PL-TR-95-3034 Vol. 2 PL-TR-95-3034 Vol. 2

Advanced Polymer Components Volume 2

Dr. John Rusek

OLAC PL/RKS Phillips Laboratory Edwards AFB CA 93524

October 1995

Final Report

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

19960227 125

PHILLIPS LABORATORY Propulsion Directorate AIR FORCE MATERIEL COMMAND EDWARDS AIR FORCE BASE CA 93524-7001

من ت مسعد

FOREWORD

4

دي به

This in – house final report was prepared by OLAC PL/RKS, Edwards AFB CA, for Operating Location AC, Phillips Laboratory, Edwards AFB CA 93524–7001. Project Manager was Dr. John J. Rusek.

This report has been reviewed and is approved for release and distribution in accordance with the distribution statement on the cover and on the SF Form 298.

Dr. JOHN J. RUSEK Project Manager

RANNEY/G. ADAMS 95-1552 Public Affairs

SCOTT G. WIERSCHKE, Capt, USAF Deputy Director Propulsion Sciences Division

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved OMB No 0704-0188

	11	verge 1 hour per sera	nse, including the time for reviewing instructions
Public reporting burden for this collect searching existing data sources gather comments regarding this burden estin Washington Headquarters Services, Di	tion of information is estimated to a ring and maintaining the data need tate or any other aspect of this coll irrectorate for Information Operation	led, and completing and ection of information, in as and Reports, 1215 Jef duction Design (1740)	d reviewing the collection of information. Send actuding suggestions for reducing this burden to ferson Davis Highway, Suite 1204, Arlington, VA 138). Washington DC 20503.
22202-4302, and to the Office of Mana 1. AGENCY USE ONLY (LEAVE BL	agement and Budget, Paperwork Re ANK 2. REPORT DATE	3. REPC	DRT TYPE AND DATES COVERED
	October 1995	Final	Report
4. TITLE AND SUBTTILE			5. FUNDING NUMBERS
Advanced Polymer Co	omponents		C: In-House
Volume 2	•		PE:
			PR: 5730
			TA. 00P0
Dr. John Rusek			
	NANGE (C) AND ADDRESS(ES)		* PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATION	NAME(5) AND ADDRE35(E3)		REPORT NUMBER
OLAC PL/RKS			
Phillips Laboratory			
Edwards AFB CA 93524			
9. SPONSORING/MONITORING AG	GENCY NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
OT AC DI /DKS			
Dhilling Laboratory			
Edwards AFR CA 93524			PL-TR-95-3002
Edwards Arb CA 75524			
11. SUPPLEMENTARY NOTES			
COSATI CODE(S):			
12a. DISTRIBUTION/AVAILABILIT	Y STATEMENT		12b. DISTRIBUTION CODE
AND AND DOD NOT TO DET FASE. DISTRIBUTION IS UNI IMPTED			
APPROVED FOR FUBLIC R	ELEASE, DISTRIBUTION		1
13 ABSTRACT MAXIMIM 200 X	WORDS)		
	Common on to Initiative her	on in December 10	80 The initial nurnose of the program
The Advanced Polyme	er Components Initiative deg	can in December 15	components. As research progressed it
became apparent that advance	ed thermoplastics in general	were highly depend	dent on processing and post-processing
as well as on chemical compos	ition and morphology. This	realization led to a	branching of the original objective into
an applications research goa	l and a fundamental resea	rch goal. This ru	eport, coupled with PL-IR-92-3018,
PL-TR-92-3018 Vol. 2 and P	L-TR-92-3056, comprise a	summary of the e	entre Auvanceu Forymer Components
Initiative.			
14 SUBTROT TED 16			15. NUMBER OF PAGES
14, SUBJECT LERMS	al nolymers, hybrid roo	·ket: advanced 1	polymer
components, rocket propulsion, thermatronic resin		16. PRICE CODE	
components; rocker prop	and the motor of the	~===	
17. SECURITY CLASSIFICATION 18	SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	ATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	SAR
Unclassified	Unclassified	Unclassified	
	•		Standard Form 298 (Rev 2-89)
NSN 7540-010280-550	^U i/ii		Prescribed by ANSI Sta 239-18 298-102

TABLE OF CONTENTS Volume 1

Preface	1
Executive Summary	2
Glossary	4
Thermotropic Liquid Crystal Polymers J. Rusek, Phillips Laboratory, Edwards AFB	5
Mechanical Properties of Liquid Crystal Polymers J. Shelley, Phillips Laboratory, Edwards AFB	12
Property Transformation of Thermotropic Liquid Crystal Polymers J. Rusek, K. Chaffee, D. Silver, Phillips Laboratory, Edwards AFB	18
Polyester Synthesis and Analysis B. Lormand, Phillips Laboratory, Edwards AFB	30
1 Kilogram Synthesis of Poly 2-[phenylethyl] para-phenylene terephthalate/Post-synthesis Polymer Cleanup Procedures B. Lormand, Phillips Laboratory, Edwards AFB	48
On the Annealing Question in Liquid Crystal Polymer Systems: Surface and Near Surface Effects J. A. Mann, J. Rusek, Phillips Laboratory, Edwards AFB	53
Synchrotron Radiation Studies of Liquid Crystal Polymers R. W. Hoffman, Phillips Laboratory, Edwards AFB	97
Reduction and Analysis of Synchrotron Spectroscopic Data T. Reed, Phillips Laboratory, Edwards AFB	117
Preparations for Neutron Scattering Investigations of Liquid Crystal Polymers D. Elliot. Arkansas Tech University	129
Initial Irradiation of Liquid Crystal Polymers A. Weeks, McClellan AFB	147

TABLE OF CONTENTS Volume 1 cont.

. .

Hardness Test Results of Irradiated Plastic Samples J. Meininger, Advanced Composites	151
The Investigation of Thermotropic Liquid Crystalline Polymeric Fibers at the Micromechanics Level A. Palazotto, Wright Patterson AFB	156
Liquid Crystal Polymer's Suitability for MMH and NTO Turbopump Applications T. R. Hill, Phillips Laboratory, Edwards AFB	225
Volume 2	
Cryogenic Testing of Liquid Crystal Polymers J. Phillips, Phillips Laboratory, Edwards AFB	232
USAF Turbopump Plastics Testing: Oxygen Exposure H. D. Beeson, R. Shelley, NASA White Sands Test Facility	241
Tensile Testing of Liquid Crystal Polymers in Liquid Hydrogen T. J. Eisenreich, General Dynamics Space Systems Division	269
Tensile Testing of Liquid Crystal Polymers T. Reed, Phillips Laboratory, Edwards AFB	290
Injection Molded Rocket Motor Case C. L. Frank, USAF Advanced Composites Program Office	295
Hybrid Nozzle Demonstrator E. Schmidt, Phillips Laboratory, Edwards AFB	309
Test Data from the Firings of Two Stainless Steel and Two Liquid Crystal Polymer Case Motors A. Kenney, Phillips Laboratory, Edwards AFB	312
Further Testing of VECTRA 2 x 4 Motor Cases H. T. Nguyen, Phillips Laboratory, Edwards AFB	345
Development and Testing of Liquid Crystal Polymer Solid Rocket Motors T. R. Reed, Phillips Laboratory, Edwards AFB	363

TABLE OF CONTENTS Volume 2 cont.

Development and Testing of Liquid Crystal Polymer Solid Rocket Motors and Hydrostatic Testing of Liquid Crystal Polymer Rocket Motor Cases	381
T. R. Reed, Phillips Laboratory, Edwards AFB	
Charred Plastic Tube Specimen Microstructural Evaluation J. Meininger, Phillips Laboratory, Edwards AFB	392
Solid Rocket Propulsion Applications for Advanced Polymers J. Chew, J. Rusek, Phillips Laboratory, Edwards AFB	404
Propulsion Applications for Thermotropic Liquid Crystal Polymers J. Shelley, Phillips Laboratory, Edwards AFB	418
Design of a Blow Molded LCP Pressure Vessel and a Fiber Reinforced Pressure Vessel G. J. Price, Phillips Laboratory, Edwards AFB	421

RDL AFOSR Final Report

CRYOGENIC TESTING OF LIQUID CRYSTAL POLYMERS

Jason Phillips OLAC/RCC Phillips Laboratory As a high school student, the future of my chosen field is directly in my hands. What I, and thousands like me, do has a profound effect on the future of American science. With that in mind I chose to participate in an eight week summer apprenticeship at Phillips Lab, located at Edwards Air Force Base. This has resulted in a variety of different benefits that if used to their full potential could help me immensely in the near future.

Computers

My knowledge of computers drastically increased during my stay here. Before entering this program I was fairly proficient with most Apple computers and I could meander through most of the other standard personal computers (PCs). Now I am fully competent with a Macintosh and have a working knowledge of other systems.

In the everyday world people see PCs as little more than high powered type-writers. At Phillips Laboratory I learned to see computers as an advanced all-purpose tool. A tool so powerful it can do things thousands of miles away. It's this mode of thinking that separates your average PC user from the professional.

College Application

Not all that I learned was expected. I found a surprising number of engineers had recently gone back to college for one reason or another and their advice will hopefully prove to be very helpful. The college co-ops also working here for the summer have proven to be invaluable. They possess knowledge of the college experience from the

eyes of someone closer to my own age. The information they imparted to me was found to be both interesting and helpful.

Engineering

Engineering, especially the actual development of working pieces, is a team effort. Learning this was probably the most important part of my apprenticeship. Engineers are not the only vital link in the scientific work force. Mechanics, secretaries, draftsmen and other support personnel are just as vital to scientific research.

Scientific Research

The main goal of my summer was to engage in actual, worthwhile scientific research. I worked on a project that involved work on Liquid Crystal Polymers (LCPs). LCPs look promising for future aerospace applications. They are light weight, have a high strength to weight ratio at room temperature, and should possess an even greater strength in cold environments.

LCPs are very structured on a molecular level, much like crystals (hence the name liquid crystal polymer). Due to the nature of the molecular bonding, the outer layer of cells (referred to as the skin of the LCP from here) is much stronger than the rest of the material. This layer of skin is responsible for the high strength to weight ratio mentioned above.

These LCPs are to be tested for application in a cryogenic turbopump. A cryogenic material is simply an extremely cold liquid gas,

Liquid Crystal Polymer 2X4 Perspectives

Cross Sectional View:

Front View

examples of which are; liquid nitrogen (which liquefies at approximately -194° Celsius) and liquid oxygen (approximately -183° C). The ideal material would be extremely strong and light, yet capable of withstanding these cryogenic temperatures. Other factors like compatibility with cryogenic propellants must be taken into account.

The actual testing consists of exposing various LCPs to high pressures. The idea being; to dtermine which polymer will be able to withstand the necessary pressures for operation inside a turbopump. The LCP will be tested in a specially designed test rig (See Diagram #1). The test rig is made of stainless steel. The stainless steel is of the 300 series, which is noted for its lack of embrittlement in cryogenic temperatures.

The test specimens will be injection molded into hollow right cylindrical shapes (see Diagram #2). Due to the nature of the injection molding process all the LCPs specimens will have a slight 1.15° taper. The specimens will be placed onto a specially designed test rig.

The test rig consists primarily of two end caps (see Diagram #3). These end caps go both above and below the LCP. The LCP will be fitted around the inner flange of the test rig end cap. The pressure will be retained via a pressure seal also placed around the flange. The entire structure will be held together by a set of 6 bolts, that run from one end cap to the other. The testing will utilize an on-site pressurization facility to pressurize the LCP case, using gaseous helium. The test-rig has been equipped with an inlet pressurization line and a

Diagram #3

<u>Test Rig Endcap</u>

ventline. The whole device will then be placed inside a stainless steel box. This is done in order to contain both the exploding LCP specimen and the cryogenic fluid.

During the cryogenic testing the LCP will be pre-pressurized to 300 PSIG before the test rig is submerged in the cryogens. This prepressurization stage will assure that the seals seat properly. Also thermocouples will be installed in order to determine when the 2X4 casing has reached thermal equilibrium.

After reaching equilibrium, the pressure inside the polymer casing will be increased until the material ruptures. Testing will be done in both ambient and cryogenic environments. The cryogenic fluid will be liquid nitrogen. In this environment the LCP is expected to be significantly stronger. The maximum pressure is expected to 2000 psi, with possibilities for higher pressures should the LCP prove to be stronger than expected. The hardware is rated to 4000 psi.

A pressure transducer will be part of necessary instrumentation. A second transducer will also be in place to back-up in case of failure. The transducers will be placed upstream of the 2X4 LCP casing. All thermocouple data will be taken by two thermocouples located at one end of the test rig. The will be ported through a "T" connector (also known as an inlet/thermocouple manifold) allowing direct access to the 2X4 case. The pressure inlet and the ventline outlet will both use the other "T" port (see Diagram #4). Data acquisition will be taken to provide 100 samples a second.

....

J

USAF TURBOPUMP PLASTICS TESTING; OXYGEN EXPOSURE

Harold D. Beeson Richard Shelley NASA-White Sands Test Facility

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

1.0 TEST MATERIALS

Vectra A950 (ivory color), DuPont HX400 (green-brown), and Xydar RC210 (beige)

Additional Information

These test materials are all liquid crystal polymers (LCP), which are described further in Appendix B. The three materials were ranked according to the results of the testing, and were also compared with Teflon polytetrafluoroethylene (PTFE) for reference, as the behavior of Teflon PTFE in oxygen environments is well-documented.

Required dimensions for the test samples were supplied by White Sands Test Facility (WSTF); molding and sample preparation were performed by Edwards Air Force Base.

2.0 TEST DOCUMENTS

JSC Form 2035 and Special Instructions (Appendix A), NASA Handbook NHB 8060.1B, and the ASTM Annual Book of Standards, 1986

3.0 TEST APPARATUS

The mechanical impact test apparatus is shown in Figure 1. The samples are placed in the cup assembly, then the electromagnet releases the plummet assembly to impact the sample. The test atmosphere is liquid oxygen (LOX). This test examines the effects of high-impact ignition sources on a material in LOX.

The Fourier Transform Infrared (FTIR) tube furnace and Differential Scanning Calorimeter (DSC)/light pipe assembly are shown in Figures 2 and 3. To use the FTIR tube furnace, the sample is placed inside the tube furnace. Oxygen is flowed over the sample, then analyzed with a Fourier Transform Infrared (FTIR) spectrometer for gaseous emissions. The DSC/light pipe assembly is a silicon photodiode attached via a light pipe to a DSC chamber. To use the DSC/light pipe assembly, the sample is placed inside the chamber, and the temperature is raised slowly until the sample ignites. The silicon photodiode then detects radiative flame emissions from the sample. Both tests examine the effect of temperature on the ignition properties of materials. The purpose is to determine at what temperature gaseous emissions, ignition, or other events occur.

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

Figure 4 shows a promoted combustion chamber similar to the one used in this testing. The promoted combustion test apparatus provides a known volume and atmosphere for a combustion test. It consists of a chamber in which the sample is placed in a sample holder. An igniter is then placed at the top of the sample. This test examines the combustion properties of materials in oxygen.

4.0 TEST APPROACH

Three types of test were conducted: mechanical impact, autoignition temperature testing, and promoted combustion testing.

4.1 MECHANICAL IMPACT TESTING

Mechanical impact testing was performed according to NHB 8060.1B, Test 13A, and ASTM D2512. The samples were 1.75-cm-diameter, 0.15-cmthick disks. A test consisted of 20 open-cup, ambient-pressure impacts of 98 J in liquid oxygen (LOX). A reaction was considered to have occurred when a flash, an audible report, or sample charring occurred.

4.2 AUTOIGNITION TEMPERATURE TESTING

Autoignition temperature testing is defined as the temperature at which the sample will spontaneously ignite. Autoignition testing was performed with the FTIR tube furnace apparatus and with the Differential Scanning Calorimeter (DSC)/light pipe apparatus; both tests were in gaseous oxygen (GOX). The testing performed with the FTIR tube furnace was recorded on video.

The FTIR apparatus gave autoignition temperature (AIT) at ambient pressure, precombustion gases, and gases given off during and after combustion.

The DSC apparatus gave ignition temperatures. The light pipe measured AIT light emission at ambient pressure. The DSC was operated at a heating rate of 10 °C per minute in a GOX environment (150 gccm).

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

4.3 PROMOTED COMBUSTION TESTING

The method used for the promoted combustion testing was similar to that used for promoted combustion of metals.¹ The differences were that oxygen pressures were lower in this testing, propagation of the burn was downward, and the chamber had a capacity of 120 liters and was designed for low-pressure (up to 120 kPa). The size of the chamber was such that sufficient oxygen was available for complete combustion of the sample at the lowest test pressure. The oxygen pressure range used in this testing was 2.1 kPa to 120 kPa. The promotor was nichrome wire, placed at the top of the sample for downward flame propagation in GOX. The promotor was heated by an electrical current providing a constant source of energy. Samples were 0.32-cm-diameter, 7.62-cm-long rods. Sample burning was recorded through a chamber view port by video.

5.0 TEST RESULTS

Results of mechanical impact, autoignition temperature (both with the FTIR tube furnace and the DSC/light pipe), and promoted combustion testing follow. The materials are listed in the tables according to their ranking; the ones ranking best are listed first.

5.1 MECHANICAL IMPACT TESTING

Table 1 shows the results of the mechanical impact testing.

Steinberg, T. A., M. A. Rucker, and H. D. Beeson. "Promoted Combustion of Nine Structural Metals in High Pressure Gaseous Oxygen: A Comparison of Ranking Methods." <u>Flammability and Sensitivity of Materials in</u> <u>Oxygen-Enriched Atmospheres: Fourth Volume, ASTM STP 1040</u>, Edited by J. M. Stoltzfus, F. J. Benz, and J. S. Stradling, American Society for Testing and Materials, Philadelphia, 1989, pp. 54-75.

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

WSTF # 91-24845 to 47 October 10, 1991

Table 1. Reactions in 20 Tests

MATERIAL	REACTIONS	
Vectra A950	3	
DuPont HX400	18	
Xydar RC210	19	

5.2 AUTOIGNITION TEMPERATURE TESTING

The results of the FTIR Tube Furnace testing are shown in Table 2. The tests were recorded on Video 715A.

None of the three materials showed ignition with the DSC/light pipe, but large exotherms were detected for each. Exotherm values (not AIT values) for each material are in Table 3.

An endotherm was exhibited by DuPont HX400 with a peak at 306 °C; this may correspond to melting. Figures 5, 6, and 7 show DSC test results. The samples were tested up to 600 °C in the DSC/light pipe, but the traces were cut off at the point after which the data remained constant, typically between 450 and 500 °C.

MATERIAL	AIT °C	CO ₂ EMISSION TEMP °C	GASEOUS EMISSION TYPES
Xydar RC210	542	305	CO ₂ , CO, H ₂ O, aromatic hydrocarbons, and esters
Vectra A950	540	320	CO ₂ , CO, aromatic hydrocarbons and esters
DuPont HX400	505	275	CO ₂ , CO, aromatic hydrocarbons and esters

Table 2. Results of FTIR Tube Furnace Testing

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

Table 3. Results of DSC/Light Pipe Testing

Material	Exotherm Temperature °C	
Vectra A950	. 473	
Xydar RC210	470	
DuPont HX400	370	

5.3 PROMOTED COMBUSTION TESTING

The tests were recorded on Video 10430A. The threshold pressure is defined here as the pressure above which the sample will burn. A burn was considered sustained combustion of at least 5.1 cm of the sample, which allowed for combustion beyond igniter effects and before heat sinking effects from the sample holder. Burn rates were also calculated as the rate of propagation of the flame front.

Threshold pressures for the Xydar RC210, Vectra A950, and DuPont HX400 were 8.3 kPa, 6.6 kPa, and 3.5 kPa respectively. Threshold pressures are indicated in Figure 8. Burn rate comparisons are given in Figure 9. Teflon PTFE had a threshold pressure of 110 kPa (reported here for comparison purposes). Teflon PTFE burned at a much slower rate (0.014 cm/sec at 110 kPa), and is not shown on the comparison.

6. 0 DISCUSSION

A material is considered more suitable for use in oxygen if it shows fewer reactions when tested by mechanical impact, has a higher AIT, and has a higher threshold pressure and a lower burn rate.²

Another important consideration when determining the suitability of polymers for oxygen service is the degradation products. Polymers with non-oxidizable products tend to be surface burners, as shown in the promoted combustion video of Teflon PTFE; the significance of this is

² "Standard Guide for Evaluating Nonmetallic Materials for Oxygen Service." ASTM G63, American Society for Testing Materials, Philadelphia, 1983.

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

that surface burners tend to burn with lower flame temperatures as calculated by the Gordon-McBride computer program.³ Materials with lower flame temperatures are less likely to ignite surrounding materials. CO₂ emission temperature is an indication of when degradation products of the polymer begin evolving; the lower this temperature is, the more likely the polymer is to ignite.

Vectra A950 had the least number of mechanical impact reactions of the three tested materials. Both DuPont HX400 and Xydar RC210 showed high susceptibilities to reactions by mechanical impact. Teflon PTFE usually shows no reactions under the given mechanical impact test conditions.⁴

All three materials had high AIT values. Vectra A950 and Xydar RC210 had similar AIT values, higher than that for Teflon PTFE (525 °C).⁵ The DuPont HX400 had a lower AIT than the Teflon PTFE.

The exotherm values from DSC testing showed similar trends to the AIT temperatures from the FTIR tube furnace testing. The DSC testing also showed that DuPont HX400 undergoes an endotherm at around 275 °C; it may have been melting.

Gaseous emissions from the test materials were CO_2 , CO, aromatic hydrocarbons, and esters (H₂O was also emitted from Xydar RC210). The

- ⁴ Moffett, G. E., N. E. Schmidt, M. D. Pedley, and L. J. Linley. "An Evaluation of the Liquid Oxygen Mechanical Impact Test." <u>Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres:</u> <u>Fourth Volume, ASTM STP 1040</u>, Edited by J. M. Stoltzfus, F. J. Benz, and J. S. Stradling, American Society for Testing and Materials, Philadelphia, 1989.
- ⁵ Tapphorn, R. M., R. Shelley, and F. J. Benz. "Test Developments for Polymers in Oxygen-Enriched Environments." <u>Flammability and Sensitivity</u> <u>of Materials in Oxygen-Enriched Atmospheres: Fifth Volume, ASTM STP</u> <u>1111</u>, Edited by J. M. Stoltzfus and K. McIlroy, American Society for Testing and Materials, Philadelphia, 1991.

³ Gordon, S., and B. J. McBride. "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations." NASA SP-273, National Aeronautics and Space Administrations, Washington, DC, 1971.

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

aromatic groups can be considered as oxidizable fuel. Other products given off by Teflon PTFE are CO, COF_2 , and CF_4 ; these products are not easily oxidizable.⁵ The test materials producing oxidizable groups were gaseous burners and burned with flames (also shown in the promoted combustion video).

Vectra A950 was most similar to Teflon PTFE in that the CO_2 emission temperature was high; emission of CO_2 from Teflon PTFE is usually observed between 350 and 400 °C.

All three polymers had low threshold pressures compared with that of Teflon PTFE. Vectra A950 had the lowest burning rate of the three materials in the pressure range tested, but its burning rate values were much higher than those of Teflon PTFE.

Vectra A950 had the overall best properties. It ranked best in all the tests except autoignition temperature testing, where it was about the same as Xydar RC210. DuPont HX400 ranked the overall poorest of the three materials.

⁵ Tapphorn, R. M., R. Shelley, and F. J. Benz. "Test Developments for Polymers in Oxygen-Enriched Environments." <u>Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fifth Volume, ASTM STP 1111, Edited by J. M. Stoltzfus and K. McIlroy, American Society for Testing and Materials, Philadelphia, 1991.</u>

249 :

Figure 2. FIIR Tube Furnace

Figure 4. Promoted Combustion Test Apparatus

(cert fransfer Rate (mCal/sec)

Burn Rate (cm/sec)

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

Prepared by:

Richard Richard Shelley Lockheed-ESC

Reviewed by:

Harold Beeson NASA

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

APPENDIX A

JSC Form 2035 A-1

Special Instructions A-4
		······································	
	NASA JSC TEST DEOLLES	T	OFFICE USE ONLY
NOTE TO TEST FACILITY: A COPY OF	THIS REQUEST SHOULD BE I	I PETHENED WITH THE TEST	91-24845
NAME	ORGANIZATION	Chiokheo with the test	REFORT.
Harold Beegon / Pichard Shol			COURDINATOR
Million Deeson/Richard Sher	Tey NASA/LESC		HB
ADDRESS Building 200			REQUEST NO.
NASA/JSC/WSTF			WSIT
P.O. Drawer MM, Las	Cruces, NM 88004		TESTWSTALLTY
	-		
DATE March 27, 1991	505-524-568	7	CODE
1. MANUFACTURER'S IDENTIFICATION	2. MANUFA	CTURER'S NAME	
(ITEM DESCRIPTION)	Hoech	st Celanese	
Vectra A950 (Ivory color)			·
2			
80 mech imp discr	Tignid Common D	5. GENERIC US	
80 promian rods	Induid Crystal H	olymer Oxygen te	sting
6. CHECK CATEGORY NHBB060.1	7. TEST REDUIRED NH	88060 1	
8. VEHICLE 9. PART NUMBER	& SERIAL NO.	10. PROJECT	11. USE TEMPERATURE
N/A N/A		Plastics Turbo	N/A
:		Pump-USAF	
12. USE ATMOSPHERE/FLUID N/A	13. IGNITER TYPE	14. USE PRESSURE	15. USE THICKNESS
N/A	N/A	N/A	N/A
16. INTENDED APPLICATION		CANTER IN GERLEAR A	
Test material for oxygen to	esting	N/A	REA/HAZARDOOS FEOTD/VALUUM
	2		
18. DURE TIME	19. CURE TEMPERATURE	20. CURE PF	RESSURE
N/A	N/A	N/A	
N/AT AFTICLE 20. TEST ARTIC	LE AREA 23. NUMBER ITEM:	S TESTED 24. NUMBER	ITEMS TO BE FLOWN
N/A . N/A	N/A	N/A	
OF TEST OF MAER . 36 TEST OF AM	5- 107 FEET CHINES		
VOLUME ATMOSPHERE	ER ZZILESI LHAMBE	R FREDDURE [20. TEST C	HAMBER TEMPERATURE
N/A N/A	N/A	N/A	
29. TEST DHAMBER 30. DLEANING S	PEC 31. MATE DODE	32. Рнотоб	RAPHIC, COVERAGE
Ν/Α Ν/Δ	N/A		
		VHS-V	CR LISTILLS LINUNE
33. SPECHAL KNSTRUCTIONS			

1. Perform mechanical impact testing per NHB 8060.1B, Test 13A.

2. Perform autoignition temperature testing in GOX.

...

3. Perform promoted combustion testing in GOX at threshold pressure and burn rate.

					OFFICE USE ONLY
1	ASA JSC	TEST REQUEST			TEST FACILITY I.D. NUMBER 91-24846
NOTE TO TEST FACILITY: A COPY OF	THIS REQUE	ST SHOULD RE RETU	RNED WIT	H THE TEST REPO	DRT.
NAME		ORGANIZATION			
Harold Beeson/Richard Shell	ey	NASA/LESC			COURTINATOR
ADDRESS Building 200		<u></u>		den de la den de la dense d	REQUEST NO.
NASA/JSC/WSTF P.O. Drawer MM, Las C	ruces, N	M 88004			TESTWEATELITY
DATE March 27, 1991	PHONE	505-524-5687	<u> </u>		CODE
1. MANUFACTURER'S IDENTIFICATION	1	2. MANUFACTU	RER'S NA	ME	~~~~
(The Description)		Du Ponc			
Dupont Hx400 (green-prown)					
3 SPECIFICATION	4. CHEM	AICAL CLASS	5.	GENERIC USE	
80 mech. imp. discs	Liou	id Crystal Poly	mer	Oxygen testi	ng
80 prom ign. rods					5
6. CHECK CATEGORY NHBB060.1	7. TEST	T REQUIRED NHB80	60.1		
					3 14 15 16 VCH TOCH SPECIAL
8. VEHICLE 9. PART NUMBER	& SERIAL A	NO.	10. PRO.	JECT	11. USE TEMPERATURE
N/A N/A			Plasti Pum	.cs Turbo 1p-USAF	N/A
12. LSE ATMOSPHERE/FLUID	13. IGN1	TER TYPE	14. USE	PRESSURE 15.	USE THICKNESS
N/A	N/A		N	I/A	N/A
16. INTENDED APPLICATION Test material for oxygen te	sting	17. OUAN	TITY IN I N/A	HABITABLE AREA/	HAZARDOUS FLUID/VACUUM
18. CURE TIME N/A	19. CURE N/A	TEMPERATURE		20. CURE PRESS N/A	URE
21. TEST ARTICLE 22. TEST ARTICL N/AT. N/A	E AREA 2	3. NUMBER ITEMS T N/A	ESTED	24. NUMBER IT N/A	EMS TO BE FLOWN
25. TEST CHAMBER 26. TEST CHAMBER ATMOSPHERE	ER 2	7. TEST CHAMBER P	RESSURE	28. TEST CHAM	BER TEMPERATURE
N/A N/A		N/A		N/A	
29. TEST CHAMBER 30. CLEANING SP	EC 3	1. MATL CODE		32. PHOTOGRAPH	HIC. COVERAGE
N/A N/A		N/A		VIDEO VHS-VCR	STILLS NONE

33. SPECIAL INSTRUCTIONS

1. Perform mechanical impact testing per NHB 8060.1B, Test 13A.

2. Perform autoignition temperature testing in GOX.

3. Perform promoted combustion testing in GOX at threshold pressure and burn rate.

						OFFICE USE ONLY
	NA	SA JSC '	TEST REQUEST			TEST FACILITY I.D. NUMBER 91-24847
NOTE TO TEST FACIL	ITY: A COPY OF TH	IS REQUES	ST SHOULD RE RE	TURNED WIT	H THE TEST REP	ORT.
VANE			URGANIZATION			C000001111700
Harold Beeson,	Richard Shelle	¥Y	NASA/LESC			HBATOR
ADDRESS Building	g 200					RECLEST NO.
NASA/JSC	C/WSTF					TEST EVOLUTY
P.O. Dra	awer MM, Las Cr	ruces, N	M 88004			WSIF
DATE March 27,	1991	PHONE	505-524-5687	7	••••••••••••••••••••••••••••••••••••••	CODE
1. MANUFACTURER'S I	DENTIFICATION		2. MANUFAC	TURER'S NA	ME	
Vinier Deserie 10			Amsco			
Xydar Ru210 (I	peige)					
3. SPECIFICATION		4. CHEM	ICAL CLASS	5	. GENERIC USE	a na
80 mech. imp.	discs	Liqu	id Crystal Po	olymer	Oxygen test:	ing
80 prom ign. s	samples		_			
6. CHECK CATEGORY	NH88060.1	7. TEST	REQUIRED NHB	8060.1		
						X 3 T4 T5 T6 VCH TQCH SPECIAL
8. VEHICLE	9. PART NUMBER &	SERIAL N	0.	10. PRO.	JECT	11. USE TEMPERATURE
N/A	N/A			Plast Pu	ics Turbo mp-USAF	N/A
12. USE ATMOSPHERE/	FLUID	13. IGN1	TER TYPE	14. USE	PRESSURE 15.	USE THICKNESS
N/A		N/A			N/A	N/A
16. INTENDED APPLIC	CATION		17.00	ANTITY IN	HABITABLE AREA	HAZARDOUS FLUID/VACUUM
Test material	for oxygen tes	sting		N/A		
18. CURE TIME	1	9. CURE T	EMPERATURE		20. CURE PRESS	SURE
N/A		N/A			N/A	
21. TEST ARTICLE	122. TEST ARTICLE	AREA 123	. NUMBER ITEMS	TESTED	24. NUMBER IT	EMS TO BE FLOWN
N/A	N/A		N/A		N/A	
25. TEST CHAMBER VOLUME	26. TEST CHAMBER ATMOSPHERE	27	7. TEST CHAMBER	PRESSURE	28. TEST CHAM	BEA IENAEATIAE
N/A	N/A		N/A		N/A	
19. TEST CHAMBER	30. CLEANING SPE	c 31	. MATE CODE	·····	32. PHOTOGRAF	HTC. COVERAGE
N/A	N/A		N/A		VIDED VHS-VCR	STILLS NONE
33. SPECHAL INSTRU	CTIONS					

1. Perform mechanical impact testing per NHB 8060.1B, Test 13A.

2. Perform autoignition temperature testing in GOX.

3. Perform promoted combustion testing in GOX at threshold pressure and burn rate.

Page 2 WSTF # 91-24845 WSTF

AUTHORIZATIONS, SPECIAL INSTRUCTIONS, AND NOTES

FROM	DATE	INSTRUCTIONS
Richard Shelley, WSTF	04/03/91	Perform 20 impacts in ambient LOX at 72 ft-1b regardless of the number of reactions detected.
WSTF		The samples have casting marks on one side.
Richard Shelley, WSTF	04/10/91	Impact the unmarked side.
WSTF		The results of testing will be reported in a Special Test Data Report under this WSTF Number.

Page 2 WSTF # 91-24846 WSTF

AUTHORIZATIONS, SPECIAL INSTRUCTIONS, AND NOTES

FROM	DATE	INSTRUCTIONS
Richard WSTF	Shelley, 04/02/91	Perform 20 impacts in ambient LOX at 72 ft-lb regardless of the number of reactions detected.
WSTF		The samples have casting marks on one side.
Richard WSTF	Shelley, 04/10/91	Impact the unmarked side. Perform an impact on a blank disc after every fifth reaction rather than after each reaction.
WSTF		The results of testing will be reported in a Special Test Data Report under this WSTF Number.

Page 2 WSTF # 91-24847 WSTF

AUTHORIZATIONS, SPECIAL INSTRUCTIONS, AND NOTES

FROM	DATE	INSTRUCTIONS
Richard Shelley, WSTF	04/03/91	Perform 20 impacts in ambient LOX at 72 ft-lb regardless of the number of reactions detected.
WSTF		The samples have casting marks on one side.
Richard Shelley, WSTF	04/10/91	Impact the unmarked side. Perform an impact on a blank disc after every fifth reaction rather than after each reaction.
WSTF		The results of testing will be reported in a Special Test Data Report under this WSTF Number.

NASA WHITE SANDS TEST FACILITY

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

APPENDIX B

LIQUID CRYSTAL POLYMERS

NASA WHITE SANDS TEST FACILITY

USAF TURBO PUMP PLASTICS TESTING SPECIAL TEST DATA REPORT

> WSTF # 91-24845 to 47 October 10, 1991

LIQUID CRYSTAL POLYMERS

Liquid Crystal Polymers (LCP) are rigid, rod-like polymers that exhibit the behavior of liquid crystals in the melt. The chains are so rigid that the interchain entanglement is minimal, and thus melts have a low viscosity. On cooling, the rods easily orient and produce a self-reinforcing polymer structure.

Predominant LCP components are p-benzene rings. For liquid crystal polyesters, the basic structural units are derived from materials such as p-hydroxybenzoic acid, terephthalic acid, and hydroquinone. To process the polymer more easily, some methods are used to adjust the chain chemistry. Vectra (Celanese) is reported to be based on p-hydroxybenzoic acid and hydroxynaphthoic acid monomers. Xydar is based on terephthalic acid, p-hydroxybenzoic acid, and pp'-dihydroxybiphenyl.

LCPs have high continuous use and heat distortion temperatures, low-smoke emission, low coefficient of thermal expansion, low water absorption, and excellent mechanical and impact properties.

LCPs are noted to have limiting oxygen index values in the 35 to 50 range. They generally suffer poor abrasion resistance.

Specific gravities of the test materials are given in the following table.

MATERIAL	SPECIFIC GRAVITY
Vectra A950	1.39
DuPont HX400	1.31
Xydar RC210	1.57

Test Materials' Specific Gravities

TENSILE TESTING OF LIQUID CRYSTAL POLYMERS IN LIQUID HYDROGEN

T. J. Eisenreich General Dynamics Space Systems Division General Dynamics Space Systems Division (GDSS) received fifteen (15) Liquid Crystal Polymer molded tensile specimens from Phillips Laboratory for liquid hydrogen testing.

The specimens were instrumented by GDSS with SK-13-125BB-350 axial strain gages bonded back-to-back with M-Bond 600 adhesive cured for two hours at 200°F. All tensile specimens except the DuPont HX 4000 coupons were tabbed with 2024-T3 aluminum alloy doublers bonded using EA 9330 paste adhesive cured for two hours at 180°F. The DuPont HX 4000 tensile specimens were tested in the as-received condition.

The specimens were tested on the 20,000 lb capacity MTS servo-hydraulic test machine at a crossheat travel rate of 0.05 inch per minute. The specimens were completely immersed in liquid hydrogen during loading. Load and strain data were recorded at one second intervals on an Orion/Macintosh Data Acquisition System to failure.

Table 1 lists the individual specimen test results generated on this program. Figure 1 is a schematic of the molded Liquid Crystal Polymer tensile specimen used in this program. This drawing also indicates the regions in which failure occurred as reported in Table 1. Figure 2 compares the average liquid hydrogen tensile strength and modulus generated of the various Liquid Crystal Polymers. There was a large scatter in the tensile strengths generated in liquid hydrogen. This scatter may be due in part to the method of processing (molding) of the tensile specimens. Modulii values showed less scatter than the tensile strengths with all values determined between 1000 and 3000 microstrain. Failure strain was determined by dividing the tensile strength by modulus.

The ultimate tensile strength of the XY DAR SRT-500 longitudinal specimens were not obtained. The values recorded in Table 1 and the values plotted in Figure 2 were based on the maximum load that occurred. Specimen I1 and I2 were initially tested without doublers. I1 slipped at an approximate load of 850 lb. At approximately 1100 lb the outer layer of Specimen I2 "peeled" from the specimen. The decision was made to tab the specimens with Aluminum doublers. The maximum loads were obtained using doublers but failures occurred between the adhesive and the specimen.

The average tensile strength and modulus of the Vectra A950 system was 62% greater in the longitudinal direction than in the transverse direction. The modulus generated on the XY DAR SRT 500 material was 30% stiffer than its closest competitor RC-210 and 70% greater than Vectra A950 Longitudinal property. The average tensile strength of XY DAR is at a minimum 18% higher in liquid hydrogen than RC-210 and 45% greater than DuPont HX 4000.

Plotted in Figures 3 through 17 are the stress-strain curves generated for the various Liquid Crystal Polymer systems. Shown in Figures 3 and 4 are the stress-strain charts for the Vectra A950 transverse specimens F1 and F2. These curves show a divergence of the strain from gages located back-to-back. Examination of these specimens shows layered material which may be of different densities. Specimen F3 failed prematurely in a large void located across both layers. The failures of specimens F1 and F2 seem to have started in one of the layers as apposed to starting at an edge.

Figures 10, 11, and 12 are stress-strain curves of the Vectra A950 longitudinal tensile specimens. All three charts indicate a "knee" in the curve. The "knee" is more pronounced in specimens H1 and H2 than H4. The failed specimens do not shed any light as to the reason for this abrupt change in stiffness.

TJE/kar:8560-92-006 06 February 92 Page 3 of 21

Table 1. Liquid Hydrogen Tensile Test Results on Liquid Crystal Polymers.

				Ultimate	Ultimate		Failure	
	Specimen	Width	Thickness	Load	Strength	Modulus	Strain	Failure
Material	I.D.	(in)	(in)	(Ib)	(ksi)	(msi)	(ne)	Location
					1			
Vectra A950	HI	0.5495	0.1231	1379	20.39	2.30	8864	III
Longitudinal	H2	0.5505	0.1232	1507	22.22	2.05	10839	I
	H4	0.5509	0.1285	1332	18.82	2.70	6969	I
	Avg	0.5503	0.1249	1406	20.47	2.35	8891	
	Std. Dev.	0.0007	0.0031	91	1.70	0.33	1935	
	COV	0.13%	2.47%	6.44%	8.32%	13.95%	21.77%	
Vectra A950	FI	0.5631	0.1210	553	8.12	0.85	9549	III
Transverse	F2	0.5690	0.1206	653	9.52	0.95	10017	III
	F3	0.5790	0.1216	377	5.35	0.82	6530	III
	Avg	0.5704	0.1211	528	7.66	0.87	8698	
	Std. Dev.	0.0080	0.0005	140	2.12	0.07	1892	
	COV	1.41%	0.42%	26.48%	27.64%	7.79%	21.76%	
Ē	Ç			ç		C t		
Duront	70	1000.0	0.1200	400	12.42	2.13	4248	111
HX 4000	ß	0.5690	0.1191	952	14.05	3.23	4349	III
Longitudinal	G4	0.5476	0.1193	1103	16.88	3.55	4756	I
	Avg	0.5599	0.1195	965	14.45	3.17	4551	
	Std. Dev.	0.0111	0.0005	132	2.26	0.41	203	
	COV	1.97%	0.40%	13.73%	15.65%	13.04%	4.47%	

TJE/kar:8560-92-006 06 February 92 Page 4 of 21

Table 1. Liquid Hydrogen Tensile Test Results on Liquid Crystal Polymers.

Material Specimen Width Thickness Load Strength Modulus Strain Fail Material I.D. (in)					Ultimate	Ultimate		Failure	
Material I.D. (in)		Specimen	Width	Thickness	Load	Strength	Modulus	Strain	Failure
XY DAR I1 0.5494 0.1201 1798 27.25 8.11 3360 * SRT-500 I2 0.5497 0.1185 1894 29.13 8.25 3531 * SRT-500 I2 0.5497 0.1185 1894 29.13 8.25 3531 * Longitudinal I3 0.5491 0.1192 1727 26.38 8.48 2686 * Avg 0.5491 0.1192 1727 26.38 8.28 3192 Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.22% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 1239 18.04 5.42 3329 11 Longitudinal J4 0.5512 0.1234 1665 22.44 5.95 3329 11 Longitudinal J4 0.5514 0.1234 1665 22.42 3329	Material	I.D.	(in)	(in)	(Ib)	(ksi)	(msi)	(ue)	Location
XY DAR I1 0.5494 0.1201 1798 27.25 8.11 3360 * SRT-500 12 0.5487 0.1185 1894 29.13 8.25 3531 * SRT-500 12 0.5493 0.1191 1490 29.13 8.25 3531 * Longitudinal 13 0.5491 0.1192 1727 26.38 8.28 3392 Avg 0.5491 0.1192 1727 26.38 8.28 3192 Std.Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.22% 12.37% 2.26% 1400% RC-210 13 0.5512 0.1241 12.32% 12.37% 2.26% 1400% Jcongitudinal 14 0.5512 0.1241 12.32% 2.26% 1400% Jcongitudinal 14 0.5512 0.1234 1655 2.448 5.93 4033 11 Jc									
SRT-500 12 0.5487 0.1185 1894 29.13 8.25 3531 * Longitudinal 13 0.5493 0.1191 1490 22.78 8.48 2666 * Avg 0.5491 0.1191 1490 22.78 8.48 2686 * Avg 0.5491 0.1192 1727 26.38 8.28 3192 Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.22% 12.37% 2.26% 14.00% RC-210 13 0.5533 0.1241 12.39 18.04 5.42 3329 11 RC-210 13 0.5512 0.1234 1665 24.48 5.98 4093 11 RC-210 14 0.5512 0.1234 1665 24.48 5.98 4093 11 Kc-210 14 0.5512 0.1234 1665 24.48 5.98 4093 11	XY DAR	II	0.5494	0.1201	1798	27.25	8.11	3360	*
Longitudinal 13 0.5493 0.1191 1490 22.78 8.48 2686 * Avg 0.5491 0.1192 1727 26.38 8.48 2686 * Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 Std. Dev. 0.007% 0.68% 12.22% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.22% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.22% 12.37% 2.26% 14.00% Inductional J4 0.07% 0.68% 12.22% 12.37% 2.329 HI RC-210 J3 0.5533 0.1241 12.37% 2.26% 14.00% RC-210 J4 0.5533 0.1241 12.39% 18.04 5.42 3329 HI Kongitudinal J6 0.5514 0.1234 1547 22.74 5.95 3821 HI	SRT-500	12	0.5487	0.1185	1894	29.13	8.25	3531	*
Avg 0.5491 0.1192 1727 26.38 8.28 3192 Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.22% 12.37% 2.26% 14,00% RC-210 J3 0.5533 0.1241 12.39 18.04 5.42 3329 11 Inductional J4 0.5512 0.1241 12.39 18.04 5.42 3329 11 Inductional J4 0.5512 0.1234 1665 24.48 5.98 4093 11 Jostitudinal J4 0.5512 0.1234 1665 22.448 5.95 3821 11 Jostitudinal J6 0.5514 0.1234 1665 22.74 5.95 3821 11 Avg 0.5514 0.1234 1665 22.74 5.95 3821 11 Jostitudinal J6 0.5514 0.1236 1484 21.75 5.95 <t< th=""><th>Longitudinal</th><th>13</th><th>0.5493</th><th>0.1191</th><th>1490</th><th>22.78</th><th>8.48</th><th>2686</th><th>*</th></t<>	Longitudinal	13	0.5493	0.1191	1490	22.78	8.48	2686	*
Avg 0.5491 0.1192 1727 26.38 8.28 3192 Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.37% 2.26% 14.00% In J4 0.5533 0.1241 12.37% 2.26% 14.00% J6 0.5512 0.1234 1547 2.24.48 5.98 4093 11 J6 0.5514 0.1234 1547 22.74 5.95 3821 11 J6 0.5514 0.1234 1547 22.74 5.95 3821 11 J6 0.5514 0.1234 1547 22.74 5.95 3821 11 J6 0.5514 0.1236 1484 21.75 5.95 387 3748 <									
Std. Dev. 0.0004 0.0008 211 3.26 0.19 447 COV 0.07% 0.68% 12.22% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.39 18.04 5.42 3329 11 RC-210 J3 0.5512 0.1241 1239 18.04 5.42 3329 11 J6 0.5512 0.1234 1665 24.48 5.98 4093 11 J6 0.5512 0.1234 1547 22.74 5.95 3821 11 Avg 0.5520 0.1236 1484 21.75 5.95 3748 3748 COV 0.012 0.0004 220 3.33 0.32 387 10.33% COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33% 10.33%		Avg	0.5491	0.1192	1727	26.38	8.28	3192	
COV 0.07% 0.68% 12.22% 12.37% 2.26% 14.00% RC-210 J3 0.5533 0.1241 12.39 18.04 5.42 3329 II Longitudinal J4 0.5512 0.1234 1665 24.48 5.98 4093 II J6 0.5514 0.1234 1665 24.48 5.95 3821 II J6 0.5514 0.1234 1665 24.48 5.95 3821 II J6 0.5514 0.1234 1665 24.48 5.95 3821 II J6 0.5514 0.1234 1547 22.74 5.95 3821 II Avg 0.5520 0.1236 1484 21.75 5.78 3748 Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 COV 0.21% 0.33% 14.82% 5.45% 10.33% 10.33%		Std. Dev.	0.0004	0.0008	211	3.26	0.19	447	
RC-210 J3 0.5533 0.1241 1239 18.04 5.42 3329 II Longitudinal J4 0.5512 0.1234 1665 24.48 5.98 4093 1 J6 0.5514 0.1234 1665 24.48 5.95 3821 1 Avg 0.5514 0.1234 1547 22.74 5.95 3821 11 Std. Dev. 0.0012 0.1236 1484 21.75 5.78 3748 3748 COV 0.21% 0.33% 14.82% 13.33 0.32 387		COV	0.07%	0.68%	12.22%	12.37%	2.26%	14.00%	
RC-210 J3 0.5533 0.1241 1239 18.04 5.42 3329 II Longitudinal J4 0.5512 0.1234 1665 24.48 5.98 4093 11 J6 0.5514 0.1234 1565 24.48 5.95 3821 11 Avg 0.5514 0.1234 1547 22.74 5.95 3821 11 Std. Dev. 0.0012 0.1236 1484 21.75 5.78 3748 3748 COV 0.21% 0.33% 1482% 5.578 3748 10.33%									
Longitudinal J4 0.5512 0.1234 1665 24.48 5.98 4093 I1 J6 0.5514 0.1234 1547 22.74 5.95 3821 11 Avg 0.5520 0.1236 1484 21.75 5.95 3821 11 Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33%	RC-210	J3	0.5533	0.1241	1239	18.04	5.42	3329	III
J6 0.5514 0.1234 1547 22.74 5.95 3821 II Avg 0.5520 0.1236 1484 21.75 5.78 3748 3748 Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 11 COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33% 10.33%	Longitudinal	J 4	0.5512	0.1234	1665	24.48	5.98	4093	Ш
Avg 0.5520 0.1236 1484 21.75 5.78 3748 Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33%	1	J6	0.5514	0.1234	1547	22.74	5.95	3821	Ш
Avg 0.5520 0.1236 1484 21.75 5.78 3748 Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33%									
Std. Dev. 0.0012 0.0004 220 3.33 0.32 387 COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33%		Avg	0.5520	0.1236	1484	21.75	5.78	3748	
COV 0.21% 0.33% 14.82% 15.30% 5.45% 10.33%		Std. Dev.	0.0012	0.0004	220	3.33	0.32	387	
		COV	0.21%	0.33%	14.82%	15.30%	5.45%	10.33%	

* Specimen did not reach ultimate load. Failure occurred in bond between doubler and specimen.

TJE/kar:8560-92-006 06 February 92 Page 5 of 21

Region I represents the area in which the aluminum doublers were bonded. Failure in this region usually occurred at the end of the doubler. Region II is defined from the start of the radius to the test section. Failures in this region usually occurred at the intersection of Region I and II. Region III is defined as the test section. Failures usually occurred at or near the center Schematic of Molded Liquid Crystal Polymer Tensile Specimen Used to Generate Liquid Hydrogen Tensile Properties. of the specimen. Figure 1.

TJE/kar:8560-92-006 06 February 92 Page 6 of 21

Figure 2. Comparison of the Tensile Strength and Modulus for the Various Liquid Crystal Polymers Generated in Liquid Hydrogen. Note that the Tensile Strength for XY DAR SRT 500 Shown Is Not Ultimate Strength But Maximum Stress Obtained. TJE/kar:8560-92-006 06 February 92 Page 7 of 21

Figure 3. Vectra A950 Transverse Specimen F1 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 8 of 21

-

Gage

Gage 2

Figure 4. Vectra A950 Transverse Specimen F2 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 9 of 21

Figure 5. Vectra A950 Transverse Specimen F3 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 10 of 21

Figure 6. DuPont HX 4000 Longitudinal Specimen GI Stress - Strain Curve Generated in Liquid Hydrogen.

[.]277

TJE/kar:8560-92-006 06 February 92 Page 11 of 21

Figure 7. DuPont HX 4000 Longitudinal Specimen G3 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 12 of 21

Figure 8. DuPont HX 4000 Longitudinal Specimen G4 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 13 of 21

Figure 9. Vectra A950 Longitudinal Specimen H1 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 14 of 21

Figure 10. Vectra A950 Longitudinal Specimen H2 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 15 of 21

Figure 11. Vectra A950 Longitudinal Specimen H4 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 16 of 21

Figure 12. XYDAR SRT 500 Longitudinal Specimen II Stress - Strain Curve Generated in Liquid Hydrogen. The specimen did not fail at the ultimate stress level shown on this chart. TJE/kar:8560-92-006 06 February 92 Page 17 of 21

XYDAR SRT 500 Longitudinal Specimen 12 Stress - Strain Curve Generated in Liquid Hydrogen. The specimen did not fail at the ultimate stress level shown on this chart. Figure 13.

1.11:44:1:8000-92-006 06 February 92 Page 18 of 21

Figure 14. XYDAR SRT 500 Longitudinal Specimen 13 Stress - Strain Curve Generated in Liquid Hydrogen. The specimen did not fail at the ultimate stress level shown on this chart.

TJE/kar:8560-92-006 06 February 92 Page 19 of 21

Gage	
2	
Gage	
•	

Figure 15. RC 210 Longitudinal Specimen J3 Stress - Strain Curve Generated in Liquid Hydrogen.

MICROSTRAIN

TJE/kar:8560-92-006 06 February 92 Page 20 of 21

Figure 16. RC 210 Longitudinal Specimen J4 Stress - Strain Curve Generated in Liquid Hydrogen.

TJE/kar:8560-92-006 06 February 92 Page 21 of 21

Figure 17. RC 210 Longitudinal Specimen J6 Stress - Strain Curve Generated in Liquid Hydrogen.

UES AFOSR Final Report

TENSILE TESTING OF LIQUID CRYSTAL POLYMERS

Tracy Reed United States Air Force 26 August, 1990 I would like to thank Dr. John Rusek and Dr. Shannon Lieb for all their help during my time at the Astonautics Lab. During my eight weeks working at the Astronautics Laboratory I worked on two projects, Methods for Analysis of Reactive Surfaces (MARS) and Advanced Polymer Components (APC). For the MARS program my project was to grow ammonium perchlorate (AP) crystals, and for APC I was to do tensile testing on several advanced polymers. I also used the ISP program to compute the theoretical ISP's of rocket propellants we came up with.

I began my summer by checking out several books from the Technical Library at the Astronautics Laboratory. I learned all I could about crystal structure, growth, and methods of growing AP crystals from these books. I then choose the method I thought to be the most suitable.

The last time AP crystals of any considerable size had been grown was at China Lake Naval Weapons Center in the early seventies. The scientists there choose the temperature control method to grow the crystals. They lowered the temperature by one tenth of a degree per day causing the water that the AP was dissolved in to hold less AP. The extra AP that the water could not hold grew on the seed crystals suspended in the solution. Lowering the temperature at this rate was not suitable for our purposes. I choose the evaporation method the be most the

291

most appropriate. I built a device to grow the crystals in which consisted of a large glass container with a seed crystal mounted in it. The seed crystal was glued to a length of bent glass that held the crystal securely in the center of the solution. The container had a lid on it with several holes in it to let the water evaporate. The evaporation of the water slowly raises the concentration of the AP until the water can no longer hold it all and the excess begins forming on the seed crystal thereby increasing its size.

The container holds two liters of water to which I added about four hundred grams of AP. As it dissolved in the water a foam began to collect on the top. I eventually concluded that this was an additive in the AP, an anti-caking agent. I spent several days filtering out the additive.

I then set up the experiment one morning but by that afternoon the seed crystal had dissolved. The next morning hundreds of tiny crystals had grown in the bottom of the container. This proved to us that the temperature in the laboratory was not stable enough to grow crystals in. I decided the whole experiment needed to be put in a temperature bath. The temperature controller for this bath has been ordered and as soon as it gets in the crystal growth experiment will continue.

I also worked on the APC project. The goal was to put the specimens through tensile testing under various conditions

292

and compare it to the published data to see which method gave us the most accurate data. The specimens are to be tested on the 50,000 pound MTS machine at the Composites Lab. The specimens to be tested are Ryton, Vectra Cl30, and Vectra A625. A test matrix was created that included all the conditions we wanted to test the specimens under, such as dogboned or rectangular. I cut the proper number of dogbones from each material as specified by the test matrix. Then I sanded the ones that required sanding. The specimens were cleaned, load tabs glued on, and strain gauges put in place. Then the leads were soldered to the strain gauges. The actual testing of the materials began shortly after I left.

I also worked on many different types of computers and became familiar with many operating systems while I was at the Astronautics Lab. On the PC I used the ISP computer program to do theoretical calculations on many new rocket fuels being thought up by my colleagues. I learned how to input the data, analyze the output, and compare these against the standard Hydrogen and Oxygen fuel mixture.

I also used the Vax facility at the AL and the Cray 2 at Kirtland AFB to assist in using MOPAC and CADPAC. We used these programs to come up with an accurate model of AP for MARS.

293

INJECTION MOLDED ROCKET MOTOR CASE

Christopher L. Frank USAF Advanced Composites Program Office January 1991 This paper will highlight the work being performed by the ACPO located at McClellan AFB and the AFAL at Edwards AFB. We will briefly touch on three main areas: the use of LCPs and their special appeal to this project; the 2X4 project; and finally the early results of work with the 2X4 prototypes.

BACKGROUND

In September 1989, an informational meeting was held at McClellan AFB to discuss the Advanced Polymer Composites (APC) project under the direction of the Astronautics Laboratory in February 1990. A co-operative effort began between the AFAL and the ACPO to rapidly build a number of rocket motor and rocket engine parts using a new type of plastic, Liquid Crystal Polymers or LCPs. This particular material had not been used in this type of application before. The AFAL wanted to quickly establish an Air Force-staffed plastic motor program and came to the ACPO for the expertise needed to design the molds and develop the processes to produce these motors. By May of 1990, the timetable was set, and design and analysis had begun. Molds were built, and on Aug 28, 1990, less than 6 months from concept, the first eleven plastic solid rocket motor cases were fired. Seven of these cases survived the firings. The initial success of this project has convinced the AFAL to continue working with the ACPO in this area. The use of plastic case designs for solid rocket motors will contribute greatly to the ultimate goal of a low-cost lightweight interceptor.

MATERIALS

LCPs have a number of intriguing properties that could prove very beneficial to the field of rocketry. The most significant of these are, high strength, resistance to extreme temperatures, and ease of molding highly detailed parts. We will discuss the origins of LCPs, the desirable properties of these polymers, and the LCPs used in this project.

Figure 1 shows a typical solid rocket motor schematic. The various mechanical parts constitute the majority of the total weight of the motor. If this total weight can be lowered, through the use of new engineering polymers like the LCPs, increased payloads or smaller rocket sizes may be realized. Beyond decreasing rocket motor weight the LCPs may also lower manufacturing costs, as various parts may be more efficiently manufactured by the use of injection or compression molding. For the purpose of this paper we will be primarily concerned with the motor case, though other components are currently under development.

Fig. 1 Generic Solid Motor Design

The Carborundum company developed the early LCPs as aromatic thermosetting polyesters based on a para-oxybenzoic acid. The resulting materials, EKONOL* resin and EKKCEL* molding compounds, had the unique property of <u>high crystallinity</u> and so exhibited two times the modulus of polyimides. Although the melting temperature values were in the 900 ⁰ Fto-1000 ⁰ F range, they did decompose at elevated temperatures.

Fig. 2 LYOTROPIC POLYESTER

A new generation of these polymers are based on aromatic polyesters of p-hydroxybenzoic acid and hydroxynapthaic acid monomer. In 1965 DuPont introduced KEVLAR* aramid fiber. This material is lyotropic (Figure 2) or solution processible, meaning that various liquids are combined and subsequently spun out as fibers (thermoset). In the 70's, Celanese developed a thermotropic or melt processible(thermoplastic) naphthalenebased material which was commercialized in the 80's as VECTRA*. (Figure 3) In the 80's, the Carborundum process was licensed to Dartco. Dartco developed a bisphenol-based resin line named XYDAR*. The trait common to all of these materials is their tendency to fiblirate or generate fibers on their own.

FIBÈR#	FIBER DIA.	AREA	LOAD	STRESS
1	0.015	1.767 x 10 ⁻⁴	315 LBS.	1.78 x 10 ⁶ psi
2	0.012	1.131 x 10 ⁻⁴	272 LBS.	2.41 x 10 ⁶ psi
3	0.008	0.5027×10^{-4}	403 LBS.	8.02 x 10 ⁶ psi
4	0.015	1.767 x 10 ⁻⁴	443 LBS.	$2.51 \times 10^6 \text{ psi}$
5	0.016	2.010 x 10 ⁻⁴	415 LBS.	2.06 x 10 ⁶ psi
6	0.012	1.131 x 10 ⁻⁴	442 LBS.	4.00 x 10 ⁶ psi
		AVERAGE	383 LBS.	3.46 x 10 ⁶ psi

FIBER TESTS TABLE 1

Many of the current designs for rocket motors use fiber winding in one form or another to obtain the strengths required. A test was run on several fibers obtained during molding. These test results showed fiber strengths of 3,460,000 psi. for neat "A-series" VECTRA resin. (Table 1) Because of the fiber like behavior of these materials and the strength of those fibers, the scientists at the Astronautics Laboratory became interested in the use of these materials to develop new components for rocket applications. These component applications would exploit the natural fiberous tendencies of the LCPs, and could eventually be manufactured so that the fibers would form to re-enforce the structure as it is molded. This interest generated the APC 2X4 project that required the manufacture of a number of test articles.

The materials used in the preparations for the tests covered in this paper were Hoechst Celanese VECTRA A-625 a carbon flake filled or loaded LCP, VECTRA C-130 a glass filled or loaded LCP and a glass filled RYTON (PPS) or(polyphenylene-sulfide) a Phillips material compounded by Wilson-Fiberfil Inc.

2

Fig. 4 2X4 TEST MOTOR CASE

The 2X4 motor for testing solid propellants was suggested as one of the first prototypes. Currently the 2X4 motor cases are made of D6AC steel and are individually machined. (Fig 4) The size of the case is 2" inside diameter and is 4" long, thus the name 2 by 4 motor. The manageable size of this case, the varied fuel types possible, and the fact that a test fixture and test program were already in place for the 2X4 made it an ideal candidate for this application.

The use of the 2X4 cases presented three primary design problems for mold construction; the production of a constant diameter cylinder, maintaining a uniform wall with no weld lines, and removal of the part after molding. The test fixtures for the 2X4 motors required that the case have a 2.50" outside diameter for the high pressure case (12000 psi) and 2.25" outside diameter for the low pressure case (2000 psi). This dimension must be held on each end to provide proper sealing during testing (see Fig. 5). The larger diameter fixture was chosen to allow both a thin and thick walled motor cases to molded and tested. Having chosen the larger case meant that the 2.50" outside diameter must be held over the length of the part. From past experience with flow analysis of cylindrical parts, it is known that the walls should fill from the top down or end-to-end to avoid weld lines. Plastics tend to shrink as they cool. This characteristic will cause the case to shrink tightly onto the core, so some means of removing the part must be provided.

With these requirements in mind, a mold was designed and built. The use of slides allowed the exterior wall to be a constant diameter. The slides were designed to operate mechanically. The molding machine opens the mold with a horizontal in-plane motion. To provide a horizontal out of plane motion, an angle pin is mounted in the stationary half of the mold, a corresponding angle hole is located in the slide on the moving half of the mold.(Figure 6) As the mold opens the pin causes the slide to move away from the part. Keeping the part on the center line of the mold simplified all the molding functions. The gating is a combination of a disk and sprue gate. The sprue transports the plastic to the center line of the part. From there the plastic is pooled and turned 90 degrees to form a disk (Figure 12). This radial flow allows the plastic to flow smoothly and uniformly down the walls of the case. After molding, the case is machined to remove this disk and sprue.

For removal of the part a stripper ring was designed into the mold. A stripper ring pushes the part off of the core with uniform pressure to provided positive ejection of the part. However even with a stripper ring, the core did require draft in order to minimize the movement required by the stripper ring to release the part from the core.

MOLD CLOSED

MOLD MOVING

MOLD AND SLIDES OPEN

Fig. 6 MOVEMENT OF THE SLIDES

FLOW EFFECTS

<u>.</u>

The previous set of figures describes the flow through the part based on an edge gate on one side of the mold. The flow must separate (Figure 7) and flow around the core creating a weld or knit line on the opposite side of the part. Figures 7-11 describe flow from an edge gate that will create weld or knit lines. Weld lines or knit lines are typically much lower in strength than the parent material. For this reason the concept of a side gate could not be considered, and a combination disk-sprue gate was designed. Figure 12 describes a disk-gate fill pattern.

After the disk is initially filled, the flow develops fully around the core and flows evenly down the walls of the core, producing a stronger part. This also allows molecular orientation as well as fiber orientation longitudinally along the part. This orientation does not provide for the hoop stress, but is far superior to having a weld line that would seriously lower the hoop strength. By comparing the two sets of flows in Figures 7 & 12 one can see that the disk gate minimizes the opportunity for weld lines to be created. Figures 12-16 describe flow from a disk gate that will negate weld or knit lines.

PROCESSING

Once a mold for the 2X4 motors was built, an injection molding process had to be developed using current commercial data, and information based on previous test results. The resulting molding process cycle is described below and follows the manufacturers recommendations.

Figure 17 is the set-up profile for the molding machine at Hill AFB used to mold the 2X4 cases used in this project.

Fig. 18 VECTRA A-625 MOLDING TEMPERATURES

Fig. 19 VECTRA C-130 MOLDING TEMPERATURES

THE RESULTS

Compared with typical injection molding runs, a relatively small number of articles (approx. 50 of each material) were produced. For this reason a fully developed process may not have been achieved. This may have resulted in the production of articles with less strength than was mathematically predicted. In spite of this, the results remain quite impressive for a thermoplastic. Eleven motors were tested, of which seven survived the testing relatively undamaged. Pressures up to 1018 psi and temperatures of up to 2,000 degrees F. were contained during tests. The articles tested were molded of VECTRA A-625, VECTRA C-130, and RYTON. Preliminary tests were run for compatibility with the solid fuels and they were found to bond very well to the plastic, with no degradation of the plastic after bonding. These results make the use of plastic motor cases appear quite promising.

Fig. 20 COMPARISON OF STEEL AND PLASTIC CASES

The Figure 20 shows four of the 2X4 motor cases. On the left is a standard 2X4 metal case, immediately to the right is a VECTRA C-130 case, followed by a VECTRA A-625, and finally one that was machined from a solid piece of CELAZOLE. This last case is made of a material that is a lyotrope version of LCPs and mentioned previously. The wall thickness of this last motor is 1/4", as compared to 1/8" walls for the injection molded versions.

Fig. 21 POST FIRED PLASTIC CASES

As you can see in Figure 21 the post fired cases display little or no damage from the burning fuel. A char layer has been generated and acts as an insulator for the material. Table 2 reports the results of the first eleven motors tested.

FIRING NUMBER	CASE MATERIAL	PEAK PRES. (psi)	AVERAGE PRES. (psi)	E C DURATION (SEC.)	CASE/PROPELL. BOND PROMOTER	ANT COMMENTS
1	VECTRA C-130	961	864	1.446	N-100	
2	VECTRA C-130	1278		.070	NONE	FAILED ON
3	VECTRA C-130	1018	990	1.376	NONE	
4	VECTRA C-130	1303		.059	N-100	FAILED ON
5	VECTRA A-625	966				FAILED ON
6	VECTRA A-625	1019				FAILED ON
7	VECTRA A-625	862	818	1.436	NONE	IGNITION
8	VECTRA A-625	913	876	1.419	NONE	
9	RYTON	316	269	2.346	NONE	
10	RYTON	753	727	1.578	N-100	
11	RYTON	745	713	1.605	NONE	

TEST FIRING RESULTS TABLE 2

Results of these early tests shows success, seven of the eleven tested cases did well with pressures up to 1018 psi. The other four clearly did not meet the expectations of the initial designs. From the published values for tensile strengths of these materials, the expected pressures would be about twice as high as these. The heat generated during the tests proved to have little effect on the performance. This assumption is based on the video taped results of the test firings. When one of the motors burned through the side wall, the case continued to support the heavy steel portion of the test fixture that contains the nozzle.(top of Figure 5) We now believe that for this application the process dependency of the material is <u>much</u> more significant than first assumed. With subsequent runs the process should be refined and predicted design results should be obtained. The materials run to date have been limited to the Celanese VECTRA resins but Amoco XYDAR resins have been obtained and will soon be added to the test results.

Fig. 22 F-16 STORES LOCATIONS

With the initial results available at this time, the project is continuing to move toward the ambitious goal of developing an air-to-air missile case or a short range motor similar to that on the AIM-9L side winder. This missile is typically carried on a wing tip of a F-16, and can experience temperatures from -45 F to 145 F as well as loads up to 35 Gs. There is currently a cooperative project with the Air Force Institute of Technology at Wright Patterson AFB directed by the AFAL. The goal of this project is to design a short range air-to-air motor case using LCP materials that can be mounted on the F-16 wing tip location.(Figure 22)

CONCLUSION

Liquid Crystal Polymers graphically displayed that they can take the heat of a small solid fuel motor during limited operation. This capability is critical to the success of any application associated with a solid rocket motor. The LCPs have shown that strong fibers can be formed when drawn. The test results in Table 1 show that there is the possibility of obtaining high strength fibers under the right conditions. The LCPs proved that they can be molded easily, although the process must be well controlled to get the ultimate strength from material.

The work presented in this paper would not have been possible without the help and support of the following people:

Richard Griffen Doug Bennit, Hill AFB; John Rusek, J. Shelley, James Chew AFAL Edwards AFB; The Air Force Advanced Composites Program Office McClellan AFB; and Deborah Frank

This paper could not have been completed without their efforts.

Memo For Record

27 February 1991

APC Report: Hybrid Nozzle Demonstrator (HND)

Test firings were accomplished during the week of August 28, 1. 1990 with the HND outfitted with a copper nozzle. The nozzle was instrumented with five thermocouples. The tests were analyzed to determine the convection heat transfer coefficient, h_g, and the throat wall temperature, T_{wg} . Since T_{wg} is directly related to the temperature of the gas in the chamber, T_g , the chamber gas temperature had to be established. The determination of T_{wg} came from applications of ISP, a thermochemical computer program obtained from Curt Selph. Numerous mixture weight iterations were used to understand how T_g varied as a function of the mixture weight. It was observed that the chamber gas temperature settles to approximately 1500 deg R over a six degree order of magnitude change in the mixture ratio. Therefore, it was assumed that T_{g} was known with a value of approximately 1500 deg R. The convection coefficient, h_{f} , was calculated using a laminar boundary layer correlation, which produced a value of approximately 200 Btu/ft²*sec*deg F. The correlation was developed by Schoenman and Block of Aerojet Corp., Sacramento, CA, in AIAA report 67-447, 1967. A Lotus 123 spreadsheet was written by Bernard Bornhorst that used the two above numbers (i.e, 1500 and 200) to produce a model of the thermal environment. Graphical output shows a correlation between the experimental data and the model with a T_{g} of 1400 deg R (see figure #1). The discrepancy between temperatures values of 1400 and 1500 deg R for T_g as was expected comes from the fact that the thermocouple was not reading the throat wall temperature. The thermocouple was reading a temperature value inside of the copper nozzle, which has a temperature lag of around 100 deg R from the gas temperature. It can, however, be seen in figure one that the curves of the experimental data and the T $_{\ell}$ of both 1500 and 1400 deg R lie within the same family of curves.

2. Currently, further HND testing has been delayed to obtain new fuel grain material. The acrylic used in the August firings

308

tended to bubble as the combustion occurred. The acrylic rod used was extruded. A cast acrylic rod has been ordered to investigate if it bubbles during the combustion cycle. The prime important of stopping the bubbling effect is to decrease the amount of acrylic that goes unburned and adheres to the nozzle. It is believed that the cast acrylic will not coat the nozzle in the same fashion. However, it will have to be tested to be certain.

The LCP nozzles have been injected molded at Hill AFB, Utah. 3. The polymers that were injected were: Vectra A950, HX-4000, XYDAR SRT 300 and XYDAR SRT 500. These injected nozzles will be subjected to testing after the properties of the cast acrylic rod are determined. The main thrust of the testing schedule will be to establish the erosion properties of the polymers as a function Annealing tests have also been added to the test of time. matrix. The specifics behind the annealing testing have not been The prime factor in the tests established as of yet, however. will obviously be not to exceed the melting temperature of the materials with oven times as long as possible.

Eric E. Schmidt Hybrid Nozzle Demonstrator Task Manager

TEMPERATURE (deg R)

FIGURE: 1

Memo for Record

Subject: Test Data from the Firings of Two Stainless Steel and Two Liquid Crystal Polymer Case Motors

For your information the temperature and pressure measurements from firing four 2x4 motors are sent to you. The experimental procedure did not work out completely as planned, but some of the measurements may be useful. Two of the motors which were fired had stainless steel cases, and two had liquid crystal polymer cases. Figure 1 is a drawing showing the test motor configuration. Parameters specific for each motor are given in Table 1.

The measurements of the chamber pressure and outside wall temperature of the case are attached. In addition the results of a program called ISP which estimates things such as chamber temperature, chamber gas density, choked throat gas velocity, etc. for the solid propellant used in these motors is also included.

The next two paragraphs contain a synopsis of what occurred during the firing of each motor to make the attached results more understandable.

The first stainless steel cased motor was fired at a nominal 200 psi for 15 seconds while the second motor was fired at nominal 400 psi for 12 seconds. During the firing as the outside of the wall became hot, the thermocouples began to become unglued, the contact between the thermocouple and the case became poorer, and the thermocouple measured a lower temperature than was actual. Only the thermocouple TC1, shown on Figure 1, on the motor fired nominally at 200 psi for 15 seconds remained well bonded for the whole test. By careful examination of the temperature ramp, it may be possible to see the temperature where the other thermocouples began to lose contact. Sorry the results aren't more accurate.

Both of the Vectra case motors burst before the grain burned out. The thermocouples on the Vectra cases were bonded with better contact to the case outer wall than they had been on the stainless steel cases. Temperature measurements on the Vectra cases should be relatively accurate with good case to thermocouple contact before the case burst. The char depth and char heat of reaction and their affect on the wall temperature distribution is unknown as yet. Further testing is underway to measure the char characteristics on Vectra A950, a neat resin.

For more information contact Capt Andrew Kenny, DSN 255-5296, Fax: DSN 255-5527.

cc: RKBR (John Rusek) Chris Frank Major Robinson

Motor	Case	Port	Throat	End	Wall	Approx.	Approx.
Label	Material	Dia.	Dia.	Depth	Thickness	Pressure	Burn Time
		(in)	(in)	(in)	(in)	(psi)	(sec)
41	347 SS	.5	.147	.32	.125	200	15
42	347 SS	1.23	.100	.25	.125	380	12
21306	A 625	.5	.147	1.6	.121	320	3
21304	C 130	• 5	.165	1.6	.121	210	4.6

Table 1. First Test Phase Motor Parameters

ì

.

FIGURE 6. THERMOCOUPLE PLACEMENT AND GRAIN DIMENSIONS ON 2x4 MOTORS

	TTY (SEC)	FCI	PCZ	IFCI	IPC2
	्र ३. वर २० वर २० वर २० वर २० वर्ष	XXX IIME OF DA	4 <u>y - 18178:2</u> 9	<u></u>	***
	0.000	-1.6243	-1 6662		0.0000
	<u>0. e</u> vo	-1.4877	-1.6845	-0.3313	-0.3369
	0.400	-1.3511	-1.2211	-0. 5952	-0.6875
	0.600	-1.3511	-1.6845	-0.8654	-1.0380
		-1.8.48		-1.1530	-1.3513
					-1.6845
	$1 \cdot E(t_0)$		7477	-1.5127	-2.0078
	1.400	-1.4879	-1.6845	<u> </u>	-2.3310
	1.660	-1.4877	-1.8840	-2.4217	-2.8879
			-1.5479	-2.7193	-2.9912
	2.000	-1.6248	-1.5477	-3. 0302	-3. 3008
	2 200	-1.2143	-1.0015	-3.3145	-3, 5557
	2.400	-1.0775	-0.5917	-3. 5437	-3.7151
	2.600	-0.0202	2.0037	-3.70#4	-3, 5739
ther.	-> 2:800	104.4132	122.8981	6. 8839	8. 9162
	<u>3: 000</u>	195:9479		36.7200	41.0085
	<u></u>	201.4203	202. 9447	75.4553	
	3.400	204. 9782	205. 4963	· 117. 0967	122.0496
	3. 600	209.0929	210. 3212	158. 3030	163.7316
	13. 800	209.3566	210.4578	200, 3469	205. 8094
	4.000	210:0407	211.2774	242.2866	247. 9829
	<u> 1.200</u>	210.2143	211.6672	284. 3220	290, 2793
		210.8616		325, 4397	- 332. 8169
		212.5403	213.4630	368, 7898	375. 1318
	4.600	212.9140	273.7362	411.3452	417.8518
	5.000	212:9140	213.8728	45 3, 7280	460.6128
<u></u>	5.200	213.3245	214.1460	496, 5520	503. 4148

314

. .

TEST IDENTIFICATION = 2X4Ep RUN#12367 41S1

1

J

DATE (M/D/

				1961	1PC2
3	THE (SEC)	LAT	1 2 4	ی در با با در این	
	5. 400	213. 4613	214.4192	539. 2305	J40. 2/12
ø _	5. 600	211.8194	212.6434	581.7585	588. 9775
) –	5.800	212. 5035	213.4630	624.1909	631. 5881
	6. 000	211. 9562	212.7800	666.6370	674. 2126
·	6. 200	212.2299	213.1898	709. 0554	715.8095
	6. 400	212. 6403	213.1898	751.5425	759. 4475
	6. 600	211.8194	212. 3702	793, 9885	802.0034
<u> </u>	6.800	211.2721	211.8238	836. 2978	844. 4231
0 -	7.000	211.2721	211.8239	878. 5523	286. 7878
<u></u>	7. 209	210. 9985	211.9604	920. 7793	929.1663
) _	7.400	211.4089	212.3702	953. 0200	971. 5994
ə –	7.600	212.2299	212. 9165	1005. 3840	1014. 1280
	7. 800	212, 6403	213.7362	1047.8710	1056. 7930
ð _	3. 000	211.5458	212. 5068	1090.2900	1099. 4180
ð [—]	8, 200	210. 7248	211.4140	1132. 5170	1141.8100
	छ. ४००	211.1353	212.0970	1174.7030	1184.1610
9_	8. 600	210.7248	211.4140	1215.8990	1226. 5120
. –	8. 800	210. 1775	210.7310	1208.9770	1268.7270
· _	9.000	210. 1775	211.0042	1301.0140	1310. 9000
•	9.200	209.7671		1343.0090	1353. 0330
., –	9,400	209.4934	210.4578	1334, 9350	1395.1110
_	9.600	209.3555	210. 0480	1426. 8200	1437.1610
.) 	9.800	208. 9461	207.6382	1468.6500	1479. 1300
ə —	10.000	208.1252	209.0918	1510.3580	1521.0030
_	10.200	207.8515	208.4088	1551, 9550	1562.7530
?		205.4833	207.1793	1593.3890	1604.3120
•	10.600	205. 3465	207.1793	1634. 6720	1645.7480
	10.800	204.70-5	205. 4035	1575.7770	1687.0060
2					

TEST IDENTIFICATION = 2X4EB RUN#12367 41S1 DATE (M/D/

3	TIME (SEC)	PCI		$\Sigma_1 \sim \chi$	1PC2
	11.000	205. 2519	205.8133	1716. 7720	1728. 1280
<u>ه</u> _	11.200	203. 4732	203. 9009	1757. 6450	1769. 0990
	11.400	202. 9259	203.4911	1798.2850	1809.8380
	11.600	203. 6100	204.0375	1838. 9390	1850. 5910
<u></u>	11.200	202. 9259	203.4911	1879. 5920	1891. 3440
÷ —	12.000	204.2941	204.9937	1920. 3140	1932. 1930
	12.200	205.1151	5.6767	1961.2550	1973. 2590
<u> </u>	12.400	204. 8414	205. 5401	2002.2510	2014. 3810
\sim $-$	12.600	205. 6624	205.4963	2043.3010	2055. 5850
		206.7569	207. 5892	2084, 5430	2095. 9930
<u>э</u>	13.000	206.7569	207.7257	2125.8950	
		208. 3788	209.6382	2167.4100	2180.2510
·	13. 400	208. 9461	209.7748	2207.1440	2222. 2030
3 _	13. 600	208. 5358	209.6382	2250. 8930	2264. 1440
a —	13. 800	208. 5356	207.3650	2292. 6000	2305. 0440
—	14.000	205. 3465	207.1793	2334. 0880	2347. 6990
) _	14. 200	207.0306	207.2623	2375. 4260	2389.2030
	14. 400	207.0308			2430:7750
	14. 600	207.1674		2458.2510	2472.3480
~	14.500			<u> - 2499.7250</u>	2513. 7750
<u>.</u>	15.000	204.9762	205.8133	2540. 9810	2555. 3970
·	15.200	206.7067	207. 5872	- 2582.1550 -	2596. 7380
ن	15. 400	207.0305	207. 5892	2623. 5340	2638. 2550
	15. 600	205. 2097	205. 9061	2664.8580	2679.7050
~	15.800	206. 4833	207.3159	2705.1270	. 2721. 1270 .
э	<u> 16.000</u>	- <u>20.000</u> 6 -	207.7297	2747.4640	2762.6310
a —	16.200	206. 7569	207.7257	2788. 8290	2804. 1750
	16.400	205.6201	207.7257	2830. 1690	2845.7230

J _____

 $\overline{}$

TEST IDENTIFICATION = 2X4EB RUN#12367 4151

ð

3

DATE (M/D/

	TIME (SEC)			IPC1	TPC2
à		· · · ·			2887 3080
<u>_</u>	16. 600	207.1674	208.1308	20/1. 04/0	2007.0000
a	16.800	206. 7569	207. 4525	2912. 9390	2928.8660
э –	17.000	208. 5355	209. 6382	2954. 4670	2970. 5750
	17.200	184.8652	184. 9133	2993.8070	3010. 0290
· · ·	17. 400	143.1342	139. 5615	3026.6090	3042.4790
	17. 600	110. 9807	107. 5968	3052.0200	3057. 1940
	17.800	91.0045	87.9261	3072.2180	3086. 7460
÷ _	18.000	75. 2276	<u></u>	3688.9410	3102. 8690
, -	18.200	45. 5897	42.7110	3101.1630	3114.4710
	18.400	25. 4662	22.4939	3108.3090	3120. 9920
¢ _	18.600	18.7619	13.2050		3124. 5620
<u>э</u> –	18.800	14. 9309	9. 3802	3116. 1010	3126.8210
B	19.000	12. 4680	7.0080	3113.8410	<u>3128.4640 🦛 βατ</u>
ê _	19.200	10. 8262	5.9652	3121.1702	3:27.7670
• -	19.400	9.7315	5.2821	3123. 2260	3130.8920
-	19.600	2: 5370	4. 4625	3125.0630	3131.8660
9	19.800	7.9529	4. 0527	3126.7220	3132.7170
<u> </u>	20.000	7. 5424	3. 6429	3128. 2710	3133. 4870
	20. 200	7.2688	3. 3697	3129.7520	3134. 1880
·	<u></u>	<u>x70+=</u>			3124 8350
		6. 4478	2. 8233	3132. 4680	3135. 4270
-	20.800	6. 1742	2. 5501	3133. 7300	3135.9650
_) _	21.000	5. 9005	2.4135	3134, 9380	3136. 4610
- 	21.200	5. 9005	2. 5501	3136. 1180	3136.9570
- -	21.400	3. 8269	2. 4135	3137. 2710	3137. 4540
j) _		5. 4901	2.4135	3138, 3830	3137. 9360
ž . 69	<u></u>	5. 3532	2.1403	3139. 4670	3138. 3920
-	22.000	5. 2164	2. 1403	3140. 5240	3138. 8200
<u>ع</u>				<u></u>	

----- 317 -

Tem	perature	Dota / First St	vinku steel Ci	ose #41	
	E (SEC)	TC1	102	103	
***	*********	**** TIME OF D	AY 12:52:29.	. 994 **********	
	0.000	68.6530	68. 7585	68. 8672	
	0.200	68. 5693	68.8422	<u> </u>	
	0. 400	68. 6530	68.7585	68. 7834	
	0. 600	68. 6530	68.7585	68.7415	
	0.800	68. 6112	68.6747	68.7834	
	1.000	68.6112	68.7585	68.7415	
	1.200	69.6112	68.8422	68. 7834	
	1.400	68. 6530	68.7585	68.8253	
	1.600		68.6/4/	୦୪.୪ଅଜ୍ୟ <u>20-୦୩୭୨</u>	
	1.800		68. 8422		
	<u>-2.200</u>	<u></u>	68.7585	68. 9928	
	2. 400	68. 7358	68. 9259	57.0765	
	2. 600	68. 7368	69.0096	69. 1604	
- <u></u>	2.800	68. 6949	69.0933	69.3280 - Ignition	<u></u>
	3.000	68.7767	59.2608	67.4117	
	3,200	68.9462	37.4282	69. 5793	
	3. 400	68. 9462	69. 3957	69.7887	
	3. 600	69.1555	70.0143	70. 0820	
	3.800	69. 3230	70. 4329	70: 4590	
	4.000	69. 4905	70, 9352	71.2130	
· · · · · · · · · · · · · · · · · · ·	4. 200	69. 6161	71.6887	72.0927	
*****	4. 400	69. 9092	72. 6933	73. 4332	
	4.600	70. 2860	73.8654	75.1088	
	4.800	70.7048	/5.2050	77. 1614	
	5. 000	71 - 1235	76.7757	77. 3710	
	0. EUU	/1.0849	78.3038	02. 2001 	

318

	TEST IDEN	TIFICATION = 2X	4EB RUN#12367	4151	DATE	(M/D
Te	mperature Dota	, 1st stainless	steel Case			
]	TIME (SEC)	TC1	TC2	103		
	5. 400	72. 1284	80. 5632	85. 3719		
·	5. 600	72. 7983	82.7399	88. 7650	•	
	5.600	73. 5101	85. 1678	72. 2839		
	6.000	74. 2220	87: 5957	95.8771	•.	
	6.200	75. 1013	90. 2748	79. 5068		
	6.400	75. 9387	93. 1213	103. 3363		
	6. 600	75. 9017	95.9560	107. 1470		<u></u>
•	<u> </u>	77.7066		111.6053		<u></u>
	7-000	79 0791	101. 7895	116. 3089		
ı 			104 9493	121 4979		·····
•	7.200		107 9470			
	7.400	81. 5475	107. 9470			
)	7.800	82.8475	111. 1067			
	7.800	84.3130	114.5077	137. 2271		
	8.000	85.7366	117.9126	142. 5783		
	<u> </u>		121.2345	147.6862		
	8: 400	68. 7187	124.7994	152.7741		
	8. 600	90. 5100 - 90. 5000 - 9000 - 90000 - 9000 - 9000 - 900000 - 9000 - 900000 - 9000 - 90000 - 90000 - 90		157: 7399	<u></u>	»
	3.800 .		132.3343	162. 7262		
	9.000		136.0613	167. 5098		
)	9.200	76. 0229	140. 0313	- 172. 3350		
	9.400	97.9579	143.8393	177. 1962		
	9.600		147.8093	182. 2524		
)	9.800	102. 0200	152.0224	187. 2691		
	10.000	104.0866		192. 2463	· · ·	. <u>.</u>
		105.2747	160. 4486	197. 2631		
,		108.5439	164.9047	202. 5168		
			169.5229	207.8495		<u></u>
•		113 4054				
	10, 800	110. 7007	1, Q. / TUT	La 4 La . / 1 Li En		

J

319

0 -	TEST IDEN	TIFICATION = 2	2X4EB RUN#1236	57 4151	DATE (M/I
A -	TIME (SEC)	TC1		тсз	
·	11.000	115 8782	178 3615	217 9225	
۵_	11.000	110.0732	170.0010		·
	11.200	118. 5931	183.0983	223. 1762	
3	11.400	121. 3485	187. 8352	228. 5484	~
a -	11.600	124. 1445	192.4931	233. 6442	
<u> </u>	11.800	127. 0215	197. 1509	238.8584	
Ó [–]	12.000	130. 1011	202. 0457	244. 2306	
	12.200	133. 2617	206.8615	249.6029	
<u> </u>	12. 400	136. 4223	211.7562	254. 8171	
a -	12.600	139. 6235	215. 4141	259.9917	
-	12 800	143 0678			
o _		143.0078	221.2277		
	13.000	146. 5526	226. 0457	270. 6572	
0	13.200	149.9564	230. 5457	275. 7249	
	13.400	153. 5627	235. 2036	280. 8484	
-	13.600	157. 4122	240. 0194	286. 1272	
•	13.800	161. 3833	244. 7563	291. 5613	
	14.000	165. 3949	249.4142		
@	14. 200	169. 4470	253. 9931	301. 8860	
0 -	14. 400	173. 8281	258.7300	307. 1257	19 - Mart 19 10
	14. 600	178. 2503	263. 5459	312.1716	•
0 _	14.800	182 6725	268 1248		······································
~ -		107 1707			
0 _	10.000	187. 1737	2/3.0195	321.9529	
0	15. 200	191. 9907	277.7710	325. 9600	
	15.400	196. 9657	282. 5806	331.9670	n m i m i n i n i n i n i n i n i n i n
J –	15. 600	201. 8222	287. 2349	336. 7800	
	15.800	206. 8367	291.8118	341. 5542	
a	16.000	212.0485	296. 6213	346. 5225	
• -	16. 200	217. 4185	301.2759	351. 5295	- · · ·
	16.400	222. 6304	305.8528	356. 2649	
\$					

1

:

,

				· · · · ·
	TIME (SEC)	ICI	TC2	
:. 	15. 600	227. 8422	310. 1968	361.0391
	16. 800	233. 4095	314.7737	365. 6580
	17.000	239.0557	319. 5056	370. 4709
	17.200	244. 5045	323. 8499	374. 8569
	17.400	250. 1902	328.0388	379. 2817
	17.600	256. 0732	332. 4604	383. 3184
	17.800	262.0354	336. 8821	387: 1999
<u></u>	18.000	267. 9580	340.9160	390.3052
	18.200	273. 9597	345. 0273	393. 2549
	18.400	280.0540	348. 5183	ది. బరాణ
		285. 3777	351. 9314	399.9311
	18.800	292. 5078	355. 1897	403. 0361
		298.7542	358. 6804	406.2578 Burn Out
		304. 6879	358. 2925	404. 2783
		310. 1992	353.0176	397. 9514
		315.3591	350. 2248	394.8853
<u></u>		319.9761	348.2854	392. 7893
			346. 8892	390. 7708
		327. 9683	346. 5012	388. 6360
			346. 2686	386. 2295
			345. 8806	383. 7065
	20.000		345.4929	381.0671
	20.000		344.7947	378. 5442
	21.000		344.0190	375. 9050
	21.200		343. 1658	373. 5762
<u></u>	21.400		342. 1572	371.2085
	21.600	<u></u>	341 0713	368.7632
	21.800	348. 2070		366. 3567
	22.000	347.8884	J40. VOZV	
			321	

	TIME (SEC)	тсі	102	тсэ
	22. 200	351. 3240	339. 0542	363. 8726-
•	22. 400	352. 5266	338. 0457	361.4272
	22.600	353. 7295	336. 8821	359. 1372
	22. 800	354. 7380	335. 9512	356. 8081
	23.000	355.6692	335. 0205	354: 7510
}	23. 200	356. 4839	334. 1670	352. 5386
	23. 400	257.1047	333. 2363	350. 4814
	23. 600	357. 7256	332. 2278	348.7349
, —	23. 800	358. 2300	331.4519	347.2500
	24.000	358. 5791	330. 6763	345. 9790
,	22 00	358. 8894	329.6677	344. 8147
•	, 24. 400	359.1609	328. 7368	343. 7666
	24. 500	359.3938	327.6509	342. 8350
	24. 800	359. 5491	326. 5649	341. 7812
	25.000	359. 7041	325. 4788	341.0107
	25. 200	357. 6653	324. 2376	340. 2344
	25: 400	359.5876	323.0740	339.4971
,	25. 600	359.4714	321.9104	
	25: 800	359. 3550		337. 9055
•	26.000	359. 2385	320. 1262	337.1682
	26. 200	359.0447	319.5056	336. 4307
	26. 400	358.8506	318. 9626	335. 6931
	25. 600	358.6956	318. 4197	334. 9558
	26. 800	358. 5791	317. 9541	334. 2571
<u></u>	27.000	358. 2686	317. 6438	333. 6360
	27. 200	358.1135	317.4111	332. 8984
	27. 400	357. 9194	317. 1008	332. 3164
	27. 600	357.7644	316. 7905	331.7729
		<u></u>		
!			322	

TEST IDENTIFICATION = 244FB RUN#12847 4151

 \sim

TEST IDENTIFICATION = 2X4EB RUN#12367 4151

DATE (M/D.

î –	TIME (SEC)	TC1	102	103	an a
	27.800	357. 4927	316.6355	330. 8801	
•	28.000	357. 2212	315. 4026	330. 0652	
	28.200	357.0659	316: 1699	329, 5217	
	28. 400	356. 7944	315. 9373	328. 7783	
)	28. 600	356. 5615	315.7822	328. 5513	
ð —	28. 800	356. 2512	315. 6269	328.2019	· · · · · · · · · · · · · · · · · · ·
	29.000	356. 0186	315. 5493	327.9592	<u></u>
а • —	29. 200	355: 7856	315. 3167	327, 6587	\$1
4	29. 400	355. 5142	315. 1616	327. 5034	
	27.600	355. 2036	314.8513	327. 4258	
<u> </u>	27.800	354, 8933	314. 6184	327. 2705	
, —	30.000	354. 5442	314.3081	326. 8047	·
	30. 200	354. 1951	313.9978	326. 1060	
#	30. 400	353. 8845	313.7651	325. 2910	
	30. 600	353. 6519	313. 6877	324. 6311	
	30. 800		313. 5325	324.0498	· · · · · · · · · · · · · · · · · · ·
<u>ه</u>	31.000	353. 0698	ana ana ang tang ang tang tang tang tang		
	31.200	352. 6431	313 1445	323. 9339	
· ·	31.400	352.3716	313.0671	322. 9622	
•	31.600	352. 0222	312. 9119	322. 7292	
	31.800	351.6343	312.7568	322. 5352	
·	32.000	351. 2852	312.6016	322. 4187	
· _	32. 200	350. 9360	312. 3689	322. 3799	
	32. 400	350. 6646	312.0586	322. 3022	
	32.600	350. 2378	311.6706	322. 3022	
j j	32.800	349.8496	311.3604	. 322. 3022	
		349. 5781	310. 8950	322. 3022	· · · ·
· · · · · · · · · · · · · · · · · · ·	33. 200	349.1514	310. 4294	322.2634	
•					

153

Ö

(ED) IDENTIFICATION - EXAED RUNATEDOV 4131

DHIE SHUDI

	TIME (SEC)	TC1	TC2	тсз
	33. 400	348. 7634	309.9641	322. 3022
	33. 600	348. 3755	309. 6538	322. 185 8
3	33.800	347. 9487	309. 3435	322. 1470
	34.000	347. 5994	309.0332	322. 0305
3 _	34. 200	347. 2502	308. 7229	321. 8752
<u></u>	34. 400	346. 8235	308. 4126	321. 2930
	34. 600	346. 4744	308, 1023	320. 6333
0	34, 800	346. 1252	307. 7144	220. 0510
o —	35.000	345.7373	307. 2490	319. 5464
- 	35.200	345. 3105	307.0164	318. 6924
9	35. 400	345. 0000	306. 6284	317. 7998
	35. 500	344. 5732	306. 2405	316. 9458
	35, 800	344. 1853	306.0078	316. 2471
ð	36, 000	343. 9138	305. 6975	315. 5078
	36. 200	343. 5647	305. 4648	314. 9275
÷	36. 400	343. 0991	305. 2322	314. 4228
•	36, 600	342. 7498	304. 9993	313.8406
3	36. 200	342. 5171	304. 6890	313. 2974
	<u> </u>	342. 2068	304. 4563	312. 6374
o	37. 200	341.7800	304. 2236	311.8611
• • —	37. 400	341. 4695	303. 9910	310. 6191
	37. 600	341. 1204	303. 7583	309. 1440
. 🧿	37.800	340. 7712	303. 5254	307. 4751
	38.000	340. 4221	303.2151	305, 9614
<u> </u>	38.200	340. 1116	302. 8274	304. 1372
	38. 400	337.7620	302. 5171	302.4680
•	38. 600	339. 4521	302. 2068	300. 7214
	38.800	339. 0254	301.8965	299.0913

····

- - - - - -

·····

	TIME (SEC)	TCI	102	тсз	
	37.000	338. 5986	301, 4309	297.2668	
	39: 200	338. 2493	301.0430	295. 2874	
	39. 400	337. 8613	300. 7329	293. 2690	
	39. 600	337. 5122	300. 3450	291.0955	
	39.800	337. 1631	<u>300. 0347</u>	288. 6890	
	40.000	336. 7363	299. 5693	286. 1660	
	40. 200	336. 4648	299.4141	283. 8760	
	40. 400	336. 0378	299. 1038	281. 5859	
	40. 600	335. 7664	298.7158	279. 2959	
	40.800	335. 3396	298. 3281	277. 1999	
	41.000	335.1069	278.0178	275. 1428	
	41.200	334. 6802	297. 6299	273. 3435	
	41. 400	334. 3308	297.2419	271. 5659	
	41.600	333. 9817	297.0093	269. 5117	
	41.800	333. 6326	296.6990	267. 6157	
	42.000	333. 2446	296. 3110	265. 5220	
	42.200	332. 8955	295. 9233	263. 4285	
	42. 400	332. 5461	- 295. 5354	261. 3743	
<u> </u>	42.600		295. 3027	259.7549	
	42.800		295.0698	258. 4512	
	43.000		294.8372	206. 7527	
-		331. 1497	E / T. WE1	254.5201	
	43. 400	330. 8779		252. 4470	
	43. 600	330. 5288	294.291	250. 5509	
	43.800	330. 1409	294.1392	248. 9313	
	44. 000	329.8691	293. 9063	247. 2327	
	44. 200	329. 5977	293. 5959	245. 4157	
	44. 400	329. 1709	293. 1306	243. 5986	
				···	
		÷ · · · ·	325		

TERT TRENTLETCATION - EXAED RONATEOON 4101

DHIE VIUDA

				: :
·	TIME (SEC)	TC1	102	ТСЭ
	44. 600	328. 8994	292.8203	242.0185
*	44.800	328. 5500	292.2773	240. 2014
	45.000	323. 2009	291.9670	238. 1474
	45. 200	327.8518	271.4238	235. 8563
•	45. 400	327. 5803	290. 9585	233. 4467
` <u> </u>	45. 600	327. 1147	290. 4155	231.0370
	45.800	326. 8042	270.0276	228. 9040
•	46.000	326. 5327	287. 4846	226. 6524
	46. 200	326. 1060	289.0190	224. 5587
	46, 400	325. 8730	288. 6313	222. 5047
	46 600	325 4851		220 6086
	45 800			712 0/05
-				<u> </u>
	47.000	324. 8257	287.8228	217.4484
	47.200	324. 5928	287. 3125	216. 2239
	47. 400	324. 2437	287.0798	215. 0784
	47. 600	323. 9333	286. 6145	214, 2093
	47.800	323. 7004	286. 2265	213. 5378
	48.000	323. 3125	285. 5283	212. 8267
	48. 200	323. 1575	284. 9854	211. 9577
	48. 400	322. 9246	284. 3647	210. 8912
	48. 600	322. 5366	283. 5115	209. 5481
	48. 800	322. 2263	282. 9685	208. 2840
	49.000	321.9546	282. 3479	206. 8620
<u></u>	49.200	321. 5443	281.7273	205. 6374
	49.400	321. 4116	281. 0291	204. 3339
	<u> 49. 台OO</u>	321.0623	280. 2534	202. 7933
<u> </u>	49.800	320. 7131	279. 6328	201. 1737
	50.000	320. 2864	278.7795	199. 4752
•	50, 000	320. 2864	278. 7795	199. 4752

.

... ...

-

			. •
TIME (SEC)	TC1	TC2	· TC3
50. 200	319. 8984	277.8486	197. 9346
50, 400	319. 5493	277.0728	196. 5915
50. 600	319. 2002	276. 2971	175. 2880
	318.7732	275. 5212	194. 0239
51.000	318. 5405	274.6680	192: 7994
51.200	318, 1138	273. 7300	191. 6538
51.400	317. 7646	272. 9404	190. 6268
51.600	317. 4541	272.0720	189. 7577
51.800	317. 1826	271.2827	189.0072
52,000	316.8335	270. 5720	188. 0987
	316, 5232	270.0195	187. 3481
	316 2126	269 5459	186. 5976
			185. 7286
52.800	215. 51/4		
52.800	315. 5144		
53,000	315. 2037	207. 1772	
53.200	314. 9324	200.3877	
53. 400	314. 5832	265.6772	· · · · · · · · · · · · · · · · · · ·
53. 600	314. 3118	264. 9668	181. 0278
	314.0012	264. 3352	180. 3958
54.000	313. 6133	263. 5459	180.0008
54. 200	313. 3805	262. 9141	179.6453
54. 400	313. 1089	262. 2827	179.3688
54.600	312. 8374	261. 5720	178.7367
54, 800	312, 5271	261.0195	178.1047
55.000	312. 2942	260. 2300	177.6702
55, 200	312. 0227	259. 4404	177. 2357
55. 400	311.7122	258. 6511	176. 5642
55, 600	311. 4407	257.7827	175. 9716

4

٩

— 327 —

 TIME (SEC)	TC1	TC2	тсз	
 55. 800		257.2300	175. 3791	
 56. 000	310. 7810	256.6772	175. 1816	
 56. 200	310. 5095	256. 0457	174.8656	
 56. 400	310. 3542	255.4142	174. 4706	• · · · · · · · · · · · · · · · · · · ·
 56. 600	307. 9663	254. 9405	174. 1546	
 56. 800	307.8887	254. 3879	173, 7595	
 57.000	309. 5784	253, 7563	173.0090	
 57.200	309. 1904	253:2826	172. 3745	
 57. 400	303. 9578	252. 4931	172.0908	
 57.600	308.8025	252.0194	171. 9691	
 57.800	308. 4534	251.4668	171.6043	
 58.000	308. 1814	251.0721	171. 4421	
 58. 200	307. 9490	250. 5984	171. 4016	
 58. 400	307. 6387	250. 3616	171. 5232	
 	307. 4445	250. 1247	171.9286	
 58. 800	307.1731	249. 9668	172. 4151	
 59.000	307.0178	249. 9668	173.0880	
 59.200	306. 7463	249.8089	173. 7595	
 59. 400	305. 5522	249.7299	174.0755	<u></u>
 59. 600	306. 3970	249. 5721	174.1545	
 59.800		249. 4931	174. 4311	
 <u>60. 000</u>	306. 0479	249.2563	174. 5496	
 60. 200	305.0090	249. 3352	174. 7855	<u></u>
 60. 400,	305. 7375	249.4142	175. 3001	
 60: 600;	305. 6987	249. 4142	175.8926	
 60. 800	305. 5435	249. 4142	176. 3666	
 61.000	305. 3496	249. 3352	176. 4061	
 61. 200	305. 1943	249. 3352	176. 4852	

te the state of the second

. . .

127

1	TEST IDENT	IFICATION = E)	J (42) DRIE (NUD)		
	Pressure Duta	2nd stainless Steel Case		Integrated	
	TIME (SEC)			IPC1	TPC2
		2.3431	4.8723	0.9955	6. 4214
<u> </u>		4.2586	7.8776	1.6556	7. 3954
	5.800	5. 5846	10.7462	2.7400	7.5588
	8:000	8. 2265	12.3254	4.2211	11.8720
Ignitio	n 6. 200	10.8626	11.9475	6.6325	15. 2053 4- Ig
-			100.0013	18. 1976	28.0001
	6.800	185.1220	187.0113	46.7560	57.4014
	5. 800	231.5465	284. 9716	87.5031	100.7498
	7.000	287.1245	- 272.2822	142.5802	154.4252
	7.200	331,2661	354.3555	20% 6172	237.0397
	7.400			273.1162	
	7.600		<u></u>	343.2062	
	7.800	365.1360	358.3574	418.2611	432. 3596
\$	8,000		367.5786	491.7153	505.1562
	8, 200		<u></u>	<u></u>	
		<u></u>	375.4727	607.8882	655.2117
- 			<u>- 177.4341</u>	717.726	
	· · ·			790.4688	306.6711
		<u> </u>			
				942.2539	
			385. 3079	1013.6730	
•		- 383. 1221 -	385.3079	1095.3110	1113.2370
k:				1172.1000	1190.4630
•	<u> </u>				1267. 7700
·		<u>- 382.9851</u>		1325.6360	
: 	<u>10,400</u>				
	10. 600			- 1479: 30 90 -	
	<u> </u>		366.6733	1556. 3160	1576.6730

329

.	TIME (SEC)	PC1	- PC2	1861	1, 04
_	11.000	385. 9954	387.7665	1633.3920	1654.1160
₽	11.200	384.3535	386. 4006	1710. 4270	1731. 5330
• -	11.400		385.8542	1787. 2570	1808.7590
	11.600	383. 9062	385.9910	1854.0320	1885. 9430
æ –	11.200	382. 5747	384, 4883	1940. 6700	1962.9910
æ –	12.000	383.8062	385.8542	2017. 3080	2040. 0250
-	12.200	383. 1221	385.0347	2074.0010	2117.1140
æ	12.400	384.4702	386.1274	2170.7620	2194.2310
	12.600	384.4902	386. 4005	2247. 3600	2271.4830
-	12.800	365. 4480	387, 2202	2324, 6540	2348.8450
• -	13.000	384. 9006	386. 6738	2401.6880	2426.2350
- 5	13.200	385.4480	387.2202	2478.7240	2503.6240
-	13.400	384. 9005	385.8105	2555.7580	2531.0280
<i>•</i>	13.600	384. 2166	385. 4006	2632. 6700	2658. 3490
e -	13.800	384. 7639	386. 8105	2709. 5680	2735. 6700
-	14.000	361. 6167	383, 5320	2786, 2060	2812.7040
· .	14.200	382.3010	384.2151	2262. 5780	2889. 4790
*	14. 400	384. 6270	386. 2542	2939.2910	2966. 5270
	14. 600	356. 5425	388.3130	3015.4080	3043. 9840
•	14. 800	387. 8264	391.8647		3122.0020
	15: 000	391.4883	393. 3674	3172.1740	3200, 5260
	15. 200		395.1431	3250. 6320	3279.3770
بر ع -	15. 400	395. 2993	397.3289	3229.4720	3358.6240
<i>ii</i>		<u>376.1201</u>	378.1484	3408.6150	3432. 1720
		398.4463	400.3340	3488.0720	3518.0200
•** **		385.8162	368. 4497	3566. 5980	3576. 8970
1	16. 200	381.8905	383, 5320	3643.4660	3674.0940
		380. 5225	382.0295	3717.7120	3750. 6550
			- ··· ····	· · · · · · · · · · · · · · · · · · ·	

330

.

معاد معدد عرز

IESI IDI	ENTIFICATION = 2x	4EB KUN#1236	8 4282	DATE (M/D/)
 2nd Stoinkas	Steel 21 Feb 91			
 TIME (SEC)	PC1	PC2	IPC1	1902
 15.500	383. 2588	384. 8980	3796. 0890	3827. 3460
 16. 500	373. 2708	374. 7895	3871.7400	3903. 3140
 17.000	350. 0107	350. 8843	3944.0680	3975. 8800
 17.200	317. 4468	317.6902	4010. 3120	4042.7240
 17.400	278. 1787	276. 8462	4070. 3780	4102.1950
 17.600	244. 3833	242. 6958	4122.6330	4154.1480
 17.800	219.8920	218.2441	4169.0590	4200. 2420
 13.000	193.6219		4210. 4100	4241.2700
 18.200	164. 4786	162. 7838	4246. 2190	4276.7500
 18.400	136. 5666	134, 7805	4276. 3240	4305. 5080
18.600	112.7594	111.0118	4301.2580	4331.0860
 18.800	94. 2883	92. 5706	4271 0410	4351.4450
 17.000	80. 0587	78.3640	4337.3750	4368. 5390
 19.200	68. 1551	66.7529	4354. 2190	4383.0510
 19.400	59. 5352	57.8738	4366, 9880	4395. 5120
 19.600	52. 5572	50, 9071	4378. 1990	4406. 3910
 19.800	45.8529	44.2136	4388.0390	4415.9020
 20.000	33. 6013	36.9737	4396. 4840	4424.0200
 20: 200	31.6233	• 29. 8704	4403. 5080	4430. 7030
 20. 400	25. 3294	23. 7234	4409. 2030	4435. 0630
 20. 600	20. 4038	18.0071		4440. 3010
 20. 800	16. 5727	14.0246	4417. 4770	4443. 5700
 21.000	14. 5204	11.0194	4420. 5860	4446. 0740
21.200	12: 6048	8. 8338	4423. 2970	4448.0590
 21.400	10.9830	7.7410	4425.6520	4449.7150 C B
21.600	9. 7316	6. 7848	4427.7230	4451.1680 Burn
 21. 800	3. 9106	5.8286	4429. 5860	4452. 4300
 22.000	8. 3533	5.2821	4431.3130	4453. 5390

_____ 331 ____

· ••••

.....

·

....

Ť
	والإسلامية للمراسية المحمدة المحمدة	11 1 0 1 1 1 1 199	SARED RUNHIADS	u reve	and a construction of the second
1	Temperature Dota	and Stornks	Steel Lave		
3	TIME (SEC)	TCI	5 1.1 22	еот	
	5. 400	72. 4604	77. 3644	72, 6343	
٢	5. 600	72.5697	75.2830	72.6782	
)	5. 800	72.9210	75. 5342	72.5019	
	5. 000	73. 2979		72.8857	
¢	6.200	73. 5491	76, 7064	73. 0533	= Ignition.
· •	6. 400	73. 9678	77. 5437	73. 1787	
`	6. 600	74.3028	78,4646	73.3465	
3	6.800	74. 8472	79.4694	73. 5560	
Ĩ,	7. 000	75.4753	80, 8070	73.7654	
	7. 200	76. 1871	82.2324	74.1424	
	7. 400	77.0245	84.0714	74. 6970	
Э	7.600	77. 9877	85. 9164	75.6924	
•	7. 800	79.1601	88. 3445	75.9911	
3	8,000	50. 4153	90, 9400	78.7924	
3	8.200	81.9237	93, 7868	81.0546	
2	8. 400	83. 6824	97.1673	83. 6938	
3	8.600	85. 6504	100, 4394	35.7100	
	<u> </u>	87.9115	104.2167	 90, 1032	
	9.000	90. 1727	108.1050	93. 7059	·····
	7.200	?2.7688	112:2384		
٢	9.400	95. 3231	116.4517	101.5103	
	9. 600	98. 2902	120. 9082	105.7371	
- - 	9. 900	101.4104		110, 1850	
0	10.000	104.6522	130. 1453	114.6047	
	10.200	107:9751	134. 7538	119, 1455	
	10. 400	111.7436	139.7055	123. 9598	· •
()	10. 600	115.3907	14.6115	129.0374	
3	10.800	119.1187	149.6728	134.0237	
. r					

332

-3

TEST IDENTIFICATION = 2X4EB RUN#12368 4282

ė.

4

DATE (M/D/V

	TIME (SEC)		162		
		123.0877	154.8585	139.0509	
*		127 5474	140,3683	144. 5239	
	11. 200		125 0500	150 0375	
	11.400	132.1670	100. 7072		v.
	11.600	136. 6650	1/1.8/41		
	11.800	141.6493	177.4950	161.5105	
~	12.000	149. 9564	183.7324	167. 3321	
	12.200	158. 1014	190.0487	173. 997%	
<u> </u>	12.400	165. 6791	196.2960	180. 1204	
	12 500	172.8813	202.7601	186.4014	
	12.660	180. 4625	209. 7870	193.0380	
	13.000	137: 5384	215.3728	199.9115	ć
÷		174.9537		205. 6271	e
3 _			232 0518	213.4611	
3 _	13.400			220 6507	
	13.800	210. 1181			
3	13.800	217. 7388	247.6846	227.7000	
	171.000	225. 1996	254.8694	235.1089	
	14.200	232. 6624	262.1331	242. 5355	
	14.400	240, 4410	267: 2704	250.7522	
	14.600	248.9304	277.7026	259. 4429	
<u> </u>	14.800	257.0645	284.8401	267.8569	
	15.000	264.6062	291. 5894	275.8848	
<u> </u>	15.200	272.6218	298. 3389	283. 6091	
		280: 2713	304.9331	290.9065	 :
	15.600		310.9844	297. 5031	
۰			317.3459	303.7545	
·				307. 9263	
	16.000	JUE. 0374			
0	15. 200	310. 1274	330. 1485		
	16, 400	317.5331	335.8078	ತನ್ನ 410ರ	
J			333		
				· · · · · · · · · · · · · · · · · · ·	

1001 1004 11:007 1004 - AARD NORSLEND 1000

	TIME (SEC)	TCI		
	16. 600	325.1425	342.0161	327.0442
•	16.800	332.7082	347.8347	332. 5724
•	17.000		G0306531	
	17. 200	345. 8695	<u></u>	344,0066
ţ		353. 3877	354.7471	349. 4409
	17.600	350. 3328	367.7122	354.4092
<u></u>	17.800		374. 6772	357.2612
) 	13.000	374.1450	379.0991	
·	18.200	375. 5558	383. 5787	
, 	18.400	377, 0935	286. 9048	372. 8857
·	18.600	378.5291		377. 3105
		332, 1375		373. 4290
	19.000	333.6118	380. 3405	368.0725
	19.200	384. 5430	376: 3064	
) 				
			365.2207	350. 3726
	20.000	387.7031		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u> </u>				
		374.2012		
	21. 222	1		
	21.200	398.1047	347.8187	
•	21.400	397.0747	347.8794	$324.0740$ $\leftarrow$ Durn Oul
<u>,</u>	21.600	378.2000	345.7400	321.4934
•	21.800			318.7375
	22,000	377.7708	341.9387	316.1370

Ś

. . . . . . . . . . .

€_ €	TEST IDENTIF	1CATION = 2	X4EB KUN#123/U	/ 21304	
Pr S	TIME (SEC)	PC1	PC2	IPC1	IPC2
_	****	TIME OF D	AY 10:22: 8.	<u> </u>	*****
<u>ن</u> (	0.000	-2. 0352	-1.5480	0.0000	0.0000
•	0. 200	-2. 0352	-1.6845	– <del>0. 4070</del>	-0. 3232
	0.400	-1.8984	-1.4114	-0. 8004	-0. 6328
) _	0. 600	-2.1720	-1.5480	-1.2075	-0. 9288
) —	0.800	-2. 1720	-1.2748	-1. 6419	-1.2110
	1.000	-2. 0352	-1.5480	-2.0626	-1. 4933
, <u> </u>	1.200	-1.8984	-1.5480	-2. 4559	-1.8029
) –	1.400	-2.0352	-1.4114	-2. 8493	-2.0938
-	1.600	-2. 1720	-1. 4114	-3. 2700	-2.3811
) _	1.800	-2.0352	-1.2748	-3. 6908	-2. 6497
• -	2.000	-1.7616	-1.2748	-4. 0704	-2. 9047
	2, 200	-2.0352	-1.1382	-4. 4501	-3. 1460
	2.400	-1.6248	-0. 4552	-4.8161	-3. 3053
	2.600	0.2904	3. 3693	-4. 9495	-3.0139
+9_	2.800	10. 5503	18. 1210	-3, 8655	-0 8649
<b>)</b> _	3.000	139.8257	142. 5542	11.1721	15.2026
	3. 200	185. 3799	197. 2191	43.6925	48.1799
	3. 400	199.0598	201.0147	82. 1366	87.0033
	3. 600	206. 4470	208. 3905	122. 6874	127.9440
> -	3, 800	211. 3717	213. 0346	164. 4692	170. 0865
	4.000	214. 1077	215.9029	207.0171	212. 9802
·	4. 200	215.2021	216.8591	249. 9481	256. 2563
) -	4, 400	215.0653	216. 5859	292. 9749	299.6011
- 2	4. 600	214. 3813	216. 1761	335, 9194	342. 8772
	4.800	215. 3389	216. 7225	378. 8914	386. 1670
	5.000	216.0229	217. 6786	422. 0276	429. 6072
	5. 200	216.0229	217. 5420	465. 2324	473. 1294
-		the second s			

---- 335

ĥ	TEST IDE	NTIFICATION = 2	X4EB RUNG1237	0 21304	DATE	(M/D/
	Pressure Dota	Vectra (130	Cose			
	TIME (SEC)	PC1	PC2	IPC1	IPC2	
-	5 200	215. 2021	216. 5859	508. 3550	516. 5422	· · · · ·
	5. 600	215. 4757	216. 9957	551. 4226	559. 9004	
3	5.800	215. 4757	216.8591	594. 5173	603. 2859	·
6	6.000	214. 1077	215. 3566	637. 4 <b>763</b>	646. 5076	
3	6. 200	215. 7493	216. 9957	680. 4619	689. 7427	
	6. 400	216. 5701	218.0884	723. 6939	733. 2510	
	6. 600	217. 3909	218. 9079	767.0893	776. 9507	
)	6. 800	218. 8957	220. 4104	810. 7187	820. 8826	
į	7.000	219. 5797	220. 9568	854. 5662	865. 0193	
	7. 200	220. 9477	222. 3227	898. 6189	909. 3472	
)	7.400	221. 9053	223. 5520	942.9041	953. 9346	
<u>э</u>	Burst 7.600	19. 9895	17.8478	967.0735	978.0747	.cas
	7.800	12.4655	9.6524	970. 3391	980. 8247	
3	8.000	9. 5927	6. 9206	972. 5449	782. 4819	
3	8. 200	7. 6775	5. 2815	974. 2720	983. 7021	
	8.400	6. 7179	4.4620	975. 7117	984. 6765	·
	8. 600	6. 1727	3. 7790	977.0010	985. 5007	•
)	8.000	5. 6255	, 0. 3673	978.1809	786. 2156	
	9.000	5.3517	3. 0961	979.2786	986.8621	
	9. 200	4. 9415	2.9595	980. 3079	987.4675	
9	9.400	4.8047	2.6863	981.2825	988. 0322	
	9. 600	4. 3943	2.4132	982. 2024	988. 5422	<u></u>
.)	7.800	3. 9840	2.2766	783. 0403	989.0112	
Э	10.000	3. 5340	2.2766	783.8372	989. 4666	
- · · ·	10.200	3. 7104	2.0034	984. 6067	989. 8945	
J	10.400	3. 7104	1.8668	985. 3489	990. 2815	
ੇ	10. 600	3. 4368	1.7302	986. 0635	990. 6411	
	10, 800	3. 3000	1.7302	986. 7371	990. 9871	
في ا						

336 -

.....

. . . . . . .

J

7	emo Data Vectra 6				
	crip pour		·		
] - —	TIME (SEC)	TC1	TC2	TC3	
	****	TIME OF DAY	10:22: 8.	934 *********	**
	0.000	68. 0 <b>512</b>	70. 0828	64. 9165	
	0. 200	68.0931	69.9990	64. 9165	••••••••••••••••••••••••••••••••••••••
	0.400	68. 0931	70. 0828	64. 9165	
	0.600	68.1350	70. 0828	64. 8746	· · · · · · · · · · · · · · · · · · ·
	0.800	68. 1350	70.0828	64. 9165	
	1.000	68.0931	69.9990	64. 9165	
	1.200	68.1759	70.0828	64. 9584	
_	1.400	68. 1350	70.0828	64. 9165	
	1.600	68. 1350	70.0828	64. 9165	
—	1.800	68.1350	70.0828	64. 9584	
_	2.000	68.1350	69.9990	84.9584	
	2.200	68.0931	70.0828	64. 9584	
	2.400	68. 1759	70. 0828	64. 9584	
-	2.600	63.1350	70. 1665	64. 9584	
_	2.800	68.1350	70. 0828	<u>4. 9584</u> igni	Mon
. —	3.000	63.0931	70. 1665	65. 0003	• he is a
_	3. 200	68.1350	70, 1665	<u> </u>	
	3. 400	68.1769	70. 1665	65.0841	
_	3. 600	68.1350	70, 2502	65.023	·····
_	3. 800	68.2187	70. 3340	65. 2098	
	4.000	68. 1769	70. 3340	65. 2098	· · · · · · · · · · · · · · · · · · ·
_	4. 200	68.0931	70. 5014	65. 3355	
·	4,400	68.2187	70. 5852	65. 4193	En de Arman - Anna
	4.600	68.2187	70.7527	65. 5450	
·	4. 300	68. 2187	70. 8364	65. 6706	
	5.000	68. 2606	71.0039	65. 8801	•
	5 200	68.2606	71. 1714	66. 08 <b>96</b>	
-	5. 200				
			337		

÷

I.

TEST IDENTIFICATION = 2X4EB RUN#12370 21304 DATE (M/D/

j –	TIME (LEC)	TC1	TC2	тсз		
 	5. 400	68. 3843	71. 5063	66. 3410		
·) _	5, 600	68. 3863	71.8412	<b>66. 6</b> 762		······································
ς –	5.800	68. 3863	72.0087	67. 0951		
	5.000	68. 4700	72.5111	67. 5141		•
; —	6. 200	68. 5538	72.8461	68.0169		
$\gamma$ –	6. 400	68. 6375	73. 3485	68. 6453		<u>.</u>
	5. 600	<b>68</b> . 5794	73. 6835	69.3156		
_}	6. 800	68.8469	74.3534	70.0279		-
	7.000	68. 9307	74.8558	70. 7820	· · · ·	
	7. 200	67.0782	75. 4419	71.7456		
) _	7. 400	69. 2657	76. 1955	72.6674	7.71	fulse
-	7. 600	113. 2375	122. 3634	74.0081		
	7. 500	122. 4375	136. 6259	75.3907		·
)	8.000	120. 4921	151.9417	76. 7313		
) —	8.200	120. 2489	158.1005	78.0720		
	8.400	119.3978	160. 0453	79.4965		
) _	8. 600	119.0604	161.8281	80.7210	1877 - 1. I. I. I.	
	8. BD0	114.0051	163. 7351	82.4292		
•	9.000	116. 1961	165. 2316	83. 9794		
<u> </u>	9. 200	119.3573	178.4456	86.2418		
) —	9. 400	121. 5459	192.6588	94. 5793		
	9.600	122. 2754	191. 4744	100. 4507		
) _	9.800	123. 9370	194.2381	104. 6268		
• –	10.000	125. 9229	202. 7660	107. 9110		() A
	10.200	129. 9353	205.1619	113.2224		
) _	10.400	134. 0287	215. 1630	117. 5608		
• —	10.600	140. 4322	240. 1151	121.8991		
	10.800	153. 0771	268. 5415	125. 6698		
j _		•				

_____ 338 ___

_		ACT		·	
	Pressure Data Vo	ecra 11+23 Ca	/ S C		1900
	TIME (SEC)	PC1	PC2	1861	IFC2
_	5. 400	-1. 6247	-1. 5479	-9. 6630	-8.8507
	5.600	-1. 6247	-1.4113	-9.9879	-9.1466
	5. 800	-1.6247	-1.4113	-10. 3129	-9.4289
	<u>ح. 000</u>	-1. 4879	-1.4113	-10. 6241	-9.7111
	6. 200	-1. 2143	-0.5916	-10. 8944	-7. 9114
Ia	n. ton > 6. 400	2. 0695	4. 8729	-10. 6088	-9. 4833 < I
_	6. 600	150. 3924	154.7380	4. 4374	5. 4778
	6. 800	292.1475	294.3569	48.6915	51. 3874
	7 000	311.4404	313.2097	109.0503	112.1440
				171 8854	175.2914
	7.200	318. 7138	J10. 2.344		
	7. 400	319. 2395	320. 3867	235. 5007	207. 1780
		<u> </u>	321.8164	299.4722	303. 4170
	7.800	321. 4290	322. 7727	- 33. 6621	367.8757
	8.000	322. 9341	324. 1387	428.0984	432. 5669
	8. 200	324. 5759	325. 7781	472. 8494	497.5586
	8. 400	326. 2178	327. 4175	557, 9290	562. 8784
	8. 600	326. 9021	327. 9639	623. 2410	628. 4165
	8. 800,	327. 9966	<u>327. 4668</u>	<u>-685.7607</u>	
	9.000	327. 5017	330. 6963	754. 4805	760.1758
_	9.200	331.1438	332. 1990	820: 5452	826. 4656
	9.400	335. 2485	336. 4341	887. 1843	873. 3287
4	05°,51 - 7,600	18.2155	16. 4850	922. 5308	
_	9 800	12. 2000	8. 6981	925. 6128	731.1392
			<u> </u>	927. 8877	932.6191
	10.000	C. 1420			933 4895
	10.200	8. 5006	-+. J77/		
_	10. 400	7.6796	4. 0532	731. 3077	734. 3347
	10. 600	6. 8587	3. 3701	932.8237	735. 27/1
	10.800	6. 3114	2.9603	934. 1406	935. 9302

Э

				· · ·	
· · ·	тсэ	TC2	тсі	TIME (SEC)	)
	74. 5556	74.8644	74. 0875	5. 400	
<u> </u>	74. 6394	74. 9481	74. 2133	5. 600	
DIa TI	74. 7650	75. 1993	74. 3389	5. 800	
	74.8708	75.2830	74. 4227	6.000	
	75.0164	75.4505	74. 5902	6. 200	
garton	75. 1840 - Ign	75.7016	74. 6739	gn, 15"->6. 400	Ţ
	75.3097	75.8691	74. 7158	<b>5. 600</b>	-
	75. 4354	75.0365	74. 9252	6. 800	-
	75. 6449	76.2040	75.0508	7.000	-
	75.8124	76. 5389	75. 2183	7.200	-
	75. 9800	76.8738	75. 3439	7. 400	-
;;,;,,,,,	76.1995	77.2087	75. 4695	7. 600	-
· · · · · · · · · · · · · · · · · · ·	76. 3990	77.3762	75. 5789	7.800	-
	76. 7341	77.7111	75.8883	8. 000	-
	77. 0274	78.1297	76.0558	8. 200	-
<u></u> .	77. 3625	78. 5484	76. 2233	8. 400	-
	77. 8234	78. 8833	76. 4746	8. 600	-
•	78.3620	79.4694	76.4840	8: 200	-
	78. 9127	80. 0555	77.1446	9.000	-
	79. 5411	80.6416	77. 3959	9.200	-
Se Failure		81.3114 5.*	77.6471	y> ^e T → 9.400 gurs →	Ũ
	80. 5047	109.0783	86.6924	9.500	-
	81. 6358	105.6095	86. 6086	9.800	
	81.8872	103. 4875	87.1949	10.000	-
	82. 9765	101. 9479	89.1631	10. 200	-
	83. 8144	101.2997	89.7493	10.400	-
	84. 9455	100. 2464	90. 3775	10. 600	
· · ·	85. 9929	99.7602	90. 8800	10.800	-

340

*

PA

The ASTRONAUTICS I	ABORATORY The	eoretical ISP H	Program	PA
Micro Version by H	Seckman & Acre	e Revision	n: 5/89	16:16:23 22-Ja
PROPELLANT R-45M -2 DOZ -246 AL AP -70 DDI -206	HF         DENS           2.9700         .9           5.0000         .9           0.0000         2.5           0.6900         1.5           5.3000         1.5	SITYWEIGH'90009.53091002.00070003.010950083.21010102.250	T       MOLES         0       .0952         0       .0048         0       .1116         0       .7082         0       .0040	VOLUME 10.5889 2.1978 1.1148 42.6718 2.0436
GRAM ATOMS / 100 AL .1116 C .964	) GRAMS 49 CL .7082	H 4.3701 N	.7163 0 2.865	59
ENTHALPY = -52.37: CSTAR (FT/SEC) =	376 5025.422	DENSITY =1.70	6	
PRESSURE (PSIA) EPSILON ISP ISP (VACUUM) TEMPERATURE (K) MOLECULAR WEIGHT MOLES GAS/100G CF PEAE/M (SECONDS) GAMMA HEAT CAP (CAL) ENTROPY (CAL) ENTROPY (CAL) ENTHALPY (KCAL) DENSITY (G/CC) ITERATIONS	CHAMBER 200.000 .000000 .000000 2933.25 25.3726 3.94125 .000000 1.21120 44.9163 252.072 -52.3740 .14346E-02 22	THR (SHIFT) 115.077 1.00000 103.217 193.091 2742.72 25.5620 3.91205 .660818 89.8746 1.21120 44.5842 252.072 -64.6127 .88938E-03 20	EXH (SHIFT) 14.6960 2.84119 209.008 241.617 2039.31 25.8687 3.86568 1.33812 32.6098 1.22322 42.0974 252.072 -102.558 .15459E-03 47	EXH (SHIFT) .299347 49.9999 285.980 297.669 1001.14 25.8921 3.86218 1.83091 11.6894 1.26324 36.8319 252.072 -146.326 .64200E-05 91
ALCL	.00047	.00021 .00058	.00000	.00000

PA(

The ASTRONAUT	ICS LABOR	ATORY Th	eoretic	cal ISP P	rogram			PA
Micro Version	by Beckm	an & Acr	ee	Revision	n: 5/89	10	6:16:23	22-Ja
PROPELLANT R-45M DOZ AL AP DDI	HF -2.970 -246.000 .000 -70.690 -206.300	DEN 0 . 0 2. 0 1. 0 1.	SITY 9000 9100 7000 9500 1010	WEIGHT 9.5300 2.0000 3.0100 83.2100 2.2500		DLES 0952 0048 1116 7082 0040	VOLUME 10.5889 2.1978 1.1148 42.6718 2.0436	: } } 5
GRAM ATOMS / AL .1116 C	100 GRA .9649 CL	MS .7082	H 4.3	701 N .	.7163 O	2.8659		
ENTHALPY = -5: CSTAR (FT/SEC)	2.3/3/6 )= 5	039.064	DENSI	11 =1.706	D			
	С	HAMBER	THR (S	SHIFT)	EXH (SH	IFT)	EXH(SH)	(FT)

.

PRESSURE (PSIA) EPSILON ISP ISP (VACUUM) TEMPERATURE(K) MOLECULAR WEIGHT MOLES GAS/100G CF PEAE/M (SECONDS) GAMMA HEAT CAP (CAL) ENTROPY (CAL) ENTHALPY (KCAL) DENSITY (G/CC) ITERATIONS	400.000 .000000 .000000 2973.59 25.4709 3.92604 .000000 1.20985 44.9818 246.655 -52.3733 .28412E-02 7	228.816 1.00000 104.168 193.762 2767.28 25.6353 3.90087 .665101 89.5947 1.21023 44.6265 246.655 -64.8386 .17578E-02 19	14.6960 4.55440 229.644 255.851 1802.10 25.8881 3.86279 1.46625 26.2075 1.22886 41.2177 246.655 -112.956 .17507E-03 29	.594423 49.9997 286.215 297.852 997.495 25.8917 3.86224 1.82746 11.6375 1.26345 36.8086 246.654 -146.480 .12795E-04 28
MOLES/100 GRAMS				
ALCL ALCLO ALCL2 ALCL3 ALHO ALHO2 ALO CCLO CCLO CO CO2 CL CLH CLHO CLO CL2 H HQ	.00041 .00104 .00035 .00016 .00006 .00002 .00002 .00001 .66568 .29919 .03809 .66716 .00005 .00005 .00012 .03593 .03884	.00017 .00048 .00017 .00011 .00002 .00027 .00000 .00001 .65134 .31357 .02602 .68092 .00002 .00002 .00002 .00007 .02369 .02160	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .56561 .39929 .00055 .70769 .00000 .00000 .00000 .00000 .00000 .00050 .00009	$     \begin{array}{r}       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       31164 \\       65327 \\       00000 \\       70824 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\       00000 \\     $

•

PA

The ASTRONAUTICS	LABORATORY Theo	oretical ISP F	rogram	PA
Micro Version by	Beckman & Acree	Revision	1: 5/89	16:16:23 22-Ja
HO2 H2 H2O H3N NO N2 O O2 AL2O3 (ALPHA)	.00001 .42727 1.38639 .00001 .00359 .35636 .00198 .00258 .00000	.00000 .42694 1.39485 .00001 .00170 .35731 .00075 .00099 .00000	.00000 .49658 1.33431 .00000 .00000 .35816 .00000 .00000 .05578	.00000 .75050 1.08041 .00000 .35816 .00000 .00000 .05578

·

# FURTHER TESTING OF VECTRA 2x4 MOTOR CASES

_^

Hieu T. Nguyen United States Air Force Astronautics Laboratory

## Further Testing of Vectra 2x4 Motor Cases

Earlier firings of 2x4 motors demonstrated the concept of using advanced polymer cases. Several maximum pressure / burn time combinations were determined. By building upon the data gained from these earlier tests, new tests to get quantitative estimates on char rates, heat transfer parameters, and practical working temperatures will be made. The test results will be analyzed and put in a short report.

New cases have been made with twice the old wall thickness. The first few new firings will be made with motors with stainless steel cases and cast with end burning grains and instrumented with thermocouples as well as the usual pressure transducer. The thermocouple readings will be used in conjuntion with ISP program generated hot chamber gas properties to verify the calculated thermal gradient in the wall of the steel and Vectra cases. The gradient calculations will be done with a simple 1-D computer program. Figure 1 is an example.

Table 1 shows what the significant stresses are throughout the standard thin walled case and pressures at which it failed in the previous radial and end burning tests. Table 2 shows similar information for the new thick walled cases, though both tables are of limited utility because they are based on the assumption that the whole case wall has the same modulus, i.e. is at the same temperature. Putting it all together, safe firing pressure/time combinations will be estimated from the thermocouple measurements, ISP program information, and the previous work where several cases ruptured at times and temperatures which were measured.

It will be attempted to set the grain dimensions so that it will be possible to measure ablation and char versus heat transfer rate while holding the average axial gas velocity approximately constant. Similarly the ablation and char rate could be measured versus axial gas velocity while holding the heat transfer rate constant. Ablation and char depth will also be correlated with burn time. Figures 2 thru 5 illustrate the correlations which hopefully will be possible, although the plot shapes are unknown as yet and just sketched for illustrative purposes.

Table 3 shows for the new thick wall 2x4 cases all the possible pressure, temperature, and velocity combinations with the available 2x4 nozzle throat diameters and possible range in burning surface area. Table 4 shows similar information for the standard thin wall motor case. Table 5 in conjunction with Figure 6 shows the saliant motor characteristics for the first phase of testing. Hg in these tables stands for the relative heat transfer coefficient, but at this stage it is only possible to estimate it in relative terms based upon convection as in Equation 1.

Hg(2)=Hg(1) * {K(2)/K(1)} *{D(1)/D(2)} *{U(1)/U(2)} *{V(2)/V(1)} *{P(2)/P(1)} * *{Cp(2)/Cp(1)} *EQN 1

Hg(2)= relative change from Hg(1) based upon:

K(1) and K(2)--gas conductivity in first and second cases

D(1) and D(2)--chamber diameter which is same in both cases

- U(1) and U(2)--gas viscosity in first and second cases
- V(1) and V(2)--average gas velocity in first and second cases

P(1) and P(2)-- chamber pressures in first and second cases

Cp(1) and Cp(2)--gas heat capacity in first and second cases Comparing Equation 1 with Tables 2 and 3 it is evident that the only ways to significantly change the convective heat transfer affecting the 2x4 cases are by varying axial velocity and chamber pressure via the throat diameter and burning surface area. A more accurate value of this number would include the effects of radiation and conduction. These effects will be better known after the first phase of testing and used in setting the grain dimensions of the motors to be fired in the second phase.

Attatchment 1 at the end of this package shows the procedure to be used.



STAINLESS STEEI





. . FIGURE 6. THERMOCOUPLE PLACEMENT AND GRAIN DIMENSIONS ON 2x4 MOTORS

2X4STD.XLS

	٨	В	C	D	E	F	G	Н	1
	~	<del></del>		TAE	BLE 1				
2		PRESSUR	E VS STRE	SS IN STAN	DARD THI	CKNESS 2)	(4 CASES		
2									
		1,123	is I.R. (a)	1.244	is O.R. (b)	0.121	is thickness	(t)	
5									
6	PRESSUR	E	S-TAN-a	S-TAN-b	S-RAD-a	S-RAD-b	T-a	<u> </u>	
7	(psi	)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	
8	50		490	440	-50	0	270	220	
9	150		1,471	1,321	-150	0	810	660]	
10	200	1	1,961	1,761	-200	0	1,081	881	
11	250		2,452	2,202	-250	- 0	1,351	1,101	
12	300		2,942	2,642	-300	0	1,621	1,321	
13	350		3,432	3,082	-350	0	1,891	1,541	
14	400		3,923	3,523	-400	0	2,161	1,761	
15	500		4,903	4,403	-500	0	2,702	2,202	
16	600		5,884	5,284	-600	0	3,242	2,642	
17	700	)	6,865	6,165	-700	0	3,782	3,082	
18	800	)	7,845	7,045	-800	0	4,323	3,523	
19	900		8,826	7,926	-900	0	4,863	3,963	
20	1 000	1	9,807	8,807	-1,000		5,403	4,403	
21	1.200	)]	11,768	10,568	-1,200	0	6,484	5,284	
22	1.400		13,729	12,329	-1,400	0	7,565	6,165	
23	1.600		15,690	14,090	<b>-1</b> ,600	0	8,645	7,045	
24	1,800		17,652	15,852	-1,800	0	9,726	7,926	
25	2,000		19,613	17,613	-2,000	0	10,807	8,807	
26	2,200		21,574	19,374	-2,200	0	11,887	9,687	
27	2,400		23,536	21,136	-2,400		12,968	10,568	
28	2,600		25,497	22,897	-2,600		14,049	11,449	
29	2,800		27,458	24,658	-2,800		15,129	12,329	
30	3,000		29,420	26,420	-3,000		16,210	13,210	
31			<u> </u>					OTDERCE	<u></u>
32	OUTLINED FIGURES SHOW MAXIMUM PRESSURE AND CASES STRESSES								
33	WITHSTO	OD BY VEC	CTRA A625	AFTER 10	SECONDS	EXPOSOR	- TO HEAT	AT 200 F 31	
34	AND AFT	ER 2 SECO	NDS AT 10	<u>00 PSI</u>				<u> </u>	
35		1	<u> </u>			<u> </u>	<u> </u>	1	
36	36 PRESSURE = INTERNAL CHAMBER PRESSURE								
37	S-TAN-a	= HOOP S	TRESS AT	INSIDE WA		<u> </u>			
38	S-TAN-b	= HOOP S	TRESS AT	OUTSIDE	WALL			<u> </u>	
39	S-RAD-a	= RADIAL	COMPRES	SSIVE STR	ESS AT INS			<u> </u>	
40	S-RAD-b	= RADIAL	STRESS A	TOUTSIDE	: WALL				
41	T-a = SH	IEAR STRE	SS AT INSI	DE WALL		+			· ·
42	T-b = SH	IEAR STRE	<u>ȘS AT OUT</u>	SIDE WAL	-				
43	1				1		<u> </u>	1	

1         TABLE 2           2         PRESSURE VS STRESS IN MODIFIED THICK 2X4 CASES           3         0         0         0         0         0           4         0.994 is I.R. (a)         1.244 is O.R. (b)         0.25 is thickness (t)           5         0         0         0         0         0         0           6         PRESSURE         S-TAN-a         S-TAN-b         S-RAD-a         S-RAD-b         T-a         T-b           7         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)           8         50         227         177         -50         0         138         88         26           9         150         680         530         -150         0         415         266           10         200         906         706         -200         0         533         350           11         250         1,133         883         -250         0         691         441           12         300         1,586         1,236         -350         0         830         533           13         350         1,586         1,236
2         PRESSURE VS STRESS IN MODIFIED THICK 2X4 CASES           3         0         0           4         0.994 is I.R. (a)         1.244 is O.R. (b)         0.25 is thickness (t)           5         0         1         1         1         1         1           6         PRESSURE         S-TAN-b         S-RAD-a         S-RAD-b         T-a         T-b           7         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)           8         50         227         177         -50         0         138         88           9         150         680         530         -150         0         415         265           10         200         906         706         -200         0         553         353           11         250         1,133         883         -250         0         691         441           12         300         1,360         1,060         -300         0         830         533           13         350         1,383         1,413         -400         0         1,106         706           14         400         3,172
3         0.994         is I.R. (a)         1.244         is O.R. (b)         0.25         is thickness (t)           5
4         0.994 is I.R. (a)         1.244 is O.R. (b)         0.25 is thickness (t)           5                6         PRESSURE         S-TAN-a         S-TAN-b         S-RAD-a         S-RAD-b         T-a         T-b           7         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)           8         50         227         177         -50         0         138         86         9         150         680         530         -150         0         415         265           10         200         906         706         -200         0         553         355           11         250         1,133         883         -250         0         681         441           12         300         1,566         1,236         -350         0         968         618           14         400         1,813         1,413         -400         0         1,106         706           15         500         2,266         1,766         -500         0         1,383         883           16         600
5
6         PRESSURE         S-TAN-a         S-TAN-b         S-RAD-a         S-RAD-b         T-a         T-b           7         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)         (psi)           8         50         227         177         -50         0         138         88           9         150         680         530         -150         0         415         265           10         200         906         706         -200         0         553         335           11         250         1,133         883         -250         0         691         441           12         300         1,360         1,060         -300         0         830         530           13         350         1,586         1,236         -350         0         968         616           14         400         1,813         1,413         -400         0         1,106         706           15         500         2,266         1,766         -500         0         1,833         883           16         600         2,719         2,119         -600
7         (psi)         (ps
8         50         227         177         -50         0         138         88           9         150         680         530         -150         0         415         265           10         200         906         706         -200         0         553         355           11         250         1,133         883         -250         0         691         441           12         300         1,360         1,060         -300         0         830         533           13         350         1,586         1,236         -350         0         968         618           14         400         1,813         1,413         -400         0         1,106         706           15         500         2,266         1,766         -500         0         1,383         883           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,936         1,236           18         800         3,625         2,825         -800         2,2489         1,583 </th
9         150         680         530         -150         0         415         265           10         200         906         706         -200         0         553         355           11         250         1,133         883         -250         0         691         444           12         300         1,360         1,060         -300         0         830         530           13         350         1,586         1,236         -350         0         963         616           14         400         1,813         1,413         -400         0         1,106         700           15         500         2,266         1,766         -500         0         1,383         883           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,936         1,236           18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         2,489
10         200         906         706         -200         0         553         355           11         250         1,133         883         -250         0         691         444           12         300         1,360         1,060         -300         0         830         530           13         350         1,586         1,236         -350         0         968         616           14         400         1,813         1,413         -400         0         1,106         706           15         500         2,266         1,766         -500         0         1,883         883           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,936         1,236           18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         0         2,489         1,585           20         1,000         .4,532         3,532         -1,000         0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
12         300         1,360         1,060         -300         0         830         530           13         350         1,586         1,236         -350         0         968         618           14         400         1,813         1,413         -400         0         1,106         700           15         500         2,266         1,766         -500         0         1,383         880           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,383         1,236           18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         0         2,489         1,589           20         1,000         4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,872         2,472           23         1,600         7,251         5,651         -1,600 </th
13         350         1,586         1,236         -350         0         968         618           14         400         1,813         1,413         -400         0         1,106         700           15         500         2,266         1,766         -500         0         1,383         883           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,936         1,236           18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         0         2,489         1,589           20         1,000         4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357
14       400       1,813       1,413       -400       0       1,106       706         15       500       2,266       1,766       -500       0       1,383       883         16       600       2,719       2,119       -600       0       1,660       1,060         17       700       3,172       2,472       -700       0       1,936       1,236         18       800       3,625       2,825       -800       0       2,213       1,415         19       900       4,079       3,179       -900       0       2,489       1,589         20       1,000       4,532       3,532       -1,000       0       2,766       1,766         21       1,200       5,438       4,238       -1,200       0       3,872       2,472         23       1,600       7,251       5,651       -1,600       0       4,425       2,825         24       1,800       8,157       6,357       -1,800       0       4,979       3,175         25       2,000       9,064       7,064       -2,000       0       5,532       3,532         26       2,200       9,970
15         500         2,266         1,766         -500         0         1,383         883           16         600         2,719         2,119         -600         0         1,660         1,060           17         700         3,172         2,472         -700         0         1,936         1,236           18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         0         2,489         1,589           20         1,000         4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,872         2,472           23         1,600         7,251         5,651         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357
16 $600$ $2,719$ $2,119$ $-600$ $0$ $1,660$ $1,060$ 17700 $3,172$ $2,472$ $-700$ $0$ $1,936$ $1,236$ 18 $800$ $3,625$ $2,825$ $-800$ $0$ $2,213$ $1,413$ 19 $900$ $4,079$ $3,179$ $-900$ $0$ $2,489$ $1,589$ 20 $1,000$ $4,532$ $3,532$ $-1,000$ $0$ $2,766$ $1,766$ 21 $1,200$ $5,438$ $4,238$ $-1,200$ $0$ $3,319$ $2,119$ 22 $1,400$ $6,345$ $4,945$ $-1,400$ $0$ $3,872$ $2,472$ 23 $1,600$ $7,251$ $5,651$ $-1,600$ $0$ $4,979$ $3,179$ 24 $1,800$ $8,157$ $6,357$ $-1,800$ $0$ $4,979$ $3,179$ 25 $2,000$ $9,064$ $7,064$ $-2,000$ $0$ $5,532$ $3,532$ 26 $2,200$ $9,970$ $7,770$ $-2,200$ $0$ $6,638$ $4,238$ 27 $2,400$ $10,876$ $8,476$ $-2,400$ $0$ $6,638$ $4,238$ 28 $2,600$ $11,783$ $9,183$ $-2,600$ $0$ $7,191$ $4,591$
17       700       3,172       2,472       -700       0       1,936       1,236         18       800       3,625       2,825       -800       0       2,213       1,415         19       900       4,079       3,179       -900       0       2,489       1,589         20       1,000       .4,532       3,532       -1,000       0       2,766       1,766         21       1,200       5,438       4,238       -1,200       0       3,319       2,119         22       1,400       6,345       4,945       -1,400       0       3,872       2,472         23       1,600       7,251       5,651       -1,600       0       4,425       2,825         24       1,800       8,157       6,357       -1,800       0       4,979       3,179         25       2,000       9,064       7,064       -2,000       0       5,532       3,532         26       2,200       9,970       7,770       -2,200       0       6,085       3,885         27       2,400       10,876       8,476       -2,400       0       6,638       4,238         28       2,600
18         800         3,625         2,825         -800         0         2,213         1,413           19         900         4,079         3,179         -900         0         2,489         1,585           20         1,000         4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,319         2,119           22         1,400         6,345         4,945         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,979         3,179           24         1,800         8,157         6,357         -1,800         0         4,979         3,179           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783
19         900         4,079         3,179         -900         0         2,489         1,589           20         1,000         .4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,319         2,119           22         1,400         6,345         4,945         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357         -1,800         0         4,979         3,179           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,638         4,238           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
20         1,000         4,532         3,532         -1,000         0         2,766         1,766           21         1,200         5,438         4,238         -1,200         0         3,319         2,119           22         1,400         6,345         4,945         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357         -1,800         0         4,979         3,179           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,638         4,238           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
21       1,200       5,438       4,238       -1,200       0       3,319       2,119         22       1,400       6,345       4,945       -1,400       0       3,872       2,472         23       1,600       7,251       5,651       -1,600       0       4,425       2,825         24       1,800       8,157       6,357       -1,800       0       4,979       3,179         25       2,000       9,064       7,064       -2,000       0       5,532       3,532         26       2,200       9,970       7,770       -2,200       0       6,085       3,885         27       2,400       10,876       8,476       -2,400       0       6,638       4,238         28       2,600       11,783       9,183       -2,600       0       7,191       4,591
22         1,400         6,345         4,945         -1,400         0         3,872         2,472           23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357         -1,800         0         4,979         3,175           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
23         1,600         7,251         5,651         -1,600         0         4,425         2,825           24         1,800         8,157         6,357         -1,800         0         4,979         3,179           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
24         1,800         8,157         6,357         -1,800         0         4,979         3,179           25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,236           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
25         2,000         9,064         7,064         -2,000         0         5,532         3,532           26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
26         2,200         9,970         7,770         -2,200         0         6,085         3,885           27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
27         2,400         10,876         8,476         -2,400         0         6,638         4,238           28         2,600         11,783         9,183         -2,600         0         7,191         4,591
<b>28</b> 2,600 11,783 9,183 -2,600 0 7,191 4,591
29 2,800 12,689 9,889 -2,800 0 7,745 4,945
<b>30</b> 3,000 13,596 10,596 -3,000 0 8,298 5,298
33 PRESSURE = INTERNAL CHAMBER PRESSURE
34 5-TAN-A = HOOP STRESS AT INSIDE WALL
33 5-TAIN-D = HOUP STRESS AT OUTSIDE WALL
30 JO-MAD-A = MADIAL COMPRESSIVE STRESS AT INSIDE WALL
$\frac{37}{29} = \frac{37}{29} = 37$

: •

:

	ΔΙ	В	С	D	E	F	G	H
			GAS PROF	PERTIES IN	2X4 MOTO	RS		
-								
2			TABLE 3.	THICK WAL	L CASES			
5	Pmax	Pmin	burn rate	throat dia	I.D. grain	TEMP	V Chambr	Hg
6	(psi)	(psi)	(in/sec)	(in)	(in)	F	(ft/sec)	(relative)
7								
8	200	179,4667	0.145	0.126	0.604258	4852	14.54997	1
ğ	200	179.3586	0.145	0.125	0.645605	4852	14.31993	0.987332
10	200	178.7766	0.145	0.12	0.817935	4852	13.19725	0.924905
11	200	175.5103	0.145	0.1	1.25496	4852	9.164757	0.690887
12	300	266.6998	0.17	0.1	1.006842	4895	9.166903	0.955788
13	400	358.2719	0.19	0.1	0.719849	4924	9.172724	1.203741
14	450	404.253	0.1975	0.1	0.514206	4935	9.180446	1.323571
15	500	450.2366	0.205	0.1	0.17016	4946	9.18727	1.440826
16								
17								
18								
19			TABLE 4.	THIN WALL	CASES			
20								
21	Р	burn rate	throat dia	I.D. Grain	TEMP	V Chambr	Hg	mass flo
22	(psi)	(in/sec)	(in	(in	<u> </u>	(ft/sec)	(relative)	(relative)
23								
24	200	0.145	0.145	0.60513	4852	14.92769	0.960595	1.393427
25	200	0.145	0.138	0.891915	4852	13.52119	0.887479	1.262136
26	200	0.145	0.125	1.239553	4852	11.09371	0.757543	1.035543
27	200	0.145	0.12	1.342377	4852	10.22396	0.709645	0.954356
28	200	0.145	0.1	1.659989	4852	7.099972	0.530092	0.662747
29	300	0.17	0.125	0.783248	4895	11.0963	1.048001	1.54501
30	300	0.17	0.12	0.97536	4895	10.22635	0.981738	1.423882
31	300	0.17	0.1	1.471337	4895	7.101634	0.733341	0.988807
32	400	0.19	0.1.2	0.447415	4924	10.23285	1.236424	1.892387
33	400	0.19	0.1	1.281875	4924	7.106144	0.923586	1.314158
34	500	0.205	0.1	1.06218	4946	7.117412	1.105493	1.640553

	1	J	К	L	М	N	0	P
1								
2								
3								
4								
5	mass flo	RHO C	RHOT	C STAR	TEMP K	condctvty	viscosity	heat cap
6	(relative)			feet/sec		(relative)	(relative)	
7								
8	1	0.001434	0.000889	5025.4	2933	52.16519	64.63423	44.9
9	0.983766	0.001434	0.000889	5025.4	2933	52.16519	64.63423	44.9
10	0.906639	0.001434	0.000889	5025.4	2933	52.16519	64.63423	44.9
11	0.62961	0.001434	0.000889	5025.4	2933	52.16519	64.63423	44.9
12	0.939366	0.002139	0.001324	5034.4	2957	52.39382	64.96114	45
13	1.24845	0.002841	0.001758	5039.1	2974	52.55518	65.18074	45
14	1.403434	0.003191	0.001976	5040.99	2980	52.61201	65.26385	45
15	1.558526	0.003541	0.002193	5042.85	2986	52.66878	65.34686	45
16								
17								
18		****						
19								
20								
21	RHO C	RHO T	C STAR					
22			feet/sec					
23								
24	0.001434	0.000889	5025.4					
25	0.001434	0.000889	5025.4					
26	0.001434	0.000889	5025.4					
27	0.001434	0.000889	5025.4					
28	0.001434	0.000889	5025.4					
29	0.002139	0.001324	5034.4					
30	0.002139	0.001324	5034.4					
31	0.002139	0.001324	5034.4			-		
32	0.002841	0.001758	5039.1					
33	0.002841	0.001758	5039.1					
34	0.003541	0.002193	5042.85					

	۵	B	C	D	E	F	G	Н
$\frac{1}{2}$		TABLE 5.	CHARACTE	RISTICS O	F FIRST T	ST PHASE	MOTORS	
3								
4	MOTOR	Pressure	Burn time	throat dia	Grain I.D.	Gran lenth	H¢	Velocity
5		(psi)	(sec)	(in	(in	(in	(relative)	(ft/sec)
ā	steel 1	200	15	0.145	0.605	2.18	0.96	14.9
7	steel 2	400	12	0.12	0.447	2.25	1.23	10.2
	C-130 1	200	6	0.145	0.605	0.9	0.96	14.9
-	A-625 1	200	6	0.145	0.605	0.9	0.96	14.9
10	A-950 1	200	10	0.126	0.604	1.45	1	14.5

Attachment 1 Procedure

#### VECTRA A950 CASE PREPARATON PROCI

MATERIALS

10 VECTRA A950 CASES (NUMBERS 31-40) POWER DRILL WIRE BRUSH ACETONE R-45M DDI DBTDL SMALL PAINT BRUSH PLASTIC CUP

#### PROCEDURE

- 1) ROUGHEN THE INSIDE SURFACE OF THE CASES USING A POWER DRILL AND WIRE BRUSH.
- 2) WASH THE INSIDE SURFACES WITH A COAT OF ACETONE.
- 3) DRY OFF THE ACETONE WITH NITROGEN.
- 4) ADD 82.85 GRAMS OF R-45M TO THE PLASTIC CUP.
- 5) ADD 17.14 GRAMS OF DDI.
- 6) ADD 1 DROP OF DBTDL.
- 7) MIX.
- 8) USE A SMALL PAINT BRUSH TO COAT A LAYER (ABOUT 1/16 IN. THICK) OF THE R-45M/DDI ON THE INSIDE SURFACE OF THE CASES.
- 9) CAST THE PROPELLANT INTO THE CASES.

.84 =/mstor = 5000 gm = 12 motion + 500 ym extra

mays cory

			SOLID PRO	PELLANT PROCESSI	NG SHEET		د ها که در م جربی جرب می می در
TITLE: RS-5			I ENGINEER: NGU	YEN		1 OPERATOR:	
ATCH NOT			I MIXER: 1 BAL			I BATCH SIZE: 500	B I DATE
ENGINEER'S COMMENTS:							
NATERIAL	1 -	AMOUNT	i	KE19	87	1	MITES
R-45M	1	9.51 %1 * :	475,58 SRI N	I T	. 1 6.	1 925175	
99 <b>2</b>	1	2.08 ×1	100.08 BRI N	<u> </u>	- I S		
TEPANOL	ł	0,15 ×1	7.50 GRI N	T	16	1 HX-878	
92245	Ι.	0.100 XI	5.08 GRI N	1 7	15	]	
21 (6 pc)	I	3.03 %1	150.00 GRI N	i T	15	I KDX-65	
AP (408 mc)	ł	38.00 ×1	1500.00 GRI N	17	1 G	1 73247	
2 (208 mc)	3	30.08 %1	1520,00 SRI N	I T	15	I 7781D	
AP (58 mc)	}	10.08 XI	500.00 GRI N	I T	16	1 55-1-77	
AP (10 mc)	1	13.00 XI	658.08 GRI N	1 T	15	1 5325	
	!	2.24 %1	112.00 GRI N	[ T	15	1	
<u> </u>	1	×1	8.22 SRI X	1 T	15	1	
	:	. 08 51	0.03 SRI N	17	15		
	;	×!	0.22 STI N	1 7	IS	1	
		×1	0.08 SRI K	17	15	1	
	:	×1	.e. 08 531 X	I T	1 5	1	
PROCESSING STE	3	I RPM/SPEED	I MINUTES	VACUUM	I TEMP	DES F) 1	INSTRUCTIONS
1 ADD FIRST INSREDIE	VTS	11	1 10	I NO VAC	1 140	DES F   R-45#/DOZ/TE	PANOL/A02245/A
2 800 408mc & 50% 200	Sac AP	11	1 2/10	I NO VAC/VAC	1 140	DE6 F 1	
3 400 58 mc AP	• • • • • • • •	l 1	! 2/15	I NO VAC/VAC	140	029 F I	
4 ADD 10 == AP		I 1	1 8/15	I NO VACZVAC	1 140	DCG 7 1	
5 ADD 25% 200 mc AP		11	1 2/20	I NO VAC/VAC	1 148	DEG F I	*
5 ADD 25% 200 at AP		I 1	1 2/20	I NO VAC/VAC	1 142	DES F I	
7 ADD DDI		1 1	1 2/15	I NO VAC/VAC	1 :43	DEG F I	
8 CRST		1	]	1992	1 140	DEG F I	
		1	1	1	1	DEG F I	
2			1	f	1	DEG F I	
**************************************	÷.		:	1	1	DE3 7 1	
12			j	1	1	DES F I	
TOTAL HIX TIME WILL B	E 1 X9	UR AND' 57 KIN	9728.				
SOLVENT: CYCLOHEXAXCN	- <i></i> - E		I COSMENTS IC	.498 1.3			
FIXER'S COMMENTS:				• • • • • • • • • • • • • • • • • • •			
						I ORSE PUEN.	N 01

### APC 2X4 EXPERMENTAL TEST FIRING PROCEDURE -

1. LABEL TWO STEEL CASES, 1 THIN WALLED VECTRA A625 MOTOR AND 1 THIN WALLED VECTRA C130 MOTOR AND TEN THICK WALLED VECTRA A 950 MOTOR CASES

2. ROUGHEN THE TEN THICK WALLED CASES WITH A POWER DRILL STEEL BRUSH

3. BLOW OUT THE DEBRIS WITH NITROGEN

4. WASH THE INSIDE SURFACE WITH ACETONE

5. DRY WITH NITROGEN

6. WASH THE INSIDE SURFACE WITH METHANOL

7. MEASURE THE INSIDE DIAMETER 1/16", 1/2", AND 5/4" FROM THE NOZZLE END (THE THICK WALLED END IS THE NOZZLE END)

8. MEASURE THE OUTSIDE DIAMETER IN THE SAMES PLACES

MARK SPOTS FOR PLACING THERMOCOUPLES AS IN THE SKETCH IN FIGURE 6 AT:
 A. 2 MARKS 120 DEGREES APART 1/4" FROM THE NOZZLE END
 B. 2 MARKS 120 DEGREES APART 5/4" FROM THE NOZZLE END

11. IDENTIFY THERMOCOUPLE TYPE NEEDED FOR 150 TO 600 DECREES F RANGE

12. THIN THERMOCOUPLE BEAD JUNCTION

13. COVER THERMOCOUPLE JUNCTION WITH A SMALL BEAD OF EPOXY AND LET IT SET

14. CALIBRATE THERMOCOUPLES AT 0 DEG C, 40 DEG C, AND 100 DEG C, BY SOAKING THEM IN TEMPERATURE CONTROLLED WATRER

15. ESTIMATE THERMOCOUPLE LAG TIME BY QUENCHING IT FROM O DEG C ICE WATER TO 100 DEG C BOILING WATER AND PLOTTING CHAMGE OF TEMPERATURE READING WITH TIME

16 ATTACH THERMOCOUPLES AT PREMARKED SPOTS WITH EPOXY

17. WEIGH CASES

18. MACHINE THE GRAINS OF THE 2 STAINLESS STEEL MOTORS, THE TWO THIIN WALLED VECTRA CASES, AND ONE THICK WALLED VECTRA CASE PER TABLE 5 AND FIGURE 6.

19 PUT IN NOZZLES WITH THE DIAMETER IN 2X4 SKETCHES

20 PUT IN THERMALITE IGNITERS

21 PUT 2X4'S ON TEST STAND AND CONNECT THERMOCOUPLES AND PRESSURE TRANSDUCER TO INSTRUMENTAION WHICH CAN RECORD ALL READINGS VERSUS TIME

22 CHECK TEMPERATURE AND TRANSDUCER READINGS BEFORE FIRING

23 FIRE THE TWO STEEL CASE MOTERS AND ONE THICK WALLED VECTRA MOTOR WHILE MEASURING PRESSURE AND TEMPERATURE VERSUS TIME

24 WITH THREE PRONGED MICROMETER MEASURE THE CHARRED IINNER DIAMETER AT THE THERMOCOUPLE POINTS ON THE VECTRA CASE TO FIND THE AMOUNT OF ABLATION

25 WEIGH CASES

26 SCRAPE OUT THE CHAR LAYER AND MEASURE THE ID AGAIN TO FIND THE CHAR DEPTH

27 WEIGH CASES

28 CALCULATE THE CHAMBER CAS HEAT TRANSFER COEFFICIENT AND THERMAL GRADIANT IN EADH WALL

29 CALCULATE SAFELY SUSTAINABLE FIRING TIMES AND PRESSURES IN THICK WALLED VECTRA CASES

30 MACHINE THE GRAINS OF THE REMAINING NINE THICK WALLED VECTRA MOTORS PER THE INFORMATION GAINED IN STEPS 24 THRU 29

31 REPEAT STEPS 19 THRU 29

32 SECTION AND PHOTOMICROGRAPH

33 WRITE REPORT AND REVIEWED PAPER

Attachment 2

LCP END-BURNING 2X4 F

Previo-s Dota

FIRING NUMBER	CASE . MATERIAL	PRESSURE (PSI)	DURAI (SEC	
1	RYTON	196	11.	
2	VECTRA C130	>1100	4.0	OVERPRESSURED (INHIBITOR UNBONDED ?)
3	VECTRA A625	201	10.5	FAILED @ t= +10.5 SEC

## LCP 2X4 FIRINGS

FIRING	CASE	PEAK	AVERAGE	DURATION	CASE/PROPELLANT BOND PROMOTER	COMME	
NUMBER	MATERIAL	(PSI)	(PSI)	(SEC)			
1	VECTRA C130	961	864	1.446	N-100		
2	VECTRA C130	1278		.070	NONE	FAILED IGNITI	
3	VECTRA C130	1018	990	1.376	NONE		
4	VECTRA C130	1303		.059	N-100	FAILEL IGNITI	
5	VECTRA A625	966		.058	N-100	FAILED	
6	VECTRA A625	1019		.807	N-100	FAILED @ +.8C	
7	VECTRA A625	862	818	1.436	NONE		
8	VECTRA A625	913	876	1.419	NONE		
9	RYTON	316	269	2.346	NONE		
10	RYTON	753	727	1.578	N-100	·	
11	RYTON	745	713	1.605	NONE		

# DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS

Tracy R. Reed Student Tehachapi High School

Final Report for: Summer Research Program Phillips Laboratory

Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C.

August 1993

# DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS

Tracy R. Reed

## Abstract

A working solid rocket motor with all structural components made out of liquid crystal polymers (LCP's) was built and tested. The motor cases and nozzles were injection molded. Three propellant formulations with different burn rates were tested in the motors. After development and testing, the rocket motors will be sent to the U.S. Air Force Academy for their advanced Astronautics curricula.

## DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS

### Introduction

The goal of this experiment was to develop and produce a working solid rocket motor with nozzle and case made out of Liquid Crystal Polymers (LCP's). Three different propellants with three different burn rates were formulated. Due to the nature of LCP's, it was necessary that the propellants be non-aluminized to cut down on nozzle throat erosion. After development and testing, the motors were sent to the U.S. Air Force Academy for ground launch. These newly developed motors will replace the old motor the Academy used in its experiments. The rocket motor used at the Academy is often referred to as the Academy motor. The old Academy motor was labor intensive and expensive to produce. The new motor requires very little machining and is easy to assemble. The cases and nozzles are injection molded into the correct shape. This cuts down on the cost of machining the case and nozzle, as was required by the old Academy motor. The old Academy motor used only one propellant formulation. Three new propellants were developed for the new motor to provide more flexibility.

#### Procedure

The first step in the development of the motor was the propellant formulation. Three different types of propellant were developed with three significantly different burn rates. The propellant was based on the prior Academy motor propellant and

modified to produce the new propellants. Each propellant was to have a unique plume and physical color. Different additives were added to each propellant to provide these different colors. The physical color of the propellant was easy to achieve due to the different colors of the burn rate modifiers. The unique plume colors were significantly more difficult. The propellants were referred to as high, medium, and low, according to burn rate. The high propellant is black, the medium propellant is red, and the low propellant is yellow. The plume color for the high propellant is green, medium is red, and low is blue. The theoretical  $I_{sp}$  for all of the propellants is approximately 240 sec. to give all of the motors the same total impulse.

All solid ingredients were dried in a drying oven for at least 24 hours before being used except for the copper ammonium chloride which was ground and dried until all water appeared to be driven from the hydrated crystals. This turns the blue crystals into a red-brown powder. To date, only the medium propellant has been successfully mixed and fired in an Academy motor. The low propellant began to cure in the mixing pot on attempts to mix it. This may be happening due to the copper ammonium chloride which may be acting as a cure catalyst causing the propellant to cure faster than it should. Great effort was required to get the low propellant cast before it was completely cured in the pot. This propellant was hand cast into the 2x4 motors due to its extreme viscosity. The other two propellants were vacuum cast. All of the propellants have been fired in a 2x4 motor configuration to provide burn rate and  $K_n$ data. The high propellant has not been cast into Academy motors yet, but this should occur in the near future. More effort will have to be put into the low propellant cure problem.

The propellants were cast into cardboard tubes for the Academy motor that had been lined on the inside with a mixture of R45M (a hydroxy terminated polybutadiene) containing AO2246 (an anti-oxidant) and DDI (dimeryl diisocyanate) to ensure a good bond between the propellant and the tube. This tube was then fit into an outer tube. The

two tubes fit perfectly inside one another. The outer tube was then cut to 7 1/4" long. The inner tube containing the propellant was slid into the outer tube, and this whole assembly was inserted into the motor. The nozzle was then pressed into place and held with rivets. Detailed instructions on the assembly of an Academy motor may be found near the end of this paper.

The original grain design was a grain 7 1/4" long with a 3/8" bore. The propellant was then to be cut radially into three pieces. The first was to be 2 1/2" long, the second 2", and the third 2 1/2". This would allow the propellant to burn in the center as well as on the ends. This was to provide even surface area throughout the burn. The combustion chamber in the case is slighly larger than 7 1/4" long. This allowed the propellant grains to move around slightly. It was discovered during the first five test firings that there was a tremendous pressure differential over the length of the propellant grain. This caused the propellant segment nearest the nozzle of the motor to be forced down the nozzle intake, compressing the end of the propellant and pinching off the flow of exhaust. This caused an immediate over-pressurization and explosion of the case. The solution to the problem was a phenolic spacer between the nozzle and propellant that would hold the propellant firmly in place. Cardboard spacers made out of the same material as the inner tube were first tried, but it was found that they lacked sufficient compressive strength. During the subsequent firings of the Academy motors the LCP nozzle throat eroded to such an extent that the pressure loss inside the motor became unacceptable. It was decided that the burn time must be made short enough such that all of the propellant could be burned before the nozzle eroded completely through. Various grain configurations were tried in an effort to increase the burn surface area. The final solution was to inrease the bore to 49/64" with no radial cuts. This worked quite well, giving a burn time of approximately 3 seconds with a maximum thrust of approximately 50 lbs. All motor testing was done on pad 44 in area 1-30 at Phillips Laboratory, Edwards Air Force Base. Burn rate and Kn dat may be

found at the end of this paper.  $K_n$  is defined as  $A_{grain}/A_{throat}$ . Burn rate is in in./sec. <u>Results</u>

It was proven that an all LCP rocket motor could be manufactured and fired. Three propellants with different burn rates were formulated and tested by means of 2x4 and LCP motor firings. An all LCP case and nozzle was engineered, tested, and found capable of withstanding the required operating pressures. The nozzle still erodes significantly, just barely burning though the nozzle throat. In the future, nozzles may be coated with silicon nitride or silicon carbide in an attempt to relieve this problem. This should give a significant increase in motor performance.
### ACADEMY MOTOR PROPELLANT FORMULATIONS

High			
Ingredient	% by weight	Ingredient	% by weight
R45M with AO2246	10.46	R45M with AO2246	10.46
DOZ	2.15	DOZ	2.15
DDI	2.39	DDI	2.39
AP (400 mc)	27.11	AP (400 mc)	25.17
AP (200 mc)	27.11	AP (200 mc)	25.17
AP (25 mc)	20.78	AP (25 mc)	25.17
Boron	5.00	Fe ₂ O ₃	0.20
		$Sr(NO_3)_2$	9.29

Low

Ingredient	% by weight
R45M with AO2246	10.46
DOZ	2.15
DDI	2.39
AP (400 mc)	40.00
AP (200 mc)	20.00
AN	15.00
Copper ammonium chlorid	le 2.00
Potassium perchlorate	8.00

### INSTRUCTIONS FOR ASSEMBLING AN ACADEMY MOTOR

1. Bore nozzle to 54/64" using a type Q drill.

2. Cut outer tube to 7 3/4" long.

3. Insert out tube into case and compress.

4. Tape 1" long phenolic spacer to the end of the propellant grain using 1 layer of masking tape.

5. Slide grain into outer tube in case and press down firmly.

6. Trial fit nozzle on the end of the motor making sure that there is no more than a 1/8" gap between the nozzle and the end of the case.

7. Prepare polyurethane sealant.

8. Apply polyurethane to the nozzle end of the motor case and both sealing surfaces on the nozzle.

9. Wipe off excess polyurethane.

10. Insert nozzle and compress.

11. Insert 2 1/8" rivets, each on opposites sides of the motor and use a vice to press them in. Rivets should go in firmly, but don't force them. Make sure the holes on the nozzle and case are aligned.

12. Insert other 2 rivets using the same procedure as step 11.

13. Prepare the igniter by cutting a piece of the ANB to 1/4x1/4x1/8".

14. Push 4" of #26 nichrome wire through the center of the face of the propellant.

15. Cut 18" of #26 strain gauge wire (stranded) and twist 1 1/2" of it to the nichrome wire.

16. Insert the igniter 1/2 way down propellant grain.

17. Secure the igniter wires to bottom of motor with tape.



, J



 $\bigcirc$ 





 $\bigcirc$ 

# High Academy Propellant



The ASTRONAUTI Micro Version	CS LABORATOR by Beckman &	Y Theoreti Acree	ical ISP Pr Revision:	ogram 5/89	13:10:36 21-,
PROPELLANT AP R-45 DOZ DDI AN CUAMC1 KC104	HF -70.6900 2500 -336.8000 -206.3000 -87.2000 -70.0000 -102.8000	DENSITY 1.9500 .9300 .5190 .9240 1.7300 2.0000 1.7300	WEIGHT 60.0000 10.4600 2.1500 2.3900 15.0000 2.0000 8.0000	MOLES .5107 .1675 .0052 .0041 .1874 .0072 .0577	VOLUME 30.7692 11.2473 4.1426 2.5866 8.6705 1.0000 4.6243
GRAM ATOMS / C .9559 CL	100 GRAMS .5973 CU .0	0072 H 4.4	4129 K .C	)577 N .908	1 0 2.9664
ENTHALPY = $-61$ CSTAR (FT/SEC)	.52411 = 4844.	DENS: 128	ITY =1.586		
PRESSURE (PSIA EPSILON ISP ISP (VACUUM) TEMPERATURE(K) MOLECULAR WEIG MOLES GAS/100G CF PEAE/M (SECOND GAMMA HEAT CAP (CAL) ENTROPY (CAL) ENTROPY (CAL) ENTHALPY (KCAL DENSITY (G/CC) ITERATIONS	CHAME ) 1000. .0000 .0000 2773. HT 25.20 3.966 .0000 5) .0000 1.217 44.19 239.2 .75381E-	BER   THR     00   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1     000   1 <td>(SHIFT) 566.036 1.00000 101.717 186.942 2534.26 25.2751 3.95646 .675590 85.2246 1.21954 43.6755 239.203 73.4098 813E-02 14</td> <td>EXH(SHIFT) 14.6960 8.49201 238.594 257.384 1317.30 25.4036 3.93645 1.58470 18.7902 1.25215 38.8467 239.204 -126.921 .23501E-03 25</td> <td></td>	(SHIFT) 566.036 1.00000 101.717 186.942 2534.26 25.2751 3.95646 .675590 85.2246 1.21954 43.6755 239.203 73.4098 813E-02 14	EXH(SHIFT) 14.6960 8.49201 238.594 257.384 1317.30 25.4036 3.93645 1.58470 18.7902 1.25215 38.8467 239.204 -126.921 .23501E-03 25	
<u>PROPELLANT</u> AP R-45 DOZ DDI FE2O3 SR(NO3)2	HF -70.7000 2500 -336.8000 -206.3000 -197.0000 -233.8000	DENSITY 1.9500 .9300 .5190 .9240 5.1200 2.9860	WEIGHT 74.8000 10.4600 2.1500 2.3900 .2000 10.0000	MOLES       .6367       .1675       .0052       .0041       .0473	VOLUME 38.3590 11.2473 4.1426 2.5866 .0391 3.3490
GRAM ATOMS / C .9559 CL	100 GRAMS .6367 FE .	0025 H 4	.0807 N .	.7394 0 2.95	00 SR .0473
ENTHALPY = -5 CSTAR (FT/SEC	8.94820 )= 4863	DEN: 3.014	SITY =1.674	1	
PRESSURE (PSI EPSILON ISP ISP (VACUUM) TEMPERATURE(K MOLECULAR WEI MOLES GAS/100 CF PEAE/M (SECON GAMMA HEAT CAP (CAL ENTROPY (CAL) ENTHALPY (KCA DENSITY (G/CC	CHAN A) 1213 .000 .000 .000 2944 GHT 26.8 G 3.72 .000 DS) .000 1.21 ) 42.4 .228. L) -58.5 ) .91753F	IBER TH   3.00 0000   0000 0000   0000 0000   1.47 3584   2323 0000   0000 0000   1.125 1241   773 1241   773 1478   2478 59	R(SHIFT) 691.096 1.00000 101.174 187.291 2719.11 26.9818 3.70621 .669373 86.1170 1.21252 42.0213 228.772 -70.7069 6868E-02	EXH(SHIFT) 14.6900 10.2562 244.861 263.636 1460.60 27.4697 3.64037 1.62002 18.7740 1.23237 38.3670 228.773 -127.825 .22910E-03	EXH(SHIFT) 4.75867 23.9999 263.319 277.551 1190.93 27.4763 3.63950 1.74214 14.2313 1.24428 36.8405 228.773 -138.601 .91042E-04
TTERATIONS		<b>3</b> 76	20	40	C C

The ASTRONAUTICS LABORATORY Theoretical ISP Program Micro Version by Beckman & Acree Revision: 5/89 13:11:02 MOLES VOLUME PROPELLANT HF DENSITY WEIGHT 38.4615 .6384 -70.6900 1.9500 75.0000 AP .2233 15.0000 R-45 -.2500 .9300 13.9500 -336.8000 .5190 2.8600 .0069 5.5106 DOZ .9240 -206.3000 3.1900 .0055 3.4524 DDI .4625 2.1368 BORON .0000 2.3400 5.0000 GRAM ATOMS / 100 GRAMS B .4625 C 1.2745 CL .6384 H 4.5988 N .6493 O 2.7082 ENTHALPY = -48.64441DENSITY =1.549 CSTAR (FT/SEC) =4824.350 EXH(SHIFT) CHAMBER THR (SHIFT) PRESSURE (PSIA) 1000.00 560.671 14.6960 .000000 1.00000 9.44873 EPSILON 244.742 102.675 ISP .000000 ISP (VACUUM) .000000 186.748 265.564 1395.80 TEMPERATURE(K) 2492.92 2246.21 MOLECULAR WEIGHT 22.4660 22.4973 23.6810 MOLES GAS/100G 4.45117 4.44497 4.22280 .000000 .684751 1.63220 CF PEAE/M (SECONDS) .000000 84.0722 20.8217 1.24406 1.23906 GAMMA 1.24040 HEAT CAP (CAL) 45.6406 45.0262 43.4950 ENTROPY (CAL) 251.367 251.367 251.367 ENTHALPY (KCAL) DENSITY (G/CC) -48.6444 -60.7551 -117.455.74731E-02 .46567E-02 .20676E-03 25 7 21 ITERATIONS 88 1-30/PAD44 RUN#AFA 14 8 ġ. . . <u>۾</u> .~ 8 - <u>8</u> ÷-- 28 -MMMM . g. _ 9-8 88 4.78 5.08 ----2.39 1.40 2.03 1.78 ACDUISITION TIME (SEC)



motor on pad 44 after Academy firing.

.

·

### Acknowledgments

I wish to thank Mr. Hieu Nguyen who was a great help throughout the course of this project. I also wish to thank Dr. John Rusek and Dr. Kevin Chaffee for all of their advice and help. Finally, I wish to thank the crew of Area 1-30 for their constant cooperation and understanding.

## DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS AND HYDROSTATIC TESTING OF LIQUID CRYSTAL POLYMER ROCKET MOTOR CASES

Tracy R. Reed

San Diego State University

Final Report for:

Summer Research Program

Phillips Laboratory

August 1994

# DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS AND HYDROSTATIC TESTING OF LIQUID CRYSTAL POLYMER ROCKET MOTOR CASES

Tracy R. Reed

#### Abstract

A solid rocket motor with nozzle and case made out of liquid crystal polymers (LCP's) was built and tested. This work was a continuation of the work done in the summer of 1993. The rocket motor cases and nozzles were injection molded. In addition, hydrostatic testing of liquid crystal polymer 2x4's was performed to determine their burst pressure and tensile strength, whichare directly related to the properties of the rocket motor cases. Molecular models of LCP's were also drawn.

## DEVELOPMENT AND TESTING OF LIQUID CRYSTAL POLYMER SOLID ROCKET MOTORS AND HYDROSTATIC TESTING OF LIQUID CRYSTAL POLYMER ROCKET MOTOR CASES

The goal of this project is to produce a working solid rocket motor with the nozzle and case made out of liquid crystal polymers (LCP's). This work is a continuation of work done during the summer of 1993. Once operational, these motors will be delivered to the Air Force Academy for use in their curriculum. There were three main parts to the summers activities: molecular modeling, hydrostatic testing of LCP 2x4's, and Academy motor development.

Molecular models showing the structure of 7 liquid crystal polymers were drawn. Various molecular modeling programs were tried, but only Autocad produced the kind of drawings that were desired. Two dimensional drawings depicting the hydroquinone terepthalic acid backbone and the pedant groups were the result of this effort. The LCP's drawn are: phenyl ethyl hydroquinone terepthalic acid, chloro hydroquinone terepthalic acid, hydroquinone terepthalic acid, bromo hydroquinone terepthalic acid, phenyl hydroquinone terepthalic acid, tertiary butyl hydroquinone terepthalic acid, methyl hydroquinone terepthalic acid.

The hydrostatic testing of the LCP rocket motor cases was done on pad 44 of area 1-30 at Phillips Laboratory, Edwards AFB. The hydrostatic test equipment was provided

by area 1-32. Materials tested were Vectra B950, A950, B420, B230, and HX-4000. The cases were filled with water and then pressurized with nitrogen until they burst. Burst pressures were recorded. The motors were molded with a slight taper on the inside. Some of the motors were machined such that the taper was removed. These motors are denoted with an M after the test article number, which is in the leftmost column in the 2x4 burst test data. All machined motors were placed in the test fixture thin side down for consistency. The A950 machined specimens had a noticeable impurity inclusion (presumably from a previous material run through the injection molder). It was anticipated that the cases would fail along this inclusion. All of the machined A950 tested did indeed fail along the inclusion. This shows that purity is very important to having a high burst strength, and a high tensile strength. Tensile strength values along the direction of molecular orientation were available from the manufacturer of the polymer for some of the LCP's that were tested. A comparison of the predicted burst pressures and the actual burst pressures shows the actual tensile strength of the material in the test articles:

Material	Tensile Strength (psi)	Pred Burst Pressure	(psi) Actual Burst.	Pressure (psi) Actual Tensile
strength(psi)				
B230	35000	3889	1260	11340
B420	17000	1889	507	4563

B420

The tensile strength of B230 is 32.4% of what the manufacturer found it to be. The tensile strength of B420 is 26.8% what the manufacturer found it to be. This suggests that our processing technique is not optimal. The injection molding process does not orient the polymer in the hoop direction, which is preferred for rocket motor cases. Photos were taken

of every motor tested to make a permanent record of how the case failed and what the fracture surface looks like.

The cases for the Academy motor were injection molded at Hill AFB and tested on pad 44 in area 1-30 at Phillips Laboratory, Edwards AFB. The propellant used was slightly modified from that of last summer. The additives for plume color complicated the mix process and it was decided to leave them out. The new propellant formulation can be found on the solid propellant processing sheet included in this paper. The included processing sheet is for the medium burn rate propellant. For the high burn rate propellant, .2% iron oxide was substituted for the .2% carbon black. This propellant has very good processing characteristics and cures in 24 hours. Propellant is cast directly into the motor cases. The propellant was mixed in a 1 gallon mixer in the new mix facility in area 1-30.

One successful firing was conducted which resulted in a peak thrust of 63 pounds, an action time of approximately 3 seconds, and a total impulse of 129 pound-seconds. The nozzle throat diameter was bored to .3281 inches which should result in a case pressure of 500 psi.. Numerous other firings at higher pressures resulted in blown nozzles. Higher pressures are desired (on the order of 1000 psi) to increase motor performance.

The current motor design calls for the nozzle to be held in place by 4 rivets, .125" in diameter. Great care must be taken to put the rivets in without cracking the boss on the nozzle or splitting the case. The nozzles were not perfectly round and had to be machined to fit into the case. Upon firing, the rivets would pull through the case and the nozzle would blow off. This is believed to be because of the high anisotropy of the rocket motor case, this was not taken into account in the design of the motor. The hydrostatic testing of the 2x4 motor cases also suggested high anisotropy. There are several things that may

solve this problem. The first would be to blow mold the case. This would orient the polymers in the direction of the hoop stress, which is the optimal situation. Another improvement would be to use another way of holding the nozzle in the case. One idea is to make a capture which will go over the nozzle and thread onto the case, locking the nozzle in place. If the case were blow molded and the capture was injection molded, the orientation in both parts would provide maximum strength in the desired directions.

The molecular models will help to visualize the polymer backbone and the pendant group to aid in the study of the interactions between the polymer molecules. The hydrostatic testing of the 2x4 motors has shown the kind of burst pressures that can be expected with these polymers and current processing methods. Several fundamental design problems were recognized and solutions proposed to solve them. Once these solutions are implemented, it is believed that a liquid crystal rocket motor with good performance characteristics will finally be realized. Time vs. pressure plot of a successful motor firing, The action time was 3 seconds, pressure was 500 psi, peak thrust was 63 pounds.



Hydrostatic testing data. All designations ending with M are machined cases.

				the second s	and the second se			-
Tracy Reed				7/1/94				
LCP 2x4 Bu	rst Tes	t Data		Notes/Failur	e Mode			
Material	Pressu	re (psi)		🖾 🗧 🗂 mac	hined motor	side down		
B950-1				No peak,, n	o data printe	ed. Loose fitt	ing. Pinholes	s
B950-2	358	Mean:	4.38E+02	Cracked alo	ng the seam	l <b>.</b>		
B950-3	469			Cracked alo	ng the seam	l		
B950-4	486	Std. Dev.:	6.95E + 01	Cracked alo	ng the seam	l <b>.</b>		<u> </u>
							·	<u> </u>
A950-1	1670			Good, recta	ngular patch	1		
A950-2	1430	Mean:	1.55E+03	Good.				
A950-3	1240			Good.				
A950-4	1840	Std. Dev.:	2.64E+02	Good.				ļ
A950-5M	197			Failed along	inclusion or	n the interior	•	
A950-6M	180	Mean:	2.06E+02	Failed along	inclusion.			
A950-7M	241			Failed along	inclusion.			
A950-8M	205	Std. Dev.:	2.57E+01	Failed along	inclusion.			
						1	J	
B420-1	457			Rectangular	patch is rig	ht along sea	<u>m.</u>	-
B420-2	730	Mean:	5.07E+02	Good, near	seam.			· · · ·
B420-3	427			Good, near	seam.			
B420-4	415	Std. Dev.:	1.50E+02	Good, near	seam.			
B420-5M	337			Whole side	blew out.			
B420-6M	376	Mean:	3.59E+02	Good				
B420-7M	344			Good	l			
B420-8M	377	Std. Dev.:	2.10E+01	Whole side	blew out.			
B230-1	1130			Good				
B230-2	1320	Mean:	1.26E+03	Good				
B230-3	1160			Good				
B230-4	1440	Std. Dev.:	1.45E + 02	Good				
HX4000-1	381			Cracked				



Models of liquid crystal polymers, drawn in Autocad.

SOLID PROPELLANT	PROCE	SSING SI	IEET			i .'.					HAZARD CLASS:
NTY NUMBER: A (AD M- ENGINEER: REED x54/6					OPERATOR:				BATC	BATCH NUMBER:	
					CH ST	ZE:	150	99	DATE	MIXED:	
MIXER SIZE: Igan	lin							~~~			
MATERIAL	l	GRAMS		WEIG	нт	•		LOT NO.	.& NOTES		MIX INFORMATION
R45M	10.46	679.9	N	T	C		9	05175			
DOZ	2.15	139.73	N	T	G		<u> </u>				
DDI	2.39	(55,3	5 N	T	G		–				
			N	T	G						
Carbon Black	0.20	13.0	N	T	G						
AP (400 mc)	30.65	1992.20	5 N	T	6						
AP (200 mc)	30.65	1992.25	N	T							
AP (25 mC)	23.50	1527.5	N	T	G						
			N	T	G						
			N	T							TOTAL MIX TIME:
	·	·	N			<u>.</u>					1 HRS MIN
	<u> </u>	· · ·	N				+				
·	<b>.</b>	<u> </u>	N			1111	+-				Q 1/SEC = kp
	<u> </u>			-			+				SOLVENT: CYCLOHEX
		,							and a second	)*************************************	
		SPEED	TI	ME (MIN)		1.11	VACU	UM	TEMP	-	INSTRUCTIONS
PROCESSING STEP	, 	RPM	MIXING	START	STOP	NO/YI	ES	mmHg	•F		
ļ.									240	P-454/D07	16-1 01-1
1. ADD FIRST INGRED	DIENTS	300	10 MIN						140	R=43R/002	ILAF MA BIACK
2. ALL 400 & 507. 20	DOmc AP	300	15 MIN						140		
3. ADD 50% 25 mc AF	P	300	15 MIN						140		
4. ADD 50% 25 mc AF	P	300	.5 MIN			+			140		· · · · ·
5. ADD 25% 200 mc A	AP	326	15 MIN			╋┯┿			140		
6. ADD 25% 200 mc /	AP	300	<u>15 MIN</u>		ļ			<u></u>	140		
7. ADU DDI		300	2/15 MIN						1.0		
2. CAST						+					
·										+	
					<u> </u>						· · · · · · · · · · · · · · · · · · ·
		Mata						l		CURE OVEN	N: IN OUT

# Solid propellant processing sheet used to mix the propellant used in the Academy motor.

#### Acknowledgments

I would like to thank Dr. John Rusek for being my mentor and for providing me with the opportunity to work on this project as well as for all of the time he has put into teaching me so much. I would also like to thank Dr. David Elliott of Arkansas Tech University for his advice on engineering matters. I also want to thank Dr. Kevin Chaffee and Dr. Pat Mather for their support and encouragement throughout the summer.

#### MATERIALS ENGINEERING SECTION SCIENCE & ENGINEERING LABORATORY BRANCH MCCLELLAN AIR FORCE BASE, CALIFORNIA

#### CHARRED PLASTIC TUBE SPECIMEN

#### SUBMITTED BY: TIEC/Mr. Frank DATE: April 8, 1992

1. INTRODUCTION: We were requested to section and microstructurally evaluate a plastic tube which had been exposed to burning fuel. The intent was to determine the type of damage to the tube and the structure of the char.

2. SPECIMEN DESCRIPTION: The as-received specimen is shown in figure 1. The specimen consisted of one-half of a longitudinally sectioned tube. One end of the specimen showed a large amount of char, although the specimen had been exposed to heat all along the inner surface. The end with the large amount of char was of primary interest; figure 2 shows a magnified view of this end. The char was highly porous and showed many thin flakes.

3. EXPERIMENTAL: The charred end of the tube was encapsulated with a epoxy mounting compound, with a fluorescent dye added, to support the char. This end of the tube was then sectioned into three samples which were encapsulated into discs, ground, and polished for examination. Figure 3 shows the location of the polished side of the samples identified as A, B, and C. In addition, longitudinal and transverse (cross-section) samples from the injection end of an unburned tube were cut and polished for comparison.

#### 4. **RESULTS:**

a. Figures 4 and 5 show the longitudinal and transverse sections from the unburned tube, respectively. Several large pores are visible in both photographs. The pores were located in two different locations: 1) near the center-thickness and 2) near the inner diameter edge. There were several large cracks present. The plane of these large cracks was perpendicular to the axial direction, as shown in figure 6. The cracks spanned from 30 to 70% of the thickness. The cracks were preferentially, but not exclusively, located at large pores. There were many somewhat smaller cracks at the injection corner, as shown in figure 7. There were several small cracks located within 5% of the thickness from the outer or inner diameter edges. In contrast to the other cracks, the plane of these small cracks was primarily axial. Figure 8 shows an example. Figure 8 also best shows what we will call flow lines near the inner edge. These flow lines are really planar in character, since they are visible in both longitudinal and transverse sections. At higher magnifications, in many, but not all areas a lamellar microstructure was visible, as shown in figure 9. In most cases, the orientation of the lamella was perpendicular to the axis of the tube.

b. Figures 10, 11, and 12 show the polished surfaces of samples A, B, and C, respectively. The epoxy used to encapsulate the sectioned specimens did not have the fluorescent dye added, consequently, it is much lighter in these figures than the epoxy supporting the char.

c. All three samples showed all of the same types of defects found in the unburned sections. These defects included large pores near the

centerline, large pores near the inner diameter, and cracks transverse to the axial direction, although these cracks were smaller than those found in the unburned sections. In addition there were small cracks near the inner and outer surfaces, similar to those shown in figure 8. The samples also exhibited the lamellar microstructure shown in figure 10 in many areas.

d. Some of the large pores near the inner diameter in samples A, B, and C were caused by the evolution of gases within the plastic as the burning fuel raised the temperature of the plastic. This was indicated by local changes in flow line direction associated with porosity, as shown in figure 13, and elongated and stretched plastic material.

e. The structure of the char is of primary interest in this evaluation. Figures 13 and 14 show some of the charred area in samples A and B, respectively. The green areas of the photos are the epoxy encapsulant with the fluorescent dye added; the black areas are the char. The large amount of porosity in the plastic adjacent to the char is visible, and the highly porous nature of the char is evident. The char consists of membranes of decomposed plastic enclosing gases evolved by the decomposition. The membrane structure of the char may be related to the planar character of the plastic which is indicated by the flow lines of figure 8. Different regions of the char itself was apparently in different stages of decomposition. Figures 15 and 16 show exactly the same area of sample A with exactly the same magnification; only the illumination was different. Figure 15 shows the area with oblique light; the overall shape and size of the char is apparent. Figure 16 shows the area with the light perpendicular to the surface. The areas of the char furthest away from the plastic show pieces which are much more reflective. We believe that the more reflective pieces are plastic material which has been graphitized. This opinion is based largely on the fact that fibers of polished graphite-epoxy composite samples are also very reflective under this type of lighting. Figure 17 shows a higher magnification view of one of these more reflective areas.

#### 5. CONCLUSIONS:

a. Damage to the tube from the burning fuel included decomposition, pore formation, and plastic deformation.

b. The tube was significantly flawed in the as-manufactured condition, with large pores and both large and small cracks.

c. The char had an expanded, membrane structure, with some regions of apparent graphitization. The membrane structure of the char may be related to the planar character of the plastic.

Charred Plastic Tube Specimen

9 Atch
1. Fig 1, Fig 2, Photos
2. Fig 3, Sketch
3. Fig 4, Fig 5, Photos
4. Fig 6, Fig 7, Photos
5. Fig 8, Fig 9, Photos
6. Fig 10, Fig 11, Photos
7. Fig 12, Fig 13, Photos
8. Fig 14, Fig 15, Photos
9. Fig 16, Fig 17, Photos

MIC no

John Meininger ( ) App 1992 Materials Engineer

William F. Emmons 0 9 APR, 1992 ( Chief, Materials Eng. Sec.

REVIEW This report has been reviewed and is approved.

Richard R. Millward **9 APR 1982** Chief, Science & Engineering Lab Tech & Ind Support Directorate



Figure 1. Specimen as received showing large amount of char on one end.



Figure 2. Magnified view of charred end showing porous structure with many thin flakes.







Figure 4. Longitudinal section of unburned tube. Examples of large pores are identified by "P." Large cracks are also visible. Magnification: 4.8X.



Figure 5. Transverse (cross) section of unburned tube showing examples of porosity identified by "P." Magnification: 4.8X.



Figure 6. Longitudinal section of unburned tube showing large cracks. Magnification: 9.6X.



Figure 7. Longitudinal section of injection corner of unburned tube showing many smaller cracks. Magnification: 9.6X.



Figure 8. Transverse section of unburned tube showing small cracks near inner diameter edge. Magnification: 12.8X.



Figure 9. Longitudinal section of unburned tube showing lamellar microstructure. Magnification: 200X.



Figure 10. Encapsulated sample A showing porosity of plastic along inner edge and near center of thickness.



Figure 11. Encapsulated sample B showing porosity of plastic along inner edge and near center of thickness.

.



Figure 12. Encapsulated sample C showing porosity in plastic along inner edge and near center of thickness.



Figure 13. Charred region of sample A showing the porosity of the char and of the plastic. Also shown is a change in the flow line direction, indicating plastic deformation. Magnification: 9.6X.



Figure 14. Charred region of sample B showing the porosity of the char and of the plastic. Magnification: 9.6X.



Figure 15. Area of sample A showing overall shape and size of char. Photo taken with oblique lighting. Same area as figure 16. Magnification: 25.6X.



Figure 16. Area of sample A showing reflective pieces of the char. Photo taken with perpendicular lighting. Same area as figure 15. Magnification: 25.6X.



Figure 17. Area of sample A showing reflective pieces of the char. Magnification: 100X.

#### SOLID ROCKET PROPULSION APPLICATIONS FOR ADVANCED POLYMERS

#### JAMES S.B.CHEW and JOHN RUSEK Astronautics Laboratory (AFSC) Edwards AFB, CA 93523-5000

#### <u>ABSTRACT</u>

The demands of lowering the cost and increasing the reliability of solid rocket propulsion systems have forced the aerospace industry to investigate new materials and fabrication techniques. The performance specifications for stiffness, strength and temperature resistance make continually finding better materials and processes quite challenging. Advanced structural plastics, such as liquid crystalline polymers, may meet these requirements. The Astronautics Laboratory initiated an in-house program to determine if advanced polymers could meet the cost/performance/reliability requirements. Components identified for polymer application includes motor cases, ignitor housings and nozzles. Injection molded parts, fabricated from VECTRA(R), XYDAR(R), ULTEM(R) and RYTON(R) were designed and tested. In addition, CELAZOLE(R) was also tested. An overview of this program and the progress to date is presented.

#### **INTRODUCTION**

The design impetus for most solid rocket propulsion components has been performance. The performance criteria has driven the industry to develop extremely strong and extremely lightweight components. By reducing the inert component weight, the amount of propellant can be increased thereby increasing the motor performance. For rocket motor cases, DCA6 steel and graphite epoxy have been used becuase they yield the desired high strengths and low weights. Material and fabrication costs, however, tend to be quite high.

The complexity of the fabrication processes using these materials can lead to high component rejection rate or components that vary significantly in terms of mechnical properties and structural integrity. By comparison the bulk cost of liquid crystalline polymers is quite low. Material properties can be tailored to the application by heat treatment or by adding fillers. A variety of low cost fabrication techniques including injection molding, pultursion, compression molding and resin transfer molding can be used to make net shap parts in one step.

This paper presents the rocket propulsion applications identified for these materials, as well as the progress to date. This is a combined Air Force effort with the Air Force Logistics Command at McClellan and Hill AFB, the Air Force Armament Laboratory (AFATL) and the Air Force Institute of Technology (AFIT) assisting us.

#### <u>THEORY</u>

Liquid crystalline polymers (LCP's) can be subdivided into two classes; thermotropes and lyotropes. Thermotropic LCP's exhibit liquid crystalline behavior in the melt, while lyotropic LCP's are liquid crystalline in solution. Examples of thermotropes include VECTRA (R), HX4000(R) and GRANLAR(R), all of which exhibit
an isotropic/nematic phase transition above 300 C. Typical lyotropes include KEVLAR (R) and polybenzthiazoles, polybenzoxamides and polybenzimidazoles. KEVLAR (R) exhibits liquid crystalline behavior in sulfuric acid while the other three polymers are drawn from polyphosphoric acid, where they behave as nematic LCP's.

In general, the molecular architecture is the prime determinant in liquid crystalline behavior. LCP's are rigid rod polymers, usually polyesters which have a molecular "aspect ratio" of 30:1. This implies a typical length of 90 A and a typical degree of polymerization of 10. Lyotropes generally have many barriers to rotation due to molecular geometry, steric barriers and buried polar moeities. Polybenzoxazole, a typical lyotrope, is depicted in Figure 1.



FIGURE 1. LYOTROPE STRUCTURE

Thermotropes generally contain large pendant groups, no buried polar species and are more free to rotate around the backbone centerline. A typical thermotrope is depicted in Figure 2.



FIGURE 2. THERMOTROPE STRUCTURE

An interesting phenomena has been observed in recent years within the class of thermotropes: annealing. A given thermotrope is injection molded into a cylindrically symmetric part as an unfilled resin. This part is then subjected to a long duration temperature cycle after which the part will behave as a thermoset. This phenomena is not well understood and is being explored intensely by the Air Force laboratories. Materials which "anneal" clearly would have great application as high temperature solid rocket case and nozzle materials as well as liquid rocket engine component materials.

#### APPLICATION IDENTIFICATION

The purpose of the Advanced Polymer Component (APC) program is to utilize the benefits of these polymers in the development of rocket components. Figure 3 presents the interrelationship between this program to other AL in-house research programs. We feel that the potential applications of these polymers is great.



### FIGURE 3. ASTRONAUTICS LABORATORY PROPULSION IN-HOUSE INITIATIVE RELATIONSHIP

This paper focuses on solid propulsion motor applications. Figure 4 presents at generic solid rocket motor. The inert components, such as the motor case and nozzle make up the majority of the total weight and cost of the motor. When the case skirts and interstages are added to the motor, the weight and cost contribution of the inert components is further increased. When these components are made from advanced composites such as graphite-epoxy, the labor costs associated with the fabrication make up the majority of the costs. By using the LCPs low cost fabrication techniques, such as injection molding, for the various components can be applied.



#### FIGURE 4. GENERIC SOLID ROCKET MOTOR SCHEMATIC

In theory, the LCPs have potential for motor case applications. Figure 5 presents a graph showing where the LCPs rate relative to other case materials. It is highly desirable to have a material that is extremely strong and extremely stiff. As shown in the figure, the LCPs approach this desired goal. For this reason, a majority of the solid rocket work using LCPs concentrate on motor case applications. Some nozzle application work was also performed.





### PLAN OF ATTACK

With the case and the nozzle applications identified, a work plan was developed. Because the AL is a newcomer in working with polymers, the most logical plan was to develop "simple" motor cases initially. Depending on the success of the "simple" motor case development, more complex cases would be developed using the LCPs.

Figures 6-9 present the motors case applications we are pursuing. Figure 6 is our "2x4" motor, which is used for obtaining propellant ballistic property data. The operating conditions are listed with the figure. These cases would be compression molded and injection molded from the various LCPs, in particular the various grades of VECTRA. Figure 7 shows the Air Force Academy Motor and it's operating conditions. Notice the increasing complexity of the motor cases. The LCP design for Academy Motor case would be a two-part design vs. the current three part design.



MAX CHANDER PRESSURE: 2000 PSI (HIGH PRESSURE TESTING, 12,000 PSI MAX CHAMBER TEMP: 3700 K MAX BURN TIME: 1 SEC







For this motor case, the head-end closure and the motor case would be incorporated into one piece.

Figures 8 and 9 present more ambitious applications of these materials. The AIM-9L "Sidewinder" short range air-to-air missile is shown in Figure 8. The design of this motor case presents many challenges. Not only does the motor case have to survive the flight environment (up to Mach 8 with a 35 g turn capability), but it has to survive captive carry and handling loads. We selected the wing tip location of an F-16 (shown in Figure 10) as the design condition. Thermal conditions of -45 F to 145 F will be considered, as well as the associated transmitted moments and forces. We will try to design the launch lugs "into" the motor case. This means that we will try to eliminate the launch lug "bands" that are currently used on the AIM-9s. We hope to use the information we gain from this design for a new generation short range air-to-air missile design.



5 " O.D., 71" LONG (MOTOR)
40 SECOND FLIGHT TIME (MACH 4)
-45F TO 145F TEMP SURVIVABILITY
AEROHEAT UP TO 800F

#### FIGURE 8. SIDEWINDER MISSILE

The most attractive feature of the LCPs for tactical motor applications is the potential insensitive munitions application. The mechanical properties of these materials degrade at significantly lower temperatures than current tactical motor case materials. At 600 F, the mechanical properties degrade to a point that a motor case made from these materials will lose all structural integrity. This attribute, coupled with the LCP's inherent high strength and stiffness and low cost fabrication methods, have a high potential of being an ideal material for tactical motor case applications.

As shown in Figure 3, we are currently developing, demonstrating and integrating advanced, low cost solid propulsion technologies for a new generation intercontinental ballistic missile (ICBM). Our first look at applying LCPs to ICBMs have given us several ideas. Figure 9 presents the candidate areas. Possibly the most ideal areas are the polar boss, ignitor housing and interstage. The most interesting application is for external protection of the various stages. A common LCP, KEVLAR, is used for bullet-proof vests. We hope to demonstrate that low-cost molded sheets of LCPs are viable materiels for the debris impact and thermal external protection environments.



FIGURE 9. INTERCONTINENTAL BALLISTIC MISSILE MOTOR



FIGURE 10. F-16 STORES LOCATION

### LOW COST FABRICATION METHODS

Polymer components have been fabricated by a variety of low-cost methods. These methods have been extensively developed by the toy and automotive industry. In addition, the Air Force Armament Laboratory (AFATL) has a contracted effort with McDonnell Douglas in St. Louis to investigate a variety of low cost composite fabrication methods for tactical weapon applications. The authors refer the reader Ms. Debbie Westfall at AFATL for complete information on this program. This section will present a brief summary of the methods that they have investigated.

We surveyed the "Big 3" automakers on polymer components fabrication and design techniques. The "Big 3" have formed an Automotive Composites Consortium to develop a data base on this information. We are currently supplying them with LCP mechanical properties data that we are obtaining. The automakers requirements for low cost structural composites are quite similar to the aerospace industry's desires with one exception. They are interested in a fabrication process that can produce consistent quality parts very quickly. "Very quickly" in the auto industry means a few minutes. During our recent survey, we found that one automaker rejected a fabrication process because it was too slow - it took six minutes to produce a quality part!

The two fabrication processes that we have been concentrating on are injection molding and structural resin transfer molding. Having investigated most of the polymer component fabrication techniques, including compression molding and pultrusion, we felt that injection and resin transfer molding have the most promise for fabricating parts that meet our requirements.

Figure 11 presents a schematic of an injection molding machine. This machine melts the polymer pellets by resistance and shear heating. The shear heating is the main contributor to melting the polymer pellets. The polymer is continually "worked", such that all the air is removed. Once a predetermined amount of melted polymer fills the "breech" section, it is shot into the mold. After a pre-determined clamp time, the mold is opened and the finished part is removed.

While the injection molding process seems simple, there are many variables that are dependent on the type of polymer being injected. Screw speed, resistant heating temperature, clamp time and clamp pressures are some of the factors that are "polymer dependent". A majority of the component development time is spent determining these injection molding variables. Once these variables are set, the injection molding process will yield consistent high quality parts at an extremely high rate. There are a few limitations with injection molding. The parts cannot be too large the cooling rate of the melted polymer is the limiting factor with the component size.



# FIGURE 11. INJECTION MOLDING MACHINE

Figure 12 presents a schematic of the structural resin transfer molding process. Much larger parts can be fabricated using the structural resin transfer molding process. In addition, the fiber net allows for a considerably stronger structure than what injection molding can yield. This process is will yield large, complex shape, large parts.





#### PROGRESS TO DATE

Both feasibility demonstrations and design data generation have been the emphasis of the progress to date. This two-prong approach was taken because some immediate "feasibility" applications were identified, such as the 2x4 motor case and the academy motor nozzle. However, we had to check the mechanical properties of the various polymers to establish a data base for us to design from. While the various vendors have published tensile strength data, we needed to verify these numbers prior to any extensive design.

Figure 13 presents the molded tensile strength specimens that were tested at the Astronautics Laboratory. This "parts" yields three tensile test specimens in the "axial" direction and three in the "transverse" direction. These directions refer to the polymer molecular orientation, which is determined by the direction of the polymer flow in the mold. The "prongs" of the part are the "axial" specimens, while the "paddle" portion contains the "transverse" specimens. The scrap material from these parts were used for propellant/material compatibility testing, which will be discussed later in this section.

The Figure 13 part was molded with VECTRA A625, VECTRA C130 and RYTON. The nomenclature on the VECTRA(R) refer to the type of filler (A is glass, C is carbon) and the amount of loading in the polymer. The advertised tensile strengths of these materials are 24,000 psi, 31,000 psi and 12,000 psi, respectively.



FIGURE 13. POLYMER TENSILE STRENGTH TEST PART

Figure 14 and 15 present the post-test specimens. Notice that tabs were bonded to the ends for the grips. We have just started measuring the mechanical properties and have had some difficulty with the testing. We are detecting a trend that the tensile strength numbers that we are measuring are lower than the published values. These are, however, extremely preliminary numbers.



FIGURE 14. POST TEST TENSILE SPECIMENS (TABBED)

The scrap pieces from the "paddle" end of the part were used for propellant/material bonding compatibility tests. Eight samples of each material were used for this testing. Uncured propellant was applied to the surface of these samples. Then propellant was then cured. We would try to peel the propellant from these samples after cure to determine (albeit in a crude manner) if we had a "good" bond or not. A "good" bond was deemed as when the propellant was extremely difficult to peel from the sample and failed cohesively when the propellant was finally peeled. A "bad" bond was when the propellant neatly peeled from the sample.



FIGURE 15. POST TEST TENSILE SPECIMENS (UNTABBED)

The surfaces of the samples were treated in the following manner:

- no surface treatment
- surface roughened with sandpaper
- surface coated with N-100 isocyanate
- surface roughed and coated with N-100 isocyanate



FIGURE 16. "GOOD" PROPELLANT POLYMER BOND

Much to our surprise, most of our test samples yielded good results. Only the samples which did not have any surface treatment yielded bad bonds. Figure 16 presents some of the "good" bond samples. Figure 17 presents a "bad" bond.



FIGURE 17. "BAD" PROPELLANT POLYMER BOND

The results of this testing gave us the added confidence we needed prior to casting the 2x4 motor cases that were molded from the LCP materials. We felt that we could cast propellant into these cases with a minimum amount of surface treatment.

Figure 18 presents the variety of 2x4 motor cases that we worked with. On the left is our current 2x4 metal case. The one to the right of it is molded from VECTRA C130. Next to that one is one molded from VECTRA A625. Next to that is one that was machined from a billet of LCP material known commercially as CELAZOLE. This material has no known melted point and has to be compression molded and machined to form parts. For our application, we bought existing tube stock and machined the interior to our required dimensions.



## FIGURE 18. 2X4 MOTOR CASES

Figures 19-21 present some of the test results. The wall thickness of the CELAZOLE 2x4 was .250 inches, while the wall thicknesses of the molded parts were .125 inches. The reason for the different thicknesses was that we gave the CELAZOLE 2x4, which we tested first, a healthy margin of safety. We designed the part to

withstand an internal pressure of 7000 psi. After several successful firings, the molded 2x4s were designed for the "low pressure" 2x4 test conditions of 2300 psi. Figure 19 presents the results of two 2x4 motor tests. The CELAZOLE motor, which survived a chamber of pressure of 1200 psi for 1 second, is shown on the right. A VECTRA part which we "plunge molded" at the Astronautics Laboratory is shown on the left. This "Plunge molded" part was full of voids, but we tested it to determine the defect tolerance of using these materials. While the part failed at a void we were surprised to see two things. First was that we were able to recover over two-thirds of the motor case. Second was the char layer which was created when the polymer was exposed to a flame. This char layer would ablate when exposed to a flow field. This char behavior, coupled with the propellant bonding potential of these materials give us great hope that we can use these materials to reduce the number of interfaces in future solid propulsion systems. Figure 21 shows some more of this char behavior on the molded 2x4 motors.



FIGURE 19. CELAZOLE AND VECTRA 2X4 TEST RESULTS



FIGURE 20. INJECTION MOLDED 2X4 MOTOR CASE TEST RESULTS



FIGURE 21. CHAR BEHAVIOR FROM VECTRA 2X4 MOTOR CASE

We learned some more about the design limitations of these materials during the molded 2x4 tests. Figures 22 and 23 show some of the successful and not-so-successful tests. We used the published mechanical properties data when we designed the mold for these parts. In theory, these parts should have withstood a chamber pressure of 2300 psi. They failed at chamber pressures of 1000 psi. Discussing these test results and the mechanical properties test results with engineers from the "Big 3" automakers, we found that as a rule, the engineers usually design to 65% of the published mechanical properties. While we are still learning to work with these materials, this will be good rule of thumb for our first cut designs.



FIGURE 22. VECTRA A625 INJECTION MOLDED 2X4 TEST RESULTS

Figure 24 presents some nozzle tests that we performed using CELAZOLE nozzles. Using the Air Force Academy motors, we exposed these nozzles to 650-800 psi for 4-5 seconds. Noticed that the recessive behavior of this polymer is similar to



FIGURE 23. VECTRA C130 INJECTION MOLDED 2X4 TEST RESULTS

graphite. This material is stronger than graphite and also has homogeneous properties. While further testing is required, the CELAZOLE material seems to hold some promise as a tactical motor nozzle material.



FIGURE 24. CELAZOLE NOZZLE TEST RESULTS

We have recently started a joint motor case design program with the Air Force Institute of Technology, at Wright-Patterson Air Force Base. A group of graduate students will be designing a short range air-to-air motor case using LCP materials. The design requirements are for the wing tip of an F-16. The survivability requirements for this motor case are the same as for the current systems.

#### SUMMARY/CONCLUSIONS

The test results to date have shown that the Liquid Crystalline Polymers have some great potential for solid rocket applications. Our initial testing have shown that there are some design techniques that need to be used to realize the full potential of these materials. However, we are learning more of these techniques with each design exercise that test. We encourage any industry and government agency comments on this program. Working in this area in new to us. We welcome any constructive comments.

The amount and quality of the work presented in this paper could not be possible without the help of the following people:

Chris Frank, Rich Griffen, Heiu Nguyen, Pete Huisveld, Jim Trout, Shirl Breitling, Janet Shelley, Tom Duffy, Dave Robinson, Jason Baird, the AL LCP team and the Automotive Composite Consortium.

This paper would not have been possible without their significant contributions.

### PROPULSION APPLICATIONS FOR THERMOTROPIC LIQUID CRYSTAL POLYMERS

J. Shelley * OLAC Phillips Laboratory (AFSC) OLAC PL/RCC Edwards AFB, CA 93523

### Abstract:

The search for stronger, lighter weight, more reliably manufacturable rocket components has led the propulsion industry to examine Liquid Crystal Polymer (LCP) materials for rocket component applications. This paper presents some preliminary research into the applications of LCP's in both solid and liquid propulsion system components. The materials examined are commercially available and general physical property information is presented. Three test articles were fabricated: solid test motor cases, nozzle plugs, and compatibility specimens. A summary of these tests and some of the lessons learned are presented.

#### Introduction:

The rocket propulsion community is facing some interesting challenges in the near future. With decreasing defense budgets and increasing costs of individual systems, the Air Force is striving to reduce the acquisition costs and total life cycle costs of its rocket systems, both while maintaining performance and improving system reliability. The drive toward lower cost and higher reliability has led the propulsion community to search for new materials and manufacturing techniques for its components. Liquid Crystal Polymers show promise for future propulsion applications. The Advanced Polymer Components project at Phillips Laboratory (AFSC) is studying the application of Liquid Crystal Polymers to rocket motor and engine components. LCP's exhibit high strengths, good solvent resistance, and good thermal Their relatively low coefficients of stability. thermal expansion and good insulating characteristics have led to applications in the electronics industry for computer circuit boards and components. Auto manufacturers have been researching the use of LCP's for under-the-hood components because of their excellent solvent resistance and good thermal

stability. These same characteristics make these materials attractive for rocket motor and engine components.

#### Materials:

The particular materials being researched at the Phillips Laboratory (PL) are thermotropic liquid crystal polymers. Several manufacturers have injection moldable LCP's of this type on the market. Some, not all, of the products are: Xydar (Amoco), Vectra (Hoechst-Celanese), HX-4000 (DuPont), and Granlar (Montedison). Most of these polymers are marketed as filled injection molding compounds. Common fillers include chopped carbon fibers, chopped glass fibers, and talcs. Phillips Laboratory is researching both filled polymers and neat resins for their chemical and mechanical properties with potential application to rocket components. Table 1 shows a comparison of some of the published physical properties of several advanced engineering polymers. (The Polyphenalene Sulfide (PPS) and Bismaleimide are not LCP's. The information is included only for comparison.)

Table 1Properties of Some EngineeringPolymers1

Name		Tensile Strength (Kpsi)	Tensile Modulus (Mpsi)	Heat Deflection Temp (°F)
Vectra		35.6	5.4	428
B230				
Vectra		23.5	2.2	464
C130				
HX4000		13.0	3.1	504
Xvdar	G-	19.8	2.3	592
430				
Granlar		20.0	1.85	609
PPS		12.0	0.63	N/A
(Ryton)				
BMI		7.7	0.52	N/A

*AIAA Member

Most LCP's are marketed as filled resins for two reasons: to reduce the inherent physical property anisotropy due to flow shear during molding, and to yield parts with acceptable surface finishes. Early tensile property tests at Phillips Laboratory showed that even filled injection molded LCP's exhibit anisotropy. Test specimens displayed an approximate 30% difference in load carrying capability and tensile modulus between the longitudinally oriented specimens and those oriented transverse to the injection flow direction. Neat resin specimens displayed up to a 60% difference in strength and modulus between the longitudinally and transversely oriented specimens. These differences are outside of the scatter in the data. This implies that material anisotropy should be considered in designing highly loaded components.

Component peculiarities typical of the injection molding process must also be considered when designing highly loaded components of LCP's. The tensile property tests showed a strong tendency for specimens to break in the "cold shot" region near the end of the injection flow length at the mold boundary. Material weakness due to localized flow cooling or flow covergence lines must be very carefully considered when designing highly loaded parts. Rocket motor and engine components are both highly loaded and subjected to extreme environments.

### Applications and Results:

Liquid Crystal Polymers have been considered for application to several rocket motor and engine components. Their high strength, good thermal stability, coatability, and solvent resistance makes LCP's attractive for both solid and liquid system nozzles, or nozzle substructures, solid rocket cases and igniter cases, liquid propellant inducers, pump housings, and tankage. Several small demonstration articles have been molded and tested to determine the feasibility of using LCP's for rocket components. The test articles are: 2X4 solid motor cases, hybrid demonstrator nozzle plugs, and liquid propellant compatibility test articles.

### 2X4 Solid Motor Cases

2X4's are small, 2 inch diameter, 4 inch long solid rocket motors used to test propellant ballistic properties. The 2X4

motor cases are currently made of steel and are reusable. However, they provided an interesting, inexpensive, and relatively low risk vehicle for testing the application of LCP's to solid motor cases. Cases were injection molded of Vectra A625 (25% carbon flake filled), Vectra C130 (30% chopped glass fiber filled), and Ryton (30% glass filled PPS) with both 1/8 and 1/4 inch wall thicknesses. Of the 11 motors fired with 1/8 inch wall thickness, 4 failed due to overpressurization. The maximum internal pressure achieved was approximately 1300 psi. The cases were designed to achieve approximately 2300 psi using the manufacturers' strength and modulus data. Using material properties generated from inhouse testing, the cases should have been able to maintain pressures of 1100 to 1400 psi. This difference in design pressures illustrates an important point. As with many other composite materials, the translation of material properties from manufacturer's data to "as produced" parts is not good. In this case, the "as molded" part strength is only half of the manufacturer's calculated value.

#### Hybrid Demonstrator Nozzle Pluas²

The Hybrid Demonstrator is a simple hybrid engine with a polyurethane core and gaseous oxygen as the combusting agent. Small plugs were molded to fit the nozzle assembly of the demonstrator to provide long duration heat exposure and thermal shock information on the LCP's. All the materials tested were neat resins: Xydar SRT 300, and SRT 500, Vectra A950, and HX400. Tests ranged in duration from 1 to 22 sec and from 50 to 90 psi internal pressure. Significant charring and erosion were noted on all plugs. even after 1 sec of flame exposure. However, all the plugs survived the thermal shock of engine ignition. Loss of structural integrity occured between 15 and 22 sec for all the materials tested.

### Liquid Propellant Compatibility Test Articles³

Compatibility tests were conducted on 1/2 inch diameter disks of 8 different LCP's and PPS soaked from 24 hrs to one week in Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO). The materials tested were: Vectra A950, C950, A625, A130, B230, HX4000, Xydar SRT 300, Xydar RC210, and Ryton. The HX400 released potentially dangerous by products when soaked in MMH. The vectra A625 lost 3.2% of its weight after 24 hrs in MMH. Vectra A950 gained 0.84% weight after 24 hrs in MMH. The HX4000 lost over 50% of its weight after 24 hrs in MMH. Weight changes where as small as 0.02% (Xydar RC210) after 24 hrs in NTO. The weight of HX4000 changed the most in NTO, also, losing over 7%. After one week in MMH, Vectra C950 lost 11% weight, Vectra A625 lost 22% weight, and HX4000 almost completely disintegrated. Both the Xydar SRT 300 and Xydar RC 210 maintained 99.9% of their original weight after a week immersed in NTO.

#### **Conclusions**

Several "quick and dirty" tests have been conducted on Liquid Crystal Polymers to determine their suitability for use in rocket motor and engine components. Although not all of the tests have been completely successful, they have provided valuable insights into LCP processing, part design, and material performance. Many LCP's, due to rapid melt transitions and high temperatures, have very tight processing windows. Component weaknesses from flow cooling or flow covergence require careful mold design, mold temperature control, and careful part design. The translation of material properties from manufacturer's data to "as molded" part performance is not efficient. This poor translation requires that thorough screening and mechanical properties tests be conducted on candidate materials and processing techniques to determine suitable design parameters.

In spite of the difficulty of applying LCP's, these polymers present several interesting properties that require further research. A pronounced "skin and core" effect, where the material near a part surface is more molecularly oriented, therefore stronger, than material closer to the centerline of the part, implies that the structural efficiency of LCP parts decreases with increasing part thickness. This effect may develop into strong, damage tolerant thin structures. Some LCP's may undergo a type of "physio-chemical annealing" that eliminates the melt temperature transition and increases the polymer degradation temperature. This "annealing" phenomenon, if properly developed, may lead to light weight polymer parts for high temperature applications.

Future research being conducted by Phillips Lab will include examination of the annealing behavior of Liquid Crystal Polymers, design property characterization of these materials, processing effects research, and further component development.

The author acknowledges the efforts of the following individuals in contributing to this paper: Chris Frank, McClellan AFB; Rich Griffen, Hill AFB; Hieu Nguyen, Andrew Kenny, Eric Schmidt, Tom Duffy, and John Rusek, Phillips Laboratory.

### **References**

¹ Etheridge, L.J., "An Introduction to Liquid Crystal Ploymers," breifing charts, OLAC Phillips Laboartory, Edwards AFB, CA, Feb 1990.

² Kenny, A and E. Schmidt, "Evaluation of LCP Hybrid Plug Nozzles," in-house document under review, OLAC Phillips Laboratory, Edwards AFB, CA, 1991.

³ Hill, T.R., "Advanced Materials' Compatibility with Storable Propellants," technical memorandum, OLAC Phillips Laboratory, Edwards AFB, CA, Apr 1991.

## Design of a Blow Molded LCP Pressure Vessel and a Fiber Reinforced Pressure Vessel.

### Gregory J. Price RKAM Edwards AFB (805) 275-6189

### Abstract

Three pressure vessel with a length of 35 inches, case diameter of 10 inches, and an internal pressure of 3500 psi were designed. Two separate types were analyzed, an unreinforced Liquid Crystal Polymer (LCP) and a S-glass/LCP reinforced pressure vessel. Two cases were assumed for the unreinforced LCP the best weight 17.5 lbf; a realistic, conservative design would weight 33.5 lbf. An unreinforced spherical pressure vessel weighting 21.4 lbf was also designed. The reinforced pressure vessel weight 3.00 lbs. Further study of LCP flow patterns and fiber/LCP interaction is recommended.

### Approach

There are two sections to this report. The first deals with a LCP pressure vessel. The second deals with a S-glass/LCP reinforced pressure vessel with a LCP bladder. The pressure vessel with design requirements are shown in figure 1. The material properties of LCP and S-glass are shown on tables 1 and 2.



Figure 1. The Pressure Vessel.

T LCP	able 1. Properties	Table S-glass Pr	e 2. operties
x	40 ksi	x	665 ksi
Y	20 ksi	Fiber Vol.	67 %
٩	1.4 g/cc	٩	2.5 g/cc
		Bandwidth	.25 in

### LCP Pressure Vessel

LCP behaves anisotropically, but the orientation is unknown, therefor thin walled pressure vessel theory is used for analysis. The polymer chains are assumed to align either parallel or perpendicular to the bottle axis. Two designs are examined that cover the both possibilities. This is the best that can be done until further investigation shows specific LCP chain orientation.

The interaction of forces would most likely give an in-between orientation. The exact orientation will remain unknown until the study of LCP advances. Additional problems include the blow molding process. When the paranon, unformed plastic, is injected into the mold cavity damage to the polymer chain by a screw might occur. The screw develops pressure to inject the paranon into the mold cavity. If long polymer chains are to be maintained the screw action would probably damage them.

### Parallel Alignment

Shearing forces would probably make the LCP chain orient or align itself longitudinally during the injection step. This would give a polymer chain alignment pole to pole, shown in figure 2.



Figure 2. Longitudinal Polymer Chain Alignment.

A LCP parallel alignment would require a case (hoop) thickness of .875 inches and dome thickness of .21875 inches, shown on table 3. The additional hoop thickness is required to balance the hoop forces. Since the blow molding process cannot control thickness, the wall thickness will be determined by the weakest section, in this case the hoop section.

	Ta Longitudi	ible 3. nally Aligned	
t _{case}	t _{dome}	Safety Factor	Weight
.875 in	.21875 in	1.5	33.5 lbf

Perpendicular Alignment

The other possible alignment is the polymer chains aligned cylindrically, shown in figure 3.



Figure 3. Hoop Alignment.

The dome and case thickness are equal with a perpendicular alignment, shown on table 4. This would be the optimal alignment. However, the shearing forces might make this the most difficult to achieve.

	Ta	ıble 4.	
	Hoop .	Alignment	
t _{case}	t _{dome}	Safety Factor	Weight
.4375 in	.4375 in	1.5	17.5 lbf

Spherical Design

The weakest area is the cylindrical section. A spherical pressure vessel, which would avoid this problem, assuming parallel alignment and equal internal volume would have the characteristics shown in table 5.

	Ta	able 5.	
	Spherical F	ressure Vessel	
Diameter	t	Safety Factor	Weight
20.4 in	.665 in	1.5	21.4 lbf

### Fiber_Reinforced Pressure Vessel

The fiber reinforced pressure vessel was designed with the same requirements as the LCP only design. Netting Analysis was used to analyze the pressure vessel which assumes only the fibers are being loaded. It does not include fiber/matrix or composite/bladder interaction. A more complete analysis is being done using laminate plate theory. A boss diameter of 1 inch is assumed. The weight, shown on table 6, is substantially less then the unreinforced LCP.

	Ta	able 5.	
	Fiber Reinforce	ed Pressure Vessel	
tase	t _{dome}	Safety Factor	Weight
.070 in	.071 in	1.5	3.00 lbf

X

### Recommendations

The fiber reinforced LCP pressure vessel is the best design if weight is the only consideration. If production time is a consideration and the weight penalties are acceptable, then the unreinforced LCP design would be better.

Before any designs are considered, careful study of LCP flow patterns must be investigated. The LCP chain orientation is extremely critical for any unreinforced pressure vessel. Proper fiber/matrix interaction to ensure good bondage and proper fiber volume must also be studied.

LCP Material Pr	operties					Fiber Material P	roperties			
Χ =	40000	osi				×=	665000	psi		
¥ =	20000	<u>si</u> .				Band Width =	0.065	5		
Ē	4000000	<u>si</u>				Yield =	0.64193064	g/m	3.5946E-05	lbf/in
E2 =	2000000	Si				rho =	2.49	g/cc	0.08995548	lbf/in3
						Fiber Volume=	0.67			
rho =	1.4	)/cc	0.05057738	lbf/in3		Ef =	12600000	psi		250
					'n					0.00011111
Pressure Vessel										
	3500	osi	D,boss =	-						
D,case =	10	J								
L =	35	J				Fiber Reinforce	ment			
Safty Factor =	1.5									
						Fiber Angle =	5.7366919	deg	Area End =	0.0003996
LCP Only Desig	J				5	t,c =	0.05861839	5	Plys =	9.54
Longitudinal Al	lignment		Cylinderical Alli	gnment	5	t,1 =	0.02960638	5	Plys =	4.82
t,c =	0.875 i	Э	t,c =	0.4375						
t,  =	0.21875	Э	t,1 =	0.4375	5					
						<pre>&lt; =</pre>	27.6006442	in3		
t,max =	1.3125	5	t,max =	0.65625	in3	<	2.12416499	lbf		
					Þf					
V =	662.170687	n3	V =	345.868709						
= W	33.4908559	þ	¥ =	17.4931318						
Longitudinal, Sp	oherical Design									
				-						
Du	20.4082755	5								
<b>→</b> 11	0.66964654	5								
V =	424.069969	in3								
= W	21.4483464									

Weight Calcs Lam

Ę

X

424