
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

SOFTWARE DEVELOPMENT PROCESS FOR THE
AVIATION MISSION PLANNING SYSTEM (AMPS):

A CASE STUDY

by

Keith R. Edwards

December, 1995

Thesis Advisor: Martin J. McCaffrey

Approved for public release; distribution is unlimited.

19960315 037 nDo«>*tffl
isss®«*^

REPORT DOCUMENTATION PAGE Form Approved OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate

or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
December 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE Software Development Process for the Aviation
Mission Planning System (AMPS): A Case Study

6. AUTHOR(S) Keith R. Edwards

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSfES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The DoD software development environment is one in needed transition. Many of the old methodologies

have been less than effective for software development. Emerging methods and techniques, for instance,
evolutionary development and incremental delivery, and the use of CASE tools, are supported by a new set of
flexible standards. MIL-STD-498, Software Development and Documentation, and the coming commercial
equivalent, emphasize flexibility, tailoring, and value-added activities. The Aviation Mission Planning
Systems (AMPS) software development effort, is a study in the employment of innovative, emerging methods
and techniques in this evolving environment. Originally a prototype, the AMPS program will now lead to a
production system. The development process for the supporting software is now undergoing a transition. This
thesis examines this transition and discusses several process improvement considerations as they relate to the
AMPS software development process. Additionally, this thesis explores several areas of concern surrounding
the AMPS software development process transition, and suggests possible mitigation approaches.

14. SUBJECT TERMS Software Development, Aviation Mission Planning System
(AMPS), Software Prototypes

15. NUMBER OF
PAGES 119

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

SOFTWARE DEVELOPMENT PROCESS FOR THE
AVIATION MISSION PLANNING SYSTEM (AMPS):

A CASE STUDY

Author:

Approved by:

Keith R. Edwards
Captain, United States Army

B.S., University of Delaware, 1984

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
December 1995

w&aL

Keith R Edwards

Martin J. McCaffrey, Thesis Advisor

Orin E. Marvel, Associate Advisor

Reuben T. Harris, Chairman, Department
of Systems Management

in

IV

ABSTRACT

The DoD software development environment is one in needed transition.

Many of the old methodologies have been less than effective for software

development. Emerging methods and techniques, for instance, evolutionary

development and incremental delivery, and the use of CASE tools, are supported

by a new set of flexible standards. MIL-STD-498, Software Development and

Documentation, and the coming commercial equivalent, emphasize flexibility,

tailoring, and value-added activities. The Aviation Mission Planning Systems

(AMPS) software development effort, is a study in the employment of innovative,

emerging methods and techniques in this evolving environment. Originally a

prototype, the AMPS program will now lead to a production system. The

development process for the supporting software is now undergoing a transition.

This thesis examines this transition and discusses several process improvement

considerations as they relate to the AMPS software development process.

Additionally, this thesis explores several areas of concern surrounding the AMPS

software development process transition, and suggests possible mitigation

approaches.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. AREA OF RESEARCH/OBJECTIVES 3

C. RESEARCH QUESTIONS 4

1. Primary Question 4

2. Subsidiary Questions 4

D. SCOPE AND METHODOLOGY OF THE THESIS 5

E. BENEFITS OF THE STUDY 8

F. ORGANIZATION 8

H. BACKGROUND H

A. GENERAL H

B. MISSION CRITICAL COMPUTER RESOURCES (MCCR)

PROLIFERATION 13

C. CURRENT MCCR STATE OF AFFAIRS 14

D. DOD-STD-2167A: PART OF THE PROBLEM ? 15

1. The "Waterfall" Model of Software Development 17

2. The "Spiral" Model of Software Development 19

E. MIL-STD-498: THE INTERIM FIX 21

1. The Evolutionary Model 22

Vll

2. The Incremental Model 24

3. Prototypes 25

F PERFORMANCE SPECIFICATIONS & COMMERCIAL

STANDARDS 25

G. THE AVIATION MISSION PLANNING SYSTEM (AMPS) 26

1. The AMPS Overview 27

2. The AMPS Mission Process 28

3. The AMPS Configuration (Hardware) 29

4. The AMPS Software Environment 31

H. SUMMARY 31

III. THE AMPS SOFTWARE DEVELOPMENT PROCESS: A CASE

STUDY 33

A. "INTERIM AMPS" : THE PROTOTYPE SYSTEM 35

1. The Software Prototype Development Process 37

a. Coding/Technical Documentation 38

b. Configuration Management 39

c. Testing/IV&V 41

d. Management Principles 42

B. "AMPS" : THE PRODUCTION SYSTEM 43

1. The Production-Software Development Process 47

a. Coding/Technical Documentation 49

vin

b. Configuration Management 50

c. Testing/IV&V 54

d. Management Principles 59

C. SUMMARY 60

IV. THE AMPS SOFTWARE DEVELOPMENT PROCESS: SOME

PROCESS IMPROVEMENT CONSIDERATIONS AND SELECTED

ITEMS OF CONCERN 61

A. TRANSITIONING THE PROCESS: SOME

CONSIDERATIONS 61

1. Employment of a Software Capability Evaluation (SCE) 62

2. Improving the Software Development Process: Three

Areas of Emphasis 63

a. Risk Management 64

b. Measurement 66

c. Error/Defect Detection, Removal, and Prevention . . 69

3. MIL-STD-498 : Not Required, But Useful 71

B. TRANSITIONING THE PROCESS : SELECTED ITEMS OF

CONCERN 74

1. Cultural Change : A Difficult Process 74

2. CASE Tool Employment for Reverse Engineering The

Interim AMPS Code : Not A "Silver Bullet" 76

IX

3. Programming Language for the AMPS : Ada is the

Future 78

C. SUMMARY 80

V. CONCLUSIONS AND RECOMMENDATIONS 81

A. CONCLUSIONS 81

B. RECOMMENDATIONS 83

1. Implement a Constant Process Improvement/Software

Engineering Framework 83

2. Employ Appropriate Standards and Tailor to the Project ... 84

3. Ensure All Stakeholders Participate in Requirements

Definition and Analysis 84

4. Use Commercial-Off-The-Shelf (COTS)/Reusable

Components When Appropriate 84

5. Acquire/Use Appropriate CASE Tools 85

6. Use Ada from the beginning or Migrate at First

Appropriate Opportunity 85

C. ANSWERS TO RESEARCH QUESTIONS

1. Primary Research Question 85

2. First Subsidiary Question 88

3. Second Subsidiary Question 89

4. Third Subsidiary Question 90

D. RECOMMENDATIONS FOR FURTHER RESEARCH

1. Re-examine the AMPS Software Development Process 91

2. Cost-Benefit Analysis of AMPS Conversion to Ada 91

3. Design the "Optimized" Software Development

Organization and Process 91

APPENDK 93

LIST OF REFERENCES 99

LIST OF INTERVIEWS 103

INITIAL DISTRIBUTION LIST. 105

XI

L INTRODUCTION

This thesis examines past and present methodologies for the procurement of

mission critical computer resources (MCCR) for major weapon systems. Additionally,

a case study is made of the software development process employed for the Army's

Aviation Mission Planning System (AMPS). The methodologies employed in the

development of this system software are evolutionary. Originally developed as

prototype software, the AMPS development team has been tasked to transition to the

development of production software. Their efforts to evolve the software development

process from prototype to production orientation are in many ways illustrative of the

initiatives necessary in the migration from the inefficiencies of the past, to process

optimization of the future.

A. GENERAL

Mission critical computer resources, particularly mission software, have

traditionally been developed in an incremental fashion (e.g. a sequence of "builds"

with multiple configurations developed concurrently) , or similarly, in a step-by-step

process where previous requirements are met before proceeding to the next step in the

sequence.

Defense software development activities (as reflected in DOD-STD-2167A

Military Standard Defense System Software Development and DOD-STD 2168

Military Standard Defense System Software Quality Program [Ref. 6]) were broken

down into six steps. These six steps were software requirements analysis, preliminary

design, detailed design, coding and computer software unit (CSU) testing, computer

software component (CSC) integration and testing, and computer software

configuration item (CSCI) testing.

DOD-STD-2167A (supplanted by DOD-STD-498 in November, 1994 [Ref. 7]),

was the primary standard to be used by Department of Defense (DOD) agencies for

weapon system software development. The standard was not intended to encourage

the use of any particular software development method, instead it was meant to aid the

program manager in developing and sustaining quality software. In the latter regard,

the standard has been most successful, providing a first step toward a standardized

systems engineering approach to software development. [Ref. 6]

A by-product of DOD-STD-2167A, the "waterfall" software development

methodology, is a process that applies rigor and a systems engineering discipline to the

development of mission critical computer resources (MCCR.) However, it does so at a

rather high cost. The process, has increasingly come under fire (from many quadrants)

for being inflexible, slow, document intensive, and costly. [Ref. 6]

The near-term fix, DOD-STD-498 Military Standard Defense System Software

Development and Documentation, is to be used (at the option of the program

manager/contractor), until a suitable commercial/IEEE standard can be developed and

implemented. [Ref. 20] With the recent policy shift away from military specifications

and standards, MIL-STD-498 will not be required for use by any software

development contractor, but will serve as an interim guide for the contractor who

chooses to use it. This new standard provides guidance for software development

activities and documentation, and allows for greater flexibility in tailoring to meet

software development models. [Ref. 7]

The process utilized by the Aviation Mission Planning System (AMPS) Project

Office, does not suffer from the many drawbacks associated with the earlier DOD-

STD-2167A. This automated mission planning system is being developed for U.S.

Army Aviation using a variant of the "spiral" model of software development. This, at

once, evolutionary and incremental development process model emphasizes flexibility

to changing user requirements, early user participation in the process, decreased

documentation requirements/costs, and earlier error detection and elimination (and thus

reduced overall costs.)

B. AREA OF RESEARCH/OBJECTIVES

The area of research for this thesis involves an analysis of the methods

employed in the development/acquisition of a mission critical computer resource for an

Army Aviation system. Specifically, the research focuses on the methods used in the

development of the AMPS, a mission planning system being developed/procured in

conjunction with the RAH-66, "Comanche" helicopter.

The process employed represents a significant departure from the "waterfall"

process of mission critical computer resources development as reflected in DOD-STD-

2167A. This evolutionary model of software/hardware development spans the DOD-

STD-2167A and MIL-STD-498 time frames. It will continue to evolve during the

movement to commercial practices, and has proven to be extremely flexible, easily

manageable, and highly effective.

C RESEARCH QUESTIONS

1. Primaiy Question

What are the major features and supporting attributes of the developmental

process employed for the Aviation Mission Planning System (AMPS), and how does

this process compare/contrast with more traditional developmental methods?

2. Subsidiary Questions

Three subsidiary questions are addressed in this research.

* What are the primary features and attributes (both beneficial and

detrimental) of traditional software development methodologies (waterfall, sequential,

etc.) that were primarily utilized in conjunction with DOD-STD-2167A?

* Citing recent developments in software engineering, and the directed

movement away from the reliance on MIL/DOD-STDs, what are the attributes of more

current models employed in the development of mission critical computer resources

(MCCR) for major weapon systems?

* What improvements are realized when MCCR is developed under an

alternative process such as the evolutionary model employed in the instance of the

Aviation Mission Planning System?

D. SCOPE AND METHODOLOGY OF THE THESIS

This thesis investigates past and present development methodologies for

mission critical computer resources, highlighting the changes brought about by the

paradigm shift from reliance on MIL/DOD-STDs to that of commercial practices.

While historical and currently evolving methods were reviewed, the focus of the

research are those methods employed in the development of the Aviation Mission

Planning System. Utilized in the developing environment of software engineering and

the increased use of commercial practices/procedures, these methods are illustrative of

the direction in which DOD MCCR developmental efforts are heading.

The primary research question was addressed through a comprehensive

investigation of the developmental process for the AMPS. On-site and telephonic

interviews were conducted with project management personnel, in St. Louis, Mo., and

the AMPS project leader and software engineering personnel within Communications

Electronics Command (CECOM), Research Development and Engineering Center

(RDEC), Fort Monmouth, N.J.

The first subsidiary question (What are the primary features and attributes, both

beneficial and detrimental, of traditional software development methodologies

(waterfall, sequential, etc.) that were utilized in conjunction with DOD-STD-2167A?)

is answered through a comprehensive review of the standard itself, GAO reports,

software management guides, directives and related literature.

The second subsidiary question (Citing recent developments in software

engineering, and the directed movement away from the reliance on MIL/DOD-STDs,

what are the attributes of more current models employed in the development of

mission critical computer resources (MCCR) for major weapon systems?) is answered

through both a comprehensive literature search and interviews with several software

development/engineering personnel.

The third subsidiary question (What improvements, if any, are realized when

MCCR is developed under an alternative process such as the evolutionary model

employed in the instance of the Aviation Mission Planning System?) is answered

through comprehensive examination of the development process employed by AMPS

software development personnel and interviews with project personnel.

A plethora of literature exists that documents the evolution of DOD MCCR

development methodologies over the past 25 years. During that time of rigid control

and oversight, DOD published numerous documents in the form of handbooks, guides,

military specifications, and military standards that delineated MCCR development

process details. Additionally, during that same period, the General Accounting Office

(GAO) kept itself very busy investigating and documenting examples of process

"failure." There is no shortage of sources available to the researcher investigating this

area.

More recent developments, for example in hardware and software engineering

methods, are also well documented. Data from this area were collected from the

literature and also through on-site or telephonic interview with project/program

personnel and industry experts.

Lastly, there is little "published" information available which references the

developmental process employed for the AMPS. Therefore, the bulk of the data in

this area of research were collected exclusively through an on-site visit and on-site and

telephonic interviews.

Several research limitations exist that narrow the scope of this effort.

Uncertainty of the impact of new laws, regulations, and directives is first and

foremost. An example of this is DoD's transition from DOD/MIL-STD (e.g., MIL-

STD-498) to commercial standards. This transition is only beginning to occur within

MCCR development agencies as this research is conducted. There is no way to

predict how "the dust will settle" when this transition is complete.

Additionally, the AMPS is not yet a "finished product" from an acquisition

standpoint. The system is just now transitioning from prototype, and is far from being

complete and ready for Army-wide fielding. Again, there is no way of accurately

predicting the future attributes of the evolving developmental process employed for

this system's software. A myriad of factors will influence the degree of success

realized as the process transitions from a prototyping to a production effort.

Time available to conduct the research, and geographic distance of researcher

from developer also presented challenges. These were largely mitigated through an

aggressive and highly organized approach to the literature search, on-site visits, and

interviews. In this regard, a questionnaire was employed to gather data about the

AMPS software development process. This questionnaire was sent as a read-ahead

packet to selected personnel within the AMPS project and development offices. The

intent of the questionnaire was not to gather statistical data, but to highlight areas of

focus for the researcher's subsequent data-gathering visit. Written and/or verbal

responses were provided by both offices (i.e., product and development) for all

questions. The questionnaire is included as an Appendix to this thesis.

E. BENEFITS OF THE STUDY

Software is on the critical path for all major weapon systems under

development today. Successful software development processes must be sought out,

emphasized, studied, and further developed. The advantages and disadvantages of

these methods must be determined and, if appropriate, these methods must be applied

to future undertakings. This thesis studies in detail a true rarity in the realm of

military software development: a developmental process that ensures flexibility to

changing requirements, responsiveness to the end-user, less documentation, and higher

quality (less errors) at reduced cost.

F. ORGANIZATION

This thesis consists of five chapters. Chapter Et establishes the background and

framework for the investigation of the area of interest. This chapter provides a brief

insight into MCCR development problems throughout its history. DOD-STD-2167A

and DOD-STD-498, and their accompanying developmental methodologies, are

discussed to provide the reader with a "backdrop" for the present evolution in MCCR

developmental methodologies. Lastly, this chapter briefly introduces the reader to the

AMPS.

Chapter III begins the in-depth investigation of the AMPS software

development process. The intent of this chapter is to present the prevailing attributes

of the developmental process employed by the AMPS project personnel, as the process

evolves from prototype to production software development activities.

Chapter IV presents an in-depth discourse on several areas worthy of additional

emphasis. Additionally, potential problem areas are highlighted and possible risk-

mitigation strategies are explored.

Chapter V summarizes the issues discussed in the previous chapters. Results of

the discussions/interviews are used to draw conclusions from the issues presented and

make recommendations. Finally, this chapter explores directions for continued

research/study.

10

IL BACKGROUND

This chapter provides the background and framework for the investigation of

the area of interest. It begins by providing a brief insight into MCCR developmental

challenges and problems of the last 30 years. Then, bringing the reader more up to

date, two key DoD standards (DOD-STD-2167A and DOD-STD-498) are reviewed.

These standards have more recently been instrumental in shaping MCCR development

for major weapon systems. The predominant methodologies that emerged from the

application of these standards are also discussed. Process attributes, both positive and

negative, are the focus of this discussion. The recent shift away from military

specifications and standards is then briefly touched upon, ending in a discussion of the

current MCCR developmental environment. Lastly, the chapter introduces the reader

to the Aviation Mission Planning System and the methodology employed in the

development of this system.

A. GENERAL

Over the last 35 years, the development and fielding of U.S. major weapon

systems has undergone a revolutionary transformation. Since the 1960s, the weapons

being developed, produced, and maintained in this country have come to rely heavily

on computer resources (hardware and software). Technological advancements in these

areas and the commensurate growth in weapon systems capabilities have been mind

boggling. Unfortunately, the Government's ability to effectively and efficiently

11

procure these systems has not advanced at the same pace. Alarmed by the marked

increase in procurement difficulties and failures, the Government has invested much

time and energy uncovering the root causes. In this vein, the General Accounting

Office (GAO) has been very successful in determining some of the reasons for these

shortcomings. Time and again, mission critical (specialized) computer resources are

determined to be at the heart of the problem. The Department of Defense's ability to

effectively and efficiently develop and contract for these items will directly affect the

future readiness of the Armed Services. In today's world of rapid technological

advances and simultaneously shrinking budgets, the need for this ability is further

amplified. [Ref. 6]

Digital computers and their accompanying software were in their infancy in the

1950s and only just began appearing in weapon systems in the 1960s. The F4

"Phantom" was the last jet fighter aircraft to rely purely on "hardware" control

linkages (push-pull rods & hydraulic actuators) [Ref. 1], As shown in Figure 1, this

contrasts sharply with the 5-7 million lines of code (software) that will be required to

keep the Air Force's Advanced Tactical Fighter (ATF) aloft. [Ref. 1]

Today, all major weapon systems are dependent on computers and their

software. This does not only pertain to the advanced flight control programs designed

for use in military aircraft. In fact, every major weapon system in the inventory relies

on computer software in one way or another to accomplish its mission.

12

WEAPON LINES OF SOFTWARE CODE*
F-4 0(VIRTUALLY)
F-16D 236,000
C-17 750,000
Bl-B 1.2 million
ATF 5-7 million
SDI 25 million (est.)

* Lines of code are often used as a major factor for
describing the complexity of a software program. In
addition, it should also be noted that a doubling of
lines of code does not normally equate to a doubling
complexity. Rather, a more likely result is a program as
many as 10 times more complex.

the
of

Figure 1. Weapon System Software Complexity Comparison [Ref. 1].

B. MISSION CRITICAL COMPUTER RESOURCES (MCCR) PROLIFERATION

In many of today's highly advanced systems, there are numerous computer

systems organic to the weapon. Additionally, there is a wealth of other software

required to support the majority of today's fielded systems. Examples of the plethora

of software include: 1) software used in support of crew training, 2) battle

management software, 3) maintenance trainer software, 4) crew training software,

5) mission preparation software, 6) data reduction software, 7) scenario analysis

software, and 8) automatic test equipment/test program set software.

Digital (computer) systems are now the heart and soul of all new weapon

systems. The flexibility afforded by digital systems cannot be remotely approached

13

by analog systems. In essence "hardware" is replaced by "software" whenever

feasible. This trend will continue into the foreseeable future. [Ref. 6]

C CURRENT MCCR STATE OF AFFAIRS

Examination of the current state of affairs with regard to MCCR highlights

some revealing, and sometimes, undesirable attributes: [Ref. 6]

(a) Most new weapon systems are extremely complex. This is due to a

combination of several factors [Ref 6] :

- extremely demanding requirements (Which incidentally, tend to both "grow" in scope

and "shift" in focus);

- tight schedules and even tighter budgets, which tend to negate elegant and simpler

solutions;

- and too many contractors not fully skilled in software engineering techniques.

(b) Most systems are delivered late, have cost overruns and rarely meet

performance requirements upon initial delivery. These systems are often ridiculously

expensive to maintain.

Though not fully responsible for these cited shortcomings, mission critical

software is generally recognized as a major contributor to these problem areas. In

short, in modern major weapon procurement, software development/procurement is

always on the critical path. In a article written by James Kitfield, the author cites a

speech by Air Force General Bernard Randolph, chief of Air Force Systems

Command. Characterizing software as the "Achilles heel" of weapons development he

14

said, "On software schedules (development) we've got a perfect record: We haven't

met one yet" [Ref. 16].

The costs associated with the above difficulties are staggering. In a General

Accounting Office (GAO) report on the subject of software costs, it was revealed that

DoD does not truly know what it spends on this critical technology. The estimates of

software costs range from $24 billion to $32 billion annually, about 8 to 11 percent of

Defense's total budget. The report went on to stipulate that these estimates are rough

at best, because DoD has not identified or tracked software costs as a discrete item in

its weapon systems development programs. [Ref. 10]

In its defense, DoD long ago recognized serious shortcomings associated with

its procurement process for MCCR. In this regard, it has published numerous

handbooks, specifications, directives, and standards aimed specifically at process

improvement. Two of the more far-reaching standards, and their associated

methodologies, are presented here.

D. DOD-STD-2167A: PART OF THE PROBLEM ?

DOD-STD-2167A, implemented 29 February 1988 [Ref. 20] is a process

standard for the development of mission critical computer software. It evolved from

an earlier software development standard, DOD-STD-2176. Intended to mitigate much

of the inflexibility, limitations, and onerous requirements of the earlier standard, DOD-

STD-2167A, unfortunately falls short of this goal.

15

The standard is designed to apply a systems engineering framework to the

development process. As such, it defines development and management activities, the

phases of development, documentation, and prescribed audits. It was designed to aid

the program manager in the development and sustainment of quality software. While

this standard does not mandate a particular developmental method, it was often

believed to endorse a "waterfall" methodology because this method was used as an

example throughout the document [Ref. 7]. The standard is designed to be "tailored"

to the specific program or project through the deletion, modification, merging, addition

or qualification of requirements. Specific guidance on DOD-STD-2167A tailoring is

detailed and published in MIL-HDBK-287.

The six major phases, or activities detailed by the standard are:

• Software Requirements Analysis

• Preliminary Design

• Detailed Design

• Coding and CSU Testing

• CSC Integration and Testing

• CSCI Testing

These steps or phases are to be repeated in sequence as many times as necessary in the

development cycle of the software. The sequential nature of the framework mandated

by the standard (analyze-design-code-test), resulted in the "waterfall" software

development methodology or paradigm. [Ref. 34]

16

1. Tlie "Waterfall" Model of Software Development

The "waterfall" software development model ensures that the "steps" of the

development are performed in the specified order, as depicted in Figure 2 [Ref. 34].

All requirements are defined up front and comprehensive reviews are used as "gates"

that must be passed through to proceed to the next step in the process. The model

mandates that all program design be complete before any coding begins.

Some problems with this method of development can be readily seen. To

begin with, the initial requirements analysis is rarely adequate. Users and developers

usually come to the drawing board with an unrealistic, static view of required

Needs
Analysis

1 Needs Document

: , . . t Y
V

Revised
Needs

Requirements
Analysis

Requirements Specification

i i ■ r

Problems

Design

Design Document

i ' r

Problems

Implementation

'

Initial Code

Bugs

i '

Testing Maintenance/
Evolution

Delivery Code

New Test Conditions

Figure 2. Waterfall Model of Software Development [Ref. 34].

17

attributes. This approach is rarely successful, as user desires change during

development or are changed by outside forces/factors. Just as often, customers do not

have a good feel for what it is they really need (or if they do, they cannot properly

articulate that need). Thus the requirements specified are often incomplete,

inconsistent, or not implementable. Today's movement toward evolutionary

requirements (i.e., requirements that evolve through the acquisition process) is not

readily supported by the "waterfall" methodology [Ref. 11].

The "waterfall" model also fails to take parallel and concurrent development

activities into account. Realistically, development activities do not occur in sequence,

and the DOD-STD-2167A reviews and audits (the gates) follow the same "lock-step"

sequential logic of the activities flow. Essentially, the "waterfall" label is a misnomer,

as real world development activities follow no prescribed sequence, instead moving

up and down the "waterfall" as need, and a changing situation dictate. [Ref. 34]

Documentation requirements are also excessive for DOD-STD-2167A [Ref. 20].

Adequate documentation, that which sufficiently ties software requirement objectives

with standards for performance, software design, test plans, software code, and the

results of software test and evaluation, is clearly needed [Ref. 20]. DOD-STD-2167A

however, mandates no fewer than 19 variants of specification, document, plan,

description, list, code, or report [Ref. 20]. Though the standard mandates no

particular development process, the documentation requirements are not subject to

"tailoring." They are directly tied to the major development activity being undertaken

18

and are checked for adequacy (and approved/disapproved) during the accompanying

review audit. [Ref. 20]

2. The 'Spiral" Model of Software Development

The "spiral" model or methodology is another process variant for software

development that was supported, though to a much lesser extent, by the framework

established by DOD-STD-2167A. This method better recognizes the non-sequential

nature of software development activities, promoting an iterative build of the system.

Additionally, the model allows the developer to better track the growth of information

(e.g. the status of phase activities) about the system , allowing for the fact that

knowledge grows at a slower rate than the system [Ref. 34]. In this fashion, the

model provides a risk reduction approach to software development [Ref. 8].

The spiral model combines basic waterfall and evolutionary/incremental

prototype approaches to software development. The basic waterfall "building blocks'"

(e.g., Preliminary Design Review, Detailed Design, Critical Design Review, etc.) are

followed sequentially to deliver an initial operational capability (IOC). A risk analysis

phase evaluates support and maintenance issues, the product is updated, demonstrated,

and validated. The product then progresses through an "updated" waterfall

development process, and a final operational capability (FOC) product is delivered.

This process may occur several times, hence the "spiral" label. A depiction of the

"spiral" (e.g. Barry Boehm's spiral model) model of software development appears in

Figure 3. [Refs. 34, 8]

19

It has been noted that there are problems associated with the "spiral" model as

well. Three significant issues that have been raised are: 1) Who defines the end of

the "spiral" process, and what should the end of the process coincide with? For

example, is the end of the process defined by the availability of funding, the continued

need for system requirements (and system upgrades), or when some established "goal"

has been reached? 2) How do Government managers evaluate the process and its

products in a systematic manner? 3) The "deliverable" consists of software code and

documentation, yet this process (as it has been predominantly applied) significantly

slights documentation. [Ref. 35]

DETERMINE OBJECTIVES.
ALTERNATIVES. AND
CONTRAINTS

EVALUATE ALTERNATIVES,
IDENTIFY AND RESOLVE «IS«

PLAN NEXT PHASE DEVELOP NEXT LEVEL PRODUCT

Figure 3. The "Spiral" Model [Ref. 8]

20

E. MIL-STD-498: THE INTERIM FIX

On 8 November 1994, MIL-STD-498 replaced DOD-STD-2167A and other

related standards [Ref. 20]. This action was largely taken as a stop-gap measure. It

was designed to mitigate some of the deficiencies of previous standards, and at the

same time serve in the interim between the SECDEF directed abandonment of DoD

and MIL standards and the adoption of commercial standards, practices, and

procedures [Refs. 20 22]. There is no current civilian standard that encompasses all

the aspects of weapon system software development

The intent of MIL-STD-498 is not so much to depart from the tenants of DOD-

STD-2167A . Instead it is intended to promote tailoring (including documentation)

and increase the inherent compatibility of DoD software development with various

development models. The standard itself includes specific guidance on tailoring and

includes examples that accommodate "grand design" (or "waterfall"), "evolutionaiy"

and "incremental" models, as well as the use of prototyping [Ref. 8].

Essentially, the standard is a "loosening" of DoD developmental requirements.

It provides a logical step toward promoting an environment that more closely

represents that which will be experienced when DoD fully transitions to commercial

standards, practices, and procedures.

In light of the SECDEF's new policy, it is not surprising that MIL-STD-498

does not require the use of any DoD or military standards. Further, it provides a

reference that relates major development activities to recognized commercial industry

21

Standards [Ref. 7, 20]. The data item descriptions (DIDs) for the standard encourage

the use of compatible commercial items that meet contract requirements. [Ref. 7, 20]

Further moving toward a commercial software development environment,

MIL-STD-498 loosens the audit/review framework, allowing these events to be tailored

to the development process being employed. Lastly, though MIL-STD-498 DIDs

require some 22 documents (14 being common to those required by DOD-STD-

2167A), no specific format is mandated for those documents, and only those required

to support a particular development are specified. [Ref. 7, 20]

The following sections discuss three methodologies covered in MIL-STD-498:

the evolutionary model, the incremental model, and prototyping. [Ref. 8]

1. Hie Evolutionaiy Model

Evolutionary development in many ways is similar to the spiral methodology.

However in an evolutionary process there is far less emphasis on the execution of the

sequential building block activities called for by the waterfall and spiral models. This

model requires the development of a fully documented and operational initial product.

Here, the emphasis is on the development of a flexible, modular, operational "core"

product, and the subsequent refinement of the product through later versions/builds.

The core includes provisions for future functionality and requirement changes. Figure

4 depicts Pressman's interpretation of the evolutionary model. [Ref. 8]

Distinct from the previously discussed models, the evolutionary model

emphasizes early and constant user feedback by calling for the development of

22

demonstrable software increments. Figure 5 depicts user involvement throughout the

evolutionary development process [Ref. 8]. In addition, evolutionary developments

are conducted as a planned progression towards an ultimate initial functional

capability. Hence, there is no danger, as in the spiral model, of not knowing when to

cease the development process. [Ref. 35]

initial requirements
gathering and

project planning y< Planning Risk Analysis^ risk analysis based on
\/ initial requirements

\ risk analysis based on
\/customer reaction

GO. NO-GO
1 DECISION

customer <^\
evaluates ^A

w Customer
^■Evaluation Engineering

initial software prototype

„/^ext level prototype

^"^engineered system

Figure 4. Pressman's Evolutionary Model [Ref. 8].

Repeal t/Mil Complete

I
t:-. ^?fi~y'^-i,:<^- ■^~A5i'K* ■ ",
;| Set Objectives

- Performance
- Technical
-Quality

m. "Engi>eer" an
Increment

lA

--*■ - - ".-'
Code and Test

Increment ■Si .." JRJteffl;
^*b-

Frrdhack -^ Select System
Architecture

>. i.\ ' r■'- ^ii'iWiH^ifi, • -*3o

Deliver the
Increment for

User
Evaluatbn

\0 -_i:i j^f

Prepare
Evolutionary
Devebpment

Plan

,--m-^-
Analyze
Resuls V;;.

?:. Si^'"-' -■ - '".: '- ' . .

1 1
User Feedback

Figure 5. Evolutionary Development - User Involvement [Ref. 8].

23

2. Hie Incremental Model

The incremental model calls for the development of software in groups of

functional capabilities, or subsets. Here, the total software package is divided into

increments that are developed in phases over the total development cycle. This allows

employment of part of the product before final completion. [Ref. 8]

This development strategy is characterized by the build-a-little, test-a-little

approach, where an initial functional subset is delivered and subsequently augmented

or upgraded until the ultimate functional capability is achieved. Figure 6 depicts the

incremental development process. [Ref. 8]

' Business »
! Model aid]
\ Architecture /

Needed
Project (MNS)
Development

Strategy

Requirements N

Outside
Current

\Business Areay

High-level FD/ORD
(User Involved)
Concept/Design

Systems Engineering
Reuse Strategy

IndentrfyCOIC/CMF

Reuse Library
](Data, Specs, Designs,]
i Methodologies, Tools) i

Milestone 0

System i
Prototype A

Risk Analysis) ^

t Evaluate [L,
Prototype

Partition
Ran and Define
Repelion
Sample^—"" T~

User Accepts
Prototype

Deteiled Design
(User Involved)

Milestone I

Block5
Block 4

Block3
Block 2

Block 1

Accelerated
Development

(Code
Generation

I
Developer

Testing
I

I User
Review

OT&E -" I

Milestone!
II i
Milestone

Milestone
IV

Figure 6. The Incremental Development Process [Ref. 8].

24

3. Prototypes

This type of development effort is characterized by the timely development

and deployment of functional products that allow the user the opportunity to compare

alternatives and better articulate requirements. Though the technique may be used

throughout the life cycle process, prototypes prove especially advantageous when

employed during Concept Exploration/Definition and Demonstration/Validation phases.

Here, they assist greatly in requirements definition. [Ref. 8]

Typically, the focus of the prototype effort is on a functional product (e.g.,

functional code). Design architecture, documentation, configuration management, and

other procedures take secondary precedence to those efforts/procedures required to

rapidly produce a useable product. [Ref. 8]

F. PERFORMANCE SPECIFICATIONS & COMMERCIAL STANDARDS

The Secretary of Defense, William J. Perry's 29 June 1994 memorandum

entitled, "Specifications and Standards - A New Way of Doing Business," [Ref. 22]

clearly charts the course for all current and future development/acquisition programs.

Military specifications and standards are, except for instances of waiver, a thing of the

past. Performance specifications will be used when purchasing new weapon systems

or major modifications, upgrades to new systems, and non-developmental and

commercial items. This applies to systems in all Acquisition Categories (ACAT)

[Refs. 20, 22]. Non-Government standards are to be used if performance specifications

25

are not practical. In the event that non-Government standards are unacceptable or the

performance specification or non-Government standard is not cost effective, an

applicable military specification may be used once a waiver is approved. [Ref. 22]

The intent of the guidance is three-fold. First, the new methodology is meant

to make commercial state-of-the-art technology more accessible to DoD. In addition,

it facilitates a teaming of industry and defense development and manufacturing

processes and facilities. This will enhance the development of dual-use technologies

while expanding or strengthening the defense-industrial base. Lastly is the

commensurate reduction in acquisition costs that DoD stands to realize if this teaming

paradigm can be implemented. [Ref. 20, 22]

Thus far, the intent of this chapter has been to provide insight into the

environment in which current systems (including the Aviation Mission Planning

System) are being developed. The last section of this chapter will familiarize the

reader with the attributes of the Aviation Mission Planning System (AMPS.)

G. THE AVIATION MISSION PLANNING SYSTEM (AMPS)

This section provides an overview of the Aviation Mission Planning System

(AMPS.) It includes the objective, capabilities, and configuration of the system. The

intent is to provide a backdrop for the system software development process

investigation covered in the following chapter.

26

1. The AMPS Overview

Tactical Army aviation mission planning is a complex process that

encompasses multiple, diverse tasks. The planning process encompasses such tasks as

the tactical route, communications, and crew and aircraft configuration planning.

These tasks are based on inputs such as the enemy and friendly situation, flight

hazards, weather, radio and personnel data, and aircraft specifics. [Ref. 26]

Tactical mission planning has traditionally been a manual exercise performed

by planning teams. The process, depending on the complexity of the mission, can be

very time consuming, inefficient, and error prone [Ref. 26]. Typically, a planning

team or "cell" is composed of key members of the tactical unit (e.g. section, or platoon

leaders, the commander, and/or other key personnel.) Their time and energies leading

up to actual mission execution are extremely valuable. Any system that will increase

their efficiency is needed and highly desirable.

The AMPS provides this capability, automating mission planning tasks and

freeing up key personnel to coordinate, communicate, and finally check mission

specifics and instructions. The overriding objective of the AMPS is clearly delineated

in the following paragraph drawn from the AMPS User's Manual [Ref 26]:

The objective of the AMPS is to provide aviation mission planners with
a tool to automate their mission planning tasks, which may otherwise be
more labor intensive, time consuming, and error prone. The AMPS
utilizes a menu-driven user interface that includes a combination of both
tabular and mapping overlay data entry thereby allowing the mission
planner to effectively develop a mission in a productive manner.

27

2. Hie AMPS Mission Process

Initially, the AMPS is used by the mission planner to develop a mission

through a logical progressive sequence of operations [Ref. 26]. These operations aid

the planner in preparing essential data. This includes tactical route planning, crew and

communication planning, and aircraft configuration. These, as mentioned above, are

based on inputs such as friendly and enemy situation, weather, flight hazards,

communications and personnel data, and aircraft specifics (e.g. type, category, etc.).

[Ref. 26]

In addition to providing mission planners with an automated tool for mission

planning, the AMPS is designed to provide for the transfer of mission data to the

aircraft via a Data Transfer System (DTS) [Ref. 26], This sub-system includes a Data

Transfer Cartridge (DTC) that contains the mission data files created by the planner(s).

The DTC is easily moved from the AMPS station to the (pre-mission) aircraft where

the data are transferred. During the mission the DTC records mission related data (e.g.

airspeed, altitude, aircraft warning messages/advisories, and engine history.) Post-

mission, this device is transported back to the AMPS device and the data are down-

loaded for manual analysis and mission back-brief [Ref. 26], The mission process is

graphically depicted in Figure 7. [Ref. 26]

28

Pre-Mission

Post-Mission

Figure 7. The AMPS Mission Process [Ref. 26].

3. The AMPS Configuration (Hardware)

The AMPS hardware configuration consists of a computer unit and associated

peripherals. It is depicted in Figure 8 [Ref. 26]. The computer unit, designated the

Lightweight Computer Unit (LCU), version 2, is a ruggedized portable computer that

consists of the following [Ref. 26]:

• 33 Megahertz (MHz) 80486 32-bit processor with 32 Megabytes (MB) of
main memory and an embedded floating point processor.

• Detachable, 82-key enhanced keyboard with 101-key functionality and an
embedded trackball with three control switches.

• 640 x 480 pixel 9.4" diagonal color liquid crystal display (LCD) screen.

29

PRINTER/DTS
AC/DC CONVERTEWCHARGiR

REMOVA
HARDKSKV

DRIVE«
CO-ROM
DRIVE-

R/W MAGNETO
OPTICAL DISK.
DRIVE

PMNTER

Figure 8. The AMPS Hardware Configuration [Ref. 26],

• 500 MB removable hard disk drive.

• 3.5" 1.44 MB floppy disk drive.

• MIL-STD-1553B bus compatible input/output (I/O) interface.

• 9600 bits per second (bps) modem .

External peripheral devices include the following :

• Compact Disc-Read Only Memory (CD-ROM) drive.

• Read/Write Magneto Optical (MO) disk drive.

• Lightweight, portable dot matrix printer.

• Data Transfer System (DTS), MU-1004/1005, including Data Transfer
Cartridge (DTC).

30

• LCU power source: 110/220 volts, alternating current (VAC), 50/60 Hertz
(Hz) with an alternating current (AC)/direct current (DC) converter/charger
or 24 volts, direct current (VDC) rechargeable battery pack for 2 hours
operation, or 28 VDC vehicle battery with AC/DC converter/charger.

• Printer/DTS power source: 110/220 VAC, 50/60 Hz, AC/DC
converter/charger or 28 VDC vehicle battery with AC/DC converter/charger.

4. The AMPS Software Environment

As stated in the User's Manual, the software environment is completely

transparent to the user. The system is delivered as a "turn-key" device. The AMPS

software is contained in the AMPS system, and does not require user intervention for

loading. [Ref. 26]

The development process for the system software is the main focus of this

research. Of general interest is that this process began during the DOD-STD-2167A

time frame. Its evolutionary development has continued under the requirements of

MIL-STD-498 and will continue to further evolve during the transition to performance

specifications and commercial standards.

H. SUMMARY

This chapter provided a general background and framework for the study of

MCCR development/acquisition. Problems associated with the procurement of MCCR,

specifically software, were highlighted. The discussion of DOD-STD-2167A, MIL-

STD-498, and SECDEF's directive to use performance specifications and commercial

standards was intended to further define/describe the environment in which the

Department of Defense develops and acquires mission critical software. A brief

31

discussion of software development models familiarized the reader with the methods

associated with the application of the various standards. Lastly, an overview of the

AMPS was provided, to include basic system attributes, mission process, and system

configuration.

The next chapter is a case study of the unique development process employed

for the AMPS software. The chapter begins by examining the development of the

prototype-system software for "Interim AMPS," then turns to the study of the evolving

process for the development of the "AMPS" production software.

32

m. THE AMPS SOFTWARE DEVELOPMENT PROCESS: A CASE STUDY

The intent of this case study is to document what to date has been a successful

DoD sponsored software development process. The focus of this effort, the AMPS, is

being developed for the Program Manager's Office, Aviation Electronic Combat (PM-

AEC), Program Executive Office (PEO), Aviation, St. Louis, Mo. This effort is being

conducted in-house by the Command and Control Systems Integration Directorate

(C2SID) at the Communications-Electronics Command's Research, Development and

Engineering Center (CECOM RDEC) at Fort Monmouth, New Jersey. [Ref. 25]

The goal is to examine several key areas of the software development process,

and document the "successful" process attributes and value-added efforts (and effects)

implemented by the software development team. The principal areas of interest

include process generalities (e.g. methodologies and techniques employed), and

several specific aspects. These include coding and documentation practices,

configuration management policies and procedures, test and evaluation (T&E), and

independent validation and verification (IV&V.) Examination of the applied

management principles (e.g. metrics, tools, the software engineering environment, etc.)

is the final area of interest.

Though quite successful through the software prototyping stages, the

development process (from a production software perspective), is not currently

considered mature and is somewhat unstable. An accurate description of the

development process for the AMPS' software is one in transition. [Ref. 25]

33

For reasons that will be discussed later, the Government in-house developer,

C2SID, has been tasked to transition its organization, mind-set, and software

developmental process from one adept at prototyping efforts, to one capable of

developing quality, deployable software. The management (PM-AEC) and

development team's (C2SID) efforts to implement this process transition is the main

focus of this case study. [Ref. 25]

Though there is no actual "clean break" associated with the shift in emphasis

from prototype software development efforts to the development of production

software, it is easier to visualize the two process variants as separate and distinct. In

reality, prototyping efforts, and methods continue for the AMPS software development

program. However, it also holds true that process change and improvement initiatives

are being considered and implemented by management and developer alike. This case

study treats the over-arching process as two separate and distinct processes: the

software prototype process employed for the "Interim AMPS"; and the production

software process that is being established for "The AMPS." [Ref. 25]

The chapter begins with an examination of the AMPS development process as

it existed during the previous "Interim AMPS" prototyping effort. A general

discussion of software-prototype process attributes is also made. The Interim AMPS

prototype-process discussion focuses on the following areas: 1) coding and

documentation practices, 2) configuration management policies and procedures, 3) test

and evaluation and IV&V, and 4) the application of management principles.

34

The paradigm shift (i.e., from prototype to production software development)

and its cause, are then outlined. Next, the chapter turns to an examination of the

current process (albeit in a transitory state). The areas of process improvement

implemented (or being developed/considered) by the AMPS management/development

team are highlighted. This examination will focus on the same areas examined for the

Interim AMPS prototyping oriented process.

This process examination serves as lead-in to Chapter IV in which the

researcher calls attention to several areas worthy of additional emphasis or

consideration, and highlights some specific areas of concern for the program.

A. 'INTERIM AMPS" : THE PROTOTYPE SYSTEM

Since its inception, the development of the AMPS system has been closely tied

with the development schedules of several aircraft (e.g. OH-58D, AH-64A Mod/D,

UH-60 A/L,CH-47D, and the RAH-66, Comanche). Citing an immediate need for

mission planning capability to support near-term aircraft development requirements,

C2SID, of CECOM RDEC was tasked to develop an "interim" system that would

provide mission planning functionality, pre-flight avionics systems initialization, and

data load capability for the OH-58D (Kiowa Warrior), AH-64D (Longbow), CH-47D

(Chinook), and AH-64A Mod (Apache) systems [Ref. 24]. The initial or "Previous

Strategy" for AMPS development/acquisition is depicted in Figure 9 [Ref. 25].

35

Interim AMPS has been characterized as a "proof of principle" system [Ref.

3]. However "prototype," "rapid prototype," or "demonstration" label is more

appropriate. The original acquisition strategy called for the production system to be

developed by a commercial contractor. The intent was to develop the AMPS

production system around the already fielded Air Force Mission Support System

(AFMSS), a system possessing much of the same core functionality thought needed

for the AMPS [Ref. 25]. Interim AMPS was seen as a risk reduction and technology

insertion vehicle. It was hoped that through the continued development of Interim

AMPS, not only would near-term capability requirements be met (e.g. mission

planning, data load, avionics initialization), but user requirements would be more

Acquisition Concept
Co-development effort between PM, Avionics and PM, Comanche.

Use the Air Force Mission Support System (AFMSS) as the core -
software for the objective system.
Continue to support near term requirements with Interim AMPS.

•Comanche specific
requirements managed by
PM Comanche

*As the AFMSS/AMPS modules
are completed for the Kiowa
Warrior and Chinook aircraft, they
will replace the fielded Interim
AMPS systems.

CH-47D, OH-58D

AH-64D, UH-60 A/L ^ . „
AH-64A Mod Testing Concept

♦ Two Phase Test Program:
- Functional Software Qualification Test.

- Operational Assessment — conducted at
Force XXI Digitized exercises.

♦ OEC and OPTEC approve of this plan.

AH-64A Mod

Start OH-58D Fielding

93 94 96 97 00 01
[Fiscal Year]

Figure 9. The Initial or Previous Strategy for AMPS Acquisition [Ref. 25].

36

adequately defined when the transition was made to the production "AMPS"

development. [Ref. 24]

1. The Software Prototype Development Process

Interim AMPS software development at CECOM, C2SID possesses the

attributes of a prototype/rapid prototype process. As with any prototype effort, the

main thrust of the work is to further define and understand system requirements, test

alternative approaches to system design, and generate and elicit user feedback and

buy-in [Ref. 8]. Inherent in most prototyping efforts is the bypassing of normal

configuration management, interface controls, technical documentation and

supportability requirements [Ref. 15]. Indeed, to incorporate quality control and

assurance (testing) and supportability issues (e.g., technical documentation) beyond the

cursory level, would negate the benefits of prototyping [Ref. 8].

The following information was gathered during the August, 1995 AMPS

Working Group Review and through on-site interviews with C2SID and Software

Engineering Directorate, Avionics (SED-AV), CECOM personnel. The researcher

found that the policies, procedures, and practices employed for the development of the

Interim AMPS, in the areas of coding, documentation, configuration management, test

and evaluation (and IV&V), and applied management principles, were what would be

expected for a prototype effort [Ref 15].

37

a Coding/Technical Documentation

Coding, in the "ANSI C" language is carried out by several

programmers (approx. 8). Responsibility for modules is "broken out" to specific

programmers, the synthesis of which is predominantly the responsibility of the chief

programmer/software engineer (S.E.) For this project the S.E. has also taken on

coding responsibilities for some of the modules. Additionally, the S.E. was the author

of much of the system's early code. Thus, the bulk of the expertise for the overall

software code-package is concentrated in one position, that of the S.E. [Ref. 31]

This is somewhat "dangerous" from a supportability/maintainability

standpoint. It has been noted by development personnel, who have further encouraged

a "breaking out" of code structure and programmer intent to supporting programmers.

Though in the past this process attribute has been seen as "a concern" to the

development team, it is not unusual for a prototyping effort. For the Interim AMPS

the system requirements development, limited functional capability, and interface

development have taken precedence over supportability and maintainability issues. In

the view of the system developers, the primary objectives of Interim AMPS have

clearly been met. [Ref. 31]

Technical documentation records the engineering process and helps

software maintainers and other engineers understand the code developed by others. It

is often slighted in a software prototyping effort. For prototyping efforts, coding

standards (e.g. DOD-STD-2167A, MIL-STD-498, etc.) are usually avoided. Requiring

such standards would adversely impact the benefits of prototyping [Ref. 8], For the

38

Interim AMPS much of the code, especially that code written in the early stages of the

software project, is not documented adequately for supportability and maintainability.

Again, this is not unexpected and would not normally be considered problematic for a

prototype development. However, the fact that there is now a transition of the

prototype AMPS to a production variant has recently raised concerns. [Ref. 31]

b. Configuration Management

There are three primary reasons for software configuration management:

1) identification, 2) communication, and 3) cost control. These apply to any software

development effort. However, normal configuration management procedures typically

suffer in a software prototyping environment [Ref. 15]. The true objectives of a

prototyping effort take priority. The desire to balance the need for some control with

the unproductive effects of over-control must be considered for a prototyping project.

[Ref. 19]

For the Interim AMPS, the configuration management (CM) methods

employed to date appear to have been largely effective in the area of software

identification. However, in the areas of communication and cost control these methods

are not as effective [Ref. 31]. As for software identification, suffice it to say that it is

evident that through a combination of naming (e.g. "Interim AMPS" or simply

"AMPS") and versioning (e.g. 3.0, 3.1, 3.2, etc.), obsolete, current, and future

software have been clearly identified and controlled. This has been an especially

39

important factor for participating Interim AMPS program personnel who are

geographically dispersed.

As for the other two areas facilitated by CM, (communication, and cost

control), results have been less effective [Ref 17]. Communication between

programmers about changes to the software does not appear to be significantly effected

by CM measures employed for the Interim AMPS. This can be partially attributed to

the development environment. The limited number of AMPS programmers, and the

fact that they work together in the same general office space, on the same shift (e.g.,

day), serves to significantly mitigate "communication" problems for software

programmers. However, when programmers make changes to the software (e.g.

enhancements or problem corrections) "on the fly," or from remote locations (e.g.

home/travel via modem) an opportunity for communications breakdown exists. A

concerted effort has been made to reduce these instances, regardless of the "need for

speed" and the prototyping nature of the Interim AMPS. [Ref. 32]

Programmers are but one entity that require timely information on a

current software version. The remainder of the development team (to include, user,

test and evaluation and IV&V personnel at SED-AV, CECOM, and program

management personnel at PM-AEC (St. Louis)), also need up to date information on

the capabilities and limitations of the most recent software version. [Ref. 31]

A key factor for cost control, as applied to software CM, is that some

identified problems in the development may not need to be immediately fixed. In fact

some may be prohibitively costly to fix [Ref. 19]. Generally speaking, CM applies

40

some rigor and controls to a process in which programmers (with their artisan-

inspired drive for optimization and resulting increased costs) vie with their

managers, who seek to control the software baseline and the costs that accompany any

changes to that baseline. [Ref. 19]

Considering that this project is a Government in-house effort, cost

control measures and concerns have taken on less significance. For the Interim

AMPS, programmatic and software support is provided by omnibus-type contracts with

Systems Dynamics International, and Vitrinics, Inc., respectively. Since system

integration is performed by C2SID, CECOM (a Government agency), no contract is

required for this effort. In addition, there seems to be less emphasis on the level of

management oversight that would exist if a commercial contractor were performing all

the development/integration work for the Government. [Ref. 9]

c Testing/IV&V

Software testing, an umbrella term to categorize those activities carried

out to confirm the presence of software defects [Ref. 8], is present within the Interim

AMPS development process [Ref. 32]. Programmers conduct software unit and

component testing through what is termed "lower-level" or "desk-top" testing [Ref.

32]. Distinct software module testing is conducted by both the individual programmer

and the software engineer/system integrator. The process is informal, and does not

emphasize documentation. While no formal procedures are in place, the above

activities serve to validate software units, components, and modules prior to them

41

progressing into the CM system [Ref. 32]. Successfully tested and validated modules

are then passed into the configuration management system and subsequently to SED-

AV for formal testing. For the Interim AMPS, "formal" testing focuses on software

defect detection and system-level validation. Here, testers essentially attempt to

"break" the software. Qualification testing is not conducted, because of the rapid-

prototype nature of the software and because only the system-level requirements for

the software have been identified. When all software requirements (i.e., down to unit

level) have been derived, formal qualification testing will be possible. Essentially, this

is the future of SED-AV testing for the production AMPS software. [Ref. 32]

Independent Verification and Validation tasks are currently being

conducted for the Interim AMPS by SED-AV, CECOM [Ref. 32], This includes

testing the performance of the software, and determining that it satisfies all system-

level requirements. However, because of the absence of a completed Software

Requirements Specification (SRS), systems engineering analytical activities are

restricted to the system as a whole. Therefore, true IV&V activities are not possible

within the Interim AMPS process [Ref. 32]. An expanded discussion of IV&V

process attributes will be addressed in the examination of the development process for

the AMPS.

d. Management Principles

It is not appropriate to measure the Interim AMPS software

development process against a guideline for management principles. The Interim

42

AMPS, was originally intended as a proof of principle [Ref. 3], technology insertion,

and risk reduction vehicle [Ref. 24], As such, the program represents a tool available

to the software development manager [Ref. 6]. In this regard, it is among the most

powerful tools available to analyze and refine requirements [Ref. 6].

The status of the Interim AMPS as a prototype gives more license to

developers and managers. It calls for minimal constraints on choice of programming

languages, documentation, and the use of standards [Ref. 6]. Typically, the

prototype/rapid prototype methodology entails near unconstrained development of a

functional software package.

The Interim AMPS has recently undergone a transformation. Fiscal

constraints have mandated the change in the nature of the Interim AMPS program,

from prototyping to production effort [Ref. 25]. The challenge for both developers

and managers is to convert their organizations and processes from software prototyping

orientation to production software orientation. In this regard, the wheels are already in

motion. Some background and the reasoning behind the paradigm shift from prototype

to production system is now presented.

B. "AMPS": THE PRODUCTION SYSTEM

The original acquisition strategy for the AMPS called for the production

version of the software to be contracted to a commercial software development entity

[Refs. 25, 31]. In February 1994, an AMPS Process Action Team (PAT) was

established with the purpose of "laying out a program that would develop a single

43

mission planning system that meets the requirements of the entire fleet" [Ref 27].

The PAT was to leverage existing mission planning efforts and use Non-

Developmental Item hardware and Commercial-Off-The-Shelf software solutions

whenever possible [Ref. 27].

The AMPS PAT considered the five courses of action (COAs) shown in Figure

10 [Ref. 27]. After careful evaluation, a PEO Aviation development effort was

proposed. This would use the Lockheed Sanders' Air Force Mission Support System

(AFMSS) as the core capability (COA #1.) AFMSS was a proven aviation mission

planning software shell which allowed for the integration of aircraft specific software

modules into the basic shell [Ref. 27].

COA #1 was thought to be superior on budgetary (it was cheaper than a new,

unique Army system), political (OSD did not want any new mission planning

developments), interoperability (e.g. with the Air Force), and technical (e.g.

demonstrated capabilities) grounds [Ref. 27].

The other COA of interest to this research effort, COA #4 - Use of the

CECOM developed Interim AMPS as the core software, was determined not viable for

the following reasons:

(a) Due to the rapid fashion of the feasibility effort, adequate software

documentation was not performed. This lack of documentation included both 2167A

management documentation (e.g., SRS, SDD, etc.), and technical documentation (e.g.,

44

Number
~T

2

3

4

5

Course of Action
Use the Air Force Missxon Support System
(AFMSS)as the core software.
Use the Navy's Tactical Aircraft Mission
Planning System (TAMPS)as the core software.
New Start Program- Development of an ORD
compliant system from scratch.
Use CECOM developed Interim AMPS as the core
software.
Use Comanche contractor developed software as
a basis for a single system.

Figure 10. The AMPS Process Action Team Courses of Action [Ref. 27].

software coding comments.) The PAT therefore questioned the ability to maintain the

software. [Ref. 27]

(b) A rapid prototyping approach was used which focused only on producing

functional code. The resulting code was not modular and it did not use a top down

structural approach. Therefore, much of the resulting structure was unstructured or

spaghetti-like in nature. [Ref. 27]

The PAT concluded that these factors made post-deployment software

maintainability and supportability questionable. Because of the unstructured nature of

much of the code, expanded functionality would also be difficult, if not impossible.

To resolve these problems the code would have to be redesigned, and documented in

accordance with DOD-STD-2167A. Since this task would take an estimated two years

45

to accomplish, the approach was deemed only marginally better than a new start

program. [Ref. 27]

Fiscal reality, however, was to play a pivotal role in the COA chosen. Though

initial discussions with Lockheed Sanders, Inc. had suggested the AFMSS approach

would be "affordable" (approximately $5 million) [Ref. 31], the subsequent proposal

from the company was approximately $20 million over the budgeted Program

Objective Memorandum (POM) amount [Ref. 32], PM-AEC simply could not afford

Lockheed Sanders, Inc. to be the system developer/integrator for the AMPS [Ref. 32],

The "Revised Strategy," depicted in Figure 11 represents both an

acknowledgement of budgetary constraints and a large assumption of risk. The Interim

AMPS, per se, is no more. The software prototyping approach has been replaced by a

production-software development approach [Ref. 25]. The effort will be conducted

in-house by C2SID, CECOM. SED-AV, CECOM will provide formal qualification

testing, rV&V, certification, and eventually PDSS for the AMPS. [Ref. 32]

The following section is an overview of the production-software development

process for the AMPS. The areas of focus are the same as those examined for the

Interim AMPS prototyping process: coding, documentation, configuration management

policies and procedures, test and evaluation and IV&V, and applied management

principles. The intent is to highlight process change and improvement initiatives, as

the development team transforms its organization and process from one adept at

prototyping, to one capable of developing quality, maintainable, and supportable

software.

46

v8.0

Acquisition Concept
Co-development effort between PM, Avionics and PM, Comanche.

Continue to support near term requirements with AMPS version 3.5.

Evolve AMPS modules to operate within the Global Command and
Control System architecture (GCCS).

Focus on the integration of AFMSS "core" and COE compliant modules
as the basis for the objective Aviation mission planning capability.

8 Phoenix
JMCS
SWMSS

Support RAH-66 DTU

v5.0 SX start AH"640 Fielding

^^0^ TFXXI (BDE Ex)

Start AH-64A Mod Fielding
Start UH-60 A/L Fielding
Start CH-47D Fielding

Testing Concept
Three Phase Test Program:

- Functional Qualification Test (IV&V).

- Product Qualification Test (PQT).

- Operational Assessment — conducted a
Force XXI Digitized exercises.

OEC and TEXCOM approve of this plan.

Start OH-58D Fielding

[Fiscal Year]

Figure 11. The Revised AMPS Acquisition Strategy [Ref. 25].

1. The Production-Software Development Process

PM-AEC and C2SID readily acknowledge a marked shift in focus within the

AMPS development effort [Ref. 31]. One observer had the following insight to offer

on the evolving nature of the AMPS development process/effort [Ref. 31]:

Consider the status of our process in these terms. A married couple is
expecting their first child. Typically, they have about nine months to
prepare the infant's nursery. The AMPS development team is akin to a
couple that was not expecting a child, and one day took delivery of a
one-year old.

47

Accompanying the arrival of "the child" is the realization that organizational

and process change is inevitable and desirable [Refs. 25, 31], How close the team

can come to a process optimized for the development of production software, however,

is a matter of debate [Ref. 31]. The goal is the production of reliable, maintainable,

and supportable software. One method for achieving this is through the application of

a structured discipline imposed by a software engineering process [Ref. 8]. Examples

of some software engineering practices that can be applied to any software

development effort include [Ref 8]:

• Quality engineering,

• A formalized software development process,

• Informal/formal peer inspections,

• Rigorous configuration management,

• Continuous process improvement,

• Statistical process control,

• Defect causal analysis and prevention,

• Quality monitoring metrics and interpretation,

• Employment of Integrated Process and Product Development Teams.

This environment ensures reliability, maintainability, and supportability are

designed into the system, rather than retro-fitted in after deployment [Ref. 8]. A

commitment to software engineering forces a movement away from the "build-it-quick,

get-it-to-the-field" mind-set. Instead, resources are planned and managed within a

total life-cycle framework. [Ref. 8]

48

The AMPS management and development personnel are acutely aware that

process change/improvement is necessary to reach their goal of fielding quality

software. Process improvement initiatives are under consideration (or underway) in

several areas of the development process [Refs. 25, 31]. The chapter now turns to a

discussion of some of those initiatives in the same areas looked at for the Interim

AMPS: coding, documentation, configuration management policies and procedures,

test and evaluation and IV&V, and the application of management principles.

a. Coding/Technical Documentation

Both formal and informal initiatives are underway to make the code

more maintainable and supportable. They encompass an informal policy to further

"break out" coding responsibilities to programmers, and an increased emphasis on the

transfer of code-design logic and programmer intent. In addition, there is an increased

emphasis on code commenting (technical documentation). [Ref. 31]

The practices employed for the Interim AMPS, make it questionable

whether the code could be maintained or supported by anyone other than the original

programmer. The emphasis on producing functional code was accomplished at the

expense of maintainability and supportability [Ref. 31]. For instance, one

programmer estimated that only about five to ten percent of his code for the Interim

AMPS was commented [Ref. 32]. Additionally, the unstructured nature (i.e., other

than top-down) of the design has resulted in "spaghetti-like" code for an estimated ten

to twenty percent of the program. [Ref. 32] Much of this code now forms the basis

49

for the production variant of the AMPS, driving the need to correct these weaknesses.

One approach chosen by the development team is a reverse-engineering effort. [Ref.

32]

This formal method employs a computer aided software engineering

(CASE) tool. The desired output of the tool is a comprehensive software design

document (SDD), a data flow diagram. The goal is to identify the "spaghetti code,"

replacing it with workable, structured code/modules. In addition, the chosen tool will

provide an on-line documentation and maintenance function. This will allow

documentation to be conducted "on the fly" by programmers, eliminating the need for

further after-the-fact technical documentation. [Ref. 32]

Some of the CASE tools being considered/tested are "Cadre,"

"Ensemble," "Teamwork," and "Hindsight." All have particular strengths and

weaknesses. Unfortunately, no one tool has consistently demonstrated all desired

attributes. As this research was conducted, the "optimal" tool had yet to be

determined. All agree however, that the employment of a CASE tool is necessary

and will enhance the ability of programmers to maintain and add modules.

Additionally, the streamlining and increased effectiveness of the documentation

process is an added benefit of the tool. [Ref. 32]

b. Configuration Management

With the AMPS software development changing from a prototyping to

production effort, the need for adherence to a more formal/rigid configuration

50

management system is recognized [Ref. 32]. The primary reasons for configuration

management (identification, communication, and cost control) assume greater

importance as the scope and complexity of the development effort grow. Figure 12

graphically depicts the current AMPS software schedule [Ref. 25]. Note the

distinction between annual major releases (e.g., major functional enhancements), semi-

annual minor releases (e.g., minor functional enhancements), and unscheduled

maintenance releases (e.g., correction of bugs) [Ref. 25]. The AMPS Capabilities

Matrix, not depicted, details the added functionality of each release [Ref. 30].

The broadened scope and complexity of the AMPS development, and

the necessity to track the software baseline, has resulted in increased emphasis on the

adherence to the established configuration management process [Refs. 25, 31]. This

process is simple and effective, if employed appropriately. A discussion of the

configuration management process follows.

The process begins with the configuration manager (CM) submitting a

System Change Request (SCR). These are based on System/Software Trouble Reports

(SSTRs) generated by user, developer and testing activities. Early analysis of the SCR

is performed to determine the type of SCR (e.g., fix, non-problem such as operator

error, or enhancement); estimate of schedule, cost, manpower, and technical impacts

(e.g., files affected, rippling effects, system performance, etc.); and recommended

priority. [Ref. 23]

51

In-Process
Reviews

Development

OT&E

Deliveries

FY94

FY94

FY 95 FY 96 FY 97

IPR

Vtrsion5.0 S.l 5.2

FY95

0
FY99 FYOO FY01 FY02 FY03

♦ Annual Major Releases (Version 5.0, Version 6.0, etc)
Consisting of Major Functional Enhancements

♦ Semi-Annual Minor Releases (Version 5.1, Version 5.2,
etc) Consisting of Minor Functional Enhancements

♦ Unscheduled Maintenance Releases (Version 5.1 a,
Version 5.1b, etc) to Correct Bugs

D Task Force XXI

FY96 FY97

RAH-66 (Prototype)

FYOO FY01 FY02 FY03

Figure 12. The AMPS Software Schedule [Ref. 25].

The Configuration Control Board (CCB), composed of development,

management and user personnel, receives the SCRs with the early analysis information

and either approves, defers, or closes the SCRs. The CM then updates the SCR

tracking database, reflecting CCB decisions, and the SCR information source is

notified of the SCR disposition. [Ref. 23]

Open/approved SCRs pertaining to software changes are implemented

and tested by the AMPS project development team and a new baseline (i.e., source

and executable code, and software development tools) is complied. The executable

code baseline is subsequently released for formal testing (i.e., Formal Qualification

Testing.) SSTRs generated from formal testing or SCRs for which formal testing

52

show have not yet been correctly implemented will be cycled back into the process at

the appropriate step, until closed. Finally, the SCM releases the software for

replication/distribution upon authorization. A diagram of the process appears in Figure

13. [Ref. 23]

The proper and consistent application of this process ensures that

tenants of configuration management practice have been met. The "current" software

version is formally identified to all parties when the SCM releases the software for

replication and distribution after authorization. This allows effective communication

about the software between all concerned entities (e.g., management, developer, user,

etc.) This is true because all parties are able to maintain a mutual understanding of

changes made to the software (e.g., fixes, functional enhancements, etc.) Cost control

is facilitated by the CM process through the use of the CCB in its role of SCR

reviewer. Here, fixes and enhancements that are not cost-effective are quickly ruled

out or deferred until resources are available to address them.

Observed management-driven emphasis on adherence to configuration

management procedures is a good indicator that CM tenants will be met within the

AMPS process [Ref. 31]. For effective configuration management, clearly, there must

be firm commitment from "the top." The full challenge is to ensure that management

has instituted and enforces an appropriate level of CM effort, while developers fully

understand and embrace the importance of these practices as well. [Ref. 19]

53

SSTRs HOTLINE AMPS Project Team

CONFiG MGMT «_

logs SCRs in DataBase

I X
AMPS Project Team

Analyze SCRs

CONFIG MGMT

updates SCR Database

Configuratin Control Board (CCB)

Copies of SCRs

PM

disposition SCRs

closed open

AMPS Project Team CONFIG MGMT
updates SCR database & , ,
notifies originator of status Implement and test approved SCRs

CONFIG MGMT
compiles new baseline &
releases when authorized

I
FQT/Verification

SSTR's SCR Verificaiton Results
\

Figure 13. The AMPS Configuration Management Process [Ref. 23],

a Testing/IV&V

In addition to "lower-level" and "desk-top" testing that occurred with

the Interim AMPS [Ref. 32], the testing process for the AMPS employs formal

software qualification testing and a documented set of test procedures. Early on, SED-

AV, CECOM will focus its energies on the generation of the Software Requirements

54

Specification (SRS) and Software Test Description (STD). This effort is to begin 1

September 1995. Seven months have been allocated for SRS and STD generation

[Ref. 36]. The intent is to generate a complete requirements list that can be traced to

code and vice versa [Ref. 32]. Until this is complete, SED-AV will rely on the Top

Level System Requirements List (TLSRD, 8 June 1995) for testing at the system

requirements level [Refs. 36, 29]. Figure 14 shows SED-AVs proposed testing

approach up through version 5.0 [Ref. 36]. By version 6.0, it is anticipated that all

requirements (i.e., system-level and derived) will be known [Ref. 32].

According to the Draft Test and Evaluation Master Plan (TEMP, 29 July

1995) [Ref. 28], the developer (C2SID) conducts software testing up to CSCI-level at

his facility. It should be mentioned that in its present configuration, there is only one

CSCI for the AMPS. In addition, a Formal Qualification Test (FQT) for each version

will be conducted by the developer, and witnessed by SED-AV, CECOM and the Test

and Evaluation Command (TECOM.) The FQT includes flight performance

certification by the Aviation and Troop Command (ATCOM), Directorate of

Engineering (DE), and a safety assessment by the ATCOM Safety Office. [Ref. 28]

In addition, a Production Qualification Test (PQT) will be conducted by

the Army Technical Test Center (ATTC). The PQT is intended to serve as a limited

operational assessment. As functionality for an airframe is added to a release, the

PQT will include an assessment of the AMPS compatibility with the aircraft. Prior to

distribution of the software, PM-AEC will conduct a Special In Process Review (IPR)

55

TLSRD
Breakdown
the TLSRD

into
requirements

Formalize the
System Level
requirements

LIST 1

Modify Code

Expand Reqts
by Intuitive

Interpretendation

Modify

List 2

Expand Req'ts
based on the
capabilities of
the executable

faulty interpretation

Update the

TLSRD

faulted coding

system requirement change

Assumptions:
1. Expanded requirements list will cover version 5.0 only

2. The SRS and the STD will be decent first drafts

3. The SRS and the STD will be modified for futre versions of AMPS

4. Course of Action #1 is selected for SEIVAV

6. Seven months are aollocated for SRS & STD generation
(Beginning 01 SEP 95)

Perform

testing

Figure 14. The SED-AV Testing Approach for Version 5.0 [Ref. 36].

56

with the specific airframe PM, Training and Doctrine Command (TRADOC) System

Manager (TSM) for the target aircraft. [Ref. 28]

Prior to release to receiving units, the New Equipment Training Team

(NETT) will conduct an acceptance test for each AMPS. This will be the case for all

AMPS delivered to operational units before Milestone (MS) III approval. The

Operational Assessment (OA) and the MS HI decision point, is the "Force XXI-

Brigade 97" digitized exercise. This is scheduled for FY 97 at Fort Irwin, California

[Ref. 25]. The AMPS, version 5.2 will be evaluated during this OA.

For the AMPS, it has been determined that IV&V will be carried out by

SED-AV. The level of the effort in this area, however, has yet to be determined. In

addition, the "independent" aspect of rV&V is being somewhat subjugated, as SED-

AV is heavily influenced by the developer in terms of funding and direction. [Ref.

36]

It is desirable to select an IV&V agent from within the prime

development contractor (e.g. C2SID). It is also advantageous to use the software

support activity (e.g., SED-AV) in this role. However, the autonomy of the IV&V

agent is of paramount importance [Ref. 6]. SED-AV has raised this point and

proposes the use of PM-AEC as a "referee" of sorts when disagreements arise

between SED-AV and C2SID [Ref. 32].

In addition, until completion of the Software Requirements Specification

(SRS), which should reflect the requirements allocated from the System/Segment

Specification (SSS), it will be impossible to carry out the "verification" portion of

57

IV&V [Refs. 6, 36]. Verification, which is Computer Software Configuration Item

(CSCI) oriented, evaluates how the SRS supports the SSS, and how the CSCI design

supports the SRS as the design progresses to greater levels of detail [Ref. 6], SED-

AV stipulates that with the anticipated completion of the SRS for version 6.0, the

nature of the IV&V will become more traditional [Ref. 32],

Validation, which is system oriented, comprises evaluation, integration,

and test activities accomplished at system level. It ensures that the system satisfies the

requirements of the System/Segment Specification [Ref. 6], Validation of the system

is a more accurate description of what SED-AV plans to accomplish prior to version

6.0. Previous software versions will be tested against the TLSRD [Ref. 36]. This

"top-down" method of testing has the advantage of repeatedly testing top-level

modules as more and more lower-level modules are coded, integrated, and tested [Ref.

6].

Certification is the ultimate goal of the IV&V effort. The term refers

to the using command's agreement that the acquired system satisfies its intended

operational mission [Ref. 6]. SED-AV plans to certify version 6.0. This will occur

after the Operational Assessment/Test (e.g. Force XXI- "Brigade 97" Digitized

Exercise, FY 97) if the software has been deemed suitable, supportable, and

operationally effective [Refs. 6, 36],

58

d. Management Principles

As the AMPS software transitions to a production version, both

management (PM-AEC) and developer (C2SID) have begun to apply a set a

management principles to their processes. As for the PM, this is reflected in PM-

AEC's ability to make decisions based on a "system" perspective, not allowing either

hardware or software to exclusively drive decisions [Ref. 6]. Also, with the change

of the AMPS status from prototype to production system, PM-AEC has incorporated a

comprehensive quarterly review process. This provides a forum for integrating the

system development. [Refs. 6, 26]

Additionally, PM-AEC and C2SID have selected an innovative

development plan. The process is described as both evolutionary and incremental

[Ref. 9]. It is evolutionary, in that the AMPS has been an operational product all

along, and subsequent releases have been further refined versions of that product. It is

incremental, in that, subsequent software versions will incorporate additional functional

capabilities. [Refs. 8, 30]

Prototype versions in the field allow the development/management team

to continue to reap the benefits of the rapid-prototype methodology (e.g., requirements

definition, user feedback, and buy-in) [Ref. 8]. This vehicle for risk reduction and

technology insertion dramatically increases the probability of fielding a capable, high

quality, user accepted system [Ref. 24].

The use of an IV&V agent for the AMPS is a clear indicator of

commitment to process improvement [Ref. 6]. Other signs of software engineering

59

application include: 1) employment of a CASE tool to assist with the code reverse-

engineering effort, 2) creation of a product-oriented Work Breakdown Structure

(WBS) for financial control, and 3) generation of a Capabilities Matrix, showing how

each particular system-level requirement is satisfied by a particular release/module

[Refs. 29, 30]. The planned, future application of a set of core metrics [Ref. 25], is

evidence that statistical measurement will be applied to the development process. This

is a requirement for sound engineering practices [Ref. 8].

C. SUMMARY

This chapter examined the development processes for both the Interim AMPS

and the AMPS. The process employed for the Interim AMPS was one well-suited for

prototyping efforts. However, it is not optimal for the development of production

software. The current AMPS process is one in transition. The development team

continues to rapidly develop prototype versions of the software, yet is moving toward

a process more suited for the development of quality, maintainable, and supportable

software. The intent of this chapter was to distinguish between the two types of

processes, and to highlight process improvement initiatives being undertaken by the

AMPS development team.

Chapter IV discusses several areas of interest that the AMPS development

team should consider as they continue their transition from a prototyping to a

production effort. In addition, the researcher presents several items of concern

surrounding current AMPS process improvement initiatives.

60

IV. THE AMPS SOFTWARE DEVELOPMENT PROCESS: SOME PROCESS
IMPROVEMENT CONSIDERATIONS AND SELECTED HEMS OF CONCERN

This chapter discusses some possible issues that the AMPS team (i.e.,

management and developer) might choose to consider as they shift their efforts from

those of software prototyping to those necessary for the development of a quality,

maintainable, and supportable software product. Additionally, the researcher discusses

some items of concern and areas where potential problems exist as the AMPS team

makes this transition.

A. TRANSinONING THE PROCESS: SOME CONSn>ERATIONS

The following quote, taken directly from the Department of The Air Force's

"Guidelines for Successful Acquisition and Management of Software Intensive

Systems." describes both the investment necessary and the benefits realized when an

organization commits itself to process improvement/change [Ref. 8]:

Transitioning a software development program into a mature, software
production requires sound management practices, an unremitting
obsession for process improvement, and a wise use of technology.
Elevating your programs productivity is neither simple nor cheap, but
well worth the investment.

The following sections forward some topics of interest to be considered by both

management and developer of any DoD software program, and specifically the AMPS

program, as it transitions from prototype to production software development.

61

1. Employment of a Software Capability Evaluation (SCE)

The AMPS software development process employed by C2SID, until recently,

was purely a prototype process. Now that the AMPS software development has

transitioned to production software, the development process will need to transition as

well. A Software Capability Evaluation (SCE) or similarly structured internal

assessment would be an effective way of determining the status (maturity-level) of the

present process employed by C2SID. [Refs. 8, 5]

The SCE is based on the SEI's Capability Maturity Model (CMM), which

provides a benchmark of sound, proven principles for quality. It is recognized by both

engineering and manufacturing and has been demonstrated to be accurate and effective

for software. The purpose of the model is to allow organizations to determine their

present software development capabilities and identify areas where they need

improvement. The CMM characterizes process maturity based on the extent to which

repeatable and measurable software engineering and management practices are

performed within the organization. The SEI Capability Maturity Model is depicted in

Figure 15. [Refs. 8, 21]

The SCE is typically performed by source selection teams on commercial

contractors. However, the same benefits could be realized by PM-AEC and C2SID if

an assessment team were to conduct an evaluation. While the "award" to C2SID has

already been made, an evaluation would serve both the management and the developer

62

in letting each know where the development process currently stands. Risk

management strategies would stand to benefit greatly, and future initiatives for process

improvement would be clearly indicated.

MATURITY
LEVEL CHARACTERISTICS KEY CHALLENGES RESULTS

5
OPTIMOING

- Improvementfed back hto process
- Automated tools used to identify weakest process elements
- Numerical evidence used to apply technology to critical tasks
- Rigorous defect-causal analysis and defect prevention

- Still human-iitensve process
- Maintain organization at

optimizing level
7

0 A /
Dl /
ti l /

C T /
TY/

»sips/.'-

ml< 1 fs
y K

4
MANAGED

(Quantitative)
- M easured process
- Minrnum set of quality and productivity measurements
- Process data stored, analyzed, and maintained

- Changing technology
- Problem analysis
- Problem prevention

3
DEFINED

(Qualiative)
- Process defined and institutionalized
- Software Engheering Process Group leads process improvement

- Process measurement
- Process analysis
- Quantitative quality plans

2
REPEATABLE

(Intuitive)
- Process dependent on individuals
- Base project controls established
- Strength in doing similar work, but new challenges present major risk
- Orderly framework forimprovement lacking

- Training
- Technical practices (reviews,

testing
- Process focus (standards,

process groups)

1
INITIAL

(Ad hoc/chaotic process)
- No formal procedures, cost estimates, project plans
- No management mechanism to ensure procedures are followed
- Tools not well integrated; change control is lax
- Senior management does not understand key issues

- Project management
- Project planning
- Configuration management
- Software quality assurance

Figure 15. The SEI Capability Maturity Model [Ref. 8, 21].

2. Improving the Software Development Process: Tliree Areas of Emphasis

Though certainly not an exhaustive list, the areas of process risk management,

measurement, and error/defect detection, removal, and prevention, are certainly of

paramount consideration in the improvement of any software development process

[Ref. 8]. The AMPS software development process is no exception, and could benefit

from increased emphasis in these areas.

63

a. Risk Management

Successful management of any software intensive system is dependent

on the effective use of risk identification, assessment, reduction, and control techniques

[Ref. 8]. Effective risk management can help build better software at reduced cost

with a relatively low investment. Productivity gains of 50% or more, and a greater

probability of producing a quality product, can be realized by incorporating disciplined

engineering risk analysis and management techniques into the management process

[Ref. 4].

The Department of The Air Force's "Guidelines for Successful

Acquisition of Software Intensive Systems" [Ref. 8], divides software risks into those

associated with the software development process, and those associated with the

product itself. The guidebook goes on to list the characteristics of software

development that make it prone to risk . That self-explanatory list follows [Ref. 8]:

• Software developments are very complex;

• Problem element relationships can be multidimensional;

• Software problem elements are unstable and changeable;

• The development process is dynamic;

• People are an essential development element and a problem source.

Because software development is a unique, complex, dynamic, people-intensive

endeavor, inherent risks accompany the process. Because of the very nature of the

attributes that bring them about, the risks cannot be completely "eliminated" by any

64

level of sound management. However a proactive management approach is the most

effective way to "control" them. The focus must be on identifying, assessing,

reducing, and controlling associated risks. The methods employed must be at once

systematic, repeatable, and based on proven principles. [Ref. 8]

The Software Engineering Institute (SEI) has developed a Software Risk

Evaluation (SRE), an assessment that focuses on the management-developer

relationship. For an SRE, the PM directs an independent SRE team to conduct a risk

evaluation of the developer's target software development task. Typically, the focus

of the evaluation is a "Top-Ten-List" of risk items that could potentially jeopardize the

program's quality, cost, or schedule goals. This Top-Ten List is compiled at least

monthly by the PM or an appointed Risk Advisory Group (RAG). It is completely

independent of the developer's Risk Management Plan. [Ref. 18]

The manager and developer both benefit from this disinterested,

objective, examination of the development process and/or software product. The

examination can further be used as a benchmark against which to measure the

developer's Risk Management Plan. In addition, the SCE may highlight new or

innovative risk management techniques and methods. [Ref. 18]

The product of the SRE is a set of findings that are processed to

provide results back to the PM. The SRE method, is depicted graphically in Figure

16 [Ref 8]. The method could be easily applied to the development effort for the

AMPS.

65

GOVERNMENT CONTRACTOR

■ Arsmisitinn Rpjtnnnxihilitv 1 Management

SQA CM
User

Community — {► User
Surrogate

^ Program
^Management

■ rn ^

Software
Development

Program A <
0)

§
5'
3
Z
O

8.
r

S
•8 c
3
u.
UJ
a.
(0

m
3
(0
O
a:

IV&V

y

2!
3
fi.

«A

kideDendent
>

■
V^ SRE Team 1

Figure 16. SRE Method Application [Ref. 8].

b. Measurement

The software measurement process must be an orderly, objective method

for quantifying, evaluating, adjusting, and ultimately improving the software

development process. It is used to assess product quality, progress, and performance

throughout all software life-cycle phases. The key elements of an effective

measurement process are [Ref. 8]:

• Clearly defined software development issues, concerns, questions;

• Processing of collected data;

• Analysis of indicators;

• Implementation of process improvements.

66

Data elements are collected based on known, and anticipated

development issues, concerns, and questions. These data are processed into graphical

or tabular reports to aid in the issues/concerns/questions analysis. These reports and/or

graphs (also called indicators) are analyzed to provide insight into developmental

issues. Finally, the analysis results are used to implement process improvements and

identify new issues and problems. [Ref. 8]

When employing metrics the manager/developer must ensure that the

metrics are; understandable and economical (i.e., cause little extra work to generate),

field tested, highly leveraged, timely and evenly spaced, and useful at multiple levels.

Recent surveys conducted by the Air Force have indicated that key measures (e.g.,

scrap/rework) are often not collected. To correct this, the Software Engineering

Institute (SEI), Government, industry, and academia have developed a set of "core

metrics" that if properly employed, can be used by program managers to make

informed decisions throughout the software acquisition life-cycle. These core metrics

are size, effort, schedule, quality, and scrap/rework [Ref. 8]. A brief discussion of

each follows.

Size. The management/developer should track actual software size

against original estimates, incrementally, and for the total build. Data requirements for

these measures include distinct functional requirements in the SRS, the number of

software units contained in the SDP or SDD, and source lines of code (SLOC) or

function point (FP) estimates for each CSCI compared to the actual SLOC or FP

listing for each software unit. [Ref. 8]

67

Effort. Actual versus planned staff-hours expended should be tracked

from day one of the project. It is desirable to break these labor/support staff

expenditures down further into task areas, such as experience level and task

assignment. [Ref. 8]

Schedule. This measure tracks performance toward meeting

commitments, milestones, and dates. Entry and exit criteria for each event or

milestone must be agreed upon at the outset. Only then will what constitutes progress

slippage and revision be placed on common ground between management and

developer. [Ref. 8]

Quality. This is a simple measure of defects in the code. Defects must

be identified, tracked, and resolved, subject to rigorous configuration management

rules. The defect discovery and resolution rate is an excellent measure of software

health. [Ref. 8]

Scrap/rework. This is a measurement of the amount of effort lost when

portions of the program must be either scrapped or reworked due to defects or

performance shortfalls. More than any other metric, scrap/rework measures reveal a

developer's process maturity level. [Ref. 8]

In the case of the AMPS, a set of core metrics like these would be of

great use to both management and developer. Little investment would be required,

and the payoffs could potentially be great.

68

a Error/Defect Detection, Removal, and Prevention

Defect analysis is probably the most important aspect of software

process improvement. If quality software is the goal, defects and their causes must be

detected, eliminated, and prevented. The number of errors and defects (i.e., in the

code itself) injected into the software by requirements analysts, designers and

programmers, can be quite large. One researcher estimated defects per SLOC at 50-95

per thousand lines of code (KLOC.) [Ref. 14]

Often the defect cannot be detected through tests and does not show

itself as output. The problem arises when the software is stressed beyond the limits of

its developmental testing. It is at these times, when the software is stressed to its

maximum performance, that defects in the code can become extremely costly,

sometimes deadly. [Ref. 8]

Since defect free software is presently a near impossibility, the best way

to proceed is to learn from our mistakes and build it right the next time. Defect

Causal Analysis is an effective method employed in this endeavor. The object of

defect causal analysis is to both discover defects, and to pinpoint what caused the

defects to occur. Thus it is an effective technique for both identifying problems and

preventing defects. The defect causal analysis method is driven through either the

actions of a process action team (PAT) and/or peer inspection teams. These teams are

made up of small groups of developers and software verifiers who analyze defects and

determine their causes. These teams are also responsible for determining how to

69

remove the cause of the defect and for implementing process change. Thus the

developers drive the improvement process. [Ref. 8]

Defect removal efficiency is a cumulative measure (a metric) that is

defined as the ratio of defects found prior to delivery of a software application to the

total number of defects found throughout its development. This measurement gives

the cumulative percentage of defects that have been removed by the end of each

development phase. The focus is on early removal of defects, since the cost of defect

removal almost doubles with each phase of development [Ref. 8]. Some defect

removal strategies include reviews, audits, inspections (e.g. informal and formal) and

walk-throughs.

By subjecting the developer's work to the scrutiny of peers and/or

Government management, these methods can motivate higher quality work. Formal

peer inspections, it has been estimated, can eliminate approximately 80% of all

software defects [Ref. 2].

Software defect prevention is a clear indicator of the quality of the

development process. The success of prevention efforts is directly related to the

degree of process improvement accomplished throughout the development life-cycle.

The general idea is to do things better up front and avoid substantial testing and

inspection expense later on. This is when defects that are found are harder and far

more costly to fix. Generally speaking, the higher the "maturity level" of the process,

the more effective the defect prevention initiatives. [Ref. 21]

70

The above methods/concepts are integral to any software development

process improvement effort. In the case of the AMPS, some of these concepts are

being, or soon will be, implemented. If they are embraced by management and

developer alike, they will go a long way toward helping the process maintain the level

where the development of quality, maintainable, supportable software is the result.

3. MIL-STD-498 : Not Required, But Useful

Though today's acquisition environment does not promote the use of military

standards, if the use of a non-government (e.g., commercial or performance) standard

is not acceptable or cost effective, a MilSpec or MilStd can be used. This requires an

appropriate waiver from the Milestone Decision Authority. [Ref. 7]

MIL-STD-498 was specifically developed because no commercial alternative

existed or was expected to be developed for several years. Issued for an interim

period of two years, the standard is to be incorporated into an International Standard

Organization (ISO) standard (ISO 12207), which will have a U.S. implementing

standard, IEEE 1498. This will be developed jointly by DoD and industry within the

next two years. [Refs. 7, 8]

MIL-STD-498 is the principal standard for all DoD software development. It

provides a framework of activities and documentation suitable for all software-

intensive systems, be they weapon, C2, or management information systems.

Consisting of the standard and 22 Data Item Descriptions (DIDs), the package provides

a single coordinated approach to software development within DoD. Far superior to

71

its predecessors, the standard is compatible with incremental and evolutionary

development models, non-hierarchical design methods and computer aided software

engineering tools [Refs. 8, 33]. A discussion of the benefits realized through the use

of MIL-STD-498 follows.

Designed to accommodate "Grand Design" (waterfall), "Incremental" (e.g., Pre-

planned Product Improvement), and "Evolutionary" strategies, MIL-STD-498 is written

in terms of developing software in multiple "builds." The builds can be prototypes,

versions possessing partial functionality, or other partial or complete versions of the

software. MIL-STD-498 is replete with instructions describing how to interpret the

standard's key activities for projects employing multiple builds. [Ref. 33]

MIL-STD-498 offers alternatives to formal review and audits. Often cited as

distractions from "real work," formal reviews and audits result in significant additional

labor (e.g., preparation of review/audit documents, etc.) and sometimes questionable

added value. In their place, MIL-STD-498 calls for more frequent, informal joint (i.e.,

management/developer) technical and management reviews. These reviews focus on

natural work products rather than specially generated documents and materials. The

idea is to perpetuate open communication between management and developer with

minimum waste of time, resources, and energies. [Ref. 33]

The standard has a decreased emphasis on documentation and increased

compatibility with CASE tools. MIL-STD-498 activities that call for information

generation do not require the developer to "prepare a particular document," but rather

to "define and record" information. This allows project information to be collected in

72

its natural, working form, for instance, in CASE tools. Preparation of particular

documents is dramatically de-emphasized. Additionally, the standard emphasizes not

making work products deliverable, whatever their form, without reason. The standard

still requires the work to be performed, however the product may or may not be

deliverable. A point to note here is that management still has access to the work at

the developer's facility. [Ref. 33]

Additionally, MIL-STD-498 requires the developer to define and apply software

management indicators (metrics) to the development effort. The developer is given the

latitude to determine the metrics to be used (e.g., in the SDP), and the required

management reviews. [Ref. 33]

The above are but a few selected positive attributes of MIL-STD-498. The

standard is perfectly compatible with the development effort for the AMPS software,

and would provide a sturdy, yet flexible, framework in which to operate. Until a

comparable commercial standard is available for program employment, application of

MIL-STD-498 might be a beneficial approach. [Refs. 7, 33]

This chapter has until now focused on a few areas of consideration for an

AMPS process improvement effort. The chapter now concludes with a brief

discussion of a few items of concern noted by the researcher during his examination of

the AMPS software development process.

73

B. TRANSmONING THE PROCESS : SELECTED ITEMS OF CONCERN

It is the nature of a process in transition to be rife with identified, and

sometimes unforeseen, risk. The AMPS process is no exception to this. In the course

of this research, several areas of concern emerged. The following section discusses a

few of those areas. While none will appear surprising to anyone involved with the

AMPS program, they are nonetheless worthy of a brief discussion.

1. Cultural Change : A Difficult Process

The concept that "change is difficult" has been around for some time. Niccolo

Machiavelli recognized the difficulty encountered when attempting to change the status

quo. In 1513 he wrote [Ref. 17]:

There is nothing more difficult to take in hand, more perilous to
conduct, or more uncertain of its success, than to take the lead in the
introduction of a new order of things.

Typically, people are most comfortable when operating in a stable, familiar

environment. Any action to disrupt that environment is likely to be met with

resistance. Effective, lasting cultural change requires a top-down commitment by

management, the empowerment of development team members, and a "team spirit," to

hold the initiative together.

Cultural change requires the institutionalizing of a new way of thinking and

working for team members. This can be brought about by changes in procedures,

training of personnel, increased (process) automation, and the addition of tools [Ref.

8]. Additionally, lasting process improvement can only occur when a rigorous

74

software engineering process is applied to the human process. Improvement objectives

must be clear, and attainable through process change supported by technology (e.g.,

tools, automation, etc.). Above all, there must be a commitment to never return to the

old ways, even when the new methods at first appear to impede the process. [Ref. 8]

Management (i.e., PM and/or developer) must exhibit an unfaltering, firm

commitment to the process change, while exhibiting flexibility, common sense, and

technical understanding. Realistic expectations and patience are called for as well.

Any process/cultural transition is bound to be a "bumpy ride" at times.

Development team members must be empowered to make both incremental and

revolutionary change. Problems that arise become everyone's problems, and buy-in

and ownership of process change becomes manifest to the effort. Additionally, area

experts are motivated to apply their knowledge to specific problem areas. They are

often the source of optimal solutions. [Ref. 8]

A shared objective and a common game plan are the hallmarks of any team.

Without these elements the team cannot ultimately be successful. In addition, a team

spirit must be fostered that allows it to persevere in times of difficulty. The team

must be capable of rallying as a group to overcome, or outflank, any obstacle. [Ref.

8]

The AMPS software development process has been very successful to date and

all program objectives have been attained [Ref. 25]. This is no small feat for a

program with the breadth and sophistication of the AMPS. Many will question, or

even resist, any effort to tinker with a process that has proven successful. The old

75

adage "If it ain't broke, don't fix it!" readily comes to mind. The truth of the matter,

however, is that this is very poor advice [Ref. 8], Especially when concerning a

program such as the AMPS, that has itself undergone an evolutionary change [Ref.

25],

Furthermore, in today's rapidly changing environment of software development,

what worked best yesterday, might not be optimal for tomorrow. With new tools and

methods constantly being made available or improved, management and developers

must exhibit a nimbleness, and a propensity to exercise the adage "If it ain't broke,

break it!"

2. CASE Tool Employment for Reverse Engineering The Interim AMPS
Code : Not A 'Silver Bullet"

This concept is taken from an article by Dr. Fred Brooks, that a single tool or

method will be the "silver bullet" that will cure software quality or productivity

problems (i.e., kill the werewolf) [Ref. 13]. Surprisingly, more than 70% of U.S.

software managers believe that there are tools, methods, and concepts available that

will solve many serious development problems [Ref. 13]. This myth is often

perpetuated by the vendors of the tools or authors of the methods themselves, that see

great gain in touting their development as the cure-all for a multitude of software

development woes. The bottom line, however, is that there are no "silver bullets."

There is no single method, tool, or concept that, in itself, can effect large

improvements in any tangible aspect of software performance (e.g., quality,

productivity, etc.) [Ref. 13], More meaningful, by far, is a multi-faceted approach

76

toward eliminating the problem. Since software problems tend to be quite diverse,

improvements should occur in parallel [Ref. 13].

In the case of the AMPS, the search is on for the optimum CASE tool for the

pending reverse engineering of the code. At the time of this research, that tool had yet

to be determined. Furthermore the expectations of the tool's eventual actual utility in

this effort were quite diverse [Ref. 32]. It was evident, however, that some people

involved with the program tended to think of the CASE tool as a "silver bullet" of

sorts.

Probably the most realistic assessment of the tool's future utility was described

by one member of the development team. The individual recognized both the absolute

necessity of the tool in this effort, and its probable limitations. While a Software

Design Document (SDD) form of output, and some type of on-line documentation and

maintenance capabilities are expected, other important capabilities will likely be

lacking. For instance, documenting programmer "intent" throughout the code, could

very well be a manual, time intensive "Sit down with the programmer and interview

him," type effort. [Ref. 32]

For the AMPS software development effort, there is a lot riding on the output

of the CASE tool in the reverse engineering effort. If successful, the program will

clear a difficult obstacle, and the likelihood of its future success will be greatly

increased. Failure will mean a large set-back in the drive to make the AMPS software

maintainable and supportable. It is human nature to hope for a cure-all in a situation

77

like this. However, realistic expectations and risk mitigation plans must be the order

of the day if the effort is to succeed.

3. Programming Language for the AMPS : Ada is the Future

The original prototype nature of the AMPS software adequately explains the

choice of ANSI C as the programming language. As already discussed, the original

approach called for the AMPS production software to be written (in Ada) by a

commercial contractor. The transition to the in-house effort for the development of the

production software, however, has significantly changed the approach. [Ref. 25]

The AMPS program will now be looked at for conversion to Ada at the end of

the development cycle (e.g., Version 8.0, FY 99). This is probably optimal from a

requirements definition standpoint, as requirements should be stable by this time.

Additionally, the current (i.e., ANSI C) software will be available to support the

upcoming Force XXI experiments and aircraft-modification fieldings [Ref. 25]. This

would likely not be the case if conversion to Ada was directed today. Therefore,

immediate conversion to Ada is probably not warranted nor desirable. The program

would realize little value added in the near term. Also, learning and data-gathering

opportunities would be lost in the upcoming digital exercises, and hard-won user

credibility would likely be compromised. [Ref. 25]

This being said, the case can still be made that realistic, well thought out plans

for future AMPS Ada conversion should be a near-term program objective.

Fortunately, evidence of just such planning was found at SED-AV [Ref. 36], That

78

SED-AV is contemplating this now is a good indication. If the developer does not

accomplish conversion to Ada within the development life-cycle of the AMPS

software, due to fiscal or schedule constraints, it may well make sense to carry out the

conversion during PDSS [Ref. 8], But a difficult question to answer is: If we cannot

afford (in time or cost) to re-engineer during development, will the funding for such a

major undertaking be available during PDSS? The outlook is doubtful.

In any event, DoD is committed to Ada for the foreseeable future. If the

AMPS is to be successful, it will need to be maintainable. All future software support

organizations will be capable of supporting Ada products. Products developed in

languages other than Ada products will be more challenging to maintain and continued

support for such systems is questionable. [Ref. 8]

Many of the early limitations associated with Ada (e.g., lack of validated

compilers, inadequate tool support, etc.) have been mitigated or corrected [Ref. 8].

The reasons for using Ada for embedded software become more compelling every day.

Its benefits are many (as depicted in Figure 17 [Ref. 8].) Ada acts as an enabling

technology for a sound, engineered software development process [Ref. 8].

Today, more than ever, Ada makes sense. Especially, for systems as integral as the

AMPS will one day be.

79

RELIABILITY MAINTAINABILITY

Self Error
Detection

Understandable

Self Error
Correction/

REUSABILITY

Supports
Engineering
Principles

Modular

Robustness
Reduced Software Failure Rate

Durablity
Transparency Transition Ease

Suppoitablllty

Standardized]
Language |

Portable
between
Platforms

Automatic
Applicalon
Adaptability

Supports
Object-

Oriented

Reduced Life Cycle Time and Costs:
• Less Development
- Less Rework
- Less Maintenance

Figure 17. Summary of Ada Feature Benefits [Ref. 8].

C SUMMARY

This chapter offered some insights that the AMPS development team might

consider as they transition their software development process to a new phase.

Addressed were; 1) Selected areas to consider in the management of process

improvement; 2) Possible use of an SCE to determine where the AMPS software

process is, and where it needs to go, and; 3) Some of the benefits that could be

realized through the us of MIL-STD-498. Additionally, a few selected items of

concern were briefly discussed. They included; 1) The difficulties of implementing

cultural change; 2) The employment of CASE tools and their limitations, and; 3) The

benefits of Ada and the need to plan in depth now for Ada conversion in the future.

80

V. CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions and recommendations drawn from this

study of DoD software development activities, specifically those employed in the

development of the AMPS. The answers to the primary and subsidiary research

questions are also presented. The chapter concludes with recommendations for further

research.

A. CONCLUSIONS

In the past, software development activities within DoD have been notable for

their propensity for going over budget, getting far behind schedule, and over-running

projected costs. Many projects have ended in outright failure after much time and

untold resources have been expended toward their development. Needless to say,

desired capabilities have been left unfulfilled in many instances because of this

"spotty" record of performance in the crucial area of software development.

The winds of change are blowing, however. It is now clear that software will

drive the weapon systems of the future. Indeed, software is on the critical path for all

major weapon system developments of the future. The Army's focus on the "digital

battlefield" lends further credence to the observation that software is a key part of the

future for the Army and DoD.

Additionally, the large budgets of the recent past are behind us. DoD cannot

afford to squander its resources; The old propensity of "throwing money at the

81

problem to make it go away" is a thing of the past. Therefore, methodologies,

practices, and procedures must be well planned, tested, and proven. Best practices

must be recognized and vigorously applied. Education must be emphasized and

continuous.

Great strides have been made in the realm of software development. DoD, and

commercial industry are well on the way to knowing what it takes to optimize the

software development process. The use of prototypes for requirements analysis and

specification, evolutionary and incremental development/delivery methods, and the

development and application of sound software engineering practices/procedures are

clear examples of large steps in the right direction. Development and application of

standards that accommodate the above practices, while providing a framework for

development efforts, is further evidence of this movement toward more effective

software development.

The AMPS software development process is worthy of study because it is

illustrative of a process with the potential of evolving into one optimized for software

development. The groundwork has, in many instances, already been laid for this

transition, and efforts are continuing. If a continued studied, consistent application of

emerging concepts, standards, and methods is applied to this process, it will serve as a

process test-bed for software development projects, both large and small. Challenges

brought about by process transition, the methods employed in dealing with those

challenges, and the end results of the new process (e.g., the software product), will be

82

clearly displayed. Newfound insights can be applied to software development

activities throughout DoD, adding to the growing data-base of knowledge in this area.

B. RECOMMENDATIONS

The following recommendations are drawn from this study of the DoD software

development environment and, specifically, the case study of the AMPS. They are

applicable to any DoD software development effort, be it large or small. The list is

only representative of the myriad of concepts, methods, and procedures software

developers and managers must consider in their pursuit of quality, supportable,

maintainable software.

1. Implement a Constant Process Improvement/Software Engineering
Framework

Within the context of process improvement, three areas worthy of focus are:

1) risk management; 2) measurement of the process, and; 3) quality. Risk, because it

cannot be totally avoided, should be embraced by both management and developer.

Appropriate risk mitigation plans/techniques must be constantly formulated, revised,

and implemented. Measurement of the process must be undertaken, through software

capability evaluations (SCEs) and the application of a set of "core metrics." This will

help to determine where the process stands and what actions need to be taken to

further improve it. Quality, must be built in to the process, and the product, through

informal and formal testing procedures, as well as the application of IV&V.

83

2. Employ Appropriate Standards and Tailor to the Project

The amount of latitude given today to management and developer in this area

is unprecedented. In this regard, there is potential for great good, to be done in the

field of software development. The selection, use and enforcement of sound standards,

like MTL-STD-498 and eventually its IEEE equivalent, will lay down a framework for

an "engineered" software development environment. Additionally, management

documentation and deliverable products that fail to add value to the process/product

will be minimized.

3. Ensure All Stakeholders Participate in Requirements Definition and
Analysis

Users, developers, testers, and maintainers must share these responsibilities and

must ensure requirements are documented , implementable, and testable. Integrated

Process and Product Development Teams are particularly well suited to this type of

effort. Additionally, development of prototype software products, and testing and

IV&V by the eventual maintainer, are methods to ensure this.

4. Use Commereial-Off-The-Shelf (COTS)/Reusable Components When
Appropriate

Use COTS/reusable components when available and appropriate, but do not

modify them. In addition, one should be aware of the associated data rights and

incumbent software supportability implications.

84

5. Acquire/Use Appropriate CASE Tools

Encourage the introduction of standard CASE tools for all subprocesses (e.g.,

development, testing, maintenance, etc.). But only fund and train for those tools that

will satisfy a defined need. Also, clearly understand both the benefits and limitations

of CASE tools. Don't fall into the trap of thinking of CASE tools as "silver bullets"

capable of solving a plethora of software development problems.

6. Use Ada from the beginning or Migrate at First Appropriate
Opportunity

Earlier limitations of Ada have been largely mitigated and the benefits of using

it are many (e.g., enhanced reliability, maintainability, and reusability). Ada is

designed to incorporate the principles of software engineering, thus allowing the

attainment of process software engineering goals. Lastly, DoD is committed to the

use of the Ada language over the long run. Barring a waiver, all new DoD software

products, and any major modifications and enhancements must be in Ada.

C ANSWERS TO RESEARCH QUESTIONS

1. Primary Research Question.

What are the major features and supporting attributes of the developmental

model employed for the Aviation Mission Planning Systems (AMPS), and how does

this process compare/contrast with more traditional developmental models?

The developmental model/process employed in the development of the AMPS

is one in transition. Initially, the process employed for the Interim AMPS was a

85

software prototype process. The primary objective was the production of functional

code for prototype fielding and evaluation/feedback. Inherent in this process were

those attributes favorable for rapid production of software prototypes.

In software prototypes, code design structure/architecture is of secondary

importance to functional code, and a top-down methodology of code design

development is abandoned. Additionally, management and technical documentation

are typically slighted, and configuration management procedures are cursory or often

bypassed. Testing/IV&V is informal or cursory. Quality software development is

second in priority to rapid functional software development.

These attributes, while favorable to the development of prototype software, are

unfavorable to the development of production-quality software. In light of this, in

conjunction with the fact that the AMPS is now to become production/fielded

software, the development process has begun a transformation.

The development process or model now in use for the development of the

AMPS could be characterized as evolutionary. The AMPS software has sustained an

operational product, with limited capabilities, from its initial fielding as a prototype.

More refined versions, with increased capabilities, are currently being developed.

Most aspects of the process are undergoing change, modification, and

improvement. Coding design structure will undergo an overhaul, beginning with the

application of a CASE tool, that will produce a design document (code structure) and

assist with code technical documentation efforts. Configuration management

procedures are in place that will assure software identification, communication, and

86

cost control procedures are implemented. Testing and IV&V is also becoming more

robust and will employ informal testing, formal qualification testing, and a documented

set of test procedures. Certification for the AMPS software, the ultimate goal of the

IV&V effort, should be possible by the first "true" production version (i.e., 6.0).

Central to the effort, is the software engineering framework that is gradually being

applied to the process.

The AMPS development model is an improvement over earlier, more traditional

ones (for instance the "waterfall" model). The evolutionary development model allows

far more flexibility on the part of management and the developer. The model is

conducive to the employment of more robust and flexible standards, like MIL-STD-

498. This not only streamlines the process for the development team, (e.g., reducing

documentation requirements, deliverables, etc.) but provides a sound software

engineering foundation for the development effort.

Additionally, unlike the waterfall model, early user involvement is inherent in

this model. This is because of the requirements of this model for the development and

demonstration of software "increments" (i.e., additional capabilities). Also, this strategy

is particularly suited to situations where the general scope of the program is known,

but only a basic core of functional characteristics can be defined or detailed system-

level requirements are difficult to determine. As requirements are further defined,

functionality and changes are able to be added because of the flexible, modular nature

of the core capability. This does not hold true for the waterfall model and its

products. Lastly, when an evolutionary strategy is employed, developmental efforts

87

are conducted within the confines of a plan for advancement to an end capability.

With the waterfall model, the "plan" may change as requirements are added or change,

and the end state or capability becomes a moving target.

2. First Subsidiaiy Question.

What are the primary features and attributes (both beneficial and

detrimental) of traditional software development methodologies (waterfall,

sequential, etc.) that were primarily used in conjunction with DOD-STD-

2167A?

More traditional models of software development, like the "waterfall" model,

were a good first step toward applying a disciplined software engineering framework

on an environment previously characterized by a code-and-fix method of software

development. This type of strategy placed emphasis on initial requirements and design

activities and on producing documentation during the early developmental phases.

However, this strategy does not support modern developmental practices like

prototyping and automatic code generation. Additionally, initial requirements are

seldom comprehensive. They are added to, or change throughout the development

process. Also, documentation requirements for this model tended to be excessive

while the model's associated standards are inflexible and requirement heavy.

The waterfall-type model is "lock-step" in nature, each activity being a

prerequisite for following activities. Additionally, the model does not expose

integration problems until the later stages of development, when fixes are far more

88

difficult and expensive. Lastly, using this strategy, a finished product is not available

until the end of the process. This tends to discourage user involvement.

3. Second Subsidiary Question.

Citing recent developments in software engineering, and the directed

movement away from reliance on MIL/DOD-STDs, what are the attributes of more

current models employed in the development of mission critical computer

resources (MCCR) for major weapon systems?

More current methods or models for software development emphasize and

accommodate the application of a software engineering environment. This includes

the use of CASE tools, and compatibility with software engineering methods employed

in the areas of measurement, analysis, and design, as well as coding, testing, and

reuse. Lastly, the models support procedures, training, and people, as they relate to

the application of an engineering discipline.

Current models or strategies (i.e., evolutionary development or incremental

delivery) accommodate the application of new, more "user friendly" standards (e.g.,

MIL-STD-498 and/or IEEE 1498) and emphasize tailoring with their use. With these,

by-products of the process that are not value-added are eliminated (e.g., unneeded

documentation requirements/products, etc.)

These models emphasize early user involvement and accommodate the

addition of software functionality and changing requirements. Also, the models are

compatible with Ada, and concepts like object oriented design (OOD). Lastly, the

89

models are more compatible with the way in which software is actually developed,

where efforts are repetitive, often in parallel, and non-sequential.

4. Third Subsidiary Question.

What improvements are realized when MCCR is developed through a process

such as the evolutionary model employed in the instance of the Aviation Mission

Planning System?

The improvements realized through the employment of the evolutionary model

are many and diverse. Following are but a few of the benefits realized. First, this

model allows for better requirements definition, as software prototypes allow the user

and developer to better define needed capabilities. This translates to a more stable

development environment, as most requirements are defined up front. Regardless, the

model accommodates both additional functionality, and requirement changes

throughout the process.

Early user participation and feedback through the prototypes serves to facilitate

buy-in, while getting a product to the field earlier than otherwise planned.

Additionally, needed interfaces are more readily identified and integrated.

In addition, defects and errors are found earlier when an evolutionary process is

employed. Using a model such as the waterfall process, defects and errors are often

not found until later in the process (e.g., during integration activities). This translates

to easier, quicker, less resource intensive fixes for the evolutionary model, and a

higher quality product in the end. Hence, the product that emerges from the process is

90

more capable, as user defined requirements have been met, the user has accepted the

product, and he is comfortable with its use. In addition, the quality level of the

product is significantly higher.

D. RECOMMENDATIONS FOR FURTHER RESEARCH

1. Re-examine the AMPS Software Development Process

The process is currently one in transition and it is not clear whether process

improvement/optimization initiatives will be embraced and/or successful. It would be

interesting and informative to re-examine the process some time in the future to

determine if process improvement initiatives have taken hold, and paid off. Along

these same lines, the researcher could identify problem areas of the transition for

management and developer and investigate how these challenges were overcome.

2. Cost-Benefit Analysis of AMPS Conversion to Ada

Conduct an in-depth analysis of the cost versus the benefits of converting the

AMPS to the Ada programming language at some point in the life-cycle of the

software. The approach could examine the feasibility of converting to Ada during the

software development process and/or during PDSS. This research would represent a

valuable product to future AMPS management, development, and maintenance staffs.

3. Design the 'Optimized" Software Development Organization
and Process

Applying today's evolving standards, methodologies, concepts, etc., design the

"optimized" software development organization and process. Detail how a

91

development effort would be conducted within this organization and process. The

intent should be to design the organization and process so they are as streamlined as

possible, yet still capable of producing production-quality software. This model

organization and process could be a valuable tool, serving as a benchmark for other

software development activities within DoD.

92

APPENDIX

QUESTIONS FOR THE AMPS DEVELOPMENT TEAM

AMPS Development Process-General

1. What would constitute an accurate description of the AMPS development process
approach; evolutionary, incremental, spiral, a combination?

2. How are systems interfaces (e.g. A2C2, AVTOC, IDM, etc.) being managed so the
AMPS will not be a stand-alone system within the Force XXI architecture?

3. How has the evolution in use of standards (e.g. DoD-->MIL-->Commercial)
impacted the AMPS development process?

4. As Force XXI user requirement are bound to continue to evolve as needs become
better understood, how is the AMPS being isolated from the harmful effects of
"requirements creep?" Will this be accomplished through rapid prototype, evolutionary
development/delivery, incremental design?

5. What is the organizational structure of the CECOM RDEC (AMPS) development
office? Of interest are positional attributes and responsibilities, manning, experience
levels, etc.

6. Generally speaking, what type of software engineering environment exists within
the AMPS development office? Within the SEI's Capability Maturity Model (CMM),
where does the organization fall? When was the last Software Capability Evaluation
(SCE) completed?

7. How many source lines of code (SLOC) does the AMPS program currently
contain? Is the effort also being measured by function point (FP) or other
measurements?

8. The program is currently written in ANSI C, to Computer Software Configuration
Item (CSCI) level; Are there possible plans to convert to Ada for the production
version of the program?

9. Generally speaking, from requirements analysis to CSCI integration and testing,
how does the AMPS developmental process compare/contrast to a typical DoD-STD-
2167A driven "waterfall" process? Can you provide a general chronological
description of the process?

93

10. The Battle Labs; Will they assist/perform system integration/test for the AMPS
within the Force XXI system architecture?

AMPS Development Process-Configuration Management

1. How are/were CSCI's ID'd/generated? Usually, these are based on the RFP/WBS,
does this hold true for the AMPS?

2. Is there a published software development plan (SDP) and configuration
management plan (CMP) for the program? Who is the designated configuration
manager?

3. How are Class I and Class II changes controlled for the program? Does the
Government employ a Configuration Control Board (CCB)?

4. What baseline has been established for AMPS? A Functional, allocated, product
baseline, or an informal/developmental baseline?

5. Was the Air Force Mission Support System (AFMSS) used as a baseline? If so,
how will you ensue that baseline changes/problems found "down the road" by the Air
Force are communicated to your (or the PDSS) office?

6. Does CECOM RDEC or your office specifically, employ a CCB to formally
process changes to the AMPS baseline?

7. Does CECOM RDEC or your office employ a S.W. configuration review board
(SCRB) to review/evaluate all proposed changes to the s.w. baseline and to
process/dispose of the s.w. problem reports (SPR's)? If yes, who makes up the review
board?

8. Does CECOM RDEC or your office employ a s.w. development library where
AMPS related data is stored for future use? Does this library also perform as the
central point for configuration management?

9. Are s.w. development folders (SDF's) maintained on all AMPS CSU's, CSC's, and
CSCI's?

AMPS Development Process-Tesl/Eval. & IV&V

1. Is there a published s.w. development test plan (SDT) for the AMPS?

2. Informal testing of CSU's and CSC's, undoubtedly is conducted routinely, but what
about formal testing and the test readiness review (TRR)?

94

3. So far, has AMPS testing been of a CSCI (integration) testing nature?

4. How is/will "hot bench" testing be conducted? Will it be conducted within the
current hardware configuration or the target configuration?

5. Will DT&E and OT&E be combined or sequential? The AMPS seems to lend
itself to combined testing. Comments?

6. Will all three types of testing take place within the AMPS process (e.g. human,
s.w. only, and integration)?

7. Will AMPS testing be bottom-up, top-down, or combined? Will test reviews/audits
(type/frequency) be IAW DoD-STD-2167A, MIL-STD-498, or commercial practices?

8. How will the environment in which the AMPS will operate be simulated during hot
bench/system integration testing as some of the other systems are at earlier
developmental stages than the AMPS? Do system simulators exist for these other
systems?

9. Is the AMPS considered a mission critical system requiring IV&V? Generally
speaking, what is the IV&V approach to the system/process?

10. Was test s.w. bought/brought with the AFMSS "core" system or are you to
develop your own?

11. Is the AMPS IV&V level (e.g. task level) I, H, or III?

12. Are there/will there be criteria/thresholds established for the termination of IV&V
efforts?

13. If IV&V is to be employed, are there currently any good cost estimates available
for this effort (percentage of total cost of AMPS development.)

14. Has the need for IV&V increased/decreased with the adoption of MIL-STD-498
and now commercial standards?

15. Has any consideration been given to the most suitable IV&V agent? Will the
effort be in-house or an outside contractor?

95

AMPS Development Process-Applied Management Principles

1. Speaking to the industry movement to accommodate "evolving requirements," does
your process do this and if so, how? Is evolutionary development/delivery being
used?

2. Software development requires adequate documentation to allow for s.w.
support/evolution. Is there a plan to address documentation shortcomings? How will
you ensure quality, "after the fact," documentation?

3. Does the AMPS development process employ structured design/programming,
inspections and walk-throughs, computer aided s.w. engineering, program design
languages (PDL's)?

4. Do you employ a requirements matrix that shows how each system level
requirement is satisfied by a particular module?

5. What method/procedure is being employed to control interface controls (e.g. both
within, and outside the system)?

6. Does the philosophy "Thought first, regulation second," appropriately describe the
AMPS development model?

7. Is the AMPS process accurately described by the following: Evolutionary
development, maximum modularity, change-ability, and growth potential? If so, what
are some examples?

8. What core group of metrics is/will be employed to track the AMPS
process/progress within your office, within the PM's office? Why are/were these
particular metrics chosen?

9. Of the metric set employed what is/will be the frequency in which they are
monitored/reported?

10. Is there a plan for metrics evolution throughout the development process as
changes in data needs, processing, and analysis evolve? Additionally, are
adjustments/refinements made to the metric set in areas in which progress is good or
level of data aggregation may be increased?

11. Is/will metric selection dependent on the CMM level of your office?

12. Does the PM have an in-house capability for metrics monitoring, or is an outside
agent being employed in this function?

96

AMPS Development Process-Applied Mananement Principles (Cont'd)

13. Of the following list of metrics, which are available to your office/PM office on a
monthly basis?:

- S.W size/cost status
- Manpower application status
- Cost/schedule status
- Defects/faults/errors/fixes
- Test program status
- Resource margins
- Quantitative s.w. spec, status
- Design/development status
- S.W. problem report status
- Delivery status

14. Is a cost model, such as COCOMO, used with the AMPS process?

15. Does your office use SLOC or FP's to measure size of the program?

16. In the area of manpower metrics, what is your office's ratio of total to experienced
personnel? 6:1, 5:1, 4:1, 3:1, 2:1, 1:1?

17. Have manpower metrics been tailored to track the staffing for each : 1)
Development task, 2) Skill (e.g. Ada, Database mngt. systems , 3) Organization (e.g.
S.W., Q.A, Test, etc.)?

18. Within the realm of Cost/schedule status metrics, how do you ensure visibility
into the s.w. development status? Is the s.w. WBS adequately defined? Please
explain. For instance, is the WBS product-oriented in nature?

19. Is each CSCI tracked separately?

20. Are resource margin (e.g. CPU/Memory, I/O utilization) metrics being closely
monitored both for the current host system and the target system?

21. For specifications metrics, how/when were the AMPS requirements baselined?
For example, did this occur during the specification requirements review (SRR)?
Additionally, did the AFMSS function as the initial AMPS baseline?

22. Can you cite a few ways in which the AMPS process focuses on defect
prevention and early fault detection?

97

23. What is a "ballpark" figure for the AMPS s.w. problem report (SPR) rate/range?
Typical rate is 5-30 SPR's/1000 SLOC.

24. Internal/external incremental delivery status metrics seem like a good idea for a
program such as the AMPS; Is this being accomplished? Examples include tracking
internal delivery to test organizations or external delivery to IV&V organizations.

AMPS Development Process-Risk Management

1. Risk management is paramount in the development of a program like the AMPS.
A few procedures/techniques that the program seems to employ are: 1) Evolutionary
design/delivery, 2) Rapid prototype/user involvement, 3) Use of COTS/NDI
technology (e.g. AFMSS), 4) Metrics application, 5) Employment of IV&V (?) agent.
Is this list accurate, and can it be added to? Please explain.

AMPS Development Process-Contract Considerations

1. What is the current contract arrangement for the AMPS program? For example,
what is the type of contract employed, and if incentives are employed, how are they
structured (e.g. what is incentivized and why)?

2. What alternative contract alternatives are being considered for the AMPS
production model? For example, will the work continue to be conducted in-house, or
will an outside contractor be utilized? What will be the contract type of choice, and
how will any incentives be structured?

98

LIST OF REFERENCES

1. Attanasio, Henry, "Contracting For Embedded Computer Software Within the
Department of the Navy." Masters Thesis, Naval Postgraduate School, Monterey,
June 1990.

2. Brykczynski, Bill, et al., "Software Inspections: Eliminating Software Defects"
briefing prepared by the Institute for Defense Analysis, February 5, 1993.

3. CECOM 93, Research, Development and Engineering Center, Promotional
Handbook, 1993.

4. Charette, Robert N, Software Engineering Risk Analysis and Management.
McGraw-Hill Book Co., New York, 1989.

5. Daskalantonakis, Michael J., Motorola, Inc. "Achieving Higher SEI Levels,"
Crosstalk-Journal of Defense Software Engineering, September 1995.

6. Defense Systems Management College, Mission Critical Computer Resources
Management Guide, 1989.

7. Department of Defense, MIL-STD-498, System Software Development and
Documentation, 5 December 1995.

8. Department of the Air Force, Software Technology Support Center, "Guidelines
for Successful Acquisition of Software Intensive Systems. " February 1995.

9. Development Team Questionnaire, Aviation Mission Planning System, (Appendix),
August 1995.

10. GAO Report, "Defense Doesn't Know What it Spends on Software," July 1992.

11. Guenther, Otto, LT. Gen., USA. "An Army Perspective on Software
Development." Crosstalk-The Journal of Defense Software Engineering, May
1995.

12. Jones, Capers, Applied Software Measurement. McGraw-Hill Book Co., New
York, 1991.

13. Jones, Capers, Assessment and Control of Software Risks, Yourdon Press, 1994.

14. Jones, Capers, Programming Productivity. McGraw-Hill Book Co., New York,
1986.

99

15. Kindl, Mark R., LTC, USA. "Software Quality and Testing: What DoD can Learn
from Commercial Practices," U.S. Army Institute for Research in Management
Information Systems and Computer Sciences, Atlanta, August 1992.

16. Kitfield, James, "Is Software DoD's A Miles' Heel?" Article, Military Forum. July
1989.

17. Machiavelli, Niccolo, The Art of War. 1521.

18. Marciniak, John J., and Donald J. Reifer, Software Acquisition Management:
Managing the Acquisition of Custom Software Systems. John Wiley and Sons,
New York, 1990.

19. Marshall, A.J., PROSOFT, Inc., "De-mystifying Software Configuration
Management," Crosstalk- The Journal of Defense Software Engineering. May
1995.

20. Mullins, Thomas, E. "Impact of Adopting Commercial Practices In Software
Development and Maintenance" Masters Thesis, Naval Postgraduate School,
Monterey, March 1995.

21. Paulk, Mark C, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, Capability
Maturity Model for Software Version LI, Software Engineering Institute,
CMU/SEI-93 -TR-24, February 1993.

22. Perry, William J., Secretary of Defense, Specifications and Standards -- A New
Way of Doing Business, Memorandum, 29 June 1994.

23. Program Manager, Avionics, PEO Aviation, Configuration Management Process
Description and Diagram, September 1993.

24. Program Manager, Avionics, PEO Aviation, Functional Description Document
(Operational Concept), Aviation Mission Planning System, February 1995.

25. Program Manager, Avionics, PEO Aviation, Program Review Briefing Packet,
Aviation Mission Planning System Working Group, August 1995.

26. Program Manager Avionics, PEO Aviation, Users Guide, Aviation Mission
Planning System, March 1995.

27. Project Manager, Aviation Electronic Combat "Acquisition Strategy Decision
Paper," Aviation Mission Planning System, February, 1994.

100

28. Project Manager, Aviation Electronic Combat, Test and Evaluation Master Plan,
U. S. A rmy Maneuver Control System, A rmy A viation Planning System (AMPS),
July 1995.

29. Project Manager, Aviation Electronic Combat, Top Level System Requirements
Document, Aviation Mission Planning System, June 1995.

30. Project Office, Aviation Mission Planning System (C2SID), AMPS Capabilities
Matrix, August 1995.

31. Project Office, Aviation Mission Planning System (C2SID), Interviews, 30 August
1995.

32. Project Office, Aviation Mission Planning System (C2SID), Interviews, 31 August
1995.

33. Radatz, Olson, Campbell, Logicon, Inc., "MIL-STD-498," Crosstalk-Journal of
Defense Software Engineering. February 1995.

34. Shimeall, Timothy J., "Software Engineering Developments," Technology Review
and Update Seminar for Technical Personnel, Naval Postgraduate School,
Monterey, April 1995.

35. Shimeall, Timothy J., Technology Review and Update Seminar for Technical
Personnel, Naval Postgraduate School, Monterey, April 1995.

36. Software Engineering Directorate (SED-AV), CECOM, Activities in Support of
AMPS Development and PDSS (Briefing Packet), August 1995.

101

102

LEST OF INTERVIEWS

1. Andreolo, James, Software Engineering Directorate - Avionics (SED-AV),
CECOM-RDEC, Ft. Monmouth, NJ, August 1995.

2. Banks, Hayes, Vitronics, Inc., AMPS Project Office (C2SID), CECOM, RDEC,
Ft. Monmouth, NJ, August 1995.

3. Bahary, John, Software Development Chief, C2SID, CECOM- RDEC, Ft.
Monmouth, NJ, August 1995.

4. Carpenter, Cindy, Configuration Manager, C2SID, CECOM- RDEC, Ft.
Monmouth, NJ, August 1995.

5. Donnely, John, System Dynamics International (SDI), PM-AEC, PEO AVN, St.
Louis, MO., August 1995.

6. Malinowski, Robert, Software Engineering Directorate-Avionics (SED-AV),
CECOM-RDEC, Ft. Monmouth, NJ, August 1995.

7. Sova, Robin, System Dynamics International (SDI), PM-AEC, PEO AVN, St.
Louis, MO., August 1995.

8. Tang, Dzung, Software Engineering Directorate - Avionics (SED-AV), CECOM-
RDEC, Ft. Monmouth, NJ, August 1995.

9. Tom, Anthony, AMPS Project Leader, C2SID, CECOM-RDEC, Ft. Monmouth,
NJ, August 1995.

10. Williams, Lennox, Software Engineering Directorate- Avionics (SED-AV),
CECOM-RDEC, Ft. Monmouth, NJ, August 1995.

103

104

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingham Road, STE 0944
Fort Belvoir, VA 22060-6218

2. Library, Code 13 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Defense Logistics Studies Information Exchange 1
U.S. Army Logistics Management College
Fort Lee, Virginia 238016043

4. Acquisition Library 1
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943-5103

5. OASA(RDA) 1
ATTN: SARD-ZAC
103 Army Pentagon
Washington, DC 20310

6. Professor David V. Lamm (Code SM/Lt) 5
Naval Postgraduate School
Monterey, California 93943-5103

7. Professor Martin J. McCaffrey (Code SM/MF) 6
Naval Postgraduate School
Monterey, California 93943-5100

8. Professor Orin E. Marvel (Code CC/OM) 2
Naval Postgraduate School
Monterey, California 93943-5100

9. LTC John T. Dillard (Code SM/Dj) 1
Naval Postgraduate School
Monterey, California 93943-5100

105

10. Program Manager, Aircraft Survivability Equipment 1
ATTN: SFAE-AV-AEC (COL Pat Oler)
4300 Goodfellow Blvd.
St. Louis, MO. 63120-1798

11. Program Manager, Avionics 1
ATTN: SFAE-AV-AEC (MAJ Wirth)
4300 Goodfellow Blvd.
St. Louis, MO. 63120-1798

12. Project Leader, AMPS 1
ATTN: AMSEL-RD-C2-BC-CC
Fort Monmouth, NJ. 07703

13. Keith R. Edwards 1
15 Ardmore Rd.
Newark, DE. 19713

106

