ARMY RESEARCH LABORATORY Conductivities of Lithium Tris(trifluoromethanesulfonyl) Methide in Aqueous and Nonaqueous Solutions at 25°C Charles W. Walker, Jr. and Mark Salomon ARL-TR-928 February 1996 19960313 084 # NOTICES # **Disclaimers** The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents. The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein. | REPORT I | Form Approved OMB NO. 0704-0188 | | | | | | | |--|--|---|--|--|--|--|--| | Public reporting burden for this collection
gathering and maintaining the data needs
collection of information, including suggest
Daws Highway, Suite 1204, Arington, VA | of information is estimated to average 1 hour per rid, and completing and reviewing the collection of a tions for reducing this burden, to Washington Head 22202-4302, and to the Office of Management and | iquarters Services. Directorate for info
i Budget, Paperwork Reduction Project | rmation Operations and Reports, 1215 Jefferson
t (0704-0188), Washington, DC 20503. | | | | | | 1. AGENCY USE ONLY (Leave blan | | 3. REPORT TYPE A | ND DATES COVERED
Report: Jun 95 to Feb 96 | | | | | | 4. TITLE AND SUBTITLE CONDUCTIVITIES OF LI METHIDE IN AQUEOUS A | 5. FUNDING NUMBERS | | | | | | | | 6. AUTHOR(S) Charles W. Walker, | | | | | | | | | 7. PERFORMING ORGANIZATION US Army Research Lab Physical Sciences D ATTN: AMSRL-PS-CC Fort Monmouth, NJ | ooratory (ARL)
irectorate (PSD) | | 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-928 | | | | | | 9. SPONSORING / MONITORING | AGENCY NAME(S) AND ADDRESS(| ES) | 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | | | 12a. DISTRIBUTION / AVAILABILIT | | | 12 b. DISTRIBUTION CODE | | | | | | Approved for public | release; distribution | n is unlimited. | | | | | | | 13. ABSTRACT (Maximum 200 work | • | | | | | | | | water and the aprotic so (DMF), and nitromethane conductivities at infinite experimental data with the Justice with and without is solvents to solvate lithiu number (water, PC, DMF infinite dilution for percanions, obtained by comincreases, and with one on thowever apply in water the methide anion. This water. Voltammetric measurements was stability and the increases. | In order to determine the solution properties of lithium tris(trifluoromethanesulfonyl) methide (LiMe) in water and the aprotic solvents acetonitrile (AN), propylene carbonate (PC), N,N-dimethylformamide (DMF), and nitromethane (MeNO2), conductance measurements have been carried out at 25°C. Molar conductivities at infinite dilution and ion pair association constants were obtained analyzing the experimental data with the Fuoss-Hsia conductance equation using the expansion of Fernández-Prini and Justice with and without inclusion of the Chen effect. The results show that according to the ability of the solvents to solvate lithium ion, ion pair formation is small or non-existent in solvents with high donor number (water, PC, DMF and AN) but fairly moderate, in nitromethane. Single ion molar conductivities at infinite dilution for perchlorate, hexafluoroarsenate, hexafluorophosphate, triflate, imide and methide anions, obtained by combining our results with literature data, decrease as expected as the ionic radius increases, and with one exception are always greater than that of the lithium ion. This general trend does not however apply in water where the limiting ionic conductance of the lithium cation is greater than that of the methide anion. This anomalous behavior is attributed to significant solvation of the methide ion in water. Voltammetric measurements indicate high electrochemical stability of methide anion. Such anodic stability and the increase in the transference number of lithium ion in LiMe solutions strongly support the use of this electrolyte in high energy, high voltage lithium batteries. | | | | | | | | 14. SUBJECT TERMS lithium tris(trifluoromethar | 15. NUMBER IF PAGES 18 | | | | | | | | ionic conductivities, transp
propylene carbonate, dimet | ort numbers, ion association, cy | ciic voitammetry,
cetonitrile, water | 16. PRICE CODE | | | | | | 17. SECURITY CLASSIFICATION OR REPORT | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFIC
OF ABSTRACT | 111 | | | | | | Unclassified | Unclassified | Unclassified | UL Standard Form 298 (Rev. 2-89) | | | | | Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 # **Contents** | | | Page | |---------------|--|------| | Introduction. | | 1 | | Experimenta | 1 | 1 | | Results and (| Calculations | 3 | | Discussion a | nd Additional Calculations | 8 | | Conclusion | | 10 | | References | | 11 | | | Tables | | | Table I. | Physical properties of solvents at 25°C | 2 | | Table II. | Molar conductivities of LiC(CF ₃ SO ₂) ₃ in various solvents and LiAsF ₆ in DMF at 25°C | 3 | | Table III. | Derived parameters at 25°C | 5 | | Table IV. | Anodic limits of DmpiX ionic liquids on Pt at 80°C | 7 | | Table V. | Comparison of present and literature conductivity parameters at 25°C | 8 | | Table VI. | Single ion molar conductivities, λ° , in various solvents at 25°C | 9 | | Table VII. | Cation transport numbers, t_+° , at 25°C | 10 | | | Figures | | | Figure 1. | Plot of the variance in molar conductivities (U from(eq. [5]) and K_a as a function of the distance parameter R_2 for LiC(CF ₃ SO ₂) ₃ in MeNO ₂ . Solid lines fitted empirically by a cubic spline, and the solid circle represents the point for $R_2 = q$ | 6 | | Figure 2. | Plot of the variance in molar conductivities (U from(eq. [5]) and K_a as a function of the distance parameter R_2 for LiAsF6 in DMF. Solid lines fitted empirically by a cubic spline, and the solid circle represents the point for $R_2 = q$ | 6 | | Figure 3. | Linear sweep voltammograms for LiX in DmpiX at 80°C.
X = AsF, PF, N(SO ₂ CF ₂) ₂ and C(SO ₂ CF ₂) ₂ | 7 | #### **INTRODUCTION** The search for highly stable and highly conductive lithium salts for use in both primary and rechargeable lithium batteries has been a major objective in numerous recent investigations. For safety considerations LiClO₄ is no longer considered for commercial use, and to avoid possible toxic byproducts of LiAsF₆ (e.g., see ref. 1), industry is focusing upon LiPF₆ as the prime candidate for use in a commercial rechargeable system utilizing liquid electrolytes. Our experience is that LiPF₆ is not as conductive as LiClO₄ or LiAsF₆, and, as shown below, the PF₆- anion is more readily oxidized than most other anions. The stable salt lithium triflate, LiCF₃SO₃, also suffers from low conductivities (2, 3), and in seeking new electrolytes, an important advance was made by Armand et al. (4) with the introduction of the imide salt LiN(CF₃SO₂)₂ [lithium bis(trifluoromethanesulfonyl) imide], or LiIm. This imide salt is attractive since it appears to be quite stable at high anodic potentials, and the conductivities of its solutions are comparable to those based on LiAsF₆ (e.g. see 3, 5). A more recent development involves the synthesis of a new lithium salt based on a new organic anion, LiC(CF₃SO₂)₃ [lithium tris(trifluoromethanesulfonyl) methide], or LiMe (6), and the basis of the present study is to determine the solution properties of this methide salt in several aprotic solvents and in water. This new salt also appears to have superior plasticizing properties when used as the electrolyte in gelled polymer systems based on polyacrylonitrile and poly(vinylidene) difluoride polymers (7). It should also be noted that the methide salt, LiMe, is highly soluble in aprotic solvents, and its electrolytic conductances are comparable with LiIm solutions. For example, in 1.0 mol dm⁻³ THF solutions, electrolytic conductances of 6.0 ·10⁻⁴, 1.0·10⁻² and 1.2·10⁻² S cm⁻¹ were determined, respectively, for LiCF₃SO₃, LiN(CF₃SO₂)₂ and LiC(CF₃SO₂)₃ (6). #### **EXPERIMENTAL** Solvents: All solvents used were high purity commercial products dried with activated N°. 3 molecular sieves before use. PC and AN were Burdick and Jackson "Distilled in Glass" grade products, DMF was "Analytical Reagent Grade" from Baker Chemicals, and MeNO₂ was "puriss" grade from Fluka. Another sample of acetonitrile (UV spectroscopic grade) was further purified by refluxing over molecular sieves and P₂O₅ and then fractionally distilled. The water content of these "dried" solvents as determined by coulombic Karl Fischer titration was in the range of 20 to 50 ppm. For the aqueous experiments, conductivity water was used and was prepared by passing tap water through two ion exchange columns followed by distillation in an all quartz still. The physical constants and electrolytic conductivities of the pure solvents are given in Table I. Salts: The preparation of LiC(CF₃SO₂)₃ is fully described in Ref. (6) and was 99.9+% pure as determined by ¹⁹F NMR spectroscopy. The salt has a sharp melting point of 272 - 273°C, is very hygroscopic and contained 46 ppm water; it was further dried in vacuum at 100°C before use. LiAsF₆ (US Agri Chemicals, Electrochemical grade) was dried in vacuum at 60-70°C and not treated further. **Table I.** Physical properties of solvents at 25°C | solvent | 3 | η/cP | $d_{\rm o}/{\rm g~cm}^{-3}$ | κ _o /S cm ⁻¹ | q/nm | DN ^a | |-------------------|-------|--------|-----------------------------|------------------------------------|-------|-----------------| | H ₂ O | 78.40 | 0.8903 | 0.99707 | 1.4.10-6 | 0.357 | 33 | | PC | 64.97 | 2.53 | 1.1995 | 1.4.10-6 | 0.431 | 15.1 | | AN | 35.96 | 0.3426 | 0.7765 | 7.7-10-6 | 0.779 | 14.1 | | DMF | 36.71 | 0.7939 | 0.9439 | 1.4.10-6 | 0.763 | 26.6 | | MeNO ₂ | 35.99 | 0.6162 | 1.1304 | 9.0•10-7 | 0.779 | 2.7 | ^a Gutmann Donor Number (29) For anion stability comparison tests using linear sweep voltammetry, salts based on the organic cation 1,2-dimethyl-3-propylimidazolium (Dmpi) were synthesized. The salts DmpiIm (I) and DmpiMe (II) were prepared and purified as described previously (8). The arsenate, phosphate and imide salts, DmpiPF₆, DmpiAsF₆ and DmpiIm were prepared as described in (8) using as received LiAsF₆ (FMC), LiPF₆ (Hashimoto), and LiN(CF₃SO₂)₂ (3M Company, St. Paul, MN). Conductivity measurements: Density measurements and conductivity measurements were determined, respectively, with a Parr DMS model 45 digital meter and a Wayne Kerr model 6425 Precision Component Analyzer which has an accuracy of \pm 0.05 %. Several measurements were carried out in Kraus-type conductivity cells in an oil bath thermostated to \pm 0.005 K, and others in Kraus-type cells in a water bath thermostated to better than \pm 0.02 K. In all cases except one run in AN as described below, conductivity measurements were begun by initially placing pure solvent in the Kraus cell, measuring the conductance, and then adding small aliquots of salt stock solutions with air-tight plastic syringes which were weighed before and after each addition. For run number 2 in acetonitrile, weighed amounts of salt were directly added to the solvent in the cell and resistances were determined after each addition. Conversion of molality to concentration units utilized solution densities calculated from the relations $$d = d_0 + Am$$ and $c = \widetilde{m}d$ In the above equations, d and d_0 are, respectively, the densities of the electrolyte solution and pure solvent in g cm⁻³, the constant A being evaluated from the stock solution concentration data, c is in mol dm⁻³, and m and \widetilde{m} are, respectively, in units of mol kg⁻¹ of solvent and mol kg⁻¹ of solution. Voltammetry studies: Linear sweep voltammetry was accomplished via a PARC 273 potentiostat/galvanostat under computer control in a Brinkmann three-electrode cell (Model EA 875-1/6), and for all studies a sweep rate of 20 mV sec⁻¹ was used. The working electrode was a 0.07 cm² Pt disk while Li foil (Foote) served as the reference and counter electrodes. To assure a stable reference potential, LiAsF₆, LiPF₆, LiIm and LiMe were added to their respective Dmpi⁺X⁻ ionic liquids to form a 0.020 mol dm⁻³ solution. We arbitrarily selected a current density of 1 mA cm⁻² to define the "anodic limit" of each ionic liquid. Because DmpiPF₆ and DmpiAsF₆ are solids at room temperature (8), for direct comparisons all linear sweep voltammograms were conducted at $80 \pm 1^{\circ}$ C. # **RESULTS AND CALCULATIONS** Conductivity studies: Molar conductivities, Λ/S cm² mol⁻¹, were calculated from the electrolytic conductances, κ , after correcting for the conductance of the pure solvent, κ_0 , and the results are given in Table II. Table II. Molar conductivities of LiC(CF₃SO₂)₃ in various solvents and LiAsF6 in DMF at 25°Ca | Λ | 10 ³ c | Λ | $10^{3}c$ | Λ | $10^{3}c$ | Λ | $10^{3}c$ | |--------|-------------------|----------|--------------|----------|--------------|---------|------------| | Wa | ater | acetonit | rile (run 1) | acetonit | rile (run 2) | dimethy | lformamide | | 63.771 | 1.4169 | 135.53 | 0.82718 | 127.35 | 3.9722 | 52.479 | 2.4957 | | 63.569 | 1.6677 | 133.02 | 1.4603 | 126.36 | 4.7324 | 51.646 | 3.5557 | | 63.241 | 1.9170 | 130.70 | 2.3499 | 125.17 | 5.6296 | 50.303 | 5.8560 | | 62.976 | 2.2498 | 128.15 | 3.3941 | 123.83 | 6.5914 | 49.754 | 7.0556 | | 62.742 | 2.6572 | 126.29 | 4.4786 | 122.70 | 7.6775 | 49.004 | 8.9400 | | 62.518 | 3.0871 | 124.30 | 5.7313 | 121.29 | 9.1991 | 48.199 | 11.3631 | | 62.227 | 3.6151 | 122.79 | 6.8925 | 119.62 | 11.1382 | 47.565 | 13.5819 | | 61.284 | 5.6552 | 121.61 | 7.8866 | 118.42 | 12.7664 | 46.906 | 16.2260 | | 60.249 | 9.1217 | | | | | | | | Λ | $10^{3}c$ | Λ | $10^{3}c$ | Λ | $10^{3}c$ | |--------|-----------|----------|--------------|-----------------------------------|-----------| | nitroi | methane | propylei | ne carbonate | arbonate LiAsF ₆ in DM | | | 77.381 | 3.3188 | 19.164 | 1.6041 | 67.177 | 2.5354 | | 75.053 | 4.4119 | 18.981 | 2.0520 | 66.434 | 3.2669 | | 71.707 | 6.4296 | 18.778 | 2.7189 | 64.565 | 5.6670 | | 69.763 | 7.7843 | 18.613 | 3.4288 | 63.609 | 7.3619 | | 67.794 | 9.2378 | 18.498 | 4.0877 | 62.599 | 9.6182 | | 65.976 | 10.7922 | 18.493 | 4.7240 | 61.492 | 12.3980 | | 64.237 | 12.4059 | 18.289 | 5.4276 | 60.749 | 14.6914 | | 62.375 | 14.1506 | 18.186 | 6.2050 | 59.970 | 17.5047 | | 59.739 | 16.9656 | 18.057 | 7.1874 | 59.248 | 20.3707 | | 57.539 | 19.7307 | 17.937 | 8.2698 | 58.291 | 24.3886 | | | | 17.783 | 9.6825 | 57.723 | 27.2395 | | | | 17.405 | 13.7599 | | | ^a Units: Λ /S cm² mol⁻¹ and c/mol dm⁻³ These data were fitted to the Fuoss-Hsia (FH) equation (9) using the expansion of Fernández-Prini (FH-FP) (10) which has the form: $$\Lambda = \alpha \left\{ \Lambda^{0} - S\sqrt{I} + EI \ln(I) + J_{1}(R_{1})I - J_{2}(R_{2})I^{3/2} \right\}$$ [1] In eq. [1], α is the degree of dissociation defined by equations [2] and [3], I is the ionic strength ($I = \alpha c$), and all other terms have their usual significance. For the ion association process $$Li^+ + X^- \Leftrightarrow LiX$$ [2] the thermodynamic equilibrium constant is defined in the usual manner by $$K_a = \frac{[\text{LiX}]}{[\text{Li}^+][\text{X}^-]y_+^2} = \frac{1-\alpha}{\alpha^2 c y_+^2}$$ [3] The mean molar activity coefficients in eq. [3] were calculated from the Debye-Hückel relation $$\ln y_{\pm} = \frac{-A\sqrt{I}}{1 + BR_{\nu}\sqrt{I}}$$ [4] where the distance parameter R_y is fixed at the Bjerrum distance q (see Table I). Eqs. [1] - [4] were solved by a grid search method (11, 12) where the distance parameter R_I is fixed at the Bjerrum distance, and R_2 is treated as a variable distance parameter. The variables Λ °, K_a and R_2 were initially selected arbitrarily and then adjusted in small increments until a minimum, U_0 , was reached in the function U; for n data points, U is defined by $$U = \sum_{1}^{n} (\Lambda_{\text{obsd}} - \Lambda_{\text{calcd}})^{2}$$ [5] The final adjusted parameters for $LiC(CF_3SO_2)_3$ in water, AN, PC, DMF and NM and for $LiAsF_6$ in DMF are given in Table III. Included in Table III are values for the parameters derived by neglect of the Chen effect (13), and by inclusion of the Chen effect where $E=E_1$ - $2E_2$ which accounts for spatial charge density in large organic anions with localized charges. All results reported in Table III were, as described above, derived using a three-parameter fit to the Fuoss-Hsia equation, i.e., $\Lambda = \Lambda(\Lambda^\circ, K_a, R_2)$. In most instances, the adjusted R_2 values are reasonably close to the Bjerrum distance q as expected (10, 16, 23) with the exception of R_2 for LiC(CF₃SO₂)₃ in MeNO₂. By including R_2 as a variable parameter, it is not unusual to find a strong correlation between K_a and R_2 (16, 34, 35), particularly when K_2 is small (36). Attempts to Table III. Derived parameters at 25°Ca | salt/solvent | Λ° | K_a | R_2 | σ_{Λ} | Chen effect | |----------------------------|----------------------------|--------------------------|--------|--------------------|-------------| | LiMe / H ₂ O | 66.47 (0.087) | | 0.357d | 0.085 | no | | | 66.30 (0.073)e | | 0.357d | 0.073 | yes | | LiMe / PC | 20.22 (0.024) | | 0.337 | 0.024 | no | | | 20.20 (0.026)e | 1.24 (0.7 ₅) | 0.431 | 0.025 | yes | | LiMe / ANb | 144.94 (0.087) | | 0.747 | 0.077 | no | | | 144.46 (0.086) | 5.99 (0.19) | 0.791 | 0.074 | yes | | LiMe / ANc | 144.70 (0.076) | | 0.789 | 0.069 | no | | | 144.46 (0.037) | 5.05 (0.10) | 0.875 | 0.032 | yes | | LiMe / DMF | 58.61 (0.056) | | 0.696 | 0.050 | no | | | 58.36 (0.021) | 4.87 (0.10) | 0.764 | 0.017 | yes | | LiMe / MeNO ₂ c | 91.74 (0.07 ₅) | 27.81 (0.20) | 0.911 | 0.051 | no | | | 91.79 (0.077) | 34.15 (0.21) | 0.971 | 0.051 | yes | | LiAsF ₆ / DMF | 74.18 (0.033) | 3.27 (0.09) | 0.705 | 0.025 | no | | | 74.19 (0.033) | 8.90 (0.09) | 0.724 | 0.024 | yes | ^a Units: Λ° / S cm² mol⁻¹; K_a / dm³ mol⁻¹; R_2 / nm. Values in paretheses are standard deviations, and the standard error in molar conductivities calculated from $\sigma_{\Lambda} = \{U_o/(n-1)\}^{1/2}$ where U is defined in eq. [5]. use a two parameter fit to the Fuoss-Hsia equation, i.e., $\Lambda = \Lambda(\Lambda^{\circ}, K_{a})$, by fixing R_{2} at the Bjerrum distance q invariably resulted in significantly larger standard deviations. Two representative examples are given in Figures 1 and 2. Fig. 1 is a plot of the variance U (eq. [5]) and the association constant K_a as a function of R_2 for LiC(CF₃SO₂)₃ in MeNO₂, and Fig. 2 is a similar plot for LiAsF₆ in DMF. In the former case, setting $R_2 = q = 0.779$ nm results in U = 0.8009 compared to $U^\circ = 0.0234$ for the minimum at $R_2 = 0.911$ nm. For the latter system, it is found that $U^\circ = 0.00636$ at $R_2 = 0.705$ nm compared to U = 0.6468 for $R_2 = q = 0.763$ nm. While the values of K_a are obviously dependent upon R_2 , the dependency is not sufficiently large to change any conclusions (see below) based on use of the three parameter fitting method. In fact for the purpose of the present analyses, it is not necessary that a two parameter fit be employed, and since R_2 need not necessarily equal q or R_1 from J_1 of eq. [1] (23, 34) it is more realistic to use those parameters derived from the actual statistical best fit (e.g., see 36). b Run number 1. c Run number 2. d R_2 fixed at the Bjerrum distance q. ^e Fuoss-Onsager term E (see eq.[1]) is negative. <u>Figure 1</u>. Plot of the variance in molar conductivities (U from(eq. [5]) and K_a as a function of the distance parameter R_2 for LiC(CF₃SO₂)₃ in MeNO₂. Solid lines fitted empirically by a cubic spline, and the solid circle represents the point for $R_2 = q$. <u>Figure 2</u>. Plot of the variance in molar conductivities (U from(eq. [5]) and K_a as a function of the distance parameter R_2 for LiAsF6 in DMF. Solid lines fitted empirically by a cubic spline, and the solid circle represents the point for $R_2 = q$. Voltammetry studies: Figure 3 shows an overlay of linear sweep voltammograms obtained in each of the four ionic liquids obtained at a Pt working electrode at 80°C Figure 3. Linear sweep voltammograms for LiX in DmpiX at 80°C. $X = AsF_6$, PF_6 , $N(SO_2CF_3)_2$ and $C(SO_2CF_3)_3$. From the rest potential at 2.7 V no anodic current is observed until about 4.8 V where DmpiPF₆ begins to oxidize. The experimental oxidation potentials obtained from these scans are reproducible to \pm 20 mV, and the "anodic limits" for the four dimethylpropylimidazolium-based ionic liquids at 80°C are given in Table IV. **Table IV.** Anodic limits of DmpiX ionic liquids on Pt at 80°C | anion | limit (E/V vs Li) | |--------------------|-------------------| | PF ₆ - | 5.00 | | AsF ₆ - | 5.10 | | Imide- | 5.13 | | methide- | 5.35 | We believe that these data, free of the influence of solvent, reflect the intrinsic oxidative stability of the anion, at least in the case of PF₆-, AsF₆- and Im⁻. Were the Dmpi⁺ cation *more* readily oxidizable than the anions, the four distinct linear sweep voltammograms shown in Fig. 1 would have collapsed to a single voltammogram at a potential negative of 4.8 V. Thus, while we are clearly measuring the intrinsic oxidation potentials of PF₆-, AsF₆- and Im⁻, we do not unequivocally know whether the value of 5.35 V for DmpiMe reflects the oxidation of Dmpi⁺ or of Me⁻. The instability in the voltammogram for PF₆- starting at about 5.2 V in Fig. 1 suggests complex reaction including, possibly, gas evolution. While DmpiAsF₆ and DmpiIm oxidize at the same potential within experimental error, DmpiMe is clearly the most electrochemically stable ionic liquid surpassing the limit for DmpiPF₆ by some 350 mV. Such high anodic stability is desirable for electrolytes employed in high energy, high voltage lithium battery systems. ### **DISCUSSION AND ADDITIONAL CALCULATIONS** There are basically little surprises in the derived parameters given in Table III. Values of the molar conductivities at infinite dilution (Λ°) are, for the most part, independent on whether the Chen effect is included or neglected, similar to our findings for the alkali metal perchlorates in PC (28). Ion association in solvents with high Donor Numbers (e.g., water, PC and DMF, see Table 1 and Ref. 29) appears to be small or non-existent depending upon the model used (i.e., inclusion or neglect of the Chen effect), but K_a for the methide salt in MeNO₂ is quite high as calculated by either model. While AN, DMF and MeNO₂ can be considered to be "iso-dielectric" solvents, differences in K_a are directly related to the ability of the solvent to solvate cations (30), and to a lesser extent, anions as discussed below. Salts of a given anion in solvents which can strongly coordinate small cations such as water, PC and DMF are expected to undergo little or no ion association whereas solvents which weakly coordinate these cations generally exhibit increased association. For example, based on both the Gutmann Donor Number (DN) and assuming anion solvation effects are negligible, the order of increasing ion association would simply be H₂O < DMF < PC < AN < MeNO₂ which, for the most part, is what is observed when comparing the present results for LiIm with other salts as shown in Table V. Table V. Comparison of present and literature conductivity parameters at 25°Ca | | H_2O | | PC | 2 | Al | N | DM | 1F | MeN | 10_2 | |--------------------|---------------------|---|--------------------|----------------|---------------------|----------------|--------------------|----------------|---------------------|----------------| | salt | Λ° K | a | Λ° | K _a | | LiClO ₄ | 105.9b | | 26.75e | 1.3 | 173.26 ^h | 16.47 | 73.40 ^j | 6.6 | 110.60 ^k | 182.2 | | LiPF ₆ | | | 26.1 ^f | 2.1 | | | | | | | | LiAsF ₆ | 95.07° | | 22.53g | | 170.06 ⁱ | 9.1 | 74.18 | 3.3 | | | | LiIm | 70.89 ^d | | 22.76 ^d | | 153.71 ^d | 4.7 | | | | | | LiMe | 66.47 | | 20.22 | | 144.7 | | 58.61 | | 91.74 | 27.8 | $^{a}\Lambda^{\circ}/S$ cm² mol⁻¹ and K_{a} / dm³ mol⁻¹. All results based on common analysis using eq. [1] (Chen effect not included) as reported in the following references and, where required, reanalyzed by the present authors. $^{b}14$; $^{c}15$; $^{d}5$; $^{e}16$; $^{f}17$; $^{g}18$; $^{h}19$; i original data from (20) which seems preferable to the earlier data from (21); j original data from (22) reanalyzed in (23); $^{k}30$. For those systems in which lithium imide salt appears to undergo small ion association, e.g. in AN (5), and possibly PC (17), but see the opposing opinion in (5), no evidence for association of lithium methide has been reported. We believe that these effects are, in part, related to solvation of the methide anion, and additional discussions in support of this conclusion are given below. One of the features leading to small K_a values for LiIm probably lies in significant charge delocalization of the imide anion as discussed by Weber (3), but the situation for LiMe appears to be slightly different. The negative charge on the central carbon of the methide anion appears to be more strongly delocalized due to the combination of the strong electronegative groups surrounding the central carbon (31). The CS_3 skeleton of the anion is planar and the orientation of the CF_3 groups is unsymmetrical, two groups lying above and one group lying below the CS_3 plane, and the increased delocalization facilitates polarization by either large polarizable cations and/or by neutral and highly polarizable solvent molecules: i.e., the anion appears to act as a "soft" base (in the Pearson sense (32)). For example, in (31), $HC(SO_2CF_3)_3$ is reported to be a very strong acid in aqueous solution, and the solubility of alkali metal salts decreases in the order of $Ag^+ > K^+ > Rb^+ > Cs^+$, and the silver salt can be used to prepare the halogen derivatives $X C(SO_2CF_3)_2$ where X = Cl or Br (31). Table VI lists single ion molar conductivities at infinite dilution calculated by combining the present results with literature data as indicated in the footnotes to Table VI. Table VI. Single ion molar conductivities, λ°, in various solvents at 25°Ca | ion | H ₂ O | PC | AN | DMF | MeNO ₂ | |--------------------|-------------------|--------------------|---------------------|-------|-------------------| | Li ⁺ | 38.7 ^b | 8.22c | 69.97d | 25.0e | 42.9 | | ClO ₄ - | 67.2 ^b | 18.51 ^c | 103.62 ^d | 52.5 | 67.7 ^f | | PF ₆ - | 59.2h | 17.9 | 102.8 ⁱ | | | | AsF ₆ - | 56.4 | 14.3 | 100.1 | 49.2 | | | Imide- | 32.2 ^g | 14.5g | 83.72 ^g | | | | methide- | 27.8 | 12.0 | 74.7 | 33.6 | 48.8 | $^{a}\lambda^{\circ}/S$ cm² mol⁻¹ derived from Λ° values in Tables III and IV and literature λ° values as indicated. $^{b}24$; $^{c}28$; $^{d}16$; $^{e}22$ -23; $^{f}25$; g5; ^{h}b ased on data for KPF₆ from (26) reanalyzed using eq. [1]. Results are Λ° = 132.70 and K_a = 1.78 which were combined with $\lambda^{\circ}(K^{+})$ = 73.50 from (24); idetermined by present authors using data for Me₄NPF₆ and Bu₄NPF₆ from (27). Results for Me₄NPF₆ are Λ° = 196.92 and K_a = 11.8. Results for Bu₄NPF₆ are Λ° = 164.76 and K_a = 3.14, and average $\lambda^{\circ}(PF_6^{-})$ = 102.8 S cm² mol⁻¹. An initial inspection of the data in this table appears to reveal the expected behavior, i.e., $\lambda^{\circ}(\text{Li}^{\dagger})$ is generally smaller than those of most anions due to the high solvation of Li^{\dagger} , and $\lambda^{\circ}(\text{anion})$ decreases as the ionic radius increases. However, it appears that an anomaly exists for the methide anion in water which we attribute to an increase in solvation of this anion (as discussed above) leading to a more pronounced decrease in its mobility. This interpretation is further supported by considering the lithium transference number, $t^{\circ}(\text{Li}^{\dagger})$ calculated as $\lambda^{\circ^{\dagger}}/\Lambda^{\circ}$ from the data in Tables V and VI. Values for $t^{\circ}(\text{Li}^{\dagger})$ are given in Table VII. **Table VII**. Cation transport numbers, t_{+}° , at 25°C | salt | H ₂ O | PC | AN | DMF | MeNO ₂ | |--------------------|------------------|-------------------|-------|-------|-------------------| | LiClO ₄ | 0.365 | 0.307 | 0.403 | 0.323 | 0.388 | | LiPF ₆ | 0.395 | 0.314 | 0.405 | | | | LiAsF ₆ | 0.407 | 0.36 ₅ | 0.414 | 0.337 | | | LiIm | 0.546 | 0.361 | 0.455 | | | | LiMe | 0.582 | 0.407 | 0.484 | 0.427 | 0.468 | From the results given in Table VII, it is seen that the increase in $t^{\circ}(Li^{\dagger})$ is surprisingly large for the methide salt compared to the perchlorate. In water, the increase in $t^{\circ}(Li^{\dagger})$ observed when changing the anion from perchlorate to methide is almost 60%. In PC, AN, DMF and MeNO₂ these increases are, respectively, 33%, 20%, 32% and 21%. Note that in PC, the increase in $t^{\circ}(Li^{\dagger})$ in changing the anion from perchlorate to imide while still large (18%) is significantly less than for the methide (33%). #### **CONCLUSION** Both conductometric and voltammetric data explored in this paper show that lithium tris(trifluoromethanesulfonyl) methide in the aprotic solvents (AN, PC, DMF, MeNO₂) and in water has better solution properties (i.e., electrolytic conductance and anion stability) than other lithium salts ($LiClO_4$, $LiAsF_6$, $LiPF_6$, $LiCF_3SO_3$, $LiN(CF_3SO_2)_2$) commercially used in rechargeable systems. The non-existent or negligible ion pair formation and the increased transference number [$t_+^0(LiMe)$] indicate LiMe as a most suitable electrolyte for both primary and rechargeable lithium batteries. #### **REFERENCES** - 1. V.R. Koch, J. Electrochem. Soc., 126, 181 (1979). - 2. L.A. Dominey, J.L. Goldman, V.R. Koch and C. Nanjundiah in *Rechargeable Lithium Batteries*, S. Subbareao, V.R. Koch, B.B. Owens and W.H. Smyrl, eds., PV90-5, The Electrochemical Society Proceedings Series, Pennington, NJ (1990). - 3. A. Weber, J. Electrochem. Soc., 138, 2586 (1991). - 4. M. Armand, W. Gorecki and R. Andréani in Second International Symposium on Polymer Electrolytes, Siena, 1989. Elsevier, London, 1990, p. 91. - 5. M. Salomon, J. Solution Chem., 22, 715 (1993). - 6. L.A. Dominey, U.S. Patent 5,273,840 (1993). - 7. G.B. Appetecchi, F. Croce, S. Slane, C.W. Walker, M. Salomon, MRS Meeting, Boston, Nov. 1995, Submitted. - 8. V.R. Koch, L.A. Dominey, C. Nanjundiah and M.J. Ondrechen, Submitted to *Journal of The Electrochemical Society*. - 9. R.M. Fuoss and K.-L. Hsia, *Proc. Natl. Acad. Sci. USA*, **57**, 1550 (1967). - 10. R. Fernández-Prini and J.-C. Justice, Pure and Applied Chem., 56, 541 (1984). - 11. e.g., see M. Salomon and M. Uchiyama, *J. Solution Chem.*, **16**, 21 (1987) based on the program given in Ref. 12 below. - 12. G. Beech, Fortran IV in Chemistry. Wiley, London, 1975, p. 41. - 13. M.S. Chen, Ph.D. Dissertation, Yale Univsity, 1969. - 14. A. D'Aprano, J. Phys. Chem., <u>75</u>, 3290 (1971). - 15. G. Atkinson and C.J. Hallada, J. Phys. Chem., <u>64</u>, 1487 (1960). - 16. J. Barthel, L. Iberl, R. Rossmaier, H.-J. Gores and B. Kaukal, *J. Solution Chem.*, 19, 321 (1990). - 17. M. Ue, J. Electrochem. Soc., <u>141</u>, 3336 (1994). - 18. M. Salomon and E.J. Plichta, *Electrochim. Acta* 28, 1681 (1983). - 19. A. D'Aprano, J. Phys. Chem., <u>76</u>, 2920 (1972). - 20. A. Balkowska, A. Kowalska, M. Góral and L. Werblan, *J. Electroanalyt. Chem.*, 354, 11 (1993). - 21. H.P. Hopkins, D.V. Jahogirder and A.B. Norman, J. Solution Chem., 8, 147 (1979). - 22. J.E. Prue and P.J. Sherrington, *Trans. Faraday Soc.*, <u>57</u>, 1795 (1961). - 23. J.-C. Justice, *Electrochim. Acta* 16, 701 (1971). - 24. R.A. Robinson and R.H. Stokes in *Electrolyte Solutions*, Butterworths, London, 1955. - 25. T. Fujinaga and I. Sakamoto, J. Electroanalyt. Chem., 85, 185 (1977). - 26. R.A. Robinson and R.H. Stokes, *J. Phys. Chem.*, <u>65</u>, 542 (1961). - 27. J. Eliassaf, R.M. Fuoss and J.E. Lind, J. Phys. Chem., <u>67</u>, 1941 (1963). - 28. A. D'Aprano, M. Salomon and M. Iammarino, J. Electroanalyt. Chem. (submitted). - 29. V. Gutmann and E. Vychera, *Inorg. Nucl. Chem. Lett.*, 2, 257 (1966). - 30. A. D'Aprano, B. Sesta, A. Princi, C. Filippi and M. Iammarino, *J. Electroanalyt. Chem.*, 365,119(1994) - 31. L. Turowsky and K. Seppelt, *Inorg. Chem.*, <u>27</u>, 2135 (1988). - 32. R.G. Pearson, J. Am. Chem. Soc., <u>85</u>, 3533 (1963): see also Ref. 33 below. - 33. S. Ahrland, J. Chatt and N.B. Davies, *Quart. Rev. Chem. Soc.*, <u>12</u>, 265 (1958) - 34. J. Barthel, R. Wachter and H.-J. Gores, in *Modern Aspects of Electrochemistry, Vol. 13*. B.E. Conway and J. O'M. Bockris, eds., Plenum Press, New York, 1979. - 35. A.D. Pethybridge and D.J. Spiers, J. Chem. Soc. Faraday Trans. I, 73, 768 (1977). - 36. G.T. Hefter and M. Salomon, J. Solution Chem., 23, 579 (1994). # ARMY RESEARCH LABORATORY PHYSICAL SCIENCES DIRECTORATE MANDATORY DISTRIBUTION LIST August 1995 Page 1 of 2 Defense Technical Information Center* ATTN: DTIC-OCC 8725 John J. Kingman Rd, STE 0944 Fort Belvoir, VA 22060-6218 (*Note: Two DTIC copies will be sent from STINFO office, Ft Monmouth, NJ) Director US Army Material Systems Analysis Actv ATTN: DRXSY-MP (1) Aberdeen Proving Ground, MD 21005 Commander, AMC ATTN: AMCDE-SC 5001 Eisenhower Ave. (1) Alexandria, VA 22333-0001 Director Army Research Laboratory ATTN: AMSRL-D (John W. Lyons) 2800 Powder Mill Road (1) Adelphi, MD 20783-1197 Director Army Research Laboratory ATTN: AMSRL-DD (COL Thomas A. Dunn) 2800 Powder Mill Road (1) Adelphi, MD 20783-1197 Director Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1197 - (1) AMSRL-OP-SD-TA (ARL Records Mgt) - (1) AMSRL-OP-SD-TL (ARL Tech Library) - (1) AMSRL-OP-SD-TP (ARL Tech Publ Br) Directorate Executive Army Research Laboratory Physical Sciences Directorate Fort Monmouth, NJ 07703-5601 - (1) AMSRL-PS - (1) AMSRL-PS-T (M. Hayes) - (1) AMSRL-OP-FM-RM - (22) Originating Office Advisory Group on Electron Devices ATTN: Documents Crystal Square 4 1745 Jefferson Davis Highway, Suite 500 (2) Arlington, VA 22202 Commander, CECOM R&D Technical Library Fort Monmouth, NJ 07703-5703 - (1) AMSEL-IM-BM-I-L-R (Tech Library) - (3) AMSEL-IM-BM-I-L-R (STINFO Ofc) Deputy for Science & Technology Office, Asst Sec Army (R&D) (1) Washington, DC 20310 Cdr, Marine Corps Liaison Office ATTN: AMSEL-LN-MC (1) Fort Monmouth, NJ 07703-5033 HQDA (DAMA-ARZ-D/Dr. F.D. Verderame) (1) Washington, DC 20310 Director Naval Research Laboratory ATTN: Code 2627 (1) Washington, DC 20375-5000 USAF Rome Laboratory Technical Library, FL2810 ATTN: Documents Library Corridor W, STE 262, RL/SUL 26 Electronics Parkway, Bldg 106 Griffiss Air Force Base (1) NY 13441-4514 Dir, ARL Battlefield Environment Directorate ATTN: AMSRL-BE White Sands Missile Range (1) NM 88002-5501 Dir, ARL Sensors, Signatures, Signal & Information Processing Directorate (S3I) ATTN: AMSRL-SS 2800 Powder Mill Road (1) Adelphi, MD 20783-1197 Dir, CECOM Night Vision/ Electronic Sensors Directorate ATTN: AMSEL-RD-NV-D (1) Fort Belvoir, VA 22060-5806 Dir, CECOM Intelligence and Electronic Warfare Directorate ATTN: AMSEL-RD-IEW-D Vint Hill Farms Station (1) Warrenton, VA 22186-5100