
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 Hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

^j for. $S
3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

'sisCt^

6. AUTHOR(S) /^

.' f

~2,zJ)/l,C^/ /■/fdu/i^. Sc^aa-T'A
7. PERFORMING ORGANIZATION/NAMEfS) AND ADDRESS(ES)

5. FUNDING NUMBERS

AFIT Students Attending:

YrftbYfCZ ■'&///?

8. PERFORMING ORGANIZATION
REPORT NUMBER

f^-ö^ £>

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STREET, BLDG 125
WRIGHT-PATTERSON AFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for Public Release IAW AFR 190-1
Distribution Unlimited
BRIAN D. Gauthier, MSgt, USAF
Chief Administration

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

i<@\ ^

•,'% V U i?

**J> a n •s>
If I li^a V0X ,j ,

"\ JAN 1 1 1996" - -il

19960104 136
14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 '^jJD 1 Standard Form 298 (Rev 2-89)

HIERARCHICAL HOLOGRAPHIC MODELING

FOR SOFTWARE ACQUISITION

RISK ASSESSMENT AND MANAGEMENT

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Systems Engineering)

by

Richard Maury Schooff

January 1996

Dissertation Advisor:

Dr. Yacov Y. Haimes

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy (Systems Engineering).

HZL9/)k J*LJ4<
Richard M. Schooff (Author)

This dissertation has been read and approved by the Examining Committee:

V

M

Dr. Yacov Y. Haimes (Advisor)

iO^~
Dr. William T. Scherer (Chair)

a. <r LX-%
Dr. Douglas J. White

Dr. BÄrA W. jfcpfeon

(ULI, Af~Li£&r.
Mr. Clyde Chittister

Accepted for the School of Engineering and Applied Science:

f|| •
! £^

Dr. Richard W. Miksad (Dean)

Ill

ABSTRACT

Hierarchical Holographic Modeling

for Software Acquisition Risk Assessment and Management

Software has come to play an increasingly dominant role in today's world. System design,

quality, and risk are predicated, as never before, on the software component of the system.

Unfortunately, this significant increase in our dependence on software, which in turn

causes an increase in the amount of software required, has not been matched by a

corresponding increase in our capability to manage its acquisition and development. Cases

of software acquisition mismanagement that resulted in large cost overruns and schedule

delays have been widely reported. Maturing the capabilities of the software acquisition

community require the development of appropriate tools and methodologies for risk-based

decision-making management.

This dissertation addresses the assessment and management of risks associated with the

software acquisition processes from a holistic perspective using hierarchical holographic

modeling (HHM). The multiple visions and perspectives within which the life cycle of

software acquisition is stated and modeled, provide a comprehensive framework for risk

assessment and management of software acquisition. In particular, widely used models in

software acquisition such as the COCOMO model, can now be extended to incorporate

probabilistic as well as dynamic dimensions. The ultimate contributions of this dissertation

can be found in at least two major areas: (a) in the theoretical and methodological domain

of systems modeling in the quest of a more quantitative risk assessment and management

framework, and (b) in advancing the state of practice in the assessment and management of

software acquisition by extending highly used models in practice to incorporate more

realistic probabilities and dynamic dimensions.

IV

A probabilistic, multiobjective approach to software estimation that focuses on the risk of

extreme events and utilizes the conditional expected value as an additional risk management

decision-making metric is developed. Motivated by the software community's transition

towards a prototype or spiral development process paradigm, a dynamic software

estimation model is developed that is particularly suited for modern software development

processes. The dynamic model permits analysis of the impact of management control

policies on future decision opportunities, while accounting for changes over time in the

development environment and the system requirements. A software estimation updating

scheme is developed as an extension of the dynamic software estimation model to account

for the differences between actual project resource requirements and the estimates of those

requirements, and to update the overall resource requirement projections.

The HHM framework is extended to formulate software acquisition as a hierarchical

decision problem. Software acquisition management decision options do not fall entirely in

the domain of any single participant community, yet each party is affected by the other's

decisions. HHM provides the necessary insight and coordination structure for resolving

the competing issues, objectives, and decision opportunities of the several participant

communities as they impact the project's cost and schedule.

Acknowledgments

I give my thanks, and am indebted to the U.S. Air Force, Colonel Daniel W. Litwhiler, and

the Department of Mathematical Sciences, U.S. Air Force Academy, for their confidence

and support in providing me this academic opportunity.

I am grateful for the untiring guidance of my advisor and mentor, Dr. Yacov Y. Haimes.

His wisdom, insight, and gentle encouragement made this research possible. Dr. Haimes

exemplifies the Jeffersonian scholar -- an active contributor to scholarship, instruction, the

University institution, religious and civic affairs, as well as national and international

organizations and activities. In fact, his life epitomizes the sense of holism espoused in his

research. I feel privileged to have been associated with him these past years.

I have also benefited from my working relation with the other graduate students and

associates of the Center for Risk Management of Engineering Systems, with particular

thanks to Vijay Tulsiani and Jim Lambert. A special thanks goes to Sharon Gingras for her

willing assistance, encouragement, and sense of humor, not to mention bottomless candy

jar.

Above all, I thank my wife, Sharon, for her love, strength, encouragement, and support.

As with all of our life, this adventure has been a joint effort and we have completed it

together. Finally, my love and thanks to Ashley, Kaitlyn, and Jayson, who truly bring joy

and meaning to life, and who daily remind me of my ultimate priorities.

Table of Contents

Abstract m

Acknowledgments v

Contents vi

List of Tables *&

List of Figures X1V

List of Symbols xvi

Chapter 1 Introduction and problem background 1

1.1 Motivation for the research 1

1.2 Impact of the research 2

1.3 Organization of the dissertation 4

1.4 Software acquisition - background 6

1.4.1 Criticality of software in modern systems 6

1.4.2 Participants in the software acquisition process 7

1.4.3 The software acquisition process 8

1.4.4 Phases in the software process 8

1.4.5 Models of the software process 9

1.4.5.1 Waterfall model 9

1.4.5.2 Prototype model 11

1.4.5.3 Spiral model 11

1.4.5.4 Other software process models 11

1.4.5.5 Software process models and software acquisition 12

1.4.6 Software risk 13

1.4.7 Software development research 14

1.4.8 Software acquisition research 15

1.5 Chapter summary 17

Vll

Chapter 2 Literature review and model evaluation 18

2.1 Risk 18

2.1.1 Risk assessment and risk management 19

2.2 Model management 19

2.2.1 Database theory-based model management 20

2.2.2 Artificial intelligence-based model management 20

2.2.3 Graphical-based model management 20

2.3 Hierarchical holographic modeling 21

2.3.1 HHM as a model management methodology 22

2.4 Software estimation 23

2.4.1 KLOC-based software estimation 24

2.4.2 Function point-based software estimation 25

2.4.3 Software estimation models 26

2.4.3.1 COCOMO 27

2.4.3.2 The Price-S model 28

2.4.3.3 SEER-SEM 28

2.4.3.4 REVIC 28

2.4.3.5 Checkpoint 29

2.4.3.6 SLIM 29

2.4.4 Accuracy of software estimation models 30

2.4.5 Software estimation tools 30

2.5 Software performance 32

2.5.1 Software defects, faults, errors, and failures 32

2.5.2 Software reliability 33

2.5.3 Approaches to highly reliability software 34

2.5.4 Software reliability models 35

2.5.5 Software reliability trade-offs 36

2.6 Probabilistic evaluation 36

2.6.1 Fallacy of the expected value 37

2.6.2 The PMRM and the conditional expected value 38

2.7 Chapter summary 40

Vlll

Chapter 3 A holistic management framework for software acquisition 41

3.1 Introduction 41

3.2 The HHM decompositions for software acquisition 42

3.2.1 Program consequences decomposition 44

3.2.2 Community maturity decomposition 44

3.2.3 Life cycle decomposition 45

3.2.4 Modality decomposition 45

3.2.5 Project elements decomposition 46

3.2.6 Adding detail to the HHM decompositions 46

3.3 HHM for software acquisition risk identification 47

3.4 HHM for analytic model development 47

3.5 Chapter summary 49

Chapter 4 Exact determination of the triangular distribution's conditional

expectations 50

4.1 Background 50

4.2 Previous derivations of conditional expectation equations 52

4.3 Exact determination of the triangular distribution conditional

expectations 52
4.3.1 The low-probability, high-damage conditional expectation,/* 53

4.3.2 The unconditional expected value,/5 54

4.4 Sensitivity of the triangular distribution's/4 conditional expectation 56

4.5 Partitioning sensitivity examples 58

4.5.1 Example 4.1 - Project cost overrun evaluation 58

4.5.2 Example 4.2 - Evaluating alternatives with identical

unconditional expected values 61

4.6 Chapter summary 63

Chapter 5 Probabilistic software estimation 65

5.1 Introduction 65

5.2 Parameter estimation concerns for software estimation models 66

5.3 Accounting for uncertainty in software estimation 66

5.4 The probabilistic software estimation approach 68

IX

5.4.1 Direct approach to probabilistic software estimation 68

5.4.1.2 Example 5.1 - Alternative selection using the direct

approach 69

5.4.2 Monte Carlo simulation approach to probabilistic software

estimation '71

5.4.2.1 Example 5.2 - The Monte Carlo approach for

Intermediate COCOMO 72

5.5 Comparing probabilistic results, original model results, and actual

values 74
5.5.1 Baseline comparison formulation 75

5.5.1.1 Baseline comparison: Basic COCOMO 77

5.5.1.2 Baseline comparison: Intermediate COCOMO 77

5.5.2 Underestimation comparison formulation 81

5.5.2.1 Underestimation comparison: Basic COCOMO 81

5.5.2.2 Underestimation comparison: Intermediate

COCOMO 82

5.6 Chapter summary 83

Chapter 6 Dynamic, multistage software estimation 85

6.1 Introduction and the need for dynamic software estimation 85

6.1.1 Dynamical modeling - the basic problem 86

6.1.2 Multiobjective, multistage tradeoff analysis 87

6.2 Dynamical modeling for software estimation 87

6.3 A linear dynamical software estimation model 89

6.3.1 Solution approach for the linear dynamical problem 90

6.3.2 Example 6.1 - Policy evaluation using the linear dynamical

model 93

6.3.3 Observations 99

6.4 A nonlinear multistage software estimation model 99

6.4.1 Solution approach for the nonlinear dynamical problem 102

6.4.2 Example 6.2 - Policy analysis with the nonlinear dynamical

model 104

6.4.2.1 Model verification 107

6.4.2.2 Probabilistic evaluation 107

6.5 Chapter summary 109

Chapter 7 The HHM framework for dynamic software estimation updating and for

multiobjective decision making coordination 112

7.1 Introduction 112

7.2 Dynamic software estimation updating 113

7.2.1 Dynamic software estimation updating process 114

7.2.2 Dynamic software estimation updating methodology 116

7.2.2.1 Recalibration strategy 117

7.2.2.2 Recalibration via environment specification 117

7.2.2.3 Recalibration via size specification 118

7.2.2.4 Recalibration via model parameters 120

7.2.3 Example 7.1 - Dynamic software estimation updating 120

7.2.3.1 Example 7.1 (cont.) - Accurate size, recalibrate via

environment 121

7.2.3.2 Example 7.1 (cont.) - Accurate environment,

recalibrate via size 122

7.2.3.3 Example 7.1 (cont.) - Accurate size and

environment, recalibrate via model parameters 123

7.2.4 Software estimation updating summary 124

7.3 Software acquisition's multiobjective, multi-decision maker decision-

making coordination 124

7.3.1 Hierarchical decision problems 124

7.3.2 Hierarchical decision problem formulation 126

7.3.3 Software acquisition's program consequence hierarchical

decision problem 127

7.3.4 The user/customer decomposition decision problem 128

7.3.5 The contractor decomposition decision problem 131

7.3.6 The program consequence hierarchical decision problem 133

7.3.7 Solution procedure for the hierarchical decision problem 133

7.3.7.1 Solution procedure for the user/customer

decomposition 134

7.3.7.2 Solution procedure for the contractor

decomposition 134

7.3.7.3 Example 7.2 - The hierarchical decision problem

approach applied to the user/customer and

contractor decompositions 135

XI

7.3.8 Negotiation and convergence for the hierarchical decision

problem 139

7.4 Chapter summary 140

Chapter 8 Summary, conclusions, and future work 142

8.1 Summary and conclusions of the dissertation 142

8.2 Recommendation for future work 144

References 14"

Appendix A A COCOMO Tutorial A-l

A.l An overview of COCOMO A-l

A.2 Basic COCOMO A-2

A.3 Intermediate COCOMO A-4

A.3.1 Example software estimation using Intermediate COCOMO A-6

A.4 Detailed COCOMO A-7

A.5 Ada COCOMO A-8

A.6 COCOMO 2.0 A-8

A.7 Summary A-9

A.8 References for Appendix A A-9

Appendix B Software estimation tools B-l

B.l COCOMO-based software estimation tools B-l

B.l.l CB COCOMO B-l

B.1.2COCOMOID B-l

B.1.3 COCOMOl B-2

B.1.4 CoCoPro B-2

B.1.5COSTAR B-2

B.1.6 COSTMODL B-3

B.1.7GECOMOPlus B-3

B.1.8GHL COCOMO B-4

B.1.9 REVIC B-4

XU

B.1.10SECOMO ß-5

B.l.ll SWAN ß-5

B.2 Function point-based software estimation tools B-5

B.2.1 ASSET-R ß-5

B.2.2 CA-FPXpert B-6

B.2.3 CHECKPOINT B-6

B.2.4 MicroMan ESTI-MATE B-6

B.2.5 PROJECT BRIDGE B-7

B.2.6 SIZE Plus B-7

B.2.7 SPRQ/20 B-7

B.3 Other method-based software estimation tools B-8

B.3.1CA-ESTIMACS B-8

B.3.2 CEIS B-8

B.3.3 COSTEXPERT B-9

B.3.4 PRICES B-9

B.3.5 SASET B-10

B.3.6 SEER-SEM B-10

B.3.7 SEER-SSM B-ll

B.3.8 SIZE PLANNER B-ll

B.3.9 SIZEEXPERT B-ll

B.3.10 SLIM B-ll
B.3.11 SOFTCOST-R and SOFTCOST-ADA B-12

B.3.12SYSTEM-4 B-13

B.4 References for Appendix B B-13

Appendix C The/2 and/3 conditional expectations of the triangular distribution C-l

C. 1 The high-probability, low-damage expected value,/2 C-l

C.2 The moderate-damage, moderate-probability conditional expected

value,/3 C-2

Xlll

List of Tables

Table 2.1 Software estimation tools 31

Table 4.1 Triangular distribution conditional expectations example 54

Table 4.2 Triangular distribution partitioning values example 57

Table 4.3 Example 4.1 - Project cost overrun estimate parameters 58

Table 4.4 Example 4.2 - Cost estimate parameters for each case 61

Table 5.1 Development effort (man-month) estimates for each alternative 69

Table 5.2 KLOC requirement estimates for each alternative 73

Table 5.3 Expected value results from Monte Carlo simulation 74

Table 5.4 Software development projects data 76

Table 6.1 Noninferior policies for software acquisition 96

Table 6.2 Triangular distribution parameters for initial KLOC estimate x(0) 105

Table 6.3 System complexity attribute KLOC adjustment factors 106

Table 6.4 Resource allocation control policy KLOC adjustment factors 106

Table 6.5 Noninferior policies for nonlinear multistage software acquisition

example 108

Table 7.1 Original and dynamic Intermediate COCOMO equations 116

Table 7.2 Dynamic software estimation example - initial model values 120

Table 7.3 Software estimation updating example - original estimates 121

Table 7.4 Software estimation updating example - revised estimates 122

Table 7.5 Description of the hierarchical decision problem formulation 128

Table 7.6 Customer objective function values, varying x\ 136

Table 7.7 Contractor objective function values, varying x\, xi, x3 138

XIV

List of Figures

Figure 1.1 Acquisition process participants 7

Figure 1.2 Waterfall model of the software process 10

Figure 1.3 Spiral model of the software process 12

Figure 1.4 Software acquisition capability maturity model (SA-CMM) 16

Figure 2.1 Coordination in an HHM framework 22

Figure 2.2 A taxonomy of software estimation models 26

Figure 2.3 Insufficiency of the expected value for decision making 37

Figure 2.4 Extreme event probability partitioning 39

Figure 3.1 Hierarchical holographic modeling for software acquisition 43

Figure 3.2 Expanding detail of the program consequence decomposition 47

Figure 3.3 Risk assessment - program consequences-based HHM structure 48

Figure 3.4 A representative influence diagram relationship of some HHM

decomposition elements 49

Figure 4.1 Triangular probability distribution 53

Figure 4.2 Triangular probability distribution for customer and contractors 59

Figure 4.3 Unconditional and conditional percentage cost overrun for varying a

values 60
Figure 4.4 Rate of change of/4 for varying partitioning values 61

Figure 4.5 Triangular probability distribution for the three cases 62

Figure 4.6 Unconditional and conditional expected values for varying a values 63

Figure 4.7 Rate of change of/4 for varying partitioning values 63

Figure 5.1 Development effort probability distribution for the three alternatives 69

Figure 5.2 Unconditional and conditional expected values for varying a values 70

Figure 5.3 Histogram of Monte Carlo simulation results for Alternative 2 73

Figure 5.4 Unconditional and conditional expected values from Monte Carlo

simulation 74

Figure 5.5 Basic COCOMO model results 78

Figure 5.6 Baseline comparison: Basic COCOMO model normalized percentage

error 79

Figure 5.7 Intermediate COCOMO model results 80

Figure 5.8 Underestimation scenario - Basic COCOMO model results 81

Figure 5.9 Underestimation scenario - Intermediate COCOMO model results 82

XV

Figure 5.10 Underestimation comparison: Intermediate COCOMO model

normalized percentage error 83

Figure 6.1 Discrete-time dynamical model 87

Figure 6.2 Noninferior solution set considering only first-stage objectives 98

Figure 6.3 Impact analysis at the second stage 99

Figure 6.4 Noninferior solution set considering only first-stage objectives 110

Figure 7.1 Sample project milestone chart 114

Figure 7.2 Dynamic software estimation updating process 115

Figure 7.3 Dynamic software estimation HHM (initial application) 116

Figure 7.4 Software estimation recalibration strategy 118

Figure 7.5 Recalibration via environment specification 119

Figure 7.6 Recalibration via size specification 119

Figure 7.7 Project milestone chart with revised estimates 123

Figure 7.8 Hierarchical decision problem for participant community - program

consequence coordination 128

Figure 7.9 Requirements and unmet requirements probability distributions 130

Figure 7.10 User/customer Pareto optimal trade-offs 134

Figure 7.11 Contractor Pareto optimal trade-offs 135

Figure 7.12 Customer's Pareto optimal solutions 137

Figure 7.13 Contractor's Pareto optimal solutions 139

XVI

List of Symbols

a constant

a low parameter of the triangular distribution

b constant

b high parameter of the triangular distribution

c constant

c most likely parameter of the triangular distribution

c(») environment factor in estimation models that varies over time

d constant

e Pressman's (weighted average) expected value

et effort multiplier associated with the i* attribute

E[»] expected value

E[»l*] expected value given the condition *

EAF effort adjustment factor of the Intermediate COCOMO model

f(») probability density function

F(») cumulative distribution function

fx management control policy implementation cost

f2 high-probability, low-consequence conditional expected value

f3 intermediate probability and consequence expected value

fc low-probability, high-consequence conditional expected value

f5 unconditional expected value

/* control policy cost at stage k

f\ conditional expected value at stage k

/* expected value at stage k

XVII

ft- a decomposition objectives of the hierarchical decision problem

f- ß decomposition objectives of the hierarchical decision problem

f« the Ith objective of the a decomposition

fß the ith objective of the ß decomposition

goc a decomposition constraints of the hierarchical decision problem

gß ß decomposition constraints of the hierarchical decision problem

/ integer index

k discrete stages (decision points) of the system

k[cost-per-man-month multiplier

K cost multiplier

KLOC thousands of lines of code

L(») Lagrange function

m Pressman's most likely parameter

m number of observations from Monte Carlo simulation

M man-months of development effort (abbreviated notation), static model

MW man-month estimate from Monte Carlo simulation, static model

Mß set of Monte Carlo simulation outcomes exceeding damage partition value,

static model

MM man-months of development effort

MTTF mean time to failure

n integer number of iterations in a Monte Carlo simulation

o Pressman's optimistic parameter

p Pressman's pessimistic parameter

p profit percentage factor associated with a cost-plus contract

PF productivity factor

Q(«) unreliability function

r interest rate

XVlll

R requirements change requests

R(») reliability function

to project development time

u(») resource allocation and acquisition strategy control policy

v(») random variable accounting for observation noise

w(») random variable accounting for process noise

XJ Ith decision variable

x a a decomposition decision variables of the hierarchical decision problem

xß ß decomposition decision variables of the hierarchical decision problem

xß*(xa) reaction of the ß decomposition decision makers, given xa

x(») state of the system (interpreted as KLOC in dynamic models)

x (•) deterministic representation of x(»)

Xa a decomposition definition set of the hierarchical decision problem

Xß ß decomposition definition set of the hierarchical decision problem

y(») effort (cost) output

y (•) deterministic representation of y(»)

YW man-month estimate from Monte Carlo simulation, nonlinear dynamic

model

Yß set of Monte Carlo simulation outcomes exceeding damage partition value,

nonlinear dynamic model

z(«) instantaneous failure rate function

a partitioning probability for the risk of extreme events in the PMRM

a a decomposition sub-problem of the hierarchical decision problem

ß damage axis partitioning of the risk of extreme events in the PMRM

ß ß decomposition sub-problem of the hierarchical decision problem

ev tolerance value of the ith constraint in the e-constraint method

X Lagrange multiplier

XIX

X'l tradeoff rate between objectives // and fk

\i mean value

a2 variance

Chapter 1
Introduction and Problem Background

1.1 Motivation for the Research

Software has come to play an increasingly dominant role in today's world. It controls the

way organizations operate, aids in analyzing and determining corporate strategies, and

generally helps organizations operate more efficiently. As computer usage has become

central to organizational activities and engineering system design, the software component

of these systems has become increasingly important. Software has assumed the systems

integration role - components that before could not be integrated, or were interconnected

through hardware means, are now linked via software. Systems quality is predicated, as

never before, upon the quality of its software. System risk is increasingly being defined

relative to the risk associated with the software component.

Unfortunately, this significant increase in our dependence on software, which in turn

causes an increase in the amount of software required, has not been matched by a

corresponding increase in our capability to manage its acquisition and development.

Acquisition officials, whose training and experience previously focused on the hardware

component of a system, now find themselves concentrating more of their energies,

concern, and resources on the software component.

The inability to effectively manage the software component leads to project cost overrun

and schedule slippage. Rothfeder [1988] gives an example in the case of Allstate Insurance

which hired Electronic Data Systems in 1982 to build an $8 million computer system

expected to be completed in 1987. It was finally completed in 1993 at a price of over $100

million [Fairley 1994]. Neumann [1988] gives the example of Bank of America which in

1988 abandoned a computer system originally estimated to cost $20 million in 1982 after

spending over $60 million trying to get it to work. GAO [1992a] states that software

development has been a major problem during the C-17 development program. Although

operational C-17 aircraft are now in the Air Force inventory, the overall project is over 2

years behind schedule and $1.5 billion over its 1985 cost estimate of $4.1 billion.

McFarlan [1981], Rothfeder [1988], and Neumann [1988] provide numerous other

instances where software projects have gone over budget and schedule more frequently

than not.

Boehm [1989] states that these project disasters can generally be traced back to risk items

that were either not identified, were improperly assessed, or improperly dealt with. For

example, GAO [1992a] states that the Air Force underestimated the size and complexity of

the C-17 software development effort and assumed that the software development would be

low-risk without performing any analysis to support and document the assumption. Thus,

it is clear that the risks in software acquisition must be identified and managed properly in

order to minimize the losses resulting from such runaway projects.

Effective management of modern, complex processes such as software acquisition requires

capable, mature direction. Good management of technological systems must address the

holistic nature of the system in terms of its hierarchical, organizational, and functional

decision making structure; the various time horizons; the multiple decision makers,

stakeholders, and users of the system; and the host of technical, institutional, legal, and

other socioeconomic conditions that require consideration. Maturing the capabilities of the

software acquisition community will require increasingly sophisticated analytic tools and

methodologies to identify program risks, evaluate their potential adverse impact, and

effectively incorporate risk considerations in the decision making management framework.

1.2 Impact of the Research.

The overall aim of this research is the development of theoretical and methodological

foundations upon which we can enhance software acquisition management through the

development of a holistic and systemic risk assessment and management framework. The

particular objectives in support of the overall focus include:

• Developing a holistic framework for software acquisition that provides a

comprehensive structure to identify risk sources, assess the risks, explicitly

include the consideration of uncertainty, and coordinate competing issues that

dominate software acquisition decision making.

• As part of the review of literature, identify current methods, models, and tools that

assist in the software estimation effort -- including software cost, schedule, and

performance estimation.

• Extend current software estimation practices to include explicit consideration of

the inherent uncertainties - hence, risks -- associated with a software acquisition

endeavor.

• Develop a dynamic software estimation approach that is particularly suited for

modern software development practices; namely, prototyping and spiral

development processes.

• Devise an approach for updating the software estimates as an on-going activity,

conducted throughout the life cycle.

• Demonstrate a hierarchical multiobjective decision-making framework for

coordinating competing decision-making issues among software participant

communities as they impact the project's cost and schedule.

The intent of this work is not to specifically address and consider all of the multiple aspects

associated with the software acquisition process, but to develop a framework that would

enable the consideration of such complexities and interconnectedness, and then focus the

research effort on a most-critical element of the software acquisition process - software

estimation.

The research builds on the framework of risk assessment and management for engineering

systems, hierarchical holographic modeling (HHM), software estimation modeling, the

partitioned multiobjective risk method (PMRM), the risk of extreme events, and dynamical

modeling.

While many examples and references are made to government software acquisition (due to

the federal government's tremendous expenditures for software products and services and

to the fact that government acquisition procedures, regulations, and results are available for

public review), application of the results of this research are intended to strengthen the

software acquisition program manager's (government or industry) ability to: i) identify and

comprehend the complexities and risks associated with a software acquisition program, ii)

quantify the uncertainties associated with the program, and iii) make trade-off judgments

for resolving competing issues and objectives.

1.3 Organization of the Dissertation

This Chapter 1 demonstrates the need for a comprehensive approach to software acquisition

risk assessment and management for identifying and evaluating project risks in situations of

uncertainty. Background information regarding the criticality of software for modern

systems, the complexity of the software acquisition process and all it encompasses,

software risks, and past trends and shortcomings in software acquisition research point to

the need for this research.

Chapter 2 reviews the literature pertinent to software acquisition risk modeling. The

concepts of risk, and risk assessment and management are introduced and reviewed.

Model management methods, those approaches for structured consideration of multiple

analytic models, are reviewed. Hierarchical holographic modeling (HHM), which provides

the theoretical and methodological basis and incentive for many of the results of this

dissertation, is introduced and reviewed. Software estimation and software reliability

models are reviewed. An extensive review of software estimation methods and tools is

provided in an appendix. The general concepts of probabilistic analysis are introduced, and

an explanation of the fallacy of the expected value motivates the extension of classical

approaches. The partitioned multiobjective risk method (PMRM), with its risk measure of

extreme events,^, is introduced.

Chapter 3 develops a hierarchical holographic model for software acquisition. Exploiting

the inherent synergy of HHM's descriptive and analytic duality provides the necessary

theoretical, methodological, and practical foundation for a software acquisition risk

assessment and management framework. Only by exploring the various dimensions and

perspectives of software acquisition, and the combinations of perspective elements, can

risk identification be properly accomplished.

Chapter 4 is a derivation and application of the exact solution for the expectation functions

of the triangular distribution. In situations such as software acquisition, where insufficient

empirical evidence or expert judgment rule-out the use of other probability distributions,

analysis using triangular distributions is often desirable. Deriving risk functions for the

triangular distribution enhances decision making in conditions of uncertainty, permitting

probabilistic analysis that includes the additional information of the conditional expected

value. Results are deployed to software acquisition decision making situations.

Chapter 5 develops two probabilistic, multiobjective approaches for software estimation. A

method for direct estimation that employs the results of Chapter 4 is developed and

demonstrated. The second method, using Monte Carlo simulation, extends probabilistic

analysis to the range of existing software estimation models. A methodology for evaluating

the unconditional and conditional expected values of a Monte Carlo simulation is

developed. The approach is deployed to the COCOMO model; comparisons of the

probabilistic approach, the COCOMO model, and the actual project results are made using

the original COCOMO data set.

Chapter 6 extends the current state-of-art in software cost estimation modeling by

developing multistage, dynamical software cost estimation models. As the software

community embraces the spiral development process model, software cost estimation

models that are responsive to the new paradigm are required. No longer a single time-

period activity, software cost estimation models must account for the dynamics of changing

software requirements and design over multiple time periods. Applying the probabilistic

cost estimation method of Chapter 5 with its multiple objective risk functions constitutes a

multiple objective decision problem that is solved over multiple stages.

Chapter 7 explores two additional issues related to software estimation: i) the on-going role

of software estimation for resolving the discrepancies between actual and estimated project

progress, and ii) the coordinated resolution among participant communities of software

program management. Actual project development effort and schedule rarely matches its

estimates exactly - appropriately adjusting the estimation models to update the eventual

effort and schedule requirements is facilitated through an HHM investigation. With a

revised estimate, appropriate management control policies can be selected. These policy

decisions, however, are not entirely in the jurisdiction of any one participant community,

but are shared among the participants. Each participant is affected by the other's decisions.

Investigation of the unique and overlapping problem elements through the HHM increases

understanding and provides the framework for mutually agreeable solutions.

Chapter 8 provides a summary of the contributions of the dissertation and some

recommendations for future work.

Three appendicies are included. Appendix A is a detailed tutorial on the popular software

estimation model, Constructive COst Model (COCOMO). As COCOMO is widely

recognized as the industry standard software estimation model, the results of this research

are applied to the model. Appendix B is a thorough review of the many software

estimation tools available on the market. A brief description of each tool, along with

information concerning its vendor or supporting organization is provided. Appendix C

includes derivations of the remaining conditional expectation functions for the triangular

distribution that were not included in Chapter 4.

1.4 Software Acquisition - Background

The concept of software acquisition is in fact a misnomer (even though it is included in the

title of this dissertation). In reality, government acquisition focuses on acquiring systems,

not exclusive software per se; these systems include an increasingly major software

component. Simply stated, systems acquisition (to include software acquisition) is the

process and activities associated with procuring a solution system that meets a real-world,

operational need. Major systems acquisition is a complicated jumble of regulations,

organizations, activities, decisions, and procedures. The following sections provide

background on some of the elements that contribute to the complexity associated with

software acquisition: the criticality of software, the participants involved in software

acquisition, the software acquisition process, software risks, and trends in software

development and software acquisition research.

1.4.1 Criticality of Software in Modern Systems

As computer usage has become central to organizational activities and engineering system

design, the software component of these systems has become increasingly important. The

criticality of software's role in modern systems is well documented and universally

accepted [Sage 1995], [Blum 1992], [GAO 1992b], [DSB 1987].

Chittister and Haimes [1994] document the occurrence of a power shift - the transfer of

importance — from hardware to software within modern systems. Software has become

the principal system design component, as well as the principal factor affecting system

quality. In fact, software has been described as the "Achilles heel" of modern weapon

systems because it is a key determinant of development schedules and because the

performance of key functions such as navigation, enemy detection, and fire control

depends on it [GAO 1992b]. As depicted in the introductory section of this Chapter,

examples of system failure whose root cause can be attributed to software failure have been

well publicized.

Expenditures for software are growing rapidly. The Department of Defense "reached an

annual software expenditure level in mission-critical computer systems [defined as systems

whose failure would endanger life, equipment, or success of the defined task] of about $9

billion in 1985, with projections of over $30 billion annually by the mid-1990s" [DSB

1987]. As expenditures grow, so do concerns about the reliability, cost, and performance

of these complex software systems.

Due to the continued expansion of software's commanding role in modern systems (and the

budget for such systems), the ability to effectively acquire and integrate software into these

systems will continue to be an increasingly important issue.

1.4.2 Participants in the Software Acquisition Process

There are three principal participants, or groups of participants, in an acquisition endeavor:

the user, the customer, and the contractor. As depicted in Figure 1.1, under current

practice the user and contractor communities generally communicate through the customer

community. Quite often, an almost adversarial relationship exists among the three

communities, stemming from their competing interests and objectives.

User
Community

Customer
Community

Contractor
Community

Figure 1.1 Acquisition process participants

In government as well as corporate acquisition, these groups rarely constitute single

individuals, but each is often comprised of one or more organizations and their

representatives. The user's role is to identify and validate operational needs; the contractor

is responsible for developing a system that will satisfy the operational need; and the

customer organization is responsible for accurately translating the user's needs into the

contractual language of systems requirements, selecting the most appropriate system design

and the best qualified contractor, monitoring system development, accomplishing contract

management and negotiation functions, and conducting system testing and acceptance.

1.4.3 The Software Acquisition Process

The software acquisition process encompasses all activities required to define, develop,

test, and procure a software product. Acquisition starts with the process of defining

requirements for a system and ends when the software is placed into operational use.

Software acquisition is closely related to the term software development (the set of activities

that results in software products) [DoD 1994]. The distinction made between the terms, as

used in this dissertation, is that software acquisition implies the viewpoint, responsibility

and focus of the customer community, while software development implies the activities

and focus of the contractor community. Software acquisition encompasses all of the stages

and activities of software development, with additional activities specific to the customer

organization. Another term that is often used in connection with software acquisition or

software development is the term software life-cycle. Again, there is a subtle distinction

among the terms. The software life-cycle begins with the establishment of a mission need,

encompasses all the activities of software acquisition, and includes the additional activities

of operations, maintenance, reconfiguration, and retirement.

1.4.4 Phases in the Software Process

The software process discussion contained in the software literature is primarily focused on

software development processes and on the contractor's role in the development process.

Nonetheless, existing software process models provide the foundation for describing the

central activities associated with software acquisition. An acquisition endeavor begins with

the recognition that a problem or a need exists which can be solved or fulfilled by a

software product. This leads to the design and implementation of the software product.

Broadly, the activities in the process can be classified as [Abbott 1986]:

Requirements: This phase covers the development of the system
requirements and other specifications. The requirements characterize the
expectations of the user from the software system and define the
objectives to be achieved. These objectives may evolve over time. A
detailed requirement specification could also describe the external behavior
of the system.

Design: A design describes the internal organization of a system. A
detailed system design would include details on the various modules, sub-
modules, and the interaction required. A set of preliminary test cases to
be used for system debugging and evaluation is also specified in this
phase. A detailed design also usually incorporates the concepts of
dataflow, components, and would include flow charts and pseudo code.

Implementation: This phase covers the actual coding of all the
components of the system as well as the interactions between them. The
debugging of the lower-level components of the system is usually a part
of this phase.

Testing: In this phase the debugging and testing of the overall system is
carried out. The debugging is performed on the interactions between the
different modules and the testing of the complete system is carried out
according to the system test cases and data defined earlier.

Operation: In this phase the system is fully operational and is used by
the end user. Some debugging and minor revisions may be done in this
phase as required.

Maintenance: In this phase, the system is modified and enhanced
according to new requirements desired by the user. Usually during this
phase, any debugging or minor revisions done on the system during the
operation phase are cataloged and incorporated into the system
documentation.

1.4.5 Models of the Software Process

Software life cycle models identify various phases and associated activities required to

develop, acquire, and maintain software, and provide excellent input into the software

estimation process. This section discusses some of the common models of the software

development process. The intent is to highlight the complex coordination of activities,

processes, and individuals in a software acquisition effort.

1.4.5.1 Waterfall Model. Traditionally, the software process has been described in

terms of the waterfall model [Royce 1970], also known as the phased or the stagewise

model. In this model (an adaptation from the hardware development process model), the

software development process goes through each of the phases described in the previous

section once. There are criteria defined for the transition from one phase to the next. At

each phase, there is a feedback loop so that the product does not move on to the next phase

until the validation of the previous phase is complete. The two main features of the

waterfall model are the validation and verification of the current phase before progression to

10

the next phase and iterations of the previous phase in order to remove any remaining

problems. Figure 1.2 illustrates the waterfall model.

System
feasibility

Revalidation

Figure 1.2 Waterfall model of the software process [Boehm 1981]

While the model presents a logical, organized approach, its inflexibility in adapting to

unique requirements of modern software development has led many in the software

community to feel that the model has been discredited [Blum 1992]. Furthermore, the

model was never really followed because of the iterative nature of software development.

Consequently, the spiral model is gaining more acceptance, at least as the iterative

approach.

11

1.4.5.2 Prototype Model. Two prototype models, Rapid Prototyping, and

Incremental Development, are discussed in [Davis et al. 1988]. The concept behind the use

of the prototype model is that small problems are easier to solve than large ones.

Therefore, the software development process consists of building a series of smaller

systems for testing and evaluation. The experience gained from testing these prototype

systems is then used to build the final system. The purpose of development of the

intermediate products is to increase the understanding of the system and therefore only the

most immediate issues are addressed. In most cases, the intermediate products from the

application of the prototype model are discarded.

The prototyping approach provides a more realistic validation for requirements than

reviewing a set of specifications and manuals, it helps in minimizing requirements changes

from a long development period, and makes it possible to generate a number of alternative

systems for comparative trials. However, the failure of initial prototypes may discourage

the users and the developers. It can lead to the acceptance of a suboptimal system which

may require substantial rework before it can be accepted.

1.4.5.3 Spiral Model. The spiral model of software development [Boehm 1988]

integrates the prototype with the waterfall model as shown in Figure 1.3. The spiral model

can accommodate the waterfall and the prototype models as special cases. This model

consists of a series of learning cycles with each iteration including the phases of

identification, evaluation, planning, and testing. With each successive iteration, greater

insight is gained and system development is improved.

There are no restrictions as to the number of cycles to be followed; the process is continued

until an acceptable product is developed. By combining the stages from the waterfall model

and the iterative nature of the prototype model, the spiral model addresses the limitations of

the waterfall model. However, it only addresses development processes where

requirements are specified but not processes where requirements evolve [Carr, 1989].

1.4.5.4 Other Software Process Models. Additional software process models

have been proposed, although not widely accepted. Carr's circular model [Carr 1989] was

motivated by the need to address development processes where requirements evolve. This

model consists of two independent cycles with three stages in each cycle. The first cycle

consists of requirements, design, and evaluation functions while the second cycle consists

of analysis, build, and evaluation functions. Progression from the first cycle to the second

12

Cumulative
Cost

Determine objectives,
alternatives, constraints

Plan next phases
Develop, verify
next-level product

Figure 1.3 Spiral model of the software process [Boehm 1988]

is based on sucessful development of a proposed solution, otherwise, the process repeats

the first cycle. The Reusable Software model and the Transform model [Davis 1988]

include development phases and decision points for software projects that primarily depend

on modifying existing software systems rather than developing new code.

1.4.5.5 Software Process Models and Software Acquisition. The

evolutionary process models, such as the spiral model or circular model, provide a flexible

structure for program managers to develop and adjust project design and objectives over

time. Under such a paradigm, the program manager can iteratively evaluate alternative

software designs to determine which best addresses user needs within resource constraints

and at acceptable risk. Unfortunately, the government acquires software using a system

known for its rigidity and dependence on the waterfall approach [DoD 1991].

One of the major initiatives associated with recent acquisition reform efforts is modifying

the existing process to better meet the unique requirements of software projects. Adoption

of Military Standard 2167A [DoD 1988] was an attempt to encourage modern software

13

development methods and flexible design opportunities in government software acquisition

programs. Continued calls for improvements that include adaptive design, prototyping,

and other iterative development approaches have been recommended [SST 1989], [DSB

1994], [SAB 1994]. A newly-released DoD guideline for software development, MIL-

STD-498 [DoD 1994], includes options for flexible acquisition strategies.

1.4.6 Software Risk

The categories of software risk are generally divided into those that deal with the process of

acquiring the software and with the product itself. Chittister and Haimes [1994] refer to

these two areas as software nontechnical risk and software technical risk. Software

nontechnical risks are associated with the programmatic aspects of the acquisition process

[Haimes and Chittister 1995]. This may include risks associated with general management,

contractor selection, scheduling, budgeting, etc. Software technical risk refers to the

adverse event that the software does not meet its intended functions and performance

requirements.

Charette [1989] highlights several general characteristics of the software acquisition

environment that contribute to the presence of risks:

• Software development projects are complex. The problem elements are
numerous and the interrelationships among the elements are extremely
complicated.

• Relationships between elements may be highly nonlinear.
• The elements of the problem are uncertain.
• The situation is dynamic; conditions change continuously, equilibrium is

rarely encountered.
• Software development is a human endeavor, with all the problems that

brings.

The inherent uncertainty in software acquisition is a result of some of its key characteristics:

software evolves rapidly, is difficult to explicitly define and specify, acquisition officials

often lack software understanding, and there is difficulty in estimating project costs and

time requirements. The current acquisition process takes an average of 16 years to field a

new weapons system [Pages 1994], while software and computer life cycles are as short as

1 to 2 years. A software solution could become obsolete before being delivered.

The increasingly popular approach of using commercial off-the-shelf (COTS) packages to

construct software systems rather than build all the needed components is often looked

14

upon as being a less-risky venture. Such buy-and-integrate strategies, however, have their

own inherent risks. Some of the risks associated with COTS include [Fairley 1994]:

• Integration. Integrating the different packages' data formats and
communication protocols can be tricky. Often it takes more effort to
integrate packages than to build the components from scratch.

• Upgrading. The new version of a vendor's package may have a different
interface or feature set than the old version. The new version may require
more memory or run more slowly.

• Lack of source code. Buying a COTS package provides only the object
code, making enhancing the system nearly impossible. Vendors are
reluctant to provide the source code. Even if the source code is available,
it is often so difficult to understand that it is hard to modify.

• Vendor failure. What happens if the vendor goes out of business or is
bought out?

1.4.7 Software Development Research

Over the past three decades, much research has been conducted relative to software

development practices and processes -- those generally associated with the contractor's

domain of an acquisition project. Early efforts of applying and extending the practices and

principles of engineering to software led to the development of the software engineering

discipline (histories of the origins of software engineering are found in [Sage 1995],

[[Blum 1992], and [Charette 1989]). The development of software life cycle models and

software process development models [Feiler and Humphrey 1992], have helped to bring a

degree of standardization and process improvement to the software development

community.

Much research has focused on improving the software development process (e.g.,

[Humphrey and Kellner 1989], [Kellner 1991], [Heineman et al. 1994]). Business

realities such as strong competition, pressure for increased profits, and external regulations

have spurred the momentum for an improved software development process [Austin and

Paulish 1993]. Improving the software development capabilities of software vendors by

improving their software development process maturity is the focus of the Software

Engineering Institute's Capability Maturity Model (CMM) [Paulk et al. 1993]. This tool

"provides software organizations with guidance on how to gain control of their process for

developing and maintaining software and how to evolve toward a culture of software

engineering excellence" [Paulk et al. 1992]. Other related advances including software

process assessment [Humphrey 1989] [Kellner and Hansen 1988], software metrics

15

[Shepperd 1995] [Rozum 1992] [Mills 1988], CASE tools [Brown et al. 1994] [Barros

1992] [Nejmeh 1990], software quality [Florae 1992] [Schulmeyer 1992] [IEEE 1990],

and software reliability [Neufelder 1993] [Musa et al. 1990] [Glass 1979] have been

accomplished predominately on behalf of the software contractor, to aid in the actual

development of software.

1.4.8 Software Acquisition Research

Unfortunately, when compared to the volume of software development research, relatively

little has been studied and written specifically for the customer's benefit, i.e., the

development of methods and approaches to effectively manage a software acquisition

effort. As it is the customer community that assumes the major role in an acquisition effort,

"the next major improvement in software acquisition will come by turning the focus to the

customer's role in this complex process" [Sherer and Cooper (draft) 1994].

Recent developments by the Software Engineering Institute [Ferguson et al. (draft) 1995]

[Sherer and Cooper (draft) 1994] have led to an initial version of a Software Acquisition

Capability Maturity Model (SA-CMM) for maturing the acquisition capabilities of the

customer community. Parallel, yet independent research in this area is presented in [Baker

et al. 1994]. As with the CMM, the SA-CMM is both an evaluative tool as well as an aid

for increasing a community's capability. The SA-CMM (Figure 1.4) proposes a structure

of five progressive levels of maturity for software acquisition capability, along with key

process areas for each level. The premise of the maturity model is that increasing in

capability by moving up in maturity level also increases the probability for success; a level

3 organization has a greater probability of achieving success than a level 2 organization

[Ferguson et al. (draft) 1995]. Increasing the acquisition capability of the customer

community improves productivity and program quality while simultaneously reducing risk.

The maturity progression is intended as an upward flow, in that satisfying the requirements

of one level leads to higher-level functions. The key process areas at any given level

describe the minimum requirements for that level of maturity. While a lower-level

organization may be practicing some elements of a higher maturity level, it cannot achieve

the higher level unless all of the requirements of all of the key process areas have been

satisfied.

16

Level Focus Key Process Areas Result

5
Optmizing

Process
Optimization

Continuous Process Improvement
Acquisition Change Management

Productivity /
& Quality /

1 Risk

4
Managed

Quantitative
Management

Quantitative Process Management
Software Quality Management
Asset Management

3
Defined

Integrated
Project
Management

Organization Process Definition
Organization Process Improvement
Project Performance Management
Contract Performance Management
Intergroup Coordination
Acquisition Risk Management
Training Program

2
Repeatable

Stabilized
Contract
Management

Acquisition Management Planning
Solicitation
Requirements Development
Requirements Management
Project Office Management
Contract Tracking & Oversight
Evaluation and Acceptance
Transition & Maintenance

1
Initial Ad hoc

Figure 1.4 Software Acquisition Capability Maturity Model (SA-CMM)
based on [Ferguson et al. (draft) 1995] [Sherer and Cooper (draft) 1994]

Maturity in software acquisition capability implies a verified, repeatable, effective process

and a quantitative management framework for governing that process. Level 2 focuses on

stabilizing the management process, "allowing project teams to repeat successful practices

employed on previous projects" [Ferguson et al. (draft) 1995]. A level 3 organization

employs an integrated project management, contract management, and risk management

strategy. At level 4, Quantitative Management, the customer builds on the level 3

management framework by setting and monitoring quantitative quality goals for processes,

products, and services. The highest maturity level, Optimizing - level 5, is focused on

continuous process improvement; the organization has the means to identify processes that

can be optimized and has statistical evidence available to analyze process effectiveness.

The general framework of the SA-CMM underscores the need for a comprehensive

software acquisition risk management vision with appropriate quantitative analysis for

decision-making support.

17

1.5 Chapter Summary

Software acquisition encompasses a wide range of activities and concerns far beyond that

of the actual development of a software product. The complexity of the process now extant

requires new analytical models and techniques that explicitly consider the uncertainties

associated with software acquisition, and requires a multi-visionary approach to the

understanding and quantification of both the complexity and the risks associated with the

elements thereof.

Strengthening the software acquisition manager's ability to systematically identify project

risks, quantify their impact, assess various management policy alternatives, and do so in

the ever-changing, dynamic environment of software acquisition would be of benefit.

Such is the intent of this research.

18

Chapter 2
Literature Review and Model Evaluation

Software acquisition management requires the completion of many complex data analysis

and decision making activities. Operating in an uncertain environment, one of the most

challenging aspects of software acquisition management is accurately determining the

needed resources, required schedule, and performance measures for software development.

Such a task requires establishing the functions and characteristics of the desired system,

estimating the size and design of the software product to be produced, and estimating

development effort requirements. Accounting for, and effectively managing software

acquisition risks is a key element in the management process.

This Chapter provides a discussion of the relevant theories and analytical approaches that

impact the decision making activities associated with software acquisition. This first

includes a review of the concepts of risk, and risk assessment and management. Model

management methods and hierarchical holographic modeling (HHM) - approaches for

considering the integration of modeling efforts -- are reviewed. This Chapter reviews the

various analytical approaches associated with software estimation: effort and schedule

models, and software performance models. An extensive review of software estimation

tools is provided, with detailed information in an accompanying appendix. The general

concepts of probabilistic analysis are introduced, and an explanation of the fallacy of the

expected value motivates the extension of classical software estimation approaches. The

partitioned multiobjective risk method (PMRM), with its risk measure of extreme events,

f4, is introduced.

2.1 Risk

Risk has been defined in many different ways. Some examples of these definitions are:

• Lowrance [1976] has defined risk as "a measure of the probability and severity of
adverse effects."

• Rowe [1977] has defined risk as "the potential for realization of unwanted, negative
consequences of an event."

19

Kaplan and Garrick [1981] suggest a quantitative definition of risk as a set of triplets.
This set is framed as a series of three questions:

- What can happen? (i.e., What can go wrong?)
- How likely is it to happen?
- If it does happen, what are the consequences?

Risk, therefore, consists of two interrelated elements: i) the undesirable consequence or

outcome, and ii) the probability or potential for the realization of that outcome. As

introduced in Chapter 1, software acquisition risk includes software technical risks and

software nontechnical risks.

2.1.1 Risk Assessment and Risk Management

The basic goal of risk assessment is to describe the current risk scenario by answering the

three questions posed by Kaplan and Garrick [1981]. Risk assessment has been divided

into three phases, namely, risk identification, risk estimation, and risk evaluation. The first

phase, risk identification, is the reduction of descriptive uncertainty [Rowe 1977]. Relating

to the definition of risk by Kaplan and Garrick, risk identification is the list of answers to

the first question. The second phase, risk estimation, is the reduction of measurement

uncertainty [Rowe 1977] that comes in answering the second two questions. Risk

evaluation is the assignment of values to the probabilities and the consequences associated

with the scenarios identified in the risk identification phase.

The risk management process builds upon the risk assessment process by seeking answers

to a second set of three questions [Haimes 1991]:

- What can be done? (i.e., What options are available?)
- What are the associated trade-offs between the options in terms of costs,

benefits, and risks?
- What are the future impacts of current management decisions on future

options?

The answers to these questions facilitate risk-based decision making.

2.2 Model Management

Evaluation of complex systems and processes relies on the use of multiple analytic models.

There has been a recognized increase in the use of computer-based management science

20

models to solve problems encountered in all areas of government, business, and industry

[Muhanna and Pick 1994]. The requirement for, and the availability of, a large and diverse

collection of decision models has prompted the growing body of work focusing on the

topic of model management.

The broad view of model management is "the philosophy that: 1) models are a resource

(like data) that should be managed; and 2) modeling is an ongoing activity that should be

managed, integrated, and coordinated in order to avoid wasteful, suboptimal decisions"

[Muhanna and Pick 1994]. During the last decade, research concerning model management

has been developed along such diverse paths as database theory, artificial intelligence, and

conceptual graphs.

2.2.1 Database Theory-based Model Management

The success of database management systems in overcoming the problems of data

management motivated a number of researchers to investigate the use of this technology in

addressing issues in model management. Such data-oriented approaches are found in

[Miller and Katz 1986], [Lenard 1986], [Liang 1985], and [Stohr and Tanniru 1980].

Unfortunately, these approaches are reported at the conceptual level with little consideration

given to the feasibility or practicality of actual implementation.

2.2.2 Artificial Intelligence-based Model Management

Artificial intelligence techniques for knowledge representation have also been investigated

for model representation (e.g., [Dutta and Basu 1984], [Fedorowicz and Williams 1986],

[Shaw et al. 1988], and [Dutta and Mitra 1993]). Integrating database and formal logic

approaches was proposed in [Bonczek et al. 1981]. Use of semantic nets as a vehicle for

representing knowledge about models was proposed in [Elam et al. 1980]. Other than

simple prototype systems, automated model synthesis through artificial intelligence has yet

to be implemented.

2.2.3 Graphical-based Model Management

Graphical approaches to model management utilize visual images to capture and describe

the relationship between models [Muhanna and Pick 1994], [Muhanna 1994], [Basu and

Blanning 1994]. These approaches provide a framework for model composition by

21

identifying models that may be combined into an integrated model [Basu and Blanning

1994]. In addition to the visualization benefits that graphical representation offers, the

process of model integration is facilitated by identifying the connectivity of models that is

made apparent in the graphs. Interconnecting the output of one model with the input of

another, component models can be coupled together to assemble composite models.

Muhanna and Pick [1994] advocate a modular, hierarchical model management approach in

which composite models can be formed from the coupling of atomic models (those without

components). These composite models can then be used as a component coupled with

other models to form a new higher-level model.

Model management systems (MMS) that essentially employ a graphical approach have been

proposed as a component of computerized decision support systems [Applegate et al.

1986], [Blanning 1985], [Sprague and Carlson 1982]. A MMS is "a software system that

facilitates the development, storage, manipulation, control, and effective utilization of

models" [Muhanna and Pick 1994]. While prototype MMS frameworks have been

successfully developed, the inherent benefits of a graphical approach, along with ease of

application, indicate that this approach has the most promise for implementation and use in

actual model management applications.

2.3 Hierarchical Holographic Modeling (HHM).

Since its origin in 1981, the HHM has provided a general framework for addressing the

modeling of complicated, multiple objective problems of large scale and scope [Haimes

1981]. HHM's multivisionary approach to problem definition and risk identification has

been widely, although often indirectly, accepted. Throughout his book Metasystems

Methodology, Hall [1989] uses HHM to recount the history of systems methodology, and

to distinguish the varied applied systems methodologies from each other. He states [Hall

1989]:

History becomes one model needed to give a rounded view
of our subject within the philosophy of hierarchical
holographic modeling, defined as using a family of models
at several levels to seek understanding of diverse aspects of a
subject and thus comprehend the whole.

Fundamentally, HHM is grounded on the premise that complex systems and processes,

such as software acquisition, should be studied and modeled by more than one single

22

model, vision, or perspective. HHM possesses a dual nature as 1) an holistic, investigative

paradigm, and 2) a mathematically-sound, hierarchical, multiple objective decision-making

methodology. The HHM approach identifies and coordinates multiple, complementary

decompositions of a complex system. A decomposition is a hierarchy of systems;

components, subcomponents, and sub-subcomponents to provide structure to the risk

analysis process.

The formal, methodological development of HHM builds on the hierarchical overlapping

coordination (HOC) methodology [Macko and Haimes 1978] and the hierarchical

multiobjective optimization (HMO) model [Tarvainen and Haimes 1982]. The impact of

the HHM methodology is realized in that the basic philosophy is to build a family of

hierarchical holographic submodels (HHSs) which address different aspects of the system.

With each decomposition represented as its own HHS, HHM provides a construct for

consideration of multiple objectives, multiple decision makers, linear and nonlinear causal

relationships between model elements, and the coordination between the HHSs. Figure

2.1 depicts a HHM framework with three HHSs and subsequent sub-HHS levels.

HHM
F*(F1,F2,F3)

HHSj
Fl*(f11,f12,...,fln)

HHS,

F2*(f2i,f22-.W

HHS 3
F3*(f3tf31,-,f3p)

7\~
fl*l(flll'-'fllm)

7V
lirikl'"" lkp;

"TV
• • • •

Figure 2.1 Coordination in an HHM framework

2.3.1 HHM as a Model Management Methodology

While not generally referred to as such, HHM can be considered a model management

methodology, related to the graphical approach of Muhanna and Pick [1994]. HHM

provides a graphical framework for understanding and analyzing the elements

(components) of a complex situation, the interrelations of these elements, data

requirements, and analytical modeling approaches. In addition, the HHM methodology

also provides a mathematical construct for higher-level decision making by resolving the

23

coordinated solution at the submodel level (and even at sub-submodel and lower levels as

necessary), allowing for the possibility of overlapping and coordinated decision variables,

objectives, and program constraints - qualities that are not part of other model management

methods.

HHM has been successfully deployed for examining large-scale technical processes and

decision problems (e.g., [Haimes et al. 1994b], [Chittister and Haimes 1993], [Haimes et

al. 1990]). While there are many complicated dimensions of the software acquisition

process, a most troubling issue for software program managers is estimating software cost,

schedule, and performance and making the difficult trade-off decisions among these

elements [Barrow et al. 1993]. We next review analytic modeling approaches for software

estimation.

2.4 Software Estimation

Software estimation is the activity of determining a software project's resource

requirements, generally in terms of a project's cost and schedule. Due to the inherent

relationship between cost and schedule, most software estimation models provide

projections of both elements.

Estimating a software project's cost and schedule is most often assessed by first answering

the question [Conte et al. 1986], "how many people will the project require (or person-

equivalent units of effort)?" Thus, the result of software estimation is often in terms of

effort, as opposed to actual cost. The effort estimate can then be converted to cost and

schedule.

Software estimation models rely on a combination of algorithmic techniques, expert

judgment, and analogy to past data. The algorithmic approach has been the most-studied

method, identifying factors that must be considered while estimating development cost and

schedule [Boehm and Papaccio 1986], [Mohanty 1981], [Boehm 1981], [Benbasat and

Vessey 1980]. Determining the relationships among the factors has been approached

through statistical models that rely on analysis of past software project data. The two most

widely-applied approaches for software estimation use different measures of system

complexity as the basis of their estimation [Barrow et al. 1993]: the thousands of lines of

code (KLOC) approach and the function point (FP) approach.

24

2.4.1 KLOC-based Software Estimation

The largest class of software estimation models relies on mathematical relationships that

compute software project development effort and schedule as a function of project size.

The number of lines of code is the most commonly-used measure for software estimation.

[Blum 1992]. The reliance on KLOC as the principal estimation factor was selected early

by researchers, and is based on the observed correlation between delivered lines of code

and development effort (measured in man-months) in the data collected from hundreds of

software projects (e.g., [Boehm 1981], [Freiman and Park 1979]).

One difficulty with the KLOC-based approach has been establishing a set definition for a

"line of code." Discussion in the literature concerning comment lines, declaration

statements, etc. has led to a general, although not universal, agreement [Boehm 1981],

[Boehm 1986], [Jones 1986].

The relationships contained in KLOC-based models express development effort as a

function of the number of lines of code, with the most-common form

MM = a + b(KLOC)c (2.1)

where MM is the man-months of development effort required to complete the project. The

models focus on producing families of (a,b,c) values to account for project-specific

factors. Improvements on the basic model (2.1) include adjustment multipliers that reflect

project complexity, personnel experience levels, and management control policies

(particularly resource allocation strategies).

A conversion equation is then used to translate the man-month development effort estimate

into an estimate of the project's development time, to

tD = d(MM)e. (2.2)

The values of the parameter vector <d, e> depend on project-specific attributes and

characteristics. Note that to is the development time — the time requirement after the plans

and requirements phases are completed.

25

The projected effort and time duration for each phase of the development life cycle is

determined by distributing the total development effort and development time according to

past observations of phase-specific effort and time requirements. This is often done on a

simple percentage basis [Boehm 1981], or by more complex models that consider

manpower staffing rates and other variables such as the trapezoidal staffing model [Londeix

1987] and the Rayleigh curve model [Norden 1966].

2.4.2 Function Point-based Software Estimation

In function point analysis, software estimation is based on the intended system's functional

characteristics rather than its predicted size [Albrecht and Gaffney 1983]. Advocates of the

approach claim that the method computes the cost of the problem to be solved rather than

the product to be delivered. The objective is to quantify the size and complexity of a

software system in terms of the functions that the system delivers to the user.

Function point counts are arrived at by considering a linear combination of five basic

software component estimates: inputs, outputs, inquiries, files, and external interfaces.

Each component is evaluated at three complexity levels: low, average, and high. An

adjustment factor that considers numerous aspects of a software project's processing and

development complexity is then employed to modify the base function point count.

Models that use function points for software estimation have generally been approached

through regression methods that relate FP to development effort, or FP to development

time [Albrecht and Gaffney 1983], [Kemerer 1987], and [Matson et al. 1994]. A

limitation to its usefulness, function point analysis is designed to measure business-type

applications; it is not appropriate for technical or complex applications that deal with

complex algorithms.

Currently, most users of the FP technique employ the method as a way of improving their

KLOC estimate within a traditional cost estimation model [Austin and Paulish 1993].

Studies have produced FP-to-KLOC conversion multipliers for several software languages

and development environments [Albrecht and Gaffney 1983] [Jones 1986]. Thus, function

points normally are employed as an improved method of predicting the size of the delivered

product, which is then used to predict effort and schedule.

26

2.4.3 Software Estimation Models

The two system complexity measures, KLOC and FP, have been employed in a wide range

of models. A taxonomy of software estimation approaches is shown in Figure 2.2.

Software Estimation Models

Static Dynamic

r
Non-Linear Theoretical Non-Linear Empirical Linear

Nelson (1966) Waltson-Felix (1977) Abdel-Hamid (1984) Putnam (1978)
Boehm(1981)

Figure 2.2 A Taxonomy of Software Estimation Models

Studies have shown no single method to be better than all others from all aspects [Bell

1995] (see also [Conte et al. 1986], [Ferens, 1984], and [Kemerer 1987]). The selection

of an appropriate estimation model is, therefore, dependent on the attributes of the

particular software project, the development environment, software estimation experience,

and the availability and type of estimation data (expert and otherwise) [Navlakha 1990].

The majority of software estimation models are of the static class, with very little work

having been done in developing dynamical models. Early attempts projected linear

relations between software effort and system size [Nelson 1966]. Later models explored

more-realistic non-linear relationships. A number of non-linear static models have been

proposed, of which one of the first was by Waltson and Felix [1977]. For surveys of

linear and non-linear software estimation models, see [Barrow 1993], [Londeix 1987],

[Conte et al. 1986], [Boehm 1981], and [Herd 1977]. The most widely known and widely

used software estimation model is the Constructive COst MOdel (COCOMO) developed by

Boehm [1981]. Numerous variations of the COCOMO have been developed, with recent

updates including consideration of Ada projects [Boehm and Royce 1987], the use of

commercial off-the-shelf (COTS) packages, software reuse, and other modern software

development process issues [Boehm et al. 1995].

27

Of the multitude of software estimation models besides COCOMO and its derivatives, a

few have gained at least a degree of wide-spread acceptance, including: Price-S [Freiman

and Park 1979], SEER-SEM [Galorath 1989], REVIC [Kyle 1991], Checkpoint [Barrow

et al. 1993], and SLIM [Putnam 1978]. Of these, SLIM is the only one that could be

considered a dynamic model. [Note: The Abdel-Hamid [1984] dynamic model, referred to

as a holistic representation model [Bell 1995], is a conceptual model that attempts to

describe the multitude of dynamic relations in software development with graphical node

and arc relations.] Some of these models are KLOC or FP-based, while others rely on

different metrics. Unlike COCOMO, whose methodology has been widely published,

most of these other models are proprietary and their methodologies not released to the

public.

2.4.3.1 COCOMO. While this section provides only a brief review of COCOMO, a

detailed tutorial of COCOMO is given in Appendix A. Originally developed in the early

1980s [Boehm 1981], COCOMO is widely recognized within the software community as

the predominant software estimation methodology. COCOMO is a public model, in that its

methodology, assumptions, projects database, and updates have been widely published

(e.g., [Boehm 1981], [Boehm and Royce 1989], [Boehm 1995]). COCOMO consists of

three models of increasing complexity: Basic COCOMO, Intermediate COCOMO, and

Detailed COCOMO. The primary distinction among the models is the detail and number of

model parameters.

Of the three models, the Intermediate COCOMO model has been the most widely

implemented and, therefore, the most widely implemented of all software estimation

models. The Intermediate COCOMO uses development effort equations to estimate the

total man-months (MM) of development effort required to complete a project:

MM = (EAF)[a(KLOC)b] (2.3)

where the parameter vector <a,b> takes on differing values according to the development

mode of the project, and the effort adjustment factor (EAF) indicates the effect of 15 "cost

driver" attributes. The value MM that is produced from the effort equation is used in the

schedule equation to estimate development time to (in months)

tD =c(MM)d (2.4)

where the parameter vector <c,d> takes on differing values according to the development

mode of the project.

28

Recent extensions of the original COCOMO include a version tailored for Ada language

projects [Boehm and Royce 1987], [Boehm and Royce 1989]. Development of a

COCOMO model that includes consideration of software reuse and re-engineering,

commercial off-the-shelf (COTS) packages, object orientation, non-sequential process

models, and rapid development processes is in the design stage [Boehm et al. 1995].

In accuracy tests using actual KLOC and effort multiplier data, the reported accuracy of the

COCOMO models is reported to be (at best) within 20% of the actual results 68% of the

time [Barrow et al. 1993]. These reported accuracy levels define the upper limit of

accuracy for software cost estimation, as these have been evaluated using actual, ex-post

data. The COCOMO models are often used as the benchmark for testing other estimation

methodologies [Kemerer 1987] and serve as the standard for the software community.

2.4.3.2 The Price-S Model. The Price-S model was developed by GE Price systems

primarily for aerospace applications [Freiman and Park 1979] [Wolverton 1980]. A

proprietary model, the exact form of the model's equations is not readily available. A

general description of the model's methodology, however, is found in [Price 1988]. The

major input to Price-S is KLOC; other inputs include software functions, operating

environment, complexity factors, and productivity factors. As the model is intended for a

specific software domain, its use for business and other non-aerospace applications is

questionable.

2.4.3.3 SEER-SEM. The System Evaluation and Estimation of Resources - Software

Estimation Model (SEER-SEM) provides software estimation through knowledge bases

developed from completed projects [Galorath 1989]. While the actual algorithms of the

model are proprietary, SEER-SEM permits either KLOC or FP sizing input, and has been

updated to handle software reuse and COTS development projects [McRitchie 1995].

SEER-SEM is applicable to all types of software projects and considers all phases of

software development [Stutzke 1995].

2.4.3.4 REVIC. The Revised Enhanced Version of Intermediate COCOMO (REVIC)

was developed by Hughes Aerospace using a database of DoD aerospace software projects

[Kyle 1991]. Although REVIC is a COCOMO derivative, it uses different coefficients in

the effort equations and uses a different methodology for distributing effort and schedule to

each phase of product development.

29

REVIC also applies a measure of standard deviation to each estimate as a means of risk

assessment. REVIC provides a single-weighted "average" distribution for effort and

schedule along with the option for the user to vary the percentages in the development

phases.

2.4.3.5 Checkpoint. The Checkpoint model is a knowledge-based software estimation

model with algorithms derived from measurements of more than 4200 software projects

[Barrow et al. 1993]. The model is based on the work of Jones [1986] and incorporates

proprietary algorithms. Checkpoint was one of the first models to incorporate function

points as a measure of size to estimate project complexity. Other model inputs include

project type and class, experience level, development method and environment. The model

is intended to be applicable to all types of programs and all phases of the software

development life cycle.

2.4.3.6 SLIM. While COCOMO and related models may be considered a micro-

modeling approach (evidenced through reliance on detailed modeling parameters and an

extensive projects data base), the Software Life Cycle Model (SLIM) could be considered a

macro model that offers a top down approach to software estimation [Londeix 1987].

Developed by Putnam [1978] [Putnam and Fitzsimmons 1979], the SLIM model is based

on Putnam's analysis of the software life cycle in terms of the Rayleigh distribution of

project personnel level versus time (hence the dynamical model classification).

While SLIM is a proprietary model and much of the detail regarding its current form is not

publicly available, the general theory upon which the model is based is available in the open

literature [Putnam and Myers 1992]. Originally developed from analysis of ground-based

radar software programs, SLIM has been expended to include other types of programs

[QSM 1987].

The SLIM model considers four essential variables that characterize a software project. In

addition to estimating the size of the project (in KLOC), the user must estimate two of the

remaining three parameters: life cycle manpower requirement (in man-months) indicating

the software developer's staffing throughout the life cycle, the productivity factor (PF) that

measures the software developer's efficiency, and the total required development time to-

The relationship among model variables is given by [Putnam and Myers 1992]

30

KLOC = (PF)MMyH% (2-5)

which, by rearranging the equation, can be solved for the unknown variable.

The Rayleigh curve orientation of SLIM provides a framework for investigating effort-

schedule trade-offs, but experience has shown that the SLIM model is very difficult to

implement without considerable experience and extensive project-specific tailoring [Putnam

and Myers 1992].

2.4.4 Accuracy of Software Estimation Models

Objective studies of software estimation methods have been few. Often, the developers of

a method have described their own technique and reported their own assessment [Jensen

1983], [Putnam 1978], [Waltson and Felix 1977]. Other researchers have tried to predict

the cost of software projects but only after their completion and hence with full knowledge

of their final scope [Banker and Kemerer 1989], [Kemerer 1987], [Kitchenham and Taylor

1985]. Studies found the error rates of cost estimation models ranged from 85% to 772%

[Kemerer 1987], while comparative studies of expert estimation (without algorithmic

models) showed error rates ranged from 32% to 1107% [Vicinanza et al. 1991].

Regardless of the underlying independent variables, studies indicated the tight link between

the preparation of the algorithm's input parameter estimates and the accuracy of the model's

final prediction [Kemerer 1987], [Lederer and Prasad 1993]. In terms of the two principal

approaches, studies indicate estimating KLOC (versus estimating the many parameters of

the FP approach) proved to be a more manageable task [Lederer and Prasad 1993], [Bailey

1986]

2.4.5 Software Estimation Tools

There are many software tools on the market that implement the software estimation models

described above. A list of software cost estimation tools is provided in Table 2.1, grouped

according to the underlying model or methodology employed: COCOMO, Function Point,

or other. Other than those tools that are direct implementations of COCOMO or FP, the

majority of these tools contain proprietary algorithms and datasets. A brief description of

each tool, along with information concerning its vendor or supporting organization is

provided in Appendix B.

31

Table 2.1 Software Estimation Tools
Product Comments

COCOMO-Based Tools

CB COCOMO
Based on COCOMO to estimate effort and cost of software
development projects

COCOMOl Artificial Intelligence front end with COCOMO model

COCOMOID
Provides estimates also based on enhanced ADA, Ada process
and incremental development models.

CoCoPro Estimates resources needed using standard COCOMO

COSTAR
Uses Detailed COCOMO, Ada COCOMO, and allows sizing
with function points.

COSTMODL
Detailed COCOMO model; available to government by
NASA/JSC.

GECOMO Plus Implements an extended Detailed COCOMO and includes Ada.

GHL COCOMO Estimates development cost based on COCOMO.

REVIC
Intermediate COCOMO with life cycle costing and risk
analysis (public domain)

SECOMO Full COCOMO with maintenance cost estimation.

SWAN
Cost estimation with COCOMO, size estimates with function
point analysis. Developed for US. Army.

Function Point-Based Tools

ASSET-R
One in a family of models for software development
estimation. Uses FP analysis.

CA-FPXpert On-line tutor for FP analysis.
CHECKPOINT Knowledge-based estimation tool using FP.

Micro Man
ESTI-MATE Estimates for Information systems using FP analysis.

PROJECT BRIDGE
Knowledge-based tool using FP analysis for Information
Systems projects.

SIZE Plus FP analysis for data processing and real-time applications.

SPOR/20
Incorporates proprietary algorithms with FP analysis for cost
and productivity estimation.

Other Method-Based Tools

CA-ESTIMACS
Estimates effort, schedule, and cost of Information System
projects.

CEIS
Four independent size estimates based on comparison to known
projects.

COSTEXPERT Expert System based model. Does not use KLOC or FP.

PRICE S
Uses functionality and KLOC for cost, effort, and schedule
estimates.

SASET
Forward chaining, rule-based expert system utilizing a
hierarchically-structured knowledge database.

SEER-SEM Software cost, schedule, and risk estimation model (Air Force-
wide license).

SEER-SSM Software size estimator.

SIZE PLANNER
Uses four approaches for size estimation: fuzzy logic, FP,
standard component, and new/reused/modified sizing.

SIZEEXPERT Produces estimate of KLOC based on cost expert questions.

SLIM
Proprietary analytic tools and expert system methodology for
cost and schedule estimation.

SOFTCOST-R KLOC-based model for estimation of general projects.
SYSTEM-4 Cost estimation utilizing KLOC-based proprietary algorithm.

32

2.5 Software Performance

Software performance generally refers to how well the software functions to meet the

stated requirements of the system [Musa et al. 1990]. Software performance includes

many attributes such as availability, reliability, safety, performability, maintainability, and

testability [Johnson 1989]. Reliability is probably the most important of the characteristics

[Bittanti et al. 1988]. It is intimately connected with defects, and as Jones [1986] points

out, defects represent the largest cost element in programming. In this section we define

the common terms associated with software reliability and discuss various approaches of

modeling and quantifying software reliability. The effect of management policy options on

software reliability is discussed.

2.5.1 Software Defects, Faults, Errors, and Failures

We must first distinguish between software faults and software failures. A software fault

is a defect in the program that, when executed under particular conditions, causes an error

[Musa et al. 1990], [Johnson 1989]. A software failure is the departure of the external

results of program operations from requirements [Musa et al. 1990]. Johnson [1989]

includes an intermediate term, software error, as a manifestation of a fault which then leads

to the observed failure. More commonly, the distinction is limited to the two: faults and

failures [Putnam and Myers 1992], [Musa et al. 1990], [Bittanti et al. 1988].

Software faults (we'll also refer to these as defects) occur throughout the development

process and may occur in requirements, specifications, or design, as well as in the actual

computer code [Putnam and Myers 1992]. Software developers find these defects by

means of self-checking, reviews, walkthroughs, inspections, module testing, etc., not

simply because the program fails in operation.

The number of defects and the resulting observed failures are key values for determining

software reliability. The software defect rate is the number of defects per unit of

development time, or the rate at which defects are introduced into the software system over

time. A related concept is that of defect density, which is the number of defects per size

unit of code (e.g., KLOC). The software failure rate, as opposed to the defect rate,

represents the number of program failures per unit of execution or operation time.

33

2.5.2 Software Reliability

The definition of software reliability that is widely accepted throughout the field is the

probability of failure-free operation for a specified time interval [to, t] given the system was

performing correctly at time to [Johnson 1989]. Letting The the random variable

representing the time to next failure, the reliability function R(t) is given by

R(t) = P[T>t]. (2-6)

Associating to the random variable Tthe cumulative distribution function (cdf) F(t) and the

probability density function (pdf) fit), we observe

F(t) = \'of(x)dx = P[T<t] = Q(t) = \-R(t). (2.7)

Q(t) is the unreliability function, and fit) is tine failure density function. From Eqs. (2.6)

and (2.5), we note that reliability is equivalent to an exceedance function, hence its natural

suitability for extreme event analysis [Asbeck and Haimes 1984].

A significant quantity that provides an index of reliability is the mean time to failure

(MTTF). The MTTF is the expected time that a system will operate before the first failure

occurs. It is defined as [Johnson 1989], [Bittanti et al. 1988]:

MTTF = E[T] = [tf(t)dt = \~R(t)dt (2.8)

The failure rate function z(t) is the instantaneous rate at which the software fails. The

failure rate can be expressed in different ways, most simply

z(0 = —■ <2-9> R(t)

Software reliability information is valuable for a number of reasons [Austin and Paulish

1993]:

• As the failure rates decrease with testing and debugging, predictions of failure rates
can help determine when to stop testing (e.g., when the quality of the software is
adequate).

• Having a prediction of failure rates makes decisions about trade-offs among
performance, cost, schedule, reliability, and other factors easier and more explicit.

34

• Accurate prediction of failure rates makes it possible to guarantee failure rates below
certain tolerances.

2.5.3 Approaches to Highly Reliable Software

Essentially there are three different ways to pursue highly reliable software: to avoid the

occurrence of faults in the design and development of the program; to make use of fault

tolerant structures; to remove faults during the test phase.

The first approach consists of designing software by using structured programming, formal

specification languages, software clean rooms, or other software development tool effective

for reducing the probability of error introduction [Lyu and He 1993], [Ghezzi et al. 1988],

[Gehani and McGettrick 1986].

In the second approach, reliability is obtained by designing fault-tolerant software systems,

able to perform satisfactorily even in the presence of faults [Johnson 1989]. This is usually

done by providing convenient redundancy in the program or adding some error-recovery

procedures. Surveys and comparisons of fault tolerant software systems and their

effectiveness in terms of software reliability can be found in [Hudak et al. 1993], [Vaidya

and Pradhan 1993], [Tai et al. 1993], [Kanoun et al. 1993], [Knight and Ammann 1991],

and [Avizienis 1985].

The third approach improves software reliability through testing and fault correction

activities ("debugging"). During this phase, the program undergoes an extensive validation

test aimed at detecting as many remaining defects as possible. As soon as a failure is

observed, the fault in the code which caused the failure is searched for and, hopefully,

eliminated. Despite advances in the other two areas, thorough testing is the primary

method to achieve software reliability and usually takes a significant percentage of time in

the life cycle of the software product. Common test-for-reliability issues include estimating

the inherent fault density, determining fault reduction factors, fault detectability, fault

correctability, the introduction of new faults while correcting others, fault prioritization,

and the relationship between testing time and defect detection and removal [Rozum 1992],

[Musa et al. 1990], [Bittanti et al. 1988], [Putnam and Myers 1992], [Jones 1986].

35

2.5.4 Software Reliability Models

To model software reliability, one must consider the principal factors that affect it: fault

introduction, fault detection and removal, and the environment. Fault introduction depends

on the characteristics of the developed code and the development process characteristics.

The most significant code characteristic is size (KLOC) [Musa et al. 1990], [Boehm 1981].

Development process characteristics include software engineering technologies and tools

used and the level of experience of the personnel. Fault removal depends on time,

operational profile, and the quality of the repair activity. The environment directly depends

on the operational profile.

Various analytical methodologies have been applied to the prediction of software reliability.

These methodologies differ with regard to the level of data, the nature of the dependent

variables, and the development outcomes under consideration. Regression models have

been developed from past project data that relate reliability metrics (e.g., defect density)

with other system variables such as KLOC, programmer experience, computer language,

and development time [Evanco and Lacovara 1994], [Putnam 1992], [Musa et al. 1990],

[Agresti and Evanco 1992], [Prentice 1981], [Boehm 1981]. These relationships are then

expressed in algorithmic models to estimate software reliability given certain project

characteristics.

As some of the above factors are probabilistic in nature and operate over time, other

software reliability models are formulated in terms of random processes. The models are

distinguished from each other in general terms by the probability distribution of failure

times or number of failures experienced and by the nature of the variation of the random

process with time. Poisson process models of the nonhomogeneous type have been used

to describe the random failure process and estimate system reliability [Schneidewind 1993],

[Kanoun et al. 1993], [Musa et al. 1990], [Bittanti et al. 1988].

For software systems that can be represented by modular structures or that incorporate

redundant-design architecture, Markov models have been applied to estimate software

system reliability [Johnson 1989], [Tai et al. 1993], and [Kanoun et al. 1993]. The

Markov modeling framework allows for analysis of fault introduction, error occurrence and

detection, and recovery or failure. The system states are generally defined in terms of

operating status (e.g., good, error, error-detected, recovered) and completion status (e.g.,

pass, fail, crash, abort) [Hudak et al. 1993]. Markov models utilize estimated hazard rates,

36

MTTF data, correction rates, and detection capabilities to define the state transition

probabilities.

2.5.5 Software Reliability Trade-offs

While software reliability models provide the behavior of the software failure rate over

time, this relationship is also tied to other software development parameters: product size,

development time, staff size and effort, productivity, project complexity, acceptable

performance thresholds, and manpower buildup rate [Putnam and Myers 1992]. Each of

these parameters has an effect on the number of defects created and, consequently, upon

the reliability of the product. In effect, more or less of each parameter can be traded-off for

reliability. Of these trade-offs, some fall within the domain of the customer and user

(acceptable performance levels, product size and complexity - as affected by requirements)

while others are under the control of the contractor (staffing, personnel experience, etc.).

2.6 Probabilistic Evaluation

Most, if not all, large-scale systems are designed, managed, maintained, and utilized under

the condition of uncertainty. Unfortunately, this uncertainty is often neglected in the

formulation of supporting analytic models. Software estimation is no exception.

In most cases, the traditional use of a single value estimate is not adequate to represent the

uncertainty associated with that system or environment. Because the assessment and

ultimate prevention of risks (e.g., cost overrun) are of such major concern, it is desirable to

retain as much information as is possible in the quantification of model parameters. A

single value assessment conveys no information as to the likelihood (let alone possibility)

of deviation from that assessed value. It is for this reason that it must be advocated that

more than a single value assessment be conducted.

Probabilistic quantification is one approach for addressing the problems associated with

single value estimation. A probability distribution is a model able to capture the range and

estimated likelihoods of the potential realizations of a varying or uncertain quantity. Even

in the face of little empirical evidence, probabilistic evaluation can be conducted using the

triangular distribution [Haimes et al. 1994a]. Constructing a triangular distribution requires

evaluation of only three values: the lower bound, the upper bound, and the most likely

37

value. Use of the triangular distribution is widespread; the Army Corps of Engineers

accepts the triangular distribution as the basis for their probabilistic analysis for flood and

river risk management [Haimes et al. 1994b].

2.6.1 Fallacy of the Expected Value

Unfortunately, in most cases where probabilistic quantification is practiced, the expected

value is used as the sole measure of risk. This may lead to inaccurate or misrepresentative

results. The expected value of risk is an operation that takes the product of each outcome

and its probability of occurrence and sums (or integrates for continuous outcomes) all these

products. This operation thus commensurates adverse events of high consequences and

low probabilities with events of low consequences and high probabilities. The expected

value thus masks the true variance and uncertainty that should be represented. This

phenomena is illustrated in Figure 2.3. Notice that both events A and B have the same

expected value but have very different distribution characteristics .

f(x)

Figure 2.3 Insufficiency of the expected value for decision making

Distribution B has greater variance, or a greater tendency for events to occur in the extreme

ranges of the distribution. Given only the expected value of the two events, a decision

maker would be indifferent between the two events, but given the "full" picture of the two

events the decision maker would choose A, the event with a lower risk of extreme events.

This simple example provides a strong argument for the need to consider more than the

expected value as the principal metric used in decision making.

38

2.6.2 The Partitioned Multiobjective Risk Method (PMRM) and the

Conditional Expected Value

Catastrophic, or extreme events, are defined as having a low probability of occurrence but a

high damage level. Proper risk management must focus on the management of extreme

events - for it is these catastrophic disasters, not the more common "expected value"

events, that cause grave harm to the system. A risk measure associated with extreme

events - the conditional expectation - can be useful in management of extreme events as it

does not average out catastrophic events with more high-frequency, low-consequence

events.

Consider a continuous random variable X of damage (e.g., cost overrun, time delay) that

has a cdf F(x) and a pdf fix), which are defined by the relationships

F(x) = ?[X<x], x>0 (2.10)
and

/(x) = ^M x>0. (2.11)
dx

The cdf represents the nonexceedance probability of x, the probability that X is observed to

be less than or equal to some value x. The exceedance probability of x is defined as the

probability that X is observed to be greater than or equal to x, and is equal to one minus the

cdf evaluated at x. The expected value, average, or mean value of the continuous random

variable X is defined by

E[X] = r xf{x)dx. (2.12)

In the partitioned multiobjective risk method (PMRM) [Asbeck and Haimes 1984], the

concept of the expected value is extended to generate the conditional expected-value

function, often referred to as a risk function, which is associated with an extreme range of

exceedance probabilities or their corresponding range of extreme harm severity. The

resulting conditional expected-value function, in conjunction with the traditional expected

value, provides a new measure of the risk of extreme events associated with a particular

policy.

Referring to Figure 2.4, let (1 - a), where 0 < a < 1, denote an exceedance probability

that partitions the domain of X into a range of extreme events, as follows. On a plot of

exceedance probability, there is a unique harm ß on the damage axis that corresponds to

39

the exceedance probability (1 - a) on the probability axis. Damages greater than ß are of

high severity and low exceedance probability and constitute the range of extreme events.

If, for example, (1 - a) is taken to be equal to 0.05, then ß is the 95th percentile.

Low and moderate severity
High and medium exceedance probability^

High severity
Low exceedance probability

Damage X ß

Figure 2.4 Extreme event probability partitioning

For a range of extreme events, the conditional expected damage (given that the damage is

within that particular range) provides a measure of the impact associated with extremely

large and potentially very costly and catastrophic events or scenarios. This measure is

based on the definition of the conditional expected value. The conditional expected value

risk measure is denoted by f4 and is related to scenarios of low exceedance probability and

high severity. The function^ is the expected value of X, given that x is greater than ß:

/4 = E\X\x>ß] =
J xf(x)dx

ffMdx
(2.13)

Thus, for a particular policy option, there is the additional measure of risk/4, in addition to

the traditional, unconditional expected value, E[X], denoted by/5. Note the similarity

between the forms offy and/5:

f,
j xf{x)dx

\~J{x)dx
= J" xf(x)dx = E[X] (2.14)

40

(since the probability in the denominator of Eq. (2.14) is necessarily equal to one). In the

PMRM, the conditional and unconditional expected values are balanced in a multiobjective

formulation. The function/4 is related to the percentile (e.g., the 95th percentile) as a

measure of the risk of the extreme events, but provides a superior representation of the risk

of extreme events because it can distinguish between different shaped distributions when

the exceedance probability at a particular location is the same. The function^ is a natural

measure of the risk of extreme events for risk-based decision making. It transfers the

positive attributes of the unconditional expected value to a preselected extreme range of

harm, thus providing a basis for realistic and conservative policies.

2.7 Chapter Summary

This chapter has reviewed topics pertinent to software acquisition risk management. The

complexities of the software acquisition process, in particuar the numerous elements

asssociated with the software estimation process and software reliability require a multi-

visionary approach to software acquisition management. The holistic framework of HHM

provides the basis for systematic investigation of the many dimensions of software

acquisition. Probabilistic extensions of software estimation models will explicitly

incorporate the uncertainties associated with the software estimation effort. Through the

HHM, appropriate software estimation models can be brought together, allowing for

coordinated trade-off analysis and risk-based decision making that utilizes the additional

information of the conditional expected value of extreme events.

41

Chapter 3
A Holistic Management Framework for Software Acquisition

This Chapter develops a holistic framework for software acquisition that provides a

comprehensive representation of the multitude of elements, issues, activities, organizations,

and products that taken together constitute software acquisition. Centered on hierarchical

holographic modeling (HHM), the framework has provisions for exploration and

expansion of the multiple visions or decompositions. The intent of this Chapter is not to

explicitly address and consider all of the multiple aspects associated with the software

acquisition process; rather, the objective is to develop a framework that would enable the

consideration of such complexities and interconnectedness. This framework forms the

foundation of a systemic approach to software risk identification, software cost and

schedule estimation, and software project management decision making - topics that are

addressed in subsequent chapters of this work.

3.1 Introduction

Effective management of modern, complex processes such as software acquisition requires

capable, mature direction. To do justice to the management of technological systems, one

must address the holistic nature of the system in terms of its hierarchical, organizational,

and functional decision-making structure; the various time horizons; the multiple decision

makers, stakeholders, and users of the system; and the host of technical, institutional,

legal, and other socioeconomic conditions that require consideration. With the ever-

increasing importance and complexity of the software component of modern systems, it is

essential that software acquisition be addressed in terms of its overall system.

The role of models is to represent the intrinsic and indispensable properties that serve to

characterize the system, i.e., good models must capture the essence of the system. "In the

abstract, a mathematical model may be viewed as a one-sided limited image of the real

system that it portrays. To clarify and document not only the multitude of components,

objectives, and constraints of a system but also its welter of functional, temporal, and other

aspects is quite impossible with single-model analysis and interpretation" [Chittister and

Haimes 1993]. Given this assumption and the notion that ever-present integrated models

42

cannot adequately cover a system's aspects per se, the concept of HHM constitutes a

comprehensive theoretical framework for systems modeling.

Clearly, the multi-dimensionality of the acquisition process, and the large number of

activities, organizations, and disciplines that are engaged in this process defy the capability

of any single model to represent the essence of the acquisition process. To overcome the

shortfalls of single planar models and to identify all sources of risk associated with the

software acquisition process, an HHM framework will be adopted here. HHM assumes an

iterative approach to providing the structure for identifying all risks. If one fails to identify

a risk source with the current views of the HHM, then expansion of the model to include a

new decomposition is possible. This process, itself, will eventually capture all risk

sources.

In the remaining sections of this Chapter, the five major decompositions (visions) of the

software acquisition HHM framework are described first, followed by a discussion of their

integration within the overall HHM structure for risk identification and model development.

3.2 The HHM Decompositions for Software Acquisition

Development of an HHM model for software acquisition requires consideration of the

multitude of issues and factors associated with the process. As the intent of an HHM

model is to identify and manage risk sources, the elements of the model should be as

comprehensive as possible. Specifically, we seek the set of decompositions or visions that

together describe the multi-faceted nature of the problem. The materials presented in

Chapters 1 and 2 regarding the complex issues affecting software acquisition assist in

formulating the dimensions of the problem: the stages and activities of the process, the

participant communities, consequences of mismanagement, and risk causation and sources.

Investigations into the software acquisition field (e.g., [Sage 1995], [Chittister and Haimes

1995], [Chittister and Haimes 1993], [Blum 1992]) underscore the criticality of a multi-

vision approach: the need to consider a continuously changing environment, the pace of

technology advancement, and organizational considerations. The Software Development

Risk Taxonomy [Can et al. 1993] provides additional insight regarding the range of issues

and concerns affecting the software product in terms of product engineering, development

environment, and program constraints.

43

The HHM for software acquisition developed in this Chapter includes five principal

decompositions, perspectives, visions, or hierarchical holographic submodels (HHSs) (see

Figure 3.1). Each HHS addresses software acquisition from one particular perspective or

dimension. In their totality, these seemingly disparate visions of sources of risk constitute

the building stones of a risk identification framework. The program consequence HHS

represents those outcomes or effects that provide a measure of acceptability for project

progress and program management policies. The community maturity HHS recognizes the

competing, yet coordinated activities, interests, objectives, and concerns of each participant

group. The life cycle HHS contributes a temporal perspective, accounting for the

progression of events and activities of the software life cycle. The modality HHS

represents the major classes of failures, and the interaction of these failures, that contribute

to system risk. The project elements HHS considers the project complexity and the

development environment.

Software
Acquisition

1
Program

Consequence

Cost

Schedule

L— Technical

Community
Maturity

User

Customer

Contractor

— Requirements

Life Cycle

Design

Development

Integration/
Test

1— Maintenance

Modality

— Hardware

— Software

Organiza-
tional

Human

External

Project
Complexity

Development
Environment

Figure 3.1 Hierarchical holographic modeling for software acquisition

44

The claim is not made that the HHM in Figure 3.1 is all-inclusive or is a totally

comprehensive set of software acquisition risk sources. It does, however, provide the

framework that, as our knowledge of software acquisition improves over time, new aspects

or visions that are not foreseen today can be added.

3.2.1 Program Consequences Decomposition

One of the visions or decompositions that constitutes the HHM for the risk assessment and

management of software acquisition is the perspective of program consequences. This

decomposition represents the principal elements that describe the acceptability and progress

of an acquisition program: cost, schedule, and technical performance.

1) Cost: The programmatic costs associated with software acquisition. Program

costs are most often measured against the planned or budgeted expenditures, and costs in

excess of these amounts signals potential problems.

2) Schedule: The time requirement to design, develop, test, and implement the

software system. The total schedule requirement is often segmented into the several life

cycle phases for more accurate project tracking.

3) Technical: The ability of the system to meet its intended functions and

performance requirements.

This vision incorporates the notion of quality, addressing both technical and nontechnical

risks: technical performance of the product, cost overrun, and time delay in schedule. To

address the risk associated with the program consequences, one must address the

overlapping with all other visions and their sub-elements.

3.2.2 Community Maturity Decomposition

Another vision of the HHM can be obtained through consideration of the three principal

participant communities associated with a software acquisition endeavor, as described in

Chapter 1: the user, customer, and contractor communities.

1) User: The community responsible for identifying operational needs (hence,

system requirements) and for using and operating the developed system.

2) Customer: The organization that works with both of the other communities to

procure a system that meets the operational requirements, and do so within budgetary and

time constraints.

45

3) Contractor: The organization responsible for developing the system that will

satisfy the stated requirements.

The participant community decomposition provides an investigative framework for

examining the risk sources within and among each group, relative to the other

decompositions. The capabilities, maturity, experience, and competence of each

community in performing their required functions and activities is addressed through this

vision.

3.2.3 Life Cycle Decomposition

The life cycle decomposition represents the temporal element of software acquisition; the

progression of events and activities, along with the sequence of associated decisions,

through the various phases of the life cycle. These phases, which may be represented in a

waterfall, spiral, or other process paradigm are described in Chapter 1 and include:

1) Requirements

2) Design

3) Development

4) Integration/Test

5) Maintenance.

These categories provide a comprehensive scheme for the identification and assessment of

the sources of risk associated with each category at different points in time, and with all the

other decompositions (within the other four visions of the HHM). This decomposition also

addresses the propagation of the development effort within the life cycle of a product. For

example, the impact of requirements changes over time.

3.2.4 Modality Decomposition

The modality vision addresses five general sources of possible risk of failures:

1) Hardware: the hardware used to develop and test the software, as well as the

hardware components with which the software is to be integrated.

2) Software: includes consideration of various software development technologies

(COTS, re-use, etc.) as well as software languages and software used to develop other

software (e.g., CASE).

46

3) Organizational: the institutional procedures, regulations, policies, structures,

philosophies, maturity, and influence that contribute to program risk.

4) Human: software development and acquisition is, fundamentally, a human

endeavor - thus is affected by human failures and shortcomings.

5) External: this element is to provide coverage of sources of risk that are

essentially beyond the control of the software acquisition domain. Examples of external

risk sources include political influence, international events, etc.

3.2.5 Project Elements Decomposition

The project elements decomposition includes two sub-decomposition:

1) Development environment: consideration of the environment within which the

software is to be developed: the software process maturity, software development tools

and systems, the work environment, etc.

2) Project complexity: the relative degree of difficulty and effort that is to be

expected in developing this product. Considers project size, functions, platform, etc.

This decomposition contributes an understanding of the overall complexity of the intended

system and the risks that are associated with that complexity. It also captures the sources

of risk due to the development environment.

3.2.6 Adding Detail to the HHM Decompositions

In many ways, Figure 3.1 does not do justice to the task of communicating the myriad of

risk sources associated with each decomposition element. As mentioned above, however,

the HHM provides the framework for expanded analysis and investigation. Consider, for

example, the two sub-decompositions of the project elements decomposition. Additional

analysis provides sub-elements for these sub-decompositions: project complexity includes:

size, re-use, functions, and platform; development environment includes: process

maturity, tools, systems, and work site (Figure 3.2).

Similar exploration of the other decompositions and their sub-decompositions leads to the

inclusion of additional elements within the HHM, providing increased understanding and

comprehension concerning software acquisition and the risks associated with each element.

47

Project
Elements

Development
Environment

process
maturity

- tools h - systems ■ work site

Project
Complexity

size reuse - functions platform

Figure 3.2 Expanding the detail of the program elements decomposition

3.3 HHM for Software Acquisition Risk Identification

The HHM model of Figure 3.1 does not fully represent the HHM concept to the reader.

The most critical shortcoming of Figure 3.1 is that the HHM philosophy builds on a

multidimensional representation of the system (in this case, the multidimensional

representation of the sources of risk in software acquisition). As Chittister and Haimes

note [1995], "the two-dimensional depiction of the HHM [as in Figure 3.1] conceals the

couplings, interconnectedness, and the interactions among the various subsystems that

constitute the sources of risk." This said, a systemic exploration of software acquisition

risk source relations and interactions can be conducted using the HHM model. Each of the

five decompositions can be viewed as the primary vision from which to assess program

risks. The HHM framework then enables one to trace, assess, and analyze all other factors

affecting and affected by these primary sources of risk. Figure 3.3 depicts one such

representation from the perspective of the program consequence decomposition, focusing

on identifying the cost, schedule, and technical risks associated with each participant

community.

Continued investigation, by systematically selecting each decomposition as the primary

vision and associating it with the other decompositions, will provide a comprehensive

coverage of the sources of risk associated with software acquisition.

3.4 HHM for Analytic Model Development

Systemic investigation of software acquisition risk sources, as described in the previous

section, provides increased understanding of the relationships, dependencies, causation,

and impacts of decomposition elements on each other. Such understanding permits the

48

Program
Consequence

Community
Maturity

Software
Acquisition

Risk

Technical Cost Schedule

User Customer Contractor Technology

1 1
Figure 3.3 Risk assessment - program consequences-based HHM structure

HHM decomposition elements to be used in the development of analytic models.

Representing the knowledge of decomposition element relationships in an influence

diagram-type structure provides the next level of detail required for an analytic modeling

effort.

Consider, for example, the model depicted in Figure 3.4. Investigation using the HHM

reveals a relationship between the program consequence and project element

decompositions. Furthermore, project complexity is found to be influenced by the intended

size of the system, its, functions, opportunity for software re-use, not to mention the system

requirements. In addition, the capabilities and experience of project personnel (e.g.,

analysts and programmers) and the selected technologies also affect project cost, schedule,

and technical performance. Desired system requirements are identified by the user, with

the aauthorized system requirements approved by the customer community. Selection of

personnel and technologies for the actual development effort are generally within the

contractor's decision domain. With even such simple investigation of element

relationships, a framework of an analytic model for software cost, schedule, and technical

performance takes form. This graphical element-relationship extension of HHM

approaches the graphical model management concept of Muhanna and Pick [1994]. A

series of interrelated analytic models can be now developed, with the selection of particular

areas for modeling based on the interests and needs of the decision makers.

49

User & Customer's domain

J ^ i V (Environment

i Functions^ / /^ "\
(Site j

process
maturif

(Functions)

Figure 3.4 A representative influence diagram relationship
of some HHM decomposition elements

3.5 Chapter Summary

This chapter has developed the HHM framework for software acquisition that provides a

comprehensive framework for identification of risk sources and leads to the development of

analytic models for the various software acquisition decompositions. The ultimate efficacy

of the HHM framework lies in at least two dimensions: i) its capability to account for and

display as complete a set (as possible) of sources of risk associated with software

acquisition from their multidimensional perspectives as the analysts and experts can

envision, and ii) its facility to provide in-depth varied interpretations of the various

dimensions and relations of risks arising whether from the life cycle, program

consequences, participants, project elements, or other perspectives.

The work of the following chapters builds on the HHM framework developed in this

Chapter. In particular, the focus is on the ever-critical program consequences

decomposition and the relationship between that vision and the participant community

decomposition.

50

Chapter 4
Exact Determination of the Triangular Distribution's

Conditional Expectations

Quantitative modeling of software acquisition decision-making situtations must account for

the inherent uncertainties of the acquisition process and environment. Unfortunately, such

decision situations often lack the objective data required for quantifying the uncertainty

through the use of many common probability distributions. In such situations the

triangular distribution is often employed [Haimes et al. 1994a]. Probabilistic analysis

introduces the conditional expectation to be used in decision making as a measure of the

risk of extreme events. Previous works focused on deriving the analytical expressions for

the conditional expectation of extreme events for the normal, lognormal, and Weibull

distributions [Leach and Haimes 1987], [Romei et al. 1992]. This Chapter extends

previous results by deriving conditional expectation expressions for the triangular

distribution and exploring the sensitivity of the conditional expectation of extreme events

with respect to the selected probability partitioning point. The results are demonstrated in

examples related to software acquisition project decision making.

4.1 Background

In most cases, the traditional use of a single value estimate in quantitative system modeling

is not adequate to represent the variability associated with that system or environment.

Because the assessment and ultimate prevention of risks (e.g., cost overrun) are of such

major concern, it is desirable to retain as much information as is possible in the

quantification of model parameters. Probabilistic quantification is one approach for

addressing the problems associated with single value estimation. Unfortunately, in most

cases where probabilistic quantification is practiced, the expected value is used as the sole

measure of risk. As indicated in Section 2.6, this may lead to inaccurate or

misrepresentative results.

The inadequacy of the expected value approach provides the motivation behind the

development of the partitioned multiobjective risk method (PMRM) [Asbeck and Haimes

1984] with its conditional expected-value functions, or risk functions. In particular,

51

Asbeck and Haimes [1984] defined the following unconditional and conditional

expectations of a random variable:

f2 - high-probability, low-damage expectation

/3 - intermediate damage and probability expectation.

f4 - low-probability, high-damage expectation

f5 - unconditional expectation.

In addition, there exists the additional objective function

fl - the cost function associated with implementing a mangement policy or risk

mitigation effort.

The/i is often used in a multiple objective framework as the opposing objective to the

minimization expectation functions.

Of the expectation functions listed above, the/4 and^ values provide the broadest

application to risk-based decision making. Extreme event analysis based on the/i andfs

values has been applied to a wide variety of problems, including: water resources

management [Karlsson and Haimes 1988], [Haimes and Karlsson 1989], [Haimes et al.,

1992]; dam and flood management [Haimes 1986], [Haimes et al. 1998], [Li et al. 1992],

[Lambert et al., 1994]; government project management [Haimes et al. 1994b]; and

contractor selection [Haimes and Chittister 1993], [Haimes and Chittister 1995].

The^ and^3 conditional expected values generally contribute less risk information for

decision-making purposes than the/i and fe values. Thef2 may be useful in the rare cases

where one is examining the most likely scenarios - performance or behavior of the system

in its most common lifecycle, excluding any extreme possibilities. The/5, a restricted

expected value calculation that also commensurates adverse events of high consequences

and low probabilities with events of low consequences and high probabilities, is

appropriate when the tail information of the distribution is unreliable, or for some other

reason not pertinent to the analysis.

Our development and analysis of the expectations of the triangular distribution will focus

on the fa and/5 values. For completeness, the derivations of the f2 and/3 conditional

expected values are included in Appendix C.

52

4.2 Previous Derivation of Conditional Expectation Equations

Leach and Haimes [1987] derived exact expressions for the conditional expectation of the

normal distribution, while [Romei et al. 1992] contributed such expressions for the

lognormal and Weibull distributions. Romei's work also explored the sensitivity of the

conditional expectation with respect to distribution parameters, and the selected partitioning

point.

The lack of data in many decision situations rules out the use of many probability

distributions. In such situations, expert opinion is often sought to estimate a triangular

distribution for the parameter. One of the simplest, yet still substantial probability

distributions, the triangular distribution requires three parameters: the lower bound, the

upper bound, and the most likely value. Use of the triangular distribution is widespread;

the Army Corps of Engineers accepts the triangular distribution as the basis for their

probabilistic analysis for flood and river risk management [Haimes et al. 1994a].

Extending the previous works to the triangular distribution will provide increased analytical

support for decision makers in the situation of a lack of data.

4.3 Exact Determination of the Triangular Distribution Conditional

Expectations

A triangular distribution has the following form of the probability density function [Law

and Kelton 1982]:

2(x-a)
a<x<c

/(*) =

(b-a)(c-a)
2{b-x)

(b-a)(b-c)

0 otherwise

c<x<b (4.1)

where a is the minimum value, b is the maximum value, and c is the most likely value

(Figure 4.1).

53

b-a

Figure 4.1 Triangular Probability Distribution

4.3.1 The Low-probability, High-damage Conditional Expectation, /4

The high-consequence scenarios, those of greatest potential harm, are of most concern to

decision makers. For that reason, the^ conditional expectation has particular significance

in planning and policy evaluation. For a range of extreme events, the conditional expected

damage (given that the damage is within that particular range) provides a measure of the

impact associated with extremely large and potentially very costly and catastrophic events.

The function^ is the expected value of the random variable, given that its observations are

greater than a partitioning value ß [Asbeck and Haimes 1984]:

f xf(x)dx
f< = E\X\x>ß] = f„ , (4.2)

Deriving the conditional expectation for high-damage, low-probability events,^, for the

triangular distribution is accomplished by substituting the element corresponding to c < ß <

bofEq. (4.1) into Eq. (4.2):

f» 2x(b-x) , Cb

r 2(b~x) dx "
h(b-a)(b-c)

rb
\{b-x)dx

W-'^j hb'-kb'HW-W)\
M4 " H*-i*H»ß-\P)]

54

^-^bß' + '-ß' _ b3-3bß2+2ß'
\b2-bß + \ß2 3(b2-2bß + ß2)

(b-ß)(b2 + bß-2ß2) _(b-ßf(b + 2ß)
3(b-ßf 3(b-ßf

b + 2ß

Thus /4 = A±2£ c<ß<b. (4.3)

Hence, for the triangular distribution, the extreme event conditional expected value with

damage partition ß, c < ß < b, is given by Eq. (4.3).

Applying Eq. (4.3) to the example problem described in [Haimes and Chittister 1993]

verifies the expression (Table 4.1).

Table 4.1 Triangular Distribution Conditional Expectations Example
data from [Haimes and Chittister 1993]

Minimum
(a)

Most Likelj
(c)

Maximum
(b)

l-in-10 Extreme Event l-in-100 Extreme Event

J8 h* B /4*
Customer 0.00 1Ü.ÜÜ 30.ÖÜ 52.25 24.84 ril.55 2Ü.37
Contractor A Ü.ÖÜ 15.ÖÖ 5Ö.ÖÖ 36.77 41.18 45.82 47.21
Contractor B Ö.ÖÖ 2Ö.ÖÖ 4Ö.ÖÖ 31.Ü6 34.04 37.17 38.11

♦calculated using equation (4.3), results compare
exactly with [Haimes and Chittister 1993]

4.3.2 The Unconditional Expected Value, f5

The general expression for the unconditional expectation,^, given by Asbeck and Haimes

[1984] is:

/,=■

\xf(x)dx

jf(x)dx

(4.4)

By definition of the probability density function, the denominator in Eq. (4.4) equals one,

thusJ5 is equivalent to the common expected value EJx]

55

f5=]xf(x)dx = E[x]. (4.5)

Deriving the unconditional expected value for the triangular distribution requires

substituting Eq. (4.1) into Eq. (4.5):

fs =

c a

\xf(x)ax+\xf(x)dx
K°

(b-a)(c-a){

1 *
 \(2x2-2ax)dx + \(2bx-2x2)dx
-n\JK ' fh-aVb-cV (b-a)(b-c)J

1
3(b-a)(c-ay

 [2c3 -3ac2 +a3l + l- -W-3bc2 -2cl\
-aV- J 5(b-a)b-cV J

3{b
-i -\(a-c)(a2 + ac-2c2)] + \ \(b-c)(b2+ bc-2c2)\
-a)c-a)v J 3(b - d)(b - c)L J

_-{a2+ac-2c2) (b2 + bc-2c2)

3(b-a) 3{b-a)

b2-a2 + bc-ac (b - a)(b + a) + c(b - a)

3(b-a) 3(b-a)

{b-a){b + a + c)

3{b-a)

a + b + c

This result is equivalent to the familiar expression for the expected value of the triangular

distribution [Law and Kelton 1982]:

/s=E[x] =
a + b + c (4.6)

56

4.4 Sensitivity of the Triangular Distribution's./^-) Conditional

Expectation with Respect to the Damage Partitioning Point

AS./4 has the most significance in risk analysis and in decision making, examination of the

sensitivity of this conditional expected value with respect to the partitioning point is

desirable. Of particular interest is the impact that changes in the probability partitioning

value, a, have on the conditional expectation/4. Recall that partitioning the probability axis

of the exceedance function, 1-F(x), identifies the corresponding damage axis partitioning

point ß. For a given probability partition value, one would determine the damage

partitioning point by solving

or
1 - F(/3) = 1 - a

F(0) = a. (4.7)

The exceedance function for the triangular distribution is adapted from the cdf [Law and

Kelton 1982]:

l-F(x) =

1
(x-a)2

(c-a)(b-a)
(b-xY

(b-a)(b-c)
0

x<a

a<x<c

c<x<b

x>b

(4.8)

Considering ß to be on the interval [c,b], solving for Eq. (4.7) requires evaluating

(b-ß)2

(b-a)(b-c)
= (l-a)

which when solved for ß results in the expression

ß = b-[{\-a)(b-a)(b-c)}y\ ^-<a<\.
b-a

(4.9)

Eq. (4.9) is easily verified by applying the example from [Haimes and Chittister 1993]

(Table 4.2).

57

Table 4.2 Triangular Distribution Partitioning Values Example
data from [Haimes and Chittister 1993]

Minimum

(a)

Most Likely
(c)

Maximum

(b)

Beta partitioning value*

alpha=.9 alpha=.99

Customer 0.00 10.00 30.00 22.25 27.55

Contractor A 0.00 15.00 50.00 36.77 45.82

Contractor B 0.00 20.00 40.00 31.06 37.17

exactly match [Haimes and Chittister 1993]

We can now state ^ in terms of the probability partitioning value a by substituting the

results from Eq. (4.9) into Eq. (4.3)

h =
b + 2ß 1 = -lb + 2{b-[a-a)(b-a)(b- c)f2)

or
X c-a f^b-\[{\-a)(b-a){b-c)\\ —<cc<\. (4.10)

The conditional expected value ^4 depends on the selected probability partitioning value a

and on the parameter vector <a,b,c> of the distribution function. Facing uncertainty in the

real world, especially where extreme events are concerned, the value offa should be

supplemented with its sensitivity analysis. Taking the derivative of Eq. (4.10) with respect

to a

f±=-i[(i-aX*-«XMr[-(*-«X»-') da

(*-«)(*-*)

3[(l-a)(b-a)(b-c)\>

_ 1 (b-a)(b-c)

(1-a)
(4.11)

The derivative (4.11) expresses the sensitivity of/4 with regards to changes in the

probability partitioning value. As b^-a and b^-c, the numerator of Eq. (4.11) is

nonnegative. Also, 0^a<l, hence the denominator of Eq. (4.11) is on (0,1]. Therefore
Eq. (4.11) is non-negative, implying^ is a non-decreasing function in a. The application

of this result is shown in the following example problems.

58

4.5 Partitioning Sensitivity Examples

Two examples are presented to demonstrate probability partitioning sensitivity analysis for

triangular distribution conditional expectations. The first example, adapted from [Haimes

and Chittister 1993], is originally presented in the context of differentiating among the cost

estimates from a customer and two contractor groups. Haimes and Chittister employed the

conditional expected value in conjunction with the more common unconditional expected

value, and we extend their results to indicate the significance of examining the probability

partitioning value.

The second example also compares three cost estimates, each quantified in the form of a

triangular probability distribution. In this example, each distribution has different high,

low, and most likely parameter values, however all of the distributions have the same

unconditional expected value. Sensitivity analysis concerning the selection of probability

partitioning values for the conditional expectation is conducted to assist in decision making.

4.5.1 Example 4.1 -- Project Cost Overrun Evaluation

Consider the example proposed in [Haimes and Chittister 1993] where a governmental

request for proposal (RFP) to develop a software system requires contractors to submit

their estimate of the project's cost in a form that accounts for the variance to be expected in

the project's cost overrun. Specifically, each contractor is asked to provide three values of

the projected cost overrun percentage: (a) lower bound, (b) upper bound, and (c) most

likely. The government (customer) also produces an estimate of the project's cost overrun.

Table 4.3 indicates the parameters associated with each group's estimates, along with the

unconditional expected value f$ for each.

Table 4.3 Example 4.1- Project cost overrun estimate parameters
Minimum

(a)
Most Likely

(c)
Maximum

(b)
Expected Value5

(ß)
Customer O.OC 10.0C 30.0C 13.32

Contractor A 0.0C 15.0C 50.0C 21.6'

Contractor B 0.0(20.CX 40.0C 20.0C
*Equation (4.6)

59

For comparison, Figure 4.2 depicts the triangular probability distributions for the customer

and two contractors.

Customer

Contractor B

Contractor A

0 10 50 15 20 25 30 35

Project Cost Increase (%)

Figure 4.2 Triangular probability distributions for Customer and Contractors A and B

The low-probability, high-damage conditional expectation in terms of the probability

partitioning value for each group's estimate is derived by substituting the values from Table

4.3 into Eq. (4.10). The/i equation for each is:

Customer: /f"' = 30 - f [6(1 - a)f2

Contractor A: /4
A = 50 - f [70(1 - a)f2

Contractor B: /4
fl = 40 - f [8(1 - a)f2.

(4.12)

(4.13)

(4.14)

A plot of Eqs. (4.12), (4.13), and (4.14) for various values a is shown in Figure 4.3.

Observe the significant relative change in the conditional expected values between that of

Contractor A and the other two groups as a increases. At a = 0.5, the difference in the

conditional expected value of percentage cost increase between Contractors A and B is

approximately 3.5. However, at a = 0.9, this difference has more than doubled to over

7.1. The various a partitioning values correspond to risk sensitivity levels for a decision

maker. Higher a values permit greater focus on less-likely, yet more-damaging events.

60

Customer

Contractor B —

Contractor A

10

:.99

oc-5 oc=-75 oc=.9 a=.95

+
20 30 40

Project Cost Increase (%)
50

Figure 4.3 Unconditional and Conditional Percentage Cost Overrun
for Varying a Values

Selection of the appropriate a value depends on the risk attitude of the decision maker. The

selection can also be assisted by evaluating the sensitivity of the conditional expectation

with respect to changes in a. Examining the rate of change of the conditional expected

values as a increases (Eq. (4.11)), provides an indication of the risk involved with each

estimate (Figure 4.4). In particular, one notices the rapidly increasing rate of change of the

conditional expected value as the probability partitioning point is extended further into the

extreme ranges. Seemingly miniscule changes in the partitioning value have dramatic

effects on the conditional expectation. For example, extending the probability partitioning

value from a = 10"4 to a = 10"5, increases the rate of change of the conditional expected

value for the Customer from 816 to 2582! Extending the partitioning point further to a =

10-6 increases the conditional expected value's rate of change to 8165. The use of very

small partitioning points is common for examining the extreme-scenario expected reliability

of a mission-critical systems. For other problems such as the software cost problem,

however, one is not necessarily concerned with exceptionally small partitioning values;

examining the conditional expectation for a = 10"1 or a = lO2 generally provides sufficient

decision-making support. In these ranges, the conditional expected value is less sensitive

to the partitioning point.

61

14000'

12000

10000
a
> 800O
T3

6000

4000

2000

on

o Customer
♦ Contractor A
a Contractor B

^,

10
,-1 10

,-2 10° 10"
Probability Partitioning Value a

10

Figure 4.4 Rate of Change of/4 for varying partitioning values

4.5.2 Example 4.2 -- Evaluating Alternatives with Identical Unconditional

Expected Values

In this example, the triangular probability distributions of the cost of three alternatives

(cases) are compared. While each case has the same unconditional expected value, the

differences in conditional expected values at various probability partitioning points is

significant. Table 4.4 provides a summary of the distribution parameters for each of the

three cases.

10

Table 4.4 Example 4.2 - Cost estimate parameters for each case

Minimum
(a)

Most Likely
(c)

Maximum
(b)

Expected Value*
(15)

Case 1 10.00 30.00 50.00 30.00
Case 2 20.00 30.00 40.00 30.00
Case 3 5.00 10.00 75.00 30.00

♦Equation (4.6)

62

Comparison of the three triangular probability distributions indicate wide differences in

their variances (Figure 4.5).

0.10-

.a
2 0.06

k Case 2

30 40 50

Cost
Figure 4.5 Triangular probability distributions for the three cases

Substituting the values from Table 4.4 into Eq. (4.10) produces the following^ equations

for each case:

Case 1:

Case 2:

Case 3:

f? =50-f [2(1-a)lp

/f = 40-f [2(1-a)f2

/f = 75 -f [182(1-a)]^.

(4.15)

(4.16)

(4.17)

A plot of each case's values f\ (Eqs. (4.15), (4.16), and (4.17)) for various values of a is

shown in Figure 4.6. Without the additional information of the conditional expectation, a

decision maker may be indifferent among the three cases, as each has the same

unconditional expected value. Again, the increasing difference in conditional expectation of

the three cases as a increases provides a measure of each case's cost risk for extreme

events. Examining the rate of change in the conditional expected value as a increases

indicates the rapidly-increasing conditional expectation associated with Case 3, the most

risky of the three cases (Figure 4.7).

0 30 40 50 60 70

Figure 4.6 Unconditional and Conditional Expected Values for Varying a Values

2500O

10 A 10
.-2 10"J 10

Probability Partitioning Value a

Figure 4.7 Rate of Change of fy for varying partitioning values

10 10

4.6 Chapter Summary

The additional information provided by the conditional expected value gives decision

makers a better understanding of the risk of extreme events associated with alternative

policy options. A supplement to the traditional expected value analysis, extreme event

analysis provides greater insight regarding the impact of potential catestrophic events,

64

assisting decision makers in selecting appropriate risk-mitigation options. The

contributions of this Chapter in deriving exact solutions of the triangular distribution's

conditional expectation and partitioning sensitivity analysis with respect to partitioning

values provides an increased analytical capability for evaluating decision situations that are

hampered by a lack of empirical data. These results are applied within the methodologies

developed over the next chapters.

65

Chapter 5
Probabilistic Software Estimation

This Chapter focuses on the cost element of the program consequences HHS of the HHM from

Chapter 3. This Chapter develops a probabilistic approach to software estimation that focuses on

the risk of extreme events and utilizes the conditional expected value as an additional risk

management decision-making metric. The benefits that a probabilistic approach provide to project

management are presented. A methodology for calculating the conditional and unconditional

expected values from Monte Carlo simulation is developed. Application of the approach, using

Monte Carlo simulation, is demonstrated for the Basic and Intermediate COCOMO models.

Comparisons between the probabilistic approach, the original COCOMO results, and the actual

project results are presented.

5.1 Introduction

One of the most difficult, yet important aspects of software project management is accurately

estimating the needed resources for software development. Such estimation requires establishing

the functions and performance characteristics of the desired system, estimating the size of the

software product to be produced, estimating effort requirements, and producing project schedules.

Software estimation models are used to provide decision makers with a forecast of the actual

manpower and time resources required to develop a software product. As these models are

typically employed during the early phases of the development life cycle, accurately estimating a

software project's resource requirements is complicated by the inherent uncertainty associated with

quantifying the scope, size, and complexity of the project while still in these early stages. Most

software estimation models rely on traditional, single-value parameter estimates, and produce a

single-value estimate. Such an approach discounts the uncertainty associated with each parameter

estimates and down-plays the uncertainty inherent in the early life cycle of project development.

While some probabilistic approaches to software estimation have been introduced (e.g., [Zhu and

Lowther 1993]), their application has been limited due to proprietary restrictions and to a general

lack of understanding within the software development community concerning how to effectively

utilize such models.

66

5.2 Parameter Estimation Concerns for Software Estimation Models

Existing software estimation models rely on the use of historical data for gauging future program

costs. Relationships among model variables (e.g., KLOC estimates, effort adjustment factors,

development cost multipliers) are most often derived from historical experience using statistical

regression techniques. These are then adjusted for a specific project's complexity or difficulty.

Unfortunately, the rapid advancement in software practices, tools, and environments makes

comparison to previous projects increasingly difficult [Przemieniecki 1993]. The validity and

appropriateness of traditional estimation models are being called into question as to their

applicability to today's software systems [Matson et al. 1994].

One of the limitations to increasing the accuracy of the KLOC-based models is the difficulty of

estimating the number of lines of code that will be needed to develop a system from the information

available at the requirements or design phases of development [Emrick 1987]. The KLOC-based

models, to be useful, require one to be able to predict the size of the final product as early and

accurately as possible. Unfortunately, estimating software size using the KLOC metric depends so

much on previous experience with similar projects that different experts can make radically

different estimates [Conte et al. 1986]. More detailed models require a greater number of variable

and parameter estimates, each of which contributes to the overall uncertainty of the final effort and

schedule estimates. The Detailed COCOMO Model requires one to estimate 15 cost multipliers for

each of the 4 development phases — a total of 60 parameter estimates!

The function-point approach is no less immune from a large number of required estimates. A

function point count requires 15 estimates ~ an estimate of the count of each component (input,

output, files, interfaces, and inquiries) at each level (low, average, high) [Albrecht and Gaffney

1983]. Each estimate is subject to a range of possible values. Within a single organization there

are sometimes significant differences in the function point counts for the same project as

determined by separate individuals [Matson et al. 1994]. This arises from subjective assessments

in both the raw counts and adjustment factors.

5.3 Accounting for Uncertainty in Software Estimation

Recognizing that the result of a software estimation model relies on the subjective assessment of

numerous model parameters, a means to account for, and describe, the uncertainty of the estimate

67

is required. The common practice of many organizations is simply to conduct multiple estimations

- with separate groups of personnel preparing independent estimates [Barrow et al. 1993]. The

drawback of this approach is the task of resolving the differences in estimates. Unfortunately, this

approach often causes that the organization accepts the average of all proposals or some other more

politically-motivated means as its strategy for determining the final estimate.

Without addressing an estimation model in particular, Pressman [1987] introduced an approach to

account for software cost uncertainty, suggesting the use of three estimates for each parameter.

The most likely (m) is, as its name suggests, the best guess assuming nothing goes wrong. The

other two estimates are an optimistic (o) and a pessimistic (p) one. Pressman then advocates using

the expected (e) estimate, computed as

e = (o + 4m + p)/6.

The formula adjusts the estimate by approximating the fact that, in the normal distribution, one

third of the points will be more than one standard deviation from the mean.

Pressman's approach may allow for an initial consideration of an estimate's variability; however,

reducing the three values to a single expected estimate discards the additional information contained

in the range of the estimates. An improved approach would retain and utilize the information

gained through estimating o, m, and p.

Haimes and Chittister [1993], [1995] address the issue of maintaining information, also proposing

the use of three estimates: most likely, high, and low. The application of their approach would

require a software developer to submit three cost estimates in place of the more common single

value when bidding on a contract. Unlike Pressman's approach, however, the three estimates are

employed as the basis for forming a triangular probability distribution for the project's cost. The

use of a probability distribution not only maintains the information concerning the most likely

scenario, but also provides an indication of the uncertainty associated with that estimate.

Additional decision-making information and risk information are available with this approach. The

principal shortcoming of this approach is that it estimates cost directly, without explicitly capturing

the many factors included in traditional software estimation methodologies.

Zhu and Lowther [1993] describe a probabilistic software estimation approach for the Intermediate

COCOMO Model. Their approach, implemented in a spreadsheet model, allows the cost drivers,

KLOC estimate, cost-per-effort, and other parameters of the COCOMO model to be represented by

probability distributions. A Monte Carlo simulation of the realizations of the model's input

68

parameter probability distributions is used to produce a distribution of the development effort.

Unfortunately, their paper does not address the benefits of such an approach, how one would

make use of the probabilistic aspects of the model, or how the information provided in the model is

to be used for decision making.

The remainder of this Chapter is devoted to the development of a probabilistic approach to software

estimation that builds on the works of Haimes and Chittister, and Zhu and Lowther. This

approach is based on the risk of extreme events and utilizes the conditional expected value [Asbeck

and Haimes 1984] as an additional decision-making metric.

5.4 The Probabilistic Software Estimation Approach

The central concept of the probabilistic approach to software estimation is the explicit incorporation

of uncertainty. Where possible, all or any of the model's parameters are quantified in terms of

probability distributions. Those parameters not so quantified are set to their expected value.

Applying a software estimation model, the output is now in terms of a probability distribution

instead of the traditional single-point value. To demonstrate the approach, we consider two

application contexts. First, the direct approach for circumstances in which the development effort

is directly quantified by a known, closed-form probability distribution. For this case, the

conditional and unconditional expected values can be determined by Eqs. (4.2) and (4.4) (or Eqs.

(4.3) and (4.6) for the triangular distribution). Second, a Monte Carlo simulation approach for

situations where the development effort cannot be quantified by a closed-form distribution. In

such cases, we can estimate the expectation values by examining the set of outcomes of the

simulation. Examples of each approach are presented, demonstrating the use of the conditional

expected value for decision making.

5.4.1 Direct Approach to Probabilistic Software Estimation

Quite often, an initial evaluation of the effort required to develop a software product can be

estimated, not by way of a traditional estimation model, but by the direct assessment of a

probability distribution of the development effort. The expected value and conditional expected

values of this distribution are then used for evaluating the relative desirability of various program

alternatives. Romei [Romei et al. 1992] derived the exact-form solutions for the conditional and

unconditional expectation functions for normal, lognormal, and Weibull distributions.

Unfortunately, there is often insufficient empirical evidence to support the use of one of these

69

distributions for estimating software development effort. In such cases, subjective assessment of

probability distributions by area experts using the triangular distribution or fractile method [Haimes

and Chittister 1993] is appropriate. The triangular distribution expectation function results of

Chapter 4 are central to the direct approach to software estimation. The direct approach is

demonstrated in the following example.

5.4.1.2 Example 5.1 - Alternative Selection using the Direct Approach. Consider

the project manager who is debating about the selection from among three alternative approaches

for a software system. Expert evaluation of each alternative led to the triangular distribution

information in Table 5.1 concerning the most likely, lowest, and highest development effort

requirements. While each alternative has the same unconditional "business as usual" expected

value, E[X], the differences in conditional expected values at various probability partitioning

points are significant. This comparison also indicates wide differences in their variances (Figure

5.1).

Table 5.1 Development effort (man-month) estimates for each alternative

Minimum
(a)

Most Likely
(0

Maximum
(b)

Expected Value

05)
Alternative 1 10.0C 30.0C 50.0C 30.0C
Alternative 2 20.0C 30.0C 40.0C 30.0C
Alternative 3 5.00 10.0C 75.0C 30.0C

«
o
u

BL,

i Alternative 2

60 70 80 20 30 40 50

Effort (Man-months)
Figure 5.1 Development effort probability distributions for the three alternatives

The conditional expected value, J4, of the triangular distribution can be stated in terms of the

probability partitioning values ßand a Eqs. (4.3) and (4.10):

70

/4-*±2 c<ß<b

and
/i c-a f4 = b-l[(l-a)(b-a)(b-c)f, ^-^^<l

b-a

(5.1)

(5.2)

The value/4 depends on the selected probability partitioning value a and on the parameter vector

<a,b,c> of the triangular distribution function. Substituting the values from Table 5.1 into Eq.
(5.2) produces the following conditional expected-value functions for the three alternatives:

Alternative 1: ff = 50 - f [2(1 - a)] X

Alternative 2:

Alternative 3:

ff =40-f[2(l-a)f

ff =75-f[l82(l-a)f.

A comparative plot of/5 andy^ for each alternative for various a values is shown in Figure 5.2.

Alternative 2

Alternative 1

Alternative 3
oe=.5 cc=75 a=.9 a=95 a=.99

4- + + + + +
30 60 70 40 50

Effort (Man-months)

Figure 5.2 Unconditional and conditional expected values for varying a values

Without considering the additional information of the conditional expected value, each alternative
seems equally desirable ~ each has the same unconditional expected value. However, given the
additional information of the conditional expectation, we observe the increasing difference in the
three alternatives as a increases. Compare, for example, the conditional expected values of the
three alternatives for a = 0.9, the l-in-10 scenario. Alternative 2's conditional expected value is
37.02 man-months, a 23 percent increase over the unconditional expected value. The l-in-10

71

conditional expected value of Alternative 1 is 44.04 man-months, while that of Alternative 3 is

60.78 -- more than double its unconditional expected value!. We see that Alternative 2 is the

least risky of the three alternatives, while the greatly-increasing conditional expected value of

Alternative 3 indicates the influence of the tail of its distribution. The conditional expectation

provides a measure of each alternative's development effort risk for extreme events.

5.4.2 Monte Carlo Simulation Approach to Probabilistic Software Estimation

While the previous method developed a direct probabilistic estimate of project development effort,

this approach considers the use of a traditional, analytic cost estimation model, for which all or

some of the input parameters are quantified by probability distributions. For example, consider the

probabilistic estimation of project development effort using the Intermediate COCOMO model Eq.

(2.3). If we treat the input parameter KLOC as a random variable (a triangular distribution, for

instance), then evaluating Eq. (2.3) requires solving a nonlinear function of a random variable.

The result will be a probability distribution of the development effort, but one without explicit,

analytic expression.

While there are analytic, closed-form solutions for the function of certain random variables having

known distributions (e.g., a linear combination of normal random variables produces a normal

random variable), such is not the case for a nonlinear function of a triangular random variable. In

this case we must apply an approximation method - Monte Carlo simulation — to determine the

distribution of Eq. (2.3) and evaluate its conditional and unconditional expected values.

With Monte Carlo simulation, the outcome of probabilistic events is determined by randomly

drawing one value from each parameter's density function and assessing the outcome based on

those random draws. A single outcome is only one sample out of a very large number of possible

cases. In order to discover what the expected or average outcome of the situation would be, it is

necessary to run many cases — take a large sample ~ varying only the random values selected.

To simplify notation, denote man-months of development effort by M (instead of the previous

MM). To approximate E[MJ, the expected man-months of development effort, we generate a

random value KLOCW= kloc from the density function of KLOC and then compute MW by Eq.

(2.3). We next generate a second random value (independent of the first) KLOC© and compute

M®. This continues until n, a fixed number of independent and identically distributed random

variables M© = (EAF)(a(KLOC('))fe), / = 1,..., n have been generated. By the strong law of

large numbers [Ross 1989] we know that

72

M(i)+ ... +M(») , ,
Inn = EM =/s. (5.3)
n-»«o ft L J

Hence, we can use the average of the generated M$s as an estimate for E[M], the unconditional

expected value. To approximate the conditional expected value, /4, we form the sub-set of

outcomes M» whose members are those outcomes that exceed the partitioning value ß associated

with the predetermined a value. Simply stated,

M^={M(,)|M(/)>^}. (5.4)

The average of the members of M^ is the average of all outcomes that exceed a particular damage

level - precisely the definition of the conditional expected value. Therefore, given m elements of
the set Mo (for m sufficiently large), an approximation to the conditional expected value of the

development effort is given by

M^+ •■• +M(„m> r i r i „i
S. 2-sEM, =EMM>/J =/4. (5.5)

m L J L ' J

Obviously, Monte Carlo simulation is a computationally-intensive approach, as the number of

observations n must be large. Fortunately, the availability of personal computers and powerful,

yet easy-to-use simulation software packages makes this approach feasible. Without such

resources, the method would be computationally burdensome. In the following example, we use

the software package @RISK [Palisade 1995] to perform the Monte Carlo simulation calculations

for the Intermediate COCOMO model.

5.4.2.1 Example 5.2 - The Monte Carlo Approach for Intermediate COCOMO.

For this example, we extend the problem described in [Boehm 1981] and evaluate the required

development effort of three competing alternatives for a semidetached software project. Unlike the

first example, quantification of the required development effort is achieved using the Intermediate

COCOMO model Eq. (2.3). The cost multipliers that constitute the effort adjustment factor (EAF)

are assumed to be identical for each alternative, where EAF = 1.18. For a semidetached product,

the parameters of Eq. (2.3) are set at a = 3.0, b = 1.12 (see Table A.3). The KLOC estimate for

each alternative is quantified as a triangular probability distribution (Table 5.2). With an expected

value of 32 KLOC, the deterministic expression of Alternative 2 is identical to the original problem

in [Boehm 1981].

73

Table 5.2 KLOC requirement estimates for each alternative

Minimum
(a)

Most Likely
(c)

Maximum
(b)

Expected Value*
(15)

Alternative 1 20 30 48 32.67

Alternative 2 26 32 38 32.00

Alternative 3 28 32 46 35.33

A Monte Carlo simulation of 1000 iterations (i.e., n = 1000) using the approach described above

was conducted for each of the three alternatives of Table 5.2. Figure 5.3, a histogram plot of the

simulation results for Alternative 2, provides a graphical representation of the simulation's

approximation of the output probability distribution for development effort. The partitioning point

for determining the conditional expected value was set at a = 0.9, the l-in-10 occurrence. The

conditional and unconditional expected value results for each alternative are given in Table 5.3.

Since the parameters associated with Alternative 2 were selected to be identical to the example from

[Boehm 1981], we can compare our results with the original paper. The expected development

effort result from the simulation for Alternative 2, f5 = 172.05, is nearly identical to Boehm's

reported 172.

0.09

0.08

= 0.06

x; o
£ 0.04

Distribution for Development Effort

0.02

0.00
137.3 149.0 160.7 172.4 184.1 195.8 207.5

Man-months Mean value = 172.05

Figure 5.3 Histogram of Monte Carlo Simulation Results for Alternative 2

74

Table 5.3 Expected Value Results from Monte Carlo Simulation

Expected Value

U_ f±(a = 0.9)
Alternative 1 176.19 242.55

Alternative 2 172.05 198.31

Alternative3 192.30 238.09

A plot of the /4 and /5 results provides a graphical comparison of the desirability of each

alternative (Figure 5.4). While the unconditional expected values of Alternatives 1 and 2 are very

close, there is great disparity in their l-in-10 extreme-event, conditional expected values. Without

the additional information of the conditional expected value, a decision maker may be indifferent

between Alternatives 1 and 2. However, the conditional expected value indicates that Alternative 2

is the least risky of the three alternatives. If all three alternatives were to have the same

implementation costs, Alternative 2 would be most preferable. For a complete evaluation of the

relative preference of one alternative toward another, one must determine the cost of each

alternative, and then tradeoff this cost with the conditional and unconditional expected development

effort values of each alternative.

Alternative 2- -

Alternative 1--

Alternative 3- -

V—/

\
\

\

+ + + 4-

/

180 240
■+■

200 220

Effort (Man-months)

Figure 5.4 Unconditional and conditional expected values from Monte Carlo simulation

5.5 Comparing Probabilistic Results, Original Model Results, and Actual Values

In the previous sections we demonstrated the added insight that is provided to decision makers

through the use of a probabilistic approach to software cost estimation. The additional information

of the conditional expected value contributes an improved understanding of the risk associated with

75

each alternative. We are now interested in comparing the results of the probabilistic approach with

the results of the original model. Note that both comparisons use the actual project development

effort from the software project data introduced in Boehm's original data set [Boehm 1981] (Table

5.4). The original data for each software development project include: classification of the

development mode (organic, semidetached, embedded), the total KLOC of the delivered product,

the effort adjustment factor (EAF), the project's actual development effort in man-months, and the

estimated effort results of the original Basic COCOMO model and the Intermediate COCOMO

model.

It is important to note that the KLOC parameter in the data set represents the actual number of lines

of code that were developed for the software project. This is a critical observation, for in practice,

the use of such ex-post data is never possible. Software estimation models are employed early in

the development life cycle, requiring one to use an ex-ante estimate of the required KLOC - not the

actual total - to estimate project cost. Unfortunately, Boehm's data set of software projects does

not contain ex-ante KLOC requirement estimates.

Estimates of KLOC requirements made early in the development life-cycle often differ greatly from

the actual final total. As Augustine states [Augustine 1993], "in 90% of the cases, cost is

underestimated from the beginning." This statement applies to KLOC estimates, which can be

considered a pseudo-cost variable. While original ex-ante estimates of the KLOC requirements for

the projects of Table 5.4 do not exist, we use the actual ex-post data as the basis for a probabilistic

formulation of KLOC requirements, keeping in mind Augustine's observation.

5.5.1 Baseline Comparison Formulation

In order to compare the probabilistic approach with the original deterministic method, we apply the

Monte Carlo simulation approach to the Basic and Intermediate COCOMO models to determine the

values of unconditional and conditional expected development effort for each project in the dataset.

Although the KLOC values in Table 5.4 are the exact, ex-post values, we generously treat them as

extremely accurate ex-ante estimates made by software development experts. In recognition of the

inherent uncertainty in estimating a project's size, the KLOC input for each project is quantified in

terms of a triangular probability distribution.

For each software project, the three triangular distribution parameters are set at: a = 0.5*(actual

KLOC), b = 1.75*(actual KLOC), and c = 0.75*(actual KLOC). This approach slightly

understates the actual KLOC requirement, yet maintains the actual value as the expected value for

76

Table 5.4 Software Development Projects Data, from [Boehm 1981]
Estimated Effort (MM\

Actual Actual Basic Intermed.

Project Mode* KLOC EAF Effort(MM) COCOMO COCOMO

1 3 113.00 2.72 2040.00 1047.00 2218.00

2 3 249.00 0.84 1600.00 2702.00 1770.00

3 2 132.00 0.34 243.00 711.00 245.00

4 1 46.00 1.17 240.00 134.00 212.00

5 1 16.00 0.66 33.00 44.00 39.00

6 1 4.00 2.22 43.00 10.30 30.00
7 1 6.90 0.40 8.00 18.00 9.80
8 3 22.00 7.62 1075.00 147.00 869.00
9 3 30.00 2.39 423.00 213.00 397.00
10 3 18.00 2.38 321.00 115.00 214.00
11 3 20.00 2.38 218.00 131.00 243.00
12 3 37.00 1.12 201.00 274.00 238.00
13 3 24.00 0.85 79.00 163.00 108.00
14 2 3.00 5.86 73.00 10.30 60.00
15 3 3.90 3.63 61.00 18.00 52.00
16 3 3.70 2.81 40.00 17.00 38.00
17 3 1.90 1.78 9.00 7.80 10.70
18 3 320.00 3.89 11400.00 3652.00 11056.00
19 3 966.00 0.73 6600.00 13749.00 7764.00
20 2 287.00 3.85 6400.00 1698.00 6536.00
21 3 252.00 0.86 2455.00 2741.00 1836.00
22 3 109.00 0.94 724.00 1003.00 733.00
23 3 75.00 0.89 539.00 640.00 443.00
24 2 90.00 0.70 453.00 463.00 326.00
25 3 38.00 1.95 523.00 283.00 430.00
26 3 48.00 1.16 387.00 375.00 339.00
27 3 9.40 2.04 88.00 53.00 89.00
28 1 13.00 2.81 98.00 35.00 133.00
29 2 2.14 1.00 7.30 7.00 7.00
30 2 1.98 0.91 5.90 6.40 5.80

*Mode: l=Ore lanic 2 = = Semidetached 3 = Embedded

each distribution. All other model parameters are fixed at their original values. Deterministic

evaluation of the Basic and Intermediate COCOMO models, using the expected values of KLOC in

the effort equations, produces the same results as those of the original models (with slight variation

due to rounding in [Boehm 1981]). Since each input distribution was developed with an expected

77

value identical to the actual KLOC value, we anticipate the resulting unconditional expected value

(ß) of the probabilistic approach to be relatively close to the forecast of the original model.

5.5.1.1 Baseline Comparison: Basic COCOMO. As the goal of the software estimation

models is to accurately predict the actual development effort and costs, we compare the model

forecasts to the actual development requirements. A comparison of Boehm's original Basic

COCOMO model with that of the actual project development effort, along with similar plots of the

probabilistic results,^ and/4, is shown in Figure 5.5.

Due to the conservative approach in using the actual KLOC requirement as the expected value of

the input distribution, Figures 5.5(a) and 5.5(b) are nearly identical — a result that was expected.

Such an observation validates the probabilistic approach as being consistent with the original

COCOMO model. Interestingly enough, the conditional expected value also provides a consistent

measure of actual development effort (Figure 5.5(c)). This, in part, is an effect of the limited

variability of the input distributions. The conditional expected value may often be a more accurate

indicator of actual development effort, particularly considering the tendency of underestimating

parameters early in the life cycle. From these comparative results, one realizes that the probabilistic

approach not only provides additional information concerning the extreme event scenarios of an

alternative, but its results are consistent with those of the original method.

To better evaluate the model results as they compare to the actual values, we calculate the

normalized percentage error for each project in the dataset. Plots of the normalized percentage

error histograms depict the range of accuracy with which the original model and its probabilistic

extensions forecast actual development effort requirements. A distribution with the majority of its

results centered around the zero value indicates an accurate predictive model. From Figures 5.6(a)

and 5.6(b), one observes the tendency of the Basic COCOMO model to underestimate development

effort, even when the actual KLOC value is used in the model. The distribution of normalized

error associated with the conditional expected value is shown in Figure 5.6(c). As it is an indicator

of the extreme event scenarios, one would anticipate that the conditional expected value would tend

to overestimate the actual value. Figure 5.6(c) exhibits some evidence of overestimation, however

not as great as might have been expected.

5.5.1.2 Baseline Comparison: Intermediate COCOMO. Conducting Monte Carlo

simulation of the Intermediate COCOMO model for the projects in the dataset produces results

consistent with that of the original model (Figure 5.7). Comparing Figure 5.7 with Figure 5.5

78

100000-

blUUUU
£
I 1000-

o

D.
C8

ioa

15 io

^x
B

ESxt] B
 1

Sly? A u

10 100 1000 10000 100000
Basic COCOMO result

(a)

100000-

c
o
s
c a
E

o
u
Q.

"5

1000-

100-

10

1

n ^^
B

Ifi^p^ *U

X "'u

1 10 100 1000
Unconditional Expected Value /

(b) 5

10000 100000

lOOOOOr

§ lOOOOf

c
£

o
o.

15
3
o
< 10000 100000

Conditional Expected Value /.
(c) 4

Figure 5.5 Basic COCOMO model results: (a) Original forecast versus actuals,
(b) Unconditional expected values versus actuals, (c) Conditional expected values

versus actuals.

shows the Intermediate COCOMO model's improvement over the Basic model in accurately

forecasting actual development effort. Again, because of the conservative scheme employed for

developing the input distributions, the unconditional expected value results (Figure 5.7(b)) are

similar to the original results (Figure 5.7(a)). Examining Figure 5.7(c), we observe that the

conditional expected values tend to over-estimate the actual development effort. While this is true,

79

Original Forecast vs Actuals

80 160 240
Normalized Percentage Error

(a)

Unconditional Expected Value vs Actuals

400

80 160 240
Normalized Percentage Error

(b)

Conditional Expected Value vs Actuals

320 400

-160 -80 0 320 400 80 160 240
Normalized Percentage Error

(c)
Figure 5.6 Baseline Comparison: Basic COCOMO model normalized percentage error:

(a) Original forecast versus actuals, (b) Unconditional expected values actuals,
(c) Conditional expected values versus actuals.

it is readily apparent that the/i values still show good correlation with the actual development effort

values.

In a more-realistic application, where the uncertainty concerning the project's size early in the

software development life cycle causes underestimation of the KLOC requirements, the conditional

expected value may be an important complementary metric. Conducting analysis similar to the

80

1 Cocoa-

's lOOOO c
o

100O

10O

3
o
< 1

100000

100000

I 10000 o

c
as
e

o
Q.

1000

100

73 10

10 100 1000 10000
Intermediate COCOMO result

(a)

100000

10 100 1000 10000
Unconditional Expected Value/,

(b)

100000

*r
S®

m

B&r
^/^G

f

s*
|DJi

s*
5»

10 100000 100 1000 10000
Conditional Expected Value f.

(c) U

Figure 5.7 Intermediate COCOMO model results: (a) Original forecast versus
actuals, (b) Unconditional expected values versus actuals, (c) Conditional expected

values versus actuals.

above, but for left-skewed input distributions (indicating an underestimation of KLOC

requirements) would even more strongly indicate the relationship of the conditional expectation to

the actual results.

81

5.5.2 Underestimation Comparison Formulation

To test the claim that the conditional expected value is a useful decision making metric when

considering the tendency to underestimate project size early in the development life cycle, we

consider the scenario in which the parameters of the KLOC input distribution estimates are set at: a

= 0.40*(actual KLOC), b = 1.25*(actual KLOC), and c = 0.60*(actual KLOC). Again, all other

model parameters are fixed at their original value.

5.5.2.1 Underestimation Comparison: Basic COCOMO. Comparative plots of the

Basic COCOMO model values of the unconditional and conditional expected development effort

versus actual values are shown in Figure 5.8. In this underestimation scenario, the conditional

expected values more closely reflect the actual development effort than do the unconditional

expected values. As depicted in Figure 5.8(a), the unconditional expected values generally

underestimated the development effort, with most points lying above the principal diagonal. On

the other hand, the conditional expectation results are more closely aligned with the actual values

(Figure 5.8(b)), showing a great improvement over that of the unconditional expected value

results.
100000

I 10000'
o
E
c 1000

100

£ io

— 1 B»

10 100 1000 10000
Unconditional Expected Value

(a)

100000

100000-

•s loooo
c
o
E

1000

100000 10 100 1000 10000
Conditional Expected Value

(b)
Figure 5.8 Underestimation Scenario -- Basic COCOMO model results: (a) Unconditional

expected values versus actuals, (b) Conditional expected values versus actuals.

82

5.5.2.2 Underestimation Comparison: Intermediate COCOMO. Figure 5.9 depicts the

results of the probabilistic assessment of the Intermediate COCOMO model for the underestimation

scenario. Again, the improvement of the Intermediate COCOMO model over the Basic model in

estimating actual effort is easily noticed. As with the Basic model, the unconditional expected

values underestimate the actual development effort (Figure 5.9(a)), but the deviation from actual

values is much less than with the Basic model. Figure 5.9(b) shows the remarkable accuracy with

which the conditional expected values correspond with actual development effort values.

100000

| 10000
o
E
g 1000
B

8 100

10

1 \/

^
pp

^

^
10 100 1000 10000
Unconditional Expected Value

(a)

100000

100000

10 100 1000 10000
Conditional Expected Value

(b)

100000

Figure 5.9 Underestimation Scenario Intermediate COCOMO model results:
(a) Unconditional expected values versus actuals, (b) Conditional expected

values versus actuals.

Histogram plots of the normalized percentage error (Figure 5.10), indicate the increased value of

examining the conditional expectation under the circumstances of parameter underestimation. The

conditional expected value results are much more closely aligned about the zero point (indicating

exact correlation), while the unconditional expected values underestimate the actual development

effort.

83

Unconditional Expected Value vs Actuals

-55 -11 0 11 22 33
Normalized Percentage Error

(a)

Conditional Expected Value vs Actuals

44 55

-55 -44 -33 33 44 55 -22 -11 0 11 22
Normalized Percentage Error

(b)
Figure 5.10 Underestimation comparison: Intermediate COCOMO model normalized
percentage error: (a) Original forecast versus actuals, (b) Unconditional expected values

versus actuals, (c) Conditional expected values versus actuals.

5.6 Chapter Summary

In this chapter, we have developed and demonstrated a probabilistic approach to software

estimation. This included both a direct approach and a Monte Carlo simulation approach to

software estimation. We also developed a method for determining the conditional and

unconditioanl expected values from a Monte Carlo simulation. The probabilistic approach was

tested using the original COCOMO data set, and the results were compared to those from the

COCOMO.

The added benefit of the probabilistic approach for software estimation, particularly the use of the

conditional expected value used to supplement the more traditional unconditional expected value,

provides a greater representation of the risks of extreme events associated with a particular policy

or alternative. As uncertainty is at its greatest early in the life cycle when model parameter

estimates are least certain, the need for supplementing the traditional expected value analysis with

that of the conditional expected value is critical for decision making. The conditional expected

84

value provides not only an understanding of the extreme-event possibilities, but also indicates the

potential effects that could be realized from underestimating model parameters.

The results of the comparison with actual development effort underscore the consistency of the

probabilistic approach with the original deterministic form of the COCOMO model. This provides

a measure of confidence for the software cost estimation community as they employ a probabilistic

approach - the method behaves in a manner consistent with the traditional approach. The results

also indicate the importance of using the conditional expected value for analysis, particularly early

in the development life cycle when project parameters such as project size are often underestimated.

While the probabilistic approach has been demonstrated for the Basic and Intermediate COCOMO

models, the flexibility of this methodology permits its application to the full range of software cost

estimation models.

85

Chapter 6
Dynamic, Multistage Software Estimation

Discrete-time dynamical models that incorporate the probabilistic estimation approach of the

previous Chapter are developed for the software estimation problem. These models, with

increasingly complex forms of the state and observation equations and expanding

probabilistic representation flexibility, provide a range of dynamic modeling formulations

for software estimation. Recognizing that practical limitations often exist in data form and

availability, these models allow selection of a dynamical model most appropriate for a

specific situation. First, a linear-normal dynamical model with closed-form solution is

developed. This model provides the context for defining the components of the software

cost estimation dynamical model and for describing the interaction of these components.

Then, the second model relaxes the linearity and normal distribution restrictions, employing

nonlinear state and observation equations derived from the Intermediate COCOMO model.

6.1 Introduction and the Need for Dynamic Software Estimation

Software acquisition is not generally considered a static decision activity. Rather, as

captured in the spiral model of software development [Boehm 1988], the process consists

of multiple repetitions of primary stages that often extends over a great length of time.

Lederer and Prassad [1993] report that in practive, software estimation is most often

prepared at the initial project proposal stage; then, with declining frequency, at the

requirements, systems analysis, design, and development stages. However, as the

software development community continues to move away from the traditional waterfall

development process model to the spiral-type models, the demand has increased for cost

estimation models that account for the dynamics of changing software requirements and

design (and the always-present uncertainty) over multiple time periods. Bell's survey of

software development and software acquisition professionals indicate that a vast majority

believe a dynamic software estimation model would be most applicable for their estimation

requirements [Bell 1995].

At each stage of the acquisition process, decisions are made that affect the events and

decision opportunities of subsequent phases. Software estimation is a required activity in

86

each of the stages of the process. Applying the probabilistic cost estimation method with

its multiple objective risk functions, //, described in the previous Chapter, constitutes a

multiple objective decision problem that is solved over multiple stages. We next give a

brief background on dynamic modeling and multiobjective, multistage trade-off analysis.

Then, the remainder of the Chapter is a development of dynamical models for software

estimation.

6.1.1 Dynamic Modeling -- The Basic Problem

Dynamic modeling is the term applied to methodologies that are concerned with sequential

decision problems that involve a dynamic system [Bertsekas 1976], [Reid 1983]. Such

systems have an input-output description and system inputs are selected sequentially after

observing past outputs. The formulation of optimal control of a dynamic system is very

general since the state space, control space, and uncertainty space are arbitrary and may

vary from one state to the next. The system may be defined over a finite or infinite state

space. The problem is characterized by the fact that the number of stages of the system is

finite and fixed, and by the fact that the control law is a function of the current state.

(Problems where the termination time is not fixed or where termination is allowed prior to

the final time can be reduced to the case of fixed termination time [Bertsekas 1976]).

The discrete-time dynamic system is given by

x(k+l)=f(x(k), u(k), w(k)) (6.1)

where x(k) is the state of the system at stage k, u(k) represents the control, or policy

implemented at that stage, and w(k) accounts for the random "disturbance" not otherwise

captured in the model. The system output associated with each stage is given by

y(k) = g(x(k), v(k)) (6.2)

where y(k) is a cost or other output metric associated with the state of the system, x(k) is

the state of the system, and v(k) is another purely random sequence accounting for

randomness in the observation process.

Given an initial state x(0), the problem is to find a control policy sequence that minimizes

both the sum of all output costs y(k), k = 1,..., N and the cost associated with the

implementation of the control policies u(k), k=l,..., N.

87

Figure 6.1 depicts the dynamical model that has been described. The input to each stage

includes the state value from the previous stage x(k), a policy input u(k), and the effect of

random process disturbances w(k). These are used in Eqs. (6.1) and (6.2) to produce the

cost estimate output y(k) and to update the state variable x(k+l).

u(0) w(0) u(1) w(1)

i i
y(0) y(V

Figure 6.1 Discrete-Time Dynamical Model

6.1.2 Multiobjective, Multistage Tradeoff Analysis

As the objective of the dynamical model is to find a cost-minimizing control policy

sequence, the trade-off among project cost versus policy costs must be examined. Gomide

and Haimes [1984] developed a theoretical basis for impact analysis in a multiobjective

framework. In their multiobjective multistage impact analysis method (MMIAM), the

trade-off decision metric is the marginal rate of change of one objective function.// per unit

change in another objective function^-. Applying the concepts of the MMIAM along with

that of the PMRM in a dynamical model introduces the concept of the stage trade-off. The

stage trade-off, given by X", represents the marginal rate of change of /* (x, u, k) per unit

change in /;'(x, u,l). These trade-offs provide a measure of the impacts upon levels of the

risk objective functions at various stages. Additional discussion concerning full and partial

trade-offs is given in [Haimes and Chankong 1979], [Chankong and Haimes 1983], and

[Gomide and Haimes 1984].

6.2 Dynamical Modeling for Software Estimation

As the acquisition process progresses through its several stages, the knowledge regarding

the project is updated and the uncertainty is (hopefully) reduced. More specifically, the

greater the understanding of the software project as a whole, the better one can estimate key

88

systems characteristics. From this information, appropriate project management policies

regarding resource allocation and systems requirements can be made.

Each stage k of the model represents a decision point in the software acquisition process.

These include such milestones as the formal milestone decision points of the federal

government acquisition process [DoD 1991], and the less formal, yet more frequent,

intermediary review points: preliminary design review (PDR), software specification

review (SSR), critical design review (CDR), etc.

For the software cost estimation problem, we define the state variable x(k) to be the

estimated KLOC required for the intended system. As a state variable, KLOC conveys the

overall characterization of the complexity and feasibility of the desired software system.

The system output at each stage of the acquisition process, y(k), is the development effort

or cost of the software project. The functional form of y(k) may be that of one of the

software cost estimation models described earlier.

The estimated KLOC requirement of a software system can be impacted in several ways,

most notably from: i) the characteristics or attributes imposed on the system, ii) the

resource allocation and acquisition strategy policies, and iii) external factors. Each of these

factors are accounted for in the state equation. The performance threshold levels imposed

on a system are those metrics required to meet the operational requirements of the user

community. Some of these factors are: system reliability requirements, software purpose

(functionality), execution or turn-around time, and computational throughput [Boehm

1981], [Sage 1995]. For example, requiring a high degree of system reliability may

require greater KLOC for the system. System constraints often increase the complexity of

the intended system, further contributing to greater KLOC requirements.

The control policy, u(k), represents the acquisition strategy control and project control

decisions that are selected. This includes the type and amount of non-budgetary resources

expended for software development. The control policies affect the KLOC requirement for

the project and also influence the overall cost of the project. The resource allocation

policies considered in this model concern two principal non-budgetary resources, namely

personnel and technology. Personnel policy decisions relate to the selection and utilization

of personnel with suitable qualifications (highly skilled, skilled, limited knowledge, etc.)

and experience. Technological resources include the availability and allocation of specific

programming languages and programming tools, the employment of certain programming

89

practices, and data base and storage resources.

While there are numerous external factors that impact a software system's characteristics,

one common external factor is the user community's changing operational requirements.

The dynamic world of the user often results in modifications to the originally-specified

requirements and functionality of the system. Other external influences that impact the

KLOC requirement for the system include political factors, technology advances, and the

current status of the software development industry. All these external factors have a

possible effect on the system complexity, the estimated KLOC requirements, and the

resource allocation policies.

6.3 A Linear Dynamical Software Estimation Model

Having introduced the general form of the state and output equations and having defined

the model elements for a software cost estimation context, we develop a dynamical model

for software cost estimation. While this initial model assumes a linear relationship among

the parameters, it is anticipated that reality will often dictate a more complex formulation.

The intent of this initial model, however, is to describe the general dynamics of the

estimated size of the intended software system (measured in KLOC), the control policy and

system constraints, and the resultant cost output associated with these elements. The initial

model also serves as a vehicle for describing the application of dynamical modeling to

software acquisition. Having used a linear model to accomplish these purposes, we will

relax the linearity requirement in following extensions.

In addition to the model parameters described above, we consider the output of each stage,

y(k), to be a vector output as we consider the unconditional as well as the conditional

expectation functions associated with the output function. We also introduce a cost

function, /*, that accounts for the cost of implementing the chosen control policy at each

stage. The problem is to choose a control sequence {u(l), u(2), u(3),..., u(n)} so as to

minimize the policy implementation cost as well as the development cost vector.

The dynamics of the system are described by

x(k+l) = cx(k) + du(k) + w(k) (6.3)

and the output equation for each stage, representing the cost of project development is

90

given as

y(k) = ax(k) + v(k).

The multiobjective cost estimation problem/or each stage is stated as follows

(6.4)

Minimize:

Subject to:

where

k

x(k)

y(k)

u(k)

w(k)

v(k)

a

x(k+l) = cx(k) + du(k)+ w(k)

y(k) = ax(k) + v(k) (6.5)

ft
fks

ft

represents the discrete stages (decision points) of the system

is the state of the system, the estimated KLOC input to stage k

is the calculated effort (cost) output of stage k

is the resource allocation and acquisition strategy control policy of stage k

is a random variable accounting for process noise

is a random variable accounting for observation noise

is a cost-per-KLOC multiplier measured in equivalent terms as y(k)

is the KLOC-adjustment multiplier reflecting system and environment

attributes

is a KLOC requirements-per-selected policy multiplier

is the conditional expectation of the output variable y(k) at stage k

is the unconditional expectation of the output variable y(k) at stage k

is the cost of implementing control policy u(k).

6.3.1 Solution Approach for the Linear Dynamical Problem

The solution to a deterministic formulation of the problem given by Eq. (6.5), in which the

values of all model parameters are known with certainty and the preferred control policy is

ascertained, is a straightforward application of multiobjective math programming methods

(see [Chankong and Haimes 1983]). In order to introduce the consideration of uncertainty

and variance in the model parameters, we apply the probabilistic approach of Leach and

Haimes [1987] to describe the model parameters where the disturbances v(k) and w(k) are

permitted to be normally distributed, purely random sequences with mean zero and variance
d\ and a^ respectively (constant for all it).

The selection of normal random variates is based on the knowledge that any linear

combination of normal random variables is also a normal random variable [Ross 1989].

91

Thus, examining Eq. (6.3) we conclude x(k+l) is a normally distributed random variable

and, therefore, so is y(k) by Eq. (6.4). Leach and Haimes [1987] and Romei [Romei et al.

1992] derive exact-form solutions for the unconditional and conditional expected values of

normally-distributed functions with the form of Eqs. (6.3) and (6.4). The conditional

expectation objective function /* of the normally-distributed y(k), is defined in terms of

the mean p(k) and variance o2^) of the cost distribution. The conditional expectation on

the region [sk fyj, s/c< t^ is [Leach and Haimes 1987]:

fl{u) = ß{k;u)+ß\o(k) (6.6)

where

fi = *. , (6-7)

Js',. ■JlK '

, tk-ji(k) , _sk-ß(k)
k a(k) ' * o(k) '

(6.8)

p(k;u) = E[y(k)] = E[ax(k) + v(k)] = aE[x(k)] + 0 = aE[x(k)], (6.9)

o*(k) = Var\y(k)]. (6.10)

As y(k) represents cost, the conditional expectation (6.6) is an objective function to be

minimized.

The unconditional expected cost, /*, is the expected value of the output cost function and,

using Eq. (6.9), and can be represented as

f5
k=E\y(k)] = dE[x(k)]. (6.11)

The general solution to Eq. (6.11) can be proven by induction [Haimes and Li 1995],

resulting in

/* = E\y(k)] = ackx0+^ac'du(k-l-i). (6.12)
i=0

Observe from Eqs. (6.6), (6.7), and (6.10), that the term ßk
Ao(k) is a factor of k only, and

not of the control u(k). Therefore, minimizing the conditional expected value function

(6.6) is reduced to minimizing the unconditional expected value:

92

mmf^(u) = mm{/j.(k;u) + ßla(k)\ = ßk
A(7(k) + mmfi(k;u). (6.13)

u u L J u

This implies that minimizing the mean of y(k), i.e., minimizing fd,(k;u), should yield the

same controls as minimizing /*. Because of this, the trade-offs associated with the

conditional and unconditional expectation functions for any given k will be equal. Only the

levels of the objectives will be different. In other words, the expectation functions at stage

k are parallel lines.

Using the results of Eq. (6.13) and the fact that the variance is independent of the control,

we can consider a deterministic system model that is equivalent to the stochastic one

described by Eqs. (6.3) and (6.4) but without the elements of randomness - for the

optimization process all random variables are assigned the value of their mean. LetA

denote the equivalent variables for the deterministic system, Eqs. (6.3) and (6.4) become:

x(k + l) = cx(k) + dü(k)
y(k) = ax(k), and

x(0) = x0. (6.14)

Solving Eq. (6.14) for y(k) yields the same solution as Eq. (6.12) [Haimes and Li 1995].

Hence the important result:

Kk) = f!=E\y(k)] = fi(k;u). (6.15)

An outline of a methodology for solving the multiobjective, multistage problem (6.5), is

given by [Leach and Haimes 1987]:

1. Determine the partitioning scheme for each component of damage
(cost) for each stage and calculate the values of all /J*.

2. Calculate the variance G2{k) for each stage.

3. Formulate the equivalent deterministic system (6.14).

4. Include the deterministic cost equation y(k) with the other objective

functions in finding noninferior solutions.

5. The value of y(k) is equal to the unconditional expected value.

Determine the conditional expected values by Eq. (6.6). Tradeoffs

for a given stage are the same for all conditional expected values are
equal to the stage tradeoffs calculated for y(k).

6. Use a multiobjective decision-making method such as the surrogate

93

worth tradeoff (SWT) method [Haimes 1980] to find the preferred

solution.

6.3.2 Example 6.1 - Policy Evaluation using the Linear Dynamic Software

Estimation Model

The following is an example of how the multistage model described in the previous section

may be applied. The model is a stochastic, time invariant, linear difference equation

representing the relationship between software development management control policies,

estimated model size, and project cost. Three stages are considered here, representing

original cost and system requirement estimates obtained through a pre-bid conference,

which are then updated at decision points early in the Requirements Determination and

Design phases of the software acquisition process.

Let x(k), the state variable at stage k representing estimated KLOC, be expressed as a ratio

to the initial estimate. The initial state is known with certainty, hence x(0) = 1. The control

policy u(k) (level of resource allocation) is expressed as a ratio to the nominal level of

allocations, just before the beginning of the planning horizon. Implementation of a

particular policy is selected as a risk-prevention measure — reducing the risk of excessive

project cost overruns. This value can be considered as incorporating the personnel and

product elements of the Intermediate COCOMO model [Boehm 1981], along with

acquisition management options such as additional review and study, the hiring of external

consultants, requirements for the development of prototype systems, etc.

The cost-per-KLOC constant, a, is fixed at $ 1 million, an often-quoted figure for mission-

critical flight control software [Rifkin 1995]. Let the performance characteristics constant,

c, be fixed at c = 1.44, representing increasing complexity due to operational demands

imposed on the system. This value is obtained by considering the product and computer

attributes of the Intermediate COCOMO model [Boehm 1981]. The parameter d, the

KLOC-adjustment due to policy selected, is fixed at d = -0.25. This value is negative,

assuming a modest moderating effect of the application of resources on the otherwise

increasing system complexity. Finally, let w(k) represent an external random disturbance

with mean zero and variance crw = 0.04. The system's representation is then:

x(k+l) = l.44x(k) - 0.25u(k) + w(k)
y(k) = x(k)
x(0) = 1

94

o£ = 0.04
u(k) > 0
k = 0,1,2,3. (6.16)

For this example, the present-value cost function associated with the implementation of a

particular policy is given by

n-1

/,-X*["<*>-1] I1+ *)'
-2k

(6.17)
k=0

where K = $100* 103> r = 10% is the annual discount rate, and the time period between

stages is 6 months. Note that the cost function does not change with time - the dynamics

are incorporated through the present value.

Following the procedure outlined above, we now formulate the deterministic system. The

multiobjective optimization that includes the project cost output, Eqs. (6.6) and (6.11), and

the control policy implementation cost (6.17) can now be stated as

min
«(*)

/.°(K(*))

/,3(«(*))

, / = 4,5 (one i at a time).

Using the e-constraint approach [Chankong and Haimes 1983] to generate the needed

Pareto optimal solutions, the problem formulation is given as

min/,°(w(A:)
u(k)

f){<k))<ex

s.t. ff(u(k))<£2 ,/ = 4,5.

ff(u(k))<£3

This leads to forming the Lagrangian function,

^(•) = /I
0 + AI(/;-e1) + A2(/,2-e2) + A3(/,3-e3), i = 4,5 (6.18)

where the Lagrange-multipliers describing the trade-offs between the cost function and risk

functions are represented by

95

At=^=-fjr- (6-19)

To solve the multiobjective optimization problem, we need only generate the unconditional

expected cost function, /*, for each stage k = 1, 2, 3 (due to Eqs. (6.13) and (6.15)).

Applying Eqs. (6.11), (6.12), and (6.16) produces the following unconditional expectation

functions for each stage:

f5=E[y(l)] = aE[x(l)]

= aE[cx(0)] + du(0) + w(0)] = acE[x(0)] + adE[u(0)] + E[w(0)]

= (1)(1.44)(1) + (l)(-0.25)40) + 0

= 1.44-0.2540);

/S
2=ED'(2)]

= (1.44)2-0.25M(i) - (1.44)(0.25)M(0)

= 2.074 - 0.3640) - 0.254^);

/S
3=ELK3)]

= (1.44)3 - 0.2542) - (1.44)(0.25)4i) - (144)2(0.25)40)

= 2.986 - 0.2542) - 036u(l) - 0.518440).

Substituting the above three results and that of Eq. (6.17) into Eq. (6.18), the Lagrangian

is now

LC) = [100(40) - 1)2+ 90.70(u(l) - 1)2+ 82.27(42) - l)2]

+ ?il[1.44-0.2540)]

+ X2[2.074 - 0.3640) - 0.254^)]

+ k3[2.986 - 0.25«(2) - 0.36u(l) - 0.518440)]. (6.20)

Taking the derivatives of Eq. (6.20) with respect to the controls at u(2), u(l), and u(0) and

applying first-order stationary conditions, we determine the trade-off values (6.19). Table

6.1 gives three possible noninferior solutions. For each solution, the Table gives the

values of the control variables, the value and the levels of the risk functions, and the trade-

off values between the cost and risk functions.

Policy A represents no change in resource allocation over the planning horizon. Because

there is no additional application of resources, no policy implementation costs are incurred.

However, the conditional and unconditional expected project costs become increasingly

96

Stage

Table 6.1 Noninferior Policies for Software Acquisition
 Policy Aa

Risk Function Trade-offs

k=l fl= 1-467

fl= 1-190 A?i = ^°; = o

lc = 2 fl= 1.741

fs= 1-464 ^=A- = 0

Jfe = 3 /4
3= 2.135

fl= 1.858 A-=A- = 0

Policy Bb

Stage Risk Function Trade-offs

k=l fl = 1-442

fl= 1.165 AI4 = A, 5 = 863.62

k = 2 f]= 1-642

/5
2= 1.365 *% = %) = 181.40

fc = 3 /4
3 = 1.868

fl= 1-591 A?3 = A?3 = 329.08

Policy Cc

Stage Risk Function Trade-offs

k= 1

k = 2

k = 3

fl= 1-342

fl = 1.065

f]= 1-436

/5
2= 1-159

fl= 1-570

/s
3 = 1.293

X\\ = A°; = 804.84

X°l = Xf5 = 362.80

A?3 = Af5 = 329.08

a Control variables: wfO) = 1, u(l) = 1, «(2) = 1; cost, /,0 = 0 ($103).
b Control variables: u(0) =1.10, u(l) = 1.25, u(2) = 1.50; cost, /,° = 27.24 ($103).
c Control variables: u(0) = 1.5, u(l) = 1.5, u(2) = 1.5; cost, /° = 68.24 ($103).

97

worse over time. By the third stage, the expected value of project cost has become 1.858,

with the extreme-event conditional expected value at 2.135. The trade-offs between all risk

functions and cost are zero (due to no implementation costs), so that small improvements in

the risk functions can be made at little additional cost. Because the trade-offs are zero, this

is an improper noninferior solution [Chankong and Haimes 1983].

Policy B is a policy of gradual increase in personnel and technological resources allocated

for project development. The expected project cost increases less dramatically over the time

period, and the conditional and unconditional expected values indicate less risk than policy

A. The lower project costs over those of policy A are achieved with relatively low policy

implementation costs. This will be demonstrated graphically.

Policy C represents an immediate increase in resource allocation. The result is a significant

decrease in expected project cost, with the expected value rising to only 1.293 by the third

stage. Of the three solutions in Table 1, policy C is the one of lowest risk, but it is also the

most expensive. The trade-offs are also much larger for this policy, indicating that it

becomes increasingly expensive to gain additional improvement in the risk functions.

Selection of the most preferred of the three noninferior policies must be made by the

decision maker, taking into account his/her personal preferences in the trade-offs between

the cost function and the risk functions. Formal methods such as the surrogate worth

tradeoff (SWT) method [Haimes 1980] are appropriate. Analysis of the impact that control

policies have on later- stage decision making options must also be taken into account.

To demonstrate why impact analysis is so useful in a problem such as this one, suppose the

multiobjective problem was solved only one stage at a time. The cost associated with

resource allocation policy control (6.17) in the first stage, denoted by //, is

// = 100[u(0) - 1]2.

Figure 6.2 shows the set of noninferior solutions when the first-stage costs // and the

expected damage at the first stage f\ are the only objectives considered. The points

corresponding to the policies A, B, and C are indicated on the curve. Considering only the

first-stage objectives, the selection of policy C over the other alternative policies would

appear desirable; the initial $25,000 policy implementation cost produces an expected

$125,000 project cost reduction over the project's life cycle.

98

30-

20-

First-stage
cost ($ Iff)

10-

Policy C

1.0

Policy B
Policy A .

1.2
Unconditional Expected Project Cost ($ IM)

Figure 6.2 Noninferior solution set considering only first-stage objectives

Consider now the second stage, with the cumulative control costs, denoted by /,2, given

by

f\ = 100[w(0) - 1]2+ 90.10[u(l) - 1]2.

Depending on which policy was implemented in the first stage, three different noninferior

solution sets are possible in the second stage, as shown in Figure 6.3. Each curve is

labeled with its associated first-stage policy. The way in which the first-stage policy affects

the second-stage (and subsequent-stage) decision making is what makes impact analysis

desirable. Li and Haimes [1987] [1988] show that there is a family of such noninferior

solution sets, where each curve depends on the chosen policy of the previous stage. The

envelope of this family of curves engulfs all the noninferior solutions of each stage, thereby

defining the noninferior frontier for the multistage problem. Additional decision-making

information can be provided by plotting the conditional expectation curves for each

alternative policy. Trade-offs are then made in terms of both expectation values.

99

"I 1 I ' I , A 1.2 1.3 1.4
Unconditional Expected Project Cost ($1M)

Figure 6.3 Impact analysis at the second stage

6.3.3 Observations

The linear, multistage software estimation model has provided a necessary framework for

understanding and analyzing the interactions of the software cost estimation parameters.

The closed-form solution enabled an analytical description of the dynamics of the software

cost estimation model parameters. The example problem demonstrated the benefits to

decision making by using this approach - both in terms of the importance of impact

analysis and multiobjective tradeoff analysis. This model sets the stage for the

development of a multistage software cost estimation model that is more closely associated

with existing methods.

6.4 A Nonlinear Multistage Software Estimation Model

While the linear dynamical formulation provides a general representation of the interactions

of the state, control, and external factors in software cost estimation, the linear relationships

imposed in the model do not necessarily represent actual parameter interactions. It is

100

desirable to relax some of the conditions of the above model and develop a multistage

dynamical model that is more closely aligned with existing estimation methods. Unlike Eq.

(6.5), this new model constitutes a nonlinear formulation. Such a formulation precludes

the expectation for an analytic closed-form solution. This is not a deterrent, however, due

to the availability of powerful computer software. We formulate this more-realistic

nonlinear dynamical software cost estimation model and use a Monte Carlo simulation

approach for its analysis. The form of the state and output equations, as well as an

example problem that demonstrates the application of this revised model, are based on the

Intermediate COCOMO model.

Recall that the KLOC-based software development effort models, such as the COCOMO

model, produce both nominal and modified development effort values, where the modified

value is based on the existence of certain project attributes. The nominal man-months of

development effort equation has the nonlinear form [Boehm 1981]

MMNOM = a(KLOC)b (6-21)

which written in the notation of Eqs. (6.1) and (6.2) gives

y(k)NOM= a(x(k))K (6-22)

The Intermediate COCOMO model's effort adjustment factor (EAF) then revises the

nominal effort result according to the available resources, project requirements, and

environmental attributes (similar to the earlier definitions of u(k) and c), resulting in the

development effort requirement

MM = (EAF)MMNOM = (EAF)[a(KLOC)b] (6.23a)
or

y(k) = (EAF)[a(x(k))bJ. (6.23b)

EAF is defined as [Boehm 1981]:

EAF = ne, (6-24)

where e; is an effort multiplier associated with a particular cost multiplier attribute.

The adjusted effort (6.23b) may also be viewed as the result of a revision in the KLOC

requirements. In other words, the existence of a requirement for a certain program

attribute, or the implementation of a certain control policy, impacts the KLOC requirement

101

for the system (e.g., increasing the system reliability requirement may increase the KLOC).

The relationship between the effect of system attributes and control policy on KLOC and

Boehm's EAF can be found by solving

a[u(k)c(k)(KLOC)]b = (EAF)[a(KLOC)b] (6.25)

for the product u(k)c(k), where c(k) represents system and environment attributes at stage k

and u(k), as defined earlier, represents the control policy of stage k. Solving Eq. (6.25)

for u(k)c(k) leads to

[u(k)c(k)(KLOC)]b = (EAF)(KLOC)b

u(k)c(k)(KLOC) = (EAFf\KLOC)

u(k)c(k) = (EAF)yb. (6-26)

Hence, the combined adjustment factor to KLOC due to the system characteristics and the

selected control policy at stage k is quantified as the bth root of Boehm's effort adjustment

factor. The system output at each stage of the process (6.23b), defined as the projected

development effort of the intended system y(k), can now be represented as

y(k) = a[(c(k)u(k) + v(k))x(k)]b (6.27)

where v(k) is a random sequence accounting for the influence of external factors on the

project's development. Equation (6.27) reflects the combined effects that the state of the

system (the estimated KLOC), the control policy, specific system attributes, and external

forces have on the project's eventual development effort.

The state update equation, the sequential revision of the estimated KLOC, is given by

x(k +1) = [c(k)u(k) + w(k)]x(k) (6.28)

where the random sequence w(k) accounts for the influence of external factors, c(k) reflects

system and environment attributes, and u(k) represents the resource allocation and

acquisition strategy policies employed at that stage. Equations (6.27) and (6.28) provide

the mathematical description of this nonlinear discrete-time system for software cost

102

estimation, paralleling Eqs. (6.4) and (6.3) of the linear model.

The formulation for this nonlinear, dynamical model for software cost estimation can now

be written. As with the previous model, the objective functions to be optimized at each

stage include the conditional and unconditional expected values of project development

effort and the implementation cost associated with the selected control policy. The model

consists of an equality (6.27) that relates the current state x(k) and the current policy u(k) to

obtain the output value y(k). Also, it includes a difference equation (6.28) that relates the

current state x(k) and the control policy u(k) to obtain the next state x(k+l). The

multiobjective problem/or each stage is:

Minimize: /*=(/*, fl f5
k

Subject to: x(k +1) = [c(k)u(k) + w(k)]x(k)

y(k) = a[(c(k)u(k) + v(£))x(£)]* (6.29)

where:

k represents the discrete stages (decision points) of the system

x(k) is the state of the system, the estimated KLOC input to stage k

y(k) is the calculated effort (cost) output of stage k

u(k) is the resource allocation and acquisition strategy control policy of stage k

c(k) is a composite adjustment multiplier to the required KLOC reflecting system

and environment attributes at stage k

v(k), w(k) are composite random variables that account for external disturbances

a, b are parameters depicting system characteristics, as with the COCOMO

models [Boehm 1981]

/* is the conditional expectation of development effort y(k) at stage k

fs is the unconditional expectation of development effort y(k) at stage k

fi is the cost of implementing control policy u(k).

6.4.1 Solution Approach for the Nonlinear Dynamical Problem

Having relaxed the linearity requirements of the previous formulation, we also no longer

require the random variables to be normally distributed -- allowing representation by any

suitable probability distribution. In addition to v(k) and w(k), we also permit probabilistic

representations of x(k), c(k), and u(k).

103

A common practice in the solution of problems such as Eq. (6.29) is to set v(k) and w(k) to

their expected values in order to permit a more focused exploration of the impact and

interaction of the state and control variables [Leach and Haimes 1987]. Application of this

technique, however, overlooks the fact that these variables are often the most critical, as

they are the unpredictable changes of policies and requirements during the software

lifecycle and that removing them from consideration in the model may impact analysis of

the model's results.

Considering the nonlinear relationships among model parameters in this new formulation,

and that these parameters may be represented by a variety of probability distributions, we

can no longer assume a closed-form solution for the cost output distribution, y(k), or its

conditional expected values /* and/*. We are interested in computing E[y(X)] and

E[y(X)IX>x], where the notation, X (actually X(k)), indicates that the estimated KLOC is

now treated as a random variable. Since it is not analytically possible to compute a closed-

form solution of the expected values, we apply a simulation approach.

To approximate E[v(X)] for each stage, we generate a random value XW = x from the

density function of X and then compute YW = yiX^). We next generate a second random

value (independent of the first) X© and compute Y© = y(X(2)). This continues until n, a

fixed number of independent and identically distributed random variables Y© = y(X©), / =

1,. .., n have been generated. By the strong law of large numbers [Ross 1989] we know

that

y(l) . , y(")
lim -n = E[Y] = E[y(X(k))] = f5

k. (6.30)

By Eq. (6.30) we can use the average of the generated YC)s as an estimate for E[y(X(fc))],
the unconditional expected value. To approximate the conditional expected values, /*, we

form the sub-set of outcomes Y^ whose members are those outcomes that exceed the

partitioning value ß associated with the predetermined a value. Simply stated,

Yß=[Y(i)\Y(0>ß]. (6.31)

The average of the members of Y^ is the average of all outcomes that exceed a particular

damage level - precisely the definition of the conditional expected value. Hence, given m
elements of the set Y^ (for m sufficiently large), an approximation to the conditional

expected value of the development effort (cost) is given by

104

Y(1) + ••• + Y(m)

-l ß— = E[Y,] = E[y(X(k))\y(X(k)) >ß] = /*. (6.32)

Monte Carlo simulation of the present-value cost function of implementing a particular

control policy /* is conducted in a similar manner. The unconditional and conditional

expected control policy costs are generated from the simulation outcomes.

While the initial density function for KLOC, X(0) = f(x0), may have a pre-specified form,

subsequent updates of the KLOC probability distribution cannot be obtained analytically.

Therefore, a Monte Carlo simulation of the stage-wise update for the state equation (6.28)

is similar to the procedure described for the effort and policy cost equations. The n

outcomes, X®(k+1), provide the data for probability distributions of the simulated outcome

results that are the state input distributions for the following stages.

An outline of a methodology for solving this new multiobjective, multistage problem is:

1. Determine the partitioning scheme for each component of damage (cost) for each

stage.

2. Solve the probabilistic problem using Monte Carlo simulation to produce a

distribution for the cost output at each stage and to update the state distribution.

3. Determine the conditional and unconditional expected values of the simulation

cost distribution results. Use localized variations to estimate the tradeoffs for a

given stage.

4. Use a multiobjective decision-making method such as the surrogate worth

tradeoff (SWT) method to find the preferred solution.

6.4.2 Example 6.2 - Policy Analysis using the Nonlinear Dynamic
Software Estimation Model

This example problem demonstrates how the nonlinear dynamical model (6.29) is applied

and solved. A natural extension of a probabilistic software cost estimation, the model is a

stochastic, nonlinear difference equation representing the relationship between software

development resource allocation control, estimated model size, and project cost. The

example employs probabilistic representation of model parameters and demonstrates the

power of modern analytic support tools to solve complex mathematical problems.

105

We adapt for this example, the problem described in [Boehm 1981] concerning the

development of a semidetached software product. We account for the inherent uncertainty

associated with the early stages of a software acquisition effort by quantifying the initial

estimate of KLOC requirements, x(0), as a triangular probability density function. This

distribution is derived from considering three values for x(0): a low, most likely, and high

estimate (Table 6.2). As the project is intended to be a 32-KLOC product, this value is

taken as the Most Likely. A slightly lower, Low value and a High value one and one-half

times that of the Most Likely are assumed.

Table 6.2 Triangular distribution parameters for initial KLOC estimate, x(0)
Low Most Likely High

x(0) 28 32 48

For this example problem we use a present-value control policy cost function that reflects

the direct relationship of u(k) and its implementation cost; greater allocation of resources

increases the policy costs. The complexity of the system within which the control policy is

implemented also affects the cost of that policy. The control policy implementation cost, as

a function of both the policy and the environmental attributes within which that policy is

implemented is given by:

f« =%K[c(k)(2-u(k))](\ + j)'2k. (6.33)
k=0

We set K = $ 1 * 106> r = 10%, and the time period between each of the n stages is 6

months. In this new formulation, the possibility is open for parameters K and r to also be

represented by probability distributions.

The effect of system and environmental attributes c(k) is quantified by considering the

effort adjustment factor of the Intermediate COCOMO model's product and computer

complexity attributes. The ratings and scores of the system attributes of the first stage are

listed in Table 6.3. Each attribute is rated on a scale from Very Low to Extra High, and

each rating has an associated KLOC adjustment factor. Nominal ratings have an

adjustment factor of 1.0. Note that a high system attribute rating translates to an increased

KLOC requirement. While each attribute's score in Table 6.3 could be represented by a

probability distribution, we will instead use single values for this example. Furthermore,

for this example, these values are held constant for all it. Using the data from Table 6.3 in

Eq. (6.24), the contribution to the EAF due to system attributes is 1.438. By Eq. (26),

106

Table 6.3 System Complexity Attribute KLOC adjustment factors

Adjustment
Attribute Rating Factor (e)
Reliability Nominal 1.00
Data Base Size Low 0.94
Complexity Very High 1.30
Execution Time High 1.11
Storage High 1.06
Virtual Machine Volatility Nominal 1.00
Turnaround Time Nominal 1.00

c(k) = 1.383. This value reflects the increased system complexity, execution time, and

storage requirements reported at this stage, resulting in an increasing trend for KLOC

requirements.

Quantification of the control policy, u(k), is governed by the resource allocation elements

of the Intermediate COCOMO model's personnel and project attributes. As above, each

element is rated on a scale from Very Low to Extra High, with each rating having an

associated quantitative KLOC adjustment factor. The resource allocation adjustment factors

impact KLOC requirements and resource allocation costs in opposite directions -- a low

rating (implying limited allocation of qualified resources) results in an increased KLOC

requirement, but a lower implementation cost. This explains the differences in the

functional form of u(k) in Eqs. (6.29) and (6.33). Table 6.4 lists the control policy ratings

and scores for the resource allocation policy for one stage. Similar ratings and scores are

determined for each control policy at each stage in the process. Using the values from

Table 6.4 in Eq. (6.24) and applying Eq. (6.26), the adjustment to KLOC due to the

control policy is 0.832. The employment of highly-qualified analysts and programmers,

along with advanced programming practices leads to efficient, accurate programming that

requires less KLOC.

Table 6.4 Resource allocation control policy KLOC adjustment factors
(from [Boehm 1981])

Resource
Analyst Capability
Applications Experience
Programmer Capability
Virtual Machine Experience
Programming Language
Programming Practices
Software Tools
Development Schedule

Adjustment
Allocation Factor (e)
High 0.86
Nominal 1.00
High 0.86
Low 1.10
Nominal 1.00
High 0.91
Low 1.10
Nominal 1.00

107

The constants, a and b, are assigned the values from the Intermediate COCOMO model that

correspond to the development environment. For a semidetached product, a = 3.0 and b =

1.12 [Boehm 1981]. The two random variables that account for external disturbances, v(k)

and w(k), are assumed to be normally distributed with mean zero and variance

o^ = o^ = 0.04.

6.4.2.1 Model Verification. In order to verify the formulation of this model, we

compare the solution of its deterministic formulation with the results from [Boehm 1981].

Setting each probabilistic parameter to its most likely value gives x(0) = 32 KLOC, v(0) =

0, and w(0) = 0. The initial evaluation of the nominal effort for this example problem is

found by Eq. (6.22):

y(k)NOM= a(x(k))b = (3.0X32)1-12 = 146 man-months (MM), k = 0.

Using Eq. (6.26), the impact on the estimated KLOC requirement due to the observed

system attributes c(0) and chosen policy u(0) is

c(0)w(0) = (1.171)X'2 = 1.151.

The effect of the system attributes and control policy in revising the estimated KLOC is

given by Eq. (6.28):

x(l) = c(0)u(0)x(0) = 36.832 KLOC.

Hence, the adjusted development effort output from the first stage as a function of the

estimated KLOC and the control policy is found by Eq. (6.27):

y(l) = y(x(l)) = (3.0)[c(0)u(0)x(0)]Ll2 = 170.33 MM.

This result is very close to the rounded solution of 171 MM given in [Boehm 1981].

Similar, near-exact solutions were produced for additional example problems also from

[Boehm 1981].

6.4.2.2 Probabilistic Evaluation. We now extend the application of the nonlinear

dynamical model beyond single-stage estimation, where the results of stage 1 provide the

input for stage 2. In each subsequent stage, a new control policy is implemented, reflecting

the decision maker's resource allocation strategy for the development of the intended

system. This, along with a revised observation of system and environment attributes and a

108

new estimate of the KLOC requirement, is used to revise the development effort output in

light of the updated knowledge.

Allowing each parameter to assume its probabilistic form, the Monte Carlo simulation

approach described above is used for solving the development effort output equation

(6.27), state equation (6.28), and control policy cost equation (6.33).

Similar to the linear example problem, consider three representative, noninferior control

policies (Table 6.5). Policy A represents a nominal resource allocation, policy B is a

gradual increase in the amount and quality of allocated resources, and policy C is an

immediate and sustained increase in resource allocation. These policies may be considered

optimistic, since even policy A has no resource category with a worse-than-nominal

allocation. The partitioning value for the conditional expected value was set at a= 0.9, thus

/* reflects the l-in-10 extreme event.

Table 6.5 Noninferior Policies for Nonlinear Multistage Software Acquisition Example
Policy Aa Policy Bb Policy Cc

Stage Risk Function Risk Function Risk Function

k= 1 fl = 535.66 f\ = 445.41 f\ = 199.25
fl = 344.54 fl = 276.78 /]= 122.17

k = 2 fl = 833.68 fl = 493.35 fl = 172.97
fl = 506.54 fl = 285.32 fl= 106.16

k = 3 fl = 1353.76 fl = 423.25 fl= 151.71
fl= 714.86 fl = 182.71 fl = 80.43

a Control variables: u(0) = 1, u(l) = 1, u(2)= 1; cost, /,° = 1.35 ($106).
b Control variables: u(0) = 0.9, u(l) = 0.8, u(2) = 0.6; cost, /,° =1.51 ($106).
c Control variables: u(0) = 0.6, u(l) = 0.6, u(2) = 0.6; cost, /,° = 2.09 ($106).

Since policy A has no application of resources beyond the nominal level, its implementation

cost is the lowest of the three policies considered. However, the conditional and

unconditional expected development effort results become increasingly worse over time.

By the third stage, the expected development effort is 715 MM, with the extreme-event

conditional expected value a terrifying 1354 MM. This additional risk information

regarding potential catastrophic events is the essential advantages of the probabilistic

approach. The information regarding the range of possible outcomes associated with each

109

alternative benefits the decision maker in the process of selecting the most desired

alternative. In this example, the conditional expected value information identifies that

Policy A has a l-in-10 potential of an almost doubling its the required development effort.

Risk mitigation policies B and C reflect the effects of the additional allocation of resources

~ the required development effort decreases. The gradual approach of policy B shows

marked improvement over policy A: the expected development effort increases less

dramatically over the time period, even beginning to decrease by stage 3; the conditional

and unconditional expected values indicate less risk than policy A. Policy C shows

dramatic improvement over the other two options ~ both at the first stage, and over the

long run. With a development effort expected value of only 80.43 after the third stage,

policy C is the one of lowest risk. It is also the most expensive - over half again the cost

of policy A and a third again the cost of policy B. .

A plot of the first stage conditional and unconditional expected development effort values

for each policy against its implementation cost is shown in Figure 6.4. By including the

conditional expected value in the graph, the decision maker can graphically comprehend the

additional information to consider when trading-off among the control policy options. One

observes the relative little difference between the conditional and unconditional expected

development efforts for policy C, compared with the larger difference for the other two

policies. Such risk reduction comes at a cost, however. Policy C is 38% more expensive

than that of policy B, but reduces the expected development effort to less than half of that

required under policy B. Policy B is 12% more expensive than policy A, yet produces a

nearly 25% reduction in the expected development effort requirement. Conducting similar

analysis of the extreme event values, we see an even more-pronounced difference in the

policies.

Again, analysis of the impact of early-stage decisions on later-stage decision opportunities

(as in Section 6.3.2) is readily calculated.

6.5 Chapter Summary

In this Chapter we have extended the traditional application of software cost estimation

methods by developing multistage, dynamical software cost estimation models. Both the

linear and nonlinear dynamical models showed promise as multistage software cost

110

/i

ICH

First-stage
policy
implementation
cost($106)

1.5-

1.0

Policy C

100
i 1 r

300 500
Development Effort (MM)

Figure 6.4 Noninferior solution set considering only the first stage objectives

estimation tools. Although it does not provide for an analytically closed-form solution, the

availability of Monte Carlo simulation software makes the nonlinear dynamical model

practical and desirable. The nonlinear model offers the greatest opportunity for realistic

extension of existing, static software cost estimation models (as Example 6.2 demonstrated

for the COCOMO model).

As the software development community continues to move away from the traditional

waterfall development models to repetitive, spiral-type models, software cost estimation

methods must be responsive to this new development paradigm. No longer a single time-

period activity, methodologies for software cost estimation must provide updated estimates

by considering the system characteristics, policies, and requirements of a changing

environment. One overriding characteristic of this environment, particularly in the early

stages of the development life cycle, is the uncertainty regarding the desired software

system. To this end, a probabilistic approach that explicitly accounts for parameter

variability is required.

fl

The dynamical models developed in this Chapter account for the need to update software

cost estimates due to the dynamics of changing requirements, improved system design

information, and various resource allocation policies associated with the early stages of the

software development lifecycle. Incorporating a probabilistic extension of traditional

Ill

software cost estimation methods, the models utilize the conditional expected value as an

additional decision-making metric. Stage-wise updating of software cost estimates gives

the decision maker greater understanding of anticipated project costs and development

effort requirements, as well as information concerning the expected impact of various

control policy options in reducing project risk.

112

Chapter 7
The HHM Framework for Dynamic Software Estimation

Updating and for Multiobjective Decision Making Coordination

7.1 Introduction

The probabilistic approach to software estimation of Chapter 5 added explicit consideration

of the uncertainty and risk associated with software acquisition endeavors. Then the

dynamic formulation of the software estimation process developed in Chapter 6 extended

software estimation to a multi-stage, repeated process that parallels modern development

paradigms and allows analysis of the impact of current decisions on future opportunities.

In this Chapter we demonstrate the extensions of HHM in addressing two remaining

software acquisition management issues:

• Actual project effort and schedule are rarely exact duplicates of their estimates. Of

concern is how to explain the deviation between estimated and actual values, and then

in light of the actual results, how to improve the estimate of the remaining

development effort and schedule.

• Software project management policy options do not fall entirely in the domain of the

customer nor entirely in the domain of the contractor, yet both parties are affected by

each other's decisions. At issue is how to coordinate and resolve the competing

issues, objectives, and decision opportunities of these participant communities for the

benefit of all.

Hierarchical holographic modeling (HHM) is extended to address these two issues. First,

we demonstrate a dynamic updating framework that can be implemented within the

dynamic software estimation model of Chapter 6 to provide revised project effort and

schedule estimates throughout the live cycle. The investigative framework of HHM -

initially applied for risk identification - is well-suited for providing on-going

understanding of the causes for differences between actual software project progress and

the estimated effort and schedule requirements. This understanding is a key element for

determining the appropriate actions within the dynamic software estimation updating

process.

113

Second, with revised estimates of project effort and schedule, management control policies

can be selected so as to best meet stated objectives. The decision authority concerning

these policies, however, does not entirely rest with any one participant community, but is

divided among the groups. A hierarchical coordination decision-making scheme is

employed to help resolve decision-making conflicts and trade-offs associated with the

software project participant communities. Each community's multiobjective decision-

making problem includes unique, as well as overlapping objectives, decision variables, and

model parameters. HHM gives the structure to assist in achieving mutually acceptable

solutions.

7.2 Dynamic Software Estimation Updating

After the initial software estimation has been conducted, the contract awarded, and the

formal design and development work started, the need for software cost and schedule

estimation has not ended. Evaluating and revising these estimates are a critical project

management function.

At the project milestones associated with the life cycle phases, actual effort and

development schedule data can be collected. With these data, an important question is

asked, "Is the project on track?" Stated a bit differently, "Given that the project has used x

MM of effort and taken y months to get to this point, will it still be completed according to

the original effort and schedule estimates? If not, what caused the deviation from the

original estimate, and what is a new estimate for the effort and schedule?"

Project milestone charts (Figure 7.1) are a tool commonly used for recording and

comparing actual effort and schedule results against estimated projections [Rozum 1992].

Unfortunately, these charts don't provide the analytic means for projecting future results or

analyzing effects of deviations from previous estimates to answer the above questions. In

this section we demonstrate a dynamic software estimation updating methodology to

sequentially revise effort and schedule estimates and use the HHM as an aid in identifying

contributing factors that may explain any deviation from the expected.

114

Effort
(MM)

Actual

- Estimate

A Project milestone

time (months)

Figure 7.1 Sample project milestone chart

7.2.1 Dynamic Software Estimation Updating Process

Dynamic software estimation updating, as used in this section, refers to the "on-line"

revisions of software estimates using the models developed in the previous two chapters.

The process involves collecting actual project effort and schedule data and comparing these

with previous estimates [Kitchenham and Walker 1989]. The estimation model is then

adjusted based on the actual values, and an updated estimate for the remaining effort and

schedule is made.

A critical element to updating the estimation model is being able to account for the cause of

deviation from previous estimates. We ask, "Of the model parameters and variables, what

do we believe? What has changed from the original estimation?" There will often be many

possible causes for deviations from estimates, and for each cause there may be several

different types of corrective action [Dorflinger and Basili 1985]. Appropriately changing

model parameters or variable values to reflect current knowledge leads to an improved

estimate.

The three-step process of dynamic software estimation, depicted graphically in Figure 7.2,

is:

1. Baseline Estimate. Apply a software estimation methodology, with estimates of

project size, environment, and other model parameters, to produce a baseline

estimate of project effort and schedule.

115

2. Actual Observation. Collect known effort and schedule information, along with

actual size, environment, and other parameter values, at appropriate project

milestone points.
3. Dynamic Estimate. Recalibrate the variable values or equation parameters of the

estimation model to produce a revised estimate of the remaining effort and schedule

to complete the project. This revised estimate becomes the new baseline estimate.

Baseline Estimate
Original effort, schedule

estimates.

i
Observe Actuals

Collect actual effort, schedule,
size, and environment data.

I
Dynamic Estimate

Evaluate actuals vs estimates,
recalibrate model, prepare new
effort and schedule estimates.

Figure 7.2 Dynamic Software Estimation Updating Process

Step 1 consists of the activities discussed in Chapters 5 and 6 - establish model parameter

and variable values, use an estimation model to determine project effort and schedule, and

make policy decisions based on the expected value as well as the conditional expected

value.

Step 2 is the simple step of collecting project progress data. While not all data are collected

monthly, data collection at project milestones is generally available. These milestones may

include the formal event activities [DoD 1991]: system design review (SDR), software

specification review (SSR), preliminary design review (PDR), critical design review

(CDR), test readiness review (TRR), functional configuration audit (FCA), and physical

configuration audit (PCA). These may also include interim milestone events and other less-

formal review points.

Step 3 is the actual dynamic estimation activity. This first includes using the HHM to

conduct an analysis of the factors that contributed to the project's deviation from the

116

estimated effort and schedule. Then, the estimation model is calibrated to reflect the

observed values by appropriately updating model parameters and variable values according

to the results of the HHM analysis. Finally, the calibrated model is used to project a new

estimate of project effort and schedule.

7.2.2 Dynamic Software Estimation Updating Methodology

The general methodology adopted for the dynamic software estimation updating problem is

from [Kile 1995] and [Kitchenham and Walker 1989]. Let us first consider the effort and

schedule equations of either the original static form of the Intermediate COCOMO model or

the dynamic form of the model that was developed in Chapter 7 (Table 7.1). In both forms

of the model, parameters represent the influence of environmental factors on the

development effort requirement, the size (representing complexity) of the project, and the

variable relationships.

Table 7.1 Original and Dynamic Intermediate COCOMO equations

Equation Original Model Dynamic Model

Effort MM = a(EAF)(KLOC)b y^) = a[(c(k)u(k) + v(Jt))jc(*)]

Schedule tD = c(MM)d tD(k) = c(y(k))d

For the software estimation updating activity, we initially utilize an HHM framework with

two sub-visions: environment and size (Figure 7.3). The extension of this simplification

can be achieved by subsequently adding details to the HHM structure until we have the

HHM described in Chapter 3. The environment decomposition represents those elements

associated with the system attribute adjustment factors of Chapter 6: system complexity,

storage, programming language, software tools, etc.

Software Estimation

Environment Size

Figure 7.3 Dynamic Software Estimation HHM (Initial Application)

117

Again, considering two visions (environment and size), if the actual effort or schedule

deviate from the estimate, at least one of the following must be true:

• the size estimate is incorrect,

• the environment is specified incorrectly,

• the model's equations require calibration, or

• the stated control policy wasn't implemented (e.g., the program wasn't staffed

according to the model).

7.2.2.1 Recalibration Strategy. Depending on which of the above factors is (are)

assumed to be the problem, appropriate changes to the model and its elements can be made.

Determining the appropriate course of action is facilitated through the use of decision

diagrams (Figure 7.4). If one assumes that the stated control policy was, in fact, the

implemented policy, then one uses the HHM to evaluate the relative confidence of the size

and environment estimates. If the size estimate is deemed valid, then the problem must be

with the specification of the environment and the model is recalibrated for a new

environment value. On the other hand, if the problem is assumed to be with the size

estimate, then recalibrating the model for a new size value is necessary. If both estimates

are deemed accurate, or both are viewed as equally inaccurate, then the model's parameters

are recalibrated to reflect actual values.

Once the initial problem element has been identified, then appropriate action is taken

depending on the specific nature of the actual effort and schedule results versus the

estimates. Different adjustments are made for underestimation than are made for

overestimation.

7.2.2.2 Recalibration via Environment Specification. Making appropriate

changes to a model parameter depends on the nature of the difference between estimated

versus actual effort and schedule (depicted in Figure 7.5). If the estimate is greater than the

actual effort, then there has been more progress made than was expected (the tasks of the

particular milestone were accomplished with less expenditure of effort than was

anticipated). Therefore, the estimation model is recalibrated by improving the environment

parameter so that the effort estimate is reduced to correspond with the actual value.

118

Observe Actuals
Collect actual effort, schedule,

size, and environment data.

environment

Calibrate for new
environment

Calibrate for new
size

Calibrate for new
equations

T

Take corrective
management action

and re-baseline

Figure 7.4 Software estimation recalibration strategy
(sub-level decision details are described in following figures)

adapted from [Kile 1995]

Conversely, if the estimate is less than the actual effort, then the original estimate was

overly optimistic and the project is doing worse than was anticipated. The recalibration

action is to degrade the environment parameter until the model's estimate increases to the

actual value. If the estimated and actual effort values are the same, then no recalibration

action needs to be made. Once the model has been appropriately recalibrated, it is used to

estimate the project's remaining effort and schedule requirements. This estimate is the new

baseline estimate.

7.2.2.3 Recalibration via Size Specification. The recalibration process that

modifies the size estimate is very similar to that for the environment (Figure 7.6).

Considering only the effect of size, if the estimated effort is greater than the actual value,

then the original size estimate was too large. Recalibration is accomplished by decreasing

the size parameter so that the effort estimate is reduced to correspond with the actual value.

119

Observe Actuals

Calibrate for new
environment

Improve the
environment to

reduce the estimate

Degrade the
environment to

increase the estimate

Take corrective
management action

and re-baseline

Figure 7.5 Recalibration via environment specification

Observe Actuals

Calibrate ^**-+*^^^ I /- «*. ...,
enrironmeml J [Calibntttj

f Calibrate IL

Decrease the size to
reduce the estimate

Increase the size to
increase the estimate

management action
and re-baseline

Figure 7.6 Recalibration via size specification

120

If the estimated effort is less than the actual, then the size was originally underestimated and

must be increased to increase the effort estimate to match the actual value. Once the model

has been recalibrated, it is used to determine the new baseline estimate of the project's

remaining effort and schedule requirements.

7.2.2.4 Recalibration via Model Parameters. Referring to Figure 7.4, if both the

size and environment parameters are equally believed (or equally disbelieved), then

recalibration of the estimation model is accomplished by modifying the other parameters of

the model -- namely the coefficients (e.g., the <a,c> vector of the Intermediate COCOMO

model). This can be done in one of three ways: i) change the effort equation coefficient

only, ii) solve for the schedule coefficient only, or iii) solve for both the effort and schedule

coefficients simultaneously. In either process, the coefficient value is recalibrated so that

the actual effort and/or schedule is produced. Either process will affect both of the model

equations - adjusting effort impacts the schedule due to the compression effect, etc.

7.2.3 Example 7.1 - Dynamic Software Estimation Updating

To demonstrate the dynamic software estimation updating approach, consider the

development of a 50-KLOC, embedded-mode software system. For this example, we use

the original Intermediate COCOMO formulation; the approach for the dynamic formulation

would be similar. The model parameter values are listed in Table 7.2. With EAF = 1.00,

the original management control policies assume nominal personnel (capability and

experience) and nominal environment influences (programming languages, development

tools, system complexity, etc.).

Table 7.2 Dynamic software estimation updating example - initial model values

KLOC = 50
Mode = Embedded, hence the COCOMO parameters

(from Table 3.3)
a = 2.80
b= 1.20
c = 2.50
d = 0.32

EAF = 1.00

121

The original, baseline estimate of development effort and schedule is found using Eqs.

(3.7) and (3.2)

MM = 2.8(1.0)(50)120 = 306.14 man-months
and

tD = 2.5(306.14)0-32 = 15.6 months.

Distribution of the estimates by life cycle phase is given in Table 7.3. Recall that the effort

and schedule equations are for the development phases of the life cycle. Total project

resource requirements through development must also include the plans and requirements

phase requirements.

Table 7.3 Software estimation updating example - original estimates

Life Cycle Phase
(% of total effort, schedule)

Effort
(man-months)

Schedule
(months)

Plans & Requirements (8,32) 24.48 5.12

Development

Design (18, 34)

Detailed Design (26,19)

Code & Test (28,21)

Integration & Test (28, 26)

Total Development

55.08

79.56

85.68

85.68

306.00

5.44

3.00

3.40

4.16

16.00

Consider that the initial design for the project has been completed and that the preliminary

design review (PDR) has been conducted. The original estimate for the required effort to

reach PDR was 79.56 MM (24.48 + 55.08) and the schedule estimate to PDR was 10.56

months (5.12 + 5.44). Assume the actual effort expended in reaching PDR was 90 MM,

accomplished over a 9-month period. Hence, more effort was utilized to reach PDR than

was estimated, but over a shortened schedule. We will now demonstrate the three

approaches for accomplishing the software estimation updating in light of this new

information.

7.2.3.1 Example 7.1 (cont.) - Accurate size, recalibrate via environment.

Assume that the HHM investigation concluded that the size estimate is accurate, while the

environment specification is suspect. To recalibrate the environment element, first find the

total development schedule that has a distribution of 9.0 months for the first two phases:

122

. 66t D = 9.0 => rD =13.64 months.

Next, determine the total development effort that distributes 90 MM to the first two phases:

.26MM = 90 => MM = 346.15 man -months.

As the development effort estimate was less than the actual effort expended through PDR,

degrade the environment factor by increasing the EAF until the appropriate development

effort value is given:

346.15 = 2.8(EAF)(50)U0 => EAF = 1.131

The updated project development effort and schedule distribution is given in Table 7.4

Table 7.4 Software estimation updating example - revised estimates

Life Cycle
Phase

Effort
(man-months)

Schedule
(months)

Plans & Requirements 27.69 4.36

Development

Design 62.31 4.64

Detailed Design 90.00 2.56

Code & Test 96.92 2.89

Integration & Test 96.92 3.55

Total Development 346.15 13.64

The new development effort and schedule estimates are used to update the effort and time to

complete development of the project, which includes the development phase resource

requirements as well as that of the earlier phases. We can now update the project's effort

requirement 346.15 + 27.69 = 373.84 man-months, and the schedule estimate to 13.64 +

4.36 = 18 months. A plot of the original estimates, actual values, and revised estimates is

shown in Figure 7.7. We see that the new estimate calls for more development effort, but

has the project being completed in a shorter time than was originally anticipated.

7.2.3.2 Example 7.1 (cont.) - Accurate environment, recalibrate via size.

Assume, now, that the environment parameter is correct and that the size parameter must be

recalibrated . Following the steps of the above section, find the revised development

schedule and effort that correspond with the actual schedule and effort

123

Effort
(MM)

400-

300-

200-

100-

ADEV"

/ A DEV'
/

/
/

/

/ /
/ /

/ /

/
/

PDR
/ Actual

— ~ Estimate
A Project milestone

time (months)

Figure 7.7 Project milestone chart with revised estimates
(DEV indicates the original estimate of development effort and schedule,

DEV" indicates the revised estimate)

expended through the current phase. Then, adjust the KLOC until the appropriate total

development effort is given:

346.15 = 2.8(1.0)KLOCf20 => KLOC = 55.40.

7.2.3.3 Example 7.1 (cont.) - Accurate size and environment, recalibrate

via model parameters. This option is used when both the size and environment

specifications are equally believed, or equally disbelieved. Demonstrating the last of the

three options for this approach, we first recalibrate the effort coefficient until the total

development effort corresponds to the revised projection:

346.15 = a(1.0)(50) 1.20 a = 3.166

Then, recalibrate the schedule coefficient to correspond the total schedule that corresponds

with that observed through the current stage:

13.64 = c(346.15)°32 => c = 2.10

124

These new parameters are then used for future estimates, until more-current observations

are made.

7.2.4 Software Estimation Updating Summary

The software estimation updating methodology demonstrated in the above example is

repeated at each project milestone and at other points in the development process to provide

an update on the overall progress and expected resource requirements for the project. The

methodology is flexible, easily applied, and provides the needed updated information

regarding project progress in terms of expected completion. The provision for expanding

the environment and size elements to include additional factors adds increased awareness

and robustness to the project management effort.

7.3 Software Acquisition's Multiobjective, Multi-Decision Maker

Decision-Making Coordination

As introduced in the dynamic software estimation model of Chapter 6, software

management policy decision making is conducted on a recurring basis throughout the life

cycle. Updating the software estimation dynamically, and projecting the latest estimate of a

project's required effort and schedule, provides the opportunity for updating and adjusting

management policy options. These management control options, however, do not fall

within any one participant community's domain of control. Rather, each group has its own

decision making options, and each is affected by the other's decisions. HHM provides the

hierarchical framework for exploring the competing issues, objectives, and decision

opportunities for the various participant communities to assist in resolving a solution that is

mutually-acceptable to all parties.

7.3.1 Hierarchical Decision Problems

In a classical decision making problem, a decision maker has to select an alternative among

those which are acceptable or feasible and that choice is made according to his preferences.

In hierarchical decision problems, some of the elements of the decision problem are actually

in systems which are related to the strategies adopted by other decision makers. In that

case, the way resources are allocated is no longer characterized entirely by restrictive

constraints or requirements to satisfy, but are characterized as the solutions of other

125

decision making problems, related to the preference structure of the other decision makers

involved. This leads to a model with a hierarchical structure of decision, with different

decision makers possibly located at different levels of decision.

Hierarchical problems involving multiple decision makers have been considered by several

authors, traditionally from either the optimization theory point of view (e.g. [Chankong and

Haimes 1983], [Haimes et al. 1990], [Bard and Moore 1990], [White 1982], [Bialas and

Karwan 1982], [Nijkamp and Reitveld 1981], or from the game theory point of view (e.g.,

[von Neumann and Morgenstern 1944], [Blackwell and Girshick 1954], [Luce and Raiffa

1957], [Chen and Cruz 1972]). For the software acquisition context, however, the zero-

sum decision rule and similar such constructs of a game theory approach are not desirable.

Also, many traditional hierarchical optimization methods (e.g., [Installe 1994], [Haimes et

al. 1990], [Tarvainen and Haimes 1982]) do not directly apply, for in software acquisition

there does not exist an ultimate higher level decision maker -- no higher decision-making

authority to whom the user, customer, and contractor all report, and who is directly

concerned with all the objectives, etc.

Contrary to the traditional discussion and approach of hierarchical methods with higher-

level coordination, we are interested in synchronizing the solutions of the multiple visions

(e.g., the user/customer and the contractor) so that ultimately we have an acquisition

process not marred by cost overrun and time delay.

The intent is to use the holistic visions of the HHM to provide understanding and

accounting for the objectives and constraints of the different decompositions and find a

process or mechanism that would bring the necessary collaboration together. With the

absence of a higher-level decision maker to dictate a compromise solution between the

competing visions, the approach could be considered for application in several contexts:

i) Direct negotiation. Having knowledge of the other decision maker's objectives,

data, and possible responses to environment changes, is most important to

negotiation [Neirenberg 1978], [Fisher 1981], [Raiffa, 1982]. With each

participant aware of the other's problem and model, each is better prepared for

negotiations.

ii) Independent analysis. Each participant can solve the problem separately with full

knowledge of the other's model (although without full knowledge of the actual

126

decision variable values of the other decision maker). The differences in each

decision maker's solutions can be openly negotiated to a mutually-agreeable level

iii) Iterative coordination. A bi-element, or bi-decomposition iterative approach in

which one party sets the level of overlapping variables, the other responds by

solving their problem, and the first then re-adjusts the original solution [Installe

1994], [Haimes et al. 1990], [Stackelberg 1952].

7.3.2 Hierarchical Decision Problem Formulation

For this chapter, we consider the existence of two decision decompositions in interaction,

denoted respectively as the "a" decomposition and the "ß" decomposition. These terms

connote a parallel level of decision interaction, versus the traditional "higher" and "lower-

decompositions that connote increasing authority. In the a decomposition, the best

alternative is selected according to the a decision maker's preference structure, to the set of

all feasible alternatives, and to the reaction of the ß decomposition decision maker with

respect to the decision. In the ß decomposition, the decision maker reacts to the a

decomposition decision according to his preference structures and according to the feasible

alternatives. Hence a bi-element hierarchical decision making problem can be defined using

the following mathematical model:

Find xa the best compromise with respect to/Kx«, xß*(xa))

such that x« e X« and g«(x« xß*(x«)) < 0

where xß*(xa) is the solution of the following problem:

Given xa, find xß the best compromise with respect to/ß(xa, xß)

such that xß e Xß and gß(x« xß) < 0 (7.1)

where
xa is the a decomposition decision variables

xß is the ß decomposition decision variables

xß*(xa) stands for the reactions of the ß decomposition decision makers, given x«

/* is the a decomposition objectives; vector valued function of xa and xß*(x«)

ga is the a decomposition constraints

Xa is the a decomposition definition set

fi> is the ß decomposition objectives

127

gß is the ß decomposition constraints

Xß is the ß decomposition definition set.

Simplifications of the form of the objectives and constraints (e.g., linear, convex, mono-

objective lower level problem) permit solution of the above problem using classic

approaches, including: direct methods [Chankong and Haimes 1983], [Mako and Haimes

1978], [Bard 1983], [Edmunds and Bard 1991]; implicit search methods [Bialas and

Karwan 1984], [Candler and Townsley 1982], [Jongen and Weber 1990], [Sobol 1992];

and penalty methods [Aiyoshi and Shimizu 1984], [Installe 1994]. Additionally, classical

interactive optimization procedures can be applied to solve the problem, allowing the user

to investigate the various potentially satisfying alternatives [Haimes et al. 1990], [Durso

1992], [Haimes 1980], [Nijkamp and Spronk 1980], [Goicoechea et al. 1979], [Wallenius

1975].

7.3.3 Software Acquisition's Program Consequence Hierarchical Decision

Problem

We focus the application of the hierarchical decision problem described in the previous

section on the program consequence HHS. This decomposition constitutes the risk

management decision-making problem associated with estimating and managing a software

project's cost, schedule, and performance. Each of the participant communities (user,

customer, contractor) contributes to resolving the competing issues of the program

consequence HHS - individually, as well as jointly.

We consider two participant community decompositions: the contractor decomposition,

and the user/customer decomposition. In this formulation, the interests and objectives of

the user and customer communities are combined. This is a plausible simplification, as the

customer is an agent acting for, and in behalf of, the user. The customer is responsible for

procuring a system that meets the user's needs, while ensuring that the procedures and

requirements of the acquisition process are followed and enforced. We also consider two

program consequence elements: project cost and project schedule.

The two community decompositions are interrelated through their mutual interests in the

successful acceptance, continuance, and completion of the software project. More

specifically, the contractor and customer communities are connected by solutions to the cost

and schedule elements of the program consequence HHS that meet the specific objectives

128

of each community and are mutually-agreeable as to the objectives that overlap

constituencies. Figure 7.8 provides a graphical depiction of the two-decomposition

coordination problem.

a Decomposition ß Decomposition

User/Customer

fa(f,a,f2
a,f3

a)

_ _ -V-

Requirements Cost

f

Contractor

Schedule

r t
Profit

Figure 7.8 Hierarchical Decision Problem for Participant Community - Program
Consequence Coordination

Each community has objectives related to the cost and schedule elements as well as its own

unique objectives. The general description of the objectives, uncertain quantities, and

decision variables of the hierarchical decision problem is given in Table 7.5.

Table 7.5 Description of the Hierarchical Decision Problem Formulation

a Decomposition: User/Customer ß Decomposition; Contractor

Objectives fa

minimize: /," - Cost overrun

minimize: f" - Schedule delay

minimize: f" - Unmet requirements

Random variable
R- Requirement change requests

Decision variable xa

x\ - Allowed requirements changes

Objectives fß

minimize: ff - Cost overrun

minimize: /f - Schedule delay

maximize: ff - Profit

Random variable
R- Requirement change requests

Decision variables xp

X2 - Personnel resources
*3 - Technology resources

7.3.4 The User/Customer Decomposition Decision Problem

The user/customer's multiobjective decision problem is focused on how to deal with the

ever-increasing demand for system requirement changes. The frequency or extent of

requirements changes has been shown to be a primary factor affecting software project cost

129

overruns and schedule delays [Lederer and Prasad 1993], [Boehm and Papaccio 1988].

Generally, increased requirements lead to a more complex, more costly system that takes

longer to develop. Controlling the requirements changes has been shown to be one way in

which the customer can make a significant, direct impact on managing cost overruns and

schedule delays [Boehm and Papaccio 1988]. Hence, the decision variable for the

customer is the allowable requirements changes. This decision is made in light of the

objectives of minimizing cost overruns and schedule delays, and the desire to maximize the

user's satisfaction with the system by minimizing the unmet requirements changes.

The formulation of the cost and schedule objective functions is consistent with those in

previous chapters and is based on the COCOMO models. The cost overrun and schedule

delay objective functions for the user/customer are the difference between the original

estimates and the new estimates considering the allowed requirements changes:

/,"= cost overrun = kJ a(KLOC ■ x^ -ft, a(KLOC)

= ak,(KLOC)"(x?-\), (7.2)

/" = schedule delay = c -c

= c

a(KLOCxx)

a(KLOC)bl\{xb
x
d-\),

a(KLOC)

(7.3)

where
a,b,c,d are system characteristic parameters as with the COCOMO

KLOC is the original system size estimate
x j is the allowed requirements changes, quantified as a percentage

KLOC multiplier (x\ > 1.0)

kx is a cost-per-man-month multiplier.

Note that objective functions (7.2) and (7.3) are minimized when the decision variable x\

equals 1.0, or when there is no increase in system size or complexity due to requirements

changes that lead to cost overruns and schedule delays.

The user/customer's third objective function is to minimize unmet requirements changes.

The user's desire over the life cycle for requirements changes (R) is difficult to predict and

never known with certainty. Quantified as a percentage KLOC multiplier, R > 1.0. With

a probability distribution associated with R that captures the degree of uncertainty

130

concerning the user's desired requirements changes, and xj defined as the level of allowed

requirements changes as set by the customer, an important measure of the user's eventual

dissatisfaction with the completed system is the unmet requirements changes (R - xi). As

there is a probability distribution associated with R, then the new measure (unmet

requirements) is also a probability distribution -- a translation of the desired requirements

changes distribution (Figure 7.9).

(R-x j) - unmet
requirements,

1.0-x,

Prob.

R - desired requirements
changes

0.0 1.0

Figure 7.9 Requirements and unmet requirements probability distributions

Of most interest in the (R - xi) distribution is the non-negative portion that describes the

unmet requirements given the customer's decision (shaded region in Figure 7.9). There are

several possible decision-making metrics related to the unmet requirements:

i) Prf R - x, > Ol the probability of unmet requirements; an indication of the
chance of user dissatisfaction,

ii)E[R-x,] the expected unmet requirements,

iii) E[R - X, I X, = /J] the extreme-event conditional expected unmet requirements,
where ß is the partitioning point associated with a particular
probability partitioning value,

iv) E[R - X,IR - X, > O] the expected unmet requirements, given that there are unmet
requirements.

The first measure indicates the chance of unmet requirements, while the remaining three

measures are indications of the extent to which the requirements are not met. Measures (ii)

and (iii) include in their calculation the portion of the distribution that is negative

(requirements being fully met or exceeded) ~ hence may not give an accurate

representation of the magnitude of unmet requirements. Measure (iv), however, indicates

131

the extent of unmet requirements, given that there are some. Together, measures (i) and

(iv) indicate the chance of user dissatisfaction due to unmet requirements and how great that

dissatisfaction may be. These two elements are included in the two-part, third

user/customer objective function:

f"a = probability of unmet requirements = Pr[R - x, > 0],

f"b = expected unmet requirements (given some exist) = E[R - x,|R - xl > 0] (7.4)

where
R is the desired requirements changes, quantified as a percentage KLOC

multiplier
x\ is the allowed requirements changes, quantified as a percentage KLOC

multiplier (1.0 < x\).

This third objective function can be considered a type of disutility measure, where
increasing values of f" indicate increasing dissatisfaction with the system. While Eq.

(7.4) is improved by increasing x\, doing so degrades the other two objective functions.

Resolution of the user/customer's multiobjective problem will be through trade-off

evaluation of the Pareto optimal solutions considering the (non-commensurate) objective

functions: /,a vs/2
a, /," vs/3

a, and f2
a vs/3

a.

7.3.5 The Contractor Decomposition Decision Problem

The contractor's multiobjective decision problem includes maximizing profit, and two

objectives similar to that of the user/customer: minimize cost overrun and schedule delay.

It is in the contractor's interest to consider the satisfaction of the customer, which is done

by meeting the cost and schedule limitations of the original contract. Minimizing cost

overruns and schedule delays also provide the contractor a good working relation with the

customer, good track-record for future contracts, the possibility of incentive awards, etc.

Additionally, reducing project time delays allows the contractor to re-assign personnel to

other efforts, allowing the organization to take on more projects.

The contractor affects the project's cost and schedule by the personnel and technology

resources employed in the development effort. Higher qualified and more capable analyst

and programmer personnel may require higher personnel costs (higher salaries), however

productivity is higher, which decreases the man-months of effort and development time

132

requirements, and may lower the overall project costs. Application of software

development technologies (e.g., CASE tools, clean-room development environments,

COTS, etc.) may also reduce effort and development time requirements.

The cost and schedule objective functions for the contractor consider the customer's

approved requirements changes decision and the contractor's personnel and technology

decisions:

/,' = cost overrun = kJ^KLOC- x,)(x2 • x5)]' - kxa(KLOC)b

= a{KLOC)b k2(xlx2x3)
h - kA, (7.5)

r b~\ r
fl = schedule delay = c a[(KLOC • x,)(x2 • x3)] - c[a(KLOC)

= c\a(KLOC)b (x,x2x3)
M-l , (7.6)

where

a,b,c,d

KLOC

x\

*2

*i

k2

are system characteristic parameters as with the COCOMO

is the original system size estimate

is the customer-determined allowed requirements changes,

quantified as a percentage KLOC multiplier (xi > 1.0)

denotes personnel experience and capability, quantified as a

percentage KLOC multiplier (0.5 < x2 < 1.5, nominal = 1.0)

denotes the software development technology resources, quantified

as a percentage KLOC multiplier (0.5 <x3< 1.5, nominal = 1.0)

is the original cost-per-man-month multiplier

is the new cost-per-man-month multiplier considering the new

personnel and technology resource decisions.

The contractor's profit function, formulated according to a cost-plus development contract,

is given by

(7.7) f? = profit = p[k2a[(KLOCxl)(x2x3j\ j,

where all terms are defined as above, and

p is the percentage of costs allowed for profit (cost-plus percentage).

133

Note that while Eqs. (7.5) and (7.7) are minimized when the product of the decision

variable values equals 1.0, Eq. (7.7) provides no such incentive for improving personnel

or technology resources to compensate for the customer's requirement changes. In fact,

with a cost-plus objective function the contractor desires that the customer make more

requirements changes -- doing so increases the overall costs and the contractor's profit.

7.3.6 The Program Consequences Decomposition Hierarchical Decision

Problem

The program consequences decomposition hierarchical decision problem, in the form of

Section 7.3.2 where the user/customer constitutes one decision making decomposition and

the contractor the other, is given by:

Find xa the best compromise with respect to/*(xa, xß*(xa))

such that x« e X« and g«(xa, xß*(x«)) < 0

where xß*(xa) is the solution of the following problem:

Given xa, find xß the best compromise with respect to/ß(xa, xß)

such that xß e Xß and gß(x«, xß) < 0 (7.8)

where

xa consists of xi, the customer decision variable

xß consists of X2, X3, the contractor decision variables

xß*(xa) stands for the reaction of the contractor, given xa

/* is the customer objectives, /", f", f°

ga is the customer constraints

Xa is the customer definition set, xa > 1.0

ß is the contractor objectives, ff, /f, /f

gß is the contractor constraints

Xß is the contractor definition set, 0.5 < xß < 1.5.

7.3.7 Solution Procedure for the Hierarchical Bi-element Decision Problem

To solve the bi-element problem, we must be able to compute individually the solution of

both decision problems [Installe 1994]. In other words, the solution approach for the two-

decomposition problem of the user/customer and contractor requires the solution of the

134

independent problems and then a coordinated resolution of their results. We first outline

the solution approach for the individual multiobjective decision problems and then

introduce approaches for a coordinated solution.

7.3.7.1 Solution Procedure for the User/Customer Decomposition. The

customer determines allowed requirements changes based on Pareto optimal solution trade-

offs among objective functions /,*, /", f°. In particular, increasing levels of

requirements changes lead to greater user satisfaction with the system, but simultaneously

leads to greater cost overruns and schedule delays. Subjective trade-offs between the

user's dissatisfaction (unmet requirements changes) and cost overruns, and between unmet

requirements changes and schedule delays leads to the selection of a preferred solution

from the set of Pareto optimal solutions (Figure 7.10). Selection of the desired option then

fixes the value of the requirements changes decision variable.

J3

\

V

■r
Unmet
Requirements

• Option A

► Option B

Option C

Damage (cost overrun, schedule delay)

Figure 7.10 User/Customer Pareto optimal trade-offs

7.3.7.2 Solution Procedure for the Contractor Decomposition. The

individual solution to the contractor's problem is similar to that of the customer's. Given

the customer's requirements change level, the contractor determines the personnel and

technology resource allocations based on Pareto optimal solution trade-offs among
objective functions ff, /f, //. In particular, increasing the technology quality or

personnel experience leads to a reduction in development schedule, but at a greater cost.

755

The increased cost, however, also increases the contractor's profit when assuming a cost-

plus arrangement. Decreasing the quality of technology and personnel resources may

reduce per-month resource costs, but these are often offset by the lengthened schedule.

Subjective trade-offs between the customer's satisfaction (minimizing cost overrun and

schedule delay) and maximizing contractor profit (or the equivalent, minimizing negative

profit) lead to the selection of a preferred solution from the set of Pareto optimal solutions

(Figure 7.11). Selection of the desired option then fixes the value of the personnel and

technology resource allocation decision variable.

-f

\

V

■fi

-Profit

Damage (cost overrun, schedule delay)

Figure 7.11 Contractor Pareto optimal trade-offs

7.3.7.3 Example 7.2 - The Hierarchical Decision Problem Approach

Applied to the User/Customer and Contractor Decompositions. Consider

again the software development problem of Example 7.1. Assuming an initial $3000 per

man-month cost, this 50-KLOC, embedded mode project has an original project cost

estimate of $918,000 and a development time of 15.6 months. The user organization' s

desired requirements changes (a factor increase over the originally-projected system size),

R, is quantified as a triangular distribution with a low value of 1.0, high value of 5.0 , and

most likely value of 4.0. The customer must trade-off meeting all of the user's requests,

while keeping project costs and schedule in control. The range of the customer's decision

variable is 1.0 < x\ < 5.0, where the lower limit indicates no change in requirements (not

allowing any of the change requests) and the upper limit indicates full compliance with the

136

entire possible range of the user's request. Table 7.6 summarizes the values of the three

objective functions for varying levels of allowed requirements changes.

Table 7.6 Customer objective function values, varying x\
Allowed

Requirements
(KLOC multiplier)

Cost overrun
(dollars)

Schedule delay
(months)

Unmet Requirements
Prob. Expect.

*i Eq. (7.2)
ft

Eq. (7.3) Pr[R-i°i>0]
f

E[R-JCIIR-XI>0]

1.00 0.00 0.00 1.000 2.333

1.50 575,583.44 2.63 0.979 1.876

2.00 1,191,560.46 4.76 0.917 1.485

2.50 1,839,430.05 6.58 0.813 1.141

3.00 2,513,903.97 8.19 0.667 0.833

3.50 3,211,337.10 9.64 0.479 0.558

4.00 3,929,047.54 10.97 0.250 0.333

4.50 4,664,970.27 12.20 0.125 0.167

Observe that complying with nearly all of the user's requirements change : requests would

lead to a cost overrun more than five times the project's ori ginal cost and would have a

schedule delay eighty percent again as long as the original project schedule. A plot of the

expected unmet requirements changes versus the other two objective functions allows

graphical consideration of the customer's Pareto optimal alternatives (Figure 7.12). From

this plot one observes the relationship between the unmet requirement changes and the

other two objective functions. Interactive trade-off approaches such as the surrogate worth

trade-off (SWT) [Haimes 1981] can be applied to select the most desirable solution.

Selection of a desired solution then fixes the value of the decision variable x\.

In response to the Customer's determination of x\ (allowed requirement changes), the

contractor must trade-off meeting the cost and schedule requirements while maximizing

profit. The contractor's personnel and technology decision variables have a schedule

compression effect as well as a cost effect ~ more experienced personnel are more

productive and the project can be accomplished in less time. This a schedule savings

comes at a cost, however, as more experienced personnel mean higher personnel costs. A

137

0.00 1000 2000
Cost Overrun ($103)

3000 4000

r r
6

r
9

r
12

fa
'2

Schedule Delay (months)

Figure 7.12 Customer's Pareto optimal solutions

parallel argument can be made for advanced technologies - using better technologies

increases cost, but can reduce development time. On the other hand, less expensive but

less capable personnel (technologies) lead to a longer development time and the anticipated

cost savings may be negated by the longer schedule.

The range of the contractor's decision variables is set at 0.5 < x2, x3 < 1.5, implying the

limitations that personnel and technology can have on affecting project development effort

and schedule. A decision variable value of 1.0 implies the nominal resource level. Higher

decision variable multiplier values indicate degraded technology or less-experienced

personnel that lead to higher effort requirements; lower decision variable multiplier values

indicate a reduction in effort requirement due to better technology or experienced personnel.

Table 7.7 summarizes the values for the contractor's three objective functions for varying

levels of allowed requirements changes and personnel and technology resources. The

resource cost multiplier k2, is associated the personnel and technology decision. The cost

multiplier for less-experienced personnel decreases less rapidly than does the increasing

138

Table 7.7 Contractor objective function values, varying x\, x2, x?
Resource Schedule

Allowed Personnel/ cost Cost overrun delay Profit
Req'mts Technology multiplier (dollars) (months) (dollars)

k2
ft f! f!

*i •*2**3 Eq. (7.5) Eq. (7.6) Eq. (7.7)

1.00
0.50 7,500 80,994.18 -3.65 99,941.83
0.75 4,500 57,032.72 -1.63 97,545.69
0.90 3,500 25,813.03 -0.62 94,423.72
1.00 3,000 0.00 0.00 91,842.41
1.10 2,750 25,475.79 0.58 94,389.99
1.25 2,500 81,930.66 1.40 100,035.48
1.50 2,250 202,081.55 2.63 112,050.57

1.50
0.50 7,500 707,337.29 -1.63 162,576.14
0.75 4,500 668,359.00 0.72 158,678.31
0.90 3,500 617,573.69 1.91 153,599.78
1.00 3,000 575,583.44 2.63 149,400.76
1.10 2,750 617,025.10 3.31 153,544.92
1.25 2,500 708,860.67 4.26 162,728.48
1.50 2,250 904,311.04 5.70 182,273.52

2.00
0.50 7,500 1,377,636.21 0.00 229,606.04
0.75 4,500 1,322,587.23 2.63 224,101.14
0.90 3,500 1,250,863.22 3.95 216,928.74
1.00 3,000 1,191,560.46 4.76 210,998.46
1.10 2,750 1,250,088.45 5.52 216,851.26
1.25 2,500 1,379,787.69 6.58 229,821.18
1.50 2,250 1,655,821.94 8.19 257,424.61

2.50
0.50 7,500 2,082,640.26 1.40 300,106.44
0.75 4,500 2,010,688.52 4.26 292,911.27
0.90 3,500 1,916,941.70 5.70 283,536.58
1.00 3,000 1,839,430.05 6.58 275,785.42
1.10 2,750 1,915,929.02 7.41 283,435.32
1.25 2,500 2,085,452.34 8.57 300,387.65
1.50 2,250 2,446,242.76 10.32 336,466.69

cost of advanced technology and experienced personnel. As anticipated, improved

resources result in schedule compression (hence, less schedule delay) and increased cost.

It can also be noted that an attempt at cost reduction through less expensive personnel and

technology is, instead, offset by the longer development schedule.

139

Selecting the scenario for which the customer's decision variable is set at a particular level,

we can analyze the contractor's associated decision problem. A plot of the negative profit

objective function values (negative, so all objectives are now to be minimized) versus the

cost overrun and schedule delay objective function values for x\ = 1.50 shows the Pareto

optimal alternatives for the contractor (Figure 7.13).

o

o
0.

-170-

-180-

Cost Overrun (S10J)

I I
0 2

Schedule Delay (months)

r
4

/ß r'2
6

Figure 7.13 Contractor's Pareto optimal solutions (x\ = 1.50)
(note: vertical axis indicates the minimization of negative profit)

With the cost-plus contract, the contractor's profit increases as cost increases -- hence the

addition of more costly personnel and technology increases profit; interestingly enough,

the longer development time required by less-experienced personnel has a similar effect on

profit. In light of the other objectives, however, those alternatives that include improved

personnel and technology would be preferred as these also lead to reduced schedule delays.

7.3.8 Negotiation and Convergence for the Hierarchical Decision Problem

Resolution of the two decomposition solutions is possible through negotiated iteration,

with consideration of the (possibly subjective) trade-off information for each decision

maker. After each decision maker optimizes his or her subproblem, the trade-offs between

objective functions for each decision maker can be calculated as in Section 6.3.2 (e.g.,

trade-off between /,° and//*). Then, based on this trade-off information, the decision

makers agree on the direction and amount of change in /," and/f (using his or her own

140

decision rule). Now, after observing the contractor's response, the customer adjusts the

original decision in light of this new information. Then, with the customer's revised

solution, the contractor is also able to adjust the former solution.

The trade-off between first objectives (cost overrun), selected for its consistent formulation

between the subproblems, is a simple measure of the interdependence of the decision

makers. Note that each decision maker's reaction to that trade-off may also depend

naturally on the levels of all objectives. With the other community's trade-off information,

negotiations can lead to a mutually-agreeable solution.

Concerning convergence of the process, "an iterative negotiation scheme converges if the

objective functions converge to some limits when the process is continued by consistent

decision makers, and if the limit values of the objectives are a best compromise among all

feasible objective values for the decision makers" [Haimes et al. 1990]. To fully consider

the convergence of the iterative scheme, one must address several assumptions [Sage

1977]: the existence of a best-compromise solution, the existence of a utility function,

existence of all trade-offs between objectives, etc. Convergence may also be considered in

less-rigid terms, such as the continued reduction in the difference between the subproblem

solutions, percentage improvement in objective function values, etc.

7.4 Chapter Summary

In this Chapter we have made two important contributions to the software estimation

methodologies developed in previous chapters: i) an approach for updating software

estimates throughout the life cycle in light of actual project progress , and ii) formulation

and resolution of a hierarchical decision making problem that manages the competing issues

and objectives within and among participant communities.

The HHM provides an ideal framework for evaluating the cause for deviation between

actual and estimated project development effort and schedule requirements. Accounting for

the cause for the discrepancy permits appropriate adjustments to be made to the estimation

models. The HHM allows for a wide range in the level of detail considered in such on-

going analysis. Systematic updating of the software estimates provides an improved

indication of a software project's progress relative to its estimated completion, along with a

way for analyzing those factors which contribute to deviation from previous estimates.

141

Finally, the bi-element hierarchical decision-making formulation provides increased insight

and understanding, along with improved decision-making correlation among the various

decompositions of the software acquisition HHM framework. While this Chapter applied

the hierarchical decision problem approach to the user/customer and contractor

decompositions, the decision problems associated with other decompositions can be

represented through similar formulation. Each decomposition's multiobjective decision

making problem includes distinct, as well as overlapping objectives and other model

elements. The decisions of each decomposition affect the others, and no decomposition

has control of all decisions and other model elements. The problem formulation provided

in this Chapter permits independent and coordinated solutions, while increasing the

understanding of the interactions between the decompositions. By applying this method,

mutually-agreeable solutions can be obtained.

142

Chapter 8
Summary, Conclusions, and Future Work

8.1 Summary and Conclusions of the Dissertation

This dissertation addresses the assessment and management of risks associated with the

software acquisition processes from a holistic perspective using hierarchical holographic

modeling (HHM). The multiple visions and perspectives within which the life cycle of

software acquisition is stated and modeled, provide a comprehensive framework for risk

assessment and management of software acquisition. In particular, widely used models in

software acquisition such as the COCOMO model, can now be extended to incorporate

probabilistic as well as dynamic dimensions. The ultimate contributions of this dissertation

can be found in at least two major areas: (a) in the theoretical and methodological domain

of systems modeling in the quest of a more quantitative risk assessment and management

framework, and (b) in advancing the state of practice in the assessment and management of

software acquisition by extending highly used models in practice to incorporate more

realistic probabilities and dynamic dimensions.

A holistic framework for risk assessment and management that provides a comprehensive

structure for identifying risk sources, assessing and measuring the risks, explicitly

considering inherent uncertainties, and resolving competing objectives and issues among

participant communities and other decompositions, is important to improving software

acquisition management. The potential exists for a positive improvement in software

acquisition management by maturing the capabilities of the customer community through

the development of theoretical and methodological foundations. New software estimation

and software acquisition decision-making methodologies developed in this research address

the customer's capability to identify and assess the programmatic risks associated with

software acquisition and to make more-informed control policy and resource allocation

decisions.

As the customer community is, in general, in the process of maturing from very low levels

of software acquisition knowledge, analytical methods for software acquisition

management must be appropriate for the customer's capabilities and needs. The

143

contributions of this research are for use at several levels of software acquisition maturity,

and build on one another in terms of complexity and detail.

The general HHM framework for software acquisition was developed in Chapter 3. This

model provides the framework for a comprehensive investigation of risk sources for

software acquisition and leads to the development and interpretation of software acquisition

analytic models, including software cost and schedule estimation models.

In Chapter 4, the theoretical contribution of the triangular distribution for extreme event

analysis was enhanced by the derivation and analysis of closed-form solutions for the

conditional expectation functions of the triangular distribution. These results were then

used in developing a probabilistic software estimation approach in Chapter 5 -- both a direct

probabilistic estimation approach, and an approach that uses Monte Carlo simulation in

producing the estimate. The probabilistic approach advances current practices in software

estimation by explicitly considering the uncertainty associated with estimating a software

project's cost and schedule, and by utilizing the conditional expected value as a

supplementary decision-making metric. Also in Chapter 5, a method for calculating the

conditional and unconditional expected values when using Monte Carlo simulation was

developed as part of the probabilistic software estimation methodology. Deploying the

approach to the COCOMO model demonstrated the benefits of the probabilistic software

estimation approach.

In Chapter 6, dynamic software estimation models were developed that advanced the state-

of-the-art in software estimation to meet the analytic requirements of the most-current spiral

and prototyping software development process paradigms. These models account for the

dynamics of changing requirements, system design, and other policy factors. The dynamic

formulation permits analysis of the effect of current-stage decisions on future decision

opportunities in light of the multiple objectives associated with cost overrun and schedule

delay.

Chapter 7 addressed two issues associated with the dynamic models: updating software

estimates in light of actual project progress and resource expenditures; and coordinating and

resolving competing issues, objectives, and decision opportunities among the participant

communities. Development of a software estimation updating scheme provided the

framework for on-going improvement in estimating a project's cost and schedule

requirements. Then, a hierarchical decision problem formulation was devised that allowed

144

for equal-level interaction among hierarchical sub-problems to resolve the overlapping and

unique issues of the sub-problems. Deployment to the software acquisition user,

customer, and contractor decision problems demonstrated the approach for resolving the

individual multiobjective sub-problems and for coordination among the sub-problems that

leads to a mutually-agreeable solution.

The multiobjective problems of the user/customer and contractor decompositions provide

greater insight concerning the interactions and effects of each community's decisions,

particularly concerning the effect of requirements changes and resource allocation policies

on project cost overrun and schedule delay.

8.2 Recommendation for Future Work

This section outlines four areas for future work that would extend the theoretical and

methodological contributions of this research.

8.2.1 Determine the Functional Form of the Time-Variant Coefficients in

the Dynamical Software Estimation Model.

The deployment of the dynamic model in Chapter 6 assumed constant values over time for

several of the model parameters. In practice, this assumption may be unrealistic. For

example, programmer capabilities improve over the development period as the

programmers become more familiar with the project, the language used, etc. Accounting

for such 'learning curves' and other dynamic tendencies would improve the software

estimate. The functional forms of some model elements could be derived through

examining existing datasets of completed software projects.

8.2.2 Evaluate the Effect of Up-Front Expenditures on Overall Project

Costs Using the Dynamic Model

Krishnan and Kellner [1995] [1993] have explored the empirical relationship between

software cost and product quality, and between software life-cycle costs and front-end

expenditures. Further exploration of the impact of early-life cycle requirements, design,

and expenditure policies on life-cycle costs is possible by using the dynamic software

estimation model. Additionally, the dynamic software estimation model could be used to

145

explore the effects of personnel characteristics, tool deployment, and other factors on life-

cycle costs.

8.2.3 Include Bayesian Revision in the Dynamical Software Cost

Estimation Model

The dynamical software estimation model might possibly be reformulated as a sequential

forecast process ([Katz et al. 1992], [Krzysztofowicz and Davis 1983]), not unlike the

flood forecasting problem [Li et al. 1992]. In a pure sequential forecast process, forecasts

of a fixed but uncertain state are prepared with decreasing lead times, with each subsequent

forecast incorporating additional information and, therefore, updating the previous forecast.

The real thousands of lines of code (KLOC) in the software estimation problem acts as the

real flood peak in the flood forecasting problem, whose true value is hidden and can only

be known with certainty after the whole process is realized. However, at every time period

before the final stage, there is an attainable estimation of the hidden variable. Each stage's

estimate of KLOC could be used to update the probabilistic description of the true KLOC

through Bayesian revision. It may then be possible to derive a probabilistic description of

project development effort from the posterior density function and use the conditional

expected value of project cost as a supplement to the traditional expected value for decision

making.

8.2.4 Analyze Contract Vehicle Options and Requirements Change Policies

Using the Hierarchical Decision Problem Formulation

The hierarchical decision problem formulated in Chapter 7 assumed a cost-plus contract

arrangement for the contractor, where profit is a percentage of development costs. The

hierarchical decision-making approach can be used to analyze other contracting options

(e.g., incentive contracting, fixed-price contracting) as they impact project cost overrun and

schedule delay.

The user/customer - contractor hierarchical decision problem formulated in Chapter 7

identified the significance of requirements changes as a principal factor contributing to

project cost overrun and schedule delay. The decision problem can be used to provide

additional investigation regarding requirement change policies, their impact at different

points in the life cycle, etc. on cost overrun and schedule delay.

146

References

Abbott, R.J. An Integrated Approach to Software Development, Wiley, New York, 1986.

Abdel-Hamid T K. Vie Dynamics of Software Development Project Management: An
MegZive Systems Perspective, Ph.D. thesis, Sloan School of Management, MIT,
Cambridge, MA, 1984.

Agresti, W.W., and W.M. Evanco. "Projecting Software DefectJ to^Anatyring Ada
Designs," IEEE Transactions on Software Engineering, 18, 988-W/, l^z.

Aiyoshi, E., and K. Shimizu. "A solution method for the static constrained problem via
penalty methods," IEEE Transactions on Automatic Control, 29, 1111-1114, 1*84.

Alhrprht AJ and J E Gaffney. "Software Function, Source Lines Of Code, and
Ä^OäffaS Prediction: A Software Science Validation," IEEE Transactions on

Software Engineering SE-9, 639-648, 1983.

Applegate, L.M., B.R. Konsynski, and J.F. Nunamaker. "ModelManagement Systems
Design for Decision Support," Decision Support Systems, 2(1), 81-91, 198b.

Asbeck, E., and Y. Y. Haimes. "The partitioned multiobjective risk method," Large Scale
Systems 6(1), 13-38, 1984.

Augustine, Norman R. Augustine's Laws, American Institute of Aeronautics and
Astronomies, New York, 1993.

Austin R D., and D.J. Paulish. A Survey of Commonly Applied Methods for Software
Process Improvement, Technical Report CMU/SEI-93-TR-27, Software Engineering
Institute, Carnegie Mellon University, Pitsburgh, PA, 1993.

Avizienis A "The N-Version Approach to Fault-Tolerant Software," IEEE Transactions
on Software Engineering, SE-11(12), 1491-1501, Dec. 1985.

Bailey, E.K. A Descriptive Evaluation of Automated Software Cost Estimation Models,
Institute for Defense Analysis, Alexandria Va, Oct. 1986.

Baker E R L Cooper, B.A. Corson, A.E. Stevens. "Software Acquisition Management
Maturity' Model (SAM3)," Program Manager, 43-49, July-August 1994.

Banker, R., and K. Kemerer. "Scale Economics in New Software Development," IEEE
Transactions on Software Engineering, 15(10, 1199-1205, 1989.

Bard J F. "An efficient point algorithm for a linear two-stage optimization problem,"
Operations Research, 31, 670-684, 1983.

Bard JF and J T.Moore. "A branch and bound algorithm for the bilevel programming
problem," S.I.A.M. Journal of Scientific and Statistical Computing, 11, 281-292,
1990.

147

Barros, O. "A Pragmatic Approach to Computer-Assisted Systems Building," Journal of
Systems and Software 18, 1992.

Barrow D S Nilson, and D. Timberlake. Software Estimation Technology Report,
Software Technology Support Center (STSC), Hill AFB, UT, 1993.

Basu A and R.W. Blanning. "Model Integration Using Metagraphs," Information
Systems Research, 5(3), 195-218, Sept. 1994.

Bell G A "Applying the System Design Dynamics Technique to the Software Cost
Problem- A Rationale," Proceedings of the Tenth Annual COCOMO User's Group
Meeting, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Oct. 1995.

Benbasat I., and I. Vessey. "Programmer and Analyst Time/Cost Estimation," MIS
Quarterly, 4(2), 30-43, 1980.

Bertsekas, D.P. Dynamic Programming and Stochastic Control, Academic Press, New
York, 1976.

Bialas, W.F., and M.H. Karwan. "On two-level optimization," IEEE Transactions on
Automatic Control, 27, 211-214, 1982.

Bialas, W.F., and M.H. Karwan. "Two-level linear programming," Management Science,
30', 1004-1020, 1984.

Bittanti, S., P. Bolzern, and R. Scattolini. "An Introduction to Software Reliability
Modeling," in Software Reliability Modeling and Identification, G. Goos and J.
Hartmanis (eds.), Springer-Verlag, New York, 1988.

Blackwell, D., and M.A. Girshick. Theory of Games and Statistical Decisions, Wiley,
New York, 1954.

Blanning, R.W. "A Relational Framework for Joint Implementation in Model Management
Systems," Decision Support Systems, 1(1), 69-81, Jan. 1985.

Blum, B. I. Software Engineering, A Holistic View, Oxford University Press, New
York, 1992.

Boehm, B.W. Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ,
1981.

Boehm, B.W. "Verifying and Validating Software Requirements and Design
Specification," Software, 75-88, Jan. 1984.

Boehm, B.W. "A Spiral Model of Software Development and Enhancement," Computer
21(5), 61-72, 1988.

Boehm, B.W. Software Risk Management, IEEE Computer Society Press, Washington
D.C., 1989.

148

Boehm, B.W., B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Shelby. "Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0," to appear in Annals
of Software Engineering Special Volume on Software Process and Product
Measurement, J.D. Arthur and S.M. Henry (eds.), J.C. Baltzer AG Science
Publishers, Amsterdam, 1995.

Boehm, B.W., and P.N. Papaccio. "Understanding and Controlling Software Costs,"
IEEE Transactions on Software Engineering, 14(10), 1462-1477, 1988.

Boehm, B.W., and W. Royce. "Ada COCOMO: TRW IOC Version," Proceedings of the
Third COCOMO User's Group Meeting, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, Nov. 1987.

Bonczek, R.H., C.W. Holsapple, and A.B. Whinston. "The Evolving Roles of Models in
Decision Support Systems," Decision Sciences, 11, 337-356, Apr. 1981.

Brown, A.W., D.J. Carney, E.J. Morris, D.B. Smith, and P.F. Zarrella. Principles of
CASE Tool Integration, Oxford University Press, New York, 1994.

Candler, W., and R. Townsley. "A linear two-level programming problem," Computer
and Operations Research, 9, 59-76, 1982.

Carr, M.J. "A Circular Model for the Complete Software Life-Cycle," AIAA Computers in
Aerospace VII Conference, Monterey, CA, Oct. 1989.

Carr, M.J., S.L. Konda, I. Monarch, F.C. Ulrich, and C.F. Walker. Taxonomy-Based
Risk Identification, Technical Report CMU/SEI-93-TR-06, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, June 1993.

Chankong, V., and Y.Y. Haimes. Multiobjective Decision Making, North-Holland, New
York, 1983.

Chen, C.I., and J.B. Cruz. "Stackelberg solution for two person games with biases
information," IEEE Transactions on Automatic Control, 17,791-798, 1972.

Chittister, C, and Y.Y. Haimes. "Risk Associated with Software Development: A Holistic
Framework for Assessment and Management," IEEE Transactions on Systems, Man,
and Cybernetics, SMC-23(3), May/June 1993.

Chittister, C, and Y.Y. Haimes. "Assessment and Management of Software Technical
Risk," IEEE Transactions on Systems, Man, and Cybernetics, SMC-24(2), Feb. 1994.

Chittister, C, and Y.Y. Haimes. "Systems Integration via Software Risk Management,"
to appear in IEEE Transactions on Systems, Man, and Cybernetics, 1995/1996.

Conte, S.D., H.E. Dunsmore, and V.Y. Shen. Software Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park, CA, 1986.

Davis, A.M., E.H. Bergoff, and E.R. Comer. "A Strategy for Comparing Alternative
Software Development Life Cycle Models," IEEE Transactions on Software
Engineering, 14,, 1453-1461, Oct. 1988.

149

Defense Science Board (DSB). Report of the Defense Science Board Task Force on
Military Software, Office of the Under Secretary of Defense for Acquisition,
Department of Defense, Washington D.C., 6-7, Sept. 1987.

Defense Science Board (DSB). Report of the Defense Science Board Task Force on
Acquiring Defense Software Commercially, Office of the Under Secretary of Defense
for Acquisition and Technology, Washington D.C., June 1994.

Department of Defense (DoD). Defense System Software Development, MJL-STD-2167,
Office of the Under Secretary of Defense for Acquisition, Department of Defense,
Washington D.C., 1988.

Department of Defense (DoD). Defense Acquisition Management Policies and Procedures,
DODI-5000.2, Office of the Under Secretary of Defense for Acquisition, Department of
Defense, Washington D.C., Feb. 1991.

Department of Defense (DoD). Directive 5000.1, Defense Acquisition, Office of the
Undersecretary of Defense (Acquisition), U.S. Department of Defense, Washington
D.C., 1991.

Department of Defense (DoD). Software Development and Documentation, MTL-STD-
498, Department of Defense, Washington D.C., 1994.

Doerflinger, C.W., and V.R. Basili. "Monitoring software development through dynamic
variables," IEEE Transactions on Software Engineering, SE-11(9), 978-985, Sept.
1985.

Durso, A. "An interactive combined branch-and-bound/Tchebycheff algorithm for multiple
criteria optimization," Multiple Criteria Decision Making: Theory and applications in
Business, Industry, and Government, Proceedings of the Ninth International
Conference, (A. Goicoechea, L. Duckestein, and S. Zionts, eds.), Springer-Verlag,
New York, 107-122, 1992.

Dutta, A., and A. Basu. "An Artificial Intelligence Approach to Model Management in
Decision Support Systems," IEEE Computer, 17(9), 89-97, Sept, 1984.

Dutta, A., and S. Mitra. "Integrating Heuristic Knowledge and Optimization Models for
Communication-Network Design," IEEE Transactions on Knowledge and Data
Engineering, 5(6), 999-1017, Dec. 1993.

Edmunds, T.A., and J.F. Bard. "Algorithms for non-linear bilevel mathematical
programs," IEEE Transactions on Systems, Man, and Cybernetics, 21, 83-89, 1991.

Elam, J.J., J.C. Henderson, and L.W. White. "Model Management Systems: An
Approach to Decision Support in Complex Organizations," Proceedings of the First
International Conference on Information Systems, 98-110, Dec. 1980.

Emrick, R.D. "In search of a better metric for measuring productivity of application
development," International Function Point Users Group Conference Proceedings,
1987.

Evanco, W.M., and R. Lacovara. "A Model-Based Framework for the Integration of
Software Metrics," Journal of Systems Software, 26, 77-86, 1994.

150

Fairley, R. "Risk Management for Software Projects," IEEE Software, 57-67, May 1994.

Fedorowicz, J., and G.B. Williams. "Representing Modeling Knowledge in an Intelligent
Decision Support System," Decision Support Systems, 2(1), 3-14, Jan. 1986.

Feiler PH and W. Humphrey. Software Process Development and Enactment:
Concepts and Definitions, Technical Report CMU/SEI-92-TR-4, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 1992.

Ferens, D.V. "Software Support Cost Models: Quo Vadis?", Journal of Parametrics, 4(4),
64-99, Dec. 1984,.

Ferguson, J., J. Cooper, M. Falat, M. Fisher, A. Guido, J. Marciniak, J. Matejceck, and
R. Webster. Software Acquisition Maturity Model (SAMM) Version 00.01, Draft
Report SAMM-94-02, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, June 1995.

Fisher, R. Getting to Yes: Negotiating Agreement Without Giving In, Houghton Mifflin,
Boston, 1981.

Florae, W. A. Software Quality Measurement: A Framework for Counting Problems and
Defects, Technical Report CMU/SEI-92-TR-22, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 1992.

Freiman, F.R., and R.E. Park. "Price Software Model - Version 3: An Overview,"
Proceedings, IEEE - Workshop on Quantitative Software Models, 32-41, Oct. 1979.

Galorath Associates. SEER User's Manual, Galorath Associates, Los Angeles, CA, 1989.

Gehani, N. and A. McGettrick. Software Specification Techniques, Addison-Wesley,
1986.

General Accounting Office (GAO). DoD Embedded Computers, GAO/TMTEC-90,
Washington D.C., April 1990.

General Accounting Office (GAO). Embedded Computer Systems: Significant Software
Problems on C-17 Must Be Addressed, GAO/IMTEC-92-48, Washington, D.C., May
1992a.

General Accounting Office (GAO). Weapons Acquisition, A Rare Opportunity for Lasting
Change, GAO/NSIAD-93-15, Government Printing Office, Washington D.C.,
December 1992b.

Ghezzi, C, A. Morzenti, and M. Pezze. "On the Role of Software Reliability in Software
Engineering," in Software Reliability Modeling and Identification, G. Goos and J.
Hartmanis (eds.), Springer-Verlag, New York, 1988.

Glass, R.L. Software Reliability Guidebook, Prentice-Hall, Englewood Cliffs, New
Jersey, 1979.

Goicoechea, A., L. Duckstein, and M.M. Fagel. "Multiple objectives under uncertainty:
An illustrative application of PROTRADE," Water Resources Research, 15, 203-210,
1979.

151

Gomide, F., and Y.Y. Haimes. "The multiobjective multistage impact analysis method:
theoretical basis," IEEE Transactions on Systems, Man, and Cybernetics SMC-14(1),
88-98, 1984.

Haimes, Y.Y. "The surrogate worth trade-off method and its extensions," in Multiple
Criteria Decision Making Theory and Applications - Hagen/Konigswinter, West
Germany 1979 (G. Fandel and T. Gal, eds.), Springer, Berlin, 85-108, 1980.

Haimes Y Y "Hierarchical Holographic Modeling," IEEE Transactions on Systems,
Man, and Cybernetics, SMC-11(9), 606-617, 1981.

Haimes, Y.Y. Application of the Partitioned Multiobjective Risk Method to Dam Risk
Analysis, Report submitted to Oak Ridge National Laboratory, Oak Ridge, TN, 1986.

Haimes, Y.Y. "Total Risk Management," Risk Analysis, 11(2), 169-171, 1991.

Haimes, Y.Y., and V. Chankong. "Kuhn-Tucker Multipliers as Trade-offs in
Multiobjective Decision-Making Analysis," Automatica, 15(1), 59-72, 1979.

Haimes, Y.Y., and C. Chittister. An Acquisition Process for the Management of Risks of
Cost Overrun and Time Delay Associated with Software Development, Technical
Report CMU/SEI-93-TR-28, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 1993.

Haimes, Y.Y., and C. Chittister. "An Acquisition Process for the Management of
Nontechnical Risks Associated with Software Development," Acquisition Review
Quarterly, 11(2), Defense Acquisition University, 121-154, Spring 1995.

Haimes, Y.Y. and W. Hall. Multiobjective Optimization in Water Resources Systems: The
Surrogate Worth Trade-off Method, Elsevier, New York, 1975.

Haimes, Y.Y., and P.O. Karlsson. "Risk assessment of extreme events: application,"
ASCE Journal of Water Resources Planning and Management 115(3), 299-320, May
1989.

Haimes, Y.Y. and D. Li. "Multiobjective risk impact analysis method (MRIAM)," a
chapter to appear in Risk Management in a Multiobjective Decision Making Framework:
Methodology and Applications, in development, 1995.

Haimes, Y.Y., J.H. Lambert, and D. Li. "Risk of extreme events in a multiobjective
framework," Water Resources Bulletin 28(1), Feb. 1992.

Haimes, Y.Y., R. Petrakian, P.O. Karlsson, and J. Mitsiopoulos. Risk Analysis of Dam
Failure and Extreme Floods: Application of the Partitioned Multiobjective Risk Method,
Final Report submitted to U.S. Army Corps of Engineers, Institute for Water
Resources, Jan. 1988.

Haimes, Y.Y., K. Tarvainen, T. Shima, and J. Thadathil. Hierarchical Multiobjective
Analysis of Large-Scale Systems, Hemisphere Publishing, New York, 1990.

Haimes, Y.Y., T. Barry, and J.H. Lambert (eds.) "When and how can you specify a
probability distribution when you don't know much?," Risk Analysis 14(5), 661-701,
1994a.

152

Haimes, Y.Y., D. Li, J.H. Lambert, R.M. Schooff, S. Eisle, and C. Schneider
Improving Risk Management for the Criminal Justice Information Services (FBI),
Technical Report, Center for Risk Management of Engineering Systems, University of
Virginia, Charlottesville, 1994b.

Hall, Arthur D., III. Metasystems Methodology; A New Synthesis and Unification,
Pergamon Press, New York, 1989.

Heineman, G.T., J.E. Botsford, G. Caldiera, G.E. Kaiser, M.I. Kellner, N.H. Madhavji.
"Emerging Technologies that Support a Software Process Life Cycle," IBM Systems
Journal, 33(3), 501-529, 1994.

Herd, J.R. Software Cost Estimation Study - Study Results, Technical Report, RADC-
TR-77-220, Doty Associates, Rockville, MD, 1977.

Hudak J B.H. Suh, D. Siewiorek, and Z. Segall. "Evaluation & Comparison of Fault-
Tolerant Software Techniques," IEEE Transactions on Reliability 42(2), 190-204,
June 1993.

Humphrey, W.S. Managing the Software Process, Addison-Wesley, Reading, Ma.,
1989.

Humphrey, W.S., and M.I. Kellner. "Software Process Modeling: Principles of Entity
Process Models," Proceedings of the 11th International Conference on Software
Engineering, IEEE Computer Society Press, 175-188, May 1989.

Installe, M. Decision Support Tools for Incentives Strategies Using Hierarchical
Multicriteria Optimization, Universite Catholique De Louvain, 1994.

Institute of Electrical and Electronic Engineers (IEEE). IEEE Standard for Software
Quality Metrics Methodology (IEEE Std. 610.12-1990), IEEE, Inc., New York, 1990.

Jensen, R.W. "An Improved Macrolevel Software Development Resource Estimation
Model," in Proceedings of the 5th ISPA Conference, 384-389, April 1983.

Johnson, B.W. Design and Analysis of Fault Tolerant Digital Ssytems, Addison-Wesley,
Reading, MA, 1989.

Jones, C. Programming Productivity, McGraw-Hill, New York, 1986.

Jongen, H.T, and G.W. Weber. "On parametric nonlinear programming," Annals of
Operations Research, 27, 253-284, 1990.

Kanoun K., M. Kaaniche, C. Beounes, J.C. Laprie, and J. Ariat. "Reliability Growth of
Fault-Tolerant Software", IEEE Trans, on Reliability 42(2), 205-219, June 1993.

Kaplan, S., and B.J. Garrick. "On the Quantitative Definition of Risk," Risk Analysis,
1(1), 11-27, 1981.

Karlsson, P.O., and Y.Y. Haimes. "Risk-based analysis of extreme events," Water
Resources Research 22(1), pp. 9-20, 1988.

153

Katz, R.W., A.H. Murphy, and R.L. Winkler. "Assessing the value of frost forecasts to
orchardists: A dynamical decision-making approach," Journal of Applied Meterology
21(4), 518-531, 1982.

Kellner, M. I. "Software Process Modeling Support for Management Planning and
Control" Proceedings of the 1st International Conference on the Software Process:
Manufacturing Complex Systems, M. Dowson (ed.), IEEE Computer Society Press, 8-
28, 1991.

Kellner, M.I., and G. Hansen. Software Process Modeling, Technical Report CMU/SEI-
88-TR-9, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
1988.

Kemerer C F. "An Empirical Validation of Software Cost Estimation Models,"
Communications of the ACM, 30(5), 416-429, Sept. 1987.

Kile, R.L. "A Method for Dynamic Cost Projection," Proceedings of the Tenth Annual
COCOMO User's Group Meeting, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Oct. 1995.

Kitchenham, B.A., and N.R. Taylor. "Software Project Development Cost Estimation,"
Journal of Systems and Software, 5(4), 267-278, 1985.

Kitchenham, B.A., and J. G. Walker. "A quantitative approach to monitoring software
develpment," Software Engineering Journal, 4(1), 2-13, Jan. 1989.

Knight J.C., Ammann, P.E. "Design Fault Tolerance", Reliability Engineering and
System Safety 32, 25-49, 1991.

Krishnan, M.S. "Cost, Quality and User Satisfaction of Software Products: An Empirical
Analysis," Proceedings CASCON '93, Vol. I, Software Engineering, National
Research Council Canada, (A. Gawman, W.M. Gentleman, E. Kidd, P. Larson, J.
Slonim, eds.), Toronto, Ontario, Canada, 400-411, Oct. 1993.

Krishnan, M.S., and M.I. Kellner. "An Empirical Relationship Between Software Cost
and Product Quality," Proceedings of the Tenth Annual COCOMO User's Group
Meeting, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Oct. 1995.

Krzysztofowicz, R. and D.R. Davis. "A methodology for evaluation of flood forecast-
response systems, 1. Analyses and concepts, 2. Theory, 3. Case-studies," Water
Resources Research 19(6), 1423-1454, 1983.

Kyle, R.A. REVIC Software Cost Estimating Model User's Manual, Version 9.0, Air
Force Contract Management Division, Alberquerque, NM, Feb. 1991.

Lambert, J.H., D. Li, and Y.Y. Haimes. "Extreme values of monotonic functions and
evaluation of catastrpohic flood loss," in Extreme Value Theory and Applications, J.
Galambos, J. Lechner, and E. Simiu (eds.), U.S. Department of Commerce, National
Institute of Standards and Technology, 1994.

Law, A.M., and W.D. Kelton. Simulation Modeling and Analysis, McGraw-Hill, New
York, 1982.

154

Leach, M. and Y.Y. Haimes. "Multiobjective risk-impact analysis method," Risk Analysis
7(2), 225-241, 1987.

Lederer, A.L., and J. Prasad. "Information Systems Software Cost Estimating: A Current
Assessment," Journal of Information Technology, 8, 22-33, 1993.

Lenard, M.L. "Representing Models as Data," Journal of Management Information
Systems, 2(4), 36-48, 1986.

Li, D., and Y.Y. Haimes. "The envelope approach for multiobjective optimization
problems," IEEE Transactions on Systems, Man, and Cybernetics, SMC-17, 1026-
1038, 1987.

Li, D., and Y.Y. Haimes. "Decomposition techniques in multiobjective discrete-time
' dynamic problems," in Advances in Control and Dynamic Systems, (C.T. Leondes,

ed.), Academic Press, New York, Vol. 28, 1988.

Li, D., Y.Y. Haimes, E. Stakhiv, and D. Moser. "Optimal flood warning threshold and a
' case study in Milton, Pennsylvania," in Risk-Based Decision Making in Water

Resources V, Y.Y. Haimes, D. Moser, and E. Staihive (eds.), American Society of
Civil Engineering, New York, 260-283, 1992.

Liang, T.-P. "Integrating Model Management with Data Management in Decision Support
Systems," Decision Support Systems, 1(3), 221-232, 1985.

Londeix, B. Cost Estimation for Software Development, Addison-Wesley, Reading, MA,
1987.

Lowrance, W.W. Of Acceptable Risk: Science and Determination of Safety, William
Kaufmann, Inc., Los Altos, California, 1976.

Luce, R.D., and H. Raiffa. Games and Decision, Wiley, New York, 1957.

Lyu, M.R., and Y.T. He. "Improving the N-version Programming Process Through the
Evolution of a Design Paradigm," IEEE Transactions on Reliability, 42(2), 179-189,
June 1993.

Macko, D., and Y.Y. Haimes. "Overlapping Coordination of Hierarchical Structures,"
IEEE Transactions on Systems, Man, and Cybernetics, SMC-8(10), 1978.

Masters, T.F., II. "An Overview of Software Cost Estimating at the NSA," Journal of
Parametrics, 5(1), 72-84, Mar. 1987.

Matson, J.E., B.E. Barrett, and J.M. Mellichamp. "Software development cost estimation
using function points," IEEE Transactions on Software Engineering 20(4), 275-287,
Apr. 1994.

McFarlan, F.W. "Portfolio Approach to Information Systems," Harvard Business
Review, 142-150, Sept.-Oct. 1981.

155

McRitchie, K. Using SEER-SEM to Estimate Commercial Off the Shelf Integration, paper
presented to the Southern California chapter of ISPA, Feb. 1995, quoted in "Cost
Factors for COTS Integration," R.D. Stutzke, Proceedings of the Tenth Annual
COCOMO User's Group Meeting, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Oct. 1995.

Miller, L.W., and N. Katz. "Model Management Systems to Support Policy Analysis,"
Decision Support Systems, 2(1), 55-63, Jan. 1986.

Mills, E. Software Metrics, Technical Report SEI-CM-12-1.1, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, 1988.

Mitra, S., and A. Dutta. "Integrating Optimization Models and Human Expertise in
Decision-Support Tools," Expert Systems with Applications, 7(1), 93-107, Jan. 1994.

Mohanty, S.N. "Software Cost Estimation: Present and Future," Software - Practice and
Experience, 11, 103-121, 1981.

Muhanna, W.A. "SYMMS - A Model Management System that Supports Model Reuse,
Sharing, and Integration," European Journal of Operational Research, 72(2), 214-242,
Jan. 1994.

Muhanna, W.A., and R.A. Pick. "Metamodeling Concepts and Tools for Model
Management," Management Science, 40(9), 1093-1123, Sept. 1994.

Musa, J.D., A. Iannino, and K. Okumoto. Software Reliability: Measurement,
Prediction, Application, McGraw-Hill, New York, 1990.

Navlakha, J.K. "Choosing a Software Cost Estimation Model for Your Organization: A
Case Study," Information and Management, 18, 255-261, May 1990.

Neirenberg, G. The Art of Negotiating, Negotiation Institute, New York, 1978.

Nejmeh, B.A. "Designs on CASE," Unix Review 6(11), 1990.

Nelson, E.A. Management Handbook for the Estimation of Computer Programming
Costs, AD-A648750, Systems Development Corp, Oct. 1966.

Neufelder, A.M. Ensuring Software Reliability, Dekker, New York, 1993.

Neumann, P.G. "Risks to the Public in Computers and Related Systems," ACM Software
Engineering Notes, 5-18, April 1988.

Nijkamp, P., and N. Rietveld. "Multi-objective multi-level policy model: an application to
regional and environmental planning," European Economic Review, 15, 63-89, 1981.

Nijkamp, P., and J. Spronk. "Interactive multiple goal programming: an evaluation and
some results," in Multiple Criteria Decision Making Theory and Applications -
Hagen/Sonigswinter, West Germany 1979 (G. Fandel and T. Gal, eds.), Springer-
Verlag, Berlin, 278-293, 1980.

Norden, P.V. "Useful Tools for Project Management," from Operations Research in
Research and Development, B.V. Dean (ed.), Wiley, New York, 1963.

156

Pages, E.R. Testimony before a Joint Hearing of the Senate Committee on Armed
Services and Senate Committee on Governmental Affairs, Washington D.C., March
10, 1994.

Palisade Corporation. @RISK: Risk Analysis and Simulation Add-in for Microsoft Excel
or Lotus 1-2-3, Palisade Corporation, Newfield. NY, 1995.

Paulk M.C., B. Curtis, M.B. Chrissis, E. Averill, J.Bamberger, T. Kasse, M. Konrad,
J. Perdue, C. Weber, J. Withey. The Capability Maturity Model for Software, 1992
SEI Technical Review, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, 1992.

Paulk, M.C., C.V. Weber, S.M. Garcia, M.B. Chrissis, M. Bush. Key Practices of the
Capability Maturity Model, Version 1.1, Technical Report CMU/SEI-93-TR-25,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1993.

Perus, A.J., F. Say ward, and M. Shaw. Software Metrics : An Analysis and Evaluation,
MIT Press, Cambridge, Mass, 1981.

Prentice, R.L., B.J. Williams, and A.V. Peterson. "On the Regression Analysis of
Multivariate Failure Time Data," Biometrika, 68. 373-379, 1981.

Pressman, R.S. Software Engineering: A Practitioner's Approach, 2nd ed., McGraw-Hill,
New York, 1987.

Price Systems. "The Central Equations of the Price-S Software Cost Model," Proceedings
of the Fourth Annual COCOMO User's Group Meeting, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Nov. 1988.

Przeminiecki, J. Acquisition of Defense Systems, American Institute of Aeronautics and
Astronautics, Washington D.C., 1993.

Putnam, L.H. "A General Empirical Solution to the Macro Software Sizing and Estimating
Problem," IEEE Transactions on Software Engineering, 345-361, July 1978.

Putnam, L.H., and A. Fitzsimmons. "Estimating Software Costs," Datamation, Sept. -
Nov. 1979.

Putnam, L.H., and W. Myers. Measures for Excellence: Reliable Software On Time
Within Budget, Yourdon Press, Prentice Hall, Englewood Cliffs, NJ, 1992.

Quantitative Software Management (QSM) Inc. Slim User's Manual, QSM, McLean, VA,
1987.

Raiffa, H. The Art and Science of Negotiation, Belknap Press of Harvard University
Press, Cambridge, MA, 1982.

Reid, J.G. Linear System Fundamentals: Continuous and Discrete, Classic and Modern,
McGraw-Hill, New York, 1983.

Rifkin, S. Level 5 CMM Companies, electronic mail communication, Master Systems
Inc., George Washington University, Washington D.C., Jan.1995.

157

Romei, S., Y.Y. Haimes, and D. Li. "Exact determination and sensitivity analysis of a
risk measure of extreme events," Information and Decision Technologies 18, 265-282,
1992.

Ross, S. Introduction to Probability Models, Academic Press, Boston, 1989.

Rothfeder, J. "It's late, costly, incompetent-But try firing a Computer System," Business
Week, 164-165, November 7, 1988.

Rowe, W.D. An Anatomy of Risk, John Wiley & Sons, New York, 1977.

Royce, W.W. "Managing the Development of Large Software Systems: Concepts and
Techniques," Proceedings WESCON, Aug. 1970.

Rozum, J.A. Software Measurement Concepts for Acquisition Program Managers,
Technical Report CMU/SEI-92-TR-11, Software Engineering Institute, Carnegie
Mellon University, Pitsburgh, PA, 1992.

Sage, A.P. Methodology for Large-Scale Systems, McGraw-Hill, New York, 1977.

Sage, A. Software Systems Engineering, Wiley, New York, 1995.

Schneidewind, N.F. "Software Reliability Model with Optimal Selection of Failure," IEEE
Transactions on Software Engineering, 19(11), Nov. 1993.

Schulmeyer, G.G., and J.I. McManus. Total Quality Management for Software, Van
Nostrand Reinhold, New York, 1992.

Science, Space, and Technology Committee (SST). Bugs in the Program: Problems in
Federal Government Computer Software Development and Regulation, Subcommittee
on Investigations and Oversight, Committee on Science, Space, and Technology, U.S.
House of Representatives, Washington D.C., Sept. 1989.

Scientific Advisory Board (SAB). Information Architectires that Enhance Operational
Capability in Peacetime and Wartime, HQ AF/SB, Department of the Air Force,
Washington D.C., Feb. 1994.

Shaw, M.J., P.L. Tu, and P. De. "Applying Machine Learning to Model Management in
Decision Support Systems," Decision Support Systems, 4, 285-305, 1988.

Shepperd, M. Foundations of Software Measurement, Prentice Hall, Englewood Cliffs,
NJ, 1995.

Sherer, S.W., and J. Cooper. Software Acquisition Maturity Model (SAMM) Draft
Version 4.0, Special Report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Sept. 1994.

Shima, T., and Y.Y. Haimes. "The Convergence Properties of Hierarchical Overlapping
Coordination," IEEE Transactions on Systems, Man, and Cybernetics, 14(1), 1984.

Sobol, I.M. "A global search for multicriteria problems," Multiple Criteria Decision
Making: Theory and applications in Business, Industry, and Government, Proceedings
of the Ninth International Conference, (A. Goicoechea, L. Duckestein, and S. Zionts,
eds.), Springer-Verlag, New York, 401-412, 1992.

158

Software Technology Support Center (STSC). Project Management Technology Report,
technical report, STSC, Hill AFB, UT, Dec. 1993.

Sprague, R.H., and E.D. Carlson. Building Effective Decision Support Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

Stackelberg, H. von, The Theory of the Market Economy, Oxford University Press,
London, 1952.

Stohr, E., and M. Tanniru. "A Database for Operations Research Models," International
Journal of Policy Analysis and Information Systems, 4(1), 105-121, Jan. 1980.

Stutzke, R.D. "Cost Factors for COTS Integration," Proceedings of the Tenth Annual
COCOMO User's Group Meeting, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Oct. 1995.

Tai, A.T., J.F. Meyer, and A. Algirdas. "Performability Enhancement of Fault Tolerant
Software", IEEE Transactions on Reliability 42(2), June 1993.

Tarvainen, K. and Y.Y. Haimes. "Coordination of Hierarchical Multiobjective Systems:
Theory and Methodology," IEEE Transactions on Systems, Man, and Cybernetics,
SMC-12(6), 1982.

Vaidya, N.H. and D.K. Pradhan.^ Fault-Tolerant Design Strategies for High-Reliability
and Safety," IEEE Transactions On Computers 42(10), 1195-1206, Oct. 1993.

Vicinanza, S.S., T. Mukhopadhyay, and M.J. Prietula. "Software Effort Estimation: An
Exploratory Study of Expert Performance," Information Systems Research, 2(4), 243-
262, 1991.

Von Neumann, J., and O. Morgenstern. Theory of Games and Economic Behavior,
Princeton University Press, Princeton, 1944.

Wallenius, J. "Comparative evaluation of some interactive approaches to multicriterion
optimization," Management Science, 21,1387-1396, 1975.

Waltson, C.E., and C.P. Felix. "A Method of Programming Measurement and
Estimation," IBM Systems Journal, 16(1), 54-73, 1977.

White, D.J. Optimality and Efficiency, Wiley, New York, 1982.

Wolverton, W.R. "Airborne Systems Software Acquisition Engineering Guidebook:
Software Cost Analysis and Estimating," U.S. Air Force ASD/EN, Wright Patterson
AFB, OH, Feb. 1980.

Zhu, W., and B. Lowther. "COCOMO Estimation templates for Excel," IEEE Software,
pp. 115-119, Oct. 1993.

A-1

Appendix A
A COCOMO Tutorial

The Constructive COst MOdel (COCOMO) is widely recognized within the software

community as the predominant software estimation methodology. In light of COCOMO's

preeminence, the approaches developed through this research are deployed to this model.

This Appendix presents an overview of the parameters and methodology of the model - the

three models that constitute COCOMO - and a brief discussion of recent advances

concerning the model.

A.l An Overview of COCOMO

While there are many software cost estimation models, each having its own followers and

advocates, no one model has been shown to provide a definitive estimation solution.

Although this is true, due to its widespread use, open publication of its methodology,

extensive application to a wide variety of software, and adaptations for modern software

practices, COCOMO has become the de facto standard for software cost estimation

[Charette 1989].

Originally developed in the early 1980's, the complete COCOMO and associated data base

from which the model was developed appear in [Boehm 1981]. COCOMO uses

development effort equations to estimate the total man-months (MM) of development effort

required to complete a project. An initial project cost estimate can then be derived by

multiplying MM by a dollar-per-month cost multiplier. COCOMO also includes an

equation for estimating development time (tD) in months as a function of MM. The effort

equations require project size estimates, measured in thousands of delivered source

instructions (KDSI), and estimates of other key cost drivers.

KDSI offers a more specific definition of the often-misinterpreted KLOC. Delivered is

meant to exclude nondelivered support software. Source instruction "includes all program

instructions created by project personnel, and processed into machine code by some

combination of preprocessors, compilers, and assemblers" [Boehm 1981]. KDSI excludes

comment statements and unmodified utilities, while including job control language, format

A-2

statements, data declarations, and instructions. For the purposes of this paper, the terms

KLOC and KDSI are used interchangeably.

COCOMO considers three software project development modes that define three types of

software development environments: organic, semidetached, and embedded. The organic

mode involves development by relatively small teams in a highly familiar, in-house

environment. An organic-mode project is similar to previously developed products, is

relatively small, and requires little innovation. An accounting system is an example of an

organic-mode project.

An embedded-mode project is typified by tight, inflexible constraints and interface

requirements, and requires a great deal of innovation. The project is developed "under a

strongly coupled complex of hardware, software, regulations, and operational procedures."

[Boehm 1981]. Real-time systems with critical timing constraints and customized

hardware are generally embedded-mode projects.

The semidetached-mode project is a combination of the organic and embedded modes,

lying somewhere in-between the other two modes in terms of complexity, size, and

required innovation.

COCOMO consists of three models of increasing complexity: Basic COCOMO,

Intermediate COCOMO, and Detailed COCOMO. The primary distinction among the

models is the detail and number of model parameters. While the less-detailed Basic

COCOMO is usually appropriate for quick, rough estimation, the higher-detailed models

may not necessarily produce more accurate cost projections unless accurate estimates of the

additional model parameters are obtainable. The requirement to estimate a greater number

of model parameters introduces additional uncertainty into the more-detailed models. The

following sections provide mathematical descriptions of the three software cost estimation

models that constitute COCOMO.

A.2 Basic COCOMO

The Basic COCOMO's estimate of required development effort is based entirely upon the

user's estimate of project size and correct determination of the development mode. The

A-3

essential effort equation of the Basic COCOMO model is a nonlinear function of the

estimated project size

MM = a(KLOC)fc (A1)

where the parameter vector <a,b> takes on differing values according to the development

mode of the project. The value MM that is produced from the effort equation is used in the

schedule equation to estimate development time to (in months)

tD = c(MM)d. (A-2)

Table A.l lists the Basic COCOMO development effort and development time equations.

Table A.l Basic COCOMO Equations [Boehm 1981]

Mode

Organic

Semidetached

Embedded

Development
Effort

MM = 2.4(KLOC)105

MM = 3.0(KLOC)112

MM = 3.6(KLOC)120

Development
Time

tD = 2.5(MM)0-38

tD = 2.5(MM)0-35

tn = 2.5(MM)0-32

The total development effort and total development time are distributed over the life cycle

phases according to distribution percentages determined from analysis of completed

projects. The differences in the software development activities among the three modes

produce different estimated phase distributions of effort and schedule. For example,

embedded-mode projects consume more effort in the integration and test phase and

proportionally less effort in the code and unit test phase [Boehm 1981].

The effort and schedule results of the Basic COCOMO can be used to evaluate pertinent

software development measures. Average personnel staffing requirements can be estimated

as

FSP =
MM (A.3)

where FSP stands for full-time-equivalent software personnel, a measure of the equivalent

number of people working on the project at a given time. A measure of average

productivity (KLOC per man-month of effort) can be determined by

Productivity =
KLOC

MM '
(A.4)

A-4

Use of the Basic COCOMO model is intended for initial estimation, providing quick, rough

order-of-magnitude estimates of a software project's effort and cost. The model requires

estimation of a single parameter, which makes implementation of the model quite easy.

Obviously, the importance of accurately estimating the KLOC parameter cannot be

overstated. In accuracy tests using ex-post (actual) KLOC data, the reported accuracy of

the Basic COCOMO model is generally within a factor of 2 of the actual results 60% of the

time and within a factor of 1.3 of the actual results 29% of the time [Barrow et al. 1993],

[Boehm 1981].

A.3 Intermediate COCOMO

The Intermediate COCOMO model improves upon the Basic COCOMO model's approach

by including the effect of 15 "cost drivers" or effort multipliers The Intermediate

COCOMO model begins by assessing a nominal effort estimate, using equations of the

same form as those used in the Basic COCOMO:

MMACw=a(KLOC)* (A-5)

The user's assessment of the software project's attributes, relative to the 15 cost drivers,

provides the means for "fine-tuning" the nominal effort estimate. These cost drivers are

grouped in four categories: software product attributes, computer attributes, personnel

attributes, and project attributes (Table A.2).

Table A.2 Intermediate COCOMO Effort Multipliers [Boehm 1981]

Product Attributes Project Attributes
Required Software Reliability Modern Programming Practices
Data Base Size Use of Software Tools
Product Complexity Required Development Schedule

Computer Attributes Personnel Attributes
Execution Time Constraints Analyst Capability
Main Storage Constraints Applications Experience
Virtual Machine Volatility Programmer Capability
Computer Turnaround Time Virtual Machine Experience

Programming Language Experience

The user must rate each attribute on a scale from Very Low to Extra High, where each

rating has an associated numerical score that represents an effort adjustment multiplier.

A-5

Nominal ratings have an adjustment multiplier of 1.0, while the numerical range of each

multiplier is from 0.0 to 2.0. These 15 numerical scores are combined to produce an

overall effort adjustment factor (EAF), defined as the product of all attribute scores

EAF = f[e„ (A.6)

/=i

where e{ is the effort multiplier score of a particular attribute. The development effort

equation of the Intermediate COCOMO then incorporates the effect of the EAF multiplier

Eq. (A.6) on the nominal development effort Eq. (A.5):

MM = (EAF)MMN0M = (EAF)[a(KLOC)b]. (A.7)

The Intermediate COCOMO effort equations for the three development modes are listed in

Table A.3; the development time equations are the same as those of Basic COCOMO.

Distribution of time and effort among life cycle phases, as well as productivity and staffing

measures, are developed as with Basic COCOMO.

Table A.3 Intermediate COCOMO Equations [Boehm 1981]
Mode

Organic

Semidetached

Embedded

Development Effort

MM = (EAF)[3.2(KLOC)105]

MM = (EAF)[3.0(KLOC)112]

MM = (EAF)[2.8(KLOC)1-°l

Development Time

tD = 2.5(MM)0-38

tD = 2.5(MM)0-35

tD = 2.5(MM)0-32

The consideration of the effort adjustment factors contributes to the Intermediate

COCOMO's improved estimation capabilities. Again, when considering ex-post KLOC

and effort multiplier data, the Intermediate COCOMO's estimation accuracy is reported to

be usually within 20% of the actual results 68% of the time [Barrow et al. 1993], [Boehm

1981]. Obviously, the user's ability to accurately determine the development mode,

estimate the project size, and evaluate all 15 cost multipliers is the key determinant affecting

the accuracy of the model's results.

The Intermediate COCOMO model has been the most widely implemented of the COCOMO

models and, therefore, the most widely implemented of all software estimation models.

A-6

A.3.1 Example Software Estimation Using Intermediate COCOMO

To demonstrate the Intermediate COCOMO model, we consider the following example

software development scenario. A 32-KLOC, semidetached-mode software project is to be

developed. The values of the model parameters and the cost multiplier values of the

attributes characterizing the development effort are listed in Table A.4.

Table A.4 Intermediate COCOMO example problem -- model values

Variable
KLOC= 32
Mode = Semidetached, hence from Table A.3

a = 3.00
b= 1.12
c = 2.50
d = 035

Adjustment
Attribute Rating Factor (e)
Reliability Nominal 1.00
Data Base Size Low 0.94
Complexity Very High 1.30
Execution Time High 1.11
Storage High 1.06
Virtual Machine Volatility Nominal 1.00
Turnaround Time Nominal 1.00
Analyst Capability High 0.86
Applications Experience Nominal 1.00
Programmer Capability High 0.86
Virtual Machine Experience Low 1.10
Programming Language Nominal 1.00
Programming Practices High 0.91
Software Tools Low 1.10
Development Schedule Nominal 1.00

EAF, Eq. (A.6) = 1.171

Applying the above values to Eq. (A.5), the nominal development effort is

MMNOM= 3.0(32)112 = 145.51 man-months.

Adjusting the nominal effort to consider the project-specific attributes, leads to the adjusted

development effort requirement Eq. (A.7)

MM = EAF(MMAOW) = (1.171X145.51) = 170.39 man-months.

The development time is given by Eq. (A.2)

A-7

tD = c(MM)d = 2.5(170)0-35 = 15.087 months.

Hence, the initial estimate for project development effort and schedule is 170 man-months

of effort over a 15-month development period. The required average staffing and

productivity measures can be calculated by Eqs. (A.3) and (A.4):

FSP = MM = (170)/(15) =11.33 persons,

Productivity = ^^- = (32)/15) = 2.133 KLOC per man-month.
MM

Additionally, the effort, schedule, and average staffing analysis can conducted for each

phase of the development life cycle using percentage distributions [Boehm 1981]. The

phase distribution values and the overall development resource requirements for this

example are summarized in Table A.5. Such information is useful for developing staffing

plans, and for determining and then monitoring project progress.

Table A.5 Intermediate COCOMO Example - Phase Distribution of Resources

Life Cycle Effort Schedule Avg. Staffing
Phase (man-months) (months) (FSP)

Plans & Requirements 11.90 3.00 4.0

Development

Design 28.90 3.90 7.4

Detailed Design 42.50 3.10 13.7

Code & Test 56.10 4.10 13.7

Integration & Test 42.50 3.90 10.9

Total Development 170.00 15.00

A.4 Detailed COCOMO

The Detailed COCOMO model builds upon the Intermediate model by considering the effect

of changing effort multipliers as the software development effort progresses through the

life cycle. With the Detailed COCOMO, the project is divided into at least four phases

(Requirements and Product Design, Detailed Design, Code and Unit Test, Integrate and

A-8

Test) and the 15 cost drivers are estimated separately for each phase, rather than for the

project as a whole.

The effort equations of the Detailed COCOMO are essentially the same as those of the

Intermediate COCOMO, however the total MM of development effort is now accounted for

by considering the effort estimates of each phase. When considering four development

phases, the Detailed COCOMO requires the user's estimate of development mode, KLOC,

and 60 cost drivers (15 in each of four phases). This additional detail, however, has not

resulted in a significant improvement in cost estimation accuracy. The Detailed COCOMO

has been shown to produce only modest improvement over the Intermediate COCOMO,

estimating within 20% of project actuals 70% of the time [Boehm 1981].

A.5 Ada COCOMO

With the directive that the programming language Ada be the language of choice for new

Department of Defense software systems, a COCOMO model especially tailored for Ada

projects was needed. Many factors that influence the development of Ada software were

not considered by the standard COCOMO estimation equations. An initial Ada COCOMO

was developed for estimating software products developed in the Ada programming

language [Boehm and Royce 1987]. Ada COCOMO includes additional effort multipliers,

consideration of a phase distribution unique to Ada projects, and revised model coefficient

values <a,b, c, d>. Since initial development, the Ada COCOMO has been tested and

refined. Additional applications and adjustments are part of an ongoing effort[Boehm and

Royce 1989].

A.6 COCOMO 2.0

Software development trends towards reuse, re-engineering, and commercial off-the-shelf

(COTS) packages, object orientation, non-sequential process models, rapid development

and prototype approaches motivate a recent effort for updating COCOMO [Boehm et al.

1995]. While still in the design stage, this model (designated COCOMO 2.0) includes

consideration of spiral and prototype development paradigms, software reuse and re-

engineering, COTS, and other current software engineering practices, technologies, and

environments. COCOMO 2.0 will allow a range of software sizing options: FP, KLOC,

A-9

and object points [Boehm 1995]. Furthermore, capabilities for integrating reused and

COTS software and re-engineering and conversion efforts are to be included [Boehm

1995]. A comprehensive set of recently completed software projects will be used to update

the effort-multiplier cost drivers to reflect the most current software development effores.

A.7 Summary

COCOMO is the most widely used, most openly published software estimation model.

The three increasingly-complex COCOMO models provide a range of software estimation

sophistication. The outputs of the COCOMO models, especially the Intermediate and

Detailed models, have been shown to be reliable if the number of lines of code is

reasonably well known and the multipliers can be chosen correctly. However, even with

perfect input data, their projected accuracy is only within 20 percent of actual costs 70

percent of the time.

These reported accuracy levels define the upper limit of accuracy for software cost

estimation, as these have been evaluated using actual, ex-post data. This can pose a serious

risk to a user of the model if the projected accuracy ~ the uncertainty of the estimate - is

ignored. The accuracy falls off in practice when users are faced with estimating parameter

values in an uncertain environment, disregard good estimation practices, or use the cost

estimation exercise to justify a previously predicted result. Explicitly accounting for the

uncertainty associated with the COCOMO's effort estimation is a key contribution of this

research.

A.8 References for Appendix A

Banker, R., H. Chang, and C. Kemerer. "Evidence on Economies of Scale in Software
Development," Information and Software Technology, 1994.

Barrow, D., S. Nilson, and D. Timberlake. Software Estimation Technology Report,
Software Technology Support Center (SCTC), Hill AFB, UT, 1993.

Boehm, B.W. "COCOMO 2.0: Recent Developments," Proceedings of the Tenth Annual
COCOMO User's Group Meeting, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Oct. 1995.

A-10

Boehm B W B. Clark, E. Horowitz, C. Westland. R. Madachy, and R. Shelby. Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0" to appear in Annals
of Software Engineering Special Volume on Software Process and Product
Measurement, J.D. Arthur and S.M. Henry (eds.), J.C. Baltzer AG Science
Publishers, Amsterdam, 1995.

Boehm B W and W. Royce. "Ada COCOMO and the Ada Process Model,"
Proceedings, Fifth Annual COCOMO User's Group Meeting, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Nov. 1989.

Boehm, B.W., and W. Royce. "Ada COCOMO: TRW IOC Version," Proceedings Third
COCOMO User's Group Meeting, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, Nov. 1987.

Boehm, B.W. Software Engineering Economics, Prentice-Hall, New Jersey, 1981.

Charette, R.N. Software Engineering Risk Analysis and Management, McGraw Hill, New
York, 1989.

B-l

Appendix B
Software Estimation Tools

This Appendix provides a summary of the major software estimation tools available from

private vendors and public agencies. Much of the information came from the product

vendors themselves, and other information came from software estimation tool reviews

such as [Barrow et al. 1993].

The COCOMO is widely used as a baseline for many estimation tools because it is

considered an "open model" since all details are well documented and published. For this

reason, and that there are so many computerized estimation tools available that use

COCOMO, a separate section on these tools is provided (B.l). Function Point analysis is

increasingly gaining acceptance as a size-estimation methodology, with particular

application to Information Systems. Section B.2 discusses tools based on Function Point

analysis. Finally, Section B.3 describes additional software estimation methdologies that

are based on methodologies other than COCOMO or Function Points.

B.l COCOMO-Based Software Estimation Tools

This Section discusses COCOMO-based estimation tools.

B.l.l CB COCOMO

Crystal Ball (CB) COCOMO is distributed by Decisioneering Incorporated. This tool

estimates time and cost of software development projects, and allows entering of actual

project data at various phases in the software life cycle. This tool requires Decisioneering's

forecasting and risk analysis tool, Crystal Ball, and operates on Macintosh and DOS

systems. Decisioneering Inc., Boulder CO 80301. (303)292-2291.

B.1.2 COCOMOID

COCOMOID is distributed by the Air Force Cost Center (via electronic bulletin board) and

the Society for Cost and Economic Analysis (SCEA). COCOMOID is a complete

B-2

COCOMO implementation supporting all known published COCOMO specifications.

COCOMO models used include Basic, Intermediate, Detailed, and Maintenance models. It

also includes Enhanced Ada, Ada Process, and Incremental Development models. This

tool operates on PC compatible systems. Air Force Cost Center, Wright-Patterson AFB,

OH 45433. (513)257-3927.

B.1.3 COCOMOl

COCOMO 1 was developed by Level Five Research, Inc. and is marketed by Solar

Powered Emergency Communications Systems (SPECS), Inc. It is an expert systembased

software tool that estimates cost and time requirements for software projects. Through a

series of questions COCOMOl assists in determining the proper COCOMO cost model,

mode, and effort coefficients. This tool uses fifteen development and maintenance cost

drivers and applies formulas from the COCOMO model to these factors. COCOMOl runs

on all PC compatible systems. Specs Inc., Junction City, OR 97448. (503) 998-8729.

B.1.4 CoCoPro

CoCoPro is distributed by Iconix Software Engineering, Inc. It estimates resources needed

to complete software development projects using the COCOMO model. This tool uses

exponential functions and attributes to calculate development costs. Inputs allowed include

personnel experience and capabilities, project complexity, product factors, and hardware

limitations. CoCoPro operates on a Macintosh. Iconix Software Engineering, Inc., Santa

Monica, CA 90405. (310)458-0092.

B.1.5 COSTAR

COST AR is an interactive software cost estimation tool marketed by Softstar Systems. It is

a full implementation of the detailed COCOMO model and offers side-by-side comparisons

of several alternative estimates. This tool also provides automatic recalculation and display

of results, and uses definable cost drivers. COSTAR version 3.0 includes support of Ada

COCOMO. This tool also uses Function Point analysis for software size estimations. It is

available for both PC compatible and VAX computer systems. Softstar Systems, Amherst,

NH 03031. (603)672-0987.

B-3

B.1.6 COSTMODL

COSTMODL was developed by the Software Technology Branch, Spacecraft Software

Division, NASA/Johnson Space Center [NASA/JSC 1991], and provides estimates for

effort, cost, and schedule. It implements all the COCOMO models except the detailed

model. In addition, it includes a simplified linear model using productivity data from

completed NASA projects.

COSTMODL is presently used at over 100 government, military, and contractor sites, as

well as NATO headquarters, the British Ministry of Defense, and several universities in the

United States and England. It has been selected as the standard cost estimating tool for

NASA's Space Station Freedom Software Support Environment.

COSTMODL contains five different models for estimating non-Ada and Ada products, and

products which are to be delivered as a series of incremental development phases. All of

the parameters defining each of the models are accessible to the user. Basic estimating

equations can be calibrated to the user's software development environment and type of

product. Also, the set of factors which influence software development costs can be

redefined.

Given the data describing the software development productivity experience for a user's

organization, COSTMODL will automatically compute the coefficients and exponents

which will provide the most meaningful estimates for new products to be developed within

that organization. It also contains an extensive set of linked, context-sensitive help displays

and demonstration files designed to quickly familiarize the new user with its operation.

This tool is free to both employees and contractors of NASA, as well as other government

agencies, and has been submitted to NASA's Computer Software Management and

Information Center (COSMIC) for distribution into the private sector. COSTMODL

currently runs on PC compatible systems. NASA/JSC Software Technology Branch,

Houston, TX 77058. (713)483-9092.

B.1.7 GECOMO Plus

GECOMO Plus is marketed by GEC-Marconi Software Systems. It is a special

enhancement of the COCOMO model and uses 17 cost drivers. It provides cost estimations

B-4

for both non-Ada and Ada projects. GEC-Marconi markets a companion tool for size

estimation called SIZE Plus. Both GECOMO Plus and SIZE Plus are X-Windows/OSF

Motif compatible and are available for both the UNIX and VMS operating systems. GEC-

Marconi Software Systems, Reston, VA 22090. (703) 648-1551.

B.1.8 GHL COCOMO

GHL COCOMO is marketed by GHL Associates, Inc. and features three levels of detail:

multiproject, data retention, and sensitivity analysis. This tool also allows for "what-if'

scenarios. It operates on PC compatible systems. GHL Associates, Inc., Haverford, PA

19041. (215)896-7307

B.1.9 REVIC

The Revised Enhanced Version of Intermediate COCOMO (REVIC) was developed by

Hughes Aerospace. The Air Force Contract Management Division, Air Force System

Command, Kirtland Air Force Base, New Mexico, sponsored the development for use by

its contract administrator [Kyle 1991]. The main difference between REVIC and

COCOMO is the coefficients used in the effort equations. REVIC changed the coefficients

based on using a database of recendy completed DOD projects. It also uses a different

method of distributing effort and schedule to each phase of product development, and

applies an automatic calculation of standard deviation for risk assessment

REVIC provides a single-weighted "average" distribution for effort and schedule along

with the ability to let the user vary the percentages in the system engineering and

development test and evaluation phases. REVIC employs a different Ada model than Ada

COCOMO. The REVIC model has also been enhanced by using a Program Evaluation and

Review Technique (PERT) statistical method for determining the lines of code to be

developed.

In addition to providing estimates for cost, manpower and schedule, the program creates

estimates for typical DOD-STD-2167A documentation sizing and long term software

maintenance (with planned modification to meet MDL-STD-498 requirements). REVICs

schedule estimates are often considered lengthy because it assumes that a project's

documentation and reviews comply with the full requirements of DOD-STD-2167A.

B-5

REVIC operates on PC compatible systems. Air Force Cost Agency, Arlington, VA

22202. (703)746-5865.

B.1.10 SECOMO

Software Engineering Cost Model (SECOMO), an implementation of COCOMO, is

available at no cost from ITT Research Institute in Rome, NY. Enhancements include an

improved user interface, online help, and an expanded user's manual. Version 7.0 will

operate on a PC compatible system or a VAX/VMS 5.2 or later operating system. ET

Research Institute, Rome, NY 13440. (315) 336-2359.

B.l.ll SWAN

The Software Analysis (SWAN) cost model was developed by IIT Research Institute for

the U.S. Army Program Manager for Training Devices (PMTRADE) in the Ada

programming language. SWAN is available at no cost to government agencies and

associated contractors

This tool supports the intermediate version of COCOMO, including Ada COCOMO with

fall three-level software hierarchy support. SWAN utilizes FPA techniques to determine

software size estimates. It provides estimates for software development from requirements

analysis through integration and test, as well as estimates for up to 5 years of maintenance.

SWAN runs on PC compatible systems under MS-DOS 3 1 or later. IIT Research

Institute, Rome, NY 13440. (315) 336-2359.

B.2 Function Point-Based Software Estimation Tools

This Section contains a discussion of software estimation tools based on Function Point

analysis.

B.2.1 ASSET-R

ASSET-R is a function point sizing tool developed to estimate the size of data procesing,

real-time, and scientific software systems which is marketed by Reifer Consultatnts, Inc. It

utilizes a knowledge-based system which extends the theory of function points into

B-6

scientific and real-time systems by considering issues like concurrence, synchronization,

and reuse in its mathematical formulation. The formulas use as many as nine parameters to

develop function point counts. It operates on PC compatible systems. Reifer Consultants,

Torrance, CA 90510. (310) 373-8728.

B.2.2 CA-FPXpert

CA-FPXpert is distributed by Computer Associates International, Inc. It uses FP analysis

for size estimation of Information System type software projects. It includes an on-line

tutor to help the function point counting process. CA-FPXpert works in conjunction with

CA.ESTIMACS to provide software size estimation input and operates on PC compatible

systems. Computer Associates International, Inc., Calverton, MD 20705. (301) 937-

1133.

B.2.3 CHECKPOINT

CHECKPOINT is a software estimation tools distributed by Software Productivity

Research (SPR). It is a knowledge-based software estimation tool that has largely

superseded SPQR/20. It's algorithms are derived from measurements of more than 4200

software projects, and it is applicable to all phases of the software development life cycle.

It applies to all types of programs and incorporates Function Points or Feature Points to

calculate the size of a software product. Feature points are SPRs method of measuring

functionality. Software Products Research, Inc., Burlington, MA 01803. (617) 273-

0140.

B.2.4 MicroMan ESTI-MATE

MicroMan ESTI-MATE is an estimating and planning tool for Information Systems

oriented projects. It uses FP methodologies, and is distributed by POC-IT Management

Services, Inc. MicroMan ESTI-MATE provides a breakdown of the hours required for all

phases, activities, and tasks that make up a project. It is fully integrated with the MicroMan

n Project and Staff Management System tool used for scheduling, tracking, and reporting.

MicroMan ESTI-MATE operates on PC compatible systems. POC-IT Management

Services, Inc., Santa Monica, CA 90401. (301) 393-4552.

B-7

B.2.5 PROJECT BRIDGE

PROJECT BRIDGE Planning and Estimating System is marketed by Applied Business

Technology Corporation. It is a knowledge-based tool used for profiling, estimating, and

planning projects in a software engineering environment. It allows users to produce

estimates based on Function Points or an organization's own estimating factors. This tool

integrates with the Project Workbench project management tool for Information Systems

projects. PROJECT BRIDGE operates on PC compatible systems. Applied Business

Technology Corp., New York, NY 10013-3992. (800) 444-0724.

B.2.6 SIZE Plus

SIZE Plus is marketed by GEC-Marconi Software Systems. This tool uses FP analysis to

estimation the size of the software project. It supports both data processing and real-time

applications. SIZE Plus provides five different methods to perform FP analysis. Three of

these are oriented towards Information System applications and the other two are used for

real-time or embedded software applications. The tool is available for UNIX or VMS

operating systems running X-Windows/OSF Motif. GEC-Marconi Software Systems,

Reston, VA 22090. (703) 648-1551.

B.2.7 SPQR/20

SPQR/20 (Software Product, Quality, and Reliability TwentyQuestions) is a software

estimation tool distributed by Software Productivity Research (SPR). SPQR/20 is based

on the work of Capers Jones [Jones 1986] and incorporates proprietary algorithms. It was

one of the first models to use function points as a measure of size to estimate source lines

of code. Most of the inputs define experience level, development method, and

development environment. Other inputs include project type and class. SPQR/20 estimates

maintenance support for up to a five-year period [SPR 1986]. SPQR/20 operates on PC

compatible systems. Software Products Research, Inc., Burlington, MA 01803. (617)

273-0140.

B-8

B.3 Other Method-Based Software Estimation Tools

This section presents software cost estimation tools that are neither exclusively based on

COCOMO nor on Function Point analysis. Several of these models are based on

proprietary algorithms and databases.

B.3.1 CA-ESTIMACS

CA-ESTMACS is part of a family of tools called CA-UNIPACK/PEP marketed by

Computer Associates International, Inc. CA-UNIPACK/PEP consists of four tools: CA-

ESTIMACS. CA-PLANMACS, CA-ADVISOR, and CA-SuperProject. CA-ESTMACS

uses research drawn from a data base of more than 14,000 completed software projects.

The ESTMACS model is a proprietary model that does not require KLOC as an input,

relying instead on "Function-Point-like" measures The original application domain for this

model was the insurance industry. Since this model is proprietary, details, such as the

equations used, are not available. It is known that, like SLIM and COCOMO, ESTMACS

utilizes a series of 25 questions to adjust model parameters. It develops estimates at or

before the requirements definition phase of the software life cycle. This tool allows for

early "what-if' analyses of alternative life cycle strategies. A companion tool named CA-

FPXpert is also distributed by Computer Associates and is used to estimate the size of the

software product. All of these tools operate on PC compatible systems. Computer

Associates International, Inc., Calverton, MD 20705. (301) 937-1133.

B.3.2 CEIS

Computer Economics Incorporated Sizing (CEIS) system is marketed by Computer

Economics, Inc. Estimation are generated by comparing the attributes of the new project to

the attributes of three reference projects of known size. The user determines any six

attributes that contribute to the number of lines of code and ranks them in order of

importance, then selects three reference projects of known size. Separate algorithms are

used to produce four independent estimates and to determine a level of confidence. CEIS

works in conjunction with SYSTEM-4. Computer Economics, Inc., Marina Del Rey, CA

90292. (310)827-7300.

B-9

B.3.3 COSTEXPERT

COSTEXPERT is a software estimation tool that uses expert system technology. It was

developed by the Institute for System Analysis, Inc. (ISA) and is marketed by Technology

Applications/Engineering Corporation. It asks questions about the functionality of the

software being developed [ISA 1990]. COSTEXPERT directly estimates software-related

efforts such as program management security, and configuration management. It supports

multiple languages and different development standards. It also takes into account software

reuse. A companion tool named SIZEEXPERT is also distributed by Technology

Applications/Engineering Corporation and is used to estimate the size of the software

product based on the COSTEXPERT questions. These tools operate on PC compatible

systems. Technology Applications/Engineering Corp., Bethesda, MD 20817. (301) 571-

8510.

B.3.4 PRICE S

The PRICE S tool is distributed by GE PRICE Systems. This tool was first developed in

1977 primarily for aerospace applications [Freiman and Park 1979]. Equations used by

this tool are proprietary, however, descriptions of the methodology scheduling algorithms

used can be found in a paper published by GE PRICE Systems [GE Price 1988].

Wolverton [1980] describes the several project and environmental attributes considered in

the model's effort adjustment equations. These attributes were chosen specifically for the

aerospace applications. As the model is intended for a specific software domain, its use for

business and other non-aerospace applications is questionable.

The PRICE S tool is based on Cost Estimation Relationships (CERs) that make use of

product characteristics in order to generate estimates. CERs were determined by statistically

analyzing completed projects where product characteristics and project information were

known. The major input to PRICE S is KLOC. Software size may be input directly or

automatically calculated from quantitative descriptions. PRICE S also permits function

points to be input as an alternative to KLOC. Other inputs include software function,

operating environment, software reuse, complexity factors, productivity factors, and risk

analysis factors. Successful use of the PRICE S tool depends on the ability of the user to

define inputs correctly. It can be customized to the needs of the user. It is now available

for Windows and Unix/Motif. GE Price Systems, Moorestown, NJ 08057. (800) 437-

7423.

B-10

B.3.5 SASET

The Software Architecture, Sizing and Estimating Tool (SASET) was developed for DOD

by the Martin Marietta Corporation. SASET is a forward-chaining rule-based expert

system utilizing a hierarchically structured knowledge data base. The data base is

composed of projects with a wide range of applications. SASET provides functional

software sizing values, development schedules, and associated manloading outputs. It

provides estimates for all types of programs and all phases of the development cycle. It

also provides estimates for maintenance support and performs a risk assessment on sizing,

scheduling, and budget data.

SASET uses a five-tiered approach for estimation including class of software, source lines

of code, software complexity, maintenance staff loading, and risk assessment. The user

can either input the program size directly or allow SASET to compute size, based on

function-related inputs. The tool also has an extensive customization file in which the user

can adjust many parameters. It operates on PC compatible systems. Air Force Cost

Aanlysis Agency, Arlington, VA 22202. (703) 746-5865.

B.3.6 SEER-SEM

System Evaluation and Estimation of Resources - Software Estimation Model

(SEER-SEM) is distributed by Galorath Associates and is under a five year Air Force wide

license agreement. It provides software estimations with knowledge bases developed from

many years of completed projects [Galorath 1992]. The knowledge base allows estimates

with only minimal high level inputs. The user need only select the platform (i.e. ground,

unmanned space), application (i.e. command and control, diagnostic), development

methods (i.e. prototype, incremental), and development standards (i.e. 2167A).

SEER-SEM is applicable to all types of software projects and considers all phases of

software development.

A companion tool called SEER-Software Size Model (SSM) is also distributed by Galorath

Associates and is used to estimate the size of the software product. SEER-SEM is

designed to run on PC compatible systems running Microsoft Windows 3.0/3.1 (Air Force

license includes MS-DOS version). It is also available for the Apple Macintosh running

B-ll

system 6.0.3 and above and the UNIX/SUN workstation. Galarath Associates, Inc., Los

Angeles, CA 90009. (310) 670-3404.

B.3.7 SEER-SSM

SEER-SSM is marketed by Galorath Associates and is available to government and

contractors under an Air Force-wide contract. It produces software size estimates in lines

of code or function points. It also provides its historical database to save time in producing

the size estimates. Galarath Associates, Inc., Los Angeles, CA 90009. (310) 670-3404.

B.3.8 SIZE PLANNER

SIZe PLANNER is distributed by Quantitative Software Mangement, Inc. It uses four

independent approaches for size estimation including Fuzzy Logic, Function Points,

Standard Component, and New/Reuse/Modified sizing. Each approach views the product

from a unique perspective. This capabiity provides a cross check for the overall estimate

which reduces the uncertainty of the estimate. SIZE PLANNER is used in conjunction

with SLIM and operates on PC compatible systems. Quantitative Software Management,

Inc., McLean, VA 22102. (703) 790-0055.

B.3.9 SIZEEXPERT

SIZEEXPERT was developed by the Institute for Systems Analysis and is marketed by

Technology Application/Engineering Corporation. This tool is an expert judgment tool that

produces estiamtes of lines of code based on questions asked by COSTEXPERT. Both

tools are packaged and distributed together and operate on PC compatible systems.

Technology Applications/Engineering Corp., Bethesda, MD 20817. (301)571-8510.

B.3.10 SLIM

The Software Life Cycle Model (SLIM) is marketed by Quantitative Software Management

(QSM). Originally developed from analyses of ground-based radar programs, the SLIM

tool has been expanded to include other types of programs. It can be customized for the

user's development environment [QSM-SLM 1987]. SLIM supports all phases of

software development, except requirements analysis, as well as all sizes of software

projects, but was especially designed to support large projects.

B-12

SLIM is a proprietary model; therefore, much of the current models details are not publicly

available. Early publications concerning the model ([Putnam and Fitzsimmons 1979]

indicate that the SLIM model uses a KLOC estimate for the software project's general size,

then modifies this through the use of the Rayleigh curve model to produce its effort

estimates. The user can influence the shape of the curve through two key parameters: the

life-cycle development effort (K) and a productivity factor (PF) that accounts for the state

of technology. In practice, these values can be chosen by inputting data from completed

projects, or by answering a series of 22 questions, from which SLIM will provide

recommended values. The SLIM model's central equation is given by

KLOC = (PF)KAtP

where PF is the productivity factor, K is the life-cycle effort, and td is the development

time, and KLOC is the estimated thousands of lines of code. Rearranging the above

equation allows one to solve for the development time.

Success in using SLIM depends on the user's ability to customize the tool to fit the

software development environment, and to estimate both a Productivity Index (a measure

of the software developer's efficiency) and a Manpower Buildup Index (a measure of the

software developer's staffing capability). SLIM also provides a life-cycle option which

extrapolates development costs into the maintenance phase. A companion tool named SIZE

PLANNER is also distributed by QSM and is used to estimate the size of the software

product. Quantitative Software Management, Inc., McLean, VA 22102. (703) 790-0055.

B.3.11 SOFTCOST-R and SOFTCOST-ADA

SOFTCOST-R and SOFTCOST-ADA are software estimating tools developed by Reifer

Consultants, Inc. (RCI) [Reifer 1989]. SOFTCOST-R is based upon the pioneering

modeling work done by Dr. Robert Tausworthe of the Jet Propulsion Laboratory

[Tausworthe 81]. It contains a data base of over 1500 data processing, scientific and

real-time programs. A key input is KLOC, which can be input directly or computed from

Function Points. SOFTCOST-R is applicable to all types of programs, however, it was

specifically configured to estimate real-time and scientific software systems, and considers

all phases of the software development cycle.

B-13

Although the tool's primary input is KLOC, it also uses the same inputs and provides the

same outputs as COCOMO which allows direct comparisons to be made. SOFTCOST-R

has some unique inputs such as use of peer reviews, customer experience, and degree of

standardization. It also supports a standard WBS for task planning and scheduling.

RCI provides SOFTCOST-Ada, which is a tool to estimate Ada and C++ development

costs. SOFTCOST-Ada is a cost estimation tool specifically developed to estimate systems

using object-oriented techniques. RCI also has a separate size estimation tool called

ASSET-R to estimate the size of the software product. SOFTCOST-R, SOFTCOST-Ada,

and ASSET-R are leased on an annual license basis, and require a PC compatible running

DOS 2.3 or higher. Reifer Consultants, Torrance, CA 90510. (310)373-8728.

B.3.12 SYSTEM-4

SYSTEM-4 is marketed by Computer Economics, Inc. (CEI). It contains a proprietary

model that is based on the work of Jensen, Boehm, Putnam, and other noted software

experts [Jensen 1981]. SYSTEM-4 is applicable to all types of programs and all phases of

the software life cycle. Inputs consist of size (KLOC), twenty environmental factors,

seven development factors, software type, and constraints. This tool comes with 23 pre-

defined default parameter files. The default sets provide typical values for all parameters

except size. There are also seven parameter subset files for various implementations of

DOD-STD-2167A, and varying degrees of Ada experience. CEI has a companion software

size estimating tool, CEIS. These tools operate on PC compatible systems. Computer

Economics, Inc., Marina Del Rey, CA 90292. (310) 827-7300.

B.4 References for Appendix B

Barrow, D., S. Nilson, and D. Timberlake. Software Estimation Technology Report,
Software Technology Support Center (STSC), Hill AFB, UT, 1993.

Freiman, F. R. and R.E. Park. "Price Software Model - Version 3: An Overview,"
Proceedings, IEEE - Workshop on Quantitative Software Models, IEEE Catalog No.
TH0067-9, 32-41, October 1979.

Galorath Associates. SEER User's Manual, Los Angeles, CA, 1989.

GE Price Systems, "PRICE S User's Manual," Moorestown, NJ, Price Systems 1989.

B-14

ISA Corporation. ISA Cost Expert User's Guide, Technical Applications/Engineering
Corp., Bethesda, MD. 1990

Jensen, R. W. "A Macro-level Software Development Cost Estimation Methodology,"
Proceedings of Fourteenth Asilomar Conference on Circuits, Systems and Computers,
IEEE, New York, 1981

Jones, C. Programming Productivity, New York, McGraw-Hill, 1986

Jones, C. Applied Software Measurement; Assuring Productivity and Quality,
McGraw-Hill, New York, NY. 1991

Kyle, R.A. REVIC Software Cost Estimating Model User's Manual, Version 9.0, Air
Force Contract Management Division, Albuquerque, NM, Feb. 1991.

NASA/JSC. COSTMODL User's Guide Version 5.2, NASA Johnson Space Center,
Houston, TX, , January 1991.

Price Systems. "The Central Equations of the Price Software Cost Model," Proceedings of
the Fourth Annual COCOMO User's Group Meeting, Software Engineering Institute,
Carnegie Mellon University, Pittsburg, PA, Nov. 1988.

Putnam, L.H. and A. Fitzsimmons. "Estimating Software Costs," Datamation, Sept.-Nov.
1979.

Putnam, L., and W. Myers. Measures for Excellence: Reliable Software, On Time, Within
Budget, Yourdon Press, 1992.

QSM Corporation, Slim User's Manual, McLean, VA, 1987.

Reifer, DJ. SOFTCOST-R User's Manual, Version 8.0, Reifer Consultants, Torrance,
CA, 1989.

Software Productivity Research (SPR), Inc., SPQR/20 User's Guide, Cambridge, MA,
1986.

Tausworthe, R.C. Deep Space Network Cost Estimation Model, JPL Publication 81-7, Jet
Propulsion Laboratory, April 1981.

Wolverton, W.R. "Airborne Systems Software Acquisition engineering Guidebook:
Software Cost Analysis and Estimating," U.S. Air Force ASD/EN, Wright Patterson
AFB, OH, FEb. 1980.

C-1

Appendix C
The /2 and fy Conditional Expected Values of the Triangular

Distribution

This appendix includes the derivation of the/2 and/3 conditional expected value equations

for the triangular distribution. Although not commonly used in risk-based decision making

situations, these equations are included for completeness and for use in the limited

scenarios where they are applicable.

C.l The High-probability, Low-damage Expected Value, fi

Asbeck and Haimes [1984] define the high-probability, low-damage expected value/2 , as

ß

\xf(x)dx
f _L (C.l)

J 2 ~ ß

]f(x)dx

Deriving the/2 conditional expectation for the triangular distribution is accomplished by

substituting the element corresponding to a < ß < c of Eq. (4.1) into Eq. (C. 1):

ß ß

jxf(x)dx]2x(x-a)dx

2 - ß ß

\f{x)dx \l(x-a)dx

[fx3- ax2l _ \l? - aß2 -\al + a3] fj33 - aß2 + \a
= [x2-2axl = [ß2~2aß-a2

+2a2] ß2-2aß + a

_(a3 -3aß2 +2j83) _{a-ß)2(a + 2ß) _a + 2ß
3(a-ßf Xa-ßf 3

3

2~

Thus,

C-2

f2=^M, a<ß<c. (C.2)

C.2 The Moderate-damage, Moderate-probability Conditional Expected

Value, /3

Finally, we derive the intermediate conditional expectation,^, for the triangular

distribution. This expected value is similar to the unconditional expected value in that it

also commensurates events of low probability and high damage with those of high
probability and low damage. The general form of the/3 conditional expected value is

[Asbeck and Haimes 1984]:

\xf(x)dx

/a = -, where ßx^ß2-
(C.3)

\f{x)dx

In deriving the/3 conditional expected value for the triangular distribution, we consider the
two partitioning points ß\ and jfc, such that a<ßx<c<ß2<b. Substituting Eq. (4.1)
into Eq. (C.3) requires solving

/a =

C HI

\xf{x)dx+\xf{x)dx
Vß>

C HI

\f{x)dx+\f(x)dx
V».

Solving the numerator of the above expression produces

C 1 ^2

 \ f 2x(x - a)dx + ——- \2x(b - x)dx
(b-a)(c-a)l (b-a)(b-c)Jc

= 1 [2c3 -3ac2 -2A3 + 3aA2] + „. \h J^3 -^ -2ß\ + 3bßl],
3(b-a)(c-a)\- J Xb-a)b-c)i

while solving the denominator results in

C-3

1 c 1 ^2

 \2(x-a)dx + [2(b-x
(b-a)(c-a) (b-a)(b-c)

)dx

1
(b-a)(c-a) c^2ac-ß2+2aßl] + - ^77—-\2bß2-ß2

2-2bc + c2} J (b-a)(b-c)1 J

Combining the numerator and denominator results, and without much simplification other
than canceling the obvious (b-a) terms, we observe

A =

(2c3-3ac2+3aß2-2ß3) (2c3-3bc2+ 3bß2-2ß2)
3(c-a) 3(b-c)

(c2 - 2ac + 2aßx - ß]) | (c2 - 2bc + 2bß2- ß\)
(c-a) + (b-c)

, a<ß<c<ß2<b.

(C.4)

Equations (C.2) and (C.4), coupled with Eqs. (4.3) and (4.6) are the exact-form
conditional expectation equations for the triangular distribution.

