
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A GRAPHICAL USER INTERFACE
FOR POST

(THE PROGRAM TO OPTIMIZE
SIMULATED TRAJECTORIES)

by

David Dean Nash

June 1995

Thesis Advisor: I. Michael Ross
Co-Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited.

19960122 106
•C qüAUÄTs mMmmäüj &

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE
June 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
A GRAPHICAL USER INTERFACE FOR POST (THE PROGRAM

TO OPTIMIZE SIMULATED TRAJECTORIES) (U)

6. AUTHOR(S)

Nash, David Dean

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES .
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The analysis and optimization of trajectories for aerospace vehicles has been extensively conducted

by many government agencies using the Program to Optimize Simulated Trajectories (POST). The
versatility of this program is made possible by its generalized planet and vehicle models, use of equality
and inequality constraints, and multiple phase simulation capabilities. Unfortunately, it takes a "rocket
scientist" to effectively use this program. For those who wish to have the power of this program without
having to learn the required POST language, a Graphical User Interface (GUI) is necessary.

The GUI supports all the features of POST by offering the user selection windows that change
depending on previous selections. An editable display window is the central portion of the GUI. As each
selection is made from the event icons, the corresponding POST commands appear in the display window.
This gives the experienced user the ability to switch between the new interface and the old file entry
methods, and acquaints the new user with the POST file entry method. Once all selections are made the
file can then be read by POST and the output used for analysis and visualization.

14. SUBJECT TERMS
POST, GUI, interface

is NUMBER OF BftGES

128
it PRICE coBE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 239-18

Approved for public release; distribution is unlimited

A GRAPHICAL USER INTERFACE FOR POST
(THE PROGRAM TO OPTIMIZE SIMULATED TRAJECTORIES)

David Dean Nash
Lieutenant, United States Navy

B.S., UCLA, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1995

Author:

Approved by:

David Dean Nash

I. Michael Ross, Thesis Advisor

Ted Lewis, Chairman,
Department of Computer Science

Ul

IV

ABSTRACT

The analysis and optimization of trajectories for aerospace vehicles has been

extensively conducted by many government agencies using the Program to Optimize

Simulated Trajectories (POST). The versatility of this program is made possible by its

generalized planet and vehicle models, use of equality and inequality constraints, and

multiple phase simulation capabilities. Unfortunately, it takes a "rocket scientist" to

effectively use this program. For those who wish to have the power of this program without

having to learn the required POST language, a Graphical User Interface (GUI) is necessary.

The GUI supports all the features of POST by offering the user selection windows that

change depending on previous selections. An editable display window is the central portion

of the GUI. As each selection is made from the event icons, the corresponding POST

commands appear in the display window. This gives the experienced user the ability to

switch between the new interface and the old file entry methods, and acquaints the new user

with the POST file entry method. Once all selections are made the file can then be read by

POST and the output used for analysis and visualization.

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. PROBLEM STATEMENT 1

C. SCOPE 2

1. X Window System 3

2. OSF/Motif 3

3. The Builder Xcessory (BX) 3

D. RESEARCH APPROACH 4

E. ORGANIZATION 5

II. INTERFACE REQUIREMENTS AND ARCHITECTURAL DESIGN 7

A. INTERFACE REQUIREMENTS 7

B. ARCHITECTURAL DESIGN 8

1. Event Worksheet 9

2. Run POST File 9

3. Analyze Data 11

4. Run Simulation 11

C. WIDGET DESIGN 11

1. Shell Widgets 11

2. Container Widgets 12

IE. USER INTERFACE DESIGN 13

A. INTERFACE PRINCIPLES 13

B. GENERIC ROUTINES 13

C. THE G-POST SHELL 15

D. THE EVENT WORKSHEET 18

1. The Initial Conditions Shell 21

2. Units Of Input/Output 22

3. Aerodynamic Inputs 23

vu

4. Numerical Integration Methods 26

5. Atmospheric/Gravity Models 28

6. Initial Position/Velocity 31

7. Type of Propulsion/Throttling 33

8. Vehicle/Propellant Weight Input 35

9. Method of Guidance 36

10. Print Variable Request 41

11. Targeting And Optimization 43

12. Event Push-Buttons 46

E. RUNNING A POST FILE 48

F. ANALYZING DATA 49

G. RUNNING A 3D SIMULATION 49

IV. INTERFACE FMPLEMENTATION - A TUTORIAL 51

A. EXAMPLE PROBLEM 1 51

B. EVENT WORKSHEET ENTRY 51

1. The Initial Conditions Input 52

2. Targeting and Optimization Input 57

3. Event Input 60

C. RUNNING A POST FILE 62

D. ANALYZING DATA 62

E. RUNNING A 3D SIMULATION 63

V CONCLUSIONS AND FUTURE WORK 65

A. CONCLUSIONS 65

B. FUTURE WORK 66

1. Propulsion 66

2. Multiple Files 66

3. Default Units 66

4. Tables 67

5. Open/close Loop Guidance 67

vui

6. Visual Post 67

APPENDIX A. LISTING OF NPC AND IGUID CODES 69

APPENDIX B. EXAMPLE PROBLEM 93

APPENDK C. INPUT DATA FILE FOR EXAMPLE PROBLEM 1 97

APPENDDC D. INPUT DATA FILE GENERATED BY G-POST 103

APPENDIX E. POST TABLES USED IN G-POST 111

LIST OF REFERENCES 115

INITIAL DISTRIBUTION LIST 117

ix

I. INTRODUCTION

A. BACKGROUND

The Program to Optimize Simulated Trajectories (POST) is "a general-purpose

FORTRAN program for simulating and optimizing point mass trajectories of aerospace

vehicles." [Ref 1] Martin Marietta Corporation modified the original Space Shuttle

Trajectory Optimization Program for NASA to obtain the current version of 3D POST,

Version 4.000. The capabilities of POST include targeting and optimization of point mass

trajectories for powered and unpowered vehicles operating near a rotating, oblate planet.

The program is quite generalized and allows for solving a wide variety of atmospheric

flight mechanics and orbital transfer problems. POST was written in FORTRAN 77 for use

on various platforms, including Silicon Graphics and Sun computers. Detailed information

on the background, formulation and implementation of the POST program can be found in

the three volume Final Report of The Program To Optimize Simulated Trajectories

produced by the Martin Marietta Corporation. [Ref 1]

B. PROBLEM STATEMENT

To maximize the use of the current implementation of POST, it is necessary to have

extensive knowledge of the system design language. A standard trajectory problem is

defined as a sequence of at least two events that describe the initial conditions,

environmental components, system constraints and desired output The original version of

POST required punch cards for this data entry, consequently data was organized in a proper

sequence of Fortran phrases for each specific type of input, called namelists. As a hold over

from this method, the data in the current version of POST must also be organized in a file

in a proper sequence of namelists. The phrases for POST include SSEARCH, $GENDAT,

$TBLMLT and $TAB. Each phrase is followed by Event variables and Hollerith input

variables which must be entered in a specific format. As an example of the complexity of

an input file, an excerpt from Sample Problem 1 in the Utilization Manual [Ref 1] is

provided in Figure 1. A complete version of this input file can be found in Appendix C.

$SEARCH
SRCHM = 4,
IPRO = 1,
MAXITR = 10,
OPT = 1.0,
OPTVAR = 6HWEIGHT,
WOPT = 1.0E-6,
CONEPS = 89.98,
C
$GENDAT
EVENT = 1,
NPC(2) = 1, 4, 2,
NPC(8) = 2, 1,
NPC(16) = 1,
NPC(22) 1,

Figure 1: POST Excerpt

From the above excerpt it is apparent that, in its present state, POST is not an easy

program to master. A significant amount of time is required to learn a new language and

the relationship between all the variables. In order to make this powerful program available

to more people, it was necessary to create a Graphical User Interface (GUI).

C. SCOPE

Development of a GUI for the POST program is the focus of this thesis. The purpose

of the GUI is to make it easier for those not familiar with POST to use it without being

concerned with all the intricacies of the program. At the same time, the GUI can be used to

make targeting and optimization of trajectories more efficient for those familiar with the

POST program. An option is provided to maintain the previous entry method for those not

desiring to change. Default values are provided at all steps in the input process to facilitate

the input procedure. Input values are checked wherever possible to ensure compliance with

POST requirements. As an added feature, the ability to display the POST output file in a

3D mode on the Silicon Graphics machines has been added. The use of this graphics feature

is briefly explained later in Chapter IB, Section G.

There are numerous environments and methods available for developing user

interfaces. Since the Sun and Silicon Graphics Incorporated (SGI) systems both use the X

Window System running OSF/Motif, this was the environment chosen for the POST GUI

(G-POST). There are also a number of tools available to prototype a graphic environment

using X Windows and OSF/Motif. The primary design tool used for this project was the

Builder Xcessory (BX) developed by Integrated Computer Solutions Incorporated (ICS)

[Ref2].

1. X Window System

X Windows was developed at the Massachusetts Institute of Technology (MIT) by

personnel from MIT and Digital Equipment Corporation (DEC). It has been released in

several versions, the most recent being Release 5 of Version 11 [Ref 3]. It is widely

recognized as the standard for network-based windowing systems and is supported by a

consortium of well-known companies such as AT&T, DEC, IBM, HP, Sun and SGI.

2. OSF/Motif

Motif is a GUI built on top of X Windows. The developer of Motif, the Open Software

Foundation (OSF), is a non-profit organization founded in 1988 by a group of companies

(including DEC, HP and IBM) whose objective was, and is, to develop a standard user-

interface environment [Ref 3]. Motif uses a set of components called widgets to provide the

GUI applications with the capability of running on practically any vendor's workstation.

3. The Builder Xcessory (BX)

The BX has a palette of the most commonly used widget shells (the windows that hold

all the buttons), widgets (buttons, sliders, selectors, lists etc.) and composite widgets (more

complicated widgets shells with other widgets already attached). The OSF/Motif standard

as described above uses widget shells of various types as containers for all other widgets.

BX follows these standards by allowing the user to drag copies of the desired widgets over

to the work area and define their positions and characteristics graphically. Each type of

input widget; push-button, toggle-button, slider, and text entry areas, has procedures

associated with them termed callbacks. These callbacks register a change in the state of the

widget (e.g., a Help button pushed), and execute the appropriate action (e.g., open the Help

window). Once all shells are constructed to the user's satisfaction, a play mode may then

be selected to view the window connections and make sure, when the proper button is

pressed, the program operates as expected [Ref 3].

When the user is satisfied with the general operations of the window environment, the

Builder Xcessory can then generate the code for the GUI in C, C++ or the Motif User

Interface Language. The BX uses its own code along with the OSF/Motif code to

accomplish all windowing functions. The non-window code is then added to the

windowing environment to allow the program to perform its desired functions.

D. RESEARCH APPROACH

Initial research began with a comprehensive study of the methodology POST uses to

accomplish its many tasks. An excellent overview of POST, A Primer for POST written by

John Nicholson in 1993 [Ref 4], was used as a guide in determining the direction of

research. A GUI is usually integrated as part of a program, written in the same language

and started with the program. In this case, after review of Nicholson's Primer and the POST

manuals, it was determined that it would be most effective to write an interface as part of a

file generator that could then be read by POST to obtain the desired output.

To develop this file generator, it was necessary to fully understand the relationship of

all POST commands. All variables were mapped out and cross referenced with their

requirements and the variables they affected. Appendix A shows a summary of POST

commands and related functions. A complete listing of all features can be found in the

POST users manuals [Ref 1]. Only after extensive study of POST could the requirements

for the GUI be determined. The interrelationship between all data entries also increases the

complexity of the windowing system used for the GUI. As an example, each option that is

no longer available due to a previous selection must be made inaccessible, or "grayed-out".

Once the connections were mapped out, the windows for the interface could be designed.

All windows for this thesis were initially constructed using the BX toolkit, which

makes the design and positioning of the widgets in the shell relatively fast once the program

is mastered. C code was generated using BX to provide an outline for the actual code used

in the interface. This was done to insure compatibility with previously written code which

contained routines to decrease the amount of code required and make the program more

modular. These routines will be discussed in Chapter III, Section B.

E. ORGANIZATION

An in-depth description of the architectural design and interface requirements for

POST is detailed in Chapter II. These requirements are then translated into a user interface

design in Chapter III. The actual interface implementation is shown with a tutorial in

Chapter IV. Conclusions and recommendations are found in Chapter V.

II. INTERFACE REQUIREMENTS AND ARCHITECTURAL
DESIGN

A. INTERFACE REQUIREMENTS

In order to function as an effective tool for the new user, the interface must not only

contain all possible data entry fields, but also supply those entry fields in a logical and

systematic order. The primary goal of the GUI is to produce an input file which conforms

with the structured entry format required by POST, while making the data entry format

intuitive. This is especially important since the method one user formulates a problem

statement with might be different from the way another does, and neither formulation may

be the order in which POST accepts the data entry. For instance, POST requires targeting

and optimization entries before any initial vehicle conditions such as position and velocity

are entered. It is more logical to most when formulating the trajectory problem to begin

with initialization conditions prior to targeting and optimization parameters. With this in

mind, a step-by-step entry method is implemented to ensure all necessary data fields are

recorded in the proper order.

Complete file operations and editing functions are made available for the extensive

amount of file manipulations required when creating a POST input file. Help functions are

also accessible at each step, displaying the information found in the manual on the current

subject, as well as any interface specific aspects of that window. Default values of all

variables, as described in the reference manuals, are set until user modified, at which time

these values are stored until the program is exited and restarted. Wherever possible,

requesters ask for confirmation of actions that might adversely affect the current input file.

The Motif style guide is followed to ensure consistent behavior with the OSF/Motif user

interface framework. The interface runs on Silicon Graphics workstations and is written

such that recompiling on Sun workstation is relatively simple.

B. ARCHITECTURAL DESIGN

There are four major functions available in G-POST: create a new or edit an existing

POST input file using the Event Worksheet, generate a POST output file from a previously

constructed input file, analyze the output data, and run a visual 3D representation of the

trajectory. These four functions are modules that are accessed individually from the G-

POST initial selector (Figure 2) and are used to manipulate POST input or output files. An

Figure 2: The G-POST Initial Selector

execution of the POST program consists of the following steps as described on page 3.a-l

of the POST Utilization Manual [Ref 1]:

• Initializing the equations of motion.

• Propagating the trajectory until interrupted by the occurrence of the user-

specified conditions for the next event.

• Reinitializing the equations of motion with new user inputs for the event

causing the interruption.

• Repeating the process until the user-specified final event is reached.

• Terminating the problem.

The POST trajectory problem is first defined as a sequence of at least two events.

These events are constructed in the proper order using the Event Worksheet.

1. Event Worksheet

As the creation tool for the POST input file in G-POST, the Event Worksheet is the

interface between the user and the input file. User input is accomplished either through

numerous Motif widgets designed to create the input file in the most intuitive manner

possible, or direct input entry into the multi-line text entry widget (Figure 3). Further

modifications of the POST input file can be done using the file editing functions from the

pull-down menus. The program can only be terminated from the initial shell, all other close

functions unmap the individual shell. If a closed shell is requested an additional time, the

shell is remapped and not recreated. This allows for retention of values previously entered

for that shell. The Event Worksheet contains button widgets which are used to bring up all

of the other widget shells that are required to construct the POST input file. When all

modifications are complete, the input file can be saved for future manipulations or to create

a POST output file.

2. Run POST File

Any previously created POST input can be submitted to the POST program using G-

POST as long as the POST program is located on the machine where G-POST is located,

or can be reached via a link or alias. If any namelist errors or unexpected results occur

during job submission, the errors can be corrected and the problem formulation reviewed

with the Event Worksheet and resubmitted. The output file can now be analyzed for any

desired output.

Figure 3: The Event Worksheet Input Methods

10

3. Analyze Data

The standard output file from the POST program is in a form that is not easily read or

used for problem analysis. A Profil file generation option is available to create either an

ASCII or binary file that can more readily be used by a number of programs to analyze the

data. The current implementation is to convert the Profil file to a Matlab [Ref 5] file which

allows for graphing of any of the output variables for data analysis. The method of

accomplishing this is discussed later in Chapter III, Section F.

4. Run Simulation

The simulation program is started from G-POST, but runs independently from G-

POST and takes a POST Profil as input. The present implementation requires inertial pitch,

roll, yaw, inertial x, y and z-position, and time. These values are used to generate the

simulation using an OpenGL application running on the SGI workstation.

C. WIDGET DESIGN

When describing any of the specific GUI widgets in the following sections, italics are

used with the widget name as it appears in the GUI (e.g., Event Worksheet). The name of a

container shell is in normal Title Case (e.g., Row Column) and any generic children names

are left in lower case (e.g., push-button).

1. Shell Widgets

The first window to appear when the program is started is called the application

window. This window is defined using an ApplicationShell. Only one of these shells is

allowed in each program. To define all other shells in the program a TopLevelShell

structure was used since all windows defined after the initial application window are at the

same level in the widget hierarchy. A TopLevelShell is a child of the ApplicationShell and

inherits all the windows' resources available from the ApplicationShell. Closing or

destroying any of the TopLevelShells does not quit the program as closing the

ApplicationShell does.

11

2. Container Widgets

Two types of container widgets, Form and Bulletin Board, are defined as children of

the TopLevelShell. A Form widget is a container that allows for the resizing of its children

if desired. The children of the Form are attached to its sides and each other to maintain their

relationship when the Form is resized. Resize capabilities are not used with any of the shells

in this interface and the actual resize option was not implemented. Minimization of any of

the shells to icons is still allowed.

A Bulletin Board widget is a container that does not resize its children and requires

specification of all children positions instead of attachments. This allows for more control

of widget positioning, but is more difficult than using Form widgets which automatically

position its children. The use of BX made this procedure easier by defining the positions

when the children were placed in the Bulletin Board. Moving any of the Bulletin Board's

children after generation of code was a matter of specifying the new coordinates of the

widget.

Children of these two containers included two more containers, the Row Column and

Scrolled Window widgets, and all the labels, separators, text fields and push-buttons not

located in the Row Column and Scrolled Window containers. The Row Column container

orders and groups its children; push-buttons, toggle-buttons and text fields, for

organization and referencing by a single name. Toggle-buttons can be put in a Radio Box

version of the Row Column container to force the toggle-buttons to behave in a "One-of-

many" manner (i.e., only one button can be pressed at a time).

Multi-line text editing and selection boxes are placed in the Scrolled Windows to allow

access to the hidden data in the window. These are operated using the arrows and sliders

located on the right side (and bottom if necessary) of the container.

12

III. USER INTERFACE DESIGN

A. INTERFACE PRINCIPLES

As stated in the requirements section, G-POST follows the OSF/Motif style guide in

the creation of all the widgets in the interface. Specifically:

• Know the User.

• Empower the user.

• Keep interfaces flexible.

• Use progressive disclosure.

• Allow direct manipulation.

• Provide rapid response.

• Make navigation easy.

• Keep interfaces consistent.

• Use explicit destruction.

The following sections of this chapter demonstrate these principles by showing the

actual window as displayed to the user and describing the underlying design.

B. GENERIC ROUTINES

As mentioned in the introduction, routines were developed to reduce the amount of

code necessary to create all widgets as well as facilitate the conversion to a C++ class

structure at a later date. Since the structure of an individual widget type is relatively the

same from one instance to the other, a procedure can be developed to produce these widgets

so that all that is required is one call to the procedure for each widget. The creation of labels,

separators, push-buttons, toggle-buttons and text fields make up the majority of the

interface design. Up to about 400 text field entries could be required in a given trajectory

problem. As many labels as text fields and nearly that many buttons are also required. The

Motif definition of these "simple" widgets can require anywhere from seven to fifteen lines

13

of code for each widget. Without these routines the length of the program would be

unmanageable. Figure 4 shows the make_textfield_entry routine which is used to make all

the text field widgets in the GUI.

void make_textfield_entry(
Widget &_textField,
Widget re,
char *entrytext,
int text_columns,
char * text_value,
int text_width,
int text_height,

//A row column container.
// Text for the label string.

// Width of textfield
// Height of textfield.

XtCallbackProc callback, // Name of procedure to
// call when this toggle button is selected.

XtPointer user_data) // Data to be sent the
// callback.

Arg wargs[10];

int n ;

// Same old args stuff.

// Same old args stuff.

// Create this particular textfield.
n = 0;

XtSetArg(wargs[n]
XtSetArg(wargs[n]
XtSetArg(wargs[n]
XtSetArg(wargs[n]
XtSetArg(wargs[n]

: n++ ;
n++ ;

XmNhighlightOnEnter, True)
XmNcolumns, text_columns);
XmNwidth, text_width); n++;
XmNheight, text_height); n++;
XmNvalue, text_value); n++;

_textField = (Widget) XmCreateTextField(re, entrytext,
wargs, n);

XtManageChild(_textField) ,-

XtAddCallback (_textField, XmNvalueChangedCallback,
callback, user_data);

}

Figure 4: Text Field Entry Routine

The procedure takes a reference to the text field widget name so that data can be passed

into and read from any individual global text field. The data in the text fields must be

accessed and manipulated individually vice in whole sections as is the case with buttons.

The desired widget characteristics are passed to the appropriate calls and the widget is

managed.

14

Modifications on the code originally used in rotate3 [Ref 6] were used for the initial

design of the toggle-button routine. The other routines use the same format as the text field

example except their individual widget names are not important. Toggle-buttons, labels

and separators are initialized as gadgets instead of widgets. Gadgets are widgets without

their own windows, they become part of the parent rather than a child of the parent. This

saves resources and speeds up operation. Push-buttons are more complex, requiring the use

of widgets for those functions that bring up message windows (e.g., Help button and file

requesters) when activated.

C. THE G-POST SHELL

When the program is begun (by typing gpost), the initial shell, G-POST (Figure 5), is

displayed with the four primary options as described in the architecture section of Chapter

II, as well as one button to EXIT the program and another to HELP in getting started. The

Figure 5: The Initial Shell

15

G-POST shell is created using a Form widget with push-button widgets used for each

option. Selection of any of the button widgets makes the appropriate callback to start the

desired module.

The Event Worksheet push-button brings up a file requester consisting of a Bulletin

Board Dialog shell with two buttons (Figure 6). A Dialog shell is a shell that appears to give

a message or request an input, and then goes away once the selection is made. When

pressed, the Create NEW File button displays a prompt dialog which takes as input a new

file name (Figure 7).

Figure 6: The File Selection Shell

16

im

Figure 7: The New File Dialog Shell

The OPEN Existing File button calls a file selection dialog popup (Figure 8) with the

file filter set for the POST input file extension (*.inp). Once an input is made in either

dialog popup, the Event Worksheet main shell is opened.

17

Filter ,

/n/el sie/work3/nash/Thesis/*:. ix^p

Directories

>rtc3/jjash/Th!es3.s/.
>rk3/nash/TfcesIs/..
>rk3/nash/Thesis/ rgbl

Piles
bang.inp

i: cruise; inp]
glide.inp

Selection

7n/elsie/werk3/nash/Thesis/ •!

««w:::::::::::::«>#$!5$$^

ü Filter Cancel Help

Figure 8: The Open File Selection Shell

D. THE EVENT WORKSHEET

The Event Worksheet main shell (Figure 9) is created using a TopLevelShell and a

Bulletin Board container. Two function calls, one for the menu bar and one for the push-

buttons and multi-line text entry widget, are made to create all the children of the Bulletin

Board. The menu bar is attached to the Bulletin Board and contains three pull down menu

widgets with the required buttons for File manipulation (Open, New, Close, Save, Save As,

Print and Exit), Edit (Cut, Copy, Paste and Clear) and Help (Help and Program Version)

18

functions. Keyboard shortcuts are associated with each of the buttons under File and Edit

by typing the underlined letter.

The body of the of the Bulletin Board consists of three Row Column containers; one

for the Initial Conditions and Target Optimize buttons, one for the INSERT, DELETE,

NEXT and PREVIOUS buttons, and one for all the other buttons except DONE and HELP.

Three separators and the multi-line text entry widget are also defined.

Button widgets on the worksheet are active or inactive depending on whether the initial

selection was to open a new file or edit an existing one. A new file requires initial

conditions before targeting information and event criteria are entered. All buttons, except

the Initial Conditions button, will be realized with their sensitivity resource set to False

(i.e., grayed out). An initial selection of OPEN Existing File will cause the Initial

Conditions and Target Optimize buttons to be realized with their sensitivity resource set to

False, and all the other buttons to be set active. All file and edit features are available in

either case, allowing for a new or existing file to be opened in place of the original

selection. Construction of a new POST input file begins with the selection of Initial

Conditions, and continues with Target Optimize once initialization is complete. The event

selections are available after targeting and optimization is completed.

The event selection buttons (Integration Method, Guidance Method, Propulsion Type,

Aerodynamic Coefficients, Atmosphere Model, Weight Input, Print Options and Other

Controls) are available if OPEN Existing File was selected, or if initialization, targeting and

optimization were completed after selecting Create NEW File. These buttons, along with

the event control parameters buttons (INSERT, DELETE, NEXT and PREVIOUS), allow for

entry of new criteria at each successive event The DONE button will close the Event

Worksheet shell if the current file has been saved, or it will call a prompt dialog to

determine if the action requested is truly desired. The HELP push-button describes the

operation of the other push-buttons, whereas the menu Help describes the file and edit

features. The operation of all push-buttons will be described in the following sections.

19

 ^WffiiiwriwwMf^wawim

Figure 9: The Event Worksheet Shell

20

1. The Initial Conditions Shell

When opening a new file or selecting Initial Conditions from the Event Worksheet, the

Initial Conditions shell (Figure 10) is displayed. All required entries for the first event

under $GENDAT are found here. The shell is constructed using a Bulletin Board widget

holding the nine push-button widgets, separator gadgets and three push-buttons which are

standard on all the shells in the interface: OK, CANCEL and HELP.

Xpit»;' fspf iit^||0ut|jiä;ti

'^^&ä^ä^ß&ji^ ^|ij^j!§

Atmospheric/Gravity Models

Initial Position/Velocity

$$JrÄi-P(W#^
IjacjMxiocjräcbbfaob^^

Figure 10: The Initial Conditions Shell

21

Each of the nine initial conditions buttons, beginning with Units of Input/Output, make

calls to construct at least one other widget shell, depending on which of the initial

conditions is pressed. Selection of OK will print the input values as modified by the nine

selectors to the multi-line text widget on the Event Worksheet. If any fields are not

modified, the default values stored in the initial conditions shells are printed to the text

widget. CANCEL exits the window without printing any values and HELP provides

information on all the buttons.

2. Units Of Input/Output

POST can take English or metric units as input and print the output using English or

metric units. All input units must be of the same type and all output units are also of the

same type. If a conversion is necessary, POST uses the modifiable stored values for each

conversion factor. The widget (Figure 11) consists of four toggle-buttons (English/English,

English/Metric, Metric/English and Metric/Metric), and the standard OK, CANCEL and

HELP push-buttons.

Input Omits / Output Onits

>* English /English

v English / Metric

v Hatrie / English :

v: Metric / tSet'ric ;

Hü emem
:&fx&xx)Qwt)^^ :/>»C<<<<<«<<i^

HELP
gXgMMOM^^^

ä&ssasaaaa^

Figure 11: The Units Shell

22

3. Aerodynamic Inputs

The Aerodynamic Inputs shell (Figure 12) consists of a Bulletin Board shell holding

Row Column and Radio Box containers, text field, toggle-button, label and separator

gadgets, and the three standard push-buttons. There are five selections available for

defining the aerodynamic characteristics of the vehicle. The aerodynamic coefficients are

input as tables by selecting the desired toggle-button widget. Any call in the program to

produce a table brings up an open file selection requester (like Figure 8) that looks for files

with the .tab ending. A reference to this file's contents is stored for later printing in the table

section ($TAB) of the Event Worksheet when the OK button is pressed. Selecting CANCEL

exits with no changes to the Aerodynamic Inputs shell.

Viscous Aerodynamic Coefficients selection requires input of additional data. Text

fields are available for entry of viscous components used with the viscous aerodynamic

coefficients tables. The default values are displayed and grayed out whenever any selection

other than Viscous Aerodynamic Coefficients are selected.

Selection of Static Trim Aerodynamic Coefficients displays the Static Trim shell

(Figure 13). This window also consists of a Bulletin Board shell containing Row Column

containers, toggle-buttons, text field widgets and the same three push-buttons. A selection

in the Static Trim Option area other than None must be selected before any other selections

or data entry can be made.

23

i ^ Ho Aerodynamic Coefficients

pr^iteji&i and; Mor«ial: Forc^;::>;:Co«if icienis ;"

;^;V'i:sco«s:>:&orodvaa»i:ic Coe;ff iclents-,/"

|; J; ;stat ie;.)

it
! i

Figure 12: The Aerodynamic Inputs Shell

24

<& Trim in Pitch Only

^Trim in Yaw Oaly

^Bofch Pitch and ¥aw

Modo of Tti»

vöse F*äS$ »«factious

Eugine Gi&foäl x*ocÄt io» ft (»>

IX! 2

Initial Thrust Incidence a»g!** {d«*j}

»wiwwwwwMwiW»::-Mk»kk>kJMAJjAUd<M<M«kUAMMAUMx>M'':-:<

üciitjtiji vis*
WMOOMWWMOOMC

IMi H

X:sÄttWttSVWWdWfbl0WWdW >&tf»WM^

:" - -"^ifm ■'-;■:M:Ti*: -'-' T -",: Y
ri^ftftttft^TItflM^yiMMMCl'nKfflMM'MiKll^

Figure 13: The Static Trim Shell

25

4. Numerical Integration Methods

The third choice on the Initial Conditions window brings up the Methods of

Integration shell (Figure 14). This is the first of many complicated shells. This shell

consists of multiple Radio Box and Row Column containers, with toggle-buttons,

separators, labels, text field widgets, and the three standard push-buttons. The Radio Boxes

separate the selections into three categories: Integration Methods, Special Integration Step

Size and Conic Calculations. The default values are set in each text field and on each

toggle-button. In order to enter values for Max Step Size, Min Step Size, Number of Steps

and Max # Steps, Krogh Predictor-Corrector must be chosen from the Integration Methods

section. The Increment in True Anomaly is available for selection when Calculation At End

Of Integration Step in the Conic Calculations is selected. If this option is selected the Step

Size input is no longer used and the text field is grayed.

26

a-x-&b&e£^,
J&M&tti*J*iSSS&fjKiA2^aS£&, •ttfäföSR^&ti^&ybA&X

■* 4th OK«kkr Kü»g»~Ku*.fc*

■v^Krogfe Prodiöfa>i:-CorJC«<sfc«ir

•^ LäPIJMJ« (Spherical Planst}

v^ Erik«-8 (Ohlat* Pl«u»tO

Special Integration St&a Sixa |

•A

Jn Trosc

Conic Calculation»

o^.

^Calcul»fc« jfcfc Bad 8JF Event 6 l^cdUtt:

Crcoc Tol«caoce

| Xro^b I«put V&Ela&l«*

88ÜC 8tft?> S1*A

Htn ftt<tf> si***)

mat * Sfcetps

OMOOUiHwUNmWd^X

;#;>

mmmm
»BStaSSSSÜBSSffl mjammaMMammtiimm

Figure 14: The Integration Method Shell

27

5. Atmospheric/Gravity Models

The modeling methods for the atmosphere and gravity are chosen in the Atmospheric/

Gravity Models shell (Figure 15) using a Bulletin Board shell to hold Radio Box and Row

Column containers, toggle-button and text field gadgets, and the standard three push-

buttons. Default widget selections include: 1962 US Standard atmosphere model, no

Winds, no Aeroheating or Special Aeroheating, and the Oblate Planet gravity model.

Gravity Coefficients (harmonics in the gravity potential function - J2 through J8,

equatorial radius - RE, polar radius - RP, MU and Omega) can all be modified if desired

when Oblate Planet is selected in the Gravity Model section. If Spherical Planet is chosen

only RE and MU are available for modification.

POST has stored values for various standard atmospheres and can model any

atmosphere that can be described by tables of atmospheric density, pressure, temperature

and speed of sound. Choosing any model other than None allows for selection of Winds,

AeroHeating and Special AeroHeating. Winds can be defined using tables of speed and

azimuth or as northerly and easterly values. Either case will allow input of Turbulence and/

or Gusts. If Gusts are chosen the Frequency and Amplitude text fields become available for

entry.

28

Hinds

Tabl« Constants

-^ Tafel« &flx^k«i» •:" •

V T«ae*Hilöft* »ökfcfcö^ ööly •:

^-ftll. Special XaAicafcers

©tavifcy Mod^x

R

^

iiliiiiil JL082*

£3

BE ~£t

»e -ft

;i?:iP!S88«8E^e:i

1 62461BSB~6i

■r^ui
MMMMe««eooeeeooMmoeeo»X4(i«OQe«cör;:::

>*0*3;S3U2$SE-«

WNMfäffl8ffl®M8ffi

20925741
ffiSSSTOw.'WBgy

jü«

!l ?*2»21JÜB>~«

OK. | CJÜJCBL I

Figure 15: The Atmosphere And Gravity Model Shell

29

Aeroheating is calculated using Tables (via file selector), Chapman values, a

combination of the two (for laminar or turbulent flow), or using Max Centerline Heat Rate.

If any of the Chapman options are selected, another shell is displayed (Figure 16) and the

10-Panel Vehicle option under Special Aeroheating is enabled. The Chapman shell consists

Figure 16: The Chapman Coefficients Shell

of a Bulletin Board holding Row Column containers, text fields, labels and separators, and

the standard push-buttons. Text field entries are provided in the Chapman shell for the

required Chapman variables. The default values for the Chapman coefficients are displayed

and can be altered if desired.

Special Aeroheating values can be calculated depending on the toggle-button

selection in the Special Aeroheating section. Selection of 10-Panel Vehicle displays an

additional shell (Figure 17) consisting of a Bulletin Board shell, two Row Column

containers, each with fifteen text fields, labels, separators and the standard three push-

30

buttons. The text fields allow for input of panel Surface Area, Heat Ratio and the Weight/

Area table to use with the 10-Panel Heating Calculations.

I>Y*Y*|iWY<YlYriYlYlYtYoytytY^

S^^SSS'SSsS^ IRS
;W»YmSyä»>MHwrtnytW^^ 5

itei9bt/«r«4 Tab!« H,!!* ** !■■■■
8a»M&)ttMi)<tr

Sur&tce ftc«a - tt:2tw?>

S&at Ratio

Kw*&t/»e»a tab!» 11.2) i

ax ! CMTCET.
>::>»»«W«>*Mö»O« ; \-S««*M#0«i*»

Figure 17: The 10-Panel Vehicle Shell

6. Initial Position/Velocity

Position and velocity can be entered in various coordinate systems depending on

toggle-button selection. The Position And Velocity Input shell (Figure 18) provides Radio

Box and Row Column containers, toggle-buttons, text fields, labels and three standard

push-buttons for this entry. The default selection is Spherical Position/Earth Relative

Velocity with zero values for all vectors. Default representation of the Spherical Position

uses Altitude, Geodetic Latitude and Relative Longitude toggle-button selection.

31

initial Position Attd Velocity

.,.. Earth Centered Inertia! Position £r«d Velocity

'•v-sg&erJeal *>ositio«/X*>oal imxtm Velocifcy

v-Spherical Position/Äfaftosphoce Relativ© Velocity

-•> Spherical Position/Eartb Relativ Velocity

-orbital p^raöi^^r«

SpbOFKrca PosiUo»

K; '«••Altitude ;:-..^;'^

- 6eoce»tc«j Sa<iiu$

SeotfeUc latitude

I Geocentric LafciUule

•v Relative 'ioagifcuda

: v Xsteetial, i*>»gjtade

örfclfctl PAsramäfcöts

Perigee Altitude - HH(KM)

i iipogee **titote:-- «ir{sai>

! ijvjiittÄtion^; M<r -'.'•:.:. ■

Long. »sceiMliiig »ode « REG •

»rgtsaont of Potitjee - ÖS&

:Yrue ÄBö«a;iy.r::»ES;''

IHM
^^w»>»^^^S^^j»ft|:;

ECl -Fofiitioa Vector

|-X ~:ft{»> '■:■.■

I* - *t{») V:.;

2 ~ tU*#

&» Wlooity ?ect©£$

X - ffc/sCÄ/s),^:

?: - -ftfsUt/6} \$

11 - tt/«w*y!*

v^MM^MMV^u..!' :

M0Maia*gaQllOe^^M^^

Figure 18: The Position And Velocity Input Shell

Entry of position and velocity is coupled and the type of entry is determined by the

selection of one of five toggle-buttons. If Earth Centered Inertial Position and Velocity is

chosen, the ECI Position Vector text fields are activated and any values in the All Velocity

Vectors text fields are read as Earth Centered Inertial (ECI) values. Spherical Position!

provides three options for velocity: Local Inertial, Atmosphere Relative and Earth Relative

Velocity. Toggle-button selection determines the reference frame to be applied to the All

Velocity Vectors text fields. The three components of the position vector are entered using

various reference frames depending on toggle selection in the Spherical Position section.

When Orbital Parameters is chosen for initial position and velocity input, all text fields

except those in the Orbital Parameters section are inactive.

7. Type of Propulsion/Throttling

The Propulsion/Throttling shell (Figure 19) is a Bulletin Board with four Radio Boxes,

fourteen toggle-buttons, four separators, four labels and the three common push-buttons.

Selection of any Propulsion Type other than the default of No Thrust enables the other

Radio Boxes for selection. The Rocket Engine and Jet Or Ramjet Engine toggle-buttons are

used to model various single propellant or multi-propellant engines. Selection of any

Throttling Parameter other than Do Not Calculate requires the entry of either polynomial

variables or a table name using the file selector. Choosing Calculate Weights And Volumes

in the Propellant Weights/Volumes Calculations section opens the Vehicle!Propellant

Weights shell (for a description of shell see Section 8 following). The flowrate can be

integrated by selecting Active in the Integrate Flowrate of Engine section.

Up to 15 engines can be defined in the POST program. The complexity of the engine

propulsion and weight modeling in POST is such that the present version of G-POST only

provides input for the first engine. Engines two through fourteen must be entered in the text

entry window manually. The HELP push-button provides detailed information to the new

user on this data entry method.

33

., Stocket Ejagijjo

, Deita-V Addition «sing l>e&-ix«Kt ötältÄ~V

, Dfe1trf»-V Addition Msing Cttt rent Heisrjhfc

Figure 19: The Propulsion/Throttling Input Shell

34

8. Vehicle/Propellant Weight Input

A Bulletin Board with Radio Box and Row Column containers, toggle-buttons, labels,

separators and the standard three push-buttons, make up the Vehicle/Propellant Weights

shell (Figure 20). This shell is accessed by using either the Vehicle/Propellant Weight Input

vlfei<$:i: MB Soa Of Tables

vFlowrats äs Sum Of Tables

v Stafca&csä »teigftfc Mattel Vsinci fables

«ftrttisoa »eights

ftoight Jfettiso»

■^öätt't Use

^Height Fro» Table Cookap

;*v*

^»on'S JesfctSsdn.

^ÄwwiBiwff Uli* gwsnfc

%tvu roe XKittn

-v-OGsttison Saved BswuBt

WjfciöX* <Stt>5» «teight - Ifef»)

Paylead »eight - lb {IT}

Initial PsajwUant «sight - XM«)

Bei^it to tiefet IäOH * ibÖO

JPiwp»Xlanfc to dtefctise» - lfo(»}

MMMMO*U*M&UOOOOOOOO>>MJ

:x<WW!«SSWft»WWS

ItllMMIMIMMMVlMI
■ptfhi^l^ y^>l?^•^fl^^fY•^1Vf^y^^r^Va'r1Yft^v^*f^^A*^s^^^?^>f^^

Figure 20: The Vehicle/Propellant Weights Input Shell

35

push-button on the Initial Conditions shell or by selecting Calculate Weights And Volumes

in the Propulsion/Throttling shell. Five selections axe available for Weight Model

Selection; N-Stage Model, Weight As Sum Of Tables, Flowrate As Sum Of Tables,

Enhanced Components Weight Model and Enhanced Weight Model Using Tables. In the N-

Stage Model all step dry weights and engine propellant weights are lumped together in a

single stage weight exclusive of the payload weight. The gross weight of the vehicle at the

beginning of each phase can be specified or calculated using the previous phase weight and

subtracting any jettison weight and expended propellant. The five text fields are provided

for entry using this option.

File Selectors are used to retrieve the table data for the table entry methods. If either

the Enhanced Components Weight Model or Enhance Model Using Tables is selected, the

dry weight, jettison weights, total propellant and usable propellant for each step are input

individually.

Jettison Weights are selected using the Weight Jettison or Propellant Jettison toggle-

buttons. The method of computing the jettison weight is selected in the initial conditions

stage, and the actual jettison is done during a later event.

9. Method of Guidance

The Method Of Guidance shell (Figure 21) is constructed using a Bulletin Board shell

holding two Radio Boxes, fifteen toggle-buttons, labels, separators and the three standard

push-buttons. OpenlClosed Loop Guidance is not implemented in this version of G-POST

and the corresponding buttons are grayed. Selection of any of the toggle-buttons under

Guidance Type calls another shell for data entry. The Aerodynamic Body Rates shell

(Figure 22) is called when the Vehicle Body Rates guidance toggle-button is selected. This

is a large Bulletin Board Shell containing Radio Box and Row Column containers, toggle-

buttons, twenty-two text fields, labels, separators and the standard push-buttons.

36

■^pfSSfäfä&tä&iSS^t:!^^

..... v. ______ it

Salt!***«* TytH»

VV&bicle Body Ra£*» .

v Jter<HSy*}«a»ic Anales

^ife&lafciv» EUIöE ämjlös

v lasrtial PitcfcHPlaii» &EUJ1<&S (PP&)

v«» #**& üi»öar öl»o storing

Figure 21: The Guidance Method Shell

37

Figure 22: The Body Rates Shell

38

The toggle-buttons in the Method of Calculation section determines the type of

variables used in the Term text field area and how the body rates are calculated. The Name

field in the Term section is the Hollerith name of the variable used in the quadratic

polynomial. The default value is TIMES and can be changed by double-clicking in the text

field area to display a selection box with the possible variable names (see Figure 24 for an

example of a selection box).

The Initial Values are entered as Yaw/Pitch/Roll or SidesliplAOAIBank Angle,

depending on the Body Rate Initialization toggle-button selection. Azimuth, Latitude and

Longitude are entered in the text fields provided. When Constant Body Rate From

Quaternion Rate is selected in the Method of Calculation area, the Body Rate text field is

made available for text entry.

If any value other than Vehicle Body Rates is selected in the Guidance Type section of

the Method of Guidance shell (Figure 21), the Angle Guidance shell is displayed (Figure

23). This shell is another large Bulletin Board containing Radio Box and Row Column

containers, thirty-one text fields, eight toggle-buttons, separators, labels and the three

standard push-buttons.

Default conditions depend on which of the toggle-buttons was selected in the Method

of Guidance shell. Calculate Angles Based On Same Method For All Angles is the default

value in the Attitude Channel Selector section for all guidance methods. The two buttons

in this section control the text fields in the Angle Coefficients section. Only Yaw/Sideslip

text fields are available for entry in the default condition and these values apply to all

channels (Yaw, Pitch and Roll). When Calculate Angles With Separate Methods For Each

Angle is selected the other text fields are also available for entry. Values are entered into

the polynomial text fields as desired. Double-clicking in the Method text field displays the

Method Popup selection box dialog (Figure 24). The availability of the Angle Coefficients,

Initial Values and Arg Names text fields is dependant on the Method selection. The Desired

Value and Event # default conditions are grayed for all selections of Method except 3.

39

Figure 23: The Angle Guidance Shell

Azimuth, Latitude and Longitude are only modifiable if any inertial Guidance Type is

chosen from the Method Of Guidance window. Pitch-plane angle steering must be chosen

40

before the Pitch-Plane Angle and Kick Over Angle sections are available. Pitch Reference

becomes available when BX Above/Below Local Horizontal is picked.

i ■.-:V:V;//AAO::>::W..::V^^^^^^

M^laMo^aaiaM^^^«^&^^^»afl^o»^»M^^^^aaMa^^»aasaa&^ia»»^&^M^ ipS^^^a^iSWWfiWW^SW^^

Figure 24: The Method Popup Dialog

10. Print Variable Request

The final selection in the Initial Conditions shell is the Print Variable Request shell

(Figure 25). This shell controls printing of Input Conditions and number of output

variables, Trajectory Information, Special Print Blocks, Print Interval^), Number of Lines

Per Page, Number of Variables Per Line, any Title to use and Profil print options. This is

accomplished using a Bulletin Board shell to hold the Radio Box and Row Column

containers, text fields, toggle-buttons, labels, separators and the three standard push-

buttons.

41

Wuaixir of i,iä&3 Pot i>aga

Print :tafc«r*al {0 ©*: Ifciltiple of »TJ

-v- Ron' tPrinfc

_i fxack ing £ta t ion»

Pf&iil öpttotti

11

: Äsen spclnt i»t**rw*1 i * |

Fn«U TKrjectoty Only

-,&I* 1*r»j«rfcor-»es

•■?• rafcle Ojily

!Ä €ÄirC£fc

&4&&&&&&&^^

Figure 25: The Print Variable Request Shell

42

The Print Variable Request shell is divided into five areas, consisting of General and

Profil print requests. Selections are made for the desired output using the toggle-buttons

and text fields. Larger text field areas are provided for entering a Title or File ID. Additional

print variables are chosen for printing using the Special Print Blocks or Additional Print

Variables printing selection. Double-clicking in the Additional Print Variables text field

displays a selector popup (like that in Figure 24) for choosing the additional variables to

print Printing of individual events is done in the Event section.

11. Targeting and Optimization

Targeting and optimization specifications are available once the OK button is pressed

on the Initial Conditions shell. The Target Optimize button opens the initial shell which

consists of a Bulletin Board holding Radio Box and Row Column containers, toggle-

buttons, text fields, labels, separators and the three standard push-buttons (Figure 26).

Selection of Projected Gradient or Accelerated Projected Gradient enables entry of values

for the Control, Target and Optimization Variable text fields.

43

I v- Accelerated Projects«! Gradient:

■,s ^.SC&<.: £lg<>rifcl»«:"

Hax Humber ot Iterations vio-

Target Variables (1-25)

$$$££$$tttt<$£$tt>>>x-:

Optiinizat iojx Variable

;XWjff»ffI'!*Wwft»ff^^ii>;->

llax Percent

C&ÖCEI»

:^-Minimization

v Haximizati6ii

HELP

Figure 26: The Targeting And Optimization Shell

44

There can be anywhere from one to twenty-five Control or Target Variables. The

number of variables entered in the text field determines the size of the entry shell that is

displayed. The Control or Targeting Parameters shell (Figure 27) consist of a Bulletin

Board holding one to four Row Column containers. These containers are set to display

control text fields with four rows and targeting text fields with five rows. The number of

0.Ö001 0.Ö081 0.0002 0.ÖD01 |0,

mrni
JWWMwBBflg

Figure 27: The Control Parameters Shell
With 5 Entries

columns changes depending on the number of variables selected. Between one and seven

columns are displayed for each Row Column container. Label gadgets are created as

necessary to provide organization to the text field entries. A single OK push-button is

provided and remains at the bottom of the shell no matter what size the shell requires. The

Name text field in both the Control and Targeting Parameters shells displays the Hollerith

variable required by POST. Selection of the variable is made easier by using a selector

popup much like the Method Popup shell (Figure 24). Double-clicking in the Name text

field brings up a the popup shell and the variable can then be chosen using its English

description. Direct typing is allowed and values from any text field can be cut, copied or

pasted using the Edit menu.

45

The Optimization Variable is updated in the same manner as the Control and Targeting

Parameters. Double-clicking on the Name text field brings up the same requester as

described above. The Maximize and Minimize toggle-buttons refer to the Optimization

Variable and are used to designate the type of optimization. Selecting OK when completed

puts all the variable selections in the multi-line text field of the Event Worksheet and

enables the Event push-buttons for entry.

12. Event Push-Buttons

Selection of Insert or Next displays the Event Selector shell (Figure 28) which consists

of a Bulletin Board containing a Radio Box with two toggle-buttons, four text fields, labels

and the three standard push-buttons. All Event inputs, after the Initial Conditions, are made

Figure 28: The Event Selector Shell

using this shell and the eight Event selection push-buttons as described above in Section D.

The next available Event number is displayed in the Event # text field if the Next button

46

was pushed, or blank if Insert was pushed. Putting a number in the Event # text field will

insert the Event selections at the appropriate position in the input file. All Event numbers

are adjusted to reflect any changes due to an Insert operation. The current Event Criteria

and Value are entered in their respective text fields and a print selection can be made using

the Print This Event toggle-buttons.

While the Event Selector shell is open, all selections from the eight Event selection

push-buttons are entered under that Event number. Selecting any button other than Other

Controls displays the appropriate shell as described in the previous sections. Other

Controls is a button for added features and is not implemented at this time. When the OK

button on the Event Selector shell is pressed, all selections made while the shell was open

are written to the multi-line text field. If mistakes were made, Delete can be used to remove

the entire event or the editing features can be used to correct the error.

When the final Event entry has been made, the DONE button is used to display the Last

Entry Dialogjpopup (Figure 29). Selecting NO from this dialog box saves the file and

closes the Event Worksheet shell. Selecting YES displays the Trajectory Abort

Specifications shell (Figure 30), which consists of a Bulletin Board shell holding three text

field widgets, their labels and the three standard push-buttons. These values can be edited

or left at their default values. Selecting OK adds these values to the text entry area of the

Event Worksheet, saves the program and closes the Event Worksheet shell.

Figure 29: The Last Entry Dialog

47

iiaxismm rism ~ s&c

'■Maxima» HI£1 trade - £t(m)

Hinimia» Altitude ~ it(m)

^M CMimL

Figure 30: The Trajectory Abort Shell

Another file can then be edited if desired, or any of the other options on the G-

POST shell selected. A POST input file can be run through the POST program with or

without the Event Worksheet being open.

E. RUNNING A POST FILE

One or more output files, depending on print selections, are created using this option.

This option will only work if POST can be run from the same location G-POST is started

form. When Run Post File is selected, the open file requester appears (Figure 6) with the

filter set to *.inp. After choosing the desired file and clicking on OK, another requester

appears asking for the name of the output file. The default value is the input file with a .out

extension. Selecting OK will run the selected input file through POST to obtain the output

files. Any errors encountered will appear in the UNIX shell and can be corrected using the

Event Worksheet editing tools. Once the output file is obtained, either of the next two push-

buttons on the G-POST shell can be executed.

48

F. ANALYZING DATA

As mentioned in Chapter II, the data from the POST output file must be converted to

a useful format prior to any analysis. When the Analyze Data push-button is selected, a file

selector is presented requesting the Profila file name. The desired file can be selected by

clicking on the OK button. As in the previous section, a requester is displayed with the

default file name the same as the Profila file except for the .mat ending. This Matlab file is

produced by clicking on the OK button. The Matlab program will then start in the UNIX

shell on those machines that have the program installed. The file will be loaded and ready

for analysis. The HELP button on the G-POST shell yields more information on how to

obtain data from this new file.

G. RUNNING A 3D SIMULATION

Selecting Run Simulation displays a file requester that needs to find a Profila to run

correctly. If an incorrect file is selected the program will load the default file, Example

Problem 1 [Ref 1], and display the Visual POST window (Figure 31). A new file can be

opened at any time using the appropriate pull down menu. Other options are provided as

explained by the Help function in the Visual POST program. This program is provided as

a prototype of future trajectory simulation projects.

49

j^^^fK^^

Figure 31: The Visual POST Program

50

IV. INTERFACE IMPLEMENTATION - A TUTORIAL

To demonstrate the ease of using G-POST, the Example Problem 1 in the POST

Utilization Manual, pg. 8.a.l [Ref 1], is used to build a POST input file. The example is

described here followed by the corresponding G-POST input requirements. The entire

problem definition is reproduced in Appendix B.

A. EXAMPLE PROBLEM 1

An important ascent trajectory optimization problem during the

conceptual phases of the Space Shuttle program was that of determining the

maximum payload capability of various configuration concepts. One such

Space Shuttle configuration is represented by this sample problem. The four

key components of this configuration are the orbiter, two solid rocket

boosters (SRBs), and the external tank (ET). This multibody

nonsymmetrical configuration created special simulation requirements that

motivated many of the features contained in POST. For example, to

accurately predict the performance capability of a unsymmetrical

configuration such as Space Shuttle, it is important to include the thrust

vectoring losses encountered as the engines gimbal to balance the

aerodynamic moments caused by the nonsymmetrical shape of the

configuration. This fact led to the development of the static trim option

employed in this sample case.

B. EVENT WORKSHEET ENTRY

For this problem we will be generating a new file (tutorial.inp) by inputting

information into the Event Worksheet in three steps: Initial Conditions Input, Targeting and

Optimization Input and Event Input. An example of the text output will be presented after

each step. The input data listing for this sample case is presented in Appendix C for

comparison with the data file generated using G-POST (Appendix D). All tables used in

51

the example were put in individual files with .tab extensions (e.g., vacuum thrust table for

engine 1 - vacuum.tab). A complete listing of tables and their file names are found in

Appendix E.

1. Initial Conditions Input

After starting the program by typing gpost at the UNIX prompt, select Event

Worksheet from the G-POST window. Choose Create New File from the file selection pop-

up when the window appears and double-click on NoName with left mouse button to

highlight it. Replace NoName by typing tutorial.inp and then select the OK button. The

Event Worksheet appears with the file name along the title bar (like Figure 9, pg. 20). Initial

Conditions, Done and Help are the only buttons that can be selected at this time. The text

area is available for typing into or copying from another open file.

Select

to get started.

The first button in the Initial Conditions window (Figure 10, pg. 21) is for specifying

whether English or metric units are to be used for input and output (Figure 11, pg. 22). The

example problem uses English units for both, so the default value of English!English is

chosen (Note: It is not necessary to select any of the default values, they will be chosen

automatically if no modifications are made).

Aerodynamic Coefficients and Static Trim options are selected using the Aerodynamic

Inputs window (Figure 12, pg. 24). The example problem requires input of drag, lift and

static trim coefficients. The forces are specified by selecting the third toggle button, Drag

and Lift Force Coefficients, and entering the desired table name in the file requester. All

files with the .tab ending in the current directory are shown in the File area. Select

dragforce.tab and click on OK to accept choice. The file selector reappears asking for the

name of the next Forces table. Select liftforce.tab and click on OK to accept choice. The

order of table entry is not important. There are only two tables in this example. Select

52

cancel to exit the file requester. If it were necessary to enter more tables, continue selecting

files in the same manner until they are all entered.

Next, select Static Trim Aerodynamic Coefficients button to bring up the window for

the static trim selections (Figure 13, pg. 25). Select Pitch Only for static trim type and enter

the engine gimbal locations in body reference coordinates for the engine. The coordinates

are in feet and entered as follows: X = 218.42, Y = 0.0, and Z = 33.33. The last thing to do

in the Static Trim window is to enter the force Reference Dimensions for Length and Area

in feet and square feet. These variables are included in the calculations when using the static

trim option. The Area is equal to 4500.00 and the Length is equal to 218.833 (no entry is

made in Length In Yaw). Click on OK to accept the entries and exit static trim selection. At

this time the program will ask for table entry. As with the force coefficient selections

described earlier, select the files for as many tables as need to be entered. The help function

for the window calling the file selector describes which tables are necessary. For this

example select momentcoeff.tab and aeroref.tab. Click on CANCEL after these two

selections have been made to tell the program there are no more tables to be entered. Select

OK when all Aerodynamic Inputs are complete.

The selection of the desired Numerical Integration Methods (Figure 14, pg. 27)

follows the Aerodynamic Inputs. From the Methods of Integration window choose 4th

Order Runge-Kutta from the Integration Methods and increase Step Size to 5.0. Select OK

to accept the choices and close the window.

Atmospheric/Gravity Models selection is next. Default settings are required for

Atmosphere Model, Winds, Aeroheating, and Special Aeroheating (like Figure 15, pg. 29).

Change the Gravity Model from Oblate Planet to Spherical Planet. Select OK or CANCEL

to continue specification of Initial Position/Velocity values. The Position and Velocity

Input shell (Figure 18, pg. 32) is opened with the default value of Initial Position And

Velocity set to Spherical Position/Earth Relative Velocity. No other entries are required.

The values for position will be entered in the Angle Guidance window. The initial velocity

of the Space Shuttle on the launch pad is zero. Select OK to close the window.

53

Selecting Type of Propulsion/Throttling displays the Propulsion/Throttling window

(Figure 19, pg. 34). Select Rocket Engine from Propulsion Type and choose the required

tables using the previously described table entry method. The required tables for this

example are vacuum.tab and exitarea.tab. Select Calculate Weights And Volumes from

the Propellant Weights/Volumes Calculations area. This selection calls the Vehicle/

Propellant Weights window (Figure 20, pg. 35). Input the Initial Propellant Weight in the

N-Stage Model section as 2249000.0. Click on OK to accept changes and close this

window. Next click on OK to close the Propulsion/Throttling window.

Since the current version of G-POST only provides limited input tools, and for just one

engine, the flowrate (IWDF(i)) and impulse (ISPV) must be typed into the text entry area

of the Event Worksheet. This will be done later in the tutorial, after OK has been pressed

on the Initial Conditions window. The number of engines will automatically be set to "1"

(NENG = 1,) and printed out. This number can be changed using the text editing tools, and

other information can be added for this or additional engines by following the HELP

information on the Propulsion/Throttling window. But, for the purpose of this example

only one engine is required.

The Method of Guidance window (Figure 21, pg. 37) requires the selection of a

Guidance Type from the choice of seven toggle buttons. Select the third button, Inertial

Euler Angles, to display the Angle Guidance window (Figure 23, pg. 40). The X, Y and Z

components of guidance (channels) can be controlled using the same method for all

channels, or separate methods for each channel. The default, and the value used in this

example, is to Calculate Angles Based On Same Method For All Angles. In the Angle

Coefficients section double click in the Method text field next to Yaw/Sideslip to bring up

the popup for the Method type (Figure 24, pg. 41). Click on the second entry to select

Command AOA, Sideslip & Bank as polynomials w/input values(l). The value in the

Method text field should be 1. Polynomial coefficients for the three components would be

entered at this time if required. Inertial Azimuth, Latitude and Longitude are entered as

54

90.0,28.5 and 279.4 respectively in the Angle Guidance window. Click on OK to close the

Angle Guidance window and again to close the Guidance Method window.

The last selection on the Initial Conditions window displays the Print Variable

Request window (Figure 25, pg. 42). The Print Interval is set to 20.0 in the Print Format

section and the title, sample problem for ascent trajectory w/ drop tank orbiter, is

entered into the Title text field. All other entries are left at their default values or blank.

Click on OK to store these values and close the window.

Once all the initial conditions have been entered, Click OK on the Initial Conditions

window to print all of these values to the Event Worksheet multi-line text entry area and

close the Initial Conditions window. Figure 32, pg. 56, shows the state of the multi-line text

entry area after OK was pressed. At this time enter IWDF(l) = 2, and ISPV = 439.0,

following NENG = 1, in the multi-line text entry area. The Target Optimize button is now

available for selection.

55

PRSC :
PRHCA

1 PIHC
TITLE
EVEHT
HPC{2)
DT
EPSIMT
NPC{5)

| HPC(2S5
«PCU6)
NPC<3)
HPC(4)
A2L
GDkaT
kOHG
WPC(8)
GXP
GOT

1 GZP
SREF
LRBr
HPC{9)
HEHG
IHBF{1)
ISPV
HPROPI
«pc{2l>
XGUlD(l)
IGUTD(4)
HAXTXH
WVTHAX
PESM
$

i 1$TBUE.T
$

!1$T»B
TABLE
$

i1$TSB
TABLE
$

TABLE
-20-,

<www<VWWW9WWgWg9W!9^

/Profil binary print interval
■'/ Profil ASCII print interval

■■/ Print interval
proble» for ascent trajectory w/ drop tank orhlte

/ Runge-Kutta integration
/ Step size
/ Error tolerance

/ 1963 US atmosphere
/ Äaroheating flag.
/ Oblate planet gravity raodel
/ Velocity vector
/ Spherical position vector
/ Äz imuth
/ Geodetic latitude
/ Relative longitude
/ Drag and lift coefficients

/ X location of engine gimbal
/ Y location of engine giabal

/ Z location of engine girabal
/ Reference area
/Reference length

/ Rocket propulsion
/ number of engines
/ Engine flowrate

/ Engine iiapulse
/Initial propellant weight

/Calculate propellant weights
/ InertialEuler angles guidance
/ Polynomials w/input values

/ Maximum time before termtnatiou
/Maximum altitude before tejoninati.

/Final event number

fihtvclt ,0,5472000.0,

Shaelt ,0,232.5,

Ghcdt ,2.6hmach ,6halpha ,12.5,1.1,1,1,1,1,1,1,

Figure 32: Event Worksheet After Initial Conditions

56

2. Targeting and Optimization Input

Select

Optimize

to display the Targeting and Optimization window (Figure 26, pg. 44). Select

Projected Gradient and leave the default value for Max Number of Iterations at 10. Enter

9 in the Control Variables text field area and press the enter key. In the Control Parameters

window (Figure 27, pg. 45) double-click in the first Name text field. Select Vehicle Gross

Weight (6HWGTSG) from the popup selector and press OK. Enter 1 for Event, 4031000.0

for Initial Guess and 1.0 for Pert. Use the same method to choose Pitch Angle Linear

(Rate) Term (6HPITPC2) as the Name field for the remaining eight entries. Enter the

remaining values as described in Table 1. Select OK to save the information.

Entry* Event Initial Guess Pert

2 2 -1.8 1.0

3 3 -.5 1.0

4 4 -.2 1.0

5 5 -.3 1.0

6 6 -.25 1.0

7 7 -.3 1.0

8 9 -.15 1.0

9 10 -.05 1.0

Table 1: Entry Values for Control Parameters Window

Repeat the steps for the Target Variables (Figure 26, pg. 44) by first entering a value

of 3 in the Target Variables text field. Enter the values for Name, Value and Tolerance as

57

described in Table 2. The other fields in this window can be left at default values. Click on

OK to save values and close window.

Entry # Name Value Tolerance

1 Altitude Above Oblate Planet
(6HALTITO)

303805.0 100.0

2 Inertial Velocity (6HVELI) 25853.0 .1

3 Inertial Flight Path Angle
(6HGAMMAI)

0.0 .001

Table 2: Entry Values for Targeting Parameters Window

The Optimization Variable values are entered in much the same manner as the Control

and Target Variables. Double-click on the Name text field to display the selector popup.

Choose Current Weight of Vehicle (6HWEIGHT) and click on OK. Enter 12.0 for the

Event and 1.0E-6 for the Weighting. The Max Percent Change is left at its default value.

Select the Maximization toggle-button and then the OK button to close the window and

print the selections into the multi-line text entry area of the Event Worksheet. Figure 33, pg.

59, shows the Event Worksheet after selecting OK on the Targeting and Optimization

Window. The Event selection buttons are now available for selection.

58

MWffiXWXMWftifft^^

giiP^ipOT ^^^MOVMWWMMUUtfWW
'rW^T^^^n^^^^^y^^m^^nX

i1$SE»RCH
SRCHM
HSXXTP.
OPT ':;■;.
OPTVAK
ÖPTPH

:;WOKr?;:::-::::
.::C-.iV":-?:::;:

:.THBVS ■i;::':;S:=
IH»PH =
tIv-:K :::;i|.::;::=
PERT :;■■■ =
C
IflBtfR(C) =
I8BPH{S) =
0(6)
PERT . ■ =

. C.:: ;:::..
HDEPV '■=:
DEPVR ■=•:
BESVAE, =
»EPTL

:I$GEK»AT
PRHC ■:.=!
PRHCA =
PIHC
TITtE
ESB8X =
HPC{2) =
BT
EPSIHT =
meets) =;
HPC(26) =
ifPC(16) =
mem ^
HPC{4) =
A2T. .■::■-
csKtar :=:

"iiOHS ■:,::i::;-:=;

SKP ::^:: -
GYP =
GZP .:!:';.;-:
ESEF ~

4, /Optimization technique
10, / K number of liberations
IV 0, / Haxiasization
6HHEIGHT, /The optimization variable
12*0, / The optimization phase
1.0E-6, / The optimization weighting

~:: 3,
6HSGTSG ,ÖEPITPC2,6HPITPC2,6HPITPC2,SHP1TPC2,
:1,2,3,4, 5, / ant Variable phases
4031000.,~1.8,-.5,-.2,-.3, / Independent variable
:1.0>1.0>1.0,1,0,1.0, / Independent variable pertur:

6HPITPC2,fiHPITPC2,6HPlTPC2,6HPITPC2,
6,7,9,10., /Independent Variable phases
-.25,-.3,-15,-.05, / Inoependant variable initial
1; 0y 1.0; 1.0,1.0, :■■■:/ kdap liibk perturi>ati<

HVEI.I, 6HGÄMMAI,■■■../ Dependant Vac iable names ::.
303805.0>25853,0,0.0, /Dependant Variable values :
100.0,.1,.001, : / Dependant variable tolerances

/ Profil binary print interval
/ Profil ASCII print interval
/ Print interval

problem for ascent trajectory w/ drop tank orbite

/ Rung) integration
/ Step size
/ Error tolerance

/ IS 62 US atmosphere
/ftero! flag.
/ Oblate planet gravity model
/ Velocity vector
/ Spherical position vector
/ »ziiKuth
/ Geodetic latitude
/ Relative longitude
/ Brag and lilt coefficients

/ X location of engine gimbal
/ V location of engine giabal

/ Z location of engine giabal
/ Reference area

ii

Figure 33: Event Worksheet After Targeting And
Optimization Input

59

3. Event Input

The remaining events are entered sequentially from Event 2 to Event 12.

Selection of

displays the Event Selector window (Figure 28, pg. 46). Click on Next to bring up the

window. The number in the Event # text field will read 2. Double-click on the Criteria text

field to bring up a selector popup. Choose Time (6HTIME) and then click on OK. Next

enter 15.0 for the Value field. While the Event Selector window is still open, select the

Guidance Method button from the Event Worksheet. Once again select Inertial Euler

Angles from the Guidance Type section. Double-click on the Method text field and change

the value to Command AOA, Sideslip & Bank as polynomials w/previous values (0).

Close the two guidance windows by clicking on OK. Click on OK in the Event Selector to

print the values to the Event Worksheet multi-line text entry area. The above steps are

repeated for events 3 through 12. Table 3 describes the required input values for the Event

Selector text fields of events 3 through 12. Any additional input selections are made while

the respective Event Selector window is open. These selections are as follows:

• Event 7 - Select the Integration Method button and change the Step Size from 5.0 to

10.0.

• Event 8 - Select the Propulsion Type button and change Propulsion Type from

Rocket Engine to No Thrust. Select the Aerodynamic Coefficient button and de-select Static

Trim Aerodynamic Coefficients. After selecting OK from the Event Selector, an addition

must be made to the text entry area of the Event Worksheet. Add WEICON = 0.0, before

ENDPHS.

• Event 9 - Select the Integration Method button and change the Step Size from 20.0

to 50.0. Select the Print Options button and change Print Interval from 10.0 to 20.0. Select

the Propulsion Type button and change Propulsion Type from No Thrust to Rocket Engine.

Enter the vacuum2.tab and exitarea2.tab tables using the file selector. Select

60

Aerodynamic Coefficient button and select Static Trim Aerodynamic Coefficients to display

the Static Trim window. Change the Engine Gimbal Location to 142.0, 0.0 and 25.0 for X,

Y, and Z respectively. Change the Reference Area to 4840.0 and the Reference Length to

135.0. Enter dragforce2.tab and Hftforce2.tab for the Aerodynamic Coefficient window

and xcentergrav.tab, ycentergrav.tab and zcentergrav.tab for the Static Trim window

using the file selector as it appears when OK is pressed. After selecting OK from the Event

Selector, an addition must be made to the text entry area of the Event Worksheet. Add

WJETT = 665000.0,, WPROPI = 809000.0, and ISPV = 459.0, before GXP.

Event # Criteria Value Tolerance

3 Time(6HTIME) 25.0 0.3

4 Time(6HTIME) 40.0 0.3

5 Time(6HTIME) 60.0 0.3

6 Time(6HTIME) 120.0 0.3

7 Time (6HTIME) 150.0 0.3

8 Weight of Remaining Propellant
(6HWPROP)

0.0 2.0E-6

9 Time Since Last Primary Event
(6HTDURP)

7. 1.0E-6

10 Time Since Last Primary Event
(6HTDURP)

100.0 0.3

11 Time Since Last Primary Event
(6HTDURP)

150 0.3

12 Weight of Remaining Propellant
(6HWPROP)

0. 0.3

Table 3: Event Selector Text Field Values

• Event 11 - Select the Integration Method button and change the Conic Calculations

from None to Calculate At End Of Integration Step.

61

After selecting OK for Event 12, select DONE form the Event Worksheet. The

requester asks if this is the final event (Figure 29, pg. 47). Choose YES and enter the

Maximum Time as 1000.0, Maximum Altitude as 2000000.0 and leave Minimum Altitude at

default value for the Trajectory Abort Specifications (Figure 30, pg. 48). Select OK to save

the input file. The input file is now complete and can be run through the POST program.

C. RUNNING A POST FILE

Select Run POST File from the G-POST window and choose tutorial.inp from the file

requester. Click on OK and enter tutorial.out in the second requester when it is displayed.

Click on OK to obtain the POST output file (tutorial.out), theprofila file (tutorial.pro), and

the profit file. Run time for tutorial.inp is approximately 40 seconds on a Sparc 10

workstation. If there had been any errors in tutorial.inp these would have been written to

the tutorial.out file instead of the trajectory information. Run time in this instance is much

shorter, approximately 15 seconds. The profila information can now be used to generate a

Matlab file for trajectory analysis.

(Note: For the above procedure to work, the POST program must reside on or be linked

to the SGI workstation running G-POST and have as its execution command post <

inputfilename > outpu filename. If this is not the case, the POST output file can be obtained

by using the UNIX shell of the machine where POST is accessed. Consult the system

manager for the location of POST and how to use the UNIX shell, and A Primer for POST

[Ref 4] for how to operate the POST program.)

D. ANALYZING DATA

The next task is to convert tutorial.pro to a format that can be used by Matlab for

further analysis. Select Analyze Data from the G-POST window and choose tutorial.pro

from the file requester. Click on OK to make the file tutorial.mat and start the Matlab

program (if available on the machine running G-POST). At the UNIX shell command line

type load tutorial.mat and press enter. Type who at the command prompt to display the

variables for which there is data. Plotting of the variables can now be done using Matlab

62

plot commands. Figure 34 shows a plot of altitude versus time for this trajectory. Consult

the Matlab manual for other plot commands.

Figure 34: Example of Matlab Plot

E. RUNNING A 3D SIMULATION

Select Run Simulation from the G-POST window and choose tutorial.pro from the file

selector. After clicking on OK, Figure 31, pg. 50, is displayed with the Shuttle in its launch

position. Click on Viewpoint, or press the v key, and change viewpoint to Medium. Select

the Start/Reset button to launch the vehicle. Use the Speed slider to modify the display rate.

Select Near while the vehicle is moving to follow the Shuttle in its trajectory.

63

64

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

POST is a widely-used program to optimize trajectories. Although the Naval

Postgraduate School and other aerospace institutions would benefit from the simulation

power of POST, the many weeks required to learn the POST input language is too

prohibitive for immediate use. The objective of this thesis was to develop a means of

making the creation of an input file for POST as straightforward as possible, thus unlocking

the power of the program for all users. To meet this objective, a Graphical User Interface

(GUI) was developed to guide the user through the proper entry procedure using English

terms and default values. Written using the OSF/Motif windowing language, this GUI

provides a "point and click" environment that greatly increases the usability of POST.

Although compiled on the Silicon Graphics (SGI) workstation, the use of Motif makes the

GUI platform independent.

Developing windows for a GUI is considerably easier when using a graphically based

design tool. Many hours are saved using programs such as Builder Xcessories to create the

initial windows. However, complete reliance on any tool to produce a complex GUI is not

advised. A design tool can only accomplish so much in the creation of a complete project.

Interactions between all facets of the program must be considered early in the design

process. Many false starts can be avoided with an in-depth knowledge of the Motif

language. There are numerous methods of obtaining and displaying required user

information. Some methods are more difficult to implement than others, and the optimum

configuration is not readily obtained without adequate knowledge in window design.

Along with knowing how the windowing design language is best used, a thorough

understanding of how the program operates is essential. POST has many options that are

accessible only when one or two other options are selected. Mapping out the

interdependencies of each variable in the program allows for a more systematic approach

to the programming of the GUI. Consultations with current users also provides in-roads

65

into the thought process used in implementing POST, as well as a better understanding of

how a GUI would best suit the user. Frequent review by the end-user ensures that the final

product is designed for his use and not that of the programmer.

B. FUTURE WORK

As is usually the case in computer software development, the current version of this

product has room for improvement. Although the increase in usability of POST under G-

POST is such that long weeks of studying to learn the POST input language is no longer

necessary, there are specific areas of work that would benefit users of all levels.

1. Propulsion

POST allows for the use of up to fifteen engines and stages. The propulsion and weight

characteristics of the aerospace vehicle can be simulated with as much complexity as

desired. Single, multiple or no engines can be applied to an individual stage. The current

version of G-POST is limited to one engine and many of the corresponding propulsion

variables must be entered manually. Future work would involve determining the optimum

input method for this complex procedure, while providing the checks to insure proper entry.

2. Multiple Files

Often times having the ability to open and edit multiple files is advantageous. Opening

files side-by-side can facilitate comparison and editing operations. The addition of this

feature would require the proper functions to determine which window is primary for input

and set that window active. Dynamic generation of either a maximum number of new

windows or an unlimited number of windows would also need to be determined.

3. Default Units

The units of input and output can be specified as either English or metric. The default

values of all variables are in their English form. Addition of a feature to update defaults to

reflect chosen values would be beneficial. Conversion factors are also available in POST

and can be edited. Windows could be added to G-POST to allow for these changes.

66

4. Tables

Construction of the many input tables required by POST can be nearly as complex as

the program itself. All tables are assumed to exist prior to G-POST usage. A construction

tool to facilitate table construction would increase productivity substantially.

5. Open/close Loop Guidance

POST makes available for use some general open and closed loop guidance laws in

addition to the guidance methods provided by G-POST. Although the choices have been

added to the guidance window, these options are unavailable in this version.

6. Visual Post

Currently, the 3D visual representation of the POST output file is limited to using

inertial coordinates as input, starting with initial position as the launch pad and having only

two objects available for visualization; the Space Shuttle and a generic missile. Adding to

the capabilities is not a difficult matter and would greatly increase the usefulness of the

program.

67

APPENDIX A. LISTING OF NPC AND IGUID CODES

This appendix contains the NPC and IGUID codes used in a POST input file. They are

ordered numerically with related topics noted. Default values are in bold. These are

provided as a learning tool and guide for checking the G-POST output for desired values.

NPC CODES

NPC(l) - Keplerian conic calculation flag. Section 6.a.5

Value Definition

0 Do not calculate conic parameters.

1 Calculate conic at the end of each integration step but do not print
conic print block.

2 Calculate and print conic block only at phase changes.

3 Calculate conic at the end of each integration step and print conic
block with each printout.

Related: NPC (31) - for LANVE

NPC(2) - The integration method flag. Section 6.a.l5

Value Definition

1 Fourth order Runge-Kutta.

2 Variable step/order predictor corrector.

3 Laplace conic integration. Should be used for integrating orbits about
a spherical planet, i.e., if J2-J8 are all zero.

4 Enke-S integration method. Should be used for integrating orbits
about an oblate planet.

Related: NPC (20) - Type of special integration step size.

69

NPC(3) - The velocity vector initialization flag. Section 6.a.l2

Value Definition

Input Earth-centered inertial components, VXI(j), j=l,3.

Input inertial components in the local horizontal (G) frame, GAMMAI,
VELI, and AZVELI

Input atmospheric relative components in the local horizontal (G)
frame, GAMMAA, VELA, and AZVELA

Input Earth relative components in the local horizontal (G) frame,
GAMMAR, VELR, and AZVELR

Input orbital parameters, ALTP, ALTA, INC, LAN, ARGP, and
TRUAN. NPC(4) is not used.

Related: NPC (4)

NPC(4) - The position vector initialization flag. Section 6.a.l2

Value Definition

-1 Calculate XI(2) if XI(1), XI(3), and GCRAD are
specified. Sign of XI(2) is opposite of VXI(2)

1 Input Earth-centered inertial components, XI(j), j=l,3.

2 Input spherical coordinates, geocentric or geodetic latitude,
GCLAT or GDLAT, relative or inertial longitude, LONG or

LONGI, and oblate altitude or geocentric radius, ALTITO or
GCRAD.

Related: NPC (3)

70

NPC(5) - Atmosphere model flag. Section 6.a.4

Value Definition

0 No atmosphere.

1 General atmosphere using inputtables PREST, ATEMT, CST,
DENST, and constantsATMOSK(i),i=l,2.Also allows for atmospheric

perturbation tables PRESPERT, ATEMPERT, and DENSPERT.

2 1962 U.S. standard atmosphere.

3 1963 Patrick AFB atmosphere.

4 1971 Vandenberg AFB atmosphere.

5 1976 U.S. standard atmosphere.

6 General atmosphere using input tables ln(PREST), ATEMT, CST,
ln(DENST), and constants ATMOSK(i), i=l,2.Also allows for atmo-

spheric perturbation tables PRESPERT,ATEMPERT,and
DENSPERT.

7 Use random atmosphere model.

Related: NPC (6) - Atmospheric winds, NPC (38) - Atmospheric turbulences,
NPC (39) - Gusts

NPC (6) - Atmospheric winds flag. Section 6.a.4

Value Definition

0 No winds.

1 Winds defined by tables of wind speed (VWT), wind azimuth
(AZWT), and vertical component (VWWT). VWWT is positive

downward.

2 Winds defined by tables of northerly (VWUT), easterly (VWVT), and
vertical (VWWT) components. VWWT is positive downward.

71

NPC(7) - Acceleration limit option flag. Section 6.a.l8

Value Definition

0 No acceleration limit.

1 Limit to ASMAX by calculating ETAC.

Related: used if NPC(9) = 1 or 2 and NPC(30) = 0,3,or 4

NPC(8) - The aerodynamic coefficient type flag. Section 6.a.l

Value Definition

0 No aerodynamic coefficients

1 Input tables of axial force (CAOT and CAT), normal force
(CNOT and CNAT), and side force (CYOT and CYBT) coeffi-

cients.

2 Input tables of drag force (CDOT and CDT), lift force (CLOT and
CLT), and side force (CYOT and CYBT) coefficients.

4 Same as option NPC(8)=2, except that viscous aero corrections are
added to CL and CD.

Related: NPC (10) - Static trim

NPC(9) - The propulsion type selection flag. Section 6.a.l3

Value Definition

0 No thrust or velocity addition.

1 Rocket engine: Input a thrust table (TVCjT) for each engine and
either a flowrate table (WDjT) or vacuum specific impulse (ISPV(j))

or (ISPjT)based on the value of IWDFQ).

2 Jet or ramjet engine: Input a table of net thrust (TVCjT) and specific
fuel consumption (WDjT) for each engine.

72

NPC(9) - The propulsion type selection flag. Section 6.a.l3

Instantaneous delta velocity addition to circularize the orbit at the
current altitude or to add the desired delta velocity, DVIMAG, based

on ISDVIN. Also input the specific impulse

Instantaneous delta velocity addition using the current weight of pro-
pellant (WPROP) and the specific impulse (ISPV(j)).

Related: NPC (30), NPC (7), NPC (27)
ASMAX - NPC (7)=1, NPC (9)=1,2 and NPC (30)=0,3,4

NPC(IO) - Static trim option flag. Section 6.a.21

Value Definition

0 No Static trim.

1 Static trim in pitch only.

2 Static trim in yaw only.

3 Static trim in pitch and yaw.

Related: NPC(8)

NPC(ll) - The functional inequality constraints option flag. Section 6.a.7

Value Definition

0 No functional inequality constraints.

1 Compute functional inequality constraints FVALi, i= 1,2,3, based on
the table input of the inequality boundary (FLiT, i= 1,2,3).

73

NPC(12) - Crossrange and downrange option flag. Section 6.a.l9

Value Definition

0 Do not calculate.

1 Compute crossrange (CRRNG) and downrange (DWNRNG) based
on relative great circles.

2 Compute CRRNG and DWNRNG based on inertial
great circles.

3 Compute CRRNG and DWNRNG relative to the ground track of the
reference circular orbit defined by ALTREF and AZREF.

4 Zero out CRRNG and compute DWNRNG using the Breguet range
equation for cruise flight.

NPC(13) - The propellant jettison option flag. Section 6.a.24

Value Definition

0 Do not jettison the remaining propellant, WPROP.

1 Jettison the remaining propellant, WPROP, at the beginning of the,
current phase.

2 Save the amount of propellant, remaining at the end of the previous
phase to be jettisoned at a later time.

3 Jettison the amount of propellant saved by NPC(13)=2 above.

Related: Used if NPC(30) = 0, NPC(17) - weight jettison option

74

NPC(14) - The hold-down option flag. Section 6.a.ll

Value Definition

0 Do not use hold-down option.

1 Integrate the equations of motion based on holding the vehicle down.

2 Use the horizontal takeoff model that maintains a constant radius plus
the input radial acceleration, ZGAI.

3 Use the horizontal takeoff model that allows the user to maintain a
constant altitude using altitude displacement and rate gains, ZGAG(i),

i =1 or 2.

NPC(15) - Aeroheating rate option flag. Section 6.a.2

Value Definition

0 Do not calculate aeroheating rate.

1 Calculate aeroheating rate (HEATRT) and total heat (TLHEAT)
using Chapman equation for stagnation point heating.

2 Calculate the heating rate using HTRTT as a table look-up.

3 Calculate heating rate as the product of Options 1 and 2 above.

4 Only calculate the turbulent heating rate (HTURBD) and the turbu-
lent heat (HTURB) using the table look-up of HTRTT as a multiplier.

5 Calculate both HEATRT and HTURBD as in the Options 3 and 4
above to yield the laminar heating (TLHEAT) and the turbulent heat-

ing (HTURB).

6 Calculate HEATRT as the maximum centerline heat rate.

Related: NPC(26), NPC(5)>0 - Atmosphere

75

NPC(16) - Gravity model option flag. Section 6.a.l0

Value Definition

0 Use the gravity model for an oblate planet. Input J2, J3, J4, J5, J6,
J7 J8, RE, RP, MU, and OMEGA.

1 Use the gravity model for a spherical planet of radius RE. Input RE
and MU.

NPC(17) - The weight jettison option flag based on FMASST. Section 6.a.24

Value Definition

0 Not used.

1 Compute WJETTM using the mass fraction table FMASST as
follows: WJETTM = WPROPI/FMASST WPROPI.

2 Set WJETT equal to WJETTM.

3 Set WJETTM equal to the table lookup of FMASST.

Related: used if NPC(30) = 0, NPC(13)

NPC(18) - A trajectory termination flag. Section 6.a.6

Value Definition

0 Do not terminate the trajectory.

1 Terminate the trajectory upon reaching the current event. This option
provides the user with a pseudoabort capability that can be used with

roving or secondary events.

76

NPC(19) - A flag to control printing of input conditions for each phase.
Section 6.a.l6

■

Value Definition

0 Do not print input condition summaries.

1 Print input condition summaries for each phase.

NPC(20) - A flag to specify the type of special integration step size (DT) calculation to
be used. Section 6.a.l5.

Value Definition

0 None.

1 Use the argument values of the monovariant tables designated in
NPC20T as integration times. The arguments for these tables must be

a time parameter, e.g., TIME, TIMES, TDURP, TIMRFj, etc.

2 Use an increment in true anomaly (DTRUAN) to determine
integration step size.

NPC(21) - Fuel and oxidizer weights and volumes calculations. Section 6.a.l8 •

Value Definition

0 Do not calculate fuel and oxidizer weights and volumes.

1 Calculate fuel and oxidizer weights volumes. DENSFUEL(j),
DENSOX, FUELVC(j), FUFRACTQ), OXIDVC

77

NPC(22) - The throttling parameter input option flag. Section 6.a.l8.

Value Definition

0 Do not calculate the throttling parameter (ETA).

1 The throttling parameter (ETA) is obtained by evaluating a cubic
polynomial where the constant term is set equal to the value of ETA

at the time NPC(22)=1 is requested. The coefficients are input as
ETAPC(i),i=2,4.

2 The throttling parameter (ETA) is obtained by evaluating a cubic
polynomial as when NPC(22)=1 except that the constant term is input

as ETAPC(l).

3 The throttling parameter (ETA) is a table lookup of the input table
ETAT.

4 The throttling parameter (ETA) is a piecewise linear function of the
event specified by DESNE. Input the initial value of ETA in the first
phase as ETA. The desired value of ETA at event DESNE is input as

DETA.

Related: NPC (9) -NPC(22) = 1,2 and NPC(30) = 0,3,4.

NPC(23) - A flag to control velocity margin calculations. Section 6.a.26

Value Definition

0 Do not compute velocity margin.

1 Input DVMARR and compute DUEXS.

2 Input DVPCT and compute DVMARR and DUEXS.

3 Input DVMARR and compute DUEXS.

78

NPC(24) - General integration variable flag. Section 6.a.9

Value Definition

0 Do not integrate special integrals.

1 Integrate the variables specified by GDERV(i), i=l,10, to form
the integrals GINTj, j=l,10.

NPC(25) - Velocity loss calculation flag. Section 6.a.25

Value Definition

0 Do not calculate velocity losses.

1 Calculate the ideal velocity (VIDEAL), the drag loss (DLR or DLI),
the thrust vectoring loss (TVLR or TVLI), the atmospheric thrust loss
(ATL), the gravity loss (GLR or GLI), and the Coriolis loss (CLR) but

do not print the velocity loss block.

2 Same as when NPC(25)=1, except print the velocity loss block only
at phase changes.

3 Same as when NPC(25)= 1, except print the velocity loss block at each
print time.

Related: NPC (9) <> 0

NPC(26) - Special Aeroheating calculations option flag. Section 6.a.2

Value Definition

0 No special aeroheating calculations.

1 Calculate aeroheating for a ten-panel vehicle model based on heating
ratios referenced to the total heat (TLHEAT) calculated using

NPC(15).

79

NPC(26) - Special Aeroheating calculations option flag. Section 6.a.2

2 Calculate special aeroheating indicators for launch vehicle ascent.
These are stagnation point (AHI), dispersed stagnation point (AHIP),

bottom side (HTBT), top side (HTTP), left side (HTLF), and right
side (HTRT),

3 Calculate only stagnation point (AHI) and dispersed stagnation point
(AHIP).

4 Calculate only AHI for a cylindrical body (Heat-Cyl) as a polynomial
function of Mach number and Reynolds number.

Related: NPC(15) - AHSFT for NPC(26) = 2,3 - ARP, HRAT, WUAiT and ITAP(i)
for NPC(26) = 1

NPC(27) - Activation flag for option to integrate flow rate of selected engines.
Section 6.a.l8

Value Definition

0 Inactive.

1 Active.

Related: Used if NPC(9) = 1,2 and NPC(30) = 0, 3, 4.

NPC(28) - Tracking station option flag. Section 6.a.l8

Value Definition

0 Do not use tracking station option.

1 Compute tracking parameters for as many as ten tracking stations at
the end of each integration step. The output variables must be

requested in the print array, PRNT(i).

2 Compute tracking parameters only at phase changes and print a
tracking station print block.

3 Compute tracking parameters at the end of each integration step and
print a tracking station print block with each regular printout.

Related: ELEMIN(j), JTKFLG(i), TRKGLT(i), TRKLON(i), TRKNAM(i), i=]

80

[,10

NPC(29) - Analytical vacuum impact point calculation flag. Section 6.a.3

Value Definition

0 Do not compute impact points.

1 Calculate impact points at the end of each integration step. The output
variables must be requested in the print array, PRNT(i).

2 Compute impact points only at phase changes and print an impact
point print block.

3 Compute impactpointsattheendofeachintegrationstepandprintan
impact point print block with each regular printout.

Related: ALTIP - for NPC (29) = 1,2,3

NPC(30) - A flag that specifies the vehicle weight model to be used. Section 6.a.24

Value Definition

0 Use the N-stage weight calculation model.

1 Calculate weight as the sum of tables WGT1T and WGT2T as follows:
WEIGHT = WGT1T + WGT2T

2 Calculate flowrate as the sum of tables WGTD1T and WGTD2T as
follows: WDOT = WGTD1T + WGTD2T

3 Use the enhanced (component) weight model.

4 Same as NPC(30)=3 except that WPRP(i) is obtained as a table
lookup of WPRPiT,i=l,15. NPC(30)=3should be input in the next

phase.

Related:
IEGMF(J) - on/off and engine type selection - NPC(30) = 3 or 4
ISTEPF(j) - Activation/Dry weight model - NPC(30) = 3 or 4
IWJF(j) - Engine (j) Propeilant Jettison - NPC(30) = 3 or 4
IWSDF(i) - Dry rate flowrate activation flag - NPC(30) = 3 or 4
MENSTP(i)
NENGH - Highest index of any engine currently on vehicle - NPC(30)

= 3 or 4

81

NENGL - Lowest index of any engine currently on vehicle - NPC(30)
= 3 or 4

NSTPH - Highest index of any step currently on vehicle - NPC(30) = 3
or 4

NSTPL - Lowest index of any step currently on vehicle - NPC(30) = 3
or 4

PWPROP - Amount propellant consumed by engine IWPF(i) - NPC(27)
= 1 and NPC(30) = 0,3,4

WEICON - Initial value consumed
WGSTG - Vehicle gross weight at phase entered - uses NPC(13) and

NPC(17) and used in NPC(30) = 0
WJETT - Weight to be jettisoned at beginning of phase WJETT is input

- NPC(30) = 0
WPLD - Payload weight - only inputted if WGTSG is also inputted -

NPC(30) = 0
WPROPI - initial propellant weight - NPC(30) = 3 or 4
WPRN(j) - Current nonusable propellant weight for engine (j) -

NPC(30) = 3 or 4
WPRP(j) - Current total propellant weight for engine (j) - NPC(30) = 3

or 4
WS JTD(i) - Current dry weight to be jettisoned from vehicle step (i) -

NPC(30) = 3 or 4
WS JTP(j) - Current propellant weight to be jettisoned from engine (j) -

NPC(30) = 3 or 4
WSTPD(i) - Dry weight for vehicle step (i), used if ISTEPF(i) = 1 and

NPC(30) = 3 or 4

NPC(31) - A flag to activate the vernal equinox, sun shadow, and sun angle option.
Section 6.a.27

Value

-1

1

Definition

Force the ECI frame to coincide with vernal equinox frame (the
program calculates TRPM).

Do not activate this option.

Activate this option.

Related: Input - Date(i) i=l,3 (month, day, year)
DECL, GAA, GHAS, - used if date (i) not used

TRPM-NPC(31) = 1
TSIPM - input in first phase

82

NPC(32) - The parachute drag option flag. Section 6.a.28

Value Definition

0 Do not compute parachute drag.

1 Compute parachute drag with VELAP=VELA at the beginning of the
current phase.

2 Compute parachute drag with VELAP= current value of VELA.

NPC(33) - A flag to activate the calculation of the radio guidance (BTL) coordinates
Section 6.a.33

Value Definition

0 Do not compute BTL coordinates.

>0 Calculate BTL coordinates using the tracker designated by the value
ofNPC(33)>land<=10.

NPC(34) - The desired partial Keplerian state specification option flag. Section 6.a.31

Value Definition

0 Do not perform calculations.

1 Perform calculations with SMJAXD
and ECCEND used to define orbit size and shape.

2 Perform calculations with PGERDD
and APORDD used to define orbit size and shape.

83

NPC(35) - A flag to activate the integration of sensed velocity increment. Section
6.a.33

Value Definition

0 Do not activate option.

1 Activate option.

Related: IARCP - Activate ARC length calculations along velocity vector.

NPC(36) - Sunlight option flag. Section 6.a.32

Value Definition

0 Do not activate option.

1 Activate option.

2 Activate option and print sunlight print block.

NPC(37) - Date option fag. Section 6.a.32

Value Definition

0 Maintain date at date 1 for entire simulation.

1 Increment date with simulation.

84

NPC(38) - Atmospheric turbulence flag. Section 6.a.4

Value Definition

0 No turbulence.

1 Dryden turbulence with initialization.

2 Dryden turbulence but do not initialize random number generator.
The model will set NPC(38) after one pass with NPC(38)=1.

Related: NPC(6) <> 0

NPC(39) - Atmospheric turbulence flag. Section 6.a.4

Value Definition

0 No Gusts.

1 User defines gusts with VTFREQ(j) and VTMAG(j), j=l,3-

Related: NPC(6) <> 0

IGUID CODES

IGUID(l) - Type of guidance (steering) desired. Section 6.b-l

Value Definition

-1 Inertial body rate polynomials.

0 Angle of attack, sideslip, and bank.

1 Inertial Euler attitude angles, i.e., ROLI, YAWI, and PITI measured
with respect to the L frame.

2 Relative Euler attitude angles, i.e., YAWR, PITR, and ROLR
measured with respect to the G-frame.

85

IGUID(l) - Type of guidance (steering) desired. Section 6.b-l

3 Aerodynamic angles with respect to the inertial velocity vector
ALPHI, BETAI, and BANK!

4 Pitch-plane angles, i.e., ROLI, YAWI, and PIT!

IGUID(2) - Attitude channel selector. Section 6.b

Value Definition

0 Calculate all attitude channels based upon the same type of
functional relationship, i.e., polynomials, tables, etc.

1 Calculate each attitude channel separately by a functional relationship
specified by IGUID(6), (7) and (8) or IGUED(9), (10) and (11). This

flag enables one to select different types of aerodynamic angle
steering in each attitude channel

IC ;UK>(3) - Steering option to command all channels simultaneously. Section 6.b

Value Definition

0 Command angle of attack, sideslip, and bank as third order
polynomials with the values of ALPHA, BETA, and BNKANG

carried over from the previous phase.

1 The same as IGUID(3)=0 except that the constant terms of the
polynomials are the input values. This generally causes an

instantaneous change in attitude at the beginning of the phase.

2 Angle of attack, sideslip, and bank are obtained from table lookup of
ALPHAT, BETAT, and BANKT.

3 Angle of attack, sideslip, and bank are piecewise linear functions of
the CPJTR variable at the events DESN(i), i=l,2,3, respectively

4 AOA, sideslip, and bank are computed via linear feedback to make
the variable specified by DGF(i), i= 1,2,3 follow the profile contained
in GDFiT, i= 1,2,3 for angle of attack, sideslip, and bank, respectively.

86

IGUID(3) - Steering option to command all channels simultaneously. Section 6.b

The same as IGUID(3)=0 except that the constant terms are the
desired incremental values of ALPHA, BETA, and BNKANG at the

beginning of the phase; e.g., the internal value of ALPPC(l) =
ALPHA + the input value of ALPPC(l).

IGUID(4) - Euler angle steering (inertial or relative). Section 6.b

Value Definition

0 YAWR, PITR, and ROLR are computed as third-order
polynomials with the values of YAWR, PUR, and ROLR carried
over from the previous phase. That is, the constant terms of the

polynomials are set equal to the values of YAWR, PITR, and
ROLR at the beginning of the phase.

1 YAWR, PITR, and ROLR are given by third-order polynomials as in
IGUID(4)=0, except that the constant terms of the polynomials are the

input values. This generally causes an instantaneous change in
attitude at the beginning of the phase.

2 YAWR, PITR, and ROLR are computed from tables of YAWT, PITT,
and ROLT.

3 YAWR, PITR, and ROLR are piecewise linear functions of the
CRITR variable at the events DESN(l), DESN(2), and DESN(3),

respectively.

4 YAWR, PITR, and ROLR are computed via linear feedback to make
the variable specified by DGF(i), i=l,2,3 follow the profile contained

in GDFiT, i= 1,2,3 for YAWR, PITR, and ROLR, respectively.

5 Same as IGUID(4)=0 except that the constant terms are the desired
incremental values of YAWR, PITR, and ROLR at the beginning of
the phase; e.g., the internal value of PITPC(l) = PITR plus the input

value of PITPC(l).

6 ROLLPC(2),PITPC(2), and YAWPC(2) are computed from ta^le
lookups of ROLT, PITT, and YAWT.

87

IGUID(5) - A flag to determine the method of calculating the body rates. Section 6.b

Value

4

Definition

ROLBD, PITBD, and YAWBD polynomials.

BNKDOT, PITBD, and YAWBD polynomials.

ROLBD, ALPDOT, and YAWBD polynomials.

ROLBD, PITBD, and BETDOT polynomials.

BNKDOT, ALPDOT, and YAWBD polynomials.

ROLBD, ALPDOT, and BETDOT polynomials.

BNKDOT, PITBD, and BETDOT polynomials.

ALPDOT, BETDOT, and BNKDOT polynomials.

YAWRD, PITRD, and ROLRD polynomials.

10

13

ROLBD and YAWBD polynomials with ALPDOT computed to drive
ALPHA from its current value to the value input as DALPHA at the
beginning of the next primary phase. This allows the user to drive
ALPHA to a desired value while staying in the same inertial pitch

plane.

Calculate the constant body rate magnitude OMGBD based on the
CRITR value of DESN, which must be a time duration, e.g. TDURP.

14 Calculate the CRITR value of DESN based on the input value of
OMGBD.

IGUID(6) - Separate channel options for angle of attack. Section 6.b

Value

0

Definition

Same as when IGUID(3)=0.

Same as when IGUID(3)=1.

Same as when IGUID(3)=2.

IGUID(6) - Separate channel options for angle of attack. Section 6.b

3 Same as when IGUID(3)=3.

4 Same as when IGUID(3)=4.

5 Same as when IGUID(3)=5.

IGUID(7) - Separate channel options for sideslip angle. Section 6.b

Value Definition

0 Same as when IGUID(3)=0.

1 Same as when IGUID(3)=1.

2 Same as when IGUID(3)=2.

3 Same as when IGUID(3)=3.

4 Same as when IGUID(3)=4.

5 Same as when IGUID(3)=5.

IGUID(8) - Separate channel options for bank angle. Section 6.b

Value Definition

0 Same as when IGUID(3)=0.

1 Same as when IGUID(3)=1.

2 Same as when IGUID(3)=2.

3 Same as when IGUID(3)=3.

4 Same as when IGUID(3)=4.

5 Same as when IGUID(3)=5.

89

IGUID(9) - Separate channel options for YAWR angle. Section 6.b

Value Definition

0 Same as when IGUID(4)=0.

1 Same as when IGUID(4)=1.

2 Same as when IGUID(4)=2.

3 Same as when IGUID(4)=3.

4 Same as when IGUID(4)=4.

5 Same as when IGUID(4)=5.

IGUID(IO) - Separate channel options for PITR angle. Section 6.b

Value Definition

0 Same as when IGUID(4)=0.

1 Same as when IGUID(4)=1.

2 Same as when IGUID(4)=2.

3 Same as when IGUID(4)=3.

4 Same as when IGUID(4)=4.

5 Same as when IGUID(4)=5.

IGUID(ll) - Separate channel options for ROLR angle. Section 6.b

Value Definition

0 Same as when IGUID(4)=0.

1 Same as when IGUID(4)=1.

2 Same as when IGUID(4)=2.

90

IGUID(ll) - Separate channel options for ROLR angle. Section 6.b

3 Same as when IGUID(4)=3.

4 Same as when IGUID(4)=4.

5 Same as when IGUID(4)=5.

IGUID(12) - Inertial body rate initialization flag. Section 6.b

Value Definition

1 Initialize body rates using ALPHA, BETA, and BNKANG.

2 Initialize body rates using ROLI, YAWI, and PITI.

IGUID(13) - The YAWR angle reference option. Section 6.b

Value Definition

1 Relative yaw angle (YAWR) is measured clockwise from
geographic north.

2 Relative yaw angle (YAWR) is measured clockwise from the
atmospheric relative velocity vector azimuth angle.

3 Relative yaw angle (YAWR) is measured clockwise from the inertial
velocity vector azimuth angle.

IGUID(14) - The general open/closed-loop guidance option selection flag. Section 6.b

Value Definition

0 Do not use the general open-loop guidance option.

1 Use the general open-loop guidance option.

91

IGUED(14) - The general open/closed-loop guidance option selection flag. Section 6.b

Use the general closed-loop guidance programmed in subroutine
CLGM.

Use open-loop approximation to linear sine steering.

IGUID(15) - The general open-loop guidance override selection flag. Section 6.b

Value Definition

0 Do not use.

1 Use the general open-loop guidance override model in subroutine
OLGOM.

IGUID(16) - The pitch-plane angle selection flag. Section 6.b

Value Definition

0 PITI = the angle from the L-frame x axis after inertia! Euler
ROLI and YAWI rotations to body roll (XB) axis. This is

equivalent to IGUID(1)=1.

1 PITI = the angle from the atmospheric velocity vector to the body roll
(XB) axis.

2 PITI = the angle from the inertial velocity vector to the body roll (XB)
axis.

3 PITI = the angle of the body roll (XB) axis above the local horizontal
plane.

92

APPENDIX B. EXAMPLE PROBLEM

This appendix contains Example Problem 1 from the POST utilization Manual [Ref 1].

EXAMPLE PROBLEM 1

An important ascent trajectory optimization problem during the conceptual phases of

the Space Shuttle program was that of determining the maximum payload capability of

various configuration concepts. One such Space Shuttle configuration is represented by this

sample problem. The four key components of this configuration are the orbiter, two solid

rocket boosters (SRBs), and the external tank (ET). This multibody nonsymmetrical

configuration created special simulation requirements that motivated many of the features

contained in POST. For example, to accurately predict the performance capability of a

unsymmetrical configuration such as Space Shuttle, it is important to include the thrust

vectoring losses encountered as the engines gimbal to balance the aerodynamic moments

caused by the nonsymmetrical shape of the configuration. This fact led to the development

of the static trim option employed in this sample case.

Problem Formulation

There are a number of ways to formulate the problem of maximizing payload for

a given configuration. Each approach is based on (1) what is known about the

configuration, and (2) what is known about the basic trajectory to be flown. In this first

example, it is assumed that the user knows the dry weight and the propellant weight of each

of the four major components of the vehicle. Assuming that all the propellant is consumed

during the flight, which is ensured by terminating the simulation on the event criteria

Wprop = 0,

enables the payload weight to be computed from the equation

WpLD = WBO - W^,

where WB0 is the total burnout weight (at the final event) and W^ is the known weight of

the remaining vehicle components. Because W^ is constant for a given configuration,

93

maximizing WWB0 is equivalent to maximizing W^. Thus, in this example, the

optimization variable was selected to be WWB0, which is computed as the weight of the

vehicle, WEIGHT, at the instant that the weight of propellant is zero.

Trajectory Profile

As in any trajectory problem, there are a variety of ways in which to simulate

this mission, and the following sequence of events illustrates the approach taken in this

example:

Trajectory Profile For Sample Problem 1

Event
Number Description

1.0 Lift-off at t = 0s.

2.0 Interrupt at t = 15s to initiate Pitch Rate 1.

3.0 Interrupt at t = 25s to initiate Pitch Rate 2.

4.0 Interrupt at t = 40s to initiate Pitch Rate 3.

5.0 Interrupt at t = 60s to initiate Pitch Rate 4.

6.0 Interrupt at t = 120s to initiate Pitch Rate 5.

7.0 Interrupt at t = 150s to initiate Pitch Rate 6.

8.0 Interrupt when the remaining propellant (WPROP) equals zero to
initiate a coast phase.

9.0 Interrupt at 7s from the phase 8.0 to initiate jettison of Stage 1 and
start of Stage 2 flight. Also initiate Pitch Rate 7

10.0 Interrupt at 100s from phase 9.0 to initiate Pitch Rate 8

11.0 Interrupt at 150s from phase 10.0 to activate conic calculations

12.0 Terminate when the remaining propellant (WPROP) equals zero.

sec

ear

As indicated, the simulation starts with a 15-second vertical rise, followed b>

uence of constant pitch rate steering segments. The static trim option is used during;

ly flight phases, and a 3-g acceleration limit is enforced after 60 seconds of flight. Eve

94

r a

ill

nt

8.0 specifies burnout of the SRBs, which are jettisoned seven seconds later at Event 9.0.

Notice also that new data for propulsion and aerodynamics are input in Event 9.0. These

data represent the orbiter plus the external tank combination that is used for the remainder

of the trajectory simulation. As mentioned earlier, the final event criterion is the weight of

propellant. Because the last initialization of weight of propellant was in Event 9.0, the

program variable Wprop represents the amount of propellant in the orbiter plus the external

tank combination at any time. Thus, the final condition

Wprop = 0,

limits the amount of propellant that can be consumed in all flight phases after the

occurrence of Event 9.0.

Targeting and Optimization Formulation

In this example, the mission requirements are the delivery of the payload to the

perigee of a 50x100 nmi parking orbit. These requirements are mathematically equivalent

to the three terminal equality constraints

hf= 303 805.0 ft.

Vff = 25 853.0 fps

7^= 0.0 deg

where the subscript, f, denotes final burnout conditions. Extensive

computational experience indicates that the spherical-coordinate constraints (h, VI, yj) are

easier to satisfy than their orbital counterparts (hp, ha, 6). The reason for this is probably

related to the nonlinearities involved, with (h, VI, Yi) appearing more linear in the

independent variables.

Finally, the control parameters selected are the gross vehicle weight at lift-off

and the eight inertial Eulerian pitch rates throughout the trajectory. Six of these pitch rates

are used to steer the vehicle during the SRB boost phases and two during the

exoatmospheric phases. The motivation for using these particular control variables is

computational experience, which shows that pitch angle steering is an efficient technique

95

for optimizing ascent trajectories. The particular "break times" in the pitch history were

selected after a few single-pass simulations. It is generally not a good practice to allow the

program to decide on both the "break times" and the rates, although it might seem logical

to do so. The initial gross weight of the vehicle, WG, is employed as an independent

variable to maximize the payload because in this setup there is a direct one-to-one

correspondence between an increment in WPLD and an increment in WG because all vehicle

dry weights and propellant weights are held constant during the optimization.

The previous discussion can be summarized by stating the precise mathematical

formulation of the problem: Determine the control parameters

u = (wG,e1,e2,e3,e4,05,e6,e7,e8),

that maximize: WB0

subject to:

hf= 303 805.0 ft.

VIf = 25 853.0 fps

Y!f= 0.0 deg

96

APPENDIX C. INPUT DATA FILE FOR EXAMPLE PROBLEM 1

This appendix contains the data file corresponding to the problem definition in

Appendix B.

l$search
sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sfe sic sic sic sk sic *fc sic sic slcsfc sic sic sic sic sic sic sJc sJc sic sic ^fc ^Jc sJc sic sk sic sic sic sfc jlc sic sic slcsfc sic slcsfc sic sic sic sic sic sic sic sic sic sk «4c sic sic sic sic

c problem
c maximize weight
c subject to
c altito - 303805 = 0
c veli - 25853 = 0
c gammai -0=0

sic sic sic sic sic sic sic sic sic sic sic sic sic sfc sic sic sic sic sic sic sic sic sic sic sic sic sksJc sfc sic sic sk sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sfc sk sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic

c
c
c listin= 1,
maxitr = 10,
srchm = 4,
opt = 1.0,
optvar = öhweight,
optph = 12.0,
wopt = 1.0e-6,

c
nindv = 9,
pert = 1.0,
indvr = 6hwgtsg , 6hpitpc2, 6hpitpc2, 6hpitpc2, 6hpitpc2,
indph = 1, 2, 3, 4, 5,
u =4031000.0, -1.8, -.5, -.2, -.3,
indvr(6) = 6hpitpc2, 6hpitpc2, 6hpitpc2, 6hpitpc2,
indph(6)= 6, 7, 9, 10,
u(6) = -.25, -.3, -.15, -.05,

c
ndepv = 3,
depvr = 6haltito, 6hveli , öhgammai,
depval =303805.0, 25853.0, 0.0,
deptl = 100.0, .1, .001,
$

l$gendat
prnc=0,
prnca=0,
title = Oh* sample problem for ascent trajectory w/ drop tank orbiter*,
event = 1,

97

c
npc(2) =
npc(8) =
npc(16)
npc(21)
iwdf(l) =

1,4,2,
2,1,
1,
1,

--2,

iguid(l)=
iguid(4) =

1,
1,

c
maxtim = 1000.0,
altmax = =2000000.0,
fesn = 12,
dt 5.0,
pine =
gdlat =

20.0,
28.5,

long = 279.4,
azl = 90.0,
neng = 1,
wpropi =2249000.0,
ispv = 439.0,
gxp = 218.42,
gyp = o.o,
gzp = 33.33,
sref = 4500.00,
lref = 218.833,
$

l$tblmlt
$

l$tab
table =6htvcIt ,0,5472000.0,
$

l$tab
table =6haelt ,0,232.5,
$

l$tab
table =6hcdt ,2,6hmach ,6halpha ,12,5,1,1,1,1,1,1,1,1,
-20.,
0.0, 1.456, .5, 1.585, .7, 1.598, .8, 1.242, 1., 3.157, 1.2,2.996,
1.5, 1.816, 2.0, 1.301, 3., .850, 5., .482, 7., .382, 10., .396,
-5.,
0.0, .263, .5, .338, .7, .110, .8, .302,1., .690, 1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212, 10., .210,

98

o.,
0.0, .180, .5, .18,.7, .200,.8, .251,1., .495,1.2, .502,
1.5, .485,2.0, .456,3., .391,5., .272,7., .231, 10., .231,
5.,

0.0, .263, .5, .338,.7, .110, .8, .302,1., .690, 1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212, 10., .210,
20.,

0.0, 1.456, .5, 1.585, .7,1.598, .8,1.242,1., 3.157,1.2,2.996,
1.5,1.816, 2.0, 1.301, 3., .850, 5., .482, 7., .382,10., .396,
$

l$tab
table =6hclt ,2,6hmach ,6halpha ,12,4,1,1,1,1,1,1,1,1,
-20.,
0.0, -1.010, .5,-1.025, .7, -.99, .8, -.815, l.,-1.08 , 1.2,-1.11,
1.5, -.895, 2.0, -.788, 3.,-.635, 5., -.480,7., -.43 ,10., -.43,
0.,

0.0, .015, .5, .04 , .7, .01, .8, -.045,1., .08 ,1.2, .038,
1.5, -.02, 2.0,-.108, 3.,-. 145, 5.,-.15, 7.,-.15 , 10.,-.15 ,
5.,

0.0, .545, .5, .75, .7, .53, .8, .365, 1., .69 , 1.2, .638,
1.5, .43,2., .242,3., .11, 5., .025 , 7., .00 , 10., .00 ,
20.,

0.0, 2.135, .5, 2.24 , .7, 2.09, .8,1.595 , 1., 2.52 , 1.2,2.438,
1.5, 1.78 , 2., 1.292, 3., .875, 5., .55 , 7., .45 , 10., .45 ,
$

l$tab
table =6hcmat ,l,6hmach ,12,1,1,1,
0.0, .019, .7, .0218, .9, .0302, 1., .023, 1.2,-.011, 1 5,-.032,
1.8,-.0395, 2.,-.0419, 3.,-.0396, 5.,-.0187, 7.,-.0082, 10., 0.0,
$

l$tab
table =6hxreft,l,6hmach ,12,1,1,1,
0.0,137.86, .7,140.05, .9,136.77, l.,147.71, 1.2,145.52,
1.5,144.43, 1.8,141.58, 2.,138.3, 3.,131.74, 5.,118.83,
7.,109.42, 10.,91.91,
endphs = 1,
$

l$gendat
event = 2, critr = 6htime , value = 15.0,
iguid(4) = 0,
endphs = 1,
$
l$gendat

99

event = 3, critr = 6htime , value = 25.0,
endphs = 1,
$

l$gendat
event = 4, critr = 6htime , value = 40.0,
endphs = 1,
$

l$gendat
event = 5, critr = 6htime , value =60.0,
endphs = 1,
$

l$gendat
event = 6, critr = 6htime , value = 120.0,
endphs = 1,
$

l$gendat
event = 7, critr = 6htime , value = 150.0,
dt = 10.0,
endphs = 1,
$

l$gendat
event = 8, critr = öhwprop , value = 0.0,
tol = 2.e-6,
npc(9) = 0,0,
weicon = 0.0,
endphs = 1,
$

l$gendat
event = 9, critr = öhtdurp , value =7.,
tol = l.e-6,
dt = 20.0,
pine = 50.0,
npc(9) = 1,
wjett =665000.0,
wpropi =809000.0,
ispv = 459.0,
gxp = 142.0,
gyp = o.o, ■

gzp = 25.0,
sref = 4840.0,
lref = 135.0,
$

100

l$tblmlt
$

l$tab
table =6htvclt ,0,1431000.0,
$

l$tab
table =6haelt ,0,154.54,
$

l$tab
table =6hcdt ,2,6hmach ,6halpha ,12,7,1,1,1,1,1,1,1,1,
-20.,
0,.024, .2,.024, .6,.026, .8,.028, .9,.035,1.3,.093, 1.5,-122,
2,.116, 2.48,. 1, 3,.092, 3.9,.082,40,.03,
-4.,
0,.024, .2,.024, .6,.026, .8,.028, .9,.035,1.3,.093,1.5,.122,
2,.116, 2.48,.l, 3,.092, 3.9,.082,40,.03,

0.,
0,.026, .2,.026, .6,-026, .8,.024, .9,.036, 1.3,.092, 1.5,-118,
2,. 106, 2.48,.091, 3,.082, 3.9,.074, 40,.022,

5.,
0,.042, .2,.042, .6,.04, .8,.042, .9,.076, 1.3,. 124, 1.5,. 142,
2,. 124, 2.48,.098, 3,.088, 3.9,.079,40,.033,
10.,

0,-076, .2,.076, .6,.08, .8,.l, .9,-13,1.3,.194, 1.5,-192,
2,.165, 2.48,-127, 3,-114, 3.9,.095,40,.057,
20.,

0,-36, .2,36, .6,362, .8,.44, .9,.41,1.3,39, 1.5,36 , 2,.32,
2.48,.242, 3,.224, 3.9,-216, 40,-238,
30.,

0,36, .2,-36, .6,36, .8,-44, .9,.41, 13,39, 1.5,36, 2,32,
2.48,.44,3,.418,3.9,.4,40,3,
$
l$tab
table =6hclt ,2,6hmach ,6halpha ,12,7,1,1,1,1,1,1,1,1,
-20.,
0,-.07, .2,-.08, .6,-.12, .8,-.12, .9,-.12, 1.3,-12, 1.5,-.12,
2,-.13, 2.48,-14, 3,-12, 3.9,-1, 40,-14,

4.,
0,-07, .2,-08, .6,-12, .8,-12, .9,-12, 1.3,-12, 1.5,-12,
2,-13, 2.48,-14, 3,-12, 3.9,-1, 40,-14,

0.,
0,.08, .2,.08, .6,.08, .8,.06, .9,.06,13,.07,1.5,.04, 2,0.0,
2.48,-02, 3,-03, 3.9,-04,40,.03,

101

5.,
0,.29, .2,.29, .6,.29, .8,.28, .9,.28, 1.3,3, 1.5,.24, 2,.17,
2.48,.12,3,.09, 3.9,.08,40,.21,
10.,

0,.5, .2,.6, .6,.49, .8,.48, .9,.52, 1.3,.52, 1.5,.41, 2,.33,
2.48,.25,3,.2, 3.9,.15,40,.4,
20.,

0..94, .2,.94, .6,-92, .8,.9, .9,.94, 1.3,.89, 1.5,-75, 2,.63,
2.48,-51, 3,-43, 3.9,.39,40,.76,
30.,

0,.94, .2,-94, .6,-92, .8,-9, .9,.94, 1.3,.89, 1.5,.75, 2,.68,
2.48,.67, 3,.65, 3.9,.62,40,.76,
$

l$tab
table = 6hcmat ,0,0.0,
$

l$tab
table = 6hxcgt , 1,6hweicon,5,1,1,1,
0,87.64, 202250,93.93, 404500,99.68, 606750,104.04, 809000,104.37,
$

l$tab
table =6hycgt ,0,0.0,
$

l$tab
table =6hzcgt ,l,6hweicon,5,1,1,1,
0,31.33, 202250,31.5, 404500,31.75, 606750,32.42, 809000,33.83,
endphs = 1,
$
l$gendat
event =
endphs =
$
l$gendat
event = ll,critr = 6htdurp, value =150.0,

2,
1,

10, critr = 6htdurp , value = 100.0,
1,

npc(l)
endphs
$

l$gendat
event
endphs = 1
endprb = 1,
endjob =

12, critr = öhwprop , value =0.,
1,
1,
1,

102

APPENDIX D. INPUT DATA FILE GENERATED BY G-POST

This appendix contains the data file tutoriai.inp. This file is the G-POST generated

input file corresponding to the problem definition in Appendix B.

1$SEARCH
SRCHM = 4, / Optimization technique
MAXITR = 10, / Maximum number of alterations
OPT = 1.0, /Maximization
OPTVAR = 6HWEIGHT, / The optimization variable
OPTPH = 12.0, / The optimization phase
WOPT = 1.0E-6, / The optimization weighting
C
NINDV = 9,
INDVR = 6HWGTSG ,6HPITPC2,6HPITPC2,6HPITPC2,6HPITPC2,
INDPH = 1,2,3,4,5, / Independant Variable phases
U = 4031000.,-1.8,-.5,-.2,-.3, / Independant variable initial guesses
PERT = 1.0,1.0,1.0,1.0,1.0, / Independant variable perturbations
C
INDVR(6) = 6HPITPC2,6HPITPC2,6HPITPC2,6HPITPC2,
INDPH(6)= 6,7,9,10, / Independant Variable phases
U(6) = -.25,-.3,-.15,-.05, / Independant variable initial guesses
PERT = 1.0,1.0,1.0,1.0, / Independant variable perturbations
C
NDEPV = 3,
DEPVR = 6HALTITO,6HVELI,6HGAMMAI, / Dependant Variable names
DEPVAL = 303805.0,25853.0,0.0, / Dependant Variable values
DEPTL = 100.0,. 1,.001, / Dependant variable tolerances
$

1$GENDAT
PRNC =0, / Profil binary print interval
PRNCA = 0, / Profil ASCII print interval
PINC = 20, / Print interval
TITLE = 0H*sample problem for ascent trajectory w/ drop tank orbiter*,
EVENT = 1,
NPC(2) = 1, / Runge-Kutta integration
DT = 5.0, /Step size
EPSINT = 0.01, / Error tolerance
NPC(5) = 2, / 1962 US atmosphere
NPC(26) = 0, / Aeroheating flag.
NPC(16) = 1, / Oblate planet gravity model

103

NPC(3) =
NPC(4) =
AZL =

■ 4,
: 2,
0,

GDLAT = o,
LONG = = o,
NPC(8) =
GXP =

2,
218.42,

GYP = 0.0,
GZP = 33.33,
SREF = 4500.00,
LREF = 218.833,
NPC(9) =
NENG =

1,
- 1,

IWDF(l) =
ISPV =

= 2,
439.0,

WPROPI = 22490(
NPC(21) =
IGUID(l) =
IGUID(4) =
MAXTIM

= 1,
= 1,
= 1,
= 1000.1

ALTMAX = 2000C
FESN = 12,

/ Velocity vector
/ Spherical position vector

/ Azimuth
/ Geodetic latitude

/ Relative longitude
/ Drag and lift coefficients

/ X location of engine gimbal
/ Y location of engine gimbal

/ Z location of engine gimbal
/ Reference area
/ Reference length

/ Rocket propulsion
/ Number of engines
/ Engine flowrate

/ Engine impulse
0.0, / Initial propellant weight

/ Calculate propellant weights
/ Inertial Euler angles guidance
/ Polynomials w/input values

l, / Maximum time before termination
00.0, / Maximum altitude before termination

/ Final event number

1$TBLMLT
$

1$TAB
TABLE = 6htvcIt ,0,5472000.0,
$

1$TAB
TABLE = 6haelt ,0,232.5,
$

1$TAB
TABLE = 6hcdt ,2,6hmach ,6halpha ,12,5,1,1,1,1,1,1,1,1,
-20.,
0.0, 1.456, .5, 1.585, .7, 1.598, .8, 1.242, 1., 3.157, 1.2,2.996,
1.5,1.816,2.0,1.301,3., .850,5., .482,7., .382, 10., .396,
-5.,
0.0, .263, .5, .338, .7, .110, .8, .302,1., .690, 1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212, 10., .210,
0.,

0.0, .180, .5, .18,.7, .200,.8, .251,1., .495, 1.2, .502,
1.5, .485,2.0, .456,3., .391,5., .272,7., .231, 10., .231,
5.,

104

0.0, .263, .5, .338, .7, .110, .8, .302,1., .690,1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212,10., .210,
20.,

0.0,1.456, .5, 1.585, .7,1.598, .8,1.242, 1., 3.157,1.2,2.996,
1.5, 1.816, 2.0,1.301, 3., .850, 5., .482,7., .382,10., .396,
$

1$TAB
TABLE =6hclt ,2,6hmach ,6halpha ,12,4,1,1,1,1,1,1,1,1,
-20.,
0.0,-1.010, .5,-1.025, .7,-.99, .8,-.815, l.,-1.08 , 1.2,-1.11,
1.5, -.895, 2.0, -.788, 3.,-.635, 5., -.480, 7., -.43 , 10., -.43,
0.,

0.0, .015, .5, .04 , .7, .01, .8, -.045,1., .08 ,1.2, .038,
1.5, -.02,2.0,-.108, 3.,-. 145, 5.,-.15, 7.,-.15 ,10.,-.15 ,
5.,

0.0, .545, .5, .75, .7, .53, .8, .365, 1., .69 , 1.2, .638,
1.5, .43 ,2., .242, 3., .11, 5., .025 ,7., .00 ,10., .00 ,
20.,

0.0, 2.135, .5, 2.24 , .7, 2.09, .8,1.595 ,1., 2.52 , 1.2,2.438,
1.5, 1.78 , 2., 1.292, 3., .875, 5., .55 ,7., .45 , 10., .45 ,
$

1$TAB
TABLE =6hcmat ,l,6hmach ,12,1,1,1,
0.0, .019, .7, .0218, .9, .0302, 1., .023, 1.2,-.011, 1.5,-.032,
1.8,-.0395, 2.,-.0419, 3.,-.0396, 5.,-.0187, 7.,-.0082,10., 0.0,
$

1$TAB
TABLE =6hxreft,l,6hmach ,12,1,1,1,
0.0,137.86, .7,140.05, .9,136.77, l.,147.71, 1.2,145.52,
1.5,144.43, 1.8,141.58, 2.,138.3, 3.,131.74, 5.,118.83,
7.,109.42, 10.,91.91,
ENDPHS = 1,
$

1$GENDAT
EVENT = 2,
CRITR = 6htime
VALUE = 15.0,
IGUID(4) = 0,
ENDPHS = 1,
$

1J>VJC1NJLJ/V 1

EVENT = 3,
CRITR = 6htime ,

/ Polynomial w/constant term carried over

105

VALUE = 25.0,
ENDPHS = 1,
$

1$GENDAT
EVENT = 4,
CRITR = 6htime ,
VALUE = 40.0,
ENDPHS = 1,
$

1$GENDAT
EVENT = 5,
CRITR = 6htime ,
VALUE = 60.0,
ENDPHS = 1,
$

1$GENDAT
EVENT = 6,
CRITR = 6htime ,
VALUE = 120.0,
ENDPHS = 1,
$

1$GENDAT
EVENT = 7,
CRITR = 6htime ,
VALUE = 150.0,
DT = 10.0,
ENDPHS = 1,

/ Step size

$
1$GENDAT
EVENT = 8,
CRITR =
VALUE =

öhwprop
0.0,

?

TOL =
NPC(9) =

2.e-6,
0,0,

/ Accuracy of CRITR
/ No thrust

WEICON =
ENDPHS =

0.0,
1,

/ Propellant consumed

$
1$GENDAT
EVENT = 9,
CRITR =
VALUE = 7

öhtdurp ,
•5

TOL = l.e-6,
DT = 20.0,

/ Accuracy of CRITR
/ Step size

106

PINC = 50.0, / Print interval
NPC(9) = 1, / Rocket propulsion
WJETT = 665000.0, / Weight to be jettisoned
WPROPI = 809000.0, / Initial propellant weight

/ Engine impulse
/ X location of engine gimbal

/ Y location of engine gimbal
/ Z location of engine gimbaL

/ Reference area
/ Reference length

ISPV = 459.0,
GXP = 142.0,
GYP = 0.0,
GZP = 25.0,
SREF = 4840.0,
LREF = 135.0,
$

1$TBLMLT
$

1$TAB
TABLE =6htvcl u,0,1431000.0,
$

1$TAB
TABLE =6haelt ,0,154.54,
$

1$TAB
TABLE =6hcdt ,2,6hmach ,6halpha, 12,7,1,1,1,1,1,1,1,1,
-20.,
0..024, .2..024, .6,-026, .8,-028, .9,.035, 1.3,-093, 1.5,. 122,
2..116, 2.48,. 1, 3,-092, 3.9,-082,40,-03,
-4.,
0,-024, .2,-024, .6,-026, .8,-028, .9,.035, 1.3,-093, 1.5,-122,
2,.116, 2.48,. 1, 3,.092, 3.9,-082, 40,-03,

0-,
0,.026, .2,-026, .6..026, .8,-024, .9,.036, 1.3,-092,1.5,-118,
2,.106, 2.48,.091, 3,-082, 3.9,-074, 40,-022,

5-,
0,-042, .2,-042, .6,-04, .8,-042, .9,-076, 1.3,-124, 1.5,-142,
2,-124, 2.48,-098, 3,-088, 3.9,-079, 40,.033,
10.,

0..076, .2,-076, .6,-08, .8,-1, .9,-13, 1.3,-194, 1.5,.192,
2,.165, 2.48,. 127, 3,. 114, 3.9,.095, 40,.057,
20.,

0,.36, .2,.36, .6,-362, .8,-44, .9,-41, 1.3,-39, 1.5,36 ,2,.32,
2.48,.242, 3,-224, 3.9,-216, 40,-238,
30.,

0,-36, .2,-36, .6,-36, .8,44, .9,41, 1.3,.39, 1.5,36, 2,.32,
2.48,44, 3,418, 3.9,4,40,3,
$

107

1$TAB
TABLE =6hclt ,2,6hmach ,6halpha ,12,7,1,1,1,1,1,1,1,1,
-20.,
0,-.07, .2,-.08, .6,-12, .8,-12, .9,-12, 1.3,-12, 1.5,-12,
2,-13, 2.48,-14, 3,-12, 3.9,-1, 40,-14,

4.,
0,-07, .2,-08, .6,-12, .8,-12, .9,-12, 1.3,-12, 1.5,-12,
2,-13, 2.48,-14, 3,-12, 3.9,-1, 40,-14,

0.,
0,.08, .2,.08, .6,.08, .8,.06, .9,.06, 1.3,.07, 1.5,.04, 2,0.0,
2.48,-02, 3,-03, 3.9,-04, 40,.03,

5.,
0,.29, .2,.29, .6,.29, .8,.28, .9,-28, 1.3..3, 1.5,-24, 2,.17,
2.48,.12,3,.09,3.9,.08,40,.21,
10.,

0,.5, .2,.6, .6,.49, .8,.48, .9,.52, 1.3,.52, 1.5,.41, 2,.33,
2.48,.25,3,.2,3.9,.15,40,.4,
20.,

0,.94, .2,.94, .6,.92, .8,.9, .9,.94, 1.3,.89, 1.5,-75, 2,.63,
2.48,-51, 3,.43, 3.9,.39, 40,.76,
30.,

0,.94, .2,-94, .6,.92, .8,.9, .9,.94, 1.3,.89, 1.5,.75, 2,.68,
2.48,.67, 3,.65, 3.9,.62, 40,.76,
$

1$TAB
TABLE = 6hcmat ,0,0.0,
$

1$TAB
TABLE =6hxcgt ,l,6hweicon,5,1,1,1,
0,87.64, 202250,93.93, 404500,99.68, 606750,104.04, 809000,104.37,
$

1$TAB
TABLE =6hycgt ,0,0.0,
$

1$TAB
TABLE =6hzcgt ,l,6hweicon,5,1,1,1,
0,31.33, 202250,31.5, 404500,31.75, 606750,32.42, 809000,33.83,
ENDPHS = 1,
$

1$GENDAT
EVENT = 10,
CRITR = 6htdurp ,
VALUE = 100.0,

108

ENDPHS = 1,
$

1$GENDAT
EVENT = 11,
CRITR = öhtdurp ,
VALUE = 150.0,
NPC(l) = 2, / Make conic calculations and print
ENDPHS = 1,
$

1$GENDAT
EVENT = 12,
CRITR = öhwprop ,
VALUE = o.,
ENDPHS = 1,
ENDPRB = 1,
ENDJOB = 1,
$

109

110

APPENDIX E. POST TABLES USED IN G-POST

This appendix contains the tables used to generate the G-POST file in Appendix D.

vacuum, tab
table = 6htvc 11,0,5472000.0,

exitarea.tab
table =6haelt ,0,232.5,

dragforce.tab
table =6hcdt ,2,6hmach ,6halpha ,12,5,1,1,1,1,1,1,1,1,
-20.,
0.0, 1.456, .5, 1.585, .7, 1.598, .8, 1.242, 1., 3.157, 1.2,2.996,
1.5, 1.816, 2.0,1.301, 3., .850, 5., .482,7., .382, 10., .396,
-5.,
0.0, .263, .5, .338, .7, .110, .8, .302,1., .690,1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212,10., .210,
0.,

0.0, .180, .5, .18,.7, .200, .8, .251,1., .495, 1.2, .502,
1.5, .485,2.0, .456,3., .391,5., .272,7., .231, 10., .231,
5.,

0.0, .263, .5, .338, .7, .110, .8, .302,1., .690, 1.2, .671,
1.5, .563,2.0, .480,3., .383,5., .256,7., .212, 10., .210,
20.,

0.0, 1.456, .5, 1.585, .7, 1.598, .8, 1.242, 1., 3.157, 1.2,2.996,
1.5,1.816,2.0,1.301,3., .850,5., .482,7., .382, 10., .396,

liftforcctab
table =6hclt ,2,6hmach ,6halpha,12,4,1,1,1,1,1,1,1,1,
-20.,
0.0, -1.010, .5,-1.025, .7, -.99, .8, -.815, l.,-1.08 , 1.2,-1.11,
1.5, -.895, 2.0, -.788, 3.,-.635, 5., -.480, 7., -.43 , 10., -.43,
0.,

0.0, .015, .5, .04 , .7, .01, .8, -.045,1., .08 , 1.2, .038,
1.5, -.02,2.0,-.108,3.,-.145, 5.,-.15, 7.,-.15 ,10.,-.15 ,
5.,

0.0, .545, .5, .75, .7, .53, .8, .365,1., .69 , 1.2, .638,
1.5, .43,2., .242,3., .11, 5., .025 , 7., .00 , 10., .00 ,
20.,

0.0, 2.135, .5, 2.24 , .7, 2.09, .8,1.595 , 1., 2.52 , 1.2,2.438,
1.5, 1.78 , 2., 1.292, 3., .875, 5., .55 , 7., .45 , 10., .45 ,

111

momentcoeff.tab
table =6hcmat ,l,6hmach ,12,1,1,1,
0.0,-019, .7, .0218, .9, .0302, 1., .023, 1.2.-.011, 1.5,-.032,
1.8,-.0395,2.,-.0419, 3.,-.0396, 5.,-.0187, 7.,-.0082, 10., 0.0,

aeroref.tab
table = öhxreft, 1,6hmach ,12,1,1,1,
0.0,137.86, .7,140.05, .9,136.77, l.,147.71, 1.2,145.52,
1.5,144.43, 1.8,141.58, 2.,138.3, 3.,13L74, 5.,118.83,
7..109.42, 10..91.91,

vacuum2.tab
table =6htvclt ,0,1431000.0,

exitarea2.tab
table =6haelt ,0,154.54,

dragforce2.tab
table =6hcdt ,2,6hmach ,6halpha ,12,7,1,1,1,1,1,1,1,1,
-20.,
0,.024, .2,.024, .6,.026, .8,-028, .9,-035, 1.3,.093, 1.5,.122,
2,.l 16, 2.48,.l, 3,.092, 3.9,.082, 40,.03,
-4.,
0,.024, .2,.024, .6,.026, .8,-028, .9,-035, 1.3,.093, 1-5,-122,
2,.116, 2.48,.l, 3,-092, 3.9,-082, 40,.03,

0-,
0,-026, .2,-026, .6,.026, .8,-024, .9,-036, 1.3,-092, 1.5,-118,
2,.106, 2.48,.091, 3,.082, 3.9,.074, 40,-022,

5.,
0,.042, .2,.042, .6,.04, .8,.042, .9,.076, 1.3,. 124, 1.5,. 142,
2,.124, 2.48,-098, 3,-088, 3.9,.079, 40,.033,
10.,

0,.076, .2,.076, .6,.08, .8,.l, .9,-13, 1.3,-194, 1.5,.192,
2,.165, 2.48,.127, 3,.114, 3.9,.095, 40,-057,
20.,

0,.36, .2,.36, .6,.362, .8,-44, .9,.41, 1.3,.39, 1.5,.36 , 2,.32,
2.48,.242, 3,.224, 3.9,.216, 40,.238,
30.,

0,.36, .2,.36, .6,.36, .8,.44, .9,-41, 1.3,.39, 1.5,.36, 2,.32,
2.48,.44,3,.418, 3.9,.4,40,.3,

112

Iiftforce2.tab
table =6hclt ,2,6hmach ,6halpha ,12,7,1,1,1,1,1,1,1,1,
-20.,
0,-.07, .2,-.08, .6,-.12, .8,-. 12, .9,-12, 1.3,-12, 1.5,-12,
2,-13, 2.48,-14, 3,-12, 3.9,-1,40,-14,

4.,
0,-07, .2,-08, .6,-12, .8,-12, .9,-12,1.3,-12,1.5,-12,
2,-13, 2.48,-14, 3,-12, 3.9,-1,40,-14,
0.,

0,.08, .2,.08, .6,.08, .8,.06, .9,-06,1.3,.07, 1.5,.04, 2,0.0,
2.48,-02, 3,-03, 3.9,-04,40,.03,

5.,
0,.29, .2,.29, .6,.29, .8,.28, .9,.28,1.3,.3,1.5,.24, 2,.17,
2.48,-12, 3,.09,3.9,.08,40,.21,
10.,

0,-5, .2,-6, .6,-49, .8,.48, .9,-52,1.3,-52,1.5,.41, 2,33,
2.48,-25, 3,-2, 3.9,-15,40,-4,
20.,

0,-94, .2,.94, .6,.92, .8,.9, .9,.94, 1.3,.89, 1.5,.75, 2,.63,
2.48,.51,3,.43, 3.9,39,40,.76,
30.,

0,.94, .2,.94, .6,.92, .8,.9, .9,.94,1.3,-89,1.5,.75, 2,.68,
2.48,-67, 3,.65, 3.9,-62, 40,-76,

momentcoeff2.tab
table =6hcmat ,0,0.0,

xcentergrav.tab
table =6hxcgt ,l,6hweicon,5,1,1,1,
0,87.64, 202250,93.93, 404500,99.68, 606750,104.04, 809000,104.37,

ycentergrav.tab
table =6hycgt ,0,0.0,

zcentergrav.tab
table =6hzcgt ,l,6hweicon,5,1,1,1,
0,31.33, 202250,31.5,404500,31.75,606750,32.42, 809000,33.83,

113

114

LIST OF REFERENCES

1. Brauer, G., Comick, D., Olson, D., Petersen, F., Stevenson, R., Utilization Manual,
Final Report for the Program to Optimize Simulated Trajectories (POST) Volume II,
Martin Marietta Corporation, Denver, Colorado, September, 1989.

2. Integrated Computer Solutions Incorporated (ICS), The Builder Xcessorv User's
Guide Unix Edition. ICS, Cambridge, Massachusetts, 1994.

3. McMinds, D., Mastering OSF/Motif Widgets 2nd Edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1993.

4. Nicholson, J., A Primer for Post, AE 4900 Course Paper, Department of
Aeronautics, Naval Postgraduate School, Summer-Fall 1993.

5. The MathWorks Inc., Matlab User's Guide. The MathWorks Inc., South Natick,
Massachusetts, April 1989.

6. Zyda, M., "Rotate3.C", Course Notes for CS4202, Department of Computer
Science, Naval Postgraduate School, March 1994.

115

116

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library
Code 052
Naval Postgraduate School
Monterey, CA 93943-5101

3. Dr Ted Lewis, Chairman and Professor
Computer Science Department Code CS
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr I. Michael Ross, Assistant Professor
Aeronautics and Astronautics Department Code AA/RO
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr Michael J. Zyda, Professor
Computer Science Department Code CS/ZK
Naval Postgraduate School
Monterey, CA 93943-5000

6. David D. Nash, Lieutenant..
93924 Pitney Lane
Junction City, OR 97448

117

