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CHAPTER I 

INTRODUCTION 

Composites are becoming more widely used as primary structural 

materials, hence the concern for predicting reliability is- also increasing. 

As fiber-reinforced composite materials make the transition from labora- 

tory test coupons and non-critical components to major production items, 

methods for predicting the fracture and strength characteristics are 

necessarily drawing more attention.  The question of attempting to under- 

stand the nature of fracture and damage growth in laminated composites 

can be approached in several different ways.  One may analyze the laminate 

as being composed of a homogeneous orthotropic material (or of homogeneous 

orthotropic layers) and use numerical methods such as finite elements 

to obtain results for the response of particular structures or even to 

investigate local effects near geometric or load discontinuities.  The 

use of an equivalent homogeneous material and of numerical methods 

to investigate local effects is not always satisfactory [1].  It is often 

the multiphase nature of a composite that gives it its unique properties, 

especially near the damaged regions.  To replace the actual material 

by an equivalent homogeneous material may well remove one of the most 

important characteristics of the material. 

Another approach is to use empirical models (descriptive models) 

which generally do not account for the physics of the particular materials, 

but contain parameters that are adjusted to gain results agreeing with 

experiments.  Such descriptive models have little use in understanding 



damage growth and local effects, but can be valuable in developing 

design guidelines for structural components. 

By contrast, the present study is concerned with developing rela- 

tively simple mathematical models that contain the important physical 

and geometric properties of the composite (predictive models) such that 

it is possible to investigate the fundamental behavior of a laminate 

in terms of the various material properties of each lamina.  One of 

the main difficulties with such modeling is selecting significant 

properties to have a model complete enough to be reasonably accurate. 

At the same time it should be simple to solve.  Zweben gives an excel- 

lent discussion of this "materials modeling approach" in [2]. 

Some of the first work in modeling a unidirectional composite in 

this manner was done by Hedgepeth [3], where no damage other than an 

initial transverse notch was considered.  The study was extended by 

Hedgepeth and Van Dyke [4] for the special case of one broken fiber 

with longitudinal splitting.  The extension to more than one broken fiber 

with longitudinal damage could not be developed conveniently by 

influence functions as in [3] and [4] because the broken fiber adjacent 

to the damage region was not typical of any of the remaining fibers. 

Goree and Gross [5] used Fourier transforms to modify the solution to 

account for an arbitrary number of broken fibers as well as for longi- 

tudinal matrix damage to include both yielding and splitting initiating 

at the notch tip between the last broken fiber and the first unbroken 

fiber.  Goree, Dharani and Jones [6] added constraint layers to the main 

lamina to account for either a misalignment of fibers in a multi-ply 

unidirectional laminate, or for the presence of angle plies which give 



support to the unidirectional ply.  The constraint layer was taken as 

being fully bonded to the unidirectional lamina at all times in the 

above model. 

The analysis presented here is an attempt to extend the above dis- 

cussed model to include the effect of debonding between the notched 

unidirectional lamina and the surface constraint plies.  The laminate 

is modeled as a two dimensional region of a unidirectional lamina 

with symmetrically located surface constraint layers whose fibers make 

an angle theta with the unidirectional ply, (Figure 1). 

In the vicinity of a notch in a laminate, the broken fibers exert 

longitudinal shear stresses in the matrix which are transferred to the 

nearest unbroken fibers.  The shear-lag assumption [2, 7, 8] is used 

for this shear transfer between fibers in the unidirectional lamina. 

An equivalent expression is used for the corresponding effect of the 

constraint layers.  Since the shear transfer does not depend on the 

transverse displacements, it uncouples the longitudinal and transverse 

equilibrium equations.  Hence, the longitudinal displacements can be 

calculated without solving the transverse displacement equations. 

The fibers support all of the longitudinal stress in the unidirec- 

tional lamina because the longitudinal extensional modulus of the 

fibers is assumed to be much larger than that of the matrix.  Debonding 

between plies in the vicinity of the crack is considered to be of 

finite width and extends to infinity in the longitudinal direction. 

The extreme fibers of the debond zone are assumed to be attached to each 

other across the debonded region by a spring of stiffness depending on 

the constraint layer properties and on the width of the debonded zone. 

That is, the layer debonds but is still connected to either side of 
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Figure 1.  Unidirectional Lamina with Broken Fibers, Surface 
Constraint Layers and Debonding. 



the region and carries load due to the longitudinal displacement of 

the extreme fibers of the debonded zone.  This can be more clearly seen 

by referring to Figure 1. 

As an initial investigation, the basic mechanism of crack growth 

is limited to a model containing broken fibers only. Subsequently, a 

model is next developed to account for additional longitudinal damage 

parallel to fibers in the monolayer, (Figure 2). Splitting and yield- 

ing of the matrix is assumed to initiate at the notch tip and to pro- 

gress longitudinally between the last broken fiber and the first 

unbroken fiber. 

There are three different zones in the model. 

(i)  unidirectional ply with bonded constraint layers, fiber 
numbers (0) to (N-l) and (M+l) to (°°). 

(ii)  unidirectional' ply with debonded constraint layers, fiber 

numbers (N+l) to (M-l), and 

(iii)  intermediate fibers (N) and (M) of the following ply. 

An equilibrium equation is written for each fiber using the basic 

stress-displacement relations given by Hooke's law and the shear-lag 

assumption.  A description of the solution to these equations is given 

in the following sections.  The stresses and displacements are determined 

as a function of number of broken fibers, constraint layer parameters 

and debonded zone size.  The results are compared to the corresponding 

fully bonded cases. 
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Figure 2.  Unidirectional Lamina with Broken Fibers, Longitudinal 
Matrix Damage, Surface Constraint Layers and Debondin*. 



CHAPTER II 

FORMULATION 

Two Dimensional Shear-Lag Model with 
Broken Fibers, Surface Constraint 

Layers and Debonding 

A unidirectional array of parallel fibers with surface constraint 

layers, debonding and an arbitrary number of broken fibers is shown in 

Figure 1.  Debonding is assumed to exist from the last broken fiber (L) 

to an unbroken fiber (M) of the unidirectional lamina.  The constraint 

layers are intended to represent adjacent layers of a unidirectional 

lamina.  They are assumed to be placed symmetrically about the uni- 

directional lamina to give a laminate with no bending.  The broken 

fibers are assumed to occur along the x-axis and, since the loading 

is symmetric, only the first quadrant of the laminate is considered 

in the analysis.  The basis analysis and assumptions are the same as 

in [6], however, in order to clearly indicate the modifications needed 

to account for surface debonding, it is necessary to repeat the basic 

formulation. 

The fibers are taken to be of much greater stiffness and strength 

than the matrix and the longitudinal load is therefore assumed to be 

carried by fibers only.  Load is transferred between fibers by shear 

stresses as given by the classical shear-lag assumption.  The axial 

fiber stress a (y) and the matrix shear stresses, T (y) and T'(y), 
n n        n 

are then given by the simple relations: 



E9EBBI 

dv 

°n^   =  EF    dy 
n 

(1) 

Tn^) =i? rvy)-vn_l(y)], (2) 

x'(y) n  J 

GM 
= ^r tvn(y)-vn_1(y)] (3) 

where 

vn(y) = 

F 

t   = 

t'   = 

axial displacement of the fiber (n) at the location (y) 

Young's modulus of the fiber, 

thickness of the unidirectional ply, 

thickness of the constraint plies. 

The stiffnesses GM/h and G^/h' must account for interaction 

between fibers [5, 7, 8].  GM and G^ are typically not the shear moduli 

for the "neat" matrix nor are h and h' necessarily fiber center-line 

distances.  The ratios GM/h and G^/h' are equivalent stiffnesses and 

are assumed to be material constants and depend only on the fiber and 

matrix properties, the fiber volume fraction, orientation of plies, 

and not on the size of the damage region.  Only for large spacing can 

GM and h be expected to approach the "neat" matrix and center-line 

values. 

By the virtue of the shear-lag assumption the longitudinal and 

transverse equilibrium equations become uncoupled and the longitudinal 

displacement and stress in the fibers as well as the matrix shear 

stress can be obtained without solving the transverse equilibrium 

equations.  Therefore, only the equilibrium equations in the longi- 

tudinal direction will be considered in the following discussion. 



As pointed out earlier and in [5], G/h and G'/h' are to be de- 

termine experimentally.  For example in [9] and [10], it is shown that 

the shear stress becomes larger as the fiber spacing decreases, that 

is, (0(l//d)) for rigid fibers where 'd' is the minimum distance be- 

tween the fibers.  Local failure may occur at critical points through 

the thickness in advance of laminate splitting which would give an 

apparent shear stiffness considerably different from that of the matrix 

alone. 

The debonded fibers, (N) and (M) are considered to be connected 

by springs due to the presence of the angle-plies of the constraint 

layers.  The springs are assumed to have a linear force-displacement 

relation and the stiffness (k) per unit area for a particular laminate 

to decrease, proportional to the length of the spring. 

With reference to the free-body diagrams, Figures 3 through 5, of 

the elements for different ranges of fibers, the equilibrium equations 

are 

A
F % 
t  dy n+l-T n) + (T' |n+l" -T

1 

n>^ 
= 0 

for n = 0, 1, 2,.. .,N-1, M+l,. • • > 

Ap dCT
F 

7 dy + ^ n+l-T n> =° 

(4) 

(5) 

for n = N+l, N+2,...,M-2, M-l, 

where 

A = area of fiber. 
r 

For fiber N 

Ap % 
t  dy + (T N+l 

t' kt' 
N) +— (VM-VN)-T'|N  t = 0. (6) 
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Figure 3.  Free-body Diagram for a Typical Element of the Fully Debonded 
Zone (Fibers No. (N+l) to (M-l)). 
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NOTE:  Diagram shown as above for clarity only.  In the actual laminate, 
the constraint layers are symmetric with a layer of thickness 
t'/2 placed on each side of the unidirectional ply. 

Figure 4.  Free-body Diagram for a Typical Element of the Fully Bonded 
Zone (Fibers No. (0) to (N-l) and (M+l) to (<*>)). 
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NOTE:  Diagram shown as above for clarity only.  In the actual laminate, 
the constraint layers are symmetric with a layer of thickness 
t'/2 placed on each side of the unidirectional ply. 

Figure 5.  Free-body Diagram for a Typical Element of the Intermediate 
Zone (Fiber No. (N)). 
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For fiber M 

t  dy + (T M+l 
- T M ) - 

kt' 
^ M W 

t' 
M+l t 

0. (7) 

Using the stress-displacement relations (1), (2) and (3), in the 

above equilibrium equations, the following set of difference-differen- 

tial equations is obtained: 

A Eh d v 
-^-^ £ + (1 + O (v .. - 2v + v -, ) = 0 2       R   n+1   n  n-1 

M 
(8) 

dy 

for n = 0, 1, 2,...,N-1, M+l, 

A Eh d v 
-^ ^ + (v ., - 2v + v  -,) = 0 2     n+1   n  n-1 GMt M 

(9) 
dy 

for n = N+1, N+2,...,M-2, M-l. 

For fiber N 

ApE h d v 

TTTT+ <vW-l-2vN + VN-l) + CR2(VM-V-CR(VN-VN-1)=0- (10) 
"M"  dy 

For fiber M 

^T--Hr+   (VM+1-2VM + VM-1)-CR2(VM-V+CR(VM+1-V=0- (11) 

M dy 

where 

k    t' 
:R2 = (GM/h)  T 

(GM/h,) t' 

(12) 

JR   (GM/h)  t 

The constraint layer provides additional longitudinal stiffness to 

the unidirectional ply, the effect being given by the constant C .  The 

debonding effect is represented by the second constraint ratio C „ • 
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To match the differential equations for the bonded case [9], C 

must reduce to C when M-N=l. The only varying parameter for CL0 

in a particular laminate is the width of the debond zone, (M - N). 

R2 

Since C „ represents a linear spring and loses its stiffness (k) per 

unit area proportional to its length then C„0 <= ~r~r . 
R2  M-N 

C 
Hence,  C 

R 
R2   M-N 

Noting the coefficient of the second derivative in Equations (8 

through (12), the following changes of variables as suggested in [6] 

are made. 

(13) 

y 

lApEph 

M 
n» 

dv 
n a    = a    a    = E_, -j— 

n °°     n F    dy 

V       =    0" 
n ° Iw N 

(14) 

wnere 

a  = applied remote stress. 

and n, a     and V (n) are non-dimensional, 
n     n 

Algebraic manipulation of Equations (3) and (14) gives 

dV 
n a    = a 

n   °° dy (15) 

T = a 
n   ° 

¥F 
(v _ v„ l)' ~\JE ht v"n  "n-h (16) 

The resulting equations in non-dimensional form are 
2 

d V 

dn 2
+   (1 + V    <Vn+l-2Vn + Vn-l>   =° (17) 

for     n  =  0,   1,   2,...,N-1,   M+l,..., 
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d2V 

-r+<Vn+l-
2Vn + Vn-l>   =° 

dn 

for n = N+l, N+2,...,M-2, M-l. 

d2V, 

dn 
2+  ^N+1~/VN+VN-1^^R2VVM"VN^  ^RVVN  "N-l' 

For Fiber M 

side is the same in each equation. 

f +  (l+CR)(Vn+1-2Vn + Vn_1) =0 
d2v 

dn 

for n = 0, 1, 2,...,N-1, M+l,..., 

d2V 
? + (1 + CR) (Vn+1 - 2Vn+ Vl) = CR(Vn+1 - 2Vn+ V^) 
2   v   R/v n+l 

dn 

for n = N+l, N+2,...,M-2, M-l. 

For fiber N 

(18) 

For fiber N 

^?+ (^„.^V^V^J+C^^-V^-C-CV^-V,, ,) = 0.      (19) 

^T+V-VV-C«2('K-V-V'M-V - "•       (20) 

dn 

These equations can be written as follows, where the left-hand 

(21) 

(22) 

d2V 
-f + d + CR)(VN+1-2VN + VN_1) = CR(VN+1-VN)-CR2(VM-VN).  (23) 

dn 

For fiber M 

d2V 
-|+ d+CR)(VM+1-2VM+VM_1) --VVV^+C^-V. (24) 
dn 

These difference-differential equations may be reduced to differen- 

tial equations as in [6] by introducing a new function V(n,6) defined 

as 
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v (n) 
v(n,e) = 

2 + Z  V (n) cos (n6) 
n=l  n 

(25) 

from which 

V (ri) = - / V(n,6) cos (nÖ)de. n      IT (26) 

Making use of orthogonality of the circular functions, Equations 

(21) through (24) are then written as one equation, valid for all n and 

n as 

3 //^-f -   2(1 + CR)[1- cos(0)]   vl  cos   (n6)d6 
0 I dri 

2     TTf M > 
-/{    E     G   (n)   cos   (£0)   cos   (n9) )  do, 

0   U=N     l J 

where 

h^ = -Wr2v£+Vi) 

for  £  =    N+l,...,M-1, 

V^   =   -CR(VN+1-V+CR2%-V 
G
M^) =     c^-vj-c^v-vj M 

GQ(n)  = 

Rv  M     "M-l'        R2VVM     V 

2   [CR(V1-V-CR2<VM-V]« 

(27) 

(28) 

(29) 

(30) 

(31) 

The equation is of the form 

- / F(n,9) cos (n9)de = 0   for all n and 
' 0 

(32) 

and as F(n,6) is even valued in 9, if the integral is to vanish for 

all n, the function F(n,6) then must be zero.  The single equation 

specifying V(ri,6) is then 

2- M 
-~ -  S2V = -     I  G (n) Cos (Id) (33) 
dq £=N 

where 

= 2(1+CR) [1- cos (8)], 
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The solution to the problem of vanishing stresses and displace- 

ments at infinity and uniform axial compression on the crack surface 

will now be sought.  The complete solution will be obtained by adding 

the results corresponding to uniform axial stress and no broken 

fibers to the solution of the following problem.  The appropriate 

boundary conditions are: 

vn(n) = o , 

dv (n) 

dvn(n) 

dn 

^ = a (n) = - l dri      n 

0  as  n^00  for all fibers,       (34) 

at n=0 for all broken fibers, (35) 

V (n)  = 0 at  n = 0  for all unbroken fibers. (36) 

The complete solution to Equation (24) , satisfying vanishing stresses 

and displacement at infinity is given by 

M 

6 Bj.mn.uv.i-w.y -  ^(t)cos(£6)dt 
00 1»! 

v(n,e) = A(e)e"(6Tl) + / j sinh(6(n-t)) z G 

where the function A(6) is yet unknown.  The remaining two boundary 

conditions give 

(37) 

dV (0)   _ TT n   _ _Z - 

0 

M 
5A(6)+/ jcosh(6t) Z G (t) cos(£9)dt \ cos(n6) 

£=N 
d6 

= - 1 

for all broken fibers, and 

(38) 

V (0)  = - / 
M 

A(0) --j / isinh(öt) Z G.(t)cos(£6)dt cos(n6) 
6 0 l       £=N 

d6 

= 0 

for all unbroken fibers. 

Equation (37) can be solved exactly by taking 
M L 

(39) 

A(6) / sinh(fit) Z G£(t)cos(£0)dt =  Z Bmcos(m6). (40) 

0 £=N m=0 



!■':** "t^y- 5V" ^ *•?* 

Eliminating A(6) from Equations (38) and (40), the stress boundary 

condition (35) reduces to 

2    ^ f      L °°   -(St)   M "l 
- / 1-6   Z   B    cos(m8)+/e E   G. (t) cos (£0)dt      cos(ne)d6        (41) 

0 I m=0 0      £=N J 

= - 1. 

From Equations (37) and (40), A(8) can be eliminated to obtain 

V(n,0) in terms of B^  and G0(t).  Recalling the relation between 

V(n,6) and V (n) an expression can be obtained for longitudinal fiber 

displacements as 

IT 

0 

L 
V (n) = - / fe   (<Sn) Z  B  cos (mG) n     TT „ l m    v ' 

m=0 

+ jf ,T}'   - Z  G (t)cos(£0)dt  cos(ne)d6    (42) 
0 Ä=N j 

where 

r,/.  _>,   -<s n-t   -5(n+t) 
D(o,n,t) = e      ■ - e      . 

The longitudinal fiber stress is obtained by differentiating 

Equation (42) with respect to n and is 

dV   (n)        7   rr  (      L 
a   (n)   = —2  = f /     -6   Z     B     cos(me)e_(Sn) 

dn ^  0 I     m=0     m 

(43) 

+ / 
0 

-6 n-ti -<5(n+t) 
Z    G   (t)cos(£6)> cos(n6)d93 

£=N J 

(44) 

2 F 2 
u   — 

where 

p  =     1     for     t   <  ii5 

p  = - 1     for     t  >  n. 

Equations   (28),    (29),   (30),   (41)   and   (42)   can be  solved   for   the   unknowns 

\  and   G£^ 



19 

Limit Case of an Infinitely Wide 
Debonded Zone 

This is an extension of the model developed previously, such that the 

debonded zone is now assumed to extend to infinity.  Since by Equation (12) 

and 

=   k   t' CR2   (GM/h) t ' 

k<* rr^r'  then  Cp9 ■+ 0 M-N R2 

for a debond zone of infinite width. 

Physically, the spring between fibers at the extremities of the de- 

bonded zone has no stiffness as it has an infinite length.  Also, for 

fibers (M) and (M-l) far from the crack tip V  - V  -. .  Then using 

CR2 = °  and VM = Vl 

Equations (21), (22), (23), (24) reduce to 

d2V 
n + (1+CJ (V^ -2V+V  J = 0 (45) , 2   v   W    K  n+1   n  n-1 

dn 

for  n = 0, 1, 2,...,N-1, M+l,..., and 

d2V 
r + (v ., - 2V +V ,) = 0 (46) ,   2   v n+1   n  n-1 

dn 

for n = N+1, N+2,...,M-2, M-l. 

For fiber N 

-2 + <Vl " 2VN + VN-1> " - Wl " V- <47) 

dn 

Following the same technique as before, the single differential 

equation to be solved is then 

2- N 
^4 - 52 V = -  E H (n)cos(£6) (48) 
dn £=0 
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where 

Vn) =CR(VÄ+1- 27^ + 7^). (49) 

For fiber (0) 

HQ(n) = CRCVQ-V- (50) 

The boundary conditions (34) , (35) , (36) yield 

?    iif      L °°   _(.   ,   N \ 
£ /    -U     B     cos(m6)+/e   V     ;   Z   Hn (t) cos (£9) dt } cos (nO)dO       (51) 
^ 0 I m=0  m 0      £=0 l J 

= _ 1 

for £ = 1, 2, 3,. . .,N. 

Equations (49) , (50) , (51) , (52) can be solved for the unknowns 

and H (t).  The longitudinal displacement is given by 

V (n) = - / (e"(6n) Z  B  cos(m6) n     TT   ] m 0 V     m=0 

ir ..    .  N 
+ 1 f  Bio n,tj_ z H (t)cos(Äe)dt } cos(ne)d9?   (52) 

Z 0    °    £=0 

while the longitudinal fiber stress is given by 

a   (n) = - / 1-8   Z  B  e (6n) cos(me) n     fr n I    „  m 0 V m=0 

-6 h-t \ N 
Z H (t)cos(£6) ) cos(ne)dO, 

£=0 *        ) 

(53) 

where 

p =  1  for  t <_ n 

p = - 1  for  t > n 
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Two Dimensional Shear-Lag Model with 
Broken Fibers, Longitudinal Matrix 

Splitting and Yielding, Surface 
Constraint Layers and Debonding 

The solution developed in Section I will now be extended to in- 

clude longitudinal splitting and yielding of the matrix as shown in 

Figure 2.  All the previous assumptions are assumed valid and it is 

only necessary to account for additional damage.  It is assumed that 

splitting and yielding of the matrix initiates at the notch tip and 

progresses longitudinally between the last broken fiber and the first 

unbroken fiber.  The matrix is assumed to be elastic-perfectly plastic, 

The last broken fiber is considered to be the first debonded fiber. 

All the equations remain the same as (4), (5), (6) and (7) for all 

fibers except for fibers (L) and (L+l).  The equilibrium equation for 

fiber (N) is 

A
F 

da
F 

dy - T0 < y h  > j.   kt' r \ 
N+ — (vM-vN) N t V = 0 (54) 

when y <_ £.. , 

for fiber (N+l) 

h daT N+l 
dy 

+   T N+2 + T0<y-£2> =  0 (55) 

when y  <_ £.. 

T_ = matrix yield stress, 

£1 = length of longitudinal matrix damage at the crack tip, 

l„  = length of longitudinal matrix split at the crack tip. 

The above equations on introduction of the stress-displacement rela- 

tions (1), (2), (3), become, 
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for fiber (N) , when y £ £-, 

AFEF d vN 

dy 
2    0 

To < y"£2 > " IT VVi5 + T" (VV 
GM t' 

- 17 (VN-VN-1} ~ 
(56) 

and for fiber (N + 1) , when y £ £-. 

AFEF d2vN+l   GM . . ,   <    .  > _ . 

dy 
'2 

(57) 

Equations (56) and (57) are re-written as 

¥rTT+ (
1
 
+
 

C
R

)(V
N+I-

2V
N 

+
 
V
N-I

) 

M        dy 

= +   (1 + CR)(VN+1-V-CR2(VM-V+T0   <y-£2   > (55 

A„E_,h  d v 

Tl 2^ +   (1 + CR} (vN+2 - 
2vN+l - V 

M    dy 

(1 + V (VN+1 - V + CR(vN+2 - W - T0 < y - h y ■  (59) 

EFV 

^^"v 

£„ = 
|
E
FV 

2  A G..t \  M 
(60) 

,¥1 
T0  T0  HEFht 

The resulting overall non-dimensional equilibrium equations are 



23 

—f + (1 + CR) (Vn+1 - 2Vn + V^) = 0 (61) 
dn 

for n = 0, 1, 2,...,N-1, M+l,  

For fiber (N) , when TI <_ a 

—r+<1 + cR)(Vi-2vN+Vi> 
dri 

= (1 + CR} (VN+1-V-
CR2<VM-V+V^ß>-      (62) 

For  fiber   (N),  when n  >  « 

-f +   (1+ V (VN+1 - 2VN +VN-1} = CR(VN+1 " V " CR2(VM- V- (63) 

dn 

For  fiber   (N+l) ,  when r\  <_ a 

—Jf±+   (1 + CR)(VN+2-2VN+l-V 
dn 

= - (1 + V (VN+1 - V + CR(VN+2 " VN+1> " *0 * ^ " ß *•        (64) 

For n = N+2, N+3,...,M-1, and N+l, when T]  >  a 

f + (1 + CR) (Vn+1 - 2Vn + Vn_±)   =  CR(Vn+1 - 2Vn + V^).        (65) 
d2V 

dn 

The differential equation to be solved is the same as Equation (33) 

while G?(n) is given by 

GN(n) =-(i+cR)(vN+1-vN)+cR2(vM-vN)-r0<n- ß> for ma, 

= - Wl-V +CR2(VM-V forn>a,  (66) 

%+1 (n) = (i + cR) (vN+1 - vN) - cR(vN+2 - vN+1) + T0 < n - ß > 

for n £.a ,      (67) 

GlM  = Wl~2V£ + Vl> (68) 

for     I = N+2,...,M-1 and N+l     for n  >  a. 
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Since G (n) should match at n = a  for I  = N+l and N, 

V«) - VM4-l(«) = Tn. N+l '0* (69) 

Equations (41), (42), (66), (67), (68) and (69) can be solved for the 

unknowns Bm and G£(t).  The expressions for displacements and stresses 

remain as given by Equations (42) and (44). 
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CHAPTER III 

SOLUTION TECHNIQUE 

In all the problems discussed so far, the solution reduces to a 

series equation coupled with one or more Fredholm integral equations 

of the second kind.  Since there is no exact form of solution avail- 

able to solve such a system of equations, a computer program is de- 

veloped by modifying a numerical procedure given in [12].  The tech- 

nique makes use of a method by Riez [13] to solve a linear Fredholm 

integral equation of the second kind defined within a semi-infinite 

interval of integration.  A given integral over a semi-infinite in- 

terval may be approximated by the Gauss-Laguerre quadrature rule as 

co k    -x^ 

/  f(x)dx =  Z w.e   f(x.), (70) 
0 i=l X X 

where x. is the i^ zero of the Laguerre polynomial, L. (x), and w. 
X K X 

is the corresponding weight function given by 

x. 
W.    = X y ' (71) 
1   [(k+DLk+1(x.)] 

Th e Laguerre polynomial L, (x) is given by 

T r  \   e d (x e ) ,     . Lk(x) =  -j  (72) 
dx 

Since the form of the equations for each solution is the same for 

the three particular cases discussed above, the development and appli- 

cation of the numerical procedure can be demonstrated without any loss 

of generality by taking equations corresponding to one of the solutions, 
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Consider the problem of an infinite debonded zone with a con- 

straint layer given by the equations 

V^ =CR(V£+1-2V£ + W (49) 

:or  £=1,2,...,N-1, N, 

H0(n) =CR(Vl-V0); (50) 

2 L 
- I   1  -5  E  B  cos(m6) 
"Ol   m=0  m 

+ f  e 
0 

•(6t) 
N 
E H (t)cos(£9)dt \  cos (n9)dE 

£=0 
(51) 

:or  n = 0, 1, ...,L-1, L, 

V (n) = - / <e (6ll) E  B  cos (m6) n     TT   j m 0 k.     m=0 

N 
+ i f  D(6,n,t) z H (t) cos(£e)dti cos(ne)d 

2 o    6    £=o £ ; 
e.  (52) 

Substituting the expression for V (n) in (49) and (50) yields 

H„(n) = C R - f  e   (5n)  E  B  cos(m6) 
0       m=0 

X  {cos((£+i)9) - 2 cos(£9) + cos((£- l)9)}df 

+ I/Y D(5'ri't)- ? H (t)cos(ne) 
^00     6    n=0  n 

X  {cos((£ + 1)6) - 2 cos(£9) + cos((£- l)6)}d0dt 

L 

,(73) 

E0M   -  CR -/ e 
(5ll) E B  cos(m9) {cos(e)-l}d6 

TT m 
0      m=0 

i / f Ul >^>t}    E Hn(t)cos(n9) {cos(6) - l}dtd9 (74) 
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L       2C TT 
Z    -^ / 

m=0     ^    0 

The  integral over  the spatial variable   't'   in  the Equations   (51),   (73) 

and   (74)   can now be  replaced by  the  series  in Equation   (70)   to yield 

- -(6n.) ( 
e cos(me) I cos((£+l)0) - 2   cos(£6) 

+ cos ((A- 1)6) } B^     d9 

CL     k 

m 

+ 6..   --^    E   {K^Cn-.t .)-2Kj(n,,t  ) 

ni5t.)j  etj   w      H£(tj) 

-^    E        E       K£+1(n,,t.)-2K>. ,t,) 
n=0  j=l V 
\vfl 

,1-1. + Kn     (VV/   £       V   W = 0,   (75) 

for     Ü =  1,2,...,N-1,  N, 

L     2C„    IT r -(on.) 
E     -±f 

m=0     ""    0 

cos(m9){cos(6) - 1}B de 

+ 5ir^r .f^W -*S<vv} ^ V V9_ 

+ 
'CL    N      k t. 

n=l 3=1 v. > 3 

0, (76) 

and 
L       „      TT 
I    ±;   [- 5cos(me)cos(n6)BJd6 

TT 
m=0       0 

N       k     „    Trr-(6t,) "N     t 
+    E       E    - / <e cos (£6) cos (n9)^  e       w       G£(t)d6=-1 

£=0 j=l " 0 \ J J 

(77) 

for    n = 0,1,...,L-1,   L, 

where 

K
m(n     t  )   =  / D(6,n.,t.)cos(m6)cos(ne)d9. 
nv   i    3 A X

    2 
(78) 
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The solution therefore reduces to solving a system of linear 

algebraic equations for the constants B  and for explicit values of 
m 

the functions H (t) at specified quadrature points.  The above system 

of equations is solved by the method of Gauss-elimination with partial 

pivoting. 

The above procedure is followed in all the three cases; however, 

for the instance of longitudinal matrix damage, an additional step is 

required.  The presence of longitudinal damage has a very significant 

effect on displacement in the damage region and hence on G (t) .  If 

the semi-infinite integrals are expressed as a series expansion given 

by (70) , the number of quadrature points lying in the damage region is 

not sufficient to represent the displacement function accurately in 

that region.  For example, out of 35 quadrature points, only five lie 

between zero and two, a typical value for alpha (a).  So in order to 

approximate the integral more accurately, more points are required in 

the region from zero to alpha (a).  The following procedure is used. 

The integral is split as sum of two integrals 

00 a co a °° 

/  f(x)dx = /  f(x)dx + / f(x)dx = / f(x)dx + / f(x+a)dx.   (79) 
0 0 a o 0 

The finite interval integrals can be approximated by Gaussian integra- 

tion [14] as 

k" 
f    f(x)dx = -| 2 w* f(y;:), 

2 j=1 3 3 ■ 0 
(80) 

where 

yV - (f + Dx| 

x* is the jth zero 0f the Legendre polynomial P (x), 

and w'" is the corresponding weight function given by 

(81) 
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w* =  ?-=- [P'(x*)]2. (82) 
J   (1-x*2)  n j' 

The Legendre polynomial is: 

P (x) =-i- ^-(x2-l)n. (83) 
2nn!  dx11 

Physically it would be more direct to specify the applied stress, 

number of broken fibers, L, and determine the damage zone a and ß de- 

pending on given yielding and splitting conditions.  As a  and g appear 

in the limits of the integrals, this is not convenient computationally 

and it is easier to specify the number of broken fibers, N, and the 

damage zone parameters a and ß and to compute the required applied 

stress a 
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CHAPTER IV 

RESULTS 

Debonding with no Longitudinal Matrix 
Damage in the Unidirectional Ply 

The effect of the width of the debonded zone was of particular 

significance in this study.  Results are given in Figure 6 for various 

numbers of broken fibers with a constant constraint ratio.  Debonding 

was assumed to start at the last broken fiber and extend longitudinally 

to infinity, (Figure 2).  The critical fiber is defined as the fiber 

which has the maximum stress.  The stress in the critical crack-tip fiber 

decreased initially for a small debonded zone, but subsequently increased 

with an increase in the width of the debonded zone.  In fact, the stress 

concentration in the limit case of an infinitely wide debonded zone, 

was more than that of the bonded case, (Table I). 

One result of particular significance is that the maximum decrease 

in the stress in the critical fiber occurs for a small debonded zone 

and is essentially independent of the initial crack length.  Figure 6 

shows that a debonded zone width of two fibers spacings results in the 

largest decrease in the maximum fiber stress for five, seven, nine and 

twenty-one broken fibers. 

Debonding acts like a constraint (CR2) between the last broken fiber 

(N) and last debonded fiber (M), resulting in a redistribution of stresses 

in the vicinity of the crack tip, hence decreasing the stress in the 

critical fiber.  A higher constraint ratio resulted in a larger drop 

in critical stresses as shown in Figure 7 but gave higher critical 

stresses in the limit case Figure 8. 



Constraint Ratio = 0.5 

Debonded Zone Starts from 
Last Broken Fiber. 

Crack Length = No. of Broken Fibers 

x Fiber Spacing 
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4 " 21 broken fibers 

\\ 

b8 

b 

9 broken fibers 

03 
debonded zone width (M-N) , fibers 

Figure 6. Maximum Fiber Stress as a Function of Debonded Zone Width 
and Crack Length. 
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b8 

lumber of Broken Fibers = 7 

Debonded Zone Starts from 
Last Broken Fiber 

lj tj 
2 3 4 

debonded zone width (M-N), fibers 

oo 

Figure 7.  Maximum Fiber Stress as a Function of Debonded Zone Width 
and Constraint Ratio. 
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Infinite Debonded Zone Width 

Crack Length = No. of Broken Fibers 

x Fiber Spacing 

3  " 

8 

2  r 

5 7 9 

number of broken fibers (n) 
11 

Figure 8.  Maximum Fiber Stress as a Function of Crack Length 
and Constraint Ratio. 
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Table i.  Maximum Stress Conconcentration vs. Width of Debond Zone 

Number of Broken Fibers = 7 

First Debonded Fiber (N) = 3 

Constraint Ratio  (CR)   =  0.5 

Width of Debonded Zone Maximum Stress Concentration 

(M-N) fibers K 

1 

2 

3 

4 
oo 

2.5461 

2.3258 

2.3392 

2.3601 

2.5813 

Debonding with Longitudinal Matrix 

Damage in the Unidirectional Ply 

The effects of debonding accompanied with longitudinal matrix splitting 

and yielding at the crack tip are indicated in Figures 9 and 10 where 

some typical results were obtained for seven broken fibers.  A two/one 

split strain to yield strain condition is assumed.  This ratio was selected 

for comparison with the results of [5] and is approximately equal to 

that for brittle epoxy.  A debonded zone of two fiber widths starting 

at the last broken fiber is assumed. 

The maximum fiber stress, normalized by a laminate constant 

To = To 
EFht 

GMA 
is plotted against the normalized applied stress. 

MftF 

Figures 9 and 10 give results for CR = 0.5 and 1.0, respectively. 

The results are plotted for a monolayer having four different combina- 

tions of constraint and/or damage as given below. 

Transverse 
Notch 

Constraint 
Layer 

Matrix 
Damage 

Debonding 

i) X 

ii) X X 

iii) X X X 

iv) X X X 
x 
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4 r 
Number of Broken Fibers 

CR = 0.5« 

without debondins 

Hedgepeth' s^ 
Solution 

Debonded Zone of Two 
Fibers Starts from 
Last Broken Fiber 

Op 

T 

2 

(§> yield 

$ split 

CR = 0.5 

(with debonding) 

no damage 
(net section) 

Figure 9.  Maximum Fiber Stress for Yielding and Splitting for a 
Constraint Ratio of 0.5 
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iJUiüber of Brclean Fibers = 7 

'Tf- ~?   t{without de 

Debonded Zone of 
Fibers Starts f 
Last Broken Fib 

(with debonding) 

no damage 
(net   section) 

Figure 10.  Maximum Fiber Stress for Yielding and Splitting for a 
Constraint Ratio of 1.0. 
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For case (ii), unidirectional lamina with no constraint, it 

was found in [5] that once the split forms the critically stressed 

fiber unloads and the split length becomes unbounded under a five-to 

ten-percent further increase in applied stress.  The fracture reduces 

to an unnotched laminate with the net-section fracture stress being 

independent of the initial crack length. 

For cases (iii) and (iv), the critically stressed fiber does not 

reduce to a net section state but continues to carry load after splitting 

with increasing applied load.  However, in the presence of debonding, 

the maximum fiber stress is relieved. 

Hence, in terms of load carrying capacity, the worst case is (i) 

where the monolayer has no damage other than an initial transverse 

notch, while the best case is (ii) where the notched monolayer is not 

constrained but has longitudinal matrix damage.  Cases (iii) and (iv) 

lie between the above models where debonding allows the larger load 

carrying capacity. 

For all fully bonded constraint layer cases, the maximum 

fiber stress occurs in the first unbroken fiber at the end of the split 

(y = i-,  ) for no (or low) constraint ratio [5] and at the notch 

tip (y = 0) for high constraint ratios [10].  The same behavior occurs 

for debonded cases, but in case of high constraint ratios and high values 

of alpha (a) and beta (g), the maximum fiber stress occurs in the last 

debonded fiber at y = 0.  This shows that under the above conditions 

the first unbroken fiber is highly relieved of stresses and can result 

in discontinuous damage of the fibers.  The following table quantita- 

tively illustrates the above behavior. 
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Table II.  Location of Maximum Fiber Stress 

Number of Broken Fibers  =  7 
Broken Fiber Index (L=N) =  3 
Stress Concentration at 
n: = Position: n: = Fiber No. 

(1)  Bonded Cases: 

(Figure 2) 

i)  CR = 0.0.; a = 3.00; 3 = 2.25 

n   -> 
n 4- 

4 5 

0.00 
3 

1.527 
1.817 

1.447 
1.441 

ii)  CR = 1.0; a = 1.00; 3 = 0.36 

n 4 
n   ->■ 4 5 

0.00 
3 

2.294 
2.008 

1.538 
1.497 

(2)  Debonded Cases: 

i)  CR = 1.0; a = 0.94; 3 = 0.30; N = 3; M = 

n ->. 
n x 

0.00 1.843 
1.841 

1.841 

1.529 

ii)  CR = 1.0; a = 2.30; 3 = 1.68;  N = 3; M = 

n -> 
n + 

0.00 1.474 

1.423 
1.939 
1.111 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The main aim of this research project was to investigate the effects 

of interlamina debonding between notched unidirectional lamina and con- 

straint plies.  The significant results are as follows: 

(i)  The maximum stress in the crack tip fiber decreases initially 
for a small debonded zone, but increases as the width of the 
debonded zone is increased. 

(ii)  The largest decrease in the maximum fiber stress occurs for 
a debonded zone width of two to three fiber spacings.  Further 
this debond zone width is essentially independent of crack 
length. 

(iii)  For a small debond zone, the maximum fiber stress in the mono- 
layer decreases as the constraint ratio increases. 

(iv)  In the presence of longitudinal matrix crack-tip damage and 
constraint layers, the maximum fiber stress in the unidirec- 
tional ply is further relieved if debonding takes place. 

(v)  For a large constraint ratio with longitudinal matrix damage 
at the crack tip, debonding reduces the stress in the first 
unbroken fiber such that the maximum fiber stress can occur 
at the end of the debond zone. 

The following modifications are recommended: 

(i)  Extend damage to the whole laminate, that is, account for damage 
in the constraint plies. 

(ii)  Represent finite longitudinal debonded zones around the crack. 

(iii)  Understand the concept of constraint ratio in terms of geo- 
metric and physical layer properties.  Since the constraint 
ratio is not defined in terms of layer properties, it is not 
possible to make quantitative predictions about laminate 
strength.  Approximate best fit curves [6] and experimental 
studies [15] can help in determining constraint layer 
parameters to find constraint layer ratios. 
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