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ABSTRACT 

The theory of [RS2] is applied to yield compactly supported tight affine frames 
(wavelets) in L2(M

d) from box splines. The wavelets obtained are smooth piecewise- 
polynomials on a simple mesh; furthermore, they exhibit a wealth of symmetries, and have 
a relatively small support. The number of "mother wavelets", however, increases with the 
increase of the required smoothness. 

Two bivariate constructions, of potential practical value, are highlighted. In both, the 
wavelets are derived from four-direction mesh box splines that are refmable with respect 

to the dilation matrix 
N1    -1 
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Compactly supported tight affine spline frames in L2(M
d) 

AMOS RON AND ZUOWEI SHEN 

1. Introduction 

Given a finite set \I/ C L2(JRd), and a dilation matrix s, the affine system generated 
by \f is defined as the collection 

(1.1) X := {DkEai/j : iieV, k£2Z, ae 7Zd}, 

where 

is the shift operator and 

Ea:f^f(- + a) 

Dk :f^\dets\k/2f(sk 

is the dilation operator. A system X C L2(JRd) is a fundamental tight frame with 
frame bound 1 if the map 

T* : L2(JRd) -> £2(X) : / ->■ ((f,x))xeX 

is unitary (but not necessarily onto: a tight frame with frame bound 1 whose corresponding 
T* is onto is necessarily orthonormal). In what follows, all systems that we treat are affine 
and fundamental, and all tight frames that are considered have frame bound 1, hence "a 
tight frame" should always be understood as "a fundamental tight affine frame with frame 
bound 1". A tight frame can be used for the atomic decompositions of functions exactly 
in the same way orthonormal bases are used, i.e., 

T* : / ^ T*f 

transform / into discrete information, and its adjoint 

T : i2(X) ->L2:c^Y^ c(x)x 

xex 

can then be used to recover / from its discrete transformation (i.e., TT*f — /). In order 
for T* to exhibit good space-frequency localization, the functions \1> should be local in the 
space domain (ideally compactly supported), should be smooth (which leads to good decay 
in the frequency domain), and should provide positive approximation order. We refer to 
[Dl,2], [HW] and [RSI,2] for further discussions on frames and tight frames. 

While tight frames should ideally be generated by few smooth compactly supported 
functions with simple structure, the only examples of compactly supported multivariate 
tight frames in the literature that we are aware of are bivariate orthonormal bases that 
were derived in [CD] from the univariate Daubechies' wavelets, [D3], as well as tensor 
products of Daubechies' wavelets. We briefly review those constructions now. 



Let L2 := L2(]R2). Let h be the refinement mask of a Daubechies' scaling function 0, 
[D3] (whose shifts are known to be orthonormal), and let ip be the corresponding wavelet. 
Define the bivariate mask 

r(u;i,a;2) := h(ui). 

Given a dilation matrix 5, a bivariate scaling function (or distribution) $ can then be 
defined by 

00 

$ : w H* J^T(s*_-'a;). 

Cohen and Daubechies employed in [CD] two different dilation matrices: 

(1.2) 5:=^    _xj,    «i :=^ 

and obtained therefore two different scaling functions, say $ and $1, respectively. They 
observed essential differences between the two so-obtained functions. The matrix s sat- 
isfies ,s'2 = 27, and therefore the resulted $ is clearly the tensor product (referred to as 
"separable" in [CD]) 

§(x) = (j>(x2)(f>(xi -x2), 

and therefore the shifts of $ are necessarily orthonormal. Furthermore, the standard 
wavelet construction then yields the wavelet 

Sk(x) = tp(x2)(f)(x1 -x2). 

While the refinable function $ is separable, the refinable function $x and the wavelet 
constructed from it are not separable in any sense. Nonetheless, it is proved in [CD] that 
the shifts of $1 are orthonormal. It is further proved in [CD] that, unfortunately, $1 
cannot be C1, regardless of the order of the univariate scaling function which is used. 
Therefore, it is necessary to develop some other algorithms to construct nonseparable 
compactly supported tight frames with high smoothness. 

It will not be entirely correct to say that the [CD] constructions and tensor product 
constructions comprise all known multivariate affine tight frames: according to [CS], tight 
frames can be constructed by appending to # some of their translates (=:oversampling); 
that, of course, only increases the number of elements in each of the above constructions, 
while preserving any deficiences (such as lack of symmetries and low smoothness in the 
non-separable case, and parallelogram supports in the separable case) that the orthonormal 
system may have had. 

The theory established in [RS2], however, makes the construction of useful simple 
nonseparable compactly supported tight frames with high smoothness and a variety of 
symmetries an easy task. In fact, one can essentially construct tight frames with the aid of 
the shifts of any refinable function, and therefore it is possible to impose a simple structure 
on the wavelets by selecting a refinable function with such desired structure. Indeed, we 
constructed in [RS2], for every positive integer m, a tight frame for L2QR) that is generated 
by m wavelets, each of which is a spline of degree m - 1, support [0, m], and smoothness 
Cm~2. Further, all knots of the spline-wavelets are half-integers, and each spline is either 
symmetric or anti-symmetric. (The case ra = 4 of this construction is discussed in §4). 



Since the variety of possible constructions of multivariate (and univariate) tight frames 
based on the [RS2] theory is unlimited, we carefully selected for the present article those 
constructions which, in our opinion, may be used in practical applications. We kept in 
mind that different applications may require different properties from the wavelet system; 
for example, in data compression applications the number of different wavelets used (which 
accounts to the oversampling rate) should be minimized, while in finite element applica- 
tions many elements with small supports may be preferred. Our two favorite bivariate 
constructions are detailed in §2 and §3: in §2, the system is generated by many highly 
symmetric wavelets of small support (which, actually, are not so "many" for practical 
smoothness requirements); in §3, the system is generated by fewer larger elements. In each 
construction, the wavelets are splines, i.e., smooth piecewise-polynomials, always of com- 
pact support, with various symmetries. Moreover, the relevant grid is the four-direction 
(i.e., quincunx, see below) mesh, hence all the wavelets have a "round" octagonal support. 
On the the other hand, similarly to our univariate construction, the number of elements 
used, as well as the volume of the support of each, increase together with the increase in 
the required smoothness. The ease in constructing tight spline frames is not limited to two 
dimensions: in §4 a general inductive algorithm for constructing multidimensional tight 
frames is provided. The algorithm works particularly well with box splines, in fact, with 
every box spline. We call the box spline wavelets obtained by this algorithm boxlets. 

We have chosen to carry the constructions in §2,3 with respect to the dilation matrix 
s (cf. 1.2). It is possible, though, to carry these same constructions with respect to si 
with only one limitation: all four directions in the definition of the box spline must appear 
with the same multiplicity. In any event, the use of Si instead of s does not yield different 
systems, and the reason is very simple: for a four-direction mesh, not only that s2Z2 = 
siZZ2, but also, in case the box spline (j) has equi-multiplicities, 4>{s-) = (j){sy). 

2. Bivariate tight frames generated by m2 — 1 C3m~5 spline wavelets 

In fact, the construction here is a bit more general than the title indicates: it includes 
tight frames generated by m2 + m —1 wavelets of smoothness C3m~4. Of course, we assume 
m > 1. 

Let 4> be the box spline 

4/ x -ifc-u; 

(2.1) 0M = n i£j • ui 

where 

(£1,^2, £3, £4) :- I) (?) (!) Ü 
and with mi = 777,3, and TO2 = TO4.   It is well-known (cf. [BHR]) that the box spline </> 
satisfies the following properties: 
(a) It is a piecewise-polynomial of local degree 2(rai +m2 — 1), on the four-direction mesh 

(that is obtained by adding the diagonals to each square of integer vertices). 



(b) It is globally Cp~2 with p := min{2mi + ra2, 2m2 + mi}; (in fact, its (p-2)-order 
derivatives are all Lipl5 hence its Holder continuity is p - 1). Further, it provides 
approximation order p. 

(c) It is supported in the octagon 

4 

{J>&:  Q<tj<mj, i = l,...,4}. 
i=i 

Further, it is essentially positive on its support. 
In the sequel, we will introduce a variety of octagonal domains similar to the support 

of (j) above. For reasons of efficiency, we therefore denote 

4 

[ai, 0,3,03,04] :={X/J'& 
:  °-tJ <%>.? = 1>•••>4^ 

Note that each [a, 6, c, d] is an octagon whose area is 

area([a, 6, c,d}) = ab + ac + ad + be + bd + 2cd. 

We prefer the above box spline over other variants because it is refinable not only 
with respect to the dilation matrix 27, but also with respect to the dilation matrix 

(2.2) s:=^    _2 

This well-known fact was rarely exploited before because the shifts of the 4-direction box 
spline do not form a Riesz basis (or a frame). Here, that is no more an obstacle, since, as 
we already mentioned, the [RS2] theory does not impose any a priori assumption on the 
refinable function <f>. 

A straightforward computation shows that 

0(s-) = T0(j) 

with the function 

roH := f i±| J       (±±Z J      =ö(W)co8rai(ü;1/2)co8ra»(^/2), 

with 

We note that </> is refinable, which means that the mask r0 is 2?r-periodic (and hence 
0(s-1-) can be written as a linear combination of the integer translates of (j)). 

Our construction invokes the following theorem, which is a special case of Corollary 
6.7 of [RS2]. 



Theorem 2.3. Let cj> be any box spline that is reßnable with respect to the dilation matrix 
s of (2-2), and has a (2n-periodic) refinement mask TQ. Let n be a positive integer, and let 
(7j)i=i oe n ^-periodic essentially bounded measurable functions. Assume that, for a.e. 
u, and for v := (7r,7r), 

n n 

j=0 j=0 

Then the wavelets $f := (ipj)^=l, defined by 

$(s-) := Tj$,    j = l,...,n, 

generate a tight frame (i.e., a fundamental affine tight frame with frame bound 1) for L2. 

It should be understood that the dilation matrix s that is involved in the refinement 
equation is the same dilation matrix s that is used to generate the affine system from \P. 

To construct now the wavelets with the aid of the above box spline 4>, we first define 
the following univariate 47r-periodic functions: 

(2.4) Vj(t) := y[™\t) := J (     ) cosm^ t/2 sin'' t/2, 0 < j < m. 

(Warning: m in y^     is an index, not a power!) Note that, for any fixed m, 

m m 

(2-5) Z>jf = l>    E^^(' + 7r) = 0- 
J=0 j=0 

We next define the tensor product bidimensional mask system 

(TY, :  n € JV := {0,1,..., mi} x {0,1,..., m2}) 

with 
r„(W):=fl(W) y^M y^fa). 

Each rn is 27r-periodic. 
We then observe that r0 := r0io in the above tensor system is the refinement mask of 

(j). Moreover, the convex hull of the spectrum of each rn, n G N, is independent of n (i.e., 
in down-to-earth language: the 27r-integers that lie in the convex hull of the frequencies of 
the exponentials whose linear combination form rn, are the same for all n). This means 
that the (mi + l)(m2 + 1) — 1 functions, defined by 

(2.6) * := {^n : $n(s-) := rj>,    n G iV\0}, 

are all supported in the support of <j), i.e., in the octagon [mi,m2,mi,m2]. The functions 
\1/ are nonseparable piecewise-polynomials, with the same smoothness as the box spline <j) 
used. 



The tensor product structure of the masks (together with the fact that |0| = 1) clearly 

implies (cf. (2.5)) that 

mi 

J2 KHI2 = (£ bjmi3MI2)(E \y[r]M\2) = L 
neN j=0 j=o 

and by the same token, for v = (ir, n) (with c := 6EU6) 

m\ 

neJV 3=0 3=0 

Therefore, Theorem 2.3 implies the following: 

Theorem 2.7. The wavelets * constructed in (2.6) generate a tight affine frame with 

frame bound 1. 

Remark. Each one of these wavelets is supported in the support of <j>, and is a Cp~ , 
p := min{2mi + m2, 2m2 + m1}, piecewise-polynomial of local degree 2(mi + m2 - 1), with 
respect to the mesh s~lM, with M the standard four-direction mesh. The mesh s~lM 

consists of all lines of the form 

xi + x2 = j, xi-x2= j, xi = j/2, x2 = j/2, 

where j varies over 7L, and {xux2) is the generic point in the space domain. D 

Example. We take mx = m2 = 1. In this case (j) is the well-known Cl piecewise-quadratic 
Zwart element, supported in the octagon [1,1,1,1]. The above construction yields three 
Cl piecewise-quadratic wavelets each supported in [1,1,1,1], and each exhibiting various 
symmetries (cf. Figures 2.1 and 2.2). The support of each wavelet is of area 7; this small 
support comes despite of fact that we oversample by a factor of 3. 

It is hard to compare the above construction to literature counterparts, since, as we 
mentioned before, the latter hardly exist. Here are two possible comparisons. In the 
first, we take the separable construction of [CD], using Daubechies scaling function that 
provides the same approximation order (i.e., 3) as the Zwart element. The result is a 
single wavelet supported in a parallelogram of area 25, and whose shifts are orthonormal. 
The smoothness of this wavelet is about half of the above tight frame (in terms of Holder 
exponents: 2 vs. 1.1; cf. [D2: pp. 232-239]), and it lacks symmetries. 

Another comparison may be with "plain" tensor product of the same Daubechies' 
scaling function. In this case, we obtain 3 mother wavelets each with a square support 
of area 25, and with the same smoothness and (lack of) symmetries. The shifts of these 
wavelets now fill an entire dyadic level. To fill in an entire dyadic level using integer shifts 
of our elements, we need the three elements of support area of 7 each, and 6 elements of 
half-size support, with total area of supports 42. n 



-2     -1 

Figure 2.1. The C1 piecewise-quadratic wavelet ^0,i- The wavelet 
■01.0 is obtained by rotation. 

-2     -1 

Figure 2.2. The C1 piecewise-quadratic wavelet -01,i- Note tne 

octagonal support 

Example. We take mx = 1, m2 = 2. In this case </> is globally C2 (and is C3 on half of 
the mesh lines), piecewise-quartic. The construction now yields 5 wavelets, all supported 



in the octagon [1,2,1,2] whose area is 15. They all have the same (global) smoothness and 
local degree as the box spline. 

Example 2.8. We take m1 = m2 = 2. Then we obtain 8 elements supported each in the 
octagon [2,2, 2,2] whose vertices (up to a (1, l)-shift) are (±3, ±1) U (±1, ±3) and whose 
area is 28. Each spline wavelet is C4 (with Holder exponent 5). The local polynomial 
degree is 6. 

3. Tight frames generated by 2m C3m~2 spline wavelets 

Here, m assumes any positive integer value. Again, the construction is more general 
than the title indicates: it includes the construction of tight frames generated by 2m + 1 
(j3m-l wavelets. 

The wavelets constructed in this section are selected from the same box spline spaces 
used in the previous section. Given a four-direction box spline with corresponding mul- 
tiplicities (m1,m2,mi,m2), the construction selects appropriate mother wavelets as the 
s-dilate of certain functions in the span of the shifts of the box spline. This means that 
the wavelets here are comparable to the wavelets of the previous section in terms of local 
polynomial degrees, underlying meshes, and smoothness. 

However, the number of wavelets associated with the previous construction grows 
quadraticly with the required smoothness. Though the three examples that followed show 
that for practical smoothness requirements the number of wavelets is "within reason", it 
is possible to construct tight spline frames whose number of generators grow only linearly 
with the required smoothness. The associated wavelets, on the other hand, have larger, 
somewhat less symmetric, support. 

It is convenient to carry out the construction here not with the aid of the box spline 
<f> of (2.1), but, rather, with the following "averaged" spline cp: 

,-lWl \ mi 

(p(w) := ( -±-£  1      4>{u). 

In standard box spline terminology, <p is a box spline with direction set (2^,66.^) (cf. 
(2.1)) with corresponding multiplicities (m1,m2,m1,m2). Also, direct computation yields 
that (p satisfies 

?(")=( ä j      (—a— J      *("), 
=i?(w) cosmi ((wi + w2)/2) cos™2 (u2/2) <p{w) 

where 
■d{ui) := e" 

(mi ,mi+m2)-uj/2 

Recalling now the definition of yJmJ in (2.4), we define mi+m2 + l 2?r-periodic functions 
as follows: 

r» := d{uj) y^l](wi + u>2) yp](w2),    j = 0,...,m1? 

8 



and 
rmi+» := ö(W)yf 2](a;2),    j = 1,..., m2, 

where 
0(w) := e-

imW2# 

We note that the functions e~imi(wi+Wa>/2^mil(ü;i+W2) are periodic with respect to shifting 
by (7r,7r), hence are periodic with respect to the lattice S

_1
2?TZ

2
. From that, together 

with the fact, (2.5), that 
mi 

3=0 

one immediately concludes that for e e {0,1}, and v = (vT, 7r), 

7Tll 

J=0 

This leads further to the conclusions that, firstly, 

7711+7712 'm-2 

J'=0 J=0 

and, secondly, with v := (7r, 7r), 

7711+7712 7772 

i=o j'=o 

In summary, the mask vector 
/■„-   \mi+7772 

satisfies the conditions of Theorem 2.3. 
Consequently, since r0 in the above construction is the refmment mask of (p, we con- 

clude from Theorem 2.3 that the mi + m2 wavelets defined by 

$j(s-) := Tj^,    j = 1,..., mi + m2, 

generate a tight frame. 

Corollary 3.1.  Let ip be the box spline whose direction set is (2£i,£2,£3,£4) with corre- 
sponding jnultiplicities (mi,m2,mi,m2): 

V =     ö         <^w)> 



with (j) the box spline of (2.1). Then, with (TJ)™!?™2
 the above constructed masks, the 

wavelets # := (ipj)™l^m2, defined by $j{s-) := Tjtp, generate a tight frame (with frame 
bound 1) for L2. These wavelets share the same smoothness, local degree, and mesh with 
the wavelets of Theorem 2.7. 

Discussion. The box spline y in the above corollary is supported in the octagon 
[2mi,m2,mi,m2] whose area is 2m\ + lmxm2 + m\. As to the wavelets, the "large" 
wavelets, i.e., the first mx elements, have the same support as ip. The other m2 elements 
have the octagonal support [ra1)m2, mi,m2], whose area is m? + 5mim2 + m2,. 

Remark. The general construction detailed in the next section shows that there are many 
possible modifications of the above construction. 

Example 3.2. We consider the case mx = ra2 = 1. Figure 3.1 shows the box spline ip. It 
is a C1 piecewise-quadratic that provides approximation order 3, and it is supported in the 
octagon [2,1,1,1], with area 10. Two wavelets are constructed here. Direct computation 
yields that the larger support wavelet, -01 (cf. Figure 3.2), whose support is identical to 
that of ip, satisfies 

(3.3) V»i(w) = tan(wi/2)£(u;), 

while the smaller support xp2 (cf. Figure 3.3) has the form 

1 _e-t(wi-w2)/2^  Wl +Uj2    ux-u}2 

^ = 2i ^(-^—' ~r-Y 

The corresponding supports are [2,1,1,1] and [1,1,1,1] with corresponding areas 10 and 
7. D 

Example. We consider mx = 1, m2 = 2. The box spline y is then C2 piecewise-quartic 
and provides approximation order 4. Its support is the octagon [2,2,1,2] whose area is 
20. The mother wavelet set consists of three elements, two "small" and one "large". The 
large element Vi is defined exactly as in (3.3) (only that ip has been changed), and has the 
support of (j). The other wavelets are 

l_e-i(wi-w2)       iü1+U2    UJi-UJ2 

and 
-l + 2e_i^V^ -e"^1-"'2)     wi + w2   wi-w2> 

^3 =  i V>{—a". —2~)' 

Both supported in the same octagon [1, 2,1, 2], whose area is 15. □ 

Example. The case mi = m2 = 2 yields four wavelets, two supported in [4,2,2,2], and 
the other two supported in [2, 2, 2, 2]. The area of these octagons is 40 and 28 respectively, 
hence their total area is 136. The smoothness of the box spline, as well as its local degree 
is the same as in Example 2.8. n 

10 



0.15 

0.05 

-2     -2 

Figure 3.1. The C1 piecewise-quadratic box spline that is used 
in Example 3.2. 

-2     -2 

Figure 3.2. The C1 piecewise-quadratic wavelet with larger sup- 
port tpi. 

11 



-2     -2 

Figure 3.3. The C1 piecewise-quadratic wavelet with smaller sup- 
port -02- 

4. A general inductive algorithm for constructing tight frames 

The method described in the last section for the construction of box spline wavelets 
on a four-direction mesh can be significantly generalized. Since we are unable to predict, 
at the time when this article is written, what specific variants may be implemented in 
practice, we decided to simply outline the highest level of generalization that we are able 
to observe. 

The setup here is as follows: we hold a dilation matrix s (i.e., an integer matrix whose 
inverse is contractive) and two d-variate functions (or, more generally, distributions), say 
fa, fa, that are refinable with respect to s. The corresponding masks, that are assumed 
to be 27r-periodic (that is a part of the definition of refinability), are also assumed to be 
bounded; in practical situations the masks are trigonometric polynomials, hence certainly 
bounded. The basic assumption is that we already know how to derive a tight frame from 
the scaling function fa, and we would like to use that known frame in order to obtain a 
new, improved (in terms of smoothness, for example) tight frame. Specifically, we would 
like to extract the new frame from the (necessarily refinable) convolution 

<t> := fa *02- 

This idea (of convolving the given scaling function with a suitably chosen distribution) 
has been used in the spline and wavelet theory many times. For example, Daubechies 
obtained her univariate refinable functions whose shifts are orthonormal by convolving a 
univariate B-spline fa (whose shifts are stable but not orthonormal), with a suitably chosen 

12 



distribution fa. In her construction, the new (f> provides the same approximation order as 
the B-spline fa, but is significantly less smooth; (the smoothness of the scaling function 
and the orthonormality of its shifts are then transferred to the constructed wavelets.) 
The fact that one cannot obtain by convolution the orthonormality of the shifts, while 
simultaneously improving, or at least retaining, the smoothness of the original fa, is one 
of main reasons the construction of the affine orthonormal bases is fairly involved. 

The theory of [RS2] allows us to pay less attention to the properties of the scaling 
function: "bad" properties of the latter may not at all be inherited by the wavelets! 
Specifically, the smoothness of the wavelets and the tightness of the frame they generate 
do not compete any more. In fact, we can separate the construction of the smooth tight 
frame into two steps: in the first a basic low-smoothness frame is constructed, and then 
the smoothness of the frame is improved without hampering its tightness: in terms of fa, 
fa above, fa is the low- (or intermediate-) smooth scaling function that yields a tight affine 
system, and fa is the convolutor that should improve the smoothness. 

We specify now the exact conditions that are imposed on fa, fa. In these conditions, 
we use the notation 

T := 2ir(s*~17Zd/7Zd). 

For example, if s = 21, T is the group {0,7r}d, with addition modulo 2n. Note that the 
order of T is | dets|. 

(4.1) Conditions assumed on fa, fa. 
(a) For j = 1,2, fa is a refinable distribution with bounded mask TJ. 

(b) There exists a collection Tx of 27r-periodic bounded functions that satisfy, for every 
u eT, and a.e. on IRd, 

T€TI 

(c) There exist another collection of 27r-periodic bounded functions T2, that satisfy 

N2 + X>i2 = i- 
TgT2 

Discussion. The fact that we assume fa to be merely a distribution seems to be practically 
important as we will see in the examples presented at the end of this section. On the other 
hand, fa, in all examples we carry in mind, is a function. In fact, if fa is a function, 
Corollary 6.7 of [RS2] "almost" implies that, under the condition (b) of the conditions 
(4.1), the system generated by the wavelets that are defined via their Fourier transforms 
by 

{^(s*-) := rfa:  re Ti} 

is a tight frame for L2(IRd). The only missing condition is a very mild smoothness re- 
quirement of fa, that all box splines, for example, satisfy (cf. (4.6) of [RS2]). Note that 
significantly weaker conditions are assumed on T2. 

13 



With the assumptions of (4.1) in hand, we will be able to construct a tight frame 
based not on the convolution fa * <fc>, but, rather, on the convolution with larger support 

02(s
-1-)*0i 

r |dets| 

Note that <j> = fa(s*■)$!, and hence that (j) is refmable with mask 

T<f, := T2(S*-) n. 

We now introduce the new mask collection 

T:=TiU(riT2(s*-)), 

i.e., we apply s* dilation to each of the masks in T2, multiply each by n, and then append 
the new collection to Tx. Clearly, 

#T = #Ti + #T2. 

Lemma 4.2. Each of the masks in T above is 2ir-periodic and bounded. Furthermore, 
for every v G T, 

rGT 

Proof.        We note that the masks in T2(s*-) are not only 27rZd-periodic, but also 
27rs*~1Zd-periodic. Therefore, for every v e T, by (c) of (4.1), 

r4>W^ +     Y,    (r1r)W{^) = (T1E^r
1)(\T2(s*-)\2+     J2     \r?) = riE^[. 

T€T3(,'.) reT2(S*-) 

This implies that, by (b) of (4.1), that, for every u e T, 

rGT rgTi 
D 

As we already mentioned above, the properties proved with respect to T in the above 
lemma almost imply that the wavelet system * := (</>),/,g* define by 

{^(s*.):=r^:   rGT} 

generate a tight frame: we only a need a mild smoothness condition of 0. Rather than 
quoting the complicated condition (4.6) of [RS2], we assume in the following corollary 
smoothness conditions that are slightly stronger but more transparent. 
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Corollary 4.3. In the above notations, if the refinable <f> is a box spline, or if its Fourier 
transform decay at oo like 0(\ ■ |-1/2-5) for 8 > 0, then the wavelets \& constructed as 
above generate a fundamental affine tight frame with frame bound 1 for L2(lRd). 

(4.4) Boxlets. We assume that the dilation matrix s satisfies sk = 21, for some positive 
integer k. In this case, there is a natural way for choosing the smoothing factor fa: starting 
with a cycle E := (£i,..., £&) of s (i.e., s£j = £j+i, j = 1, • • •, k — 1, hence necessarily 
s£k = 2£i), we define fa as the box spline with directions E: 

-i-r 1 - e~^'w 

fcM = II ^r—-• 

Then, fa is refinable with mask 

1 + e-^-" 
r2(w) = . 

Since we tacitly assume E to be integer, r2 is 27r-periodic. Selecting T2 is then trivial: T2 

is taken to be the singleton 
.l-e-^1*. 

The satisfaction of (c) in (4.1) is then automatic, and, assuming that Ti, fa are already 
given, and that the refinement mask of fa is T\, our general inductive step reads here as 
follows: 
(a) The new refinable function is (j) '•=      idetsl 
(b) The refinement mask of <j> is 

I _|_ e-
is^i -w                14- e~^2 mUJ 

r^(w) := n(oj) = n(w) . 

(c) The new wavelet mask set T is obtained by appending to Ti the single mask 

r(w) := TI(U) . 

Boxlets correspond to the choice s = 27 for the dilation matrix. The cycles of II 
are, of course, singletons, hence the inductive process allows us to insert one direction per 
step. We may begin the inductive process with any box spline fa whose (integer) direction 
set is a basis for IR (that box spline is then, up to a normalization constant, the support 
function of some parallelepiped). As the initial wavelet masks Ti, we take the tensor 
product construction (thus, we obtain, up to a linear transformation, the multivariate 
Haar wavelets). We select any sequence E = (£i,... ,£m), and, after m insertions obtain 
the final box spline 

1 _ e-»2£,--w m 

JM = *.MII 2^..„ 

15 



There are 2d - 1 + m boxlets in this construction. The first 2d - 1 ones correspond to the 
initial tensor product masks (which, we stress, are applied to the smooth (/>). The other 
masks, which we index by S, have a "triangular structure": 

nM := riH —ö 11 2      ' 
£=1 

with ri the refinement mask of the initial fa. 
Assuming that m is relatively small, most of the boxlets have small support. For 

example, if we wish to construct C2 boxlets, then, independently of the spatial dimension 
d, we may do with m = 3. In this case, there are 2d - 1 wavelets with "small" support, 
one with "large" support, and two wavelets with intermediate size of supports. D 

We remark that, in the above construction, we may start with any refinable (box 
spline) fa, provided that a derivation of a tight frame from fa is available. 

Example. We show that the construction of §3 is a special case of the construction of 
this section. Here, fa is a four-direction box spline (as defined in (2.1)) with multiplicities 
(0,m2,0,m2), and fa is a four-direction box spline with multiplicities (mi,0,mi,0) (so 
that each box spline has only two active directions). The function fa is refinable with 
respect to the dilation matrix s employed in §3, and with mask (up to an exponential 
factor) cosmi(wi/2). Since this mask is univariate, one can use our univariate construction 
from [RS2] to obtain the T2 masks 

T2:={y}milW:  j = l,...,m1}. 

As to fa, the box spline fa is refinable with mask (up to an exponential factor) cos™2 (w2/2), 
and hence the same univariate construction can be repeated (as indeed we did). Otherwise, 
we may assume by induction that Ti, the wavelet masks associated with fa, are already 
given. 

Note that the above discussion shows that the construction of §3 could have been 
made gradual: starting with four-direction box spline with multiplicities (0, m2,0, m2), we 
may have appended the four-direction box spline with multiplicities (mi,0,mi,0) step by 
step: The number of wavelets will be then unchanged, (mi + m2) but a certain saving in 
the size of the larger support wavelets can be achieved in this way. □ 

Univariate C2 cubic splines. In the final example of this section, we employ the gen- 
eral algorithm of this section in the construction of a univariate compactly supported tight 
frame generated by C2 cubic splines. Prior to doing that, we recall that [RS2] already pro- 
vides such a construction. Its construction yields four generators (Vv)j=i> each supported 
in the interval [-2,2] whose Fourier transforms satisfy 

T /o   ^        /7Acos4-^/2)sin4+J(a;/2) 
^) = y(J W27      • 
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^ \ v'    I/\IAH    'A/V1    '^/y^1 

Figure 4.1. The four C2 piecewise-cubic wavelets that were con- 
structed in [RS2].    All of them are supported in 
[-2,2]. 

The graphs of these three functions are given in Figure 4.1. 
Here, we construct another C2 piecewise-cubic tight frame, generated by 3 wavelets, 

albeit with larger support. In this construction, we choose fa as the Haar wavelet, and fa 
as the quadratic B-spline. Thus: 

fa (w) = 
1 -e 

VJO 
-,   fa = (<M3, 

and the corresponding masks are 

nH =  Ö »       7-2=^. 

We now choose Ti to be the singleton 

r 1 - e-iw ., 

(that corresponds to the Haar wavelet), and choose T2 to consist of two masks: 

{ 
1-e 

2» 

\/3(l - e~2iw) 
Ai }■ 

It is obvious that Tx satisfies (b) of (4.1). It is less obvious, but still can be checked 
directly, that T2 satisfies (c) of (4.1). Thus, by our algorithm, the following three mother 
wavelets generate a tight frame for ^(H): 

and 

^ 1  _ p-*w/2 ^ 

fH = —gi—*(w/2)' 

^(w) = ^ 0(^/2), 

^3(w) = I  2i I    ^^/2)' 
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yS\ \  yn «+—I—I—f- V'\     I   \    I     >H     1 -H <"\ '/I    >v> H 

Figure 4.2. The three C2 piecewise-cubic wavelets that were con- 
structed here. 

where 
~    ,      /l-e"*w\ /l-e-i2w 

*w> = (-ST"j ("läT- 
The supports of these wavelets are [0,4], [0,6], [0,7], respectively, and their graphs 

are shown in Figure 4.2. We note that ?/>2 and tp3 are splines with integer knots; i.e., in 
standard wavelet terminology, they belong to V0. 
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