| REPORT DOCUMENTATION PAGE Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Public reporting burden for this collection of info<br>gathering and maintaining the data needed, and<br>collection of information, including suggestions<br>Davis Highway, Suite 1204, Arlington, VA 22202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | primation is estimated to average 1 hour per re-<br>completing and reviewing the collection of inf<br>for reducing this burden, to Washington Heads<br>4302, and to the Office of Management and Bu | sponse, including the time for re<br>ormation. Send comments regar<br>quarters Services, Directorate for<br>laget, Paperwork Reduction Proje | viewing instructions, searching existing data sources.<br>Iding this burden estimate or any other aspect of this<br>Information Operations and Reports, 1215 Jefferson<br>ect (0704-0188), Washington, DC 20503. |  |  |
| 1. AGENCY USE ONLY (Leave blan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k) 2. REPORT DATE<br>Feb 19 1996                                                                                                                                                                    | 3. REPORT TYPE AND<br>Technic                                                                                                                | D DATES COVERED                                                                                                                                                                                                  |  |  |
| <ul> <li>4. TITLE AND SUBTITLE<br/>Small-Molecule Phosph<br/>Synthesis, X-ray Stru<br/>Corresponding High Po</li> <li>6. AUTHOR(S)<br/>Harry R. Allcock, Sam<br/>Visscher, and Masood</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | azene-Substituted Phen<br>ctures, and Comparison<br>lymers<br>an Al-Shali, Dennis C.<br>Parvez                                                                                                      | oxy Side Groups<br>s with the<br>Ngo, Karyn B.                                                                                               | 5. FUNDING NUMBERS<br>N00014-91-J-1194<br>Dr. K. J. Wynne<br>R&T Code: 3132007                                                                                                                                   |  |  |
| 7. PERFORMING ORGANIZATION N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AME(S) AND ADDRESS(ES)                                                                                                                                                                              |                                                                                                                                              | 8. PERFORMING ORGANIZATION                                                                                                                                                                                       |  |  |
| Department of Chemis<br>The Pennsylvania Sta<br>152 Davey Laboratory<br>University Park, Pen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | try<br>te University<br>nsylvania 16802                                                                                                                                                             |                                                                                                                                              | REPORT NUMBER                                                                                                                                                                                                    |  |  |
| 9. SPONSORING/MONITORING AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENCY NAME(S) AND ADDRESS(ES)                                                                                                                                                                        |                                                                                                                                              | 10. SPONSORING / MONITORING                                                                                                                                                                                      |  |  |
| Office of Naval Rese<br>800 North Quincy Str<br>Arlington, Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arch<br>eet<br>22217-5000                                                                                                                                                                           |                                                                                                                                              | AGENCT REPORT NOWBER                                                                                                                                                                                             |  |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                  |  |  |
| Prepared for publicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion in Journal of the                                                                                                                                                                               | Chemical Society                                                                                                                             | y (Dalton)                                                                                                                                                                                                       |  |  |
| 12a. DISTRIBUTION / AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STATEMENT                                                                                                                                                                                           |                                                                                                                                              | 125. DISTRIBUTION CODE                                                                                                                                                                                           |  |  |
| Reproduction in whol<br>purpose of the Unite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e or in part is permit<br>d States Government.                                                                                                                                                      | ted for any                                                                                                                                  |                                                                                                                                                                                                                  |  |  |
| This document has be distribution is unli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | en approved for public<br>mited.                                                                                                                                                                    | release;                                                                                                                                     |                                                                                                                                                                                                                  |  |  |
| 13. ABSTRACT (Maximum 200 word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /s)                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                                                                                  |  |  |
| A series of new cyclic phosphazenes and a linear short chain phosphazene have been<br>synthesized as models for the preparation of the corresponding high polymers.<br>Several of the high polymers were also prepared. The small-molecule compounds<br>were characterized by a combination of <sup>3</sup> 1P NMR, mass spectrometry, and elemental<br>analysis. The crystal and molecular structures of hexakis(4-methylphenoxy)cyclo-<br>triphosphazene, hexakis(4-hydroxyphenoxy)cyclotriphosphazene, hexakis(4-benzyl-<br>oxyphenoxy)cyclotriphosphazene, octakis(4-phenoxyphenoxy)cyclotetraphosphazene, and<br>(t-butylphenoxy)diphosphorus were investigated by single crystal X-ray diffraction<br>techniques. |                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     | 19                                                                                                                                           | 960301 064                                                                                                                                                                                                       |  |  |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                                                                                                                                                                                             |                                                                                                                                              | 15. NUMBER OF PAGES                                                                                                                                                                                              |  |  |
| Polymers, small-mc<br>index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lecule models, phospha                                                                                                                                                                              | zenes, high ref                                                                                                                              | ractive 16. PRICE CODE                                                                                                                                                                                           |  |  |
| 17. SECURITY CLASSIFICATION<br>OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE                                                                                                                                                         | 19. SECURITY CLASSIF<br>OF ABSTRACT                                                                                                          | ICATION 20. LIMITATION OF ABSTRACT                                                                                                                                                                               |  |  |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unclassified                                                                                                                                                                                        | Unclassified                                                                                                                                 | UL                                                                                                                                                                                                               |  |  |
| NSN 7540-01-280-5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                              | Standard Form 298 (Rev. 2-89)                                                                                                                                                                                    |  |  |

••••

DIE QUALITE INGPECIED 1

Prescribed by ANSI Std (239-18 298-102

#### OFFICE OF NAVAL RESEARCH

Grant No. N00014-91-J-1194

R&T Project 3132007

Dr. Kenneth J. Wynne, Program Manager

Technical Report No. 30

#### SMALL-MOLECULE PHOSPHAZENE-SUBSTITUTED PHENOXY SIDE GROUPS: SYNTHESIS, X-RAY STRUCTURES, AND COMPARISONS WITH THE CORRESPONDING HIGH POLYMERS

by

Harry R. Allcock, Saman Al-Shali, Dennis C. Ngo, Karyn B. Visscher, and Masood Parvez

Prepared for Publication in the Journal of the Chemical Society (Dalton)

Department of Chemistry The Pennsylvania State University University Park, Pennsylvania 16802

February 19, 1996

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

### Small-Molecule Model Phosphazenes with Para Substituted Phenoxy Side Groups: Synthesis, X-Ray Structures and Comparisons with the Corresponding High Polymers

Harry R. Allcock\*, Saman Al-Shali, Dennis C. Ngo, Karyn B. Visscher, and Masood Parvez Department of Chemistry, The Pennsylvania State University University Park, PA 16802.

Received:\_\_\_\_\_

A series of new cyclic phosphazenes and a linear short-chain phosphazene have been synthesized as models for the preparation of the corresponding phosphazene high polymers. Several of the high polymers were also prepared. The small molecule compounds were characterized by a combination of <sup>31</sup>P NMR, mass spectrometry and elemental analysis. The crystal and molecular structures of hexakis(4-methylphenoxy)cyclotriphosphazene (2a), hexakis(4-hydroxyphenoxy)cyclotriphosphazene (2b), hexakis(4phenoxyphenoxy)cyclotriphosphazene (2e), hexakis(4-benzyloxyphenoxy) cyclotriphosphazene (2f), octakis(4-phenoxyphenoxy)cyclotetraphosphazene (4a) and (tbutylphenoxy)diphosphorus short chain (6a) were investigated by single crystal x-ray diffraction techniques. Crystals of 2a are triclinic of space group P1, with a = 9.790(1) Å, b = 11.399(4) Å, c = 18.495(2) Å,  $\alpha = 97.86(2)^{\circ}$ ,  $\beta = 95.33(1)^{\circ}$ ,  $\gamma = 102.85(1)^{\circ}$  and Z = 2. Crystals of 2b are triclinic of space group P1 with a = 9.577(5) Å, b = 10.148(2) Å, c = 20.395(6) Å,  $\alpha = 77.66(2)^{\circ}$ ,  $\beta = 85.45(3)^{\circ}$ ,  $\gamma = 84.03(2)^{\circ}$ , and Z = 2.Crystals of 2e are triclinic of space group P1, with a = 15.348(2) Å, b = 15.567(3) Å, c = 16.035(2) Å,  $\alpha =$ 72.02(1)°,  $\beta = 66.55(1)^{\circ}$ ,  $\gamma = 59.87(1)^{\circ}$  and Z = 2. Crystals of 2f are triclinic of space group P1 with a = 9.297(5) Å, b = 15.551(4) Å, c = 23.342(4) Å,  $\alpha$  = 84.12(2)°,  $\beta$  = 89.44(3)°,  $\gamma$  = 80.55(2)°, and Z = 2. Crystals of 4a are triclinic of space group P1 with a = 16.727(1) Å, b = 20.516(9) Å, c = 25.760(2) Å,  $\alpha$  = 106.04(2)°,  $\beta$  = 93.55(6)°,  $\gamma$  = 101.33(7)°. Due to two different crystal conformations in the 4a unit cell, Z = 4. Crystals of 6a are triclinic of space group P1 with a = 13.058(5) Å, b = 14.464(2) Å, c = 14.840(11) Å,  $\alpha$  = 70.07(3)°,  $\beta$  = 84.38(4)°,  $\gamma$  = 74.55(3)°, and Z = 2. High polymers, [NP(OC<sub>6</sub>H<sub>4</sub>OC<sub>6</sub>H<sub>5</sub>)<sub>2</sub>]<sub>n</sub>, [NP(OC<sub>6</sub>H<sub>4</sub>OC<sub>6</sub>H<sub>5</sub>)<sub>2</sub>]<sub>n</sub>, [NP(OC<sub>6</sub>H<sub>4</sub>OC<sub>6</sub>H<sub>5</sub>)<sub>2</sub>]<sub>n</sub> and [NP(OC<sub>6</sub>H<sub>4</sub>C(CH<sub>3</sub>)<sub>3</sub>)<sub>2</sub>]<sub>n</sub> were also prepared and their structures confirmed by a variety of techniques including <sup>1</sup>H and <sup>31</sup>P NMR, elemental analysis and differential scanning calorimetry (DSC).

#### Introduction.

Aryloxy-substituted phosphazene high polymers are of interest as high-refractive glasses<sup>1,2</sup>, liquid crystalline<sup>3-7</sup>, non-linear optical<sup>8</sup>, and ferroelectric species<sup>9</sup> and, in some cases, as photoreactive polymeric materials.<sup>10-17</sup> The optical properties, in particular, are affected by the groups linked to the phenoxy side groups. For example, phenylphenoxy side groups generate high refractive index materials; and a polymer with 4-iodo-4-phenylphenoxy side units has a refractive index as high as 1.664.<sup>2</sup> The mechanical properties of the polymers also depend on the nature of the units linked to phenoxy side groups attached to the phosphazene backbone.

Polymers of this type are prepared by replacement of the halogen atoms in poly(dichlorophosphazene), [NPCl<sub>2</sub>]<sub>n</sub>, by reactions with aryloxides<sup>18-21</sup>, with the ease of substitution being dependent on both the steric and electronic characteristics of the aryloxy units. Thus, bulky or electronically deactivated nucleophiles under mild reaction conditions, may replace only a fraction of the available chlorine atoms, and require a subsequent

treatment with a second, more reactive, nucleophile in order to ensure the absence of hydrolytically sensitive P-Cl units in the final polymer.

Macromolecular substitution reactions are more complicated than the corresponding reactions at the small molecule level. In a typical macromolecular reaction, the replacement of 30,000 chlorine atoms per polymer molecule must be induced. Hence, a prudent protocol in this type of research is to examine prospective polymer reactions first at the small-molecule model compound level. The small molecule systems allow characterization by NMR spectroscopy, mass spectrometry and x-ray techniques that are difficult or impossible for high polymers.

In this paper, we discuss the reactions of the model cyclic trimer 1 with a variety of para-substituted aryloxides. The products are listed in Scheme 1 as species 2a-g. In addition, a cyclic tetrameric model, 4a, was prepared by the route shown in Scheme 2. In one case, 6a, a linear short chain phosphazene compound was also prepared and studied as a model for the corresponding high polymer. Several of the same substitution reactions were also investigated at the high polymer level.

All the organic substituted products were examined by microanalysis, NMR, and mass spectrometric techniques. Six of these compounds were also studied by single crystal x-ray crystallography. The other three could not be examined by x-ray methods because they did not yield crystals of suitable quality.

#### **Results and Discussion**

Synthesis of the Small Molecule Model Compounds. Replacement of all the chlorine atoms in 1 and 3 by all the nucleophiles occurred relatively easily if a high boiling etheric solvent such as dioxane was employed. This suggests that, provided the terminal unit occupies the 4-position of the aryloxy group, the steric hindrance effects are comparable to that of an unsubstituted phenoxy unit. Hence, the transposition of these reactions to the high polymer level should be relatively straightforward, and this was found to be the case (see later).

The reaction sequence used for the synthesis of the cyclotriphosphazenes is outlined in Scheme 1. The cyclic model compounds were prepared by the treatment of hexachlorocyclotriphosphazene (1) with the sodium aryloxides to yield cyclic phosphazenes with 4-methylphenoxy, 4-t-butylphenoxy, 4-triphenoxymethylphenoxy, phenoxyphenoxy, benzyloxyphenoxy, and 4-benzyloxybenzyloxy side units. The cyclic trimer with 4-hydroxyphenoxy side units was prepared by a two step process, with the second step involving the oxidation of methoxy units of [hexakis(4-methoxyphenoxy) cyclotriphosphazene] using BCl<sub>3</sub>. In all these and the following reactions, complete replacement of the chlorine atoms by the aryloxy groups occurred and reaction yields ranged from 70 to 85%.

#### Scheme 1 near here.

The reaction sequence used for the synthesis of a cyclotetraphosphazene is outlined in Scheme 2. The cyclic model compound was prepared by the treatment of octachlorocyclotetraphosphazene (3) with the sodium aryloxide to yield a cyclic phosphazene tetramer with 4-phenoxyphenoxy side units. Complete replacement of chlorine atoms was achieved in this reaction.

#### Scheme 2 near here.

The reaction sequence for the synthesis of the linear, short chain phosphazene is illustrated in Scheme 3. The preparation of OPCl<sub>2</sub>NPCl<sub>3</sub> (5) has been described elsewhere.<sup>22-24</sup> The reaction of 5 with sodium 4-t-butylphenoxide yielded product **6a**. Complete replacement of the chlorine atoms was achieved in this reaction

#### Scheme 3 near here

Structural Characterization of the Small Molecule Cyclic and Linear Species 2(a-g), 4(a) and 6(a) were characterized by a combination Phosphazenes. of <sup>31</sup>P NMR spectroscopy, mass spectrometry, and elemental analysis (Table 1). The <sup>31</sup>P NMR spectra of compounds 2(a-g) and 4(a) were singlets with the chemical shift position varying with the nature of the substituent group. The presence of a singlet in the <sup>31</sup>P NMR is consistent either with full substitution, or with the presence of only one environment for the phosphorus atoms as would be generated by non-geminal partial substitution. Compound 6a gave an AB spin pattern due to the two different phosphorus environments within the molecule. Infrared spectra contained the absorbances expected for cyclophosphazenes, with maxima in the 1100-1200 cm<sup>-1</sup> range characteristic of the (P=N) bond. All the compounds, except for 2d, yielded mass spectra that contained a parent ion consistent with the expected molecular weights. More extensive characterization of compounds 2a, b, e, f, 4a, and 6a was obtained from single crystal x-ray diffraction studies. Compounds 2c, d and g were not studied by x-ray diffraction due to the difficulty of obtaining single crystals of sufficiently high quality. A summary of crystal data and intensity collection parameters are listed in Table 2. Individual positional parameters, bond distances and bond angles, and general temperature factors are depicted in Tables 3-20.

Table 1 near here.

Table 2 near here.

Molecular Structure of 2a This structure was solved to an R factor of 8.5%. As shown in Figure 1, the cyclotriphosphazene ring was slightly puckered, with an average P-N bond length of 1.574(4) Å. The average N-P-N ring angle was 117.2(2)°

and the average P-N-P ring angle was 122.5(2)°. The phenoxy rings were normal in all respects with an average P-O-C angle of 124.6(3)°. The p-methyl groups on the phenoxy rings had an average C-C bond distance of 1.510(7) Å. Individual bond distances and angles are shown in Table 3, and the atomic coordinates of **2a** are shown in Table 4.

Figure 1 near here Tables 3 and 4 near here

Molecular Structure of 2b The structure of the hexakis(phydroxyphenoxy) cyclic trimer, 2b, was solved to an R factor of 5.0%. This system contained 3 molecules of water per unit cell. The six-membered phosphazene ring showed a slight boat distortion from planarity. Six p-hydroxyphenoxy side groups were linked to the phosphorus atoms of the ring (Figure 2) which had an average P-N bond length of 1.579(3) Å. The average N-P-N ring angle was  $117.1(2)^{\circ}$  with individual angles of  $116.2(1)^{\circ}$ ,  $118.1(1)^{\circ}$  and  $117.1(1)^{\circ}$ . The average P-N-P ring angle was  $122.5(2)^{\circ}$ . The average O-P-O angle was  $100.9(1)^{\circ}$ . The phenoxy rings were normal in all respects with an average P-O-C angle of  $123.2(3)^{\circ}$ . The p-hydroxy groups on the phenoxy rings had an average C-O…(H) bond distance of 1.377(4) Å, which is typical for phenolic groups. No evidence was found that the crystal structure was stabilized by hydrogen bonding. Individual bond distances and angles are shown in Table 5, and the atomic coordinates of 2b are shown in Table 6.

Figure 2 near here

Tables 5 and 6 near here

Molecular Structure of 2e This structure was solved to an R factor of 3.5%. The cyclic trimeric phosphazene ring was slightly puckered in a chair conformation. The average P-N bond length was 1.582(2) Å. The average N-P-N ring angle was 116.7(2)° and the average P-N-P ring angle was 122.3(1)°. The average O-P-O angle was 96.80(8)° with individual angles of 98.39(9)°, 93.16(7)° and 98.86(7)°. The narrowest of these angles was probably due to crystal packing forces. The P-O-C angles ranged from 122.6(2)° to 131.2(1)°, with an average angle of 125.3(2)° and are considered to be normal, as indeed are the C-O-C angles which range from 117.1(2)° to 120.1(2)° with an average value of  $118.8(2)^{\circ}$ . The aryl rings are planar with normal dimensions. The orientation of the side groups is interesting, with five of the units oriented roughly normal to the phosphazene ring plane (Figure 3) and two disposed approximately parallel to and away from the inorganic ring. The stereo view of the packing diagram (Figure 4) illustrates the way in which the side group torsional flexibility around the P-O-C and C-O-C units allows an efficient use by the side groups of the available unit cell volume. By contrast, earlier structure solutions of [NP(OC<sub>6</sub>H<sub>4</sub>C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>]<sub>3</sub>, and analogous short chain species showed that the side group conformation in those species was significantly constrained by the rigidity of the structure.<sup>25</sup> Individual bond distances and bond angles are shown in Table 7, and the atomic coordinates of 2e are shown in Table 8.

> Figures 3 and 4 near here Tables 7 and 8 near here.

**Crystal and Molecular Structure of 2f** The structure of **2f** was solved to an R factor of 11.8%. The high R value may be a consequence of the size of each molecule (96 non-hydrogen atoms). The phosphazene ring is almost planar but with a slight chair distortion. The P-N bond distances ranged from 1.54(1) Å to 1.59(1) Å with an

7

average P-N bond distance of 1.575(9) Å. The average N-P-N ring angle was  $118.5(6)^{\circ}$ and the average P-N-P bond angle was  $120.4(7)^{\circ}$ . The average O-P-O angle was  $95.8(5)^{\circ}$ . All the benzenoid rings appear to be normal. The P-O-C angles were within expected limits (average P-O-C angle of  $124.2(7)^{\circ}$ ). So too were the C-O-C angles (in the range of  $112.6(6)^{\circ}$  to  $122.8(8)^{\circ}$ ) with the exception of one wider angle of  $130.6(14)^{\circ}$ . Again, crystal packing forces may explain this anomaly. The orientation of side groups (Figure 5) is interesting, with maximum extension of each unit being favored, and with four of the groups oriented almost normal to the phosphazene ring and the remaining two disposed away from the ring at roughly 45°. The packing diagram (Figure 6) further illustrates this structure. Individual bond distances and bond angles are listed in Table 9, and the atomic coordinates of **2f** are shown in Table 10.

> Figures 5 and 6 near here Tables 9 and 10 near here.

**Crystal and Molecular Structure of 4a** Compound **4a** contains eight phenoxyphenoxy side groups attached to a cyclic, tetrameric phosphazene ring. The x-ray crystal structure of this compound contained two different molecular conformations of **4a**, and the structure was solved to an R factor of 9.9% (This high value could be due to the complexity and size of the molecule as well as the difference in molecular conformation). (Figure 7) In both conformations, the phosphazene ring was puckered into a boat shaped conformation and had an overall average P-N bond length of 1.560(9) Å. Individual P-N bond lengths were 1.56(1) Å, 1.560(9) Å, 1.55(1) Å, 1.531(9) Å, 1.57(1) Å, 1.584(9) Å, 1.55(1) Å, 1.56(1) Å, 1.55(1) Å, 1.560(9) Å, 1.54(1) Å, 1.54(1) Å, 1.587(9) Å, 1.55(1) Å, 1.56(1) Å, 1.56(1) Å. The average N-P-N ring angle was 120.6(6)° with individual values of 120.0(6)°, 120.9(6)°, 120.8(6)°, 120.1(6)°, 120.3(6)°, 121.2(6)°, 121.1(6)° and

120.4(6)°. The average P-N-P ring angle was 135.2(7)° with individual ring angles of 135.4(7)°, 136.2(7)°, 135.9(7)°, 135.2(8)°, 136.4(6)°, 132.8(7)°, 135.4(7)° and 134.4(8)°. The average O-P-O angle was 99.4(5) with individual angles of 99.6(5)°, 98.4(5)°, 98.6(5)°, 100.7(5)°, 99.6(5)°, 99.7(5)°, 98.6(5)° and 100.7(5)°. The phenoxy rings were normal in all respects with an average P-O-C angle of 123.7(7)° and individual values of 124.2(7)°, 124.3(6)°, 123.9(9)°, 124.5(7)°, 123.9(7)°, 123.3(6)°, 126.5(8)°, 121.5(6)°, 122.9(7)°, 124.2(1)°, 123(1)°, 120.9(6)°, 123.8(9)°, 124.2(5)°, 121(1)°, 126.4(9)°. The phenoxyphenol side groups had an average internal C-O-C angle of 118.2(9)° with individual angles of 119(1)°, 119(1)°, 117(1)°, 118.4(9)°, 118(1)°, 120(1)°, 117(1)°, 117(1)°, 117(1)°, 118(1)°, 117.8(9)°, 118(1)°, 118.3(9)°, 119(1)°, 116.3(5)° and 118.3(6)°. As shown in Figure 7, the differences in the conformations arise from twisting within the side groups. In general, the side units extend in a perpendicular manner from the tetramer ring. There appears to be some intramolecular side group stacking or organization within the molecule. Due to the complex nature of the packing diagram (Figure 8), it is difficult to discern stacking between molecules. Individual bond distances and angles are shown in Table 11, and the atomic coordinates of both conformations of 4a are listed in Table 12.

Figures 7 and 8 near here

Tables 11 and 12 near here

**Crystal and Molecular Structure of 6a** Compound **6a** is a short-chain linear phosphazene that contains two phosphorus atoms linked to a central nitrogen atom (Figure 9). P(2) was bonded to two 4-t-butylphenoxy groups and an oxygen atom. P(1) was bonded to three 4-t-butylphenoxy groups. The structure was solved to an R factor of 9.1%. The P-N bond distances were not identical. P(1)-N = 1.495 Å and P(2)-N = 1.578 Å. Although different, these are shorter than the single bond value, and this suggests

some form of electron delocalization along the P-N skeleton. P(2)-O(6) had a bond length of 1.449 Å, which is shorter than the average P-O bond distances of 1.56 Å. This suggested that P(2)-O(6) has some double bond character. The P-N-P angle assumed a value of 157°, which was wide compared to other short-chain species.<sup>22-24</sup> It is assumed that this reflects the effect of the bulky tert-butyl moiety. The orientation of the side units is probably dictated by the need for each side group to maintain a maximum distance from each other. This effect should also be expected at the high polymeric level. The phenoxy rings appeared normal in all respects and no side group stacking could be detected. Individual bond distances and angles are listed in Table 13, and the atomic coordinates of **6a** are shown in Table 14.

Figure 9 near here

Tables 13 and 14 near here

#### Synthesis and Characterization of the High Polymers.

Poly(organophosphazenes) containing para substituted phenoxy nucleophiles corresponding to those in compounds 2c, d, e, f and g were also prepared. These high polymers were synthesized under high temperature (150 °C), high pressure conditions, using dioxane as a solvent, in order to favor complete replacement of all the chlorine atoms. These forcing reaction conditions guaranteed a high degree of chlorine replacement, but small amounts of chlorine were still detected in a few cases (0.5% for side group c, and 1.2% for d). The polymers were characterized by NMR spectroscopy (<sup>1</sup>H and <sup>31</sup>P), differential scanning calorimetry (DSC) and elemental analysis. Molecular weights were estimated by gel permeation chromatography (GPC) and fell within the range of 1 x 10<sup>6</sup> to  $5 \times 10^6$ . Glass transition temperatures, determined by DSC, were in the range of 15°C to 50 °C, and <sup>31</sup>P NMR shifts for the para substituted phenoxy derivatives were in the range of -15 ppm to -25 ppm .

#### Conclusions

Phenoxy-substituted phosphazene cyclic trimers and tetramers were some of the earliest organophosphazenes to be synthesized and characterized<sup>26</sup>, and a phenoxy-substituted phosphazene high polymer was one of the first stable phosphazenes to be reported.<sup>18-21</sup> Since that time, high polymers with various alkyl and aryl substituent groups linked to the phenoxy side units have played a major role in the industrial development of polyphosphazene elastomers and in the exploration of phosphazenes as structural, fibrous, and optical materials. Yet many of these macromolecular developments have occurred in the absence of fundamental data about the influence of the terminal groups linked to aryloxy units on reaction pathways and molecular conformations.

In this paper, we have shown that, provided the terminal unit is at the para-position of the aryloxide nucleophile, few steric hindrance constraints exist that would limit the number of accessible reactions at the small-molecule level. The preliminary results described here and in recent other papers<sup>1,2</sup> suggest that this situation persists at the level of macromolecular substitution also.

It could be argued that molecular structural information obtained for small-molecule cyclic trimers and tetramers is only of peripheral value for understanding the forces that control conformation and chain packing at the high polymer level. Nevertheless, data from small molecule rings provide virtually the only structural information accessible at this time that can be used to analyze the behavior of high polymers. The use of phosphazene short chains such as **6a** offers information that may be more relevant to linear high polymers, but even here the structural features are probably dominated by the end groups in ways that are not pertinent to molecules that may contain 15,000 or more repeating units for every two end units. The answer clearly lies in the study of longer linear oligomeric phosphazenes, as we have attempted to do in earlier publications<sup>22-24</sup>, but these species provide a special challenge with respect to synthesis and crystallization for x-ray studies. Perhaps the most

11

important structural conclusions to be derived from this present paper are related to the orientation of the various aryloxy side groups and their intramolecular interactions. These interactions and the cone-angle volumes swept out by the side units appear to dominate the small-molecule structures, and will presumably exert an even more profound influence on the conformations and packing of the highly flexible long chains found in the macromolecules.

#### **Experimental Section**

Analytical Techniques. <sup>31</sup>P NMR (<sup>1</sup>H decoupled) spectra were obtained with the use of a JEOL FX-90Q NMR spectrometer operated at 36.2 MHz. <sup>31</sup>P NMR chemical shifts are relative to 85% H<sub>3</sub>PO<sub>4</sub> at 0 ppm with positive shift values downfield from the reference. Glass transition temperatures (Tg) were recorded with the use of a Perkin Elmer DSC-7 unit equipped with a PE 7500 computer. The samples (10-30 mg) were analyzed in crimped aluminum pans: a heating rate of 40°C/min and a helium flow of 10 ml/min were used. The instrument was calibrated with a cyclohexane standard, with thermal transitions at -87.06 and 6.54°C. Infrared spectra were recorded with the use of a Perkin Elmer Model 283B grating spectrometer, and ion impact mass spectra were obtained with the use of an AEC/MS 902 mass spectrometer. Molecular weight data were obtained with the use of a Hewlett Packard 1090 liquid chromatograph equipped with a HP 1037A refractive index detector with the use of a polystyrene standard. X-ray crystallographic data were collected with the use of an Enraf-Nonius CADIV diffractometer controlled either by a PDP 11/44 computer or by the CAD4PC program installed on a Gateway 2000 386 mb computer. The structures were solved by SDP<sup>27</sup> installed on the PDP 11/44 and also using a SHELX-Multan<sup>28</sup> program installed on the Pennsylvania State University IBM-VMS computer. ORTEP diagrams were generated using Chem3D molecular modeling system software. Elemental analysis were obtained by Galbraith Laboratories, Knoxville, Tennessee.

Materials. Hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene were provided by Ethyl Corporation and was purified by recrystallization from hexane and sublimation at 50 °C (0.05 mmHg). All solvents were dried either over sodium benzophenone ketyl or calcium hydride and were distilled in an atmosphere of dry nitrogen before use. 4-Benzyloxyphenol, 4-benzyloxybenzyl alcohol, p-cresol and 4-methoxy phenol were all obtained from Aldrich, and were purified by sublimation. Boron trichloride was obtained from Aldrich and was used as received. Sodium and sodium hydride (Aldrich) were used as received. All reactions were carried out in an atmosphere of dry nitrogen.

Synthesis of  $[NP(OC_6H_4CH_3)_2]_3$  (2a)<sup>29</sup>. (NPCl<sub>2</sub>)<sub>3</sub> (2.03 x 10<sup>-2</sup> mol) in dioxane (150 ml) was added slowly to a stirred solution of sodium p-cresol (2.3 x 10<sup>-1</sup> mol) in dioxane (400 ml). The mixture was heated at reflux for 48 h after which time the reaction mixture was cooled and filtered through silica gel. The filtrate was concentrated, dissolved in toluene, and extracted with 1M NaOH (3x) and distilled deionized water (2x). After extraction, the filtrate was concentrated and the remaining residue was recrystallized from hexanes. The product was purified by column chromatography using a dichloromethane eluent.

Synthesis of [NP(OC<sub>6</sub>H<sub>4</sub>OH)<sub>2</sub>]<sub>3</sub> (2b)<sup>30</sup>. (a) Synthesis of

 $[NP(OC_6H_4OCH_3)_2]_3$ : (NPCl<sub>2</sub>)<sub>3</sub> (3.4 x 10<sup>-2</sup> mol) was dissolved in dioxane (150 ml). To this solution was added a solution of sodium 4-methoxyphenoxide (0.564 mol) in dioxane (600 ml). The mixture was refluxed for 24 h, and was then cooled to room temperature, filtered through silica gel, and concentrated. The oily residue was dissolved in diethyl ether and was extracted with 1M NaOH (3x) and distilled deionized water (3x). The resulting product was recrystallized twice from methanol. (b) Synthesis of  $[NP(OC_6H_4OH)_2]_3$ :  $[NP(OC_6H_4OCH_3)_2]_3$  (5.79 x 10<sup>-3</sup> mol) was dissolved in 20 ml dry methylene chloride. A boron trichloride solution (150 ml of 1M BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>) was added by syringe to the trimer solution and the mixture was stirred at room temperature for 48 h. The reaction becomes a dark amber in color. The reaction mixture was then quenched by the addition of methanol and then sodium bicarbonate. The mixture was then gravity filtered and then passed through silica gel and concentrated. The final product was purified by column chromatography using a 1:1 THF/dichloromethane mixture as the eluent.

Synthesis of  $[NP(O-C_6H_4-{}^tBu)_2]_3$  (2c).  $(NPCl_2)_3$  (2.87 x 10<sup>-2</sup> mol) in THF (150 ml) was allowed to react with a solution of sodium 4-t-butylphenoxide (3.44 x 10<sup>-1</sup> mol), and was boiled at reflux for 12 h. After filtration and reduction of the solvent volume, the crude product was chromatographed through a silica gel column. A dichloromethane/hexane mixture was used as eluent. The product was recrystallized from a dichloromethane/hexane solution.

Synthesis of  $[NP(OC_{25}H_{19})_2]_3$  (2d). A solution of  $(NPCl_2)_3$  (2.87 x 10<sup>-2</sup> mol) in dioxane (75 ml) was added dropwise to a solution of sodium tritylphenoxide (2.3 x 10<sup>-2</sup> mol) at 80 °C. The reaction mixture was boiled at reflux for 7 h. The solvent was then removed under reduced pressure and the residual product was extracted with dichloromethane. The product was recrystallized from a dichloromethane/hexane solution.

Synthesis of  $[NP(OC_6H_4OC_6H_5)_2]_3$  (2e). A solution of  $(NPCl_{23}$  (2.87 x  $10^{-2}$  mol) in dioxane (20 ml) was added dropwise to a stirred solution of sodium 4-phenoxyphenoxide (2.15 x  $10^{-2}$  mol) at room temperature. The mixture was refluxed for 20h, and then it was then cooled to room temperature. Filtration and removal of the solvent left an oily product. Purification of the compound was achieved by gradient elution through a silica gel chromatography column with dichloromethane as solvent. The product was recrystallized from toluene and hexane.

Synthesis of  $[NP(OC_6H_4OCH_2C_6H_5)_2]_3$  (2f). A solution of  $(NPCl_2)_3$ (4.31 x 10<sup>-3</sup> mol) in dioxane (25 ml) was added dropwise to a stirred solution of sodium 4-benzyloxy phenoxide (3.6 x 10<sup>-2</sup> mol) in dioxane (150 ml). The mixture was boiled at reflux for 17 h, and then it was then cooled to room temperature. Filtration and removal of the solvent left a solid product. Purification of this compound was achieved by gradient elution through a silica gel column with a THF/hexane mixture. The product was recrystallized from a dichloromethane/hexane mixture.

Synthesis of  $[NP(OCH_2C_6H_4OCH_2C_6H_5)_2]_3$  (2g).  $(NPCl_2)_3$  (2.30 x 10<sup>-2</sup> mol) in dioxane (25 ml) was added slowly to a stirred solution of sodium 4-benzyloxybenzyloxide (2.02 x 10<sup>-2</sup> mol) in dioxane (125 ml) at room temperature. After the mixture had been stirred for 17 h, the solvent was removed by a rotary evaporation. The product was purified by column chromatography using a dichloromethane/hexane mixture as the eluent.

Synthesis of  $[NP(OC_6H_4OC_6H_5)_2]_4$  (4a). A solution of  $(NPCl_2)_4$  (4.3 x  $10^{-3}$  mol) in dioxane (30 ml) was added to a stirred solution of sodium 4-phenoxy-phenoxide (6.9 x  $10^{-2}$  mol) in dioxane (75 ml) at room temperature. The reaction mixture was refluxed for 24 h and was then cooled to room temperature, and the solvent was removed. The product was dissolved in dichloromethane and was filtered through silica gel. The dichloromethane was removed and the residue was dissolved in toluene and extracted with aqueous 1M NaOH. The toluene was removed and the product was purified by column chromatography using a dichloromethane/hexane mixture as the eluent.

Synthesis of  $OP(O-C_6H_4-{}^tBu)_2NP(O-C_6H_4-{}^tBu)_3$  (6a). A solution of  $OP_2NPCl_5$  (7.4 x 10<sup>-2</sup> mol) in dioxane (100 ml) was treated with a solution of sodium 4-t-butylphenoxide (7.4 x 10<sup>-2</sup> mol) in dioxane (100 ml). The reaction mixture was stirred at room temperature for 3 h. After filtration and reduction of the solvent volume, the crude product was chromatographed through a silica gel column using a dichloromethane/hexane mixture as eluent. The product was recrystallized from hexane by slow evaporation.

General Synthesis of High Polymers. The following procedure is a typical synthesis of the polymers discussed in this paper. Synthesis of  $[NP(OC_6H_4O-C_6H_5)_2]_n$ . A solution of  $(NPCl_2)_n$  (3.0g, 5.3 x 10<sup>-2</sup> mol) in dioxane (250 ml) and a solution of sodium-4-phenoxyphenoxide [prepared from Na (5.59g, 2.43 x 10<sup>-1</sup> mol) and 4-phenoxyphenol (47.28g, 2.45 x 10<sup>-1</sup> mol) in dioxane (300 ml)], were placed in an

autoclave reaction vessel. The mixture was heated to 150 °C for 40h, then cooled to room temperature. The reaction mixture was concentrated, and the polymer was recovered by precipitation into water. The reaction product was soluble in THF and was purified by repeated precipitations into water and hexane from a THF solution. The polymer was further purified by Soxhlet extraction against methanol (72h) and hexane (72h). The polymer was dried under vacuum.

X-ray Structure Determination Techniques. Our general x-ray structural technique has been described in earlier papers<sup>31,32</sup> and only the details related to the present work will be given here. The structures were solved by direct methods using MULTAN'82.<sup>28</sup> In each case, the first E-map revealed the position of all non-hydrogen atoms. In 2a, 2b, 2e, 2f and 5a all the non hydrogen atoms were refined anisotropically. In structures 2f and 4a, due to available memory, starred C atoms were refined isotropically. Difference Fourier syntheses calculated towards the end of the refinements, showed maxima consistent with the expected positions of hydrogen atoms in all the structures. In 2a, 2b, 2e, 2f and 6a hydrogen atoms were included at geometrically idealized positions and at overall isotropic temperature factors. Atomic scattering factors for non-hydrogen atoms were taken from Cromer and Mann<sup>33</sup> and those from hydrogen atoms from Stewart and Davidson<sup>34</sup>. At the conclusion of the refinements, the values R and R<sub>w</sub> were 0.0851 and 0.1129 (2a); 0.0500 and 0.0500 (2b); 0.0348 and 0.0447 (2e); 0.1181 and 0.1181 (2f); 0.0992 and 0.0992 (4a) and 0.0918 and 0.1066 (6a);

Acknowledgment: We thank the Office of Naval Research for support of this work. We also thank M. N. Mang for his suggestions.

Additional material available from the Cambridge Crystallographic Centre comprises positional parameters, bond distances, bond angles, general thermal parameters, and structure factor tables.

#### **References:**

- Allcock, H. R.; Mang, M. N.; Dembek, A. A; Wynne, K. J. <u>Macromolecules</u> 1989, <u>22</u>, 4179.
- 2. Olshavsky, M. A.; Allcock, H. R. Macromolecules, 1995, submitted.
- 3. Kim, C.; Allcock, H. R. <u>Macromolecules</u>, 1987, <u>20</u>, 1726.
- 4. Kim, C.; Allcock, H. R. <u>Macromolecules</u>, 1989, 22, 2596.
- Singler, R. E.; Willingham, R. A.; Lenz, R. W.; Furukawa, A.; Finkermann, A. <u>Macromolecules</u>, 1987, 20, 1727.
- 6. Allcock, H. R.; Kim, C. <u>Macromolecules</u>, 1990, <u>23</u>, 3881.
- 7. Allcock, H. R.; Kim, C. <u>Macromolecules</u>, 1991, <u>24</u>, 2846.
- Dembek, A. A.; Kim, C.; Allcock, H. R.; Devine, R. L. S.; Shi, Y.; Steier, W. H.; Spangler, C. W. <u>Macromolecules</u>, 1991, 24, 1000.
- Dembek, A. A.; Kim, C.; Allcock, H. R.; Devine, R. L. S.; Shi, Y.; Steier, W. H.; Spangler, C. W. <u>Chem. of Materials</u>, 1990, <u>2</u>, 97.
- 10. Allcock, H. R.; Fitzpatrick, R. J. <u>Chem. of Mater.</u>, 1991, <u>3</u>, 1120.
- 11. Gleria, M.; Minto, F.; Lora, S.; Bortolus, P. Eur. Poly. J., 1979, 15, 671.
- Flamigni, L.; Camaioni, N.; Bortolus, P.; Minto, F.; Gleria, M. J. Phys. Chem.,
   1991, 95, 971.
- 13. Bartolus, P.; Gleria, M. J. Inorg. Organometal. Polymers, 1994, 4, 1.
- 14. Bartolus, P.; Gleria, M. J. Inorg. Organometal. Polymers, 1994, 4, 95.
- 15. Bartolus, P.; Gleria, M. J. Inorg. Organometal. Polymers, 1994, 4, 205.
- 16. Di Marco, P. G.; Giro, G.; Gleria, M.; Lora, S. <u>Thin Solid Films</u>, 1986, 135, 157.
- 17. Minto, F.; Lora, S.; Gleria, M.; Bortolus, P. <u>Conv. Ital. Sci Macromol. (ATTI)</u>
  <u>#5</u>, 1981.
- 18. Allcock, H. R.; Kugel, R. L. J. Am. Chem. Soc., 1965, 87, 4216.
- 19. Allcock, H. R.; Kugel, R. L.; Valan, K. J. Inorg. Chem., 1966, 5, 1709.
- 20. Allcock, H. R.; Kugel, R. L. Inorg. Chem., 1966, 5, 1716.

- 21. Allcock, H. R. Chem. and Eng. News, 1968, 46, 68.
- Allcock, H. R.; Tollefson, N. M.; Arcus, R. A.; Whittle, R. R. J. Am.Chem.Soc., 1985, 107, 5166.
- Allcock, H. R.; Ngo, D. C.; Parvez, M.; Visscher, K. B. Inorg. Chem., 1994, <u>33</u>, 2090.
- Allcock, H. R.; Ngo, D. C.; Parvez, M.; Visscher, K. B. J. Chem. Soc., 1992, 10, 1687.
- Allcock, H. R.; Ngo, D. C.; Parvez, M.; Whittle, R. R.; Birdsall, W. J. J. Am. Chem. Soc., 1991, <u>113</u>, 2628.
- 26. Shaw, R. A.; Fitzsimmons, B. W.; Smith, B. C. Chem. Rev., 1962, 62, 247.
- 27. Structure Determination Package (SDP), B. A. Fritz and Associates, Inc., College Station, Texas, 77840 and Enraf-Nonius, Delft, Holland, **1982**.
- Main, P.; Fiske, S. J.; Hull, S.; Lessinger, L.; Germin, G.; Declereg, J. P.; Woolfson, M. M.; MULTAN'82, Universities of York, England and Louvain, Belgium, 1982.
- 29. Walsh, E. J. Ph. D. Thesis, The Pennsylvania State University; **1970**. (This compound had been prepared and characterized previously as described in this reference.)
- Medici, A.; Fantin, G.; Pedrini, P.; Gelria, M.; Minto, F. Macromolecules; 1992, 25, 2569. (This compound had been prepared and characterized previously as described in this reference.)
- 31. Soderholm, D.; and Falkenberg, G. Acta. Chem. Scand., 1977, B31, 193.
- Allcock, H. R.; Nissan, R. A.; Harris, P. J.; and Whittle, R. R. Organometallics;
   1984, <u>3</u>, 432.
- 33. Cromer, D. T.; and Mann, J. B. Acta. Cryst. (A); 1968, <u>A24</u>, 321.
- 34. Stewart, R. F; Davidson, E. R.; and Simpson, W. T.; J. Chem. Phys; 1965, <u>42</u>, 3178.





OR =





b









e





g









i.



| Table 1. Charac | terization Data |            |             |          |                 |                                        |
|-----------------|-----------------|------------|-------------|----------|-----------------|----------------------------------------|
| Compound        | Mp (°C)         | Mass Sp    | ectral Data | Elementa | l Analysis Data | <sup>31</sup> P NMR<br>Chemical Shifts |
|                 |                 | Found      | Calculated  | Found    | Calculated      | P(OR) <sub>2</sub> (ppm)               |
| 2a              | 116-117         | LLL        | TTT         | C 64.79a | 64.86           | 9.2                                    |
|                 |                 |            |             | H 5.50   | 5.41            |                                        |
|                 |                 |            |             | N 5.40   | 5.41            |                                        |
| 2b              | 241-243         | 789        | 789         | C 54.60b | 54.76           | 8.0                                    |
|                 |                 |            |             | H 3.90   | 3.80            |                                        |
|                 |                 |            |             | N 5.20   | 5.32            |                                        |
| 2c              | #               | 1029       | 1029        | #        |                 | 8.7                                    |
| 2d              | 144*            | unresolved | 2145        | C 83.27  | 83.89           | 8.6                                    |
|                 |                 |            |             | H 5.54   | 5.35            |                                        |
|                 |                 |            |             | N 2.90   | 1.96            |                                        |
| 2e              | 201-202         | 1149       | 1149        | C 75.55  | 75.20           | 9.3                                    |
|                 |                 |            |             | H 4.66   | 4.70            |                                        |
|                 |                 |            |             | N 3.68   | 3.66            |                                        |
| 2f              | 100-101         | 1245       | 1245        | C 69.57  | 69.40           | 9.3                                    |
|                 |                 |            |             | H 4.63   | 4.34            |                                        |
|                 |                 |            |             | N 3.20   | 3.37            |                                        |

-

1-1

| -22.24 (P(OR) <sub>3</sub> )<br>-15.99 (P(OR) <sub>2</sub> ) |       | *       | 856 (6a + H <sub>2</sub> 0) | 837  | 85-87   | 6a |
|--------------------------------------------------------------|-------|---------|-----------------------------|------|---------|----|
|                                                              | 3.37  | N 3.38  |                             |      |         |    |
|                                                              | 4.37  | H 4.12  |                             |      |         |    |
| -11.8                                                        | 69.39 | C 68.64 | 1661                        | 1661 | 68      | 4a |
|                                                              | 3.16  | N 3.04  |                             |      |         |    |
|                                                              | 5.00  | H 5.22  |                             |      |         |    |
| 9.8                                                          | 70.42 | C 71.82 | 1413                        | 1413 | 125-127 | 2g |

a: Reference 29 b: Reference 30

\*: Decomposition

#: Data not obtained

.

| Table 2.                                       | Summary of Crystal Data and In<br>2a | ensity Collection Parameters<br>2b                                                                | 2e           |
|------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|--------------|
| Formula                                        | C42H42N3P3O6                         | C <sub>36</sub> H <sub>30</sub> N <sub>3</sub> P <sub>3</sub> O <sub>12</sub> . 3H <sub>2</sub> O | C72H54N3P3O6 |
| Fw, amu                                        |                                      | 789                                                                                               | 1149         |
| Space group                                    | PĪ (2)                               | P1 (2)                                                                                            | P1 (2)       |
| Cryst. system                                  | Triclinic                            | Triclinic                                                                                         | Triclinic    |
| a, Å                                           | 9.791(2)                             | 9.577(5)                                                                                          | 15.348(6)    |
| b, Å                                           | 11.399(4)                            | 10.147(2)                                                                                         | 15.567(5)    |
| c, Å                                           | 18.495(3)                            | 20.395(6)                                                                                         | 16.035(3)    |
| α, deg                                         | 97.86(2)                             | 77.65(2)                                                                                          | 77.02(2)     |
| β, deg                                         | 95.33(1)                             | 85.45(3)                                                                                          | 66.55(3)     |
| γ, deg                                         | 102.85(2)                            | 84.03(2)                                                                                          | 59.87(4)     |
| V, Å <sup>3</sup>                              | 1977.2                               | 1922.5                                                                                            | 3038.2       |
| Ζ                                              | 2                                    | 2                                                                                                 | 3            |
| d(cald), g/cm <sup>3</sup>                     | 1.306                                | (cal) 1.363; (obs) 1.457                                                                          | 1.36         |
| μ, cm <sup>-1</sup>                            | 1.79                                 | 2.2                                                                                               | 1.604        |
| Radiation ( $\lambda$ , $\dot{\lambda}$        | Å) CuKα; 1.5418                      | CuKα; 1.5418                                                                                      | CuKa; 1.5418 |
| T, K                                           | 293                                  | 293                                                                                               | 293          |
| $\mathbf{R},\mathbf{R}_{W}=(\Sigma\Delta^{2})$ | 0.085, 0.112 0.085, 0.112 0.085      | 0.050, 0.050                                                                                      | 0.076, 0.095 |

₩Z

-

| Table 2.                                    | Summary of Cry         | ystal Data and Intensity<br>2f | Collection Parameters ( | cont)<br>6a                                                                       |
|---------------------------------------------|------------------------|--------------------------------|-------------------------|-----------------------------------------------------------------------------------|
| Formula                                     |                        | C78H66N3P3O12                  | C96H72N4P4O16           | C <sub>50</sub> H <sub>65</sub> NO <sub>6</sub> P <sub>2</sub> · H <sub>2</sub> O |
| Founda<br>Fuy amu                           |                        | 1329                           | 1660                    | 856                                                                               |
| Tw, alliu                                   |                        | P1 (2)                         | Pī (2)                  | P1 (2)                                                                            |
| Space group                                 |                        | Triclinic                      | Triclinic               | Triclinic                                                                         |
| Liysi. sysiciii<br>A                        |                        | 9.297(5)                       | 16.728(1)               | 13.058(5)                                                                         |
| с, <del>л</del>                             |                        | 15.551(4)                      | 20.516(9)               | 14.467(2)                                                                         |
| ς γ<br>γ                                    |                        | 23.342(4)                      | 25.760(2)               | 14.840(11)                                                                        |
| C '5                                        |                        | 84.12(2)                       | 106.04(3)               | 70.07(3)                                                                          |
| α, deg                                      |                        |                                |                         |                                                                                   |
| ß, deg                                      |                        | 89.44(3)                       | 93.551(6)               | 84.38(4)                                                                          |
|                                             |                        | 80.55(2)                       | 101.33(1)               | 74.55(3)                                                                          |
| γ, deg                                      |                        | 3311.3                         | 8266.9                  | 2540.2                                                                            |
| V, A <sup>5</sup>                           |                        | 2                              | (2 x 2 conformations)   | 2                                                                                 |
| Z                                           |                        | 1.33                           | (cal) 0.667 (obs) 1.33  | 1.12                                                                              |
| d(cald), g/cm <sup>3</sup>                  |                        |                                |                         |                                                                                   |
| μ, cm <sup>-1</sup>                         |                        | 12.79                          | 13.36                   | 1.06                                                                              |
| Radiation (λ, Å                             | (                      | CuKα; 1.5418                   | CuKα; 1.5418            | CuKα; 1.5418                                                                      |
| Т, К                                        |                        | 293                            | 293                     | 293                                                                               |
| R, R <sub>w</sub> = $(\Sigma \Delta^2 / L)$ | ΣwFo <sup>2</sup> )1/2 | 0.1187, 0.1187                 | 0.0992, 0.0992          | 0.0918, 0.1066                                                                    |

-

-

~



ží

| T-11. 7  | Dand Distances (Å | ) and Dand | A 1    | ( ] )       | <b>n</b> |
|----------|-------------------|------------|--------|-------------|----------|
| ladie 5. | Bond Distances (A | ) and bond | Angles | (deg) for . | za.      |

| P1-O1     | 1.584(3) | O1-C1       | 1.425(5) |
|-----------|----------|-------------|----------|
| P1-O2     | 1.595(3) | O2-C8       | 1.402(5) |
| P1-N1     | 1.570(3) | O3-C15      | 1.399(6) |
| P1-N3     | 1.583(4) | O4-C22      | 1.416(5) |
| P2-O3     | 1.583(4) | O5-C29      | 1.376(5) |
| P2-O4     | 1.584(2) | O6-C36      | 1.385(5) |
| P2-N1     | 1.589(4) | C4-C7       | 1.521(7) |
| P2-N2     | 1.568(4) | C11-C14     | 1.514(8) |
| P3-O5     | 1.583(3) | C18-C21     | 1.497(7) |
| P3-O6     | 1.575(4) | C25-C28     | 1.530(7) |
| P3-N2     | 1.570(4) | C32-C35     | 1.489(8) |
| P3-N3     | 1.566(4) | C39-C42     | 1.489(7) |
|           |          |             |          |
| O1-P1-O2  | 94.5(1)  | P2-O4-C22   | 124.1(3) |
| O1-P1-N1  | 110.2(2) | P3-O5-C29   | 127.4(3) |
| O1-P1-N3  | 111.7(2) | P3-O6-C36   | 126.7(4) |
| O2-P1-N1  | 110.9(2) | P1-N1-P2    | 122.0(2) |
| O2-P1-N3  | 110.6(2) | P2-N2-P3    | 122.0(2) |
| N1-P1-N3  | 116.9(2) | P1-N3-P3    | 123.7(2) |
| O3-P2-O4  | 99.3(2)  | O1-C1-C2    | 117.0(4) |
| O3-P2-N1  | 112.6(2) | O1-C1-C6    | 120.4(4) |
| O3-P2-N2  | 106.0(2) | C3-C4-C7    | 119.1(4) |
| O4-P2-N1  | 109.3(2) | C5-C4-C7    | 121.8(5) |
| O4-P2-N2  | 110.5(2) | O2-C8-C9    | 118.9(4) |
| N1-P2-N2  | 117.6(2) | O2-C8-C13   | 119.1(3) |
| O5-P3-O6  | 100.5(2) | C10-C11-C14 | 120.4(4) |
| O5-P3-N2  | 107.6(2) | C12-C11-C14 | 121.0(4) |
| O5-P3-N3  | 109.7(2) | O3-C15-C16  | 121.3(3) |
| O6-P3-N2  | 111.7(2) | O3-C15-C20  | 118.2(3) |
| O6-P3-N3  | 108.9(3) | C17-C18-C21 | 121.6(3) |
| N2-P3-N3  | 117.2(2) | C19-C18-C21 | 121.3(3) |
| P1-O1-C1  | 123.5(2) | O4-C22-C23  | 118.6(4) |
| P1-O2-C8  | 122.9(3) | O4-C22-C27  | 119.4(4) |
| P2-O3-C15 | 123.3(3) | C24-C25-C28 | 121.4(5) |

-----

| 120.3(4) | O6-C36-C37                                               | 120.4(4)                                                                                                                                                             |
|----------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 115.7(4) | O6-C36-C41                                               | 118.4(4)                                                                                                                                                             |
| 124.7(4) | C38-C39-C42                                              | 120.3(5)                                                                                                                                                             |
| 121.6(5) | C40-C39-C42                                              | 123.2(5)                                                                                                                                                             |
| 121.9(5) |                                                          |                                                                                                                                                                      |
|          | 120.3(4)<br>115.7(4)<br>124.7(4)<br>121.6(5)<br>121.9(5) | 120.3(4)       O6-C36-C37         115.7(4)       O6-C36-C41         124.7(4)       C38-C39-C42         121.6(5)       C40-C39-C42         121.9(5)       C40-C39-C42 |

## Table 3. Bond Distances (Å) and Bond Angles (deg) for 2a (cont).

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of

120.0° in the x-ray crystal refinement program.

| Table | of Positi | ional Parameter | s and Their     | Estimated St | andard Deviation | s |
|-------|-----------|-----------------|-----------------|--------------|------------------|---|
|       | Atom      | ×               | y               | z            | B(A2)            |   |
|       | F1        | 0.0807(1)       | -<br>0.85067(9) | -            | 4.10(2)          |   |
|       | P2        | -0.1612(1)      | 0.8914(1)       | 0,75981(6)   | 4.40(2)          |   |
|       | P3        | 0.0528(1)       | 0.8726(1)       | 0.68385(6)   | 4,69(3)          |   |
|       | 01        | 0+1797(3)       | 0.9403(2)       | 0.8980(2)    | 4.69(7)          |   |
|       | 02        | 0.0978(3)       | 0.7301(2)       | 0.8618(2)    | 4.82(7)          |   |
|       | 03        | -0.1984(3)      | 1.0203(2)       | 0.7724(2)    | 4.68(6)          |   |
|       | 04        | -0.3160(3)      | 0.8063(3)       | 0.7477(2)    | 5.53(8)          |   |
|       | 05        | 0+1459(3)       | 0,9877(3)       | 0.6536(2)    | 5,99(7)          |   |
|       | 06        | 0.0730(3)       | 0,7671(3)       | 0.6215(2)    | 8.1(1)           |   |
|       | N1        | -0.0750(3)      | 0.8652(3)       | 0,8305(2)    | 4.11(8)          |   |
|       | N2        | -0.0935(3)      | 0,8844(3)       | 0.6863(2)    | 5.23(9)          |   |
|       | N3        | 0.1462(3)       | 0.8585(3)       | 0.7573(2)    | 4.83(8)          |   |
|       | C1        | 0.1798(4)       | 1.0660(4)       | 0,9155(2)    | 4.11(9)          |   |
|       | C2        | 0.1565(4)       | 1.1057(4)       | 0.9846(2)    | 4.8(1)           |   |
|       | C3        | 0.1627(4)       | 1.2294(4)       | 1.0052(3)    | 5.0(1)           |   |
|       | C4        | 0,1944(4)       | 1.3097(4)       | 0,9561(3)    | 5.0(1)           |   |
|       | CS        | 0.2200(4)       | 1.2664(4)       | 0.8879(3)    | 5.2(1)           |   |
|       | CS        | 0.2145(4)       | 1.1431(4)       | 0.8660(2)    | 4.7(1)           |   |

# Table 4. Positional Parameters (Å) for 2a.

...

.

| 1 400    |             |                |             |              | · Deviations (mant )  |
|----------|-------------|----------------|-------------|--------------|-----------------------|
| Table of | Positional  | Parameters and | Their Estin | mated Standa | rd Heviations (cont.) |
|          |             |                |             |              |                       |
|          | <u>Atom</u> | ×              | ч           | z            | B(A2)                 |
|          |             | -              | -           | -            |                       |
|          | C7          | 0.1954(6)      | 1.4432(5)   | 0.9792(3)    | 7.4(2)                |
|          | CB          | 0.0379(4)      | 0.6191(3)   | 0.8159(2)    | 4.22(9)               |
|          | C9          | -0.0337(4)     | 0.5298(4)   | 0.8084(3)    | 5.1(1)                |
|          | C10         | -0.0381(5)     | 0.4160(4)   | 0.7590(3)    | 5.8(1)                |
|          | C11         | - 0.0761(5)    | 0.3928(4)   | 0.7369(3)    | 5.4(1)                |
|          | C12         | 0.1959(4)      | 0.4346(4)   | 0.7449(3)    | 5.4(1)                |
|          | C13         | 0.2043(4)      | 0.5992(4)   | 0.7855(3)    | 4.9(1)                |
|          | C14         | 0.0391(3)      | 0,2677(5)   | 0.6945(3)    | 7.8(2)                |
|          | C15         | -0.2548(4)     | 1.0633(4)   | 0.8347(2)    | 4.14(9)               |
|          | C16         | -0.3941(4)     | 1.0191(4)   | 0.8433(3)    | 5.0(1)                |
|          | C17         | -0.4469(4)     | 1.0689(4)   | 0.9024(3)    | 5.3(1)                |
|          | C18         | -0.3646(4)     | 1.1643(4)   | 0.9548(2)    | 4.6(1)                |
|          | C19         | -0.2255(4)     | 1.2064(4)   | 0.9448(3)    | 5.0(i)                |
|          | C20         | -0,1398(4)     | 1.1565(4)   | 0.8855(3)    | 4.6(1)                |
|          | C21         | -0.4248(5)     | 1,2200(5)   | 1.0188(3)    | 6.4(1)                |
|          | C22         | -0.3473(4)     | 0.6817(4)   | 0.7555(3)    | 4.7(1)                |
|          | C23         | -0.3890(4)     | 0.4508(5)   | 0.8198(3)    | 5.8(1)                |
|          | C24         | -0.4270(4)     | 0.5274(5)   | 0.8258(3)    | 6.0(1)                |

-

# Table 4. Positional Parameters (Å) for 2a (cont).

# Table 4. Positional Parameters (Å) for 2a (cont).

Table of Positional Farameters and Their Estimated Standard Deviations (cont.)

| Atom | ×<br>-     | -<br>2    | Z<br>-    | B(A2)   |
|------|------------|-----------|-----------|---------|
| C25  | -0.4203(4) | 0.4390(4) | 0.7699(3) | 5.2(1)  |
| C26  | -0.3779(5) | 0.4730(4) | 0.7067(3) | 5.5(1)  |
| C27  | -0,3409(4) | 0.5957(4) | 0.6976(3) | 5.1(1)  |
| C28  | -0.4609(5) | 0.3040(5) | 0.7771(3) | 7.8(2)  |
| C29  | 0.2813(5)  | 1.0086(4) | 0.6353(2) | 5.4(1)  |
| C30  | 0.3190(5)  | 1.1034(5) | 0.5972(3) | 7.0(1)  |
| C31  | 0,4525(6)  | 1.1325(5) | 0.5783(3) | 7.7(1)  |
| C32  | 0,5531(5)  | 1.0696(5) | 0.5959(3) | 6.6(1)  |
| C33  | 0.5116(5)  | 0.9741(5) | 0.6334(3) | 6.2(1)  |
| C34  | 0,3774(5)  | 0.9420(5) | 0.6527(3) | 6.1(1)  |
| C35  | 0.6992(6)  | 1.1051(6) | 0.5766(4) | 9.1(2)  |
| C36  | -0.0382(4) | 0.6779(4) | 0.5816(3) | 5.3(1)  |
| C37  | -0.1268(5) | 0,7062(4) | 0.5294(3) | 6.4(1)  |
| C38  | -0.2279(5) | 0.6151(5) | 0.4868(3) | 6.8(1)  |
| C39  | -0.2453(5) | 0,4928(5) | 0.4954(3) | 6.1(1)  |
| C40  | -0.1562(5) | 0,4689(4) | 0.5494(3) | 6.2(1)  |
| C41  | -0.0502(5) | 0.5607(4) | 0.5926(3) | 5.1(1)  |
| C42  | -0.3557(7) | 0.3961(6) | 0.4464(4) | 10.3(2) |
|      |            |           |           |         |

The form of the anisotropic thermal parameter is:

\_\_\_\_\_

 $U = \exp[-2\pi^{2} \{h^{2}a^{2}U(1,1) + k^{2}b^{2}U(2,2) + l^{2}c^{2}U(3,3) + 2hkabU(1,2) + 2hlacU(1,3) + 2klbcU(2,3))\}]$  where a, b, and c are reciprocal lattice constants





| ruble of Dolla D | istunces (11) und Dond Amgres (deg) h |                   |          |
|------------------|---------------------------------------|-------------------|----------|
| P1-O1            | 1.565(2)                              | O1-C1             | 1.400(4) |
| P1-O3            | 1.586(2)                              | O2-C4             | 1.386(4) |
| P1-N1            | 1.574(3)                              | O3-C7             | 1.399(4) |
| P1-N3            | 1.584(3)                              | <b>O4-C10</b>     | 1.357(4) |
| P2-O5            | 1.574(2)                              | O5-C13            | 1.409(5) |
| P2-07            | 1.562(3)                              | O6-C16            | 1.378(4) |
| P2-N1            | 1.572(3)                              | O7-C19            | 1.393(3) |
| P2-N2            | 1.581(3)                              | O8-C22            | 1.377(4) |
| P3-O9            | 1.577(2)                              | O9-C25            | 1.417(3) |
| P3-O11           | 1.572(2)                              | O10-C28           | 1.383(4) |
| P3-N2            | 1.585(3)                              | O11-C31           | 1.404(3) |
| P3-N3            | 1.579(2)                              | O12-C34           | 1.382(4) |
|                  |                                       |                   |          |
| O1-P1-O3         | 100.7(1)                              | P3-O9-C25         | 116.7(2) |
| O1-P1-N1         | 105.7(1)                              | P3-O11-C31        | 126.5(3) |
| O1-P1-N3         | 113.4(1)                              | P1-N1-P2          | 122.8(2) |
| O3-P1-N1         | 109.7(1)                              | P2-N2-P3          | 121.1(2) |
| O3-P1-N3         | 110.0(1)                              | P1-N3-P3          | 123.7(2) |
| N1-P1-N3         | 116.2(1)                              | O1-C1-C2          | 117.0(3) |
| O5-P2-O7         | 101.5(1)                              | O1-C1-C6          | 122.8(3) |
| O5-P2-N1         | 110.6(1)                              | O2-C4-C3          | 118.3(3) |
| O5-P2-N2         | 106.1(1)                              | O2-C4-C5          | 121.7(4) |
| 07-P2-N1         | 107.6(1)                              | O3-C7-C8          | 120.9(3) |
| O7-P2-N2         | 111.8(1)                              | O3-C7-C12         | 118.9(4) |
| N1-P2-N2         | 118.1(1)                              | O4-C10-C9         | 117.0(3) |
| O9-P3-O11        | 100.6(1)                              | <b>O4-C10-C11</b> | 123.3(4) |
| O9-P3-N2         | 109.9(1)                              | O5-C13-C14        | 118.8(3) |
| O9-P3-N3         | 109.8(1)                              | O5-C13-C18        | 118.8(3) |
| O11-P3-N2        | 111.1(1)                              | O6-C16-C15        | 117.3(3) |
| O11-P3-N3        | 107.0(1)                              | O6-C16-C17        | 121.3(3) |
| N2-P3-N3         | 117.1(1)                              | O7-C19-C20        | 121.5(3) |
| P1-O1-C1         | 129.3(3)                              | O7-C19-C24        | 116.7(3) |
| P1-O3-C7         | 118.6(2)                              | O8-C22-C21        | 119.1(3) |
| P2-O5-C13        | 121.0(2)                              | O8-C22-C23        | 120.0(4) |
| P2-O7-C19        | 127.1(2)                              | O9-C25-C26        | 119.4(3) |
|                  |                                       |                   |          |

|          |                         | •   |          |        |       |         |
|----------|-------------------------|-----|----------|--------|-------|---------|
| Table 5. | <b>Bond Distances</b> ( | (Å) | and Bond | Angles | (deg) | for 2b. |

|             |          | 0 0 | · · ·       |          |
|-------------|----------|-----|-------------|----------|
| O9-C25-C30  | 119.1(3) |     | O11-C31-C36 | 120.0(3) |
| O10-C28-C27 | 120.7(3) |     | O12-C34-C33 | 122.3(3) |
| O10-C28-C29 | 118.7(3) |     | O12-C34-C35 | 118.3(4) |
| O11-C31-C32 | 122.7(3) |     |             |          |

## Table 5. Bond Distances (Å) and Bond Angles (deg) for 2b (cont).

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of

120.0° in the x-ray crystal refinement program.
# Table 6. Positional Parameters (Å) for 2b.

| able<br> | of Positio | nal Farameter<br> | s and Their | Estimated St<br> | andard pevis |   |
|----------|------------|-------------------|-------------|------------------|--------------|---|
|          | Atom       | ×                 | y<br>-      | Z<br>_           | B(A2)        |   |
|          | P1         | 0.89125(8)        | 0.18930(9)  | 0.19387(4)       | 3.23(2)      |   |
|          | P2         | 0.63708(8)        | 0.08822(8)  | 0.24112(4)       | 3.03(2)      |   |
| 7        | P3         | 0,77387(9)        | 0.21602(9)  | 0.32041(4)       | 3.07(2)      |   |
|          | 01         | 0.8963(2)         | 0.3045(2)   | 0.1292(1)        | 3,91(5)      |   |
|          | 02         | 1.2109(3)         | 0.7461(3)   | 0.0583(1)        | 5,37(7).     |   |
|          | 03         | 1.0347(2)         | 0.1016(2)   | 0.1826(1)        | 3,80(5)      |   |
|          | 04         | 1.1398(3)         | -0,4058(3)  | 0.3428(1)        | 5,95(7)      | · |
|          | 05         | 0,4988(2)         | 0.1398(2)   | 0.2120(1)        | 3,92(5)      |   |
|          | 06         | 0.3438(3)         | 0,1661(2)   | -0.0420(1)       | 4.73(6)      |   |
|          | 07         | 0.5993(3)         | -0.0610(2)  | 0.2507(1)        | 5.04(6)      |   |
|          | 08         | 0.6358(4)         | -0,4761(3)  | 0.4721(2)        | 8.09(9)      |   |
|          | 09         | 0.7092(2)         | 0.3548(2)   | 0.3377(1)        | 3,52(5)      |   |
|          | 010        | 0.4494(3)         | 0.7273(3)   | 0.1350(1)        | 4.91(6)      |   |
|          | 011        | 0.8511(2)         | 0.1508(2)   | 0.3864(1)        | 3,95(5)      |   |
|          | 012        | 0,6427(3)         | -0.1572(3)  | 0.6240(1)        | 5,90(7)      |   |
|          | 0₩13       | 0.1414(3)         | 0.3637(3)   | 0.2986(2)        | 7.03(8)      |   |
|          | 0W14       | 0.2017(3)         | 0.9717(3)   | 0.9430(1)        | 6.15(7)      |   |
|          | OW15       | 0.1118(6)         | 0.5664(6)   | 0,4797(3)        | 16.7(2)      |   |
|          | N1         | 0.7637(3)         | 0,1080(3)   | 0.1870(1)        | 3.56(6)      |   |

---- Ectimated Standard Deviations . .... Ta

| Table 6 Posi | tional Parameters | (Å) | for | 2b | (cont). |
|--------------|-------------------|-----|-----|----|---------|
|--------------|-------------------|-----|-----|----|---------|

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

•

| Atom | ×<br>-    | -<br>-     | z<br>-    | B(A2)   |  |
|------|-----------|------------|-----------|---------|--|
| N2   | 0.6518(3) | 0.1290(3)  | 0.3107(1) | 3.20(6) |  |
| NЗ   | 0.8913(3) | 0.2426(3)  | 0.2614(1) | 3.18(6) |  |
| C1   | 0.9808(3) | 0.4128(3)  | 0.1128(2) | 3,40(7) |  |
| C2   | 0,9186(4) | 0.5358(4)  | 0.0810(2) | 4.33(9) |  |
| С3   | 0.9969(4) | 0.6465(4)  | 0.0625(2) | 4,50(9) |  |
| C4   | 1.1364(4) | 0.6324(4)  | 0.0755(2) | 3,92(8) |  |
| C5   | 1,1982(4) | 0.5090(4)  | 0.1051(2) | 4.48(9) |  |
| C6   | 1.1223(4) | 0.3983(4)  | 0.1238(2) | 4,28(9) |  |
| C7   | 1.0583(3) | -0.0268(3) | 0.2238(2) | 3.63(8) |  |
| C8   | 1.1008(3) | -0.0415(4) | 0.2884(2) | 4.19(8) |  |
| C9   | 1,1266(4) | -0,1695(4) | 0.3279(2) | 4,46(9) |  |
| C10  | 1.1117(4) | -0.2830(4) | 0.3019(2) | 4,49(9) |  |
| C11  | 1.0710(4) | -0.2670(4) | 0.2368(2) | 4.43(9) |  |
| C12  | 1.0434(4) | -0,1397(4) | 0.1981(2) | 4.20(8) |  |
| C13  | 0.4606(3) | 0.1667(3)  | 0.1471(2) | 3.43(7) |  |
| C14  | 0.4991(4) | 0.2665(3)  | 0.0945(2) | 4.00(8) |  |
| C15  | 0.4584(4) | 0.2672(4)  | 0.0306(2) | 4,20(8) |  |
| C16  | 0.3801(3) | 0.1646(3)  | 0.0222(2) | 3.67(8) |  |
| C17  | 0.3413(3) | 0.0657(4)  | 0.0753(2) | 3,97(8) |  |

#### Table 6. Positional Parameters (Å) for 2b (cont).

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

| Atom             | ×<br>-    | y<br>-     | z<br>-    | B(A2)   |
|------------------|-----------|------------|-----------|---------|
| C18              | 0.3808(3) | 0.0657(4)  | 0.1394(2) | 3,88(8) |
| C19              | 0.6119(3) | -0.1627(3) | 0.3084(2) | 3.31(7) |
| C20              | 0.7374(4) | -0,1979(4) | 0.3389(2) | 4,48(9) |
| C21              | 0.7444(4) | -0.3026(4) | 0.3938(2) | 5,3(1)  |
| C22              | 0.6278(5) | -0.3705(4) | 0.4172(2) | 5,2(1)  |
| <sup>-</sup> C23 | 0.5023(4) | -0.3346(4) | 0.3847(2) | 5.00(9) |
| C24              | 0.4968(3) | -0.2308(4) | 0.3305(2) | 4.16(8) |
| C25              | 0.6434(3) | 0,4498(3)  | 0.2854(2) | 3.23(7) |
| C26              | 0.7207(3) | 0.5422(3)  | 0.2440(2) | 3,74(8) |
| C27              | 0.6575(4) | 0,6368(3)  | 0.1934(2) | 3.84(8) |
| C28              | 0.5160(4) | 0.6349(3)  | 0.1854(2) | 3.59(8) |
| C29              | 0,4389(3) | 0.5425(4)  | 0.2274(2) | 4.11(8) |
| C30              | 0,5008(3) | 0.4480(4)  | 0.2786(2) | 3.89(8) |
| C31              | 0.7910(3) | 0.0758(3)  | 0.4459(2) | 3.45(7) |
| C32              | 0.6755(4) | 0.1262(4)  | 0.4807(2) | 4.52(9) |
| C33              | 0.6245(4) | 0.0484(4)  | 0.5396(2) | 4.65(9) |
| C34              | 0.6895(4) | -0.0764(4) | 0,5646(2) | 4.21(8) |
| C35              | 0.8050(4) | -0.1238(4) | 0.5304(2) | 5.4(1)  |
| C36              | 0.8549(4) | -0.0483(4) | 0.4706(2) | 4.9(1)  |

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as:

 $\frac{4}{3}[a^{2}B(1,1) + b^{2}B(2,2) + c^{2}B(3,3) + ab(\cos\gamma)B(1,2) + ac(\cos\beta)B(1,3) + bc(\cos\alpha)B(2,3)]$ 

Where a, b, and c are reciprocal lattice constants.





| Table 7. Bond Dis | tances (Å) and Bond Angles (deg) for | r 2e          |          |
|-------------------|--------------------------------------|---------------|----------|
| P1-O1             | 1.583(2)                             | O3-C13        | 1.417(3) |
| P1-O3             | 1.582(1)                             | O4-C16        | 1.394(3) |
| P1-N1             | 1.574(2)                             | 04-C19        | 1.375(2) |
| P1-N3             | 1.569(2)                             | O5-C25        | 1.400(2) |
| P2-O5             | 1.565(1)                             | O6-C28        | 1.381(3) |
| P2-07             | 1.577(1)                             | O6-C31        | 1.394(4) |
| P2-N1             | 1.582(2)                             | O7-C37        | 1.403(2) |
| P2-N2             | 1.572(2)                             | O8-C40        | 1.395(3) |
| P3-O9             | 1.583(1)                             | O8-C43        | 1.389(3) |
| P3-O11            | 1.579(2)                             | <b>O9-C49</b> | 1.410(2) |
| P3-N2             | 1.574(2)                             | O10-C52       | 1.379(3) |
| P3-N3             | 1.583(2)                             | O10-C55       | 1.395(3) |
| 01-C1             | 1.407(2)                             | O11-C61       | 1.407(2) |
| O2-C4             | 1.397(3)                             | O12-C64       | 1.393(3) |
| O2-C7             | 1.381(3)                             | O12-C67       | 1.380(4) |
|                   |                                      |               |          |
| O1-P1-O3          | 98.39(9)                             | C4-O2-C7      | 118.6(2) |
| O1-P1-N1          | 111.04(9)                            | P1-O3-C13     | 122.6(1) |
| O1-P1-N3          | 109.90(9)                            | C16-O4-C19    | 117.1(2) |
| O3-P1-N1          | 106.97(7)                            | P2-O5-C25     | 131.2(1) |
| O3-P1-N3          | 112.12(8)                            | C28-O6-C31    | 120.0(2) |
| N1-P1-N3          | 116.8(1)                             | P2-07-C37     | 126.4(1) |
| O5-P2-O7          | 93.16(7)                             | C40-O8-C43    | 117.7(2) |
| O5-P2-N1          | 111.0(1)                             | P3-O9-C49     | 123.5(1) |
| O5-P2-N2          | 111.91(9)                            | C52-O10-C55   | 120.1(2) |
| 07-P2-N1          | 110.80(9)                            | P3-O11-C61    | 122.8(2) |
| O7-P2-N2          | 111.4(1)                             | C64-O12-C67   | 118.9(2) |
| N1-P2-N2          | 116.27(9)                            | P1-N1-P2      | 122.9(1) |
| O9-P3-O11         | 98.86(7)                             | P2-N2-P3      | 122.3(1) |
| O9-P3-N2          | 107.44(9)                            | P1-N3-P3      | 121.8(1) |
| O9-P3-N3          | 111.20(9)                            | O1-C1-C2      | 121.3(2) |
| O11-P3-N2         | 107.44(9)                            | O1-C1-C6      | 117.4(2) |
| O11-P3-N3         | 111.20(9)                            | O2-C4-C3      | 120.3(2) |
| N2-P3-N3          | 117.0(1)                             | O2-C4-C5      | 119.6(2) |
| P1-01-C1          | 125.5(2)                             | O2-C7-C8      | 123.2(3) |

| O2-C7-C12  | 116.4(4) | <b>O8-C40-C41</b> | 120.4(2) |
|------------|----------|-------------------|----------|
| O3-C13-C14 | 119.5(3) | O8-C43-C44        | 122.6(2) |
| O3-C13-C18 | 119.0(2) | O8-C43-C48        | 116.7(3) |
| O4-C16-C15 | 122.0(2) | <b>O9-C49-C50</b> | 118.7(2) |
| O4-C16-C17 | 117.4(3) | O9-C49-C54        | 120.3(2) |
| O4-C19-C20 | 116.9(2) | O10-C52-C51       | 125.5(2) |
| O4-C19-C4  | 123.0(2) | O10-C52-C53       | 115.0(2) |
| O5-C25-C26 | 123.7(2) | O10-C55-C56       | 120.3(3) |
| O5-C25-C30 | 115.8(2) | O10-C55-C60       | 118.7(2) |
| O6-C28-C27 | 124.8(3) | O11-C61-C62       | 118.3(1) |
| O6-C28-C29 | 115.5(3) | O11-C61-C66       | 120.5(2) |
| O6-C31-C32 | 118.4(3) | O12-C64-C63       | 119.5(2) |
| O6-C31-C36 | 120.9(2) | O12-C64-C65       | 120.1(2) |
| O7-C37-C38 | 121.3(2) | O12-C67-C68       | 115.7(3) |
| O7-C37-C42 | 117.8(2) | O12-C67-C72       | 123.8(2) |
| O8-C40-C39 | 119.7(2) |                   |          |

Table 7. Bond Distances (Å) and Bond Angles (deg) for 2e (cont).

.

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of

120.0° in the x-ray crystal refinement program.

| Table of P | ositional | Parameters | and Their   | Estimated S | tandard Deviations |
|------------|-----------|------------|-------------|-------------|--------------------|
| At         | .om<br>   | ×<br>-     | y<br>-      | Z<br>-      | B(A2)              |
| P1         | L 0       | .27015(4)  | 0.02428(4)  | 0.06758(4)  | 3.02(2)            |
| P          | 2 0       | .30398(4)  | -0.07887(4) | -0.07174(4) | 3.05(2)            |
| P          | 3 0       | .09909(4)  | 0.05050(4)  | 0.02822(4)  | 3.04(2)            |
| 0          | 1 0       | .3105(1)   | 0.1006(1)   | 0.0659(1)   | 3.54(4)            |
| 0:         | 2 0       | .3937(1)   | 0.3573(1)   | -0.2177(1)  | 5.49(5)            |
| 0          | 3 0       | .2920(1)   | -0.0385(1)  | 0.1559(1)   | 3.52(4)            |
| o          | 4 0       | .2156(1)   | 0.1256(1)   | 0.4655(1)   | 6.64(6)            |
| ٥          | 5 (       | .3716(1)   | -0.0830(1)  | -0.1753(1)  | 4.00(5)            |
| 0          | 6 (       | .3700(2)   | 0.1858(1)   | -0.4662(1)  | 7.89(6)            |
| ٥          | 7         | .3431(1)   | -0.1945(1)  | -0.0623(1)  | 3.78(4)            |
| o          | 8         | 0.2642(1)  | -0.4356(1)  | 0.2383(1)   | 5.21(5)            |
| ۵          | )9        | 0.0077(1)  | 0.1467(1)   | 0.0001(1)   | 3.65(4)            |
| C          | )10       | 0.0692(1)  | 0.4341(1)   | -0.2550(1)  | 6.03(6)            |
| ε          | )11       | 0.0293(1)  | -0.0006(1)  | 0.0955(1)   | 3.44(4)            |
| C          | - 12      | 0.2428(1)  | 0.1161(1)   | 0.4456(1)   | 6.84(5)            |
| 1          | 11        | 0.3466(1)  | -0.0475(1)  | -0.0147(1)  | 3,32(5)            |
| 3          | 12        | 0.1804(1)  | -0.0193(1)  | -0.0548(1)  | 3,17(5)            |
| 1          | N3        | 0.1478(1)  | 0.0811(1)   | 0.0801(1)   | 3.10(5)            |
| (          | C1        | 0.3290(1)  | 0.1659(1)   | -0.0072(1)  | 3.11(6)            |
| (          | C2        | 0.2483(2)  | 0.2376(2)   | -0.0377(2)  | 4.59(7)            |
|            | C3        | 0,2702(2)  | 0.3024(2)   | -0.1077(2)  | 5.03(7)            |
|            | C4        | 0.3703(2)  | 0.2951(2)   | -0.1445(2)  | 4.08(6)            |
|            | C5        | 0.4497(2)  | 0.2240(2)   | -0.1118(2)  | 4.44(7)            |
|            | C6        | 0.4288(2)  | 0.1587(2)   | -0.0430(2)  | 3.84(7)            |

-

# Table 8. Positional Parameters (Å) for 2e.

## Table 8. Positional Parameters (Å) for 2e (cont).

•

-

| Table of Positiona | 1 Parameters an | nd Their Est | imated Standa | ard Deviations (cont.) |
|--------------------|-----------------|--------------|---------------|------------------------|
| Atom               | ×<br>-          | y<br>-       | Z _           | B(A2)                  |
| C7                 | 0.3878(2)       | 0.4434(1)    | -0.2002(1)    | 3.78(6)                |
| C8                 | 0.3323(2)       | 0+4858(2)    | -0.1165(2)    | 4.41(7)                |
| C9                 | 0.3301(2)       | 0.5726(2)    | -0.1066(2)    | 5.19(8)                |
| C10                | 0.3811(2)       | 0.6165(2)    | -0.1775(2)    | 5.54(8)                |
| C11                | 0.4359(2)       | 0.5732(2)    | -0.2602(2)    | 5.58(8)                |
| C12                | 0.4390(2)       | 0.4870(2)    | -0.2719(2)    | 4.81(7)                |
| C13                | 0.2705(2)       | 0.0058(1)    | 0,2347(1)     | 3.25(6)                |
| C14                | 0.1699(2)       | 0.0440(2)    | 0.2961(2)     | 4.28(7)                |
| C15                | 0.1507(2)       | 0.0851(2)    | 0,3733(2)     | 5.10(8)                |
| C16                | 0,2314(2)       | 0.0867(2)    | 0.3874(2)     | 4.61(7)                |
| C17                | 0.3327(2)       | 0.0463(2)    | 0.3264(2)     | 4.47(7)                |
| C18                | 0.3527(2)       | 0.0047(2)    | 0.2491(2)     | 3.94(7)                |
| C19                | 0.1313(2)       | 0.2186(2)    | 0.4891(2)     | 4.70(7)                |
| C20                | 0.0780(2)       | 0.2358(2)    | 0.5802(2)     | 5,31(8)                |
| C21                | -0.0054(2)      | 0.3281(2)    | 0.6070(2)     | 5.79(8)                |
| C22                | -0.0346(2)      | 0.4016(2)    | 0.5446(2)     | 5,98(8)                |
| C23                | 0.0197(2)       | 0.3849(2)    | 0.4540(2)     | 5,79(8)                |
| C24                | 0,1027(2)       | 0.2939(2)    | 0,4262(2)     | 5.25(8)                |
| C25                | 0.3654(2)       | -0.0080(2)   | -0.2433(1)    | 3.49(6)                |
| C26                | 0.3685(2)       | 0.0761(2)    | -0.2368(1)    | 4.01(7)                |
| C27                | 0.3705(2)       | 0.1433(2)    | -0.3099(2)    | 4.43(7)                |
| C28                | 0.3691(2)       | 0.1243(2)    | -0.3893(2)    | 4.85(7)                |
| C29                | 0.3660(2)       | 0.0399(2)    | -0.3949(2)    | 6.26(8)                |
| C30                | 0.3655(2)       | -0.0275(2)   | -0.3229(2)    | 5,27(7)                |

#### Table 8. Positional Parameters (Å) for 2e (cont).

Table of Positional Parameters and Their Estimated Standard Deviations (cont.)

.

| Atom . | ×<br>-     | ч<br>-     | z<br>-     | B(A2)   |  |
|--------|------------|------------|------------|---------|--|
| C31    | 0.3751(2)  | 0.2724(2)  | -0.4679(2) | 5,35(8) |  |
| C32    | 0.2842(2)  | 0.3594(2)  | -0,4567(2) | 6.8(1)  |  |
| C33    | 0.2890(3)  | 0.4458(2)  | -0.4640(2) | 7.6(1)  |  |
| C34    | 0.3832(2)  | 0.4456(2)  | -0.4820(2) | 7.5(1)  |  |
| C35    | 0.4734(2)  | 0.3583(2)  | -0,4924(2) | 7.6(1)  |  |
| C36    | 0.4698(2)  | 0.2711(2)  | -0.4863(2) | 6.7(1)  |  |
| C37    | 0.3193(2)  | -0.2490(1) | 0.0184(1)  | 3.19(6) |  |
| C38    | 0.2179(2)  | -0.2353(2) | 0.0650(2)  | 3,92(7) |  |
| C39    | 0.2002(2)  | -0,2986(2) | 0.1389(2)  | 4.43(7) |  |
| C40    | 0.2835(2)  | -0.3735(2) | 0.1634(1)  | 3.83(7) |  |
| C41    | 0.3846(2)  | -0.3856(2) | 0,1168(2)  | 5.23(8) |  |
| C42    | 0+4023(2)  | -0.3225(2) | 0.0439(2)  | 4.88(8) |  |
| C43    | 0,2992(2)  | -0.5336(2) | 0,2220(2)  | 4.08(7) |  |
| C44    | 0,3064(2)  | -0.5612(2) | 0.1440(2)  | 5,40(8) |  |
| C45    | 0.3377(2)  | -0.6595(2) | 0.1341(2)  | 6,47(9) |  |
| C46    | 0.3623(2)  | -0.7277(2) | 0.1996(3)  | 7.8(1)  |  |
| C47    | 0.3553(2)  | -0.7001(2) | 0.2780(2)  | 7.8(1)  |  |
| C48    | 0.3229(2)  | -0.6020(2) | 0.2900(2)  | 5,82(9) |  |
| C49    | 0.0264(1)  | 0.2197(1)  | -0.0634(1) | 3.18(6) |  |
| C50    | -0.0175(2) | 0.3129(2)  | -0.0345(1) | 3.77(7) |  |
| C51    | -0.0060(2) | 0.3878(2)  | -0.0959(2) | 4.21(7) |  |
| C52    | 0.0512(2)  | 0.3669(2)  | -0,1867(2) | 3.98(7) |  |
| C53    | 0.0949(2)  | 0.2723(2)  | -0.2147(1) | 3,97(7) |  |
| C54    | 0.0826(2)  | 0.1981(2)  | -0.1540(1) | 3.69(6) |  |

#### Table 8. Positional Parameters (Å) for 2e (cont).

| Table c | of Positional | Parameters an | d Their Est | imated Standa<br> | rd Deviations | (cont.) |
|---------|---------------|---------------|-------------|-------------------|---------------|---------|
|         | Atom          | ×             | ی<br>۲      | Z<br>-            | B(A2)         |         |
|         | C55           | 0.0483(2)     | 0.5260(2)   | -0,2332(2)        | 4.48(7)       |         |
|         | C56           | -0.0535(2)    | 0.6029(2)   | -0.2121(2)        | 5.51(8)       |         |
|         | C57           | -0.0689(2)    | 0.6950(2)   | -0.1991(2)        | 6.3(1)        |         |
|         | C58           | 0.0147(2)     | 0.7087(2)   | -0.2073(2)        | 6.06(9)       |         |
|         | C59           | 0.1144(2)     | 0.6324(2)   | -0.2290(2)        | 5.74(8)       |         |
|         | C60           | 0.1319(2)     | 0.5401(2)   | -0.2417(2)        | 4.90(8)       |         |
|         | C61           | -0.0392(1)    | 0.0326(1)   | 0,1839(1)         | 3.34(6)       |         |
|         | C62           | -0.0108(2)    | -0.0256(2)  | 0.2561(2)         | 4.53(7)       |         |
|         | C63           | -0.0793(2)    | 0.0050(2)   | 0.3434(2)         | 5.45(8)       |         |
|         | C64           | -0.1723(2)    | 0.0902(2)   | 0.3572(2)         | 4.91(7)       | •       |
|         | C65           | -0.2003(2)    | 0.1476(2)   | 0.2848(2)         | 4.94(8)       |         |
|         | C66           | -0.1337(2)    | 0.1181(2)   | 0.1972(2)         | 4.36(7)       |         |
|         | C67           | -0.2306(2)    | 0.1698(2)   | 0.4942(2)         | 4.43(7)       |         |
|         | C48           | -0.2957(2)    | 0.1839(2)   | 0.5837(2)         | 5.55(8)       |         |
|         | C69           | -0,2994(2)    | 0.2379(2)   | 0.6355(2)         | 7.0(1)        |         |
|         | C70           | -0.2199(2)    | 0.2764(2)   | 0.6006(2)         | 8.2(1)        |         |
|         | C71           | -0.1562(2)    | 0.2625(2)   | 0.5115(2)         | 7,7(1)        |         |
|         | C72           | -0.1610(2)    | 0.2085(2)   | 0.4580(2)         | 5,49(8)       |         |

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as:

 $4/3[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$ 

Where a, b, and c are reciprocal lattice constants.





÷

4

| P1-N1      | 1.547(11) | O31-C31     | 1.375(13) |
|------------|-----------|-------------|-----------|
| P1-N3      | 1.574(10) | O32-C34     | 1.377(10) |
| P1-O11     | 1.591(10) | O32-C37     | 1.424(11) |
| P1-O21     | 1.600(9)  | O41-C41     | 1.380(11) |
| P2-N1      | 1.593(12) | O42-C44     | 1.353(12) |
| P2-N2      | 1.597(11) | O42-C47     | 1.635(9)  |
| P2-O31     | 1.553(8)  | O51-C51     | 1.587(10) |
| P2-O41     | 1.608(11) | O52-C54     | 1.352(14) |
| P3-N2      | 1.576(11) | O52-C57     | 1.436(11) |
| P3-N3      | 1.568(11) | O61-C61     | 1.373(10) |
| P3-O51     | 1.587(10) | O62-C64     | 1.344(9)  |
| P3-O61     | 1.595(9)  | O62-C67     | 1.369(9)  |
| O11-C11    | 1.379(12) | C17-C18     | 1.352(11) |
| O12-C14    | 1.443(15) | C27-C28     | 1.462(6)  |
| O12-C17    | 1.239(11) | C37-C38     | 1.347(8)  |
| O21-C21    | 1.394(10) | C47-C48     | 1.640(8)  |
| O22-C24    | 1.348(10) | C57-C58     | 1.562(10) |
| O22-C27    | 1.466(9)  | C67-C68     | 1.396(6)  |
|            |           |             |           |
| N1-P1-N3   | 119.2(6)  | P1-N1-P2    | 121.6(7)  |
| N1-P1-O11  | 109.9(5)  | P2-N2-P3    | 120.1(7)  |
| N3-P1-O11  | 110.9(6)  | P1-N3-P3    | 119.7(7)  |
| N1-P1-O21  | 106.6(6)  | P1-O11-C11  | 124.5(7)  |
| N3-P1-O21  | 110.4(5)  | C14-O12-C17 | 130.6(14) |
| O11-P1-O21 | 97.7(5)   | P1-O21-C21  | 124.3(7)  |
| N1-P2-N2   | 117.1(6)  | C24-O22-C27 | 119.3(7)  |
| N1-P2-O31  | 112.6(6)  | P2-O31-C31  | 128.2(8)  |
| N2-P2-O31  | 110.6(5)  | C34-O32-C37 | 117.6(7)  |
| N1-P2-O41  | 110.8(6)  | P2-O41-C41  | 120.1(7)  |
| N2-P2-O41  | 110.4(6)  | C44-O42-C47 | 112.6(7)  |
| O31-P2-O41 | 92.7(5)   | P3-O51-C51  | 120.0(7)  |
| N2-P3-P3   | 119.3(6)  | C54-O52-C57 | 114.6(10) |
| N2-P3-O51  | 108.8(5)  | P3-O61-C61  | 127.8(7)  |
| N3-P3-O51  | 110.2(6)  | C64-O62-C67 | 122.8(8)  |
| N2-P3-O61  | 107.2(6)  | O11-C11-C12 | 120.2(7)  |
| N3-P3-O61  | 112.0(5)  | O11-C11-C16 | 119.7(8)  |
| 051 02 0(1 | 07 1(5)   | 012-014-013 | 120 0(7)  |

Table 9. Bond Distances (Å) and Bond Angles (deg) for 2f (cont).

.

.

| O12-C14-C15 | 126.1(8) | O42-C44-C43 | 125.0(7) |
|-------------|----------|-------------|----------|
| O12-C17-C18 | 126.1(1) | O42-C44-C45 | 115.0(8) |
| O21-C21-C22 | 123.1(7) | O42-C47-C48 | 91.6(4)  |
| O21-C21-C26 | 116.8(7) | O51-C51-C52 | 120.1(8) |
| O22-C24-C23 | 124.0(8) | O51-C51-C56 | 119.7(9) |
| O22-C24-C25 | 116.0(7) | O52-C54-C53 | 115.8(9) |
| O22-C27-C28 | 109.3(4) | O52-C54-C55 | 124.2(8) |
| O31-C31-C32 | 123.8(8) | O52-C57-C58 | 104.4(6) |
| O31-C31-C36 | 115.4(9) | O61-C61-C62 | 123.2(7) |
| O32-C34-C33 | 115.2(8) | O61-C61-C66 | 116.6(7) |
| O32-C34-C35 | 124.7(7) | O62-C64-C63 | 124.8(7) |
| O32-C37-C38 | 115.4(7) | O62-C64-C65 | 115.2(7) |
| O41-C41-C42 | 121.4(8) | O62-C67-C68 | 119.8(5) |
| O41-C41-C46 | 118.3(7) |             |          |

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of

120.0° in the x-ray crystal refinement program.

| Table 10. Positional Parameters (Å) for 2f. |             |            |           |          |  |
|---------------------------------------------|-------------|------------|-----------|----------|--|
| Atom                                        | X           | Y          | Z         | U(1,1)   |  |
| P1                                          | 0.4459(4)   | 0.1579(2)  | 0.8317(1) | 0.061(2) |  |
| P2                                          | 0.2392(5)   | 0.0945(2)  | 0.9009(1) | 0.086(2) |  |
| P3                                          | 0.1790(4)   | 0.2573(2)  | 0.8399(1) | 0.070(2) |  |
| N1                                          | 0.4009(12)  | 0.0870(7)  | 0.8765(4) | 0.055(4) |  |
| N2                                          | 0.1335(12)  | 0.1860(7)  | 0.8864(4) | 0.069(4) |  |
| N3                                          | 0.3414(11)  | 0.2484(7)  | 0.8195(4) | 0.054(4) |  |
| <b>O</b> 11                                 | 0.6075(10)  | 0.1721(6)  | 0.8448(4) | 0.061(4) |  |
| O12                                         | 0.8023(14)  | 0.2756(11) | 1.0496(4) | 0.122(4) |  |
| <b>O2</b> 1                                 | 0.4793(10)  | 0.1130(5)  | 0.7732(3) | 0.078(4) |  |
| O22                                         | 0.5851(10)  | 0.2705(6)  | 0.5573(3) | 0.072(4) |  |
| <b>O</b> 31                                 | 0.2356(11)  | 0.0637(6)  | 0.9662(3) | 0.115(4) |  |
| O32                                         | -0.4057(14) | -0.1842(8) | 0.8347(4) | 0.156(4) |  |
| <b>O</b> 41                                 | 0.1627(11)  | 0.0152(6)  | 0.8837(4) | 0.107(4) |  |
| O42                                         | -0.0758(10) | -0.0027(7) | 0.6709(4) | 0.061(4) |  |
| <b>O</b> 51                                 | 0.1271(11)  | 0.3514(6)  | 0.8607(4) | 0.090(4) |  |
| O52                                         | 0.3166(13)  | 0.4534(8)  | 1.0625(4) | 0.137(4) |  |
| <b>O</b> 61                                 | 0.0679(10)  | 0.2672(6)  | 0.7871(4) | 0.063(4) |  |
| O62                                         | 0.11324(10) | 0.3291(6)  | 0.5529(3) | 0.072(4) |  |
| <b>C</b> 11                                 | 0.6528(9)   | 0.1954(5)  | 0.8963(3) | 0.078(4) |  |
| C12                                         | 0.6417(9)   | 0.2836(5)  | 0.9053(3) | 0.064(4) |  |
| C13                                         | 0.6939(9)   | 0.3069(5)  | 0.9563(3) | 0.079(4) |  |
| C14                                         | 0.7572(9)   | 0.2420(5)  | 0.9985(3) | 0.087(4) |  |
| C15                                         | 0.7683(9)   | 0.1538(5)  | 0.9896(3) | 0.121(4) |  |
| C16                                         | 0.7161(9)   | 0.1305(5)  | 0.9385(3) | 0.117(4) |  |
| C17                                         | 0.8013      | 0.2459     | 1.1009    | 0.0500 * |  |
| C18                                         | 0.8635(10)  | 0.2762(7)  | 1.1452(4) | 0.041(4) |  |
| C19                                         | 0.9228(10)  | 0.2266(7)  | 1.1952(4) | 0.200(4) |  |
| C110                                        | 0.9733(10)  | 0.2680(7)  | 1.2394(4) | 0.157(4) |  |
| C111                                        | 0.9645(10)  | 0.3589(7)  | 1.2337(4) | 0.036(4) |  |
| C112                                        | 0.9053(10)  | 0.4084(7)  | 1.1838(4) | 0.159(4) |  |
| C113                                        | 0.8548(10)  | 0.3671(7)  | 1.1395(4) | 0.152(4) |  |
| C21                                         | 0.5070(8)   | 0.1580(4)  | 0.7206(2) | 0.061(4) |  |
| C22                                         | 0.6042(8)   | 0.2178(4)  | 0.7145(2) | 0.077(4) |  |
| C23                                         | 0.6318(8)   | 0.2573(4)  | 0.6600(2) | 0.063(4) |  |

-

-

|              | Table 10. Positional Parameters (Å) for 2f. (cont). |            |           |          |  |  |
|--------------|-----------------------------------------------------|------------|-----------|----------|--|--|
| Atom         | X                                                   | Y          | Z         | U(1,1)   |  |  |
| C24          | 0.5622(8)                                           | 0.2372(4)  | 0.6116(2) | 0.049(4) |  |  |
| C25          | 0.4650(8)                                           | 0.1774(4)  | 0.6177(2) | 0.069(4) |  |  |
| C26          | 0.4374(8)                                           | 0.1379(4)  | 0.6722(2) | 0.072(4) |  |  |
| C27          | 0.6697                                              | 0.3593     | 0.5478    | 0.0500 * |  |  |
| C28          | 0.6966(8)                                           | 0.3593(5)  | 0.4862(3) | 0.049(4) |  |  |
| C29          | 0.8307(8)                                           | 0.3343(5)  | 0.4602(3) | 0.050(4) |  |  |
| C210         | 0.8489(8)                                           | 0.3582(5)  | 0.4017(3) | 0.071(4) |  |  |
| C211         | 0.7329(8)                                           | 0.4070(5)  | 0.3691(3) | 0.070(4) |  |  |
| C212         | 0.5988(8)                                           | 0.4319(5)  | 0.3950(3) | 0.058(4) |  |  |
| C213         | 0.5807(8)                                           | 0.4081(5)  | 0.4536(3) | 0.062(4) |  |  |
| <b>C</b> 31  | 0.2772(10)                                          | 0.1040(6)  | 1.0116(3) | 0.060(4) |  |  |
| C32          | 0.4190(10)                                          | 0.1191(6)  | 1.0201(3) | 0.140(4) |  |  |
| C33          | 0.4575(10)                                          | 0.1469(6)  | 1.0719(3) | 0.152(4) |  |  |
| C34          | 0.3543(10)                                          | 0.1597(6)  | 1.1153(3) | 0.080(4) |  |  |
| C35          | 0.2125(10)                                          | 0.1447(6)  | 1.1069(3) | 0.084(4) |  |  |
| C36          | 0.1740(10)                                          | 0.1168(6)  | 1.0550(3) | 0.073(4) |  |  |
| C37          | -0.3666                                             | -0.1406    | 0.7816    | 0.0500 * |  |  |
| C38          | -0.4354(9)                                          | -0.1578(6) | 0.7346(3) | 0.118(4) |  |  |
| C39          | -0.4033(9)                                          | -0.1111(6) | 0.6831(3) | 0.087(4) |  |  |
| C310         | -0.4764(9)                                          | -0.1190(6) | 0.6325(3) | 0.096(4) |  |  |
| <b>C</b> 311 | -0.5815(9)                                          | -0.1737(6) | 0.6333(3) | 0.103(4) |  |  |
| C312         | -0.6136(9)                                          | -0.2203(6) | 0.6848(3) | 0.095(4) |  |  |
| C313         | -0.5406(9)                                          | -0.2124(6) | 0.7355(3) | 0.102(4) |  |  |
| <b>C4</b> 1  | 0.1105(9)                                           | 0.0162(5)  | 0.8284(3) | 0.097(4) |  |  |
| C42          | 0.2016(9)                                           | -0.0135(5) | 0.7843(3) | 0.071(4) |  |  |
| C43          | 0.1431(9)                                           | -0.0193(5) | 0.7303(3) | 0.082(4) |  |  |
| C44          | -0.0066(9)                                          | 0.0046(5)  | 0.7204(3) | 0.077(4) |  |  |
| C45          | -0.0977(9)                                          | 0.0343(5)  | 0.7646(3) | 0.065(4) |  |  |
| C46          | -0.0392(9)                                          | 0.0401(5)  | 0.8186(3) | 0.083(4) |  |  |
| C47          | 0.0371                                              | -0.0237    | 0.6181    | 0.0500 * |  |  |
| C48          | -0.0970(9)                                          | -0.0316(6) | 0.5748(3) | 0.065(4) |  |  |
| C49          | -0.1988(9)                                          | 0.0432(6)  | 0.5587(3) | 0.077(4) |  |  |
| C410         | -0.2927(9)                                          | 0.0446(6)  | 0.5122(3) | 0.081(4) |  |  |
| C411         | -0.2847(9)                                          | -0.0287(6) | 0.4819(3) | 0.077(4) |  |  |

.

| Table 10. Positional Parameters (Å) for 2f (cont). |            |                        |           |          |  |
|----------------------------------------------------|------------|------------------------|-----------|----------|--|
| Atom                                               | X          | Y                      | Z         | U(1,1)   |  |
| C412                                               | -0 1828(9) | -0 1035(6)             | 0.4980(3) | 0 105(4) |  |
| C412                                               | -0.0890(9) | -0.1035(0)             | 0.5445(3) | 0.105(4) |  |
| C51                                                | 0.0000(0)  | -0.10+9(0)             | 0.0173(3) | 0.001(4) |  |
| C52                                                | 0.3006(10) | 0.3713(3)<br>0.4122(5) | 0.9123(3) | 0.103(4) |  |
| C52                                                | 0.3000(10) | 0.4122(3)              | 0.9133(3) | 0.072(4) |  |
| C54                                                | 0.3444(10) | 0.4392(3)              | 0.9040(3) | 0.080(4) |  |
| C54                                                | 0.2033(10) | 0.4234(3)              | 1.0149(3) | 0.151(4) |  |
| 055                                                | 0.1428(10) | 0.3847(5)              | 1.0139(3) | 0.213(4) |  |
| C56                                                | 0.0989(10) | 0.3577(5)              | 0.9626(3) | 0.161(4) |  |
| C57                                                | 0.2305     | 0.4412                 | 1.1132    | 0.0500 * |  |
| C58                                                | 0.3112(11) | 0.4786(6)              | 1.1610(3) | 0.171(4) |  |
| C59                                                | 0.2299(11) | 0.5476(6)              | 1.1869(3) | 0.108(4) |  |
| C510                                               | 0.2927(11) | 0.5858(6)              | 1.2299(3) | 0.093(4) |  |
| C511                                               | 0.4370(11) | 0.5550(6)              | 1.2469(3) | 0.145(4) |  |
| C512                                               | 0.5184(11) | 0.4861(6)              | 1.2209(3) | 0.148(4) |  |
| C513                                               | 0.4555(11) | 0.4479(6)              | 1.1780(3) | 0.205(5) |  |
| C61                                                | 0.0965(8)  | 0.2831(5)              | 0.7295(2) | 0.045(4) |  |
| C62                                                | 0.1746(8)  | 0.3481(5)              | 0.7073(2) | 0.059(4) |  |
| C63                                                | 0.1902(8)  | 0.3648(5)              | 0.6479(2) | 0.066(4) |  |
| C64                                                | 0.1277(8)  | 0.3165(5)              | 0.6107(2) | 0.031(4) |  |
| C65                                                | 0.0496(8)  | 0.2514(5)              | 0.6329(2) | 0.044(4) |  |
| C66                                                | 0.0340(8)  | 0.2347(5)              | 0.6923(2) | 0.044(4) |  |
| C67                                                | 0.2027     | 0.3910                 | 0.5241    | 0.0500 * |  |
| C68                                                | 0.2043(8)  | 0.3999(5)              | 0.4640(3) | 0.041(4) |  |
| C69                                                | 0.1554(8)  | 0.4807(5)              | 0.4328(3) | 0.041(4) |  |
| C610                                               | 0.1590(8)  | 0.4885(5)              | 0.3727(3) | 0.047(4) |  |
| C611                                               | 0 2115(8)  | 0.4155(5)              | 0 3430(3) | 0.038(4) |  |
| C612                                               | 0.2605(8)  | 0.33/8/5)              | 0.3751(2) | 0.050(+) |  |
| C612                                               | 0.2003(0)  | 0.3340(3)              | 0.3731(3) | 0.037(4) |  |
| C013                                               | U.2308(8)  | 0.32/0(3)              | 0.4352(3) | 0.050(4) |  |

~

The form of the anisotropic thermal parameter is:

 $U = \exp[-2\Pi^2 \{h^2 a^2 U(1,1) + k^2 b^2 U(2,2) + l^2 c^2 U(3,3) + 2hkab U(1,2) + 2hlac U(1,3)\}$ 

+ 2klbcU(2,3))}] where a, b and c are reciprocal lattice constants

\* Starred Atoms were refined only isotropically.





4a Packing Arrangement

1:

Table 11. Bond Distances (Å) and Bond Angles (deg) for 4a (2 Conformations).

•

-

4

| P1-N1          | 1.566(12) | O21-C21        | 1.389(11) |
|----------------|-----------|----------------|-----------|
| P1-N4          | 1.560(9)  | O22-C24        | 1.358(14) |
| P1-O11         | 1.581(10) | O22-C27        | 1.363(14) |
| P1-O21         | 1.584(9)  | O31-C31        | 1.357(11) |
| P2-N1          | 1.557(13) | O32-C34        | 1.367(12) |
| P2-N2          | 1.531(9)  | O32-C37        | 1.364(16) |
| P2-O31         | 1.566(11) | O41-C41        | 1.377(13) |
| P2-O41         | 1.584(9)  | O42-C44        | 1.380(15) |
| P3-N2          | 1.584(9)  | O42-C47        | 1.348(15) |
| P3-N3          | 1.553(12) | O51-C51        | 1.371(11) |
| P3-O51         | 1.597(10) | O52-C54        | 1.372(13) |
| P3-O61         | 1.574(8)  | O52-C57        | 1.347(14) |
| P4-N3          | 1.567(13) | O61-C61        | 1.383(11) |
| P4-N4          | 1.553(10) | O62-C64        | 1.361(13) |
| <b>P4-O7</b> 1 | 1.547(10) | O62-C67        | 1.356(14) |
| P4-O81         | 1.564(9)  | <b>O71-C71</b> | 1.367(11) |
| P5-N5          | 1.575(12) | O72-C74        | 1.372(13) |
| P5-N8          | 1.560(9)  | 072-C77        | 1.347(15) |
| P5-O91         | 1.581(10) | O81-C81        | 1.357(12) |
| P5-O101        | 1.573(9)  | O82-C84        | 1.363(19) |
| P6-N5          | 1.543(12) | O82-C87        | 1.267(18) |
| P6-N6          | 1.544(10) | O91-C91        | 1.377(10) |
| P6-O111        | 1.573(10) | O92-C94        | 1.359(13) |
| P6-O121        | 1.581(9)  | O92-C97        | 1.355(15) |
| P7-N6          | 1.587(9)  | O101-C101      | 1.383(13) |
| P7-N7          | 1.556(12) | O102-C104      | 1.362(14) |
| P7-O131        | 1.599(10) | O102-C107      | 1.364(14) |
| P7-O141        | 1.560(8)  | O111-C111      | 1.351(13) |
| P8-N7          | 1.562(13) | O112-C114      | 1.371(14) |
| P8-N8          | 1.565(10) | O112-C117      | 1.344(14) |
| P8-O151        | 1.556(10) | O121-C121      | 1.371(12) |
| P8-O161        | 1.573(9)  | O122-C124      | 1.364(14) |
| O11-C11        | 1.371(11) | O122-C127      | 1.349(14) |
| O12-C14        | 1.366(13) | O131-C131      | 1.386(13) |
| O12-C17        | 1.354(16) | O132-C134      | 1.371(14) |

-

| O132-C137   | 1.339(14) | O152-C154    | 1.363(13) |
|-------------|-----------|--------------|-----------|
| O141-C141   | 1.380(10) | O152-C157    | 1.321(14) |
| O142-C144   | 1.376(13) | O161-C161    | 1.362(13) |
| O142-C147   | 1.354(15) | O162-C164    | 1.367(14) |
| O151-C151   | 1.378(14) | O162-C167    | 1.347(14) |
|             |           |              |           |
| N1-P1-N4    | 120.0(6)  | N5-P6-N6     | 121.2(6)  |
| N1-P1-O11   | 107.1(6)  | N5-P6-O111   | 107.9(6)  |
| N4-P1-O11   | 111.1(6)  | N6-P6-O111   | 107.8(6)  |
| N1-P1-O21   | 107.4(5)  | N5-P6-O121   | 111.2(5)  |
| N4-P1-O21   | 109.6(5)  | N6-P6-O121   | 106.8(5)  |
| O11-P1-O21  | 99.6(5)   | O111-P6-O121 | 99.7(5)   |
| N1-P2-N2    | 120.9(6)  | N6-P7-N7     | 121.1(6)  |
| N1-P2-O31   | 108.3(6)  | N6-P7-O131   | 110.5(6)  |
| N2-P2-O31   | 107.9(6)  | N7-P7-O131   | 107.4(5)  |
| N1-P2-O41   | 111.7(6)  | N6-P7-O141   | 108.2(6)  |
| N2-P2-O41   | 107.1(5)  | N7-P7-O141   | 108.8(5)  |
| O31-P2-O41  | 98.4(5)   | O131-P7-O141 | 98.6(5)   |
| N2-P3-N3    | 120.8(6)  | N7-P8-N8     | 120.4(6)  |
| N2-P3-O51   | 110.7(5)  | N7-P8-O151   | 108.7(6)  |
| N3-P3-O51   | 107.7(5)  | N8-P8-O151   | 107.9(5)  |
| N2-P3-O61   | 108.0(5)  | N7-P8-O161   | 110.1(5)  |
| N3-P3-O61   | 108.8(5)  | N8-P8-O161   | 107.2(5)  |
| O51-P3-O61  | 98.6(5)   | O151-P8-O161 | 100.7(5)  |
| N3-P4-N4    | 120.1(6)  | P1-N1-P2     | 135.4(7)  |
| N3-P4-O71   | 108.7(6)  | P2-N2-P3     | 136.2(7)  |
| N4-P4-O71   | 107.9(6)  | P3-N3-P4     | 135.9(7)  |
| N3-P4-O81   | 110.4(5)  | P1-N4-P4     | 135.2(8)  |
| N4-P4-O81   | 107.4(6)  | P5-N5-P6     | 136.4(6)  |
| O71-P4-O81  | 100.7(5)  | P6-N6-P7     | 132.8(7)  |
| N5-P5-N8    | 120.3(6)  | P7-N7-P8     | 135.4(7)  |
| N5-P5-O91   | 107.5(5)  | P5-N8-P8     | 134.4(8)  |
| N8-P5-O91   | 110.6(5)  | P1-O11-C11   | 124.2(7)  |
| N5-P5-O101  | 108.6(5)  | C14-O12-C17  | 119.7(11) |
| N8-P5-O101  | 108.2(5)  | P1-O21-C21   | 124.3(6)  |
| O91-P5-O101 | 99.6(5)   | C24-O22-C27  | 119.3(10) |

## Table 11. Bond Distances (Å) and Bond Angles (deg) for 4a (cont).

.

×

| P2-O31-C31     | 123.9(9)   | O21-C21-C26  | 117.2(7)  |
|----------------|------------|--------------|-----------|
| C34-O32-C37    | 117.8(11)  | O22-C24-C23  | 114.9(8)  |
| P2-O41-C41     | 124.5(7)   | O22-C24-C25  | 125.0(8)  |
| C44-O42-C47    | 118.4(9)   | O22-C27-C28  | 118.9(8)  |
| P3-O51-C51     | 123.9(7)   | O22-C27-C212 | 120.9(8)  |
| C54-O52-C57    | 118.4(11)  | O31-C31-C32  | 116.9(6)  |
| P3-O61-C61     | 123.3(6)   | O31-C31-C36  | 123.0(7)  |
| C64-O62-C67    | 120.2(10)  | O32-C34-C33  | 122.2(7)  |
| P4-071-C71     | 126.5(8)   | O32-C34-C35  | 117.7(7)  |
| C74-O72-C77    | 117.0(10)  | O32-C37-C38  | 115.8(9)  |
| P4-O81-C81     | 121.5(6)   | O32-C37-C312 | 124.2(9)  |
| C84-O82-C87    | 117.1(12)  | O41-C41-C42  | 120.9(8)  |
| P5-O91-C91     | 122.9(7)   | O41-C41-C46  | 118.8(7)  |
| C94-O92-C97    | 117.6(10)  | O42-C44-C43  | 120.2(8)  |
| P5-O101-C101   | 124.29(10) | O42-C44-C45  | 119.4(8)  |
| C104-O102-C107 | 117.9(10)  | O42-C47-C48  | 118.9(10) |
| P6-O111-C111   | 123.9(10)  | O42-C47-C412 | 120.9(10) |
| C114-O112-C117 | 117.8(9)   | O51-C51-C52  | 121.6(7)  |
| P6-O121-C121   | 120.9(6)   | O51-C51-C56  | 118.2(7)  |
| C124-O122-C127 | 118.3(10)  | O52-C54-C53  | 123.1(7)  |
| P7-O131-C131   | 123.8(9)   | O52-C54-C55  | 116.7(8)  |
| C134-O132-C137 | 118.3(9)   | O52-C57-C58  | 117.6(8)  |
| P7-O141-C141   | 124.2(5)   | O52-C57-C512 | 122.4(8)  |
| C144-O142-C147 | 119.6(10)  | O61-C61-C62  | 117.8(7)  |
| P8-O151-C151   | 121.4(10)  | O61-C61-C66  | 122.2(7)  |
| C154-O152-C157 | 116.3(5)   | O62-C64-C63  | 125.7(8)  |
| P8-O161-C161   | 126.4(9)   | O62-C64-C65  | 122.2(7)  |
| C164-O162-C167 | 118.3(6)   | O62-C67-C68  | 118.0(7)  |
| O11-C11-C12    | 121.2(7)   | O62-C67-C612 | 121.9(7)  |
| O11-C11-C16    | 118.6(7)   | O71-C71-C72  | 117.9(6)  |
| O12-C14-C13    | 124.2(8)   | O71-C71-C76  | 122.0(7)  |
| O12-C14-C15    | 120.0(6)   | O72-C74-C73  | 121.9(7)  |
| O12-C17-C18    | 119.5(8)   | 072-C74-C75  | 118.1(6)  |
| O12-C17-C12    | 120.5(9)   | O72-C77-C78  | 121.9(10) |
| O21-C21-C22    | 122.7(7)   | O72-C77-C712 | 117.9(10) |
|                |            |              |           |

#### Table 11. Bond Distances (Å) and Bond Angles (deg) for 4a (cont).

....

.

| O81-C81-C82     | 118.2(8)  | O122-C124-C125  | 119.4(10) |
|-----------------|-----------|-----------------|-----------|
| O81-C81-C86     | 121.8(8)  | O122-C127-C128  | 118.9(8)  |
| O82-C84-C83     | 121.2(10) | O122-C127-C1212 | 120.9(8)  |
| O82-C84-C85     | 118.6(10) | O131-C131-C132  | 121.5(9)  |
| O82-C87-C88     | 124.0(11) | O131-C131-C136  | 118.2(7)  |
| O82-C87-C812    | 115.8(10) | O132-C134-C133  | 123.1(9)  |
| O91-C91-C92     | 121.7(7)  | O132-C134-C135  | 116.7(9)  |
| O91-C91-C96     | 118.2(7)  | O132-C137-C138  | 119.0(9)  |
| O92-C94-C93     | 125.1(7)  | O132-C137-C1312 | 120.9(8)  |
| O92-C94-C95     | 114.8(8)  | O141-C141-C142  | 117.6(7)  |
| O92-C97-C98     | 120.8(8)  | O141-C141-C146  | 122.3(7)  |
| O92-C97-C912    | 119.1(9)  | O142-C144-C143  | 124.7(8)  |
| O101-C101-C102  | 122.7(8)  | O142-C144-C145  | 115.3(8)  |
| O101-C101-C106  | 117.9(9)  | O142-C147-C148  | 122.2(8)  |
| O102-C104-C103  | 125.0(8)  | O142-C147-C1412 | 117.6(7)  |
| O102-C104-C105  | 114.9(8)  | O151-C151-C152  | 117.8(8)  |
| O102-C107-C108  | 120.0(8)  | O151-C151-C156  | 122.0(9)  |
| O102-C107-C1012 | 119.9(8)  | O152-C154-C153  | 117.8(6)  |
| O111-C111-C112  | 116.9(7)  | O152-C154-C155  | 122.2(7)  |
| O111-C111-C116  | 122.9(8)  | O152-C157-C158  | 124.6(10) |
| O112-C114-C113  | 122.1(7)  | O152-C157-C1512 | 115.3(10) |
| O112-C114-C115  | 117.7(8)  | O161-C161-C162  | 118.2(8)  |
| O112-C117-C118  | 115.8(7)  | O161-C161-C166  | 121.6(10) |
| O112-C117-C1112 | 124.2(8)  | O162-C164-C163  | 121.1(8)  |
| O121-C121-C122  | 120.8(8)  | O162-C164-C165  | 118.7(9)  |
| O121-C121-C126  | 119.1(8)  | O162-C167-C168  | 124.0(7)  |
| O122-C124-C123  | 120.2(9)  | O162-C167-C1612 | 115.7(9)  |
|                 |           |                 |           |

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of

120.0° in the x-ray crystal refinement program.

# Table 12. Positional Parameters (Å) for 4a(2 conformations)

.

.

| Atom        | X          | Y         | Ζ         | U(1,1)   |
|-------------|------------|-----------|-----------|----------|
| P1          | 0.1463(2)  | 0.2461(2) | 0.7652(1) | 0.050(2) |
| P2          | 0.1256(2)  | 0.3613(2) | 0.7257(1) | 0.045(2) |
| P3          | 0.0000(2)  | 0.2651(2) | 0.6428(1) | 0.046(2) |
| P4          | 0.0635(2)  | 0.1520(2) | 0.6629(1) | 0.058(2) |
| P5          | 0.1535(2)  | 0.2280(2) | 0.2636(1) | 0.044(2) |
| P6          | 0.1440(2)  | 0.3461(2) | 0.2246(1) | 0.041(2) |
| P7          | 0.0109(2)  | 0.2576(2) | 0.1452(1) | 0.047(2) |
| P8          | 0.0661(2)  | 0.1388(2) | 0.1607(1) | 0.055(2) |
| N1          | 0.1721(6)  | 0.3139(5) | 0.7478(4) | 0.085(4) |
| N2          | 0.0409(6)  | 0.3316(5) | 0.6921(4) | 0.069(3) |
| N3          | 0.0366(6)  | 0.1994(5) | 0.6298(4) | 0.099(3) |
| N4          | 0.0861(6)  | 0.1809(5) | 0.7256(4) | 0.093(3) |
| N5          | 0.1842(6)  | 0.2959(5) | 0.2466(4) | 0.071(3) |
| N6          | 0.0557(6)  | 0.3228(5) | 0.1946(4) | 0.070(3) |
| N7          | 0.0443(6)  | 0.1900(5) | 0.1299(4) | 0.103(4) |
| N8          | 0.0910(6)  | 0.1645(5) | 0.2238(4) | 0.090(3) |
| <b>O</b> 11 | 0.2281(5)  | 0.2271(5) | 0.7844(3) | 0.028(3) |
| O12         | 0.4550(5)  | 0.1211(6) | 0.6591(5) | 0.061(3) |
| <b>O21</b>  | 0.1113(5)  | 0.2671(4) | 0.8218(3) | 0.043(3) |
| O22         | -0.0533(6) | 0.0878(6) | 0.9254(5) | 0.062(3) |
| <b>O</b> 31 | 0.1833(5)  | 0.3983(5) | 0.6918(4) | 0.017(3) |
| O32         | 0.5090(6)  | 0.3937(6) | 0.6746(5) | 0.039(3) |
| <b>O</b> 41 | 0.1188(6)  | 0.4281(4) | 0.7724(4) | 0.058(4) |
| O42         | -0.0736(8) | 0.4561(5) | 0.9408(5) | 0.124(4) |
| <b>O</b> 51 | -0.0108(5) | 0.2860(4) | 0.5878(3) | 0.026(3) |
| O52         | 0.2282(6)  | 0.3732(6) | 0.4679(4) | 0.074(3) |
| <b>O</b> 61 | -0.0935(5) | 0.2433(4) | 0.6497(3) | 0.021(3) |
| O62         | -0.2753(6) | 0.4291(5) | 0.7503(4) | 0.084(3) |
| <b>O7</b> 1 | 0.1368(5)  | 0.1242(5) | 0.6386(3) | 0.052(3) |
| <b>O72</b>  | 0.2264(7)  | 0.0864(7) | 0.4313(4) | 0.079(4) |
| <b>O</b> 81 | -0.0028(5) | 0.0825(4) | 0.6508(4) | 0.046(3) |
| <b>O</b> 82 | -0.2745(9) | 0.0532(6) | 0.7597(7) | 0.147(4) |

| Table 12. Positional Parameters (Å) for 4a (cont). |            |           |            |            |  |
|----------------------------------------------------|------------|-----------|------------|------------|--|
| Atom                                               | X          | Y         | Z          | U(1,1)     |  |
| <b>O</b> 91                                        | 0.2320(5)  | 0.2047(4) | 0.2830(3)  | 0.019(3)   |  |
| O92                                                | 0.4549(6)  | 0.1004(5) | 0.1529(5)  | 0.063(3)   |  |
| <b>O</b> 101                                       | 0.1173(5)  | 0.2487(4) | 0.3192(3)  | 0.036(3)   |  |
| O102                                               | 0.0600(6)  | 0.9193(5) | 0.5735(5)  | 0.060(3)   |  |
| <b>O</b> 111                                       | 0.2022(5)  | 0.3743(5) | 0.1862(4)  | 0.012(3)   |  |
| O112                                               | 0.5313(6)  | 0.3800(6) | 0.1757(5)  | 0.032(3)   |  |
| O121                                               | 0.1481(5)  | 0.4164(4) | 0.2707(4)  | 0.044(3)   |  |
| O122                                               | 0.0870(8)  | 0.5485(5) | 0.5892(5)  | 0.157(4)   |  |
| O131                                               | -0.0011(5) | 0.2800(4) | 0.0910(3)  | 0.034(3)   |  |
| O132                                               | 0.2408(7)  | 0.3851(5) | -0.0203(5) | 0.078(3)   |  |
| O141                                               | -0.0813(4) | 0.2383(4) | 0.1538(3)  | 0.014(3)   |  |
| O142                                               | -0.2594(7) | 0.4227(5) | 0.2632(4)  | 0.091(3)   |  |
| <b>O</b> 151                                       | 0.1356(5)  | 0.1061(5) | 0.1341(3)  | 0.048(3)   |  |
| O152                                               | -0.2273(6) | 0.9073(6) | 1.0704(4)  | 0.061(3)   |  |
| O161                                               | -0.0060(5) | 0.0725(4) | 0.1479(3)  | 0.039(3)   |  |
| O162                                               | -0.2630(7) | 0.0401(6) | 0.2693(5)  | 0.081(3)   |  |
| C11                                                | 0.2818(4)  | 0.2022(4) | 0.7500(3)  | 0.057(4)   |  |
| C12                                                | 0.3388(4)  | 0.2468(4) | 0.7311(3)  | 0.041(3)   |  |
| C13                                                | 0.3968(4)  | 0.2209(4) | 0.6995(3)  | 0.059(4)   |  |
| <b>C</b> 14                                        | 0.3977(4)  | 0.1504(4) | 0.6868(3)  | 0.048(4)   |  |
| C15                                                | 0.3406(4)  | 0.1058(4) | 0.7058(3)  | 0.068(4)   |  |
| C16                                                | 0.2827(4)  | 0.1317(4) | 0.7374(3)  | 0.052(4)   |  |
| C17                                                | 0.4986(5)  | 0.1538(4) | 0.6274(3)  | 0.083(3) * |  |
| C18                                                | 0.4617(5)  | 0.1510(4) | 0.5765(3)  | 0.107(3) * |  |
| C19                                                | 0.5070(5)  | 0.1821(4) | 0.5426(3)  | 0.119(3) * |  |
| C110                                               | 0.5892(5)  | 0.2160(4) | 0.5595(3)  | 0.102(3) * |  |
| <b>C</b> 111                                       | 0.6261(5)  | 0.2187(4) | 0.6104(3)  | 0.101(3) * |  |
| C112                                               | 0.5808(5)  | 0.1875(4) | 0.6443(3)  | 0.086(3) * |  |
| C21                                                | 0.0689(4)  | 0.2197(3) | 0.8455(2)  | 0.060(4)   |  |
| C22                                                | 0.0975(4)  | 0.1623(3) | 0.8512(2)  | 0.074(4)   |  |
| C23                                                | 0.0541(4)  | 0.1186(3) | 0.8777(2)  | 0.079(4)   |  |
| C24                                                | -0.0179(4) | 0.1323(3) | 0.8986(2)  | 0.052(4)   |  |
| C25                                                | -0.0464(4) | 0.1897(3) | 0.8929(2)  | 0.084(4)   |  |
| C26                                                | -0.0030(4) | 0.2334(3) | 0.8663(2)  | 0.059(4)   |  |
| C27                                                | -0.1262(5) | 0.0946(4) | 0.9447(3)  | 0.069(3) * |  |

|      | Table 12. Positional Parameters (Å) for 4a (cont). |           |           |            |  |  |
|------|----------------------------------------------------|-----------|-----------|------------|--|--|
| Atom | X                                                  | Y         | Z         | U(1,1)     |  |  |
| C28  | -0.1261(5)                                         | 0.1271(4) | 1.0000(3) | 0.085(3) * |  |  |
| C29  | -0.2003(5)                                         | 0.1306(4) | 1.0214(3) | 0.092(3) * |  |  |
| C210 | -0.2745(5)                                         | 0.1016(4) | 0.9875(3) | 0.095(3) * |  |  |
| C211 | -0.2746(5)                                         | 0.0691(4) | 0.9323(3) | 0.112(3) * |  |  |
| C212 | -0.2005(5)                                         | 0.0656(4) | 0.9109(3) | 0.099(3) * |  |  |
| C31  | 0.2636(4)                                          | 0.3961(4) | 0.6899(3) | 0.087(4)   |  |  |
| C32  | 0.2845(4)                                          | 0.3580(4) | 0.6408(3) | 0.056(4)   |  |  |
| C33  | 0.3667(4)                                          | 0.3571(4) | 0.6348(3) | 0.085(4)   |  |  |
| C34  | 0.4279(4)                                          | 0.3943(4) | 0.6779(3) | 0.063(4)   |  |  |
| C35  | 0.4070(4)                                          | 0.4324(4) | 0.7270(3) | 0.061(4)   |  |  |
| C36  | 0.3248(4)                                          | 0.4333(4) | 0.7329(3) | 0.066(4)   |  |  |
| C37  | 0.5479(5)                                          | 0.4256(4) | 0.6402(3) | 0.068(3) * |  |  |
| C38  | 0.6185(5)                                          | 0.4041(4) | 0.6231(3) | 0.092(3) * |  |  |
| C39  | 0.6642(5)                                          | 0.4355(4) | 0.5894(3) | 0.118(3) * |  |  |
| C310 | 0.6392(5)                                          | 0.4884(4) | 0.5729(3) | 0.117(3) * |  |  |
| C311 | 0.5686(5)                                          | 0.5099(4) | 0.5900(3) | 0.115(3) * |  |  |
| C312 | 0.5230(5)                                          | 0.4785(4) | 0.6236(3) | 0.082(3) * |  |  |
| C41  | 0.0688(5)                                          | 0.4274(4) | 0.8128(3) | 0.084(4)   |  |  |
| C42  | -0.0157(5)                                         | 0.4207(4) | 0.8021(3) | 0.076(4)   |  |  |
| C43  | -0.0640(5)                                         | 0.4279(4) | 0.8447(3) | 0.102(4)   |  |  |
| C44  | -0.0279(5)                                         | 0.4417(4) | 0.8980(3) | 0.101(4)   |  |  |
| C45  | 0.0566(5)                                          | 0.4484(4) | 0.9087(3) | 0.110(4)   |  |  |
| C46  | 0.1049(5)                                          | 0.4413(4) | 0.8661(3) | 0.091(4)   |  |  |
| C47  | -0.1178(6)                                         | 0.4023(5) | 0.9546(3) | 0.079(3) * |  |  |
| C48  | -0.2031(6)                                         | 0.3932(5) | 0.9511(3) | 0.147(4) * |  |  |
| C49  | -0.2496(6)                                         | 0.3413(5) | 0.9691(3) | 0.185(4) * |  |  |
| C410 | -0.2108(6)                                         | 0.2986(5) | 0.9908(3) | 0.119(3) * |  |  |
| C411 | -0.1256(6)                                         | 0.3078(5) | 0.9943(3) | 0.113(3) * |  |  |
| C412 | -0.0791(6)                                         | 0.3596(5) | 0.9763(3) | 0.109(3) * |  |  |
| C51  | 0.0533(4)                                          | 0.3060(4) | 0.5608(2) | 0.051(4)   |  |  |
| C52  | 0.0907(4)                                          | 0.2575(4) | 0.5279(2) | 0.065(4)   |  |  |
| C53  | 0.1510(4)                                          | 0.2790(4) | 0.4973(2) | 0.081(4)   |  |  |
| C54  | 0.1738(4)                                          | 0.3491(4) | 0.4997(2) | 0.082(4)   |  |  |
| C55  | 0.1363(4)                                          | 0.3975(4) | 0.5326(2) | 0.072(4)   |  |  |

-

|              | Table 12 Positional Parameters (Å) for 4a (cont). |           |           |            |  |  |
|--------------|---------------------------------------------------|-----------|-----------|------------|--|--|
| Atom         | X                                                 | Y         | Z         | U(1,1)     |  |  |
| C56          | 0.0761(4)                                         | 0.3960(4) | 0.5632(2) | 0.063(4)   |  |  |
| C57          | 0.2956(4)                                         | 0.3465(4) | 0.4602(3) | 0.065(3) * |  |  |
| C58          | 0.3002(4)                                         | 0.3045(4) | 0.4082(3) | 0.087(3) * |  |  |
| C59          | 0.3698(4)                                         | 0.2775(4) | 0.3975(3) | 0.105(3) * |  |  |
| C510         | 0.4347(4)                                         | 0.2927(4) | 0.4387(3) | 0.090(3) * |  |  |
| C511         | 0.4301(4)                                         | 0.3348(4) | 0.4907(3) | 0.095(3) * |  |  |
| C512         | 0.3605(4)                                         | 0.3618(4) | 0.5014(3) | 0.088(3) * |  |  |
| C61          | -0.1384(4)                                        | 0.2902(3) | 0.6750(3) | 0.084(4)   |  |  |
| C62          | -0.1823(4)                                        | 0.2756(3) | 0.7162(3) | 0.069(4)   |  |  |
| C63          | -0.2298(4)                                        | 0.3206(3) | 0.7423(3) | 0.067(4)   |  |  |
| C64          | -0.2334(4)                                        | 0.3802(3) | 0.7271(3) | 0.058(4)   |  |  |
| C65          | -0.1895(4)                                        | 0.3949(3) | 0.6858(3) | 0.048(4)   |  |  |
| C66          | -0.1420(4)                                        | 0.3499(3) | 0.6598(3) | 0.056(4)   |  |  |
| C67          | -0.3212(5)                                        | 0.4207(4) | 0.7905(3) | 0.071(3) * |  |  |
| C68          | -0.2948(5)                                        | 0.4658(4) | 0.8429(3) | 0.078(3) * |  |  |
| C69          | -0.3428(5)                                        | 0.4619(4) | 0.8848(3) | 0.095(3) * |  |  |
| C610         | -0.4172(5)                                        | 0.4131(4) | 0.8744(3) | 0.094(3) * |  |  |
| C611         | -0.4436(5)                                        | 0.3680(4) | 0.8220(3) | 0.094(3) * |  |  |
| C612         | -0.3956(5)                                        | 0.3718(4) | 0.7801(3) | 0.082(3) * |  |  |
| <b>C</b> 71  | 0.1552(4)                                         | 0.1163(4) | 0.5866(3) | 0.049(4)   |  |  |
| C72          | 0.2266(4)                                         | 0.1591(4) | 0.5790(3) | 0.083(4)   |  |  |
| C73          | 0.2513(4)                                         | 0.1495(4) | 0.5272(3) | 0.069(4)   |  |  |
| C74          | 0.2046(4)                                         | 0.0972(4) | 0.4829(3) | 0.083(4)   |  |  |
| C75          | 0.1332(4)                                         | 0.0545(4) | 0.4905(3) | 0.080(4)   |  |  |
| C76          | 0.1085(4)                                         | 0.0640(4) | 0.5423(3) | 0.077(4)   |  |  |
| C77          | 0.2992(5)                                         | 0.0690(4) | 0.4233(4) | 0.082(3) * |  |  |
| C78          | 0.3284(5)                                         | 0.0255(4) | 0.4494(4) | 0.095(3) * |  |  |
| C79          | 0.4010(5)                                         | 0.0044(4) | 0.4368(4) | 0.129(3) * |  |  |
| <b>C7</b> 10 | 0.4445(5)                                         | 0.0268(4) | 0.3980(4) | 0.149(4) * |  |  |
| C711         | 0.4153(5)                                         | 0.0703(4) | 0.3719(4) | 0.152(4) * |  |  |
| C712         | 0.3427(5)                                         | 0.0913(4) | 0.3846(4) | 0.128(3) * |  |  |
| <b>C</b> 81  | -0.0697(4)                                        | 0.0783(4) | 0.6780(3) | 0.077(4)   |  |  |
| C82          | -0.0625(4)                                        | 0.0640(4) | 0.7277(3) | 0.096(4)   |  |  |
| C83          | -0.1305(4)                                        | 0.0571(4) | 0.7561(3) | 0.108(4)   |  |  |

¥

| Table 12. Positional Parameters (Å) for 4a (cont). |            |           |           |            |
|----------------------------------------------------|------------|-----------|-----------|------------|
| Atom                                               | X          | Y         | Z         | U(1,1)     |
| C84                                                | -0.2057(4) | 0.0640(4) | 0.7348(3) | 0.116(4)   |
| C85                                                | -0.2129(4) | 0.0789(4) | 0.6851(3) | 0.081(4)   |
| C86                                                | -0.1449(4) | 0.0858(4) | 0.6566(3) | 0.067(4)   |
| C87                                                | -0.3065(7) | 0.1047(5) | 0.7781(4) | 0.091(3) * |
| C88                                                | -0.2639(7) | 0.1680(5) | 0.8143(4) | 0.125(3) * |
| C89                                                | -0.3057(7) | 0.2200(5) | 0.8356(4) | 0.137(4) * |
| C810                                               | -0.3901(7) | 0.2087(5) | 0.8209(4) | 0.137(4) * |
| <b>C</b> 811                                       | -0.4327(7) | 0.1453(5) | 0.7848(4) | 0.195(4) * |
| <b>C</b> 812                                       | -0.3908(7) | 0.0934(5) | 0.7634(4) | 0.168(4) * |
| <b>C9</b> 1                                        | 0.2865(4)  | 0.1813(4) | 0.2483(3) | 0.045(4)   |
| C92                                                | 0.3455(4)  | 0.2270(4) | 0.2318(3) | 0.043(3)   |
| C93                                                | 0.4029(4)  | 0.2017(4) | 0.1993(3) | 0.050(4)   |
| <b>C94</b>                                         | 0.4014(4)  | 0.1307(4) | 0.1835(3) | 0.042(4)   |
| C95                                                | 0.3424(4)  | 0.0850(4) | 0.2001(3) | 0.051(4)   |
| <b>C96</b>                                         | 0.2850(4)  | 0.1103(4) | 0.2325(3) | 0.057(4)   |
| C97                                                | 0.5016(5)  | 0.1384(4) | 0.1257(4) | 0.084(3) * |
| C98                                                | 0.4709(5)  | 0.1421(4) | 0.0753(4) | 0.102(3) * |
| C99                                                | 0.5212(5)  | 0.1789(4) | 0.0468(4) | 0.128(3) * |
| C910                                               | 0.6021(5)  | 0.2120(4) | 0.0688(4) | 0.112(3) * |
| <b>C</b> 911                                       | 0.6328(5)  | 0.2083(4) | 0.1193(4) | 0.113(3) * |
| C912                                               | 0.5826(5)  | 0.1715(4) | 0.1477(4) | 0.093(3) * |
| C101                                               | -0.0720(4) | 0.7963(3) | 0.6566(3) | 0.053(4)   |
| C102                                               | -0.0008(4) | 0.7788(3) | 0.6369(3) | 0.057(4)   |
| C103                                               | 0.0460(4)  | 0.8196(3) | 0.6096(3) | 0.084(4)   |
| C104                                               | 0.0216(4)  | 0.8779(3) | 0.6019(3) | 0.077(4)   |
| C105                                               | -0.0496(4) | 0.8954(3) | 0.6216(3) | 0.062(4)   |
| C106                                               | -0.0964(4) | 0.8546(3) | 0.6490(3) | 0.072(4)   |
| C107                                               | 0.1337(5)  | 0.9089(4) | 0.5572(3) | 0.073(3) * |
| C108                                               | 0.2060(5)  | 0.9410(4) | 0.5926(3) | 0.098(3) * |
| C109                                               | 0.2818(5)  | 0.9335(4) | 0.5749(3) | 0.121(3) * |
| C1010                                              | 0.2852(5)  | 0.8940(4) | 0.5218(3) | 0.100(3) * |
| C1011                                              | 0.2129(5)  | 0.8620(4) | 0.4865(3) | 0.100(3) * |
| C1012                                              | 0.1372(5)  | 0.8694(4) | 0.5042(3) | 0.087(3) * |
| C111                                               | -0.2831(4) | 0.6254(3) | 0.8133(3) | 0.068(4)   |

ι.

| Table 12 Positional Parameters (Å) for 4a (cont). |            |           |            |            |  |
|---------------------------------------------------|------------|-----------|------------|------------|--|
| Atom                                              | X          | Y         | Z          | U(1,1)     |  |
| C112                                              | -0.3416(4) | 0.5876(3) | 0.7688(3)  | 0.057(4)   |  |
| C113                                              | -0.4247(4) | 0.5859(3) | 0.7726(3)  | 0.057(4)   |  |
| C114                                              | -0.4494(4) | 0.6220(3) | 0.8211(3)  | 0.055(4)   |  |
| C115                                              | -0.3908(4) | 0.6597(3) | 0.8656(3)  | 0.069(4)   |  |
| C116                                              | -0.3077(4) | 0.6614(3) | 0.8617(3)  | 0.069(4)   |  |
| C117                                              | -0.5691(5) | 0.5868(4) | 0.8573(3)  | 0.070(3) * |  |
| C118                                              | -0.6436(5) | 0.6031(4) | 0.8711(3)  | 0.081(3) * |  |
| C119                                              | -0.6891(5) | 0.5697(4) | 0.9037(3)  | 0.096(3) * |  |
| C1110                                             | -0.6601(5) | 0.5200(4) | 0.9225(3)  | 0.103(3) * |  |
| C1111                                             | -0.5855(5) | 0.5038(4) | 0.9087(3)  | 0.094(3) * |  |
| C1112                                             | -0.5400(5) | 0.5371(4) | 0.8761(3)  | 0.076(3) * |  |
| C121                                              | 0.0893(4)  | 0.4219(4) | 0.3055(3)  | 0.041(4)   |  |
| C122                                              | 0.0975(4)  | 0.4040(4) | 0.3536(3)  | 0.108(4)   |  |
| C123                                              | 0.0383(4)  | 0.4120(4) | 0.3893(3)  | 0.138(4)   |  |
| C124                                              | -0.0291(4) | 0.4380(4) | 0.3768(3)  | 0.119(4)   |  |
| C125                                              | -0.0373(4) | 0.4559(4) | 0.3286(3)  | 0.086(4)   |  |
| C126                                              | 0.0219(4)  | 0.4479(4) | 0.2929(3)  | 0.066(4)   |  |
| C127                                              | -0.1110(5) | 0.4087(4) | 0.4411(3)  | 0.081(3) * |  |
| C128                                              | -0.1489(5) | 0.3387(4) | 0.4173(3)  | 0.106(3) * |  |
| C129                                              | -0.1803(5) | 0.2979(4) | 0.4498(3)  | 0.108(3) * |  |
| C1210                                             | -0.1738(5) | 0.3271(4) | 0.5061(3)  | 0.094(3) * |  |
| C1211                                             | -0.1359(5) | 0.3970(4) | 0.5299(3)  | 0.100(3) * |  |
| C1212                                             | -0.1045(5) | 0.4378(4) | 0.4974(3)  | 0.089(3) * |  |
| C131                                              | -0.0644(4) | 0.6956(4) | 0.9341(3)  | 0.066(4)   |  |
| C132                                              | -0.1037(4) | 0.7408(4) | 0.9688(3)  | 0.074(4)   |  |
| C133                                              | -0.1638(4) | 0.7148(4) | 0.9976(3)  | 0.076(4)   |  |
| C134                                              | -0.1847(4) | 0.6436(4) | 0.9916(3)  | 0.082(4)   |  |
| C135                                              | -0.1454(4) | 0.5984(4) | 0.9569(3)  | 0.081(4)   |  |
| C136                                              | -0.0853(4) | 0.6244(4) | 0.9281(3)  | 0.075(4)   |  |
| C137                                              | 0.3034(5)  | 0.3549(4) | -0.0346(4) | 0.079(3) * |  |
| C138                                              | 0.3042(5)  | 0.3198(4) | -0.0892(4) | 0.089(3) * |  |
| C139                                              | 0.3714(5)  | 0.2919(4) | -0.1056(4) | 0.104(3) * |  |
| C1310                                             | 0.4377(5)  | 0.2991(4) | -0.0673(4) | 0.098(3) * |  |
| C1311                                             | 0.4369(5)  | 0.3343(4) | -0.0127(4) | 0.102(3) * |  |

,

τ

| Table 12. Positional Parameters (Å) for 4a (cont). |            |           |           |            |  |
|----------------------------------------------------|------------|-----------|-----------|------------|--|
| Atom                                               | X          | Y         | Z         | U(1,1)     |  |
| C1312                                              | 0.3698(5)  | 0.3622(4) | 0.0037(4) | 0.099(3) * |  |
| C141                                               | -0.1239(4) | 0.2854(3) | 0.1815(3) | 0.044(4)   |  |
| C142                                               | -0.1653(4) | 0.2697(3) | 0.2234(3) | 0.063(4)   |  |
| C143                                               | -0.2117(4) | 0.3144(3) | 0.2515(3) | 0.087(4)   |  |
| C144                                               | -0.2167(4) | 0.3746(3) | 0.2375(3) | 0.055(4)   |  |
| C145                                               | -0.1754(4) | 0.3902(3) | 0.1956(3) | 0.051(4)   |  |
| C146                                               | -0.1290(4) | 0.3456(3) | 0.1676(3) | 0.048(4)   |  |
| C147                                               | -0.3051(5) | 0.4102(4) | 0.3024(3) | 0.073(3) * |  |
| C148                                               | -0.3829(5) | 0.3659(4) | 0.2903(3) | 0.094(3) * |  |
| C149                                               | -0.4299(5) | 0.3585(4) | 0.3321(3) | 0.099(3) * |  |
| C1410                                              | -0.3990(5) | 0.3954(4) | 0.3860(3) | 0.098(3) * |  |
| C1411                                              | -0.3212(5) | 0.4398(4) | 0.3981(3) | 0.115(3) * |  |
| C1412                                              | -0.2743(5) | 0.4472(4) | 0.3564(3) | 0.098(3) * |  |
| C151                                               | -0.1562(4) | 0.8952(4) | 0.9171(3) | 0.054(4)   |  |
| C152                                               | -0.1074(4) | 0.9413(4) | 0.9636(3) | 0.057(4)   |  |
| C153                                               | -0.1325(4) | 0.9451(4) | 1.0148(3) | 0.071(4)   |  |
| C154                                               | -0.2064(4) | 0.9029(4) | 1.0195(3) | 0.057(4)   |  |
| C155                                               | -0.2551(4) | 0.8568(4) | 0.9729(3) | 0.061(4)   |  |
| C156                                               | -0.2300(4) | 0.8529(4) | 0.9217(3) | 0.058(4)   |  |
| C157                                               | -0.2992(5) | 0.9225(4) | 1.0800(3) | 0.080(3) * |  |
| C158                                               | -0.3339(5) | 0.9668(4) | 1.0578(3) | 0.084(3) * |  |
| C159                                               | -0.4081(5) | 0.9825(4) | 1.0730(3) | 0.128(3) * |  |
| C1510                                              | -0.4475(5) | 0.9539(4) | 1.1104(3) | 0.141(4) * |  |
| C1511                                              | -0.4128(5) | 0.9096(4) | 1.1326(3) | 0.155(4) * |  |
| C1512                                              | -0.3386(5) | 0.8939(4) | 1.1174(3) | 0.113(3) * |  |
| C161                                               | 0.0692(4)  | 0.9316(4) | 0.8215(3) | 0.068(4)   |  |
| C162                                               | 0.1451(4)  | 0.9212(4) | 0.8389(3) | 0.067(4)   |  |
| C163                                               | 0.2106(4)  | 0.9291(4) | 0.8085(3) | 0.075(4)   |  |
| C164                                               | 0.2002(4)  | 0.9473(4) | 0.7606(3) | 0.091(4)   |  |
| C165                                               | 0.1243(4)  | 0.9577(4) | 0.7432(3) | 0.080(4)   |  |
| C166                                               | 0.0588(4)  | 0.9498(4) | 0.7736(3) | 0.078(4)   |  |
| C167                                               | 0.3133(5)  | 0.9152(5) | 0.7223(3) | 0.082(3) * |  |
| C168                                               | 0.3967(5)  | 0.9415(5) | 0.7410(3) | 0.095(3) * |  |
| C169                                               | 0.4522(5)  | 0.8985(5) | 0.7288(3) | 0.106(3) * |  |

| Table 12. Positional Parameters (Å) for 4a (cont). |           |           |           |            |  |
|----------------------------------------------------|-----------|-----------|-----------|------------|--|
| Atom                                               | X         | Y         | Z         | U(1,1)     |  |
| C1610                                              | 0.4244(5) | 0.8292(5) | 0.6977(3) | 0.106(3) * |  |
| C1611                                              | 0.3411(5) | 0.8028(5) | 0.6789(3) | 0.108(3) * |  |
| C1612                                              | 0.2855(5) | 0.8458(5) | 0.6912(3) | 0.096(3) * |  |

Numbers in parentheses are estimated standard deviations in the least significant digits.

The form of the anisotropic thermal parameter is:

 $U = \exp[-2\pi^2 \{h^2 a^2 U(1,1) + k^2 b^2 U(2,2) + l^2 c^2 U(3,3) + 2hkab U(1,2) + 2hlac U(1,3)\}$ 

+ 2klbcU(2,3))}] where a, b, and c are reciprocal lattice constants

\* Starred Atoms were refined only isotropically.



ε.

| P1-N      | 1.495(4)  | C24-C27     | 1.511(8)  |
|-----------|-----------|-------------|-----------|
| P1-O1     | 1.548(3)  | C27-C28     | 1.496(9)  |
| P1-O2     | 1.539(3)  | C27-C29     | 1.448(20) |
| P1-O3     | 1.562(4)  | C27-C30     | 1.405(15) |
| P2-N      | 1.578(5)  | C34-C37     | 1.517(8)  |
| P2-O4     | 1.578(4)  | C37-C38     | 1.532(14) |
| P2-O5     | 1.582(3)  | C37-C39     | 1.525(16) |
| P2-O6     | 1.449(5)  | C37-C40     | 1.508(20) |
| O1-C11    | 1.408(4)  | C44-C47     | 1.507(9)  |
| O2-C21    | 1.410(5)  | C47-C48     | 1.416(13) |
| O3-C31    | 1.398(5)  | C47-C49     | 1.408(16) |
| O4-C41    | 1.388(6)  | C47-C50     | 1.437(23) |
| O5-C51    | 1.378(5)  | C54-C57     | 1.536(8)  |
| C14-C17   | 1.498(7)  | C57-C58     | 1.549(17) |
| C17-C18   | 1.501(11) | C57-C59     | 1.362(16) |
| C17-C19   | 1.369(12) | C57-C60     | 1.546(13) |
| C17-C20   | 1.495(15) |             |           |
|           |           |             |           |
| N-P1-O1   | 118.8(2)  | P2-O4-C41   | 121.5(3)  |
| N-P1-O2   | 118.4(2)  | P2-O5-C51   | 124.5(4)  |
| O1-P1-O2  | 101.4(2)  | O1-C11-C12  | 121.0(4)  |
| N-P1-O3   | 113.3(2)  | O1-C11-C16  | 118.8(3)  |
| O1-P1-O3  | 102.1(2)  | C13-C14-C17 | 120.3(4)  |
| O2-P1-O3  | 101.1(3)  | C15-C14-C17 | 119.7(5)  |
| N-P2-O4   | 106.3(2)  | C14-C17-C18 | 114.7(7)  |
| N-P2-O5   | 109.2(2)  | C14-C17-C19 | 112.6(6)  |
| O4-P2-O5  | 99.2(2)   | C18-C17-C19 | 111.1(7)  |
| N-P2-O6   | 119.4(2)  | C14-C17-C20 | 110.6(6)  |
| O4-P2-O6  | 114.4(2)  | C18-C17-C20 | 96.7(9)   |
| O5-P2-O6  | 106.5(3)  | C19-C17-C20 | 110.0(10) |
| P1-N-P2   | 157.0(3)  | O2-C21-C22  | 124.1(3)  |
| P1-01-C11 | 121.3(2)  | O2-C21-C26  | 115.9(4)  |
| P1-O2-C21 | 127.0(3)  | C23-C24-C27 | 120.6(4)  |
| P1-O3-C31 | 121.2(3)  | C25-C24-C27 | 119.4(4)  |

Table 13. Bond Distances (Å) and Bond Angles (deg) for 6a.

.

Table 13. Bond Distances (Å) and Bond Angles (deg) for 6a (cont).

| C24-C27-C28 | 112.6(6)  | C43-C44-C47 | 120.6(5)  |
|-------------|-----------|-------------|-----------|
| C24-C27-C29 | 111.1(7)  | C45-C44-C47 | 119.3(5)  |
| C28-C27-C29 | 106.2(8)  | C44-C47-C48 | 111.9(9)  |
| C24-C27-C30 | 109.4(8)  | C44-C47-C49 | 115.7(8)  |
| C28-C27-C30 | 110.9(8)  | C48-C47-C49 | 105.5(10) |
| C29-C27-C30 | 106.4(12) | C44-C47-C50 | 117.1(7)  |
| O3-C31-C32  | 120.5(3)  | C48-C47-C50 | 106.8(13) |
| O3-C31-C36  | 119.5(3)  | C49-C47-C50 | 98.5(11)  |
| C33-C34-C37 | 120.6(4)  | O5-C51-C52  | 122.6(3)  |
| C35-C34-C37 | 120.6(4)  | O5-C51-C56  | 117.1(4)  |
| C34-C37-C38 | 109.1(6)  | C53-C54-C57 | 120.0(4)  |
| C34-C37-C39 | 113.1(6)  | C55-C54-C57 | 120.0(4)  |
| C38-C37-C39 | 106.2(10) | C54-C57-C58 | 106.6(6)  |
| C34-C37-C40 | 107.9(8)  | C54-C57-C59 | 114.2(9)  |
| C38-C37-C40 | 110.8(8)  | C58-C57-C59 | 116.1(11) |
| C39-C37-C40 | 109.7(10) | C54-C57-C60 | 112.9(7)  |
| O4-C41-C42  | 122.7(5)  | C58-C57-C60 | 93.6(9)   |
| O4-C41-C46  | 117.3(3)  | C59-C57-C60 | 111.7(8)  |

Numbers in parentheses are estimated standard deviations in the least significant digits. Phenoxy ring carbons are set to a C-C bond distance of 1.395 Å and a C-C-C bond angle of 120.0° in the x-ray crystal refinement program.

| Table 14. | Positional Parameters (Å) for 6 | a. |
|-----------|---------------------------------|----|
| Table 14. | Positional Parameters (A) for 6 | a. |

| Atom       | Χ          | Y          | Z          | U (1,1)              |
|------------|------------|------------|------------|----------------------|
|            | •          |            |            | (x 10 <sup>3</sup> ) |
| P1         | 0.3411(1)  | 0.3953(1)  | 0.7613(1)  | 63(1)                |
| P2         | 0.2590(1)  | 0.5285(1)  | 0.8837(1)  | 67(1)                |
| N          | 0.2792(3)  | 0.4660(3)  | 0.8121(3)  | 72(3)                |
| <b>O</b> 1 | 0.4389(2)  | 0.4231(2)  | 0.7011(2)  | 64(2)                |
| O2         | 0.3880(3)  | 0.2838(3)  | 0.8209(2)  | 92(2)                |
| O3         | 0.2742(3)  | 0.3830(3)  | 0.6864(2)  | 75(2)                |
| <b>O</b> 4 | 0.1638(3)  | 0.4972(3)  | 0.9508(3)  | 102(3)               |
| O5         | 0.2029(3)  | 0.6431(3)  | 0.8285(3)  | 98(3)                |
| 06         | 0.3479(3)  | 0.5299(3)  | 0.9340(3)  | 92(3)                |
| O7(W)      | 0.5583(3)  | 0.5501(4)  | 0.8817(3)  | 101(3)               |
| C11        | 0.4341(3)  | 0.5224(3)  | 0.6386(2)  | 57(3)                |
| C12        | 0.3900(3)  | 0.5565(3)  | 0.5475(2)  | 88(4)                |
| C13        | 0.3940(3)  | 0.6522(3)  | 0.4840(2)  | 92(4)                |
| C14        | 0.4420(3)  | 0.7137(3)  | 0.5115(2)  | 73(3)                |
| C15        | 0.4860(3)  | 0.6796(3)  | 0.6025(2)  | 91(4)                |
| C16        | 0.4821(3)  | 0.5839(3)  | 0.6661(2)  | 83(4)                |
| C17        | 0.4478(5)  | 0.8159(5)  | 0.4431(5)  | 102(5)               |
| C18        | 0.4287(10) | 0.8318(7)  | 0.3401(5)  | 379(17)              |
| C19        | 0.3853(12) | 0.8940(6)  | 0.4710(7)  | 483(23)              |
| C20        | 0.5603(10) | 0.8246(9)  | 0.4302(10) | 209(13)              |
| C21        | 0.4518(3)  | 0.2478(2)  | 0.9031(2)  | 66(3)                |
| C22        | 0.5139(3)  | 0.3028(2)  | 0.9241(2)  | 87(4)                |
| C23        | 0.5753(3)  | 0.2604(2)  | 1.0069(2)  | 89(4)                |
| C24        | 0.5747(3)  | 0.1631(2)  | 1.0687(2)  | 90(4)                |
| C25        | 0.5127(3)  | 0.1082(2)  | 1.0477(2)  | 130(5)               |
| C26        | 0.4512(3)  | 0.1506(2)  | 0.9649(2)  | 119(5)               |
| C27        | 0.6370(7)  | 0.1181(4)  | 1.1608(4)  | 171(7)               |
| C28        | 0.6777(8)  | 0.0053(5)  | 1.1887(6)  | 233(9)               |
| C29        | 0.7293(13) | 0.1583(9)  | 1.1519(10) | 489(25)              |
| C30        | 0.5736(14) | 0.1457(12) | 1.2342(7)  | 450(25)              |
| C31        | 0.1686(3)  | 0.3775(2)  | 0.7053(3)  | 76(3)                |
| C32        | 0.1445(3)  | 0.2850(2)  | 0.7558(3)  | 93(4)                |

.

•
Table 14. Positional Parameters (Å) for 6a (cont).

۵

| C33 | 0.0388(3)   | 0.2801(2)  | 0.7725(3)  | 94(4)   |
|-----|-------------|------------|------------|---------|
| C34 | -0.0429(3)  | 0.3677(2)  | 0.7386(3)  | 82(4)   |
| C35 | -0.0188(3)  | 0.4602(2)  | 0.6880(3)  | 90(5)   |
| C36 | 0.0870(3)   | 0.4651(2)  | 0.6714(3)  | 84(4)   |
| C37 | -0.1581(5)  | 0.3648(7)  | 0.7607(6)  | 69(4)   |
| C37 | -0.2219(7)  | 0.4159(9)  | 0.6676(8)  | 109(7)  |
| C39 | -0.1731(8)  | 0.2572(9)  | 0.8014(12) | 145(9)  |
| C40 | -0.1991(7)  | 0.4203(11) | 0.8316(10) | 116(7)  |
| C41 | 0.1617(3)   | 0.3962(4)  | 0.9940(3)  | 95(4)   |
| C42 | 0.2361(3)   | 0.3272(4)  | 1.0620(3)  | 81(4)   |
| C43 | 0.2281(3)   | 0.2273(4)  | 1.1048(3)  | 87(4)   |
| C44 | 0.1458(3)   | 0.1963(4)  | 1.0796(3)  | 104(4)  |
| C45 | 0.0715(3)   | 0.2653(4)  | 1.0116(3)  | 126(5)  |
| C46 | 0.0794(3)   | 0.3652(4)  | 0.9688(3)  | 126(5)  |
| C47 | 0.1393(3)   | 0.0874(6)  | 1.1215(6)  | 146(7)  |
| C48 | 0.1260(16)  | 0.0574(8)  | 1.2223(8)  | 802(39) |
| C49 | 0.2282(13)  | 0.0149(8)  | 1.1046(12) | 380(21) |
| C50 | 0.0586(14)  | 0.0594(10) | 1.0846(14) | 369(23) |
| C51 | 0.1340(3)   | 0.6744(3)  | 0.7532(2)  | 80(4)   |
| C52 | 0.0269(3)   | 0.6736(3)  | 0.7667(2)  | 85(4)   |
| C53 | -0.0417(3)  | 0.7164(3)  | 0.6887(2)  | 64(3)   |
| C54 | -0.0033(3)  | 0.7601(3)  | 0.5971(2)  | 87(4)   |
| C55 | 0.1038(3)   | 0.7609(3)  | 0.5836(2)  | 113(5)  |
| C56 | 0.1724(3)   | 0.7181(3)  | 0.6617(2)  | 88(4)   |
| C57 | -0.0797(7)  | 0.8112 (6) | 0.5119(5)  | 150(6)  |
| C58 | -0.1102(10) | 0.7247(8)  | 0.4898(8)  | 336(16) |
| C59 | -0.1621(12) | 0.8873(11) | 0.5230(9)  | 462(23) |
| C60 | -0.2190(11) | 0.8450(10) | 0.4147(7)  | 307(15) |

Numbers in parentheses are estimated standard deviations in the least significant digits.

The form of the anisotropic thermal parameter is:

 $U = \exp[-2\pi^2 \{h^2 a^2 U(1,1) + k^2 b^2 U(2,2) + l^2 c^2 U(3,3) + 2hkab U(1,2) + 2hlac U(1,3)\}]$ 

+ 2klbcU(2,3))}] where a, b, and c are reciprocal lattice constants

**Figure Captions** 

Figure 1. ORTEP of  $N_3P_3(p-OC_6H_4-CH_3)_6$  (2a)

Figure 2. ORTEP of N<sub>3</sub>P<sub>3</sub>(p-OC<sub>6</sub>H<sub>4</sub>-OH)<sub>6</sub> (2b)

Figure 3. ORTEP of  $N_3P_3(p-OC_6H_4-OC_6H_4)_6$  (2e)

Figure 4. Unit cell packing diagram of  $N_3P_3(p-OC_6H_4-OC_6H_4)_6$  (2e)

à'

Figure 5. ORTEP of  $N_3P_3(p-OC_6H_4-OCH_2C_6H_4)_6$  (2f)

Figure 6. Unit cell packing diagram of N<sub>3</sub>P<sub>3</sub>(p-OC<sub>6</sub>H<sub>4</sub>-OCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>6</sub> (2f)

Figure 7. ORTEP of  $N_4P_4(p-OC_6H_4-OC_6H_4)_8$  (4a)

Figure 8. Unit cell packing arrangement of N<sub>4</sub>P<sub>4</sub>(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>4</sub>)<sub>8</sub> (4a)

 $OP(O-C_6H_4-^tBu)_2NP(O-C_6H_4-^tBu)_3$  (6a)

## **Supplementary Material Table of Contents**

- Table S1.Summary of Characterization Data
- Table S2.
   Summary of Crystal Data and Intensity Collection Parameters
- Figure S3. ORTEP of N<sub>3</sub>P<sub>3</sub>(p-OC<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>)<sub>6</sub> (2a)
- Table S4. Positional Parameters of N3P3(p-OC<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>)<sub>6</sub> (2a)
- Table S5. Selected Bond Distances (Å) and Bond Angles (deg) for N3P3(p-OC<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>)<sub>6</sub> (2a)
- Table S6 General Thermal Parameters for  $N_3P_3(p-OC_6H_4CH_3)_6$  (2a)
- Table S7.Structure Factor Tables for N3P3(p-OC6H4CH3)6(2a)
- Figure S8. ORTEP of N3P3(p-OC<sub>6</sub>H<sub>4</sub>OH)<sub>6</sub> (2b)
- Table S9. Positional Parameters of N3P3(p-OC<sub>6</sub>H<sub>4</sub>OH)<sub>6</sub> (2b)
- Table S10. Selected Bond Distances (Å) and Bond Angles (deg) for N3P3(p-OC<sub>6</sub>H<sub>4</sub>OH)<sub>6</sub> (2b)
- Table S11General Thermal Parameters for N3P3(p-OC6H4OH)6(2b)
- Table S12. Structure Factor Tables for N3P3(p-OC<sub>6</sub>H<sub>4</sub>OH)<sub>6</sub> (2b)
- Figure S13. ORTEP of N<sub>3</sub>P<sub>3</sub>(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2e)
- Table S14. Positional Parameters of N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2e)
- Table S15. Selected Bond Distances (Å) and Bond Angles (deg) of N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2e)
- Table S16. General Thermal Parameters for N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)6
- Table S17. Structure Factor Tables for N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2e)
- Figure S18. ORTEP of N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2f)
- Table S19. Positional Parameters of N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2f)
- Table S20.Selected Bond Distances (Å) and Bond Angles (deg) for N3P3(p-OC6H4-OCH2C6H5)6(2f)
- Table S21. General Thermal Parameters for  $N_3P_3(p-OC_6H_4-OCH_2C_6H_5)_6$  (2f)
- Table S22. Structure Factor Tables for N3P3(p-OC<sub>6</sub>H<sub>4</sub>-OCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>6</sub> (2f)
- Table S23. ORTEP of  $N_4P_4(p-OC_6H_4-OC_6H_5)4$  (4a)
- Table S24. Positional Parameters of N4P4(p-OC<sub>6</sub>H<sub>4</sub>-OC<sub>6</sub>H<sub>5</sub>)4 (4a)

Table S25.Selected Bond Distances (Å) and Bond Angles (deg) of N4P4(p-OC6H4-OC6H5)4(4a)

۵

- Table S26.General Thermal Parameters for N4P4(p-OC6H4-OC6H5)4 (4a)
- Table S27. Structure Factor Tables for  $N_4P_4(p-OC_6H_4-OC_6H_5)_4$  (4a)
- Table S28. ORTEP of  $OP(p-OC_6H_4-Bu^t)_2NP(p-OC_6H_4-Bu^t)_3$  (6a)
- Table S29. Positional Parameters of OP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>2</sub>NP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>3</sub> (6a)
- Table S30. Selected Bond Distances (Å) and Bond Angles (deg) of OP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>2</sub>NP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>3</sub> (6a)
- Table S31. General Thermal Parameters for OP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>2</sub>NP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>3</sub> (6a)
- Table S32. Structure Factor Tables for OP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>2</sub>NP(p-OC<sub>6</sub>H<sub>4</sub>-Bu<sup>t</sup>)<sub>3</sub> (6a)

## **TECHNICAL REPORT DISTRIBUTION LIST - GENERAL**

## (For complete technical reports)

| Office of Naval Research<br>Physical Science S & T Division 331<br>800 North Quincy Street<br>Arlington, VA 22217-5660                  | (1)* | Dr. Richard W. Drisko<br>Naval Facilities & Engineering<br>Service Center<br>Code L52<br>Port Hueneme, CA 93043 | (1)                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|---------------------|
| Defense Technical Information Center                                                                                                    | (2)  |                                                                                                                 | <i>(</i> <b>-</b> ) |
| Alexandria, VA 22314                                                                                                                    |      | Dr. Eugene C. Fischer<br>Code 2840                                                                              | (1)                 |
| Dr. James S. Murday<br>Chemistry Division, Code 6100<br>Naval Research Laboratory                                                       | (1)  | Naval Surface Weapons Center<br>Carderock Division Detachment<br>Annapolis, MD 21402-1198                       |                     |
| Washington DC 20375-5342                                                                                                                | ,    | Dr. Bernard E. Douda<br>Crane Division                                                                          | (1)                 |
| Dr. John D. Fisher, Director<br>Chemistry Division 474220D<br>Naval Air Warfare Center<br>Weapons Division<br>China Lake, CA 93555-6001 | (1)  | Naval Surface Warfare Center<br>Crane, Indiana 47522-5000                                                       |                     |
| Dr. Peter Seligman<br>NCCOSC RDT&E DIV 521<br>53475 Strothe Rd.<br>San Diego, CA 92152-6325                                             | (1)  |                                                                                                                 |                     |

\* Number of copies to forward

Program Area:

"SYNTHESIS"

PROF. EDWARD SAMULSKI DEPARTMENT OF CHEMISTRY UNIVERSITY OF NORTH CAROLINA CHAPEL HILL, NC 27599-3290 DR. JEFFREY S. MOORE DEPARTMENT OF CHEMISTRY UNIVERSITY OF ILLINOIS URBANA, IL 61801-3364

DR. JAMES E. McGRATH DEPARTMENT OF CHEMISTRY VIRGINIA POLYTECHNIC INSTITUTE BLACKSBURG, VA 24061 DR. BRUCE M. NOVAK DEPARTMENT OF POLYMER SCIENCE AND ENGINEERING UNIVERSITY OF MASSACHUSETTS AMHERST MA 01003

DR. GUILLERMO C. BAZAN DEPARTMENT OF CHEMISTRY UNIVERSITY OF ROCHESTER ROCHESTER, NY 14727-0216 DR. ANDREW R. BARRON DEPARTMENT OF CHEMISTRY HARVARD UNIVERSITY CAMBRIDGE, MA 02138

DR. VIRGIL PERCEC DEPARTMENT OF MACROMOLECULAR SCIENCE CASE WESTERN RESERVE UNIVERSITY CLEVELAND, OH 44106-2699 DR. JEAN M. FRECHET DEPARTMENT OF CHEMISTRY CORNELL UNIVERSITY ITHACA, NY 14853

DR. MICHAEL F. RUBNER MATERIALS SCIENCE & ENG. DEPT. MASSACHUSETTS INST. OF TECH. CAMBRIDGE, MA 02139 DR. KRZYSZTOF MATYJASZEWSKI DEPARTMENT OF CHEMISTRY CARNEGIE-MELLON UNIVERSITY PITTSBURGH, PA 15213 DR. BRAJA K. MANDAL DEPARTMENT OF CHEMISTRY ILLINOIS INSTITUTE OF TECHNOLOGY CHICAGO, IL 60616

## DR. RICHARD R. SCHROCK DEPARTMENT OF CHEMISTRY, 6-331 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA 02139

DR. JOSEPH A. GORMAN DEPARTMENT OF CHEMISTRY NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27695-7514 PROF. ALAN G. MACDIARMID DEPARTMENT OF CHEMISTRY UNIVERSITY OF PENNSYLVANIA PHILADELPHIA PA 19104-6323

DR. GEOFFREY LINDSAY CHEMISTRY DIVISION - CODE 3858 NAVAL WEAPONS CENTER CHINA LAKE, CA 93555 PROF. RICHARD M. LAINE DEPT. OF MATERIALS SCIENCE & ENG. UNIVERSITY OF MICHIGAN ANN ARBOR MI 48105-2137

DR. JAMES M. TOUR DEPARTMENT OF CHEMISTRY UNIVERSITY OF SOUTH CAROLINA COLUMBIA, SC 29208 DR. I. I. HARRUNA DEPARTMENT OF CHEMISTRY MORRIS BROWN COLLEGE ATLANTA; GA 30314

DR. ROBERT H. GRUBBS DEPARTMENT OF CHEMISTRY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CA 91124 DR. ROBERT WEST DEPARTMENT OF CHEMISTRY UNIVERSITY OF WISCONSIN-MADISON MADISON WI 53706 DR. HARRY R. ALLCOCK DEPARTMENT OF CHEMISTRY PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802 DR. MICHAEL E. WRIGHT DEPARTMENT OF CHEMISTRY UTAH STATE UNIVERSITY LOGAN, UT 84322

DR. LUPING YU DEPARTMENT OF CHEMISTRY UNIVERSITY OF CHICAGO CHICAGO IL 60637