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Control Using Logic-Based Switching 

A. S. Morse* 

Yale University, New Haven, CT 06520 USA 

1  Introduction 

Between the well-studied areas of discontinuous control [1], [2] on the one hand 
and sampled data control [3] on the other lies the largely unexplored area of 
logic-based switching control systems. By a logic-based switching controller is 
meant a controller whose subsystems include not only familiar dynamical com- 
ponents {integrators, summers, gains, etc.} but logic-driven elements as well 
{e.g., [4]}. More often than not the predominately logical component within 
such a system is called a supervisor [5], a mode changer [6], a gain sched- 
uler, or something similar. Within the last decade a number of analytical stud- 
ies of such systems have emerged, mainly in the area of self-adjusting control 
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. These studies and others have shown that 
much can be gained by using logic-based switching together with more familiar 
techniques in the synthesis of feedback controls. The overall models of systems 
composed of such logics together with the processes they are intended to control 
are concrete examples of hybrid dynamical systems [17, 18, 19]. The aim of this 
paper is to give a brief tutorial review of four different classes of hybrid systems 
of this type - each consists of a continuous-time process to be controlled, a pa- 
rameterized family of candidate controllers, and an event driven switching logic. 
Three of the logics, called prerouted switching, hysteresis switching and dwell- 
time switching respectively, are simple strategies capable of determining in real 
time which candidate controller should be put in feedback with a process in order 
to achieve desired closed-loop performance. The fourth, called cyclic switching, 
has been devised to solve the long-standing stabilizability problem which arises 
in the synthesis of identifier-based adaptive controllers because of the existence 
of points in parameter space where the estimated model upon which certainty 
equivalence synthesis is based, loses stabilizability. 

In section 2, we discuss several basic issues common to supervised control 
systems of all types. In most cases of interest, the job of a supervisor is to 
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orchestrate the switching of a sequence of candidate controllers into feedback or 
series with a process, so as to achieve some prescribed goal. No matter what the 
goal might be, the underlying architecture of the supervised control system is 
pretty much the same - at least in concept. In section 2 we make the point that 
such "multi-controller'' architectures can usually be implemented most efficiently 

as "state-shared" parameter-dependent controllers. 
In section 3 we briefly discuss two examples of logic-based switching con- 

trollers which arise in nonadaptive applications. The first is an 'intelligent' con- 
trol strategy devised to maximize system performance while at the same guar- 
anteeing that hard-bound saturation constraints are satisfied [20]. The second 
is a simple, time-invariant, chatter-free, switching logic with one state variable, 
which is capable of asymptotically stabilizing a particular bilinear system of 

current interest called the "nonholonomic integrator" [21]. 
The aim of §4 is to explain the concepts of prerouted, hysteresis, dwell-time, 

and cyclic switching. Although each of these strategies is applicable to a variety 
of systems [11, 12, 13, 14, 22, 16, 23], for the sake of uniformity all are reviewed 
within the context of a single prototype problem - the set-point control of a 
siso linear system with large-scale parametric uncertainty [24]. The problem is 

formulated in §4.1. 
The concept of "prerouted switching" is closely allied with the idea of a 

"nonestimator based supervisor"; both topics are discussed in §4.2. 
Section 4.3 focuses on the idea of an estimator-based supervisor. It is within 

this context that the concepts of hysteresis switching and dwell-time switching 
are explained. The idea of cyclic switching is then reviewed in section 4.4 

The logics discussed in §4 are conceptually straight forward. What's inter- 
esting about them theoretically is the set of technical questions they generate. 
Most of the questions have to do with dynamical systems in which switching is 
non-terminating, non-chattering and asynchronous. Many unanswered questions 
exist. Some are briefly discussed in §5. 

2  Multi-Controllers 

Perhaps the simplest „architecture one can think of for a feedback system em- 
ploying a family of controllers is that depicted in Figure 1. That is, the measured 
output y of a process to be controlled drives a bank of controllers, each controller 
generating a candidate {possibly vector-valued} feedback signal w,-. The control 
signal applied to the process at each instant of time is then 

A 
u = uv 

where rj : [0, oo) —)• I is a piecewise-constant switching signal taking values in the 
family's index set X. The generation of such a switching signal is typically carried 
out by some type of hybrid dynamical system which depending on the situation 
might be called a tuner, a supervisor, a mode-changer, or something similar. In 
the sequel we shall refer to such architectures informally as multi-controllers. 
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Fig. 1. Multi-Control 

Many multi-controller configurations can be implemented using a much sim- 
pler architecture than Figure 1 would suggest. The key factor which makes this 
possible is simply that at any instant of time only one of the constituent con- 
troller is to be applied to the process. Because of this, at each time t it is only 
necessary to generate one candidate control signal. Often this means significant 
simplification can be achieved if all control signals are generated by a single 
system. In other word, rather than implementing each of the controllers in the 
family as a separate dynamical system, one can often achieve the same end using 
a single controller with adjustable parameters. The idea is quite straight forward 
and is called state sharing. 

For example suppose that it is desired to implement a finite {or even count- 
able} family of siso linear controllers with reduced transfer functions 

ßi(s) ' 
i el 

where each /?,• (s) is a monic polynomial. Assuming a fixed upper bound n for the 
McMillan Degrees of the K,-(S), it is always possible to "cover" this family with 
a parameter-dependent transfer function hq(s) whose denominator is of degree 
n and whose parameter vector q takes values in a linear space of dimension not 
exceeding 2n +1. In fact, for any positive integer n < 2n+1, it is always possible 
to pick a subset Q C IR" with the same cardinality as I, and a parameter- 
dependent transfer function hq(s) so that for each i £ 1 there is a qi £ Q such 
that Ki(s) = hqt(s) after cancellation of common poles and zeros. Moreover it 
is always possible to choose hq(s) in such a way that whenever such pole-zero 
cancellations occur, they occur at prescribed stable locations. 

Having constructed such an hq(s), the above multi-controller can be imple- 
mented as a parameter dependent system Ec (c) of the form 

x'c - Aaxc + bay (1) 



faXC + 9a'<J (2) 

where {Aq, bq, fq, gq] is a n-dimensional realization of hq(s) and a is a piecevvise 
constant switching signal taking values in Q. The resulting multi-control system 
would then appear as in Figure 2. 

\ 

y 

a 

1 

supervisor 

, 

Z(a) c process 
ua    u 

Fig. 2. State-Shared Multi-Controller Implementation 

If the supervisor is allowed to re-initialize Ec's state at switching times, then 
this implementation can generate exactly the same feedback control signal as 
would have been generated had the original architecture been employed. 

For multi-controller families consisting of more than just a few controllers, 
this state-shared implementation is clearly a lot less complicated than a direct 
implementation of the original multi-controller. Moreover state-sharing frees one 
from having to be concerned about the boundedness of the out-of-loop control 
signals which would be present in a direct implementation of the original multi- 
controller architecture. 

There are of course a great many different ways to realize hq(s). The only 
essential requirement of any such realization is that it be a "globally detectable, 
globally stabilizable" system; i.e. for each fixed value of q £ Q, the linear sys- 
tem {Aq,bq, fq,gq}) should be stabilizable and detectable2. For without stabi- 
lizability, closed-loop boundedness of u and y cannot be assured and without 
detectability boundedness of Sc's state cannot be assured even if u and y are. 
One familiar structure which is globally detectable is of the form 

A    0 
0    A 

+ U Jqi   «q 

where (A, b) is a parameter-independent, rc-dimensional siso, controllable pair 
with A stable. Another is {A + kqf,bq,f,dq} where (/, .4) is an n-dimensional, 
parameter-independent observable pair. This particular realization is actually 
observable for all q G IRn; moreover in the event that dq is constant on Q, this 

The reader should recognize that any such parameter-dependent system will always 
have points in Q at which it is not controllable and observable if the transfer functions 
being realized are not all of the same McMillan Degree. 
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realization guarantees that there will be a "bumpless" transfer between control 

signals when a switches; i.e., u — u„ is continuous, even at those times at which 
<x changes values. Of course bumpless transfer can also be achieved with state- 

reinitialization, whether dq is constant on Q or not. 
It is fairly clear that the preceding ideas apply to multi-controller families of 

mimo finite dimensional controllers configured in almost any way imaginable. It 
is also clear that the number of (fixed-parameter) controllers one might contem- 
plate implementing in a particular multi-controller application need not be finite 
nor even countable. In other words the complexity of a multi-controller is not so 
much a function of a number of controllers in a family as it is of the number of 
algebraically independent gains needed to parameterize the family. 

3 Examples 

In the sequel are several examples of {nonadaptive} logic-based switching con- 

trollers. 

3.1   Smart Governors 

An important problem of continuing interest is that of developing feedback con- 
trollers for linearly modeled processes whose associated inputs and outputs are 
required to satisfy hard-bound magnitiude constraints. Remarkable advances 
have recently been made in the development of implementable algorithms for 
the stabilization of such systems [25, 26]. At the same time there has also been a . 
growing interest in the development of "smart controllers" employing logic aimed 
not only at maintaining loop stability, but at enhancing system performance as 
well [27, 28, 29, 20]. One configuration characteristic of this line of research is 
as follows. 

error 
governor 

.+o e T g 

o X C 

u 
^P 

y -? a 

Here Up represents a linear process with an input saturation constraint, gG is 
an adjustable gain, and K is a linear controller. The idea is to design K to meet 
performance specifications in the absence of saturation constraints; this is done 
for the case ga = I. The error governor is designed to adjust g's value to give 
the best performance possible subject to the requirement that the saturation 
constraints are satisfied. This is accomplished, roughly speaking, by leaving g set 
at 1 whenever r is 'small' and by reducing g's value when r is 'large' by as much 
as is required to insure that there is no saturation. The error governor which 
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accomplishes this is a logical circuit which carries out the required computations 
in real time. A generalized {discrete-time} version of the preceding with greatly 
reduced computational requirements has been proposed in [27]. 

An even more elaborate multi-controller architecture, aimed at a similar 
problem has been suggested in [20]. The problem addressed is to bring to zero 

from an admissible start, the state x = {xP,xc} of the system S(a) depicted 
in the following figure while not violating a set of prespecified state constraints 

along the way. 

supervisor 

v- 
■■Xp 

2
P 

Associated with each fixed control index q £ Q is a maximal admissible set Sq. 
A state x0 is in Sq just in case each point on the closed-loop trajectory of S(q) 
emanating from x0, satisfies the aforementioned state constraints. According to 
[20], it is possible to use the theory of maximal output admissible sets [30] to 
design controllers so that Sq C Sq+i and in addition so that controller q achieves 
better performance than controller q + 1 when the system is initialized at a 
state in Sq nSq+i. In [20] it is then explain how to construct a supervisor which 
successively switches a to smaller and smaller values to as to achieve better and 
better performance while satisfying state constraints. 

3.2   Nonholonomic Integrators 

For more than a decade it has been known that there are nonlinear systems which 
are locally null controllable but which nevertheless cannot be locally asymptot- 
ically stabilized with any smooth, time-invariant controller [31]. A prototypical 
example of this is the bilinear system 

x 

y 

u 

V 

xv — yu 

which is sometimes called the "nonholonomic integrator" [32], Nonholonomic 
systems such as this have evoked considerable interest in recent years [33]. This 
has been especially true of the nonholonomic integrator itself. For example, a 
number of time-varying, periodic controllers have been devised which asymp- 
totically stabilize the above system {cf. [32]}. In addition, by appealing to the 
theory of sliding modes [1], it has been recently shown that the simple discon- 
tinuous control u = —x + j/(sign(z))   v = -y - x(sign(z)) will drive x, y, and z 
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to zero provided one admits generalized solution in the sense of [34]. It turns out 
to be possible to achieve asymptotic stability without chattering using a time- 
invariant logic-based switching controller. One strategy which accomplishes this 
uses a multi-controller of the form 

u 
V 

= 9a{x,y,z) 

rhere 

9i = 
Y 
l 92 - 

x + yz 
y-xz _ 93 - 

-x + yz 
-y-xz 9A 

and a is a piece-wise constant switching signal taking values in 1 = {1,2,3,4}. 
o" is generated by a supervisor of the form 

{x,y,z} w = 
2       2 

2 z 

w 

*s 

where Z$ is a switching logic whose input is w and whose state and output 
are both cr. Us's definition requires one to pick four appropriately structured 
overlapping regions Ttq,    q G X which together cover the closed positive quadrant 

ft = {(ri, ri) '■ r\ > 0, r2 > 0} in IR . One possible set of regions is 

fti = {(n,r2) : r2 < 27r(r2),   (rur2) G ft} 

7^2 = {(ri,r2) : 7r(ri) < r2 < 47r(r1),   (ri,r2) G i?} 

^3 = {(ri>7'2) : ^2 > 37r(ri),   (n,^) G #} 

7e4i{(o,o)} 

where 7r(ri) = (1 — e_ri). Ss's internal logic is then defined by the computer 
diagram 

(start ) 

where 
qw = min{q :weTZq, q El} 



76 

In interpreting this diagram it is to be understood that a's value at each of its 
switching times i is its limit from above as / I i. Thus if/,- and i,-+i are any two 
successive switching times, then a is constant on [i,,i,-+i). 

It can be shown that with this switching logic, chattering cannot occur and 
that x.y and z must tend to zero no matter how they and a are initialized [21]. 
It can also be shown that the origin x = y = z = 0 is 'Lyapunov stable' in an 
appropriately defined sense. We refer the reader to [35] for a different application 
of a switching logic similar to the one we've been discussing. 

4  Self-Adjusting Control 

The aim of this section is to give a brief tutorial overview of four different 
classes of logic-based switching control systems - each consists of a continuous- 
time process to be controlled, a parameterized family of linear controllers, and 
an event driven switching logic. Three of the logics, called prerouted switching, 
hysteresis switching and dwell-time siuitching respectively, are simple strategies 
capable of determining in real time which controller from a family of candidates 
should be put in feedback with a process in order to achieve desired closed-loop 
performance. The fourth, called cyclic switching, has been devised to solve the 
long-standing stabilizability problem which arises in the synthesis of identifier- 
based adaptive controllers because of the existence of points in parameter space 
where the estimated model upon which certainty equivalence synthesis is based, 
loses stabilizability. Although each of these strategies is applicable to a variety of 
problems, the sake of uniformity all are explained within the context of a single 
prototype problem - the set-point control of a siso linear system with large-scale 
parametric uncertainty §4.1. The concept of prerouted switching is closely allied 
with the idea of a "nonestimator based supervisor"; both topics are discussed 
in §4.2. Hysteresis switching and dwell-time switching are explained in §4.3 in 
connection with the concept of an estimator-based supervisor. Cyclic switching 

is discussed in §4.4 

4.1  The Problem 

The prototype problem we want to consider is basic: to construct a control 
system capable of driving to and holding at a prescribed set-point, the output of a 
process modeled by a dynamical system with large scale parametric uncertainty. 
Assume the process admits the model of a siso controllable, observable linear 
system Up with control input u and measured output y. Further assume that 
Ep's transfer function from u to y is a member of a known class of admissible 
strictly proper transfer functions Cp. In view of the requirements of set-point 
control, assume that the numerator of each transfer in Cp is nonzero at s = 0. 

The specific design goal is to construct a positioning or set-point control 
system capable of causing y to approach and closely track any constant reference 
input r. Towards this end we introduce a tracking error 

eT r-y (3) 
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and an integrating subsystem to generate u; i.e., 

u = v (4) 

Here v is a control signal which will be denned in the sequel. 
As our concern is mainly with supervisory control, we are going to take as 

given, a parameterized family of proper, reduced controller transfer functions 

fC = {nq : q € Q} which has the property that for each transfer function r £ Cp, 
there is at least one controller transfer function K 6 K, which internally stabilize 
feedback interconnection shown in Figure 3. 

K —- 1 
s —- T 

Fig. 3. Feedback Interconnection 

The sub-system to be supervised is thus of the form 

+rfr. Ic(o) 
V 1 

s 
u 

2
P 

y 

Fig. 4. Supervised Sub-System E{cr) 

where Sc(l) is a parameter-dependent, globally detectable/stabilizable realiza- 
tion of Kg with state XQ- In the sequel we shall describe various types of super- 
visors capable of generating a so as to at least achieve set-point regulation {i.e., 
ex —> 0} and global boundedness. 

4.2  Nonestimator-Based Supervisor 

A 'nonestimator-based' supervisor is a hybrid dynamical system whose input is 
a suitably denned "tuning error" e and whose output is a. 

supervisor 

A tuning error is a linear {possibly parameter-dependent} function of the mea- 
surable signals in the sub-system E(a) shown in Figure 4. The key requirements 
governing the selection of e are as follows. 



Timing Error Requirements: 

1   For each fixed q G Q, £{q) must be detectable through e. 
2.  For each constant r and each q G Q. <   must vanish on E{q) s equilibrium 

state. 

The global detectablilty requirement is fundamental. Its significance has been 

discussed in a broader context in [36]. 
One definition of e which satisfies both requirements for the problem under 

consideration is 
ex 
v 

There are many other acceptable choices as well. 
Assume that e has been defined so that the preceding requirements are sat- 

isfied. The sub-system depicted in Figure 4 then admits a state space model of 

the form 

e = Cax 

x = Aa x + ba r (5) 

where x is the composite state 

_ A 
X = 

Xp 

u 

xc 

and Aq bq and Cq are parameter-dependent matrices determined by the def- 
inition of e and the coefficient matrices of SP and EC- The position of the 
integrator in Figure 4 is important [24]: its location guarantees that for each 

fixed r, the equilibrium state of (5), namely 

x0 = -A'Hqr, 

is independent of q G Q. Because of this and the assumption that e satisfies 

Tuning Error Requirement 2, it is possible to write 

e = CGx 

X — J\(jX (6) 

where x = x — XQ. 
What we want to do is to explain how to construct a supervisor whose output 

a causes x -> 0 as t -► oo. The only properties of (6) which we will exploit are 

the following: 
Properties of (Cq, Aq) : 

1. There exists a parameter value q* £ Q for which Ar is a stability matrix. 

2. (Cg,Aq) is detectable for each q £ Q. 
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The first property is a consequence of the assumption that for each transfer 
function r £ Cp there is a transfer function K G /C which stabilizes the system 
shown in Figure 3. The second property follows from Tuning Error Requirement 
1. 

Apart from the preceding, nothing is assumed about (6) other than that e 
can be measured. In particular, neither the parameter-dependent pair (Cq,Aq) 
nor q* are presumed to be known. Of course with so little known, one should 
not expect to come up with a supervisor worthy of actual implementation unless 
perhaps Q is a finite set with a small number of elements. 

Within the parameter-adaptive framework proposed in [36], a nonestimator- 
based supervisor would be called a "prerouted" parameter tuner. All parameter 
tuners, be they prerouted or not, are based on the same underlying strategy 
which roughly speaking is to keep adjusting a until e is "small" in some suitably 
defined sense. Although there are a great many different methods for accom- 
plishing this, in most instances tuning is carried out in one of two fundamentally 
different ways depending on whether the 'path' a takes in Q is 'prerouted' or 
not. For the prerouted case, tuning is achieved by moving a through Q along a 
prespecified path or route, using on-line {i.e., real-time} data to decide only if 
and when or how fast to change a from one value along the path to the next. In 
contrast, for the non-prerouted case, the path in Q along which a is adjusted is 
not prespecified off-line but instead is determined in real time from the values 
of various measured signals. 

The basic idea of prerouted tuning was devised by Märtensson with the ex- 
pressed purpose of delineating the theoretical limits of what might be achieved 
with any adaptive algorithm [7]. Over the past decade many refinements and 
modifications of the concept have appeared [8, 9, 10, 37, 38]. Although these 
modified algorithms differ from each other in many ways, all share certain un- 
derlying features in common. In most cases prerouted tuners consist of the cas- 
cade connection of two subsystems, one a scheduling logic Ss and the other a 
memoryless map h : {1,2,.. .,00} —y Q called a routing function. 

*s 

h is invariably required to have the revisitation property: That is, for any q £ Q 
and any positive integer i there must exist an integer j > i at which h(j) = q. 
In other words, h must have the property that the prerouted path h(l),h(2),... 
revisits {i.e., passes through} each point in Q infinitely often. For this to be 
possible, Q must clearly be at least a countable set3. Assuming this to be the case, 
it is always possible to define a routing function with the revisitation property. 
One way to do this is as follows. 

3 Actually in Martenson's original work Q is a continuum and the elements of the se- 
quence h(l),h(2), ... are only required to get close to {rather than equal} previously 
visited ones [39]. 
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1. If Q = {qi,<i2, • • •, qm] is a finite set., define h to be the m periodic function 

whose first m values are 91, 92, ■ ■ •, Qm-1 and qm respectively. 
2. If Q = {171, 92,■ • ■, } is not a finite set, define h be the function whose se- 

quence of values h(l). h(2), . . . are the elements of the sequence q\. f/i, q->, 91, 92, 

93,91,92:93,94,91, • ■ • 

There are many possible ways to define £$, depending what one is trying to 
accomplish. For illustrative purposes, we shall take Es to be a hybrid dynamical 
system whose input is e and whose output is a piecewise-constant switching 
signal 77 taking values in the set of positive integers. Es's state consists of four 
variables - 77, a timing signal r, a piecewise-continuous 'performance signal' n and 
a piecewise constant 'sampled performance signal' TT. Both it and n take values 
in [0, 00). Timing signal r takes values in the closed interval [0, TD], where TQ is 

a preselected positive number called a dwell time. Es's dynamics are defined by 

the following computer diagram. 

start 

_L_ 
n = 1 

n = T| + i 
^                     J t 

7t = 0 
> 

jy 

The functioning of Zs is as follows. During the first TD time units after the 
algorithm is initiated, r is increased linearly from 0 to TD using a reset integrator 
and TT is increased from 0 according to the rule 

^=||e||2 (7) 

Just at the end of this period, r is reset to zero, the reset integrator is turned 
off, and 7T is set equal to the present value of TT. SO long as n remains less than or 
equal to <TTT, the updating of TT continues according to (7). If and when TT becomes 
greater than T]TT, r) is incremented by 1, TT and ir are reset to zero, and the entire 
process is repeated. Note that the time between any two successive switchings of 
rj can never be smaller than TD. Said differently, 7] "dwells" at each of its values 
for at least TQ time units. Because of this, infinitely fast switching cannot occur 
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so existence and uniqueness of solutions to the differential equations involved is 
not an issue. 

Analysis: There is a fairly straight forward way to go about analyzing the type 
of supervisory control system we've just described. The key step is to prove 
that switching stops in finite time. In particular, for the problem at hand the 
trick is to show that there must be a finite integer fj, depending only on the pair 
(Cq, Aq) and not on the initial value of a:, which r\ cannot exceed in value. Before 
we address this claim, let us consider its consequences. What the claim implies 
is that 7] can switch at most a finite number of times and therefore that there 
must be a time i beyond which r] is constant and IT < fjn. The latter assures that 

\e(s)\\2ds < fJK,    t>t 

and thus that e has a finite £2[0, oo) norm. Moreover since (Cq, Aq) is detectable 
on Q and rj is fixed at some value q E Q, (Cq,Aq) is detectable4. As a conse- 
quence, for t > t it is possible to rewrite (6) as 

x = (Aq + KCq)x - Ke 

where K is any matrix which stabilizes Aq + KCq. Therefore x -¥ 0 since e has a 
finite £2[0, oo) norm. In fact, because x = Aqx is a time invariant linear system, 
x must go to zero as fast at e~xt, -A being the largest of the real parts of Aq's 
stable eigenvalues. In other words, to prove that x ->■ 0 {and consequently that x 
has a finite limit and that ex ->• 0} it is enough to show that there is an integer 
fj which T] cannot exceed in value. 

Here briefly is the idea. Let p be any point in Q at which Ap is a stability 
matrix. If Cp = 0, let fj be the first positive integer such that h(fj) = p. Then 
either there is an interval [t0,ti) of maximal length on which TJ = fj ov TJ never 
gets as large as fj. If the latter is true, then we are done. On the other hand, if 
the former is true, then ir = 0 on [t0,ti) so for such t, ir < fjfx. Because of Zs's 
definition, this means that no more switching can occur, that tx = oo and thus 
that 77 can grow no larger than fj. 

Now suppose Cp ^ 0. Reduce (Cp,Ap) to an observable pair (C, Ä) by picking 
any full rank matrix R whose kernelis the unobservable space of (Cp,Ap) and 
solving thelinear equations Cp = CR, RAp = ÄR for C and Ä respectively. 
Note that A must be a stability matrix because Ap is. 

Let G(t) denote the observability Gramian 

G(t) = f eÄSCCeÄsds 
Jo 

Note that G(oo) must exist because of Ä's stability. Moreover, G(rD) must be 
positive definite because of the observability of (C, Ä). This implies that 

A x'G(oo)x 
V = SUP   ,ni     \    < °° x     X'G(TD)X 

4 There is of course no reason to assume that Aq is a stability matrix. 



82 

and that 
G(oc) < »G(TD) (8) 

Now let 7]p be the least integer no smaller than ft for which h(i]r) = p. Because 
of the revisitation property, /?,, must necessarily exist. In view of (8) 

G(OO)<VPG(TD) (9) 

We claim that i) = rjp has the desired property. To prove that this is so, we 
may as well assume that there is an interval on which r\ = fj. For if this were not 

the case then a could not exceed fj and we would be done. 
Let [t0, ti) denote the largest interval on which n = fj. For t £ [to,ti), 

a = h(rj) = p and 

n(t)=  /   \\Cpe
A^w-^x(t0)\\2dw< /     ||Ce^fe(io)||2^=||yGMfe(^ 

7t0 Jo 

From this, (9) and the definitions of 77 and n it follows that for t £ [<0, i 1), 

As 
T(*) < ^||\/G(^Tfe(<0)||2 = 77 /      \\CeAsRx(t0)\\2ds = r?7T 

Jo 

Thus because of Ss's definition, no more switching can occur, ti — 00 and thus 
rj can grow no larger than fj. I 

There are many provably correct versions of the algorithm we've just analyzed 
[7, 8, 9, 10, 37, 38]. All employ a tuning error satisfying the aforementioned 
requirements, a performance signal, a routing function and a switching logic 
similar to the one we've described. Usually rD is an increasing function of i] 
rather than a constant. In most cases, the proof technique employed relies on 
the cessation of switching in finite time. The selection of IT and the definition of 
Es are made to insure that this is so. 

Although nonestimator based supervisors are prerouted tuners, the converse 
is not necessarily true. For example, it is quite possible for a supervisor employing 
"estimators" to use prerouted tuning to generate a. Supervisors admitting this 
structure have in fact been studied in [40]. This reference actually examines the 
convergence properties of a variety of estimator-based switching logics. 

The findings of [40] and earlier work clearly suggest that some of the concepts 
we've covered here have a universal character and may well be extendable to 
significantly broader classes of problems than have been considered so far. In 
the sequel we briefly summarize some preliminary thoughts along these lines. 

Generalization: Let Q be a countable set. Suppose that for each q £ Q, Aq : 
IRn -> IRn is a smooth, possibly nonlinear function and that for some q' £ Q, 

the zero state of 
x = Aq.{x) 

is a globally asymptotically stable equilibrium. Assume that for each piecewise 
constant switching signal a : [0, 00) —> Q, all solutions to the differential equation 

x = Aa(x) (10) 
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exist on [0, oo). Our aim is to briefly outline how one might go about constructing 
a nonestimator based supervisor, not depending on q* or precise knowledge of 
the Aq, which cause all "supervised " (i.e., closed-loop) solutions to (10) to tend 
to zero as t —> oo. 

Suppose it is possible to construct a smooth function b : IR" >-» IR such that 

P,(s)||<||6(a:)||,    VxGlR",    qtQ 

and for some q G Q 

sup 
J"{\\<l>(t,*)\\2+\\bW,*))\\2)dt 

r^s^(\m,zw+\\bm,z)W)dt 
/heve 4> : [0, oo) x IR" -> IR" is the flow of 

x = Aq(x) 

= fl < oo 

(11) 

(12) 

(13) 

initialized at z. Requirement (11) is relatively mild and can typically be satisfied 
without precise knowledge of the Aq. Implicit in (12) is the requirement that the 
zero state of (13) is {at least} an asymptotically stable equilibrium; in fact, for 
the requirement to make sense as it stands, all solutions to (13) would have to 
have finite £2[0,oo) norms. 

We claim that the supervisor we've already described will accomplish the 
prescribed task provided 

x A 
e = 

b(x)\ 
(14) 

The reasoning upon which this claim is based is as follows. 
First of all note that satisfaction of (12) guarantees that r\ cannot exceed 

the least integer fj no smaller than \i for which h(fj) = q. The argument which 
justifies this assertion exploits the inequality 

r <j>{t — t0,z) 

b{<f>(t-t0,z) 
dt <f) [ 

to + TD 4>{t -t0,z) 

b(4>{t-ta,z) 
dt,    t0>0, 2 6 IR" 

and is essentially the same as before. The inequality is a consequence of (12). 
At this point we need a good working definition of detectability for nonlinear 

systems. Suppose we agree to call a smooth dynamical system of the form 

x = A(x) 

e = C(x) (15) 

detectable if there exists a positive definite, radially unbounded, continuously 
differentiable function V : IR" —> IR such that 

dv_ 
dx 

A{x)-\\c{x)\\2<o,  xemr, x^o (16) 
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- The definition characterizes detectability more as a generalization of stability 
than of observability; note for example, that if C(x) = x, (15) may not satisfy 
the definition, even though for this example (15) would certainly have to be 
considered an observable system. 

- In the linear case when C(x) — Cx and A(x) = Ax, the standard definition of 
detectability is known to be equivalent to the existence of a positive definite 
matrix P which satisfies the matrix inequality PA + A'P — C'C < 0 [41]; 

since V = x'Px satisfies (16), the definition of detectability proposed here 
thus has the virtue of reducing to the standard one in the linear case. 

- It can be easily shown that if (15) is a detectable nonlinear system and e 
has a finite £2[0, oo) norm along some solution x, then x must tend to zero. 
Thus the proposed definition fulfills the intuitively appealing requirement 
that smallness of the output of a detectable system ought to imply smallness 
of the system's state. 

Returning to our problem we point out that (11) implies that for each fixed 

q G Q, the dynamical system 

x = Aq(x) 

is detectable through e. This can be verified using the function V = ^||x||2. 
The steps involved in showing that x —► 0 are clear. Since switching stops, 

iv is bounded which means that e must have a finite £2[0, oo) norm. Suppose q 
is <x's final value. Then (17) governs the evolutions of x and e after switching 
stops. Because (17) is a detectable system and e has a finite £2[0,oo) norm, x 
must tend to zero as claimed.D 

There are of course plenty of practical reasons why one would not want to 
seriously consider implementing the system just described. On the other hand, 
there are components of the preceding {e.g., the notion of detectability and how 
to use it} which will no doubt prove useful in the analysis of more meaningful 
algorithms. 

One drawback of many "switched" control systems including the ones we've 
discussed so far, is that they make use of signal which grows monotonically 
with time. For the supervisor we've described this would be i"j. Since bounded 
monotone signals converge, switched systems which employ them tend to be 
fairly easy to analyze. The problem is that when C°° bounded noise and or 
exogenous disturbances signals are present, monotone signals tend to blow up. 
To get around this, it is generally necessary to eliminate monotone signals alto- 
gether, usually by introducing "forgetting factors" or "exponential weighting" of 
some form [8, 38, 24]. What this means is that with such modifications in place, 
switching can no longer be expected to terminate in finite time. As a result one 
is usually confronted with an analysis problem which is very much more chal- 
lenging than that encountered in the noise-free case when monotone convergence 
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could be counted on. Because of this there is a specific need for technical results 
appropriate to the analysis of systems within which switching never terminates. 

■ Perhaps the most serious criticism of the nonestimator approach is its reliance 
on prerouted tuning. Clearly if Q is a large set, one should not expect a prerouted 
supervisory control system to perform very well. 

4.3  Estimator-Based Supervisors 

The overall responsibility of any multi-controller supervisor can be divided into 
a scheduling task - deciding when to switch controllers - and a routing task 
- deciding which controller to switch to next. Nonestimator-based supervisors 
have the routing question decided for them and are thus designed to deal only 
with scheduling. It is natural to expect that improved overall performance can be 
achieved by employing a supervisor endowed with the capability of making both 
scheduling and routing decisions in real time. An important class of supervisors 
possessing this capability are those which are estimator-based. Estimator-based 
supervisors utilize a form of certainty equivalence and as such are in some ways 
quite similar to conventional estimator-based tuners encountered in parameter 
adaptive control. 

Since an estimator-based supervisor is responsible for both scheduling and 
routing, it is not surprising that defining one should require a more detailed 
description of Cp then we've assumed so far. For illustrative purposes suppose 
Cp to be of the form 

CP = U C[p) 
per 

where V is a closed, bounded {possibly finite} subset of a real, finite-dimensional 
linear space. Here C(p) denotes the subclass 

C(p) = {"P + S--Moo <eP} 

where vp is a preselected, reduced, strictly proper nominal transfer function, ep 

is a real non-negative number and S is a stable, strictly proper norm-bounded 
perturbation representing unmodelled dynamics of the additive type; || • H^ 
denotes the shifted infinity norm 

ll^lloo =    sup    \S(s)\, 
*ec(Au) 

where Xu is a prespecified positive number called the unmodelled dynamics sta- 
bility margin, and C(XU) is the subset of the complex plane consisting of all 
points on and to the right of the vertical line s = —\u. Assume for each p £ V, 
that the allowable values of S exclude transfer functions for which up +6 has un- 
stable poles and zeros in common. All transfer functions in Cp are thus strictly 
proper, but not necessarily stable rational functions. 

As before, we take as given a parameterized a family of admissible controller 
transfer functions K, which has the property that for each transfer function r 
in Cp there is at least one controller transfer function K £ K, which internally 



86 

stabilizes the interconnection shown in Figure 3. Because estimator-based su- 
pervisors base decision-making on the idea of certainty equivalence, to configure 
such a supervisor it is necessary to first specify a well-defined function F from 

the nominal process model transfer function class .V = {vr : p 6 V] to A., in such 
a way that the assignment vp >—> F[up) meets prescribed specifications. Given 
F, a natural way to make this assignment explicit is to stipulate that V be a 

subset of IC's parameter space Q and then to define KP = F{vp) for each p£?. 
For the present we shall actually take Q = V. The reader should realize however 
that there are situations in which it is advantageous to choose Q larger than 
V. For example, picking Q larger than V makes it possible to define generalized 
supervisors whose controller selection strategies are not based just on certainty 

equivalence alone {c.f. §4.4}. 
Assume that the transfer functions in K. satisfy the 

Stability Margin Requirement: For each p eV the real parts of the closed- 
loop poles of the feedback interconnection shown in Figure 5 are less than -As 
where As some prespecified positive number called a stability margin. 

+ K V„ 

Fig. 5. Feedback Interconnection 

In concept, an estimator-based supervisor can be explained in terms of the 
'multi-estimator" architecture shown in Figure 6. 

estimator \A1 ll ll 
*P, 

Ss 

*P2 estimator 
P2 

II ll TLJ 

71 P. 
1 

y 

estimator 

P. 
I^AX ll ll :vJ 

m 

y 

m   f   \    m 
ll ll 

Pm 
'\J    ' 

Fig. 6. Multi-Estimator Configured Supervisor 

.'here each yp is a suitably defined estimate of y which would be asymptotically 
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correct if vp were the process model's transfer function. For each p6?, 

"P = yP-y (18) 

denotes the pth output estimation error; TTP is a "normed" value of ep or a 
"performance signal" which is used by the supervisor assess the potential per- 
formance of controller p. Es is a switching logic whose function is to determine 
cr on the basis of the current values of the np. 

The underlying decision making strategy used by an estimator-based super- 
visor of the 'non-prerouted' type is basically this: From time to time select for 
v, that candidate control signal vp whose corresponding performance signal 7rp 

is the smallest among the wp, p £ V. What makes a non-prerouted supervisor 
such as this distinctly different from a prerouted one is thus the philosophy un- 
derlying the method it uses to carry out its task. In particular, a non-prerouted 
supervisor decides which controller to put in the feedback loop, not by search 
along a predetermined route in K, but rather by continuously comparing in real 
time suitably defined normed output estimation errors or performance signals 
associated with the admissible nominal process models. Motivation for this idea 
is obvious: the process model whose associated performance signal is the small- 
est, "best" approximates what the process is and thus the candidate controller 
designed on the basis of that model ought to be able to do the best job of con- 
trolling the process. The origin of this idea is of course the concept of certainty 
equivalence from parameter adaptive control. 

By an estimator of y, based on transfer function up, is meant a linear system 
of the form 

xp = Apxp +dpy + bpu (19) 

Vp = CpXp (20) 

where {Ap + dpcp, bp, cp} is a realization of vp and Ap is a stability matrix. It is 
easy to verify that any such realization necessarily fulfills the requirement that yp 

be an asymptotically correct estimate of y if the process model transfer function 
were vp. Notice that such realizations are invariably detectable because of Ap's 
stability. For the present we are only going to consider realizations which are 
stabilizable as well, even though by doing so we are sidestepping some subtle but 
important issues{cf., §4.4}. There are many ways to construct estimators which 
meet these requirements. For example, if n is an upper bound on fp's McMillan 
Degree, yp can always be be generated by an observer-based estimator of the 
form 

ip = Aoxp + dpy + bpu 

yP = c0xp (21) 

where (co,Ao) is an n-dimensional, parameter-independent observable, stable 
pair and {AQ + dpco,bp,co} is a stabilizable realization of vp. It is also possible 
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to generate yp using an identifier-based estimator of the form 

xi - 
-4/ 

0 
0 

-4/ 
UP = f pXl 

XI  + 

where (Ai, 6/) is a parameter-independent, n-dimensional siso, controllable pair 

with A\ stable and 

Ai 
0 

0 
Ai 

+ b, 
0 

Cp i 
0 
bi 

is a stabilizable realization of vp. Note that the state of this estimator is inde- 
pendent of p, whereas the state of the observer-based estimator in (21) is not. 
What this means is that if n is an upper bound on the McMillan Degrees of all 
of the nominal transfer functions in J\f, then all of the yp can be generated using 
a single estimator with shared state xj and parameter-dependent readout map 

cp. 
There is a third way to generate yp which is very similar to the second but 

which is especially well-suited to the set-point control problem under consider- 
ation. In this case one uses an identifier-based estimator EE of the form 

xE = AE 

0 
0  ] \bF] \ ° 1 

AE_ 
XE + 0 y + 

hE_ 
(22) 

(23) 

n 1 \bF] r o i 
V + 0 

cpi 
bE_ 

yp = cpXE 

where (Aß, bß) is a parameter-independent, (n+l)-dimensional siso, controllable 

pair with AE stable and 

"AE 

0 

is a stabilizable realization of \vp. A state-shared implementation based on this 
estimator would then appear as in Figure 7. Naturally this architecture can only 
be implemented as it stands if the number of output estimation errors is finite; 
i.e., if V is a finite set. It turns out however that such a supervisor can often 
be implemented using a simpler architecture - one which permits V to contain a 
continuum of points. To explain why this is so, it is useful to formalize the idea 

of a supervisor. 
By an estimator-based supervisor {cf, Figure 8} is meant a specially struc- 

tured hybrid dynamical system whose output a is a switching signal taking values 
in Q and whose inputs are v and y. Internally such a supervisor consists of three 
subsystems: a state-shared estimator EE, a performance weight generator E\y 
and a switching logic Es. E\y is a causal dynamical system whose inputs are xE 

and y and whose state and output W is a "weighting matrix" which takes values 
in a linear space W. W together with a suitably defined performance function 
II : W x V —> IR determine, for each p£?, scalar-valued performance signals 

of the form 
7Tp = n(w,p),Pev (24) 
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y— 

Fig. 7. State-Shared Estimator-Based Supervisor 

These performance signals play the same role as before; i.e., np is considered to 
be a measure of the expected performance of control signal p. One possible pair 
of definitions for Ew and 77 is 

W = -2XW + 
y 

XE 

y 

and 

n(w,p) = [Cp   -i]w[cp   -l]' 

(25) 

(26) 

respectively where A is a prespecified nonnegative number. In the light of (IS: 
and (23) it is easy to see that these definitions imply that 

TCP =-2\ivp + e2
p,    p£V (27) 

Although we will deal here exclusively with such "exponentially weighted £2" 
performance signal, it should be noted that it is possible to realize other types 
of performance signals by defining W and 77 in other ways. For example, if 
V is a finite set {say V = {1,2,..., m}} and if Sw is the dynamical system 

|ep|, p £ V with state w = [w\    w2 w„ , defining II(w,p) = wp 

would realize the C1 performance signal 7rp = \ep\. Note however that if V were 
not finite, this particular performance signal could not be realized with W finite 
dimensional. 

\ 
 1—»■ 

 ^ *F 

XE  »• 
^W 

W  »• £s  »- 

Fig. 8. Estimator-Based Supervisor 
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Hysteresis Switching: There are a number of different ways to define switch- 
ing logic Es. In the sequel we shall consider two. The first, called "Hysteresis 
Switching," was originally devised for switching between the members of a finite 
family of parameter adaptive controllers [11, 12. 13]. We shall explain this logic's 

basic attributes in the following manner. 
Suppose {fq : q £ Q) is a family of functions fq : III" x [0,oo) -> IR". Our 

aim is to study the behavior of the dynamical system 

X — Ja yX , z), x(0) = x0 (28) 

where a is a switching signal taking values in Q5. Suppose that V = Q, and that 

W is a function of x and t which takes values in W; i.e., 

W = g(x,t) (29) 

As before, suppose that IJ :W xV —>■ IR is a performance function and that for 

p £ V, 7Tp = IJ(w,p) is a performance signal. What we want to do is to explain 
how to generate a switching signal a which under certain conditions, converges 
to a value q £ Q at which itq is a bounded signal. The algorithm which generates 
a is called a "hysteresis switching logic." 

By a hysteresis switching logic is meant a hybrid dynamical system EH whose 
input is W and whose state and output are both a. 

W- -<T 

To specify EH it is necessary to first pick a positive number h > 0 called a 
hysteresis constant. En's internal logic is then defined by the computer diagram 
shown in Figure 9 where for X £ W, qx denotes a value of q £ Q which minimizes 

n(x,q). 

Fig. 9. Computer Diagram of EH 

5 For the set-point control problem under consideration, x would represent the com- 

posite state {xp, u, XE, %c, W}. 
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In interpreting this diagram it is to be understood that a's value at each of its 
switching times i is its limit from above as t I i. Thus if ü and t,-+i are any 
two successive switching times, then a is constant on [f,-,f,-+i). Note that the 
definition of EH implies that Tra{t)(t) < -q{t) + h, t > 0, q £ Q and that 

*<7{t){t) < ~<?(0:   9 G Q if i" is a switching time. 
The functioning of EH is roughly as follows. Suppose that at some time t0, 

EH has just changed the value of a to q. a is then held fixed at this value unless 
and until there is a time ti > t0 at which np + h < irq for some p G Q. If this 
occurs, <T is set equal to p and so on. 

Note that since all the supervisor has to do is to compute values ofpGP 
which minimize II(W,p) at various times, there is in principle nothing to prevent 
V from containing a continuum of points. Of course the minimization problems 
to be solved must be tractable and the time it takes to compute these minima 
needs to be taken into account. We will discuss both of these points further in 

the sequel. 
For the present our objective is to describe some of the properties of the 

closed-loop system determined by (28), (29) and EH assuming that g and each 
fq is at least locally Lipschitz in x and piecewise-continuous in t. Observe that 
because of the hysteresis constant h and the assumed smoothness of g and the 
fq, there must exist an interval (0, ti) of maximal length on which a is constant. 
Either this interval is the maximal interval of existence for x or it is not in 
which case x is bounded on [0,<i). If the latter is true, a switch must occur at 
f i and again because of the hysteresis constant h, the continuity of x and the 
smoothness of g and the /,, there must be an interval [ti,t2) of maximal length 
on which a is constant. Continuing this reasoning we conclude that there must be 
an interval [0, T) of maximal length on which there is a unique pair {2;, a} with 
z continuous and a piecewise constant, which satisfies (28) and (29). Moreover, 
on each proper subinterval [0, r) C [0,T), <r can switch at most a finite number 

of times. 
Our aim now is to characterize the limiting behavior of a as t —¥ T. For this 

we need to make certain "open-loop" assumptions. Let S denote the class of all 
piecewise-constant functions s : [0, 00) —> Q. In what follows, for each s G 5, Ts 

is the length of the maximal interval of existence for the equations 

x = fs(t){x,t), x(0) = x0 

and xs is the corresponding solution. We make the following 

Assumption 1 (Open-Loop) 

1. For each s £ S and each q e Q, performance signal 7rg(<) = II(g(xs(t),t), q) 
has a limit (which may be infinite) as t —t Ts. 

2. There exists at least one point q* £ Q such that for each s £ S, performance 
signal 7rq. (t) = IJ(g{xs(t),t),q*) is bounded on [0,TS). 
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These assumptions enable one to prove the following [12]. 

Lemma 1 Hysteresis Switching . For fixed initial state (x0,a0) £ Hi" x Q. 
let (x,a) denote the unique solution to (28) and (29) with a the output of En - 
and suppose [0/7") is the largest interval on which this solution is defined. If the 
open-loop assumptions hold, there is a time T' < T beyond which a is constant 

and no more switching occurs. Moreover, ira(T') IS bounded on [0,T). 

Analysis: What we want to do next is to very briefly sketch how one might use 
the Hysteresis Switching Lemma to to analyze the closed-loop behavior of the 

supervisory control system shown in Figure 10. 

u y 

*E 

w 

^H 

1° 
~tT- v°> 

v 1 
^p S 

Fig. 10. Supervisory Control System Using Hysteresis Switching 

Here Ec{q) is a globally detectable/stabilizable realization of nq with state xc, 
EE is the globally detectable/stabilizable estimator defined by (22) and (23), 
and EH is a hysteresis switching logic. Assume that A = 0 and that E\\> and 
II are defined by (25) and (26) respectively. Therefore in this case, 7rp is the C2 

performance signal 
per (30) 

Note that the Open-Loop Assumption 1 automatically holds because all of the 
TTP are monotone functions. 

It can be shown [24] that there are constant vectors b and h, singly indexed 
and cp and doubly indexed matrices fqp and cqp such that matrices Ap, dp, gp 

for all constant r 

/here 

XE 

xc 
x + hr (31) 

x = (Ai + bfai)x + diei 

ep = cpix + ei     p £ V 

v = faix + gaei 

ex = e; + c;x 

(32) 

(33) 

(34) 

(35) 
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Because of the Stability Margin Requirement, it also turns out to be true that 
the matrix pairs (cpi,Ai + bfpi), p,l eV are each detectable. These claims can 
be verified in a straight forward manner by direct analysis of the equations under 
consideration. 

What we want to do next is to very briefly outline how one might use the 
Hysteresis Switching Lemma to analyze the closed-loop behavior of the super- 
visory control system shown in Figure 10 under the assumption that for some 
p* 6 V, nominal transfer function vp> matches or equals that of Ep. The ex- 
act matching assumption provides exactly one new piece of information, namely 
that ep. must go to zero as fast as e~AE( where —XE is the largest of the real 
parts of the eigenvalues of Aß- Because of (30) this means that 

lim 7r„. (t) = C* < oo 
«-»•OO     v ' 

Thus Open-Loop Assumption 2 is satisfied. 
In view of the Hysteresis Switching Lemma there there must be a time T* 

beyond which a is constant and no more switching occurs. Moreover, TratT') 
must be bounded on the maximal interval of existence [0,T) for solution to the 
overall system of equations involved. Because switching has stopped, it can be 
shown that the solution in question in fact exists globally {i.e., T = oo}. 

Suppose that q is the final value of a. Since 7r? is bounded on [0, oo), eg must 
have a finite £2[0, oo) norm because of (30). Next observe that for t sufficiently 

large and I = p*, (32) can be written as 

x = (Ap. + bfqp. )x + dp. ep. (36) 

In view of the detectability of (cqp.,Ap. + bfqp.), there must exist a matrix k 
which stabilizes Ap. + bfqp. + kcqp.. Thus because of (33), (36) can be rewritten 
as 

x = (Ap. + bfqp. + kcgp.)x - kep + (k + dp.)ep. 

Since Ap. -f bfqp. + kcqp. is a stability matrix and both eq and ep. have finite 
£2[0, oo) norms, x must have a limit of zero as t —» oo. Therefore XE and xc must 
have a finite limits because of (31). So also must v because of (34). Moreover, 
since x and ep. both tend to zero, so must ex because of (35). Therefore y —> r. 
Since y and v have finite limits, and Ep's transfer function is nonzero at s = 0, 
u must have a finite limit as well. In other words, y, u, v, XE, and xc all tend to 
finite limits and ex —>■ 0. 

Note how detectability has once again played a central role in the analysis. 
Together with the Hysteresis Switching Lemma it has enabled us to establish 
the limiting behavior of y, u, v, Xß, and xc in a very elementary way. 

The preceding is less than satisfactory for at least four important reasons: 

1. If r ^ 0, W will grow without bound. 

2. If noise and disturbances are present W will almost certainly grow without 
bound. 

3. The analysis fails to account for unmodelled process dynamics 
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4. The analysis fails to account for computation time: i.e., the time it takes the 
supervisor to carry out the calculations necessary to select a new control. 

A possible remedy for the first two problems would be to introduce a forget- 
ting factor or exponential weighting in the definition of E\v in (25). For example, 
one might pick A > 0. Of course any such change would make the resulting system 
substantially more difficult to analyze than the one we've been considering since 
7Tp. would no longer be monotone and switching would not necessarily terminate 
in finite time. Add in a small amount of unmodelled dynamics, and the analysis 
problem would become even more difficult because it would no longer possible 
to presume at the outset that ep- tends to zero or even that it is bounded. Some 
progress in dealing with these difficulties has recently been announced in [42]. 

Taking into account computation time makes things even more difficult. On 
the other hand, the reality of a positive computation time - however small - to 
some extent mitigates the need for hysteresis, since the only reason for introduc- 
ing hysteresis in the first place was to prevent unbounded chatter [11]. Rather 
than further pursue this topic, we turn instead to an alternative switching logic 
which takes computation time directly into account and which results in a su- 
pervisory control system which can be shown to perform its function in the face 
of unmodelled dynamics and exogenous disturbances [43]. 

Dwell-Time Switching: By a dwell-time siuitching logic [15] ED, is meant a 
hybrid dynamical system whose input and output are W and a respectively, and 
whose state is the ordered triple {X, r, a). 

w ^D 

Here X is a discrete-time matrix which takes on sampled values of W, and r 
is a continuous-time variable called a timing signal, T takes values in the closed 
interval [0,TD], where TD is a prespecified positive number called a dwell time. 
Also assumed prespecified is a computation time TQ < TQ which bounds from 
above for any X £ W, the time it would take a supervisor to compute a value 
p = px £ V which minimizes I7(X,p). Between "event times" r is generated 
by a reset integrator according to the rule f = 1. Event times occur when the 
value of r reaches either TD — TQ or TD', at such times r is reset to either 0 or 
TD — T~C depending on the value of ED'S state. ED'S internal logic is defined by 
the computer diagram shown in Figure 11 where px denotes a value of p £ V 
which minimizes IJ(X,p). 

The functioning of ED can be explained as follows. Suppose that at some time 
tg, ED has just changed the value of cr to p. At this instant r is reset to 0. After 
TD — Tc time units have elapsed, W is sampled and X is set equal to this value. 
During the next TQ time units, a value p = px is computed which minimizes 
IJ(X,p). At the end of this period, when r = TD, if II(X,px) is smaller than 
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Initialize 
a 

v..~ 
 T ___ 

T = 0 

a = p 

Fig. 11. Computer Diagram of ED 

II(X,a), then a is set equal to px, r is reset to zero and the entire process-is 
repeated. If on the other hand, II(X,<T) is less than or equal to IJ(X,px), T 

is reset to T£> — re, W is again sampled, X takes on this new sampled value, 
minimization is again carried out over the next TQ time units and so on. 

Note that ED is scale independent in that its output a remains unchanged 
if its performance function-weighting matrix pair (77, W) is replaced by an- 
other performance function-weighting matrix pair (77, W) satisfying 17(W,p) = 
6II(W,p), p € V, where 8 : [0,oo) —>■ IR is a positive time function. This is 
because for any fixed t, the values of p which minimize IJ(W(t),p) are exactly 
the same as the values of p which minimize d(t)IJ(W(t),p). 

Let us agree to call a piecewise-constant function a : [0, oo) —» V admissible 
if it either switches values at most once, or if it switches more than once and the 
set of time differences between each two successive switching times is bounded 
below by a positive number fi. The supremum of such values of p, is <r's dwell 
time. Because of the definition of So, it is clear its output a will be admissible 
with dwell time no smaller than that of ED ■ This means that switching cannot 
occur infinitely fast and thus that existence and uniqueness of solutions to the 
differential equations involved is not an issue. 

Analysis: What we want to do next is to very briefly outline how one might ana- 
lyze the closed-loop behavior of the supervisory control system shown in Figure 
12 under the assumption that for some p* £ V, nominal transfer function vp> 
matches or equals that of Ep. Unlike the supervisory control system consid- 
ered in the last section, we will not {and probably cannot} prove that switching 
terminates in finite time. 
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Fig. 12. Supervisory Control System Using Dwell-Time Switching 

For the present we continue to assume A = 0 and that E\v and II are defined 

by (25) and (26) respectively. Thus 

pEV (37) 

just as before. For simplicity we focus only on the case in which V is a finite set. 
Since (31)-(35) still hold, we can write 

xE 

xc 
x + hr 

and 

i = {Ap- + bfap- )x + dp- ep. 

£p  —  Cpp* X -\- Gp*        p KZ  l 

v = fap'X + gaep> 

eT = ep. + Cp*x 

(38) 

(39) 

(40) 

(41) 

(42) 

Since the exact matching hypothesis implies that ep. goes to zero as fast as 
e~AE', it must be true that the set 

V* = \p \ep\\2dt < oo,    pEV (43) 

is nonempty. The assumption that V is a finite set can be used to prove that 
there must be a finite time t* beyond which a takes values only in V* [24]. 

Let \CPlü*1 cDoD«,...,c 

C: 
pmp' } be a basis for the span of {cpp- : p £ V*}. Define 

c'pmP' ]' and 

Cx (44) 

These definitions together with (40) imply that ePi — ep» is the ith entry of e. Since 
each such entry has a finite £2[0, oo) norm, e must have a finite £2[0, oo) norm 
as well. Note also that the definition of C implies that there must be a bounded 
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function s : V ->• IRmxl for which s(p)C = cpp., p G P*. In view of this and 
the previously noted detectability of the matrix pairs (cpi, At + bfpi), p,l G 'P, 
it must be that the matrix pair (C, AP- + bfpp-) is detectable for each peP*. 

Note that for any appropriately sized, matrix p i—> Kp which is bounded on 

V, (39) can be rewritten as 

x = (Ap- + 6/CTp. + KaC)x - K„e + dp-ep. 

for t >t*. Suppose that such a function Kp can be shown to exist for which the 
time-varying matrix Ap- + bfap. + KaC is exponentially stable. Then because e 
and ep. have finite £2[0, oo) norms, x would tend to zero. Hence xc and XE would 
tend to finite limits because of (38). Moreover since ep. tends to zero, (41) and 
(42) would imply that v and ex tend to zero as well. As a consequence, y would 
tend to r and u would tend to finite limit; the latter would be true because of 
the converging of y and v to constant values and because Up's transfer function 
is nonzero at s — 0. In other words, to show that y -> r and that xc, XE and u 
tend to finite limits its enough to show that Ar + bfap> + KaC is exponentially 
stable for some suitably defined function Kp. 

We claim that a function Kp exists provided TD is sufficiently large. To un- 
derstand why this is so, first recall that {C,AP> + bfpp-) is detectable for each 
p G V*. Thus for each such p there must be a constant matrix Kp which stabi- 
lizes AP' + bfpP* + KpC. Therefore for each p G V* it is possible to find numbers 

ap > 0 and Ap > 0 for which 

UAp.+bfpp.+KpC)t^ < e(op-Apt)      t > Q 

Since ¥- is an upper bound on the time it takes for \e(Ap'+bUp' +KPc)t\ t0 drop 
p 

below one in value, it is not surprising that the state transition matrix of Ap> + 
bfap' + KaC will be exponentially stable provided 

TD > sup   . 

This in fact can be shown to be true [24]. Thus we may conclude that if TD is 
chosen large enough, then u, xc and XE must converge to finite limits and and 
y must tend to r. 

Performance Signals: One of the problems with the preceding is that W will not 
remain bounded if r ^ 0. One easy way to remedy this problem is as follows. 

Under the exact matching hypothesis, ep. -» 0 as fast as e~XEt. Thus there 
is a non-negative constant Co such that ep. (t) < Coe~2XEt- Pick A G (0,A.E). 

Let II and TTP be defined as in (24) and (26) respectively, but rather than using 
(25) to generate W, use the equation 

XE 

y 
W = e2Xt 

instead. Clearly 

As defined, 7rp has three crucial properties: 

XE 

y 
(45) 

e2Xte2
p 
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1. For each p G V, np is monotone nondecreasing. 

2. lim^oo 7Tp. = C* < 7rp.(0) + /0°° C0e-^
x^-^dt < co 

3. If V* is defined as before, then a must take values only within V beyond 

some finite time. 

These are precisely the properties needed to define C and e as in (44) so that e has 
a finite £2[0, oo) norm and that (C, Ap. + bfpp.) is detectable for each p G V*. 
In other words, if one were to use (45) to generate W, then the convergence 

properties of y, XE, %C 
and u would still hold. 

Now consider replacing W with the "scaled" weighting matrix 

W = e~2XtW (46) 

Note that IJ{W,p) = e-2XtIl{W,p), p G V. In the light of the scale indepen- 
dence property of ED noted previously, it must be that replacing VV with W has 
no effect on a and consequently on y, XE, XC and u. The key point here is that 
the weighting matrix W denned by (46) can also be generated directly by the 

stable dynamical system 

W = -2XW + XE 

y 

XE 

y 
(47) 

Moreover, since y and xE, tend to finite limits, it must be that W {and therefore 
its sampled state X} tend to finite limits as well. Thus at this point we may 
conclude that if rD is chosen large enough, if A is picked in (0, XE), and if W is 
generated by (25), then u,xc, XE, and W must converge to to finite limits and 
and y must tend to r. 

Fast Switching: A key step in the analysis just given was to show that for the 
family of detectable pairs {(C,AP> + bfpp>) : p G V}, there exists a a bounded, 
output injection function Kp and a dwell time TD for which Ap- + bfcp' + KaC 
is exponentially stable for any admissible switching function a with dwell time 
no smaller than rD. It turns out that for any given positive dwell time TD, it is 
possible to find a function Kp which exponentially stabilizes Ap> + bfap- + KaC 
for any admissible switching function a with dwell time no smaller than TD [24]. 

To reader should realize that detectability of such matrix pairs is by itself not 
sufficient for the existence of a function Kp with the aforementioned property. To 
understand why, just consider the situation in which a family of detectable pairs 
of the form {(C, Ap) : p G V] has a zero readout matrix C; in this case each Ap 

must be a stability matrix and Ap + KpC = Ap for all Kp. It is well known that 
if the Ap do not commute with each other, exponential stability of Aa cannot in 
general be assured unless TD is large enough; for an example see [44]. In other 
words, there are families of detectable pairs of the form {(C,Ap) : p E V} for 
which no stabilizing function Kp exists if TD is too small. What's especially 
interesting is that if {(C,Ap) : p G V} is a family of observable matrix pairs, 
then no matter how small TD is, there does in fact exist a matrix function Kp 
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with the required stabilizing property. This is an immediate consequence of the 
following result [14]. 

Squashing Lemma: Let (C, A) be a fixed, constant, observable matrix pair, and 
let r0 be a positive number. For each positive number S there exists a positive 
number A and a constant output-injection matrix K for which 

|e(>i+ifC)t|<^e-A(t-To))    ;>0 (48) 

The way to construct Kp for a family of observable pairs such as {(C,Ap) : 
p G V), is as follows. Pick S G (0,1), set r0 = rD and for each p G V use the 
Squashing Lemma to find a value of Kp for which 

|eMp+Ä-pC)t|<Je-A(t-T)]        ^>Q 

It can be shown that with Kp so chosen, Aa + KGC will be exponentially stable 
if cr is any admissible switching signal with dwell time no smaller than r0 [24]. 

Unfortunately, for the problems of interest in this paper, the matrix pairs 
in {(C,AP> + bfpP') : p G V*} cannot be assumed to be observable without a 
definite loss of generality. On the other hand, observability is in general sufficient 
for stabilizability whereas detectability is not. The way out of this dilemma has 
been to make use of additional properties of the matrices under consideration. 
A typical result along these lines is the following. 

Switching Theorem: Let A0 > 0 and T0 > 0 be fixed. Let (C9oXn, Anxn, Bnxm) 
be a left invertible system. Suppose that {(Cp,Fp) : p G V) is a closed, bounded 
subset of matrix pairs in Mqxn © IRmxn with the property that for each p G V, 
(CP,\QI + A + BFp) is detectable. There exist a constant a > 0 and bounded, 
matrix-valued output injection functions p 1—>■ Hp and p 1—> Kp on V which, 
for any admissible switching signal a : [0, 00) -)■ V with, dwell time no smaller 
than To, causes the state transition matrix of 

A + KvCa + HvC + BFv 

to satisfies 

\<P(t,p)\<e^-x^-^\    t>p>0 

Using this theorem it has been possible prove that for any dwell time greater 
than zero and any value of A G (0, Aß), the supervisory control system we've 
been discussing achieves set-point regulation and global boundedness [24]. It has 
also been possible to show that these results continue to hold in the face of norm 
bounded unmodelled dynamics provided A is further constrained to be smaller 
than both the stability margin As and the unmodelled dynamics stability margin 
Au [43]. Moreover the introduction of £°° bounded noise and disturbance inputs 
cannot destabilize the system. 



100 

4.4   Cyclic Switching 

As we have just explained, estimator-based supervisors generate control signals 
in accordance with the idea of certainty equivalence; i.e., at each instant of time 
the controller in feedback with the process is based on a current estimate of what 
the nominal process model transfer function is; such estimates are selected from 
a suitably defined admissible nominal process model transfer function set Af. 
Because Af must be finitely parameterized, it can always be regarded as a subset 
of a finite dimensional linear space. In practice, Af is typically chosen to best 
satisfy a number of conflicting requirements. For example, W should be "big" 
enough to ensure that Cp includes a transfer function model of the process. If 
Af contains a continuum of transfer functions, then for on-line model estimation 
{i.e., minimization of IJ(W,p) } to be tractable, M should be convex or at least 
the union of a finite number of convex sets. Since each transfer function in Af is a 
candidate process model transfer function, for the formulated problem to make 
sense, each such transfer function should be at least stabilizable {i.e., without 

any unstable poles and zeros in common}. 
It is not very difficult to see that these are conflicting requirements. In par- 

ticular, stabilizability, convexity and largeness of Af are at odds. If stabilizability 
and largeness are required, then convexity and consequently tractability must be 
sacrificed. If convexity and stabilizability are required, then Af must be "small." 

A way out of this dilemma, which enables one to achieve tractability while re- 
taining stabilizability and largeness, is to embed Af in a larger set of 'admissible' 
transfer functions M which is convex, but which is not restricted to have only sta- 
bilizable transfer functions. Naturally those transfer functions in Af which are not 
stabilizable cannot be candidate process model transfer functions. Nevertheless, 
because of the tractability issue it is useful to consider such transfer functions 
to be admissible for estimation purposes. Therefore an alternative to certainty 
equivalence is needed for selecting controllers when such transfer functions are 
encountered during the on-line estimation process. Such an alternative, based 
on the concept of "cyclic switching," has recently been proposed for applications 
in parameter-adaptive control where the same problem also arises [45, 14]. The 
aim of this section is to explain what cyclic switching is within the context of 
the set-point problem we've been considering. 

We will be concerned exclusively with the case when Af contains a contin- 
uum of reduced transfer functions. For simplicity assume that each such transfer 
function has the same McMillan Degree n. This means that Af can be viewed 
as a subset of the 2n-dimensional linear space of strictly proper {unreduced} 
rational functions whose denominators are monic and of degree n. 

As before we assume that V is a closed, bounded subset of a finite dimensional 
linear space. Assume in addition that the coefficients of vv are defined on this 
space as affine linear functions. Assuming 

AE 

0 

again realizes vv, this means that cp will also be an affine linear function. As a 

n 1 \bF] \ ° 1 
AE, 

+ 0 cP, bE_ 
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consequence, the parameterized performance signal II(W,p) defined by 

n(W,p) = [cp    -l]W[cp    -1}' 

W - -2XW + 
y 

XE 

y 

(49) 

(50) 

will be a quadratic function of p. 
We are interested in the case when V is not necessarily convex since convexity 

oiV would imply convexity of fS. To ensure a tractable minimization problem, 
we presume that V has been embedded in a conveniently chosen, closed, bounded 
convex subset P {e.g., the convex hull of V) and that the set of admissible nom- 

inal transfer functions has been enlarged to Ü = {vp : p G V}. This reduces the 
problem of minimizing II(W,p) over P to a finite dimensional convex, quadratic 
programming problem. Such problems are highly tractable and many fast algo- 

rithms for solving them are known. 
We shall assume that all of the points p G V {if any} at which \vp has a 

pole-zero cancellation are in the interior of a specified closed set S C V, called 
a singular region. {Therefore ^vp can't have any pole-zero cancellations on the 
closure of P - S.) It is reasonable to require Cp and {vp ; p G S} to be disjoint. 

In the sequel we will define a generalized supervisor whose decision making 
strategy takes into account the possibility that there may be times at which the 
best possible admissible transfer function estimate, determined by minimizing 
n{W,p) over P, falls within the singular set {vp : p G S}. To define such a 
supervisor two things are needed: 
Controller Requirements: 

1. A bounded set of controller transfer functions {/c9 : q G (V — S)} which 
satisfies the Stability Margin Requirement on V — S; i.e., for each p G (P — S) 
the real parts of the closed-loop poles of the feedback interconnection shown 
in Figure 13 are less than —Xs- 

K 1 
s VP 

Fig. 13. Feedback Interconnection 

Since -i/p has no pole-zero cancellations on the closure of V — S, such a 

family clearly exists. 
A set of real gains {gi,g2,- ■ -,gns} which fulfills the Observation Require- 
ment; i.e., for each / G V and each p G S, there is a value of q G {1,2,.. -,ns} 
for which the feedforward interconnection of controllable, observable realiza- 
tions of vp and vi shown in Figure 14 is observable through ejj. It can be 
shown that such a family exists because of the assumed disjointness of M 

and S [14]. 
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gqH 

Fig. 14. Feedforward Interconnection 

Assume that {nq : q £ (V - S)} is a bounded set of controller transfer func- 
tions which satisfies the Stability Margin Requirement and that {«i, K2, • ■ ■, Kns} 
is a finite family of gains which satisfies the Observation Requirement. In addi- 

tion, adopt the notation I = {1,2,.. .,ns} and write Q for the disjoint union 

Q = (P-S)öl. Suppose Sc{q) is a globally detectable/stabilizable realization 

of Kq on Q. 
The overall structure of the supervisory control system we want to consider 

is the same as before, except that now instead of SD, the supervisor uses a 

yet-to-be-defined "dwell-time/cyclic logic" SDC- 
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Fig. 15. Supervisory Control System Using Dwell-Time/Cyclic Switching 

Eoc is essentially a combined version of ED and the cyclic switching logic of [14]. 
The underlying strategy upon which UDC'S logic is predicated can be explained 
roughly as follows. Consider again the by now familiar equations 

XE 

x 

x + hr 

(Ai +bfai)x + d[e[ 

(51) 

ep = cpix + e;     p £V 

v = f„ix + gaet 

ex = e; + cix 

which hold for all constant r and all l,p £ V. 

(52) 

(53) 

(54) 

(55) 

EDC'S strategy stems from two 
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facts, each a direct consequence of one of the two corresponding Controller 
Requirement stipulated above: 

1. For each / 6 V and each p £ V — S the matrix pair (cpi,Ai + bfqi)\q=p is 
detectable. 

2. For each / £ V and each p £ S there exists a q £ I such that (cpj, A/ + fc/9;) 
is detectable. 

Intuition: Here roughly is the idea upon which cyclic switching is based. Think 
of the supervisor as performing two separate tasks - one estimation and the other 
controller selection. The estimation task amounts to minimizing II(W,p) over 
V and goes on over and over without interruption; this generates a sequence of 
values p £ V■ Meanwhile the supervisor tries to select controller's in such as way 
as to maintain "detectability" through e~ at least on the average. Why? Because 

detectability through e-j- implies smallness of x whenever e~ is small - and small- 

ness of e~ ought to be a consequence of the estimation process. So here's how 

the supervisor achieves "detectability" through e~: If p £ V — S, the supervisor 

relies on property 1 above and certainty equivalence: detectability is achieved by 
setting a = p. On the other hand, if p enters S, the supervisor relies on property 
2: in this case "detectability" is achieved on the average by stepping a through 
each of the values 2, holding fixed on each such value for a prespecified amount 
of time. 

Formally a Dwell-Time/Cyclic Switching Logic SDC is a hybrid dynamical 
system whose input and output are W and a respectively, and whose state is 
the ordered quintuple {X,p, r, ß, <r}. X is a discrete-time matrix which takes on 
sampled values of W, p is a discrete-time variable taking values in V, T is a 
continuous-time timing signal as before, and ß is a logic variable taking values 
in {0, 1}. r takes values in the closed interval [0, maxjnsTs, TJJ}], where r# and 
Ts are a prespecified positive numbers called a dwell time and a cycle dwell time 
respectively. As before TC < max{nsT5,ro} is a prespecified computation time 
which bounds from above for any X £ W, the time it would take the supervisor 
to compute a value p = px £ V which minimizes LJ(X,p). Between "event 
times" T is generated by a reset integrator according to the rule f = 1. Such 
event times occur for ß £ {0, 1}, when the value of r reaches either T(ß) — TQ 

or T(ß) where T(0) = TQ and T(l) = nsTs; at such times r is reset to either 
0 or T(ß) — Tc depending on the value of SDC'S state. EDC'S internal logic is 
defined by the computer diagram shown in Figure 16 where px denotes a value 
of p £ V which minimizes II(X,p). 

The functioning of Sue can be explained as follows. Suppose that at some 
time to, Ls has just changed the value of p. Depending on whether p £ S or 
not, one of two different epochs can occur: 

— Suppose p $ S. In this case ß is set equal to 0, IT is set equal to p and r 
is reset to 0. After TD — re time units have elapsed, W is sampled and X 
is set equal to this value. During the next TC time units, a value p = px is 
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Fig. 16. Dwell-Time/Cyclic Switching Logic EDC 

computed which minimizes II(X,p). At the end of this period, when r = TD, 

if IT(X,px) is smaller than II(X,p), then p is set equal to px and the logic 
goes back to again test whether or not p £ S. If, on the other hand, IJ(X,p) 
is less than or equal to II(X,px), T is reset to rD - TC, W is again sampled, 
X takes on this new sampled value, minimization is again carried out over 
the next TC time units and so on. 
Suppose p G S. In this case ß is set equal to 1, r is reset to 0, and two distinct 
sequences of events occur simultaneously, each lasting nsTs time units: 
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1. At T = 0, a switching cycle is executed6. 
2. At T = nSTS-Tc, W is sampled and X is set equal to this value. During 

the next TC time units, a value p = px is computed which minimizes 
II(X,p). At the end of this period, when r = nsrs, if IT(X,px) is 
smaller than 77(A",p), then p is set equal to px and the logic goes back 
to again test whether or not p € S. If, on the other hand, II(X,p) is 
less than or equal to II(X,px), r is reset to 0, another switching cycle 
is executed ....and so on. 

An analysis of the supervisory control system just described can be found in 
[46]. For analyses in more traditional adaptive control contexts see [14, 22, 47]. 
The techniques used [14, 22] are similar to those outlined in the last section. The 

discrete time case is completely analyzed in [47]. 

5  Switched Linear Systems 

Existing results concerned with the types of switched systems we've been dis- 
cussing deal mainly with questions of stability, global boundedness and conver- 
gence. Interesting as they may be, these results are in many ways less than one 
might hope for. Especially lacking we think, are results of a more quantitative na- 
ture. What are needed are good norm bound estimates for allowable unmodelled 
dynamics. Also needed is a clearer understanding of the relationships between 
these estimates and design parameters. 

Resolution of issues such as these calls for a better understanding of the basic 
properties of switched systems than we have at present. Needed is a catalog of 
basic results analogous to those for non-switched linear systems. In the sequel 
we briefly discuss some of the technical questions suggested by types of problems 

we've been discussing. 

5.1  Stability of Switched Linear Systems 

Let V be either a finite set or a closed, bounded subset of a finite dimensional 
linear space and let A = {Ap : p G V) be a closed, bounded set of real n x n 
matrices. Within this context one can formulate a number of different stability 
problems. For example, one can seek to find a switching logic Us, with input x 
and piecewise-constant output a which uniformly exponentially stabilizes 

x = Aax (56) 

in the sense that there are positive constants a and A such that all solutions x 
to (56) {in closed-loop with Es} exist and are norm bounded in time by ae~Xt 

6 The supervisor executes a switching cycle at clock time T = 0 by setting <r(to + r) = 
S(T), T € [0, nsrs) where to is the actual time T was reset to 0 and s : [0, nsrs) -¥ 1 
is the piecewise-constant function whose value is i on the subinterval [(i — l)rs, ITS), 

i el. 
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times the initial normed value of a;. The synthesis of such a state driven switching 
logic seems to be very challenging. See [48] for a discussion of some recent results 

along these lines. 
A somewhat less ambitious goal would be as follows: For a given set A - 

{Ar : p £ V) and a given class of switching signals S, find conditions under 
which there exist positive numbers A and a such that for each a £ S the state 

transition matrix of Aa satisfies 

\${t,T)\< ae-x(t-\   t > r > 0 (57) 

Interesting choices for S would include 

1. Si = all piecewise constant switching signals 

2. »So = all piecewise constant switching signals with dwell times no less than 

some positive number TQ- 

3. £3 = the type of switching signals generated by EQC {cf-, [46]}. 

Here are some easy to derive sufficient conditions under which there exist a and 
A such that (57) holds for every piecewise constant a £ S\ 

1. There exists a norm || ■ || on IRnx" and a positive number A such that 

||e^J|| < e~xt,    t>0, Pev 

2. The elements of A share a common quadratic Lyapunov function; i.e., there 
exists a positive definite matrix Q such that 

QAp+A'pQ<0,    VpEV 

3. V {and therefore A} are finite sets and ApAq = AqAp for all p,q eV. 
4. The matrices in A are row diagonally dominant with negative diagonal ele- 

ments ; i.e., for A = [ciij] £ A, 

n 

2a!-i+^|aij| < 0, 1 £ {1,2, ...n} 
J = I 

5. There exists an integer n > n, a full rank fi x n matrix V and a family of 
n x n matrices A = {Äp : p £ V] such that 
(a) Äpv = VAPl per 
(b)  the matrix Aa is exponentially stable for each a £ S\ 

The sufficiency of conditions 1 and 2 are more or less obvious; the same is 
true of condition 3 since it implies that the associated matrix exponentials of the 
Ap commute. An explicit construction is given in [49] of a matrix Q satisfying 
condition 2 for a set of matrices A satisfying condition 3. Recently condition 1 
was shown to be necessary for (57) to hold for all a £ Si [50]; of course one is 
still faced with the problem of deciding when such a norm exists. Condition 4 
can be easily established using an simple estimate based on the idea of a matrix 
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measure {c.f., [51], p. 47}. Condition 5 is a consequence of the fact that for any 

solution x to x = Aax, x = Vx is a solution to x = Äax 
Note that conditions 4 and 5 imply that the following is sufficient for (57) to 

hold for all a G S\ 
Property: There exists an integer n > n, a full rank h x n matrix V and a 
family of n x n matrices Ä = {Äp : p G V) such that 

i. Äpv = VAp,_pev 
2.  each matrix Aa is row diagonally dominant with negative diagonal elements. 

Under certain conditions this property proves to be necessary as well [52]; of 
course one still needs to figure out when V and the Äp exist. For some results 
concerning the stability of switched nonlinear systems, see [44]. 

The kind of stability questions we've been discussing are very closely related 
to the problem of deciding when for a given class of matrices {Mp :pg?} and 
a given class <S of infinite sequences mapping the nonnegative integers into P, 

i 

lim TT M9(j) = 0,     W G S 
I-K30 -L-L v   ; 

This and related questions have been addressed in [53] and [54]. 

5.2  Other Questions 

Here are several other questions involving switched linear systems: 

- Given a family of switching signals S and a family of detectable pairs 
{(CP,AP) : p G V} when does there exist a matrix function p \—> Kp on V 
for which AG + KaCa is 'exponentially stable' for each a G S ? 

- With reference to the preceding suppose K. is a nonempty class of matrix 
functions p \—y Kp on V with the property that for each function Kp G fC, 
Aa + KaCa is exponentially stable for each a G S. For a given class of 
appropriately sized matrices {Fp : p G V] compute {or at least tightly 
estimate} the sup over S of the inf over K, of the induced £2[0, oo) norm of 
the linear operator 

/ Fa{t)4>{t 
Jo 

y<—>       Fo(t)<f>(t,s)K<7(,)y{s)ds 
Jo 

where <j> is the state transition matrix of Aa + K„Ca. 
Given a class of linear systems {(Ap,Bp,Cp, Dp) : pG P},each with property 
P, and a class of switching signals S, when is it true that for each a G S the 
switched system (Aa, Ba, Ca, Da) also has property P? Interesting choices 
for P include stability, stabilizability, passivity. Some findings related to the 
last of these appear in [55]. 
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6  Concluding Remarks 

Switching logics such as those discussed in this paper are typically derived with- 
out appealing to any formal notion of state or state transition. Explaining such 
logics informally can be beneficial and we have sought to do this throughout the 
paper. On the other hand we've found that it is also worthwhile to go through the 
exercise of formally modeling such logics as hybrid systems with inputs, states, 
state transitions and outputs. Formal modeling can clarify an algorithm's func- 
tioning by reducing ambiguity and in so doing can help to preclude erroneous 
conclusions. For example, when cyclic switching was first devised without the 
benefit of a formal model, it was thought to be a time-varying system which it 
clearly is not. The formal modeling of the hysteresis switching logic in [12] made 
it easier to explain. There are no doubt many existing switching logics whose 
behaviors could more easily grasped if they were both explained informally and 

modelled formally as hybrid dynamical systems. 
In §2 it was emphasized that multi-controller architectures can usually be 

efficiently implemented as state-shared parameter dependent controllers. There 
are of course situations when it is advantageous not to explicitly compute off- 
line the parameter-dependent coefficient matrices of such a controllers. This is 
especially true if the controller in question is of the certainty equivalence type 
and if the associated family of nominal process models is a continuum. For 
example, suppose that the set N of nominal transfer functions considered in 
§4.3 is a continuum; suppose in addition that for each p £ V, controller transfer 
function KP is to be designed via LQ-theory applied to i/p. Because solutions 
to matrix Riccati equations depend on the equation's coefficient matrices in a 
complicated {nonrational} manner, the dependence of Kp on p will be at least as 
complex, even if vv depends linearly on p. What this means is that the problem of 
explicitly parameterizing K, assuming an LQ-based controller design is hopelessly 
intractable. For MIMO process models the problem is far worse even for simple 
pole-placement designs. There are at least two ways to avoid this problem. One 
is to compute controller coefficient matrices in real time; this is feasible with a 
dwell-time switched supervisory control system provided the computations can 

be carried out quickly enough. 
Another way to avoid the parameterization problem is to settle for a smaller 

nominal process model transfer function class M containing only finitely many 
elements. In fact a strong case can be made for doing this not just to avoid the 
parameterization problem, but for other reasons as well. For example, finiteness 
of Äf's parameter space V can greatly simplify the required minimization II(W, p) 
over V even if V is very large. We refer the reader to [56] for an interesting 
discussion of how one would go about covering a process model transfer function 
class of the form 

Cp= U {j/p+ <J: ||<J||oo <eP} 

assuming N = {up : V} is a compact continuum with a transfer function class 
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Cp D Cp of the form 
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CP= U {vp+6: \\SWoo < lp) 

where V is a finite subset of V and ep < ep, p £ V. 
One of the underlying ideas exploited in section 4 is that modeling uncer- 

tainty can be dealt with by switching between the members of a family of fixed 
gam controllers. The idea has been around for a long time. For example there is 
an extensive literature on the "multiple-model" {i.e., multi-estimator} approach 
to uncertainty which goes back almost thirty years; see for example [57] and the 
many references therein. The key feature of the estimator-based approach dis- 
cussed in §4.3 which distinguishes it from the classical multiple-model approach 
is that switching is orchestrated by a supervisor using a logic which selects con- 
trollers on the basis of normed output estimation errors. Surprisingly, a provably 
correct version of this simple idea does not seem to have found its way into the 
literature until quite recently [15] - this despite the fact that the idea is a natural 
extension of the original concept of hysteresis switching [11] which appeared in 

1988. 
For the case when V contains a continuum of points, the dwell-time switched, 

estimator-based supervisory control discussed in §4.3 can be thought of as a form 
of estimator-based parameter adaptive control in which the supervisor plays 
the role of parameter tuner [58]. In this context, the concept of a supervisor 
represents a significant departure from more traditional estimator-based tuning 
algorithms which typically employ recursive or dynamical parameter tuning. 
Most closely related to what we've been discussing seems to be the type of 
adaptive algorithm studied by Naik, Kumar and Ydstie in [59]. Both the NKY 
algorithm and the dwell-time switched supervisor discussed in §4.3 search on 
compact parameter spaces; both are inherently robust to unmodelled dynamics 
in that dynamic normalization [60] is not employed. Perhaps the most significant 
differences between the two are 1. that the NKY algorithm employs recursive 
parameter tuning {i.e., pseudo-gradient/projection search} whereas the dwell- 
time switched supervisor does not and 2. the dwell-time switched supervisor 
allows time for computation whereas the NKY algorithm does not. 

It is reasonable to suspect that many of the ideas covered in §4.3 can be 
successfully applied to specific classes of nonlinear systems. The well-known ob- 
stacles to generalization imposed by a limited nonlinear observer theory can 
almost certainly be side-stepped by focusing attention on systems whose states 
can be measured. It is quite likely that a supervised family consisting of a finite 
number of fixed nonlinear controllers will prove easier to analyze than a con- 
tinuously parameterized family of controllers under the control of a parameter 
tuner. Understanding such switched systems calls for new methods of analysis 
which go beyond the partial Lyapunov function approach commonly used in the 
study of conventional parameter adaptive systems. 
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Simulations 

The general concept of a dwell-time switched, estimator-based supervisory con- 
trol system described in this paper has been tested in simulation under a variety 
of conditions. The reader wishing to experiment with these simulations can ob- 
tain Matlab Simulink files via the internet at the address 

http://www.cis.yale.edu/~wchang/workshop.html 

The simulations were designed and implemented by Wen-Chung Chang and Joäo 

Hespanha. 
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