown under “system.”

A line without an asterisk is said to be expanded and a line with an asterisk is said
to be contracted. The asterisk is a surrogate for the missing information. You may expand
or contract a subprogram or common block by middle-clicking on it. Alternatively, you
may right-click on it and choose the Show Kids or Hide Self pop-up menu options (see

Table 15).

These and other options in the menus operate on the subprogram or common block
that you right-clicked on to pop-up the menu, i.e., the selected line. You may also designate
one or more selected lines by left-clicking on them. Left-clicking toggles the selected status
of a line. The DED distinguishes selected lines by displaying them in reverse video.

RET Main Window: - :

b>> DED

systen ¢-91
ALL_SHRMEN common blocks c-1 ¢ -
PCR c~4 *
FCRACK c=4 ¢
PCRAGR ¢4 ¢
PCRALL c-4 *
PCRAMR c-~4 ¢
PCRANT ¢4 *
PCRAXY ¢-4 *
PCRBCN c-4 +
PCRBEM ¢4 ¢
EFCRBIT ¢4 *
PCRCLT c-4 ¢
PCRCNT c~4
PCRCSR ¢4 +
PCRDAT common blocks c-1 *
PCRDEG c~4 *
PCRDET ¢ *
PCRCDP ¢4 ¢
PCROX c-4 +
PCROMT c-4 *
ZCRORD ¢4 *
PCROXY ¢4 +
PCRIC c—4 ¢
PCRIZY c-4 ¢
PCRIN c-4 ¢
PCRMAN ¢4 ¢
ECRMAP ¢4 ¢
PCRMOD c-4 *
PCRNUX c-4 *
PCROTT c-4 *
PCRPRC ¢4 +

Figure 20 Initial Declaration Diagram

49

Figure 21 shows the DED after expanding “ALL_SHRMEM common blocks” to
show the sole common block (ALL,_SHRMEM), and the single variable that it defines
(SHRMEM). FORTRAN unfortunately allows multiple common blocks with the same
name but different definitions. If ALL, SHRMEM had been multiply defined in this way,
the DED would have shown more than one common block with that name, but it only

shows one in this case.

Ten subprograms are selected in Figure 21. The first line reveals that a line is hid-
den somewhere in the system by the “h-1.” Figure 22 shows the results of performing sev-
eral operations on the DED in Figure 21. The “h-11" at the top of Figure 22 indicates that
the 10 lines that were selected in Figure 21 are now hidden (in addition to the one line that
was already hidden, for a total of 11). This change resulted from the Hide Self option of

the pop-up menu in Table 16.

Figure 22 demonstrates the results of expanding the FCRDAT common block and
two of the variables (INDUNZ and ISDFL) that it contains. The line “FCRDAT c¢-390”
shows that the common block defines 390 variables. INDUNZ is an array of 10 integers,
declared on line 266 in file AVM_FCR_LCM.FOR, and referenced on line 434 in file
fertfm. for and in file fermux.for.

RET Main Window S
systen c-91 h-1
ALL_SERMEX common blocks c-1
ALL_SHRMEX c-1
type: INTECEIR + 2 (0: 26214
declared: BLK_SHR_BLX_SHRMEX|
PKG_SND_ALL_SERMEX

PCR c4 ¢
S RAGK fmd
L T o4 ¢

o3

PCROAT common blocks c-1 ¢
PCROEG c—4 ¢
PCRDET ¢4 *
PCRGDP c-4 *
PCROX ¢4 *
PCROMT ¢4 *
ZCRGRD ¢4 ¢
PCRGXY c-4 ¢
PCRIC c~4 *
PCRIFY ¢4 *
ZCRIN c-4 ¢

Figure 21 Declaration Diagram With Selected Subprograms

50

: RET Main Window:
systea c-91 h-11
ALL_SHRMEX coamon blocks ¢-1

ALL_SHRMEM c-1
SHRMEX

type: INTEGER * 2 (0: 26214
declared: BLK_SHR_BLK_SHRMEN |
PKG_SND_ALL,_SERMEX |

used:
PCR c-4 ¢
PCRCSR ¢4 *
FCRDAT common blocks c-1
ZCRDAT ¢-390
IGCNTZ +
INDUNZ
type: INTECER * 2 (10)
declared: AVX_FCR_LCM.FOR 26

used: fcrtfz. for 434
fernux. for 332

IRAD +

IRDETZ ¢

150PL
type: INTEGER ¢ 2 (2)
declared: AVM_FCR_LCM.FOR 26|

used: fcramap. for 156
fergxy. for 132
fergdp. for 333 324 310

IIVSZ *

Figure 22 Declaration Diagram With Expanded Common Blocks

Figure 23 shows two expanded subprograms. Near the bottom and indented under
FCRSPT are four lines that provide information on formal parameters, constants, vari-
ables, and include statements in the subprogram. FCRSPT has no formal parameters and
declares no data objects, but it includes three files. Near the top, FCRSDP is shown to de-
clare eight variables and include four files. The “variables” and “includes” lines are ex-
panded to reveal the variable and include file names, respectively. Variable NJAM is also
expanded.

Table 15 lists the options in the menu that pops up when you right-click on a line
in the DED view. Hide Self causes the line to disappear from the display. Show Kids
causes the information nested below the line to reappear if it was hidden. View Source
pops up the FORTRAN Source Code Listing view for the line if it is a subprogram line.
PUP is a debugging option. Abort closes the menu without taking any action.

51

RET Main Window .
PCRSDP ¢~ |
formals

constants
variables c-8
AZINER ¢
I
JAX *
NJax
type: INTEGIR ¢ 2
declared: fersdp. for 134

used: fecrsdp. for 327

AZIA]
RNGCN *
RRSCAL ¢
TEMP *
includes c-4

AVX_FCR_LCN FOR
AVM_PCR_CONSTANTS. FOR
FCRSEA ¢4 *
PCRSCD c~4 ¢
PCRSPT c-4
formals
constants
variables
includes c-3 *
PCRSTY c~4 +
PCRSTT ¢4 ¢
PCRIOP c-4 *
BT i

Figure 23 Declaration Diagram With Expanded Subprograms

Table 15 Declaration Diagram Pop-Up

Menu for Object
DED: OBJECT
Hide Self
Show Kids
View Source
PUP
Abort

Table 16 lists the options in the menu that pops up when you right-click on the
background in the DED view. Hide Self causes the currently selected line(s) to disappear
from the display. Show Kids causes the information nested below the selected line(s) to
reappear if it has been hidden. View Source pops up the FORTRAN Source Code Listing
view for the selected line if it is a subprogram line. Deselect causes all selected lines to
become insensitive to the options that operate on selected lines, such as Hide Self. PUP
is a debugging option. Abort closes the menu without taking any action.

52

Table 16 Declaration Diagram Pop-Up
Menu for Background

DED: BACKGROUND

Hide Self
Show Kids

View Source

Deselect
PUP
. Abort

Table 17 lists the options in the menu that pops up when you right-click on the win-
dow title bar of the DED view. The Lower, Hide, Move, Reshape, and Refresh options
let you control the DED window. Output causes the RET prototype to prompt you for a
file name and print the DED view to the file. Hyperlink On and Hyperlink Off are dis-
abled in the RET prototype. PUP is a debugging option. Abort closes the menu without
taking any action.

Table 17 Declaration Diagram Pop-Up
Menu for Window

DED: WINDOW

Lower

Hide

Move

Reshape

Refresh

Output

Hyperlink On
Hyperiink Off
PUP

Abort

53

5.6 FORTRAN SOURCE CODE LISTING

Figure 24 shows a‘sample FORTRAN, and the corresponding Ada Source Code
Listing view. The IF statement near the center of the Ada view calls an external function
(IS_SET) and an external procedure (RESET). The explicit type conversion of the return
value of IS_SET to BOOLEAN is superfluous (see Figure 12). Section 5.7 explains how to
edit the generated Ada source code to remove the type conversion.

Table 18 lists thie options in the menu that pops up when you right-click on a
FORTRAN statement in the FORTRAN Source Code Listing view. The Select (Deselect)
Statement option makes the statement (in)sensitive to other options that operate on
statements, such as the Translate options. The Translate options translate the selected
statement(s) to Ada code and either insert the resulting Ada statements into the subpro-
gram body on the RHS, print them to the *REFINE* Emacs buffer, or invoke the Inspector
debugging utility on them, with respect to the order of the options given in the table. In-
spect, PUP, MCN, and PN are debugging options. Abort closes the menu without taking

any action.

Analysis Views Reshape

Ada Source
INCLUDE ‘pkg_smd_gen_shrmen. for’ | dev remd procedure RLT_DPUT is begin
INCLUDE ‘pkg_smd_constants.for’ | dev remo --EDC begin nev code

INCLUDE ‘pkg pra mca, for’ ! dew removed /ng - Check to see if the pover to the mode
- do not continue processing. -

LOGICAL®l IS_SET
. CURRENT_POVER :w PALSE;
CEDC begin new code if VAP RLT (1) = 1

¢ Check to seo if the pover to the model is then CURRENT POVER := TRUE:
c do not continue processing. end if. -
¢
Current _Pover = PALSE. - Only process the code if the pover to
Ir (Vap_Rlt(1).EQ.1) THEN
Current_Pover = .TRUE. if CURRENT POVER
¢ norr then --ZDC end nev code
¢ Only process the code if the pover to the - Get the PCC to RLT input data
c
IFr (Current Pover) TEEN if BOOLEAN
CEDC end new code (EXTERNALS. IS_STT
[. (BOOLEAN (FO66_FLAC)))
¢ Get the PCC to RLT input data then RLT_POSE_IN;
c EXTFRNALS. RESET
Ir (I1S_SET(r066_YLAQ)) THEN (BOOLEAN (Z066_FLAG)):
CALL RLT POS6_IN ond if; -

CALL RESET(P066_FLAG)
noIr - Call the subroutine to get the
The plane model i3y refered to
nodel set.

Call the subroutine to get ths data items 7]
The plane model is refered to as the refer RLT REP_IN;
nodel set. . - -

ocnooo

Reset the RLT internal mode wo
CALL RLT REP_IN

MVZ :» 8208,
c end if;
c Reset the RLT internal mode word roturn;
¢ end RLT_DMPUT:
Wz = *0°0
procedure RLT_INPUT;

cee
c

nor

RETURN

FND

——

Figure 24 Source Code Listings

54

Table 18 FORTRAN Pop-Up Menu
for Statement

FORTRANSRC

Select Statement

Deselect Statement

Translate to Ada Body

Translate to Ada and Print -

Translate to Ada and Inspect

' Inspect
PUP
MCN
PN
Abort

Table 19 lists the options in the menu that pops up when you right-click on a
FORTRAN subprogram in the FORTRAN Source Code Listing view. The Select (Dese-
lect) All Statements option makes all statements in the view (in)sensitive to other op-
tions that operate on statements, such as the Translate options.

Table 19 FORTRAN Pop-Up Menu
for Subprogram

FORTRANSRC

Select All Statements

Deselect All Statements

Show Parent Unit
Show Only This Unit

Show Corresponding Ada Body

Translate to Ada Body

Transiate to Ada and Print

Translate to Ada and Inspect

Inspect
PUP
MCN
PN
Abort

55

Show Parent Unit causes the DED to show the compilation unit associated with
the subprogram in lieu of the subprogram. The practical and visible effect of this option
is to show the comments that precede the SUBPROGRAM statement. Show Only This
Unit reverses the above operation, causing the DED to show the subprogram associated
with the compilation unit in lieu of the compilation unit. The practical and visible effect
of this option is to remove the comments that precede the SUBPROGRAM statement from
the display. Show Corresponding Ada Body displays, in the Ada Source Code Listing
view, the Ada body associated with the FORTRAN subprogram.

The Translate options translate the selected statement(s) to Ada code and either
insert the resulting Ada statements into the subprogram body on the RHS, print them to
the *REFINE* Emacs buffer, or invoke the Inspector debugging utility on them, with re-
spect to the order of the options given in the table. Inspect, PUP, MCN, and PN are de-
bugging options. Abort closes the menu without taking any action.

Table 20 lists the options in the menu that pops up when you right-click on the
background in the FORTRAN Source Code Listing view. Deselect All makes all state-
ments in the view insensitive to other options that operate on statements, such as the
Translate options in Table 19. Inspect, PUP, MCN, and PN are debugging options.
Abort closes the menu without taking any action.

Table 20 FORTRAN Pop-Up Menu
for Background

FORTRAN SRC BACKGROUND

Deselect All

Inspect
PUP
MCN
PN
Abort

Table 21 lists the options in the menu that pops up when you right-click on the title
bar of the FORTRAN Source Code Listing view. The Lower, Hide, Move, Reshape, Re-
fresh, and Redraw Window options let you control the window. Output Window
causes the RET prototype to prompt you for a file name and print the FORTRAN source
code to the file. Hyperlink On and Hyperlink Off are disabled in the RET prototype.
Inspect, PUP, MCN, and PN are debugging options. Abort closes the menu without tak-
ing any action.

56

Table 21 FORTRAN Pop-Up Menu
for Window

FORTRAN SRC WINDOW

Lower Window

Hide Window

Move Window

Reshape Window
Refresh Window

Redraw Window

Output Window

Hyperlink On
Hyperlink Off

Inspect
PUP
MCN
PN
Abort

5.7 ADA SOURCE CODE LISTING

Figure 25 shows the FORTRAN Source Code Listing view from Figure 24, and a
modification of the Ada Source Code Listing view from Figure 24. You may modify the Ada
source code by choosing the Edit Body option from Table 3, Table 4, Table 8, or Table 9,
editing the resulting Emacs buffer, saving the file, and then choosing the Analyze Ada
Files option from Table 7 or Table 11.

We reformatted the Ada source code in Figure 25 via Emacs, but you may modify
the source code file on the hard disk by any means, including the execution of an Ada
pretty printer (if one is available; the RET prototype doesn’t provide one) outside of the
RET prototype. We rearranged the comments and indentation, and removed the super-
fluous BOOLEAN type conversion.

Table 22 lists the options in the menu that pops up when you right-click on an Ada
statement in the Ada Source Code Listing view. The Select (Deselect) Statement option
makes the statement (in)sensitive to other options that operate on statements, such as the
Delete Statements option. The Move Statements Before and After options let you

57

RET Main Window . - .
Analysis Views Reshape)

>>> Ada Source- <<<
TNCLUDE ‘pkg_smd_gen_shrmea. £ procedure RLT_INPUT is
INCLUDE ‘pkg_sad_constants, fo begin
INCLUDE ‘pkg_pra_mcx. for’ | dd

--IDC begin nev code
LOGICAL*1 XS_SET -
-~ Check to see if the pover to the model is turned ON|

CEDC begin new code - If it is off, then do not continue processing.
c Check to see if the pover to 4 CURRENT POVER := FALSE;
c do not continue processing. if VAP RLT (1) = 1 then
[CURRENT_POWVER :e TRUE;
Current_Power = FALSE. end if;
I (Vap_RLt(l).£Q.1) THEM v
Current, Pover = .TRUE. -- Only process the code if the pover to the RLT is tu
nor if CURRENT_POVER then
¢
c only process the code if the g --EDC end nev cods
c
IF (Current Pover) THEN if EXTERNALS. IS_SET(BOOLEAN (FO66_FLAC)) then
CEDC end new cods BLT P066_IN: -- Get the FCC to BLT input data
c X EXTERNALS. RESET (BOOLEAN (F066_FLAG)) ;
€ Get the PCC to RLT input data end if;
¢
Ir (IS_SET(POS6_YLAG)) TH — Call the subroutine to get the data items needed]
CALL RLT_FO66_I¥ -- the plane model. The plane model is refered to
CALL RESET(FU66_YLAG) -~ reference model in the Block 30 model set.
nor RLT REF_IN;
c MVZ := 8#0#; -- Reset the RLT intsrnal mode word
c Call the subroutine to get thd
c The plane model is refered to end if;
c model set.
¢ return;
CALL RLT _REF_IN end RLT_INPUT;
¢ procedure RLT INPUT:

4 Reset the RLT internal mode vg

Xz = *0'0

Figure 25 Modified Ada Source Code Listing

reorder the statements by moving the selected statements before or after the statement.
Delete Statements removes the selected statements from the display. (If you modify an
Ada Source Code Listing view via the Delete or Move options in Table 22, you must
choose the Redraw option in Table 24 to update the view or you will not see the changes.)
Inspect, PUP, MCN, and PN are debugging options. Abort closes the menu without tak-
ing any action.
Table 22 Modified Ada Source Code Listing
ADASRC

Select Statement

Deselect Statement

Move Statements Before

Move Statements After

Delete Statements

Inspect
PUP
MCN
PN
Abort

58

Table 23 lists the options in the menu that pops up when you right-click on an Ada
subprogram body or specification in the Ada Source Code Listing view. The Select (Dese-
lect) All Statements option makes all statements in the view (in)sensitive to other op-
tions that operate on statements. Show Parent Unit causes the view to show the
compilation unit associated with the subprogram body or specification. The practical and
visible effect of this option is to show the Ada package that declares the subprogram body
or specification. Show Only This Unit reverses the above operation, causing the view to
show the subprogram body and specification associated with the compilation unit. The
practical and visible effect of this option is to focus in on the declarations of a specific sub-
program in the package. Inspect, PUP, MCN, and PN are debugging options. Abort
closes the menu without taking any action.

Table 23 AdaPop-Up Menu
for Subprogram

ADASRC

Select All Statements

Deselect All Statements

Show Parent Unit
Show Only This Unit

Inspect
PUP
MCN
PN
Abort

Table 24 lists the options in the menu that pops up when you right-click on the
background in the Ada Source Code Listing view. Deselect All makes all statements in
the view insensitive to other options that operate on statements, such as the Delete Se-
lected Statements option. Delete Selected Statements removes the selected state-
ments from the view. Inspect, PUP, MCN, and PN are debugging options. Abort closes
the menu without taking any action.

59

Table 24 Ada Pop-Up Menu
for Background

ADA SRC BACKGROUND

Deselect All

Deselect Selected Statements

Inspect
PUP
MCN

" PN
Abort

Table 25 lists the options in the menu that pops up when you right-click on the title
bar of the Ada Source Code Listing view. The Lower, Hide, Move, Reshape, Refresh,
and Redraw Window options let you control the window. (If you modify an Ada Source
Code Listing view via the Delete or Move options in Table 22, or the Delete Selected
Statements option in Table 24, you must choose the Redraw option in Table 25 to up-
date the view or you will not see the changes.) Output Window causes the RET prototype
to prompt you for a file name and print the Ada source code to the file. Hyperlink On and
Hyperlink Off are disabled in the RET prototype. Inspect, PUP, MCN, and PN are de-
bugging options. Abort closes the menu without taking any action.

Table 25 AdaPop-Up Menu for Window

ADA SRCWINDOW

LowerWindow
Hide Window
Move Window

Reshape Window
Refresh Window
Redraw Window.
Output Window
Hyperlink On
Hyperlink Off
Inspect

PUP

MCN

PN

Abort

60

10.

11.

12.

13.

REFERENCES

D.E. Wilkening, Avionics Software Reengineering Technology (ASRET) Project Fi-
nal Report, Volume I, Project Summary, Account, and Results, TASC Technical Re-
port TR-6661-4, TASC, Inc., Reading, Massachusetts, 17 April 1995.

D.E. Wilkening, Avionics Software Reengineering Technology (ASRET) Project Fi-
nal Report, Voluine II, Reenginering Tool (RET) Diagrams, TASC Technical Report
TR-6661-5, TASC, Inc., Reading, Massachusetts, 17 April 1995.

plusFORT Reference Manual, Revision B, Polyhedron Software Ltd., Standlake,
Witney, UK, 1993.

VAX FORTRAN Language Reference Manual, Digital Equipment Corporation,
Maynard, Massachusetts, Order Number: AA-D034E-TE.

Aho, AV, Sethi, R., and Ullman, J.D., Compilers — Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1988.

Chikofsky, E.J., and Cross II, J.H., Reverse Engineering and Design Recovery: A
Taxonomy, IEEE Software, p. 13-17, January 1990.

Cross 11, J.H., Chikofsky, E.J., and May Jr., C.H., Reverse Engineering, Advances
in Computers 35, p. 199-254, 1992.

Byrne, E.J., Gustafson, D.A., A Formal Process Model for Software Reengineering:
The Analysis Phase, Kansas State University Technical Report TR-CS-91-12, 12
November 1991.

Hutchens, D. and Basili, V.R., System Structure Analysis: Clustering With Data
Bindings, IEEE Transactions on Software Engineering, SE-11(8), p. 749-757, Au-
gust 1985.

Muller, H.A., Orgun, M.A., Tilley, S.R., and Uhl, J.S., A Reverse Engineering Ap-
proach to Subsystem Structure Identification, Journal of Software Maintenance:
Research and Practice, 5(4), p. 181-204, December 1993.

GNU Emacs Manual, Seventh Edition, Version 18, Free Software Foundation, Sep-
tember 1992.

REFINE/FORTRAN User’s Guide, Reasoning Systems, Inc., Palo Alto, CA, 5 No-
vember 1992.

INTERVISTA User’s Guide, Reasoning Systems, Inc., Palo Alto, CA, 4 March 1991.

APPENDIX A
ACRONYMS FOR VOLUME I

ASG — Abstract Syntax Graph

ASRET - Avionics Software Reengineering Technology
ASTS — Avionics Software Technology Support

CD - Call Diagram

CS — Common Clients and Suppliers Metric

DED - Declaration Diagram

DFD — Data Flow Diagram

ECS — Embedded Computer System

IS — Interconnection Strength Metric

LHS - Left-Hand Side

LRM - Language Reference Manual

PACK — Packager View

RET — Reengineering Tool

RHS - Right-Hand Side

SCL — Source Code Listing

WL/AAAF-3 — Software Concepts Group, Avionics Logistics Branch, Wright Laboratory

