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ABSTRACT 

Hierarchical Holographic Modeling 

for Software Acquisition Risk Assessment and Management 

Software has come to play an increasingly dominant role in today's world. System design, 

quality, and risk are predicated, as never before, on the software component of the system. 

Unfortunately, this significant increase in our dependence on software, which in turn 

causes an increase in the amount of software required, has not been matched by a 

corresponding increase in our capability to manage its acquisition and development. Cases 

of software acquisition mismanagement that resulted in large cost overruns and schedule 

delays have been widely reported. Maturing the capabilities of the software acquisition 

community require the development of appropriate tools and methodologies for risk-based 

decision-making management. 

This dissertation addresses the assessment and management of risks associated with the 

software acquisition processes from a holistic perspective using hierarchical holographic 

modeling (HHM). The multiple visions and perspectives within which the life cycle of 

software acquisition is stated and modeled, provide a comprehensive framework for risk 

assessment and management of software acquisition. In particular, widely used models in 

software acquisition such as the COCOMO model, can now be extended to incorporate 

probabilistic as well as dynamic dimensions. The ultimate contributions of this dissertation 

can be found in at least two major areas: (a) in the theoretical and methodological domain 

of systems modeling in the quest of a more quantitative risk assessment and management 

framework, and (b) in advancing the state of practice in the assessment and management of 

software acquisition by extending highly used models in practice to incorporate more 

realistic probabilities and dynamic dimensions. 



IV 

A probabilistic, multiobjective approach to software estimation that focuses on the risk of 

extreme events and utilizes the conditional expected value as an additional risk management 

decision-making metric is developed. Motivated by the software community's transition 

towards a prototype or spiral development process paradigm, a dynamic software 

estimation model is developed that is particularly suited for modern software development 

processes. The dynamic model permits analysis of the impact of management control 

policies on future decision opportunities, while accounting for changes over time in the 

development environment and the system requirements. A software estimation updating 

scheme is developed as an extension of the dynamic software estimation model to account 

for the differences between actual project resource requirements and the estimates of those 

requirements, and to update the overall resource requirement projections. 

The HHM framework is extended to formulate software acquisition as a hierarchical 

decision problem. Software acquisition management decision options do not fall entirely in 

the domain of any single participant community, yet each party is affected by the other's 

decisions. HHM provides the necessary insight and coordination structure for resolving 

the competing issues, objectives, and decision opportunities of the several participant 

communities as they impact the project's cost and schedule. 
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Chapter 1 
Introduction and Problem Background 

1.1   Motivation for the Research 

Software has come to play an increasingly dominant role in today's world. It controls the 

way organizations operate, aids in analyzing and determining corporate strategies, and 

generally helps organizations operate more efficiently. As computer usage has become 

central to organizational activities and engineering system design, the software component 

of these systems has become increasingly important. Software has assumed the systems 

integration role - components that before could not be integrated, or were interconnected 

through hardware means, are now linked via software. Systems quality is predicated, as 

never before, upon the quality of its software. System risk is increasingly being defined 

relative to the risk associated with the software component. 

Unfortunately, this significant increase in our dependence on software, which in turn 

causes an increase in the amount of software required, has not been matched by a 

corresponding increase in our capability to manage its acquisition and development. 

Acquisition officials, whose training and experience previously focused on the hardware 

component of a system, now find themselves concentrating more of their energies, 

concern, and resources on the software component. 

The inability to effectively manage the software component leads to project cost overrun 

and schedule slippage. Rothfeder [1988] gives an example in the case of Allstate Insurance 

which hired Electronic Data Systems in 1982 to build an $8 million computer system 

expected to be completed in 1987. It was finally completed in 1993 at a price of over $100 

million [Fairley 1994]. Neumann [1988] gives the example of Bank of America which in 

1988 abandoned a computer system originally estimated to cost $20 million in 1982 after 

spending over $60 million trying to get it to work. GAO [1992a] states that software 

development has been a major problem during the C-17 development program. Although 

operational C-17 aircraft are now in the Air Force inventory, the overall project is over 2 

years behind schedule and $1.5 billion over its 1985 cost estimate of $4.1 billion. 

McFarlan [1981], Rothfeder [1988], and Neumann [1988] provide numerous other 



instances where software projects have gone over budget and schedule more frequently 

than not. 

Boehm [1989] states that these project disasters can generally be traced back to risk items 

that were either not identified, were improperly assessed, or improperly dealt with. For 

example, GAO [1992a] states that the Air Force underestimated the size and complexity of 

the C-17 software development effort and assumed that the software development would be 

low-risk without performing any analysis to support and document the assumption. Thus, 

it is clear that the risks in software acquisition must be identified and managed properly in 

order to minimize the losses resulting from such runaway projects. 

Effective management of modern, complex processes such as software acquisition requires 

capable, mature direction. Good management of technological systems must address the 

holistic nature of the system in terms of its hierarchical, organizational, and functional 

decision making structure; the various time horizons; the multiple decision makers, 

stakeholders, and users of the system; and the host of technical, institutional, legal, and 

other socioeconomic conditions that require consideration. Maturing the capabilities of the 

software acquisition community will require increasingly sophisticated analytic tools and 

methodologies to identify program risks, evaluate their potential adverse impact, and 

effectively incorporate risk considerations in the decision making management framework. 

1.2   Impact of the Research. 

The overall aim of this research is the development of theoretical and methodological 

foundations upon which we can enhance software acquisition management through the 

development of a holistic and systemic risk assessment and management framework. The 

particular objectives in support of the overall focus include: 

• Developing a holistic framework for software acquisition that provides a 

comprehensive structure to identify risk sources, assess the risks, explicitly 

include the consideration of uncertainty, and coordinate competing issues that 

dominate software acquisition decision making. 



• As part of the review of literature, identify current methods, models, and tools that 

assist in the software estimation effort -- including software cost, schedule, and 

performance estimation. 

• Extend current software estimation practices to include explicit consideration of 

the inherent uncertainties - hence, risks -- associated with a software acquisition 

endeavor. 

• Develop a dynamic software estimation approach that is particularly suited for 

modern software development practices; namely, prototyping and spiral 

development processes. 

• Devise an approach for updating the software estimates as an on-going activity, 

conducted throughout the life cycle. 

• Demonstrate a hierarchical multiobjective decision-making framework for 

coordinating competing decision-making issues among software participant 

communities as they impact the project's cost and schedule. 

The intent of this work is not to specifically address and consider all of the multiple aspects 

associated with the software acquisition process, but to develop a framework that would 

enable the consideration of such complexities and interconnectedness, and then focus the 

research effort on a most-critical element of the software acquisition process - software 

estimation. 

The research builds on the framework of risk assessment and management for engineering 

systems, hierarchical holographic modeling (HHM), software estimation modeling, the 

partitioned multiobjective risk method (PMRM), the risk of extreme events, and dynamical 

modeling. 

While many examples and references are made to government software acquisition (due to 

the federal government's tremendous expenditures for software products and services and 

to the fact that government acquisition procedures, regulations, and results are available for 

public review), application of the results of this research are intended to strengthen the 

software acquisition program manager's (government or industry) ability to: i) identify and 

comprehend the complexities and risks associated with a software acquisition program, ii) 



quantify the uncertainties associated with the program, and iii) make trade-off judgments 

for resolving competing issues and objectives. 

1.3   Organization of the Dissertation 

This Chapter 1 demonstrates the need for a comprehensive approach to software acquisition 

risk assessment and management for identifying and evaluating project risks in situations of 

uncertainty. Background information regarding the criticality of software for modern 

systems, the complexity of the software acquisition process and all it encompasses, 

software risks, and past trends and shortcomings in software acquisition research point to 

the need for this research. 

Chapter 2 reviews the literature pertinent to software acquisition risk modeling. The 

concepts of risk, and risk assessment and management are introduced and reviewed. 

Model management methods, those approaches for structured consideration of multiple 

analytic models, are reviewed. Hierarchical holographic modeling (HHM), which provides 

the theoretical and methodological basis and incentive for many of the results of this 

dissertation, is introduced and reviewed. Software estimation and software reliability 

models are reviewed. An extensive review of software estimation methods and tools is 

provided in an appendix. The general concepts of probabilistic analysis are introduced, and 

an explanation of the fallacy of the expected value motivates the extension of classical 

approaches. The partitioned multiobjective risk method (PMRM), with its risk measure of 

extreme events,^, is introduced. 

Chapter 3 develops a hierarchical holographic model for software acquisition. Exploiting 

the inherent synergy of HHM's descriptive and analytic duality provides the necessary 

theoretical, methodological, and practical foundation for a software acquisition risk 

assessment and management framework. Only by exploring the various dimensions and 

perspectives of software acquisition, and the combinations of perspective elements, can 

risk identification be properly accomplished. 

Chapter 4 is a derivation and application of the exact solution for the expectation functions 

of the triangular distribution. In situations such as software acquisition, where insufficient 

empirical evidence or expert judgment rule-out the use of other probability distributions, 

analysis using triangular distributions is often desirable. Deriving risk functions for the 



triangular distribution enhances decision making in conditions of uncertainty, permitting 

probabilistic analysis that includes the additional information of the conditional expected 

value. Results are deployed to software acquisition decision making situations. 

Chapter 5 develops two probabilistic, multiobjective approaches for software estimation. A 

method for direct estimation that employs the results of Chapter 4 is developed and 

demonstrated. The second method, using Monte Carlo simulation, extends probabilistic 

analysis to the range of existing software estimation models. A methodology for evaluating 

the unconditional and conditional expected values of a Monte Carlo simulation is 

developed. The approach is deployed to the COCOMO model; comparisons of the 

probabilistic approach, the COCOMO model, and the actual project results are made using 

the original COCOMO data set. 

Chapter 6 extends the current state-of-art in software cost estimation modeling by 

developing multistage, dynamical software cost estimation models. As the software 

community embraces the spiral development process model, software cost estimation 

models that are responsive to the new paradigm are required. No longer a single time- 

period activity, software cost estimation models must account for the dynamics of changing 

software requirements and design over multiple time periods. Applying the probabilistic 

cost estimation method of Chapter 5 with its multiple objective risk functions constitutes a 

multiple objective decision problem that is solved over multiple stages. 

Chapter 7 explores two additional issues related to software estimation: i) the on-going role 

of software estimation for resolving the discrepancies between actual and estimated project 

progress, and ii) the coordinated resolution among participant communities of software 

program management. Actual project development effort and schedule rarely matches its 

estimates exactly - appropriately adjusting the estimation models to update the eventual 

effort and schedule requirements is facilitated through an HHM investigation. With a 

revised estimate, appropriate management control policies can be selected. These policy 

decisions, however, are not entirely in the jurisdiction of any one participant community, 

but are shared among the participants. Each participant is affected by the other's decisions. 

Investigation of the unique and overlapping problem elements through the HHM increases 

understanding and provides the framework for mutually agreeable solutions. 

Chapter 8 provides a summary of the contributions of the dissertation and some 

recommendations for future work. 



Three appendicies are included. Appendix A is a detailed tutorial on the popular software 

estimation model, Constructive COst Model (COCOMO). As COCOMO is widely 

recognized as the industry standard software estimation model, the results of this research 

are applied to the model. Appendix B is a thorough review of the many software 

estimation tools available on the market. A brief description of each tool, along with 

information concerning its vendor or supporting organization is provided. Appendix C 

includes derivations of the remaining conditional expectation functions for the triangular 

distribution that were not included in Chapter 4. 

1.4    Software Acquisition - Background 

The concept of software acquisition is in fact a misnomer (even though it is included in the 

title of this dissertation). In reality, government acquisition focuses on acquiring systems, 

not exclusive software per se; these systems include an increasingly major software 

component. Simply stated, systems acquisition (to include software acquisition) is the 

process and activities associated with procuring a solution system that meets a real-world, 

operational need. Major systems acquisition is a complicated jumble of regulations, 

organizations, activities, decisions, and procedures. The following sections provide 

background on some of the elements that contribute to the complexity associated with 

software acquisition: the criticality of software, the participants involved in software 

acquisition, the software acquisition process, software risks, and trends in software 

development and software acquisition research. 

1.4.1    Criticality of Software in Modern Systems 

As computer usage has become central to organizational activities and engineering system 

design, the software component of these systems has become increasingly important. The 

criticality of software's role in modern systems is well documented and universally 

accepted [Sage 1995], [Blum 1992], [GAO 1992b], [DSB 1987]. 

Chittister and Haimes [1994] document the occurrence of a power shift - the transfer of 

importance — from hardware to software within modern systems. Software has become 

the principal system design component, as well as the principal factor affecting system 

quality. In fact, software has been described as the "Achilles heel" of modern weapon 



systems because it is a key determinant of development schedules and because the 

performance of key functions such as navigation, enemy detection, and fire control 

depends on it [GAO 1992b]. As depicted in the introductory section of this Chapter, 

examples of system failure whose root cause can be attributed to software failure have been 

well publicized. 

Expenditures for software are growing rapidly. The Department of Defense "reached an 

annual software expenditure level in mission-critical computer systems [defined as systems 

whose failure would endanger life, equipment, or success of the defined task] of about $9 

billion in 1985, with projections of over $30 billion annually by the mid-1990s" [DSB 

1987]. As expenditures grow, so do concerns about the reliability, cost, and performance 

of these complex software systems. 

Due to the continued expansion of software's commanding role in modern systems (and the 

budget for such systems), the ability to effectively acquire and integrate software into these 

systems will continue to be an increasingly important issue. 

1.4.2    Participants in the Software Acquisition Process 

There are three principal participants, or groups of participants, in an acquisition endeavor: 

the user, the customer, and the contractor. As depicted in Figure 1.1, under current 

practice the user and contractor communities generally communicate through the customer 

community. Quite often, an almost adversarial relationship exists among the three 

communities, stemming from their competing interests and objectives. 

User 
Community 

Customer 
Community 

Contractor 
Community 

Figure 1.1 Acquisition process participants 

In government as well as corporate acquisition, these groups rarely constitute single 

individuals, but each is often comprised of one or more organizations and their 

representatives. The user's role is to identify and validate operational needs; the contractor 

is responsible for developing a system that will satisfy the operational need; and the 

customer organization is responsible for accurately translating the user's needs into the 

contractual language of systems requirements, selecting the most appropriate system design 



and the best qualified contractor, monitoring system development, accomplishing contract 

management and negotiation functions, and conducting system testing and acceptance. 

1.4.3 The Software Acquisition Process 

The software acquisition process encompasses all activities required to define, develop, 

test, and procure a software product. Acquisition starts with the process of defining 

requirements for a system and ends when the software is placed into operational use. 

Software acquisition is closely related to the term software development (the set of activities 

that results in software products) [DoD 1994]. The distinction made between the terms, as 

used in this dissertation, is that software acquisition implies the viewpoint, responsibility 

and focus of the customer community, while software development implies the activities 

and focus of the contractor community. Software acquisition encompasses all of the stages 

and activities of software development, with additional activities specific to the customer 

organization. Another term that is often used in connection with software acquisition or 

software development is the term software life-cycle. Again, there is a subtle distinction 

among the terms. The software life-cycle begins with the establishment of a mission need, 

encompasses all the activities of software acquisition, and includes the additional activities 

of operations, maintenance, reconfiguration, and retirement. 

1.4.4 Phases in the Software Process 

The software process discussion contained in the software literature is primarily focused on 

software development processes and on the contractor's role in the development process. 

Nonetheless, existing software process models provide the foundation for describing the 

central activities associated with software acquisition. An acquisition endeavor begins with 

the recognition that a problem or a need exists which can be solved or fulfilled by a 

software product. This leads to the design and implementation of the software product. 

Broadly, the activities in the process can be classified as [Abbott 1986]: 

Requirements: This phase covers the development of the system 
requirements and other specifications. The requirements characterize the 
expectations of the user from the software system and define the 
objectives to be achieved. These objectives may evolve over time. A 
detailed requirement specification could also describe the external behavior 
of the system. 



Design: A design describes the internal organization of a system. A 
detailed system design would include details on the various modules, sub- 
modules, and the interaction required. A set of preliminary test cases to 
be used for system debugging and evaluation is also specified in this 
phase. A detailed design also usually incorporates the concepts of 
dataflow, components, and would include flow charts and pseudo code. 

Implementation: This phase covers the actual coding of all the 
components of the system as well as the interactions between them. The 
debugging of the lower-level components of the system is usually a part 
of this phase. 

Testing: In this phase the debugging and testing of the overall system is 
carried out. The debugging is performed on the interactions between the 
different modules and the testing of the complete system is carried out 
according to the system test cases and data defined earlier. 

Operation: In this phase the system is fully operational and is used by 
the end user. Some debugging and minor revisions may be done in this 
phase as required. 

Maintenance: In this phase, the system is modified and enhanced 
according to new requirements desired by the user. Usually during this 
phase, any debugging or minor revisions done on the system during the 
operation phase are cataloged and incorporated into the system 
documentation. 

1.4.5    Models of the Software Process 

Software life cycle models identify various phases and associated activities required to 

develop, acquire, and maintain software, and provide excellent input into the software 

estimation process. This section discusses some of the common models of the software 

development process. The intent is to highlight the complex coordination of activities, 

processes, and individuals in a software acquisition effort. 

1.4.5.1  Waterfall Model. Traditionally, the software process has been described in 

terms of the waterfall model [Royce 1970], also known as the phased or the stagewise 

model. In this model (an adaptation from the hardware development process model), the 

software development process goes through each of the phases described in the previous 

section once. There are criteria defined for the transition from one phase to the next. At 

each phase, there is a feedback loop so that the product does not move on to the next phase 

until the validation of the previous phase is complete. The two main features of the 

waterfall model are the validation and verification of the current phase before progression to 
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the next phase and iterations of the previous phase in order to remove any remaining 

problems. Figure 1.2 illustrates the waterfall model. 

System 
feasibility 

Revalidation 

Figure 1.2 Waterfall model of the software process [Boehm 1981] 

While the model presents a logical, organized approach, its inflexibility in adapting to 

unique requirements of modern software development has led many in the software 

community to feel that the model has been discredited [Blum 1992]. Furthermore, the 

model was never really followed because of the iterative nature of software development. 

Consequently, the spiral model is gaining more acceptance, at least as the iterative 

approach. 
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1.4.5.2 Prototype Model.  Two prototype models, Rapid Prototyping, and 

Incremental Development, are discussed in [Davis et al. 1988]. The concept behind the use 

of the prototype model is that small problems are easier to solve than large ones. 

Therefore, the software development process consists of building a series of smaller 

systems for testing and evaluation. The experience gained from testing these prototype 

systems is then used to build the final system. The purpose of development of the 

intermediate products is to increase the understanding of the system and therefore only the 

most immediate issues are addressed. In most cases, the intermediate products from the 

application of the prototype model are discarded. 

The prototyping approach provides a more realistic validation for requirements than 

reviewing a set of specifications and manuals, it helps in minimizing requirements changes 

from a long development period, and makes it possible to generate a number of alternative 

systems for comparative trials. However, the failure of initial prototypes may discourage 

the users and the developers. It can lead to the acceptance of a suboptimal system which 

may require substantial rework before it can be accepted. 

1.4.5.3 Spiral Model. The spiral model of software development [Boehm 1988] 

integrates the prototype with the waterfall model as shown in Figure 1.3. The spiral model 

can accommodate the waterfall and the prototype models as special cases. This model 

consists of a series of learning cycles with each iteration including the phases of 

identification, evaluation, planning, and testing. With each successive iteration, greater 

insight is gained and system development is improved. 

There are no restrictions as to the number of cycles to be followed; the process is continued 

until an acceptable product is developed. By combining the stages from the waterfall model 

and the iterative nature of the prototype model, the spiral model addresses the limitations of 

the waterfall model. However, it only addresses development processes where 

requirements are specified but not processes where requirements evolve [Carr, 1989]. 

1.4.5.4 Other Software Process Models.   Additional software process models 

have been proposed, although not widely accepted. Carr's circular model [Carr 1989] was 

motivated by the need to address development processes where requirements evolve. This 

model consists of two independent cycles with three stages in each cycle. The first cycle 

consists of requirements, design, and evaluation functions while the second cycle consists 

of analysis, build, and evaluation functions. Progression from the first cycle to the second 
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Cost 
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next-level product 

Figure 1.3 Spiral model of the software process [Boehm 1988] 

is based on sucessful development of a proposed solution, otherwise, the process repeats 

the first cycle. The Reusable Software model and the Transform model [Davis 1988] 

include development phases and decision points for software projects that primarily depend 

on modifying existing software systems rather than developing new code. 

1.4.5.5    Software Process Models and Software Acquisition.   The 

evolutionary process models, such as the spiral model or circular model, provide a flexible 

structure for program managers to develop and adjust project design and objectives over 

time. Under such a paradigm, the program manager can iteratively evaluate alternative 

software designs to determine which best addresses user needs within resource constraints 

and at acceptable risk. Unfortunately, the government acquires software using a system 

known for its rigidity and dependence on the waterfall approach [DoD 1991]. 

One of the major initiatives associated with recent acquisition reform efforts is modifying 

the existing process to better meet the unique requirements of software projects. Adoption 

of Military Standard 2167A [DoD 1988] was an attempt to encourage modern software 
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development methods and flexible design opportunities in government software acquisition 

programs. Continued calls for improvements that include adaptive design, prototyping, 

and other iterative development approaches have been recommended [SST 1989], [DSB 

1994], [SAB 1994]. A newly-released DoD guideline for software development, MIL- 

STD-498 [DoD 1994], includes options for flexible acquisition strategies. 

1.4.6    Software Risk 

The categories of software risk are generally divided into those that deal with the process of 

acquiring the software and with the product itself. Chittister and Haimes [1994] refer to 

these two areas as software nontechnical risk and software technical risk. Software 

nontechnical risks are associated with the programmatic aspects of the acquisition process 

[Haimes and Chittister 1995]. This may include risks associated with general management, 

contractor selection, scheduling, budgeting, etc. Software technical risk refers to the 

adverse event that the software does not meet its intended functions and performance 

requirements. 

Charette [1989] highlights several general characteristics of the software acquisition 

environment that contribute to the presence of risks: 

• Software development projects are complex. The problem elements are 
numerous and the interrelationships among the elements are extremely 
complicated. 

• Relationships between elements may be highly nonlinear. 
• The elements of the problem are uncertain. 
• The situation is dynamic; conditions change continuously, equilibrium is 

rarely encountered. 
• Software development is a human endeavor, with all the problems that 

brings. 

The inherent uncertainty in software acquisition is a result of some of its key characteristics: 

software evolves rapidly, is difficult to explicitly define and specify, acquisition officials 

often lack software understanding, and there is difficulty in estimating project costs and 

time requirements. The current acquisition process takes an average of 16 years to field a 

new weapons system [Pages 1994], while software and computer life cycles are as short as 

1 to 2 years. A software solution could become obsolete before being delivered. 

The increasingly popular approach of using commercial off-the-shelf (COTS) packages to 

construct software systems rather than build all the needed components is often looked 
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upon as being a less-risky venture. Such buy-and-integrate strategies, however, have their 

own inherent risks. Some of the risks associated with COTS include [Fairley 1994]: 

• Integration. Integrating the different packages' data formats and 
communication protocols can be tricky. Often it takes more effort to 
integrate packages than to build the components from scratch. 

• Upgrading. The new version of a vendor's package may have a different 
interface or feature set than the old version. The new version may require 
more memory or run more slowly. 

• Lack of source code. Buying a COTS package provides only the object 
code, making enhancing the system nearly impossible. Vendors are 
reluctant to provide the source code. Even if the source code is available, 
it is often so difficult to understand that it is hard to modify. 

• Vendor failure. What happens if the vendor goes out of business or is 
bought out? 

1.4.7    Software Development Research 

Over the past three decades, much research has been conducted relative to software 

development practices and processes -- those generally associated with the contractor's 

domain of an acquisition project. Early efforts of applying and extending the practices and 

principles of engineering to software led to the development of the software engineering 

discipline (histories of the origins of software engineering are found in [Sage 1995], 

[[Blum 1992], and [Charette 1989]). The development of software life cycle models and 

software process development models [Feiler and Humphrey 1992], have helped to bring a 

degree of standardization and process improvement to the software development 

community. 

Much research has focused on improving the software development process (e.g., 

[Humphrey and Kellner 1989], [Kellner 1991], [Heineman et al. 1994]). Business 

realities such as strong competition, pressure for increased profits, and external regulations 

have spurred the momentum for an improved software development process [Austin and 

Paulish 1993]. Improving the software development capabilities of software vendors by 

improving their software development process maturity is the focus of the Software 

Engineering Institute's Capability Maturity Model (CMM) [Paulk et al. 1993]. This tool 

"provides software organizations with guidance on how to gain control of their process for 

developing and maintaining software and how to evolve toward a culture of software 

engineering excellence" [Paulk et al. 1992]. Other related advances including software 

process assessment [Humphrey 1989] [Kellner and Hansen 1988], software metrics 
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[Shepperd 1995] [Rozum 1992] [Mills 1988], CASE tools [Brown et al. 1994] [Barros 

1992] [Nejmeh 1990], software quality [Florae 1992] [Schulmeyer 1992] [IEEE 1990], 

and software reliability [Neufelder 1993] [Musa et al. 1990] [Glass 1979] have been 

accomplished predominately on behalf of the software contractor, to aid in the actual 

development of software. 

1.4.8    Software Acquisition Research 

Unfortunately, when compared to the volume of software development research, relatively 

little has been studied and written specifically for the customer's benefit, i.e., the 

development of methods and approaches to effectively manage a software acquisition 

effort. As it is the customer community that assumes the major role in an acquisition effort, 

"the next major improvement in software acquisition will come by turning the focus to the 

customer's role in this complex process" [Sherer and Cooper (draft) 1994]. 

Recent developments by the Software Engineering Institute [Ferguson et al. (draft) 1995] 

[Sherer and Cooper (draft) 1994] have led to an initial version of a Software Acquisition 

Capability Maturity Model (SA-CMM) for maturing the acquisition capabilities of the 

customer community. Parallel, yet independent research in this area is presented in [Baker 

et al. 1994]. As with the CMM, the SA-CMM is both an evaluative tool as well as an aid 

for increasing a community's capability. The SA-CMM (Figure 1.4) proposes a structure 

of five progressive levels of maturity for software acquisition capability, along with key 

process areas for each level. The premise of the maturity model is that increasing in 

capability by moving up in maturity level also increases the probability for success; a level 

3 organization has a greater probability of achieving success than a level 2 organization 

[Ferguson et al. (draft) 1995]. Increasing the acquisition capability of the customer 

community improves productivity and program quality while simultaneously reducing risk. 

The maturity progression is intended as an upward flow, in that satisfying the requirements 

of one level leads to higher-level functions. The key process areas at any given level 

describe the minimum requirements for that level of maturity. While a lower-level 

organization may be practicing some elements of a higher maturity level, it cannot achieve 

the higher level unless all of the requirements of all of the key process areas have been 

satisfied. 
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Level Focus Key Process Areas Result 

5 
Optmizing 

Process 
Optimization 

Continuous Process Improvement 
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Productivity  / 
& Quality     / 

1         Risk 

4 
Managed 

Quantitative 
Management 

Quantitative Process Management 
Software Quality Management 
Asset Management 

3 
Defined 

Integrated 
Project 
Management 

Organization Process Definition 
Organization Process Improvement 
Project Performance Management 
Contract Performance Management 
Intergroup Coordination 
Acquisition Risk Management 
Training Program 

2 
Repeatable 

Stabilized 
Contract 
Management 

Acquisition Management Planning 
Solicitation 
Requirements Development 
Requirements Management 
Project Office Management 
Contract Tracking & Oversight 
Evaluation and Acceptance 
Transition & Maintenance 

1 
Initial Ad hoc 

Figure 1.4 Software Acquisition Capability Maturity Model (SA-CMM) 
based on [Ferguson et al. (draft) 1995] [Sherer and Cooper (draft) 1994] 

Maturity in software acquisition capability implies a verified, repeatable, effective process 

and a quantitative management framework for governing that process. Level 2 focuses on 

stabilizing the management process, "allowing project teams to repeat successful practices 

employed on previous projects" [Ferguson et al. (draft) 1995].   A level 3 organization 

employs an integrated project management, contract management, and risk management 

strategy. At level 4, Quantitative Management, the customer builds on the level 3 

management framework by setting and monitoring quantitative quality goals for processes, 

products, and services. The highest maturity level, Optimizing - level 5, is focused on 

continuous process improvement; the organization has the means to identify processes that 

can be optimized and has statistical evidence available to analyze process effectiveness. 

The general framework of the SA-CMM underscores the need for a comprehensive 

software acquisition risk management vision with appropriate quantitative analysis for 

decision-making support. 
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1.5   Chapter Summary 

Software acquisition encompasses a wide range of activities and concerns far beyond that 

of the actual development of a software product. The complexity of the process now extant 

requires new analytical models and techniques that explicitly consider the uncertainties 

associated with software acquisition, and requires a multi-visionary approach to the 

understanding and quantification of both the complexity and the risks associated with the 

elements thereof. 

Strengthening the software acquisition manager's ability to systematically identify project 

risks, quantify their impact, assess various management policy alternatives, and do so in 

the ever-changing, dynamic environment of software acquisition would be of benefit. 

Such is the intent of this research. 
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Chapter 2 
Literature Review and Model Evaluation 

Software acquisition management requires the completion of many complex data analysis 

and decision making activities. Operating in an uncertain environment, one of the most 

challenging aspects of software acquisition management is accurately determining the 

needed resources, required schedule, and performance measures for software development. 

Such a task requires establishing the functions and characteristics of the desired system, 

estimating the size and design of the software product to be produced, and estimating 

development effort requirements. Accounting for, and effectively managing software 

acquisition risks is a key element in the management process. 

This Chapter provides a discussion of the relevant theories and analytical approaches that 

impact the decision making activities associated with software acquisition. This first 

includes a review of the concepts of risk, and risk assessment and management. Model 

management methods and hierarchical holographic modeling (HHM) - approaches for 

considering the integration of modeling efforts -- are reviewed. This Chapter reviews the 

various analytical approaches associated with software estimation: effort and schedule 

models, and software performance models. An extensive review of software estimation 

tools is provided, with detailed information in an accompanying appendix. The general 

concepts of probabilistic analysis are introduced, and an explanation of the fallacy of the 

expected value motivates the extension of classical software estimation approaches. The 

partitioned multiobjective risk method (PMRM), with its risk measure of extreme events, 

f4, is introduced. 

2.1    Risk 

Risk has been defined in many different ways. Some examples of these definitions are: 

• Lowrance [1976] has defined risk as "a measure of the probability and severity of 
adverse effects." 

• Rowe [1977] has defined risk as "the potential for realization of unwanted, negative 
consequences of an event." 
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Kaplan and Garrick [1981] suggest a quantitative definition of risk as a set of triplets. 
This set is framed as a series of three questions: 

- What can happen? (i.e., What can go wrong?) 
- How likely is it to happen? 
- If it does happen, what are the consequences? 

Risk, therefore, consists of two interrelated elements: i) the undesirable consequence or 

outcome, and ii) the probability or potential for the realization of that outcome. As 

introduced in Chapter 1, software acquisition risk includes software technical risks and 

software nontechnical risks. 

2.1.1    Risk Assessment and Risk Management 

The basic goal of risk assessment is to describe the current risk scenario by answering the 

three questions posed by Kaplan and Garrick [1981]. Risk assessment has been divided 

into three phases, namely, risk identification, risk estimation, and risk evaluation. The first 

phase, risk identification, is the reduction of descriptive uncertainty [Rowe 1977]. Relating 

to the definition of risk by Kaplan and Garrick, risk identification is the list of answers to 

the first question.   The second phase, risk estimation, is the reduction of measurement 

uncertainty [Rowe 1977] that comes in answering the second two questions. Risk 

evaluation is the assignment of values to the probabilities and the consequences associated 

with the scenarios identified in the risk identification phase. 

The risk management process builds upon the risk assessment process by seeking answers 

to a second set of three questions [Haimes 1991]: 

- What can be done? (i.e., What options are available?) 
- What are the associated trade-offs between the options in terms of costs, 

benefits, and risks? 
- What are the future impacts of current management decisions on future 

options? 

The answers to these questions facilitate risk-based decision making. 

2.2   Model Management 

Evaluation of complex systems and processes relies on the use of multiple analytic models. 

There has been a recognized increase in the use of computer-based management science 



20 

models to solve problems encountered in all areas of government, business, and industry 

[Muhanna and Pick 1994]. The requirement for, and the availability of, a large and diverse 

collection of decision models has prompted the growing body of work focusing on the 

topic of model management. 

The broad view of model management is "the philosophy that: 1) models are a resource 

(like data) that should be managed; and 2) modeling is an ongoing activity that should be 

managed, integrated, and coordinated in order to avoid wasteful, suboptimal decisions" 

[Muhanna and Pick 1994]. During the last decade, research concerning model management 

has been developed along such diverse paths as database theory, artificial intelligence, and 

conceptual graphs. 

2.2.1 Database Theory-based Model Management 

The success of database management systems in overcoming the problems of data 

management motivated a number of researchers to investigate the use of this technology in 

addressing issues in model management. Such data-oriented approaches are found in 

[Miller and Katz 1986], [Lenard 1986], [Liang 1985], and [Stohr and Tanniru 1980]. 

Unfortunately, these approaches are reported at the conceptual level with little consideration 

given to the feasibility or practicality of actual implementation. 

2.2.2 Artificial Intelligence-based Model Management 

Artificial intelligence techniques for knowledge representation have also been investigated 

for model representation (e.g., [Dutta and Basu 1984], [Fedorowicz and Williams 1986], 

[Shaw et al. 1988], and [Dutta and Mitra 1993]). Integrating database and formal logic 

approaches was proposed in [Bonczek et al. 1981]. Use of semantic nets as a vehicle for 

representing knowledge about models was proposed in [Elam et al. 1980]. Other than 

simple prototype systems, automated model synthesis through artificial intelligence has yet 

to be implemented. 

2.2.3 Graphical-based Model Management 

Graphical approaches to model management utilize visual images to capture and describe 

the relationship between models [Muhanna and Pick 1994], [Muhanna 1994], [Basu and 

Blanning 1994]. These approaches provide a framework for model composition by 
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identifying models that may be combined into an integrated model [Basu and Blanning 

1994]. In addition to the visualization benefits that graphical representation offers, the 

process of model integration is facilitated by identifying the connectivity of models that is 

made apparent in the graphs. Interconnecting the output of one model with the input of 

another, component models can be coupled together to assemble composite models. 

Muhanna and Pick [1994] advocate a modular, hierarchical model management approach in 

which composite models can be formed from the coupling of atomic models (those without 

components). These composite models can then be used as a component coupled with 

other models to form a new higher-level model. 

Model management systems (MMS) that essentially employ a graphical approach have been 

proposed as a component of computerized decision support systems [Applegate et al. 

1986], [Blanning 1985], [Sprague and Carlson 1982]. A MMS is "a software system that 

facilitates the development, storage, manipulation, control, and effective utilization of 

models" [Muhanna and Pick 1994]. While prototype MMS frameworks have been 

successfully developed, the inherent benefits of a graphical approach, along with ease of 

application, indicate that this approach has the most promise for implementation and use in 

actual model management applications. 

2.3  Hierarchical Holographic Modeling (HHM). 

Since its origin in 1981, the HHM has provided a general framework for addressing the 

modeling of complicated, multiple objective problems of large scale and scope [Haimes 

1981]. HHM's multivisionary approach to problem definition and risk identification has 

been widely, although often indirectly, accepted. Throughout his book Metasystems 

Methodology, Hall [1989] uses HHM to recount the history of systems methodology, and 

to distinguish the varied applied systems methodologies from each other. He states [Hall 

1989]: 

History becomes one model needed to give a rounded view 
of our subject within the philosophy of hierarchical 
holographic modeling, defined as using a family of models 
at several levels to seek understanding of diverse aspects of a 
subject and thus comprehend the whole. 

Fundamentally, HHM is grounded on the premise that complex systems and processes, 

such as software acquisition, should be studied and modeled by more than one single 
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model, vision, or perspective. HHM possesses a dual nature as 1) an holistic, investigative 

paradigm, and 2) a mathematically-sound, hierarchical, multiple objective decision-making 

methodology. The HHM approach identifies and coordinates multiple, complementary 

decompositions of a complex system. A decomposition is a hierarchy of systems; 

components, subcomponents, and sub-subcomponents to provide structure to the risk 

analysis process. 

The formal, methodological development of HHM builds on the hierarchical overlapping 

coordination (HOC) methodology [Macko and Haimes 1978] and the hierarchical 

multiobjective optimization (HMO) model [Tarvainen and Haimes 1982]. The impact of 

the HHM methodology is realized in that the basic philosophy is to build a family of 

hierarchical holographic submodels (HHSs) which address different aspects of the system. 

With each decomposition represented as its own HHS, HHM provides a construct for 

consideration of multiple objectives, multiple decision makers, linear and nonlinear causal 

relationships between model elements, and the coordination between the HHSs. Figure 

2.1 depicts a HHM framework with three HHSs and subsequent sub-HHS levels. 

HHM 
F*(F1,F2,F3) 

HHSj 
Fl*(f11,f12,...,fln) 

HHS, 

F2*(f2i,f22-.W 

HHS 3 
F3*(f3tf31,-,f3p) 

7\~ 
fl*l(flll'-'fllm) 

7V 
lirikl'""   lkp; 

"TV 
•   •   •   • 

Figure 2.1 Coordination in an HHM framework 

2.3.1   HHM as a Model Management Methodology 

While not generally referred to as such, HHM can be considered a model management 

methodology, related to the graphical approach of Muhanna and Pick [1994]. HHM 

provides a graphical framework for understanding and analyzing the elements 

(components) of a complex situation, the interrelations of these elements, data 

requirements, and analytical modeling approaches. In addition, the HHM methodology 

also provides a mathematical construct for higher-level decision making by resolving the 
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coordinated solution at the submodel level (and even at sub-submodel and lower levels as 

necessary), allowing for the possibility of overlapping and coordinated decision variables, 

objectives, and program constraints - qualities that are not part of other model management 

methods. 

HHM has been successfully deployed for examining large-scale technical processes and 

decision problems (e.g., [Haimes et al. 1994b], [Chittister and Haimes 1993], [Haimes et 

al. 1990]). While there are many complicated dimensions of the software acquisition 

process, a most troubling issue for software program managers is estimating software cost, 

schedule, and performance and making the difficult trade-off decisions among these 

elements [Barrow et al. 1993]. We next review analytic modeling approaches for software 

estimation. 

2.4    Software Estimation 

Software estimation is the activity of determining a software project's resource 

requirements, generally in terms of a project's cost and schedule. Due to the inherent 

relationship between cost and schedule, most software estimation models provide 

projections of both elements. 

Estimating a software project's cost and schedule is most often assessed by first answering 

the question [Conte et al. 1986], "how many people will the project require (or person- 

equivalent units of effort)?" Thus, the result of software estimation is often in terms of 

effort, as opposed to actual cost. The effort estimate can then be converted to cost and 

schedule. 

Software estimation models rely on a combination of algorithmic techniques, expert 

judgment, and analogy to past data. The algorithmic approach has been the most-studied 

method, identifying factors that must be considered while estimating development cost and 

schedule [Boehm and Papaccio 1986], [Mohanty 1981], [Boehm 1981], [Benbasat and 

Vessey 1980].   Determining the relationships among the factors has been approached 

through statistical models that rely on analysis of past software project data.   The two most 

widely-applied approaches for software estimation use different measures of system 

complexity as the basis of their estimation [Barrow et al. 1993]: the thousands of lines of 

code (KLOC) approach and the function point (FP) approach. 
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2.4.1    KLOC-based Software Estimation 

The largest class of software estimation models relies on mathematical relationships that 

compute software project development effort and schedule as a function of project size. 

The number of lines of code is the most commonly-used measure for software estimation. 

[Blum 1992]. The reliance on KLOC as the principal estimation factor was selected early 

by researchers, and is based on the observed correlation between delivered lines of code 

and development effort (measured in man-months) in the data collected from hundreds of 

software projects (e.g., [Boehm 1981], [Freiman and Park 1979]). 

One difficulty with the KLOC-based approach has been establishing a set definition for a 

"line of code." Discussion in the literature concerning comment lines, declaration 

statements, etc. has led to a general, although not universal, agreement [Boehm 1981], 

[Boehm 1986], [Jones 1986]. 

The relationships contained in KLOC-based models express development effort as a 

function of the number of lines of code, with the most-common form 

MM = a + b(KLOC)c (2.1) 

where MM is the man-months of development effort required to complete the project. The 

models focus on producing families of (a,b,c) values to account for project-specific 

factors. Improvements on the basic model (2.1) include adjustment multipliers that reflect 

project complexity, personnel experience levels, and management control policies 

(particularly resource allocation strategies). 

A conversion equation is then used to translate the man-month development effort estimate 

into an estimate of the project's development time, to 

tD = d(MM)e. (2.2) 

The values of the parameter vector <d, e> depend on project-specific attributes and 

characteristics. Note that to is the development time — the time requirement after the plans 

and requirements phases are completed. 
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The projected effort and time duration for each phase of the development life cycle is 

determined by distributing the total development effort and development time according to 

past observations of phase-specific effort and time requirements. This is often done on a 

simple percentage basis [Boehm 1981], or by more complex models that consider 

manpower staffing rates and other variables such as the trapezoidal staffing model [Londeix 

1987] and the Rayleigh curve model [Norden 1966]. 

2.4.2    Function Point-based Software Estimation 

In function point analysis, software estimation is based on the intended system's functional 

characteristics rather than its predicted size [Albrecht and Gaffney 1983]. Advocates of the 

approach claim that the method computes the cost of the problem to be solved rather than 

the product to be delivered. The objective is to quantify the size and complexity of a 

software system in terms of the functions that the system delivers to the user. 

Function point counts are arrived at by considering a linear combination of five basic 

software component estimates: inputs, outputs, inquiries, files, and external interfaces. 

Each component is evaluated at three complexity levels: low, average, and high. An 

adjustment factor that considers numerous aspects of a software project's processing and 

development complexity is then employed to modify the base function point count. 

Models that use function points for software estimation have generally been approached 

through regression methods that relate FP to development effort, or FP to development 

time [Albrecht and Gaffney 1983], [Kemerer 1987], and [Matson et al. 1994].   A 

limitation to its usefulness, function point analysis is designed to measure business-type 

applications; it is not appropriate for technical or complex applications that deal with 

complex algorithms. 

Currently, most users of the FP technique employ the method as a way of improving their 

KLOC estimate within a traditional cost estimation model [Austin and Paulish 1993]. 

Studies have produced FP-to-KLOC conversion multipliers for several software languages 

and development environments [Albrecht and Gaffney 1983] [Jones 1986]. Thus, function 

points normally are employed as an improved method of predicting the size of the delivered 

product, which is then used to predict effort and schedule. 
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2.4.3    Software Estimation Models 

The two system complexity measures, KLOC and FP, have been employed in a wide range 

of models. A taxonomy of software estimation approaches is shown in Figure 2.2. 

Software Estimation Models 

Static Dynamic 

r 
Non-Linear        Theoretical       Non-Linear Empirical Linear 

Nelson (1966)       Waltson-Felix (1977) Abdel-Hamid (1984)   Putnam (1978) 
Boehm(1981) 

Figure 2.2 A Taxonomy of Software Estimation Models 

Studies have shown no single method to be better than all others from all aspects [Bell 

1995] (see also [Conte et al. 1986], [Ferens, 1984], and [Kemerer 1987]). The selection 

of an appropriate estimation model is, therefore, dependent on the attributes of the 

particular software project, the development environment, software estimation experience, 

and the availability and type of estimation data (expert and otherwise) [Navlakha 1990]. 

The majority of software estimation models are of the static class, with very little work 

having been done in developing dynamical models. Early attempts projected linear 

relations between software effort and system size [Nelson 1966]. Later models explored 

more-realistic non-linear relationships. A number of non-linear static models have been 

proposed, of which one of the first was by Waltson and Felix [1977]. For surveys of 

linear and non-linear software estimation models, see [Barrow 1993], [Londeix 1987], 

[Conte et al. 1986], [Boehm 1981], and [Herd 1977]. The most widely known and widely 

used software estimation model is the Constructive COst MOdel (COCOMO) developed by 

Boehm [1981]. Numerous variations of the COCOMO have been developed, with recent 

updates including consideration of Ada projects [Boehm and Royce 1987], the use of 

commercial off-the-shelf (COTS) packages, software reuse, and other modern software 

development process issues [Boehm et al. 1995]. 
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Of the multitude of software estimation models besides COCOMO and its derivatives, a 

few have gained at least a degree of wide-spread acceptance, including: Price-S [Freiman 

and Park 1979], SEER-SEM [Galorath 1989], REVIC [Kyle 1991], Checkpoint [Barrow 

et al. 1993], and SLIM [Putnam 1978]. Of these, SLIM is the only one that could be 

considered a dynamic model. [Note: The Abdel-Hamid [1984] dynamic model, referred to 

as a holistic representation model [Bell 1995], is a conceptual model that attempts to 

describe the multitude of dynamic relations in software development with graphical node 

and arc relations.] Some of these models are KLOC or FP-based, while others rely on 

different metrics. Unlike COCOMO, whose methodology has been widely published, 

most of these other models are proprietary and their methodologies not released to the 

public. 

2.4.3.1 COCOMO. While this section provides only a brief review of COCOMO, a 

detailed tutorial of COCOMO is given in Appendix A. Originally developed in the early 

1980s [Boehm 1981], COCOMO is widely recognized within the software community as 

the predominant software estimation methodology. COCOMO is a public model, in that its 

methodology, assumptions, projects database, and updates have been widely published 

(e.g., [Boehm 1981], [Boehm and Royce 1989], [Boehm 1995]). COCOMO consists of 

three models of increasing complexity: Basic COCOMO, Intermediate COCOMO, and 

Detailed COCOMO. The primary distinction among the models is the detail and number of 

model parameters. 

Of the three models, the Intermediate COCOMO model has been the most widely 

implemented and, therefore, the most widely implemented of all software estimation 

models. The Intermediate COCOMO uses development effort equations to estimate the 

total man-months (MM) of development effort required to complete a project: 

MM = (EAF)[a(KLOC)b] (2.3) 

where the parameter vector <a,b> takes on differing values according to the development 

mode of the project, and the effort adjustment factor (EAF) indicates the effect of 15 "cost 

driver" attributes. The value MM that is produced from the effort equation is used in the 

schedule equation to estimate development time to (in months) 

tD =c(MM)d (2.4) 

where the parameter vector <c,d> takes on differing values according to the development 

mode of the project. 
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Recent extensions of the original COCOMO include a version tailored for Ada language 

projects [Boehm and Royce 1987], [Boehm and Royce 1989]. Development of a 

COCOMO model that includes consideration of software reuse and re-engineering, 

commercial off-the-shelf (COTS) packages, object orientation, non-sequential process 

models, and rapid development processes is in the design stage [Boehm et al. 1995]. 

In accuracy tests using actual KLOC and effort multiplier data, the reported accuracy of the 

COCOMO models is reported to be (at best) within 20% of the actual results 68% of the 

time [Barrow et al. 1993]. These reported accuracy levels define the upper limit of 

accuracy for software cost estimation, as these have been evaluated using actual, ex-post 

data. The COCOMO models are often used as the benchmark for testing other estimation 

methodologies [Kemerer 1987] and serve as the standard for the software community. 

2.4.3.2 The Price-S Model.  The Price-S model was developed by GE Price systems 

primarily for aerospace applications [Freiman and Park 1979] [Wolverton 1980]. A 

proprietary model, the exact form of the model's equations is not readily available. A 

general description of the model's methodology, however, is found in [Price 1988]. The 

major input to Price-S is KLOC; other inputs include software functions, operating 

environment, complexity factors, and productivity factors. As the model is intended for a 

specific software domain, its use for business and other non-aerospace applications is 

questionable. 

2.4.3.3 SEER-SEM. The System Evaluation and Estimation of Resources - Software 

Estimation Model (SEER-SEM) provides software estimation through knowledge bases 

developed from completed projects [Galorath 1989]. While the actual algorithms of the 

model are proprietary, SEER-SEM permits either KLOC or FP sizing input, and has been 

updated to handle software reuse and COTS development projects [McRitchie 1995]. 

SEER-SEM is applicable to all types of software projects and considers all phases of 

software development [Stutzke 1995]. 

2.4.3.4 REVIC. The Revised Enhanced Version of Intermediate COCOMO (REVIC) 

was developed by Hughes Aerospace using a database of DoD aerospace software projects 

[Kyle 1991]. Although REVIC is a COCOMO derivative, it uses different coefficients in 

the effort equations and uses a different methodology for distributing effort and schedule to 

each phase of product development. 
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REVIC also applies a measure of standard deviation to each estimate as a means of risk 

assessment. REVIC provides a single-weighted "average" distribution for effort and 

schedule along with the option for the user to vary the percentages in the development 

phases. 

2.4.3.5 Checkpoint. The Checkpoint model is a knowledge-based software estimation 

model with algorithms derived from measurements of more than 4200 software projects 

[Barrow et al. 1993]. The model is based on the work of Jones [1986] and incorporates 

proprietary algorithms. Checkpoint was one of the first models to incorporate function 

points as a measure of size to estimate project complexity. Other model inputs include 

project type and class, experience level, development method and environment. The model 

is intended to be applicable to all types of programs and all phases of the software 

development life cycle. 

2.4.3.6 SLIM.   While COCOMO and related models may be considered a micro- 

modeling approach (evidenced through reliance on detailed modeling parameters and an 

extensive projects data base), the Software Life Cycle Model (SLIM) could be considered a 

macro model that offers a top down approach to software estimation [Londeix 1987]. 

Developed by Putnam [1978] [Putnam and Fitzsimmons 1979], the SLIM model is based 

on Putnam's analysis of the software life cycle in terms of the Rayleigh distribution of 

project personnel level versus time (hence the dynamical model classification). 

While SLIM is a proprietary model and much of the detail regarding its current form is not 

publicly available, the general theory upon which the model is based is available in the open 

literature [Putnam and Myers 1992]. Originally developed from analysis of ground-based 

radar software programs, SLIM has been expended to include other types of programs 

[QSM 1987]. 

The SLIM model considers four essential variables that characterize a software project. In 

addition to estimating the size of the project (in KLOC), the user must estimate two of the 

remaining three parameters: life cycle manpower requirement (in man-months) indicating 

the software developer's staffing throughout the life cycle, the productivity factor (PF) that 

measures the software developer's efficiency, and the total required development time to- 

The relationship among model variables is given by [Putnam and Myers 1992] 
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KLOC = (PF)MMyH% (2-5) 

which, by rearranging the equation, can be solved for the unknown variable. 

The Rayleigh curve orientation of SLIM provides a framework for investigating effort- 

schedule trade-offs, but experience has shown that the SLIM model is very difficult to 

implement without considerable experience and extensive project-specific tailoring [Putnam 

and Myers 1992]. 

2.4.4 Accuracy of Software Estimation Models 

Objective studies of software estimation methods have been few. Often, the developers of 

a method have described their own technique and reported their own assessment [Jensen 

1983], [Putnam 1978], [Waltson and Felix 1977]. Other researchers have tried to predict 

the cost of software projects but only after their completion and hence with full knowledge 

of their final scope [Banker and Kemerer 1989], [Kemerer 1987], [Kitchenham and Taylor 

1985]. Studies found the error rates of cost estimation models ranged from 85% to 772% 

[Kemerer 1987], while comparative studies of expert estimation (without algorithmic 

models) showed error rates ranged from 32% to 1107% [Vicinanza et al. 1991]. 

Regardless of the underlying independent variables, studies indicated the tight link between 

the preparation of the algorithm's input parameter estimates and the accuracy of the model's 

final prediction [Kemerer 1987], [Lederer and Prasad 1993]. In terms of the two principal 

approaches, studies indicate estimating KLOC (versus estimating the many parameters of 

the FP approach) proved to be a more manageable task [Lederer and Prasad 1993], [Bailey 

1986] 

2.4.5 Software Estimation Tools 

There are many software tools on the market that implement the software estimation models 

described above. A list of software cost estimation tools is provided in Table 2.1, grouped 

according to the underlying model or methodology employed: COCOMO, Function Point, 

or other. Other than those tools that are direct implementations of COCOMO or FP, the 

majority of these tools contain proprietary algorithms and datasets. A brief description of 

each tool, along with information concerning its vendor or supporting organization is 

provided in Appendix B. 
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Table 2.1 Software Estimation Tools 
Product                                                  Comments 

COCOMO-Based  Tools 

CB COCOMO 
Based on COCOMO to estimate effort and cost of software 
development projects 

COCOMOl Artificial Intelligence front end with COCOMO model 

COCOMOID 
Provides estimates also based on enhanced ADA, Ada process 
and incremental development models. 

CoCoPro Estimates resources needed using standard COCOMO 

COSTAR 
Uses Detailed COCOMO, Ada COCOMO, and allows sizing 
with function points. 

COSTMODL 
Detailed COCOMO model; available to government by 
NASA/JSC. 

GECOMO Plus Implements an extended Detailed COCOMO and includes Ada. 

GHL COCOMO Estimates development cost based on COCOMO. 

REVIC 
Intermediate COCOMO with life cycle costing and risk 
analysis (public domain) 

SECOMO Full COCOMO with maintenance cost estimation. 

SWAN 
Cost estimation with COCOMO, size estimates with function 
point analysis. Developed for US. Army. 

Function   Point-Based   Tools 

ASSET-R 
One in a family of models for software development 
estimation. Uses FP analysis. 

CA-FPXpert On-line tutor for FP analysis. 
CHECKPOINT Knowledge-based estimation tool using FP. 

Micro Man 
ESTI-MATE Estimates for Information systems using FP analysis. 

PROJECT BRIDGE 
Knowledge-based tool using FP analysis for Information 
Systems projects. 

SIZE Plus FP analysis for data processing and real-time applications. 

SPOR/20 
Incorporates proprietary algorithms with FP analysis for cost 
and productivity estimation. 

Other Method-Based Tools 

CA-ESTIMACS 
Estimates effort, schedule, and cost of Information System 
projects. 

CEIS 
Four independent size estimates based on comparison to known 
projects. 

COSTEXPERT Expert System based model. Does not use KLOC or FP. 

PRICE S 
Uses functionality and KLOC for cost, effort, and schedule 
estimates. 

SASET 
Forward chaining, rule-based expert system utilizing a 
hierarchically-structured knowledge database. 

SEER-SEM Software cost, schedule, and risk estimation model (Air Force- 
wide license). 

SEER-SSM Software size estimator. 

SIZE PLANNER 
Uses four approaches for size estimation: fuzzy logic, FP, 
standard component, and new/reused/modified sizing. 

SIZEEXPERT Produces estimate of KLOC based on cost expert questions. 

SLIM 
Proprietary analytic tools and expert system methodology for 
cost and schedule estimation. 

SOFTCOST-R KLOC-based model for estimation of general projects. 
SYSTEM-4 Cost estimation utilizing KLOC-based proprietary algorithm. 
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2.5    Software Performance 

Software performance generally refers to how well the software functions to meet the 

stated requirements of the system [Musa et al. 1990]. Software performance includes 

many attributes such as availability, reliability, safety, performability, maintainability, and 

testability [Johnson 1989]. Reliability is probably the most important of the characteristics 

[Bittanti et al. 1988]. It is intimately connected with defects, and as Jones [1986] points 

out, defects represent the largest cost element in programming. In this section we define 

the common terms associated with software reliability and discuss various approaches of 

modeling and quantifying software reliability.  The effect of management policy options on 

software reliability is discussed. 

2.5.1    Software Defects, Faults, Errors, and Failures 

We must first distinguish between software faults and software failures. A software fault 

is a defect in the program that, when executed under particular conditions, causes an error 

[Musa et al. 1990], [Johnson 1989]. A software failure is the departure of the external 

results of program operations from requirements [Musa et al. 1990]. Johnson [1989] 

includes an intermediate term, software error, as a manifestation of a fault which then leads 

to the observed failure. More commonly, the distinction is limited to the two: faults and 

failures [Putnam and Myers 1992], [Musa et al. 1990], [Bittanti et al. 1988]. 

Software faults (we'll also refer to these as defects) occur throughout the development 

process and may occur in requirements, specifications, or design, as well as in the actual 

computer code [Putnam and Myers 1992]. Software developers find these defects by 

means of self-checking, reviews, walkthroughs, inspections, module testing, etc., not 

simply because the program fails in operation. 

The number of defects and the resulting observed failures are key values for determining 

software reliability. The software defect rate is the number of defects per unit of 

development time, or the rate at which defects are introduced into the software system over 

time. A related concept is that of defect density, which is the number of defects per size 

unit of code (e.g., KLOC). The software failure rate, as opposed to the defect rate, 

represents the number of program failures per unit of execution or operation time. 
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2.5.2    Software Reliability 

The definition of software reliability that is widely accepted throughout the field is the 

probability of failure-free operation for a specified time interval [to, t] given the system was 

performing correctly at time to [Johnson 1989]. Letting The the random variable 

representing the time to next failure, the reliability function R(t) is given by 

R(t) = P[T>t]. (2-6) 

Associating to the random variable Tthe cumulative distribution function (cdf) F(t) and the 

probability density function (pdf) fit), we observe 

F(t) = \'of(x)dx = P[T<t] = Q(t) = \-R(t). (2.7) 

Q(t) is the unreliability function, and fit) is tine failure density function. From Eqs. (2.6) 

and (2.5), we note that reliability is equivalent to an exceedance function, hence its natural 

suitability for extreme event analysis [Asbeck and Haimes 1984]. 

A significant quantity that provides an index of reliability is the mean time to failure 

(MTTF). The MTTF is the expected time that a system will operate before the first failure 

occurs. It is defined as [Johnson 1989], [Bittanti et al. 1988]: 

MTTF = E[T] = [tf(t)dt = \~R(t)dt (2.8) 

The failure rate function z(t) is the instantaneous rate at which the software fails. The 

failure rate can be expressed in different ways, most simply 

z(0 = —■ <2-9> R(t) 

Software reliability information is valuable for a number of reasons [Austin and Paulish 

1993]: 

• As the failure rates decrease with testing and debugging, predictions of failure rates 
can help determine when to stop testing (e.g., when the quality of the software is 
adequate). 

• Having a prediction of failure rates makes decisions about trade-offs among 
performance, cost, schedule, reliability, and other factors easier and more explicit. 
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• Accurate prediction of failure rates makes it possible to guarantee failure rates below 
certain tolerances. 

2.5.3    Approaches to Highly Reliable Software 

Essentially there are three different ways to pursue highly reliable software: to avoid the 

occurrence of faults in the design and development of the program; to make use of fault 

tolerant structures; to remove faults during the test phase. 

The first approach consists of designing software by using structured programming, formal 

specification languages, software clean rooms, or other software development tool effective 

for reducing the probability of error introduction [Lyu and He 1993], [Ghezzi et al. 1988], 

[Gehani and McGettrick 1986]. 

In the second approach, reliability is obtained by designing fault-tolerant software systems, 

able to perform satisfactorily even in the presence of faults [Johnson 1989]. This is usually 

done by providing convenient redundancy in the program or adding some error-recovery 

procedures. Surveys and comparisons of fault tolerant software systems and their 

effectiveness in terms of software reliability can be found in [Hudak et al. 1993], [Vaidya 

and Pradhan 1993], [Tai et al. 1993], [Kanoun et al. 1993], [Knight and Ammann 1991], 

and [Avizienis 1985]. 

The third approach improves software reliability through testing and fault correction 

activities ("debugging"). During this phase, the program undergoes an extensive validation 

test aimed at detecting as many remaining defects as possible. As soon as a failure is 

observed, the fault in the code which caused the failure is searched for and, hopefully, 

eliminated. Despite advances in the other two areas, thorough testing is the primary 

method to achieve software reliability and usually takes a significant percentage of time in 

the life cycle of the software product. Common test-for-reliability issues include estimating 

the inherent fault density, determining fault reduction factors, fault detectability, fault 

correctability, the introduction of new faults while correcting others, fault prioritization, 

and the relationship between testing time and defect detection and removal [Rozum 1992], 

[Musa et al. 1990], [Bittanti et al. 1988], [Putnam and Myers 1992], [Jones 1986]. 
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2.5.4    Software Reliability Models 

To model software reliability, one must consider the principal factors that affect it: fault 

introduction, fault detection and removal, and the environment. Fault introduction depends 

on the characteristics of the developed code and the development process characteristics. 

The most significant code characteristic is size (KLOC) [Musa et al. 1990], [Boehm 1981]. 

Development process characteristics include software engineering technologies and tools 

used and the level of experience of the personnel. Fault removal depends on time, 

operational profile, and the quality of the repair activity. The environment directly depends 

on the operational profile. 

Various analytical methodologies have been applied to the prediction of software reliability. 

These methodologies differ with regard to the level of data, the nature of the dependent 

variables, and the development outcomes under consideration. Regression models have 

been developed from past project data that relate reliability metrics (e.g., defect density) 

with other system variables such as KLOC, programmer experience, computer language, 

and development time [Evanco and Lacovara 1994], [Putnam 1992], [Musa et al. 1990], 

[Agresti and Evanco 1992], [Prentice 1981], [Boehm 1981]. These relationships are then 

expressed in algorithmic models to estimate software reliability given certain project 

characteristics. 

As some of the above factors are probabilistic in nature and operate over time, other 

software reliability models are formulated in terms of random processes. The models are 

distinguished from each other in general terms by the probability distribution of failure 

times or number of failures experienced and by the nature of the variation of the random 

process with time. Poisson process models of the nonhomogeneous type have been used 

to describe the random failure process and estimate system reliability [Schneidewind 1993], 

[Kanoun et al. 1993], [Musa et al. 1990], [Bittanti et al. 1988]. 

For software systems that can be represented by modular structures or that incorporate 

redundant-design architecture, Markov models have been applied to estimate software 

system reliability [Johnson 1989], [Tai et al. 1993], and [Kanoun et al. 1993]. The 

Markov modeling framework allows for analysis of fault introduction, error occurrence and 

detection, and recovery or failure. The system states are generally defined in terms of 

operating status (e.g., good, error, error-detected, recovered) and completion status (e.g., 

pass, fail, crash, abort) [Hudak et al. 1993]. Markov models utilize estimated hazard rates, 
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MTTF data, correction rates, and detection capabilities to define the state transition 

probabilities. 

2.5.5    Software Reliability Trade-offs 

While software reliability models provide the behavior of the software failure rate over 

time, this relationship is also tied to other software development parameters: product size, 

development time, staff size and effort, productivity, project complexity, acceptable 

performance thresholds, and manpower buildup rate [Putnam and Myers 1992]. Each of 

these parameters has an effect on the number of defects created and, consequently, upon 

the reliability of the product. In effect, more or less of each parameter can be traded-off for 

reliability. Of these trade-offs, some fall within the domain of the customer and user 

(acceptable performance levels, product size and complexity - as affected by requirements) 

while others are under the control of the contractor (staffing, personnel experience, etc.). 

2.6    Probabilistic Evaluation 

Most, if not all, large-scale systems are designed, managed, maintained, and utilized under 

the condition of uncertainty. Unfortunately, this uncertainty is often neglected in the 

formulation of supporting analytic models. Software estimation is no exception. 

In most cases, the traditional use of a single value estimate is not adequate to represent the 

uncertainty associated with that system or environment. Because the assessment and 

ultimate prevention of risks (e.g., cost overrun) are of such major concern, it is desirable to 

retain as much information as is possible in the quantification of model parameters. A 

single value assessment conveys no information as to the likelihood (let alone possibility) 

of deviation from that assessed value. It is for this reason that it must be advocated that 

more than a single value assessment be conducted. 

Probabilistic quantification is one approach for addressing the problems associated with 

single value estimation. A probability distribution is a model able to capture the range and 

estimated likelihoods of the potential realizations of a varying or uncertain quantity. Even 

in the face of little empirical evidence, probabilistic evaluation can be conducted using the 

triangular distribution [Haimes et al. 1994a]. Constructing a triangular distribution requires 

evaluation of only three values: the lower bound, the upper bound, and the most likely 
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value. Use of the triangular distribution is widespread; the Army Corps of Engineers 

accepts the triangular distribution as the basis for their probabilistic analysis for flood and 

river risk management [Haimes et al. 1994b]. 

2.6.1    Fallacy of the Expected Value 

Unfortunately, in most cases where probabilistic quantification is practiced, the expected 

value is used as the sole measure of risk. This may lead to inaccurate or misrepresentative 

results. The expected value of risk is an operation that takes the product of each outcome 

and its probability of occurrence and sums (or integrates for continuous outcomes) all these 

products. This operation thus commensurates adverse events of high consequences and 

low probabilities with events of low consequences and high probabilities. The expected 

value thus masks the true variance and uncertainty that should be represented. This 

phenomena is illustrated in Figure 2.3. Notice that both events A and B have the same 

expected value but have very different distribution characteristics . 

f(x) 

Figure 2.3 Insufficiency of the expected value for decision making 

Distribution B has greater variance, or a greater tendency for events to occur in the extreme 

ranges of the distribution. Given only the expected value of the two events, a decision 

maker would be indifferent between the two events, but given the "full" picture of the two 

events the decision maker would choose A, the event with a lower risk of extreme events. 

This simple example provides a strong argument for the need to consider more than the 

expected value as the principal metric used in decision making. 
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2.6.2   The Partitioned Multiobjective Risk Method (PMRM) and the 

Conditional Expected Value 

Catastrophic, or extreme events, are defined as having a low probability of occurrence but a 

high damage level. Proper risk management must focus on the management of extreme 

events - for it is these catastrophic disasters, not the more common "expected value" 

events, that cause grave harm to the system. A risk measure associated with extreme 

events - the conditional expectation - can be useful in management of extreme events as it 

does not average out catastrophic events with more high-frequency, low-consequence 

events. 

Consider a continuous random variable X of damage (e.g., cost overrun, time delay) that 

has a cdf F(x) and a pdf fix), which are defined by the relationships 

F(x) = ?[X<x], x>0 (2.10) 
and 

/(x) =  ^M   x>0. (2.11) 
dx 

The cdf represents the nonexceedance probability of x, the probability that X is observed to 

be less than or equal to some value x. The exceedance probability of x is defined as the 

probability that X is observed to be greater than or equal to x, and is equal to one minus the 

cdf evaluated at x. The expected value, average, or mean value of the continuous random 

variable X is defined by 

E[X] =   r xf{x)dx. (2.12) 

In the partitioned multiobjective risk method (PMRM) [Asbeck and Haimes 1984], the 

concept of the expected value is extended to generate the conditional expected-value 

function, often referred to as a risk function, which is associated with an extreme range of 

exceedance probabilities or their corresponding range of extreme harm severity. The 

resulting conditional expected-value function, in conjunction with the traditional expected 

value, provides a new measure of the risk of extreme events associated with a particular 

policy. 

Referring to Figure 2.4, let (1 - a), where 0 < a < 1, denote an exceedance probability 

that partitions the domain of X into a range of extreme events, as follows. On a plot of 

exceedance probability, there is a unique harm ß on the damage axis that corresponds to 
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the exceedance probability (1 - a) on the probability axis. Damages greater than ß are of 

high severity and low exceedance probability and constitute the range of extreme events. 

If, for example, (1 - a) is taken to be equal to 0.05, then ß is the 95th percentile. 

Low and moderate severity 
High and medium exceedance probability^ 

High severity 
Low exceedance probability 

Damage X ß 

Figure 2.4 Extreme event probability partitioning 

For a range of extreme events, the conditional expected damage (given that the damage is 

within that particular range) provides a measure of the impact associated with extremely 

large and potentially very costly and catastrophic events or scenarios. This measure is 

based on the definition of the conditional expected value. The conditional expected value 

risk measure is denoted by f4 and is related to scenarios of low exceedance probability and 

high severity. The function^ is the expected value of X, given that x is greater than ß: 

/4 = E\X\x>ß] = 
J xf(x)dx 

ffMdx 
(2.13) 

Thus, for a particular policy option, there is the additional measure of risk/4, in addition to 

the traditional, unconditional expected value, E[X], denoted by/5. Note the similarity 

between the forms offy and/5: 

f, 
j   xf{x)dx 

\~J{x)dx 
= J" xf(x)dx = E[X] (2.14) 
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(since the probability in the denominator of Eq. (2.14) is necessarily equal to one). In the 

PMRM, the conditional and unconditional expected values are balanced in a multiobjective 

formulation. The function/4 is related to the percentile (e.g., the 95th percentile) as a 

measure of the risk of the extreme events, but provides a superior representation of the risk 

of extreme events because it can distinguish between different shaped distributions when 

the exceedance probability at a particular location is the same. The function^ is a natural 

measure of the risk of extreme events for risk-based decision making. It transfers the 

positive attributes of the unconditional expected value to a preselected extreme range of 

harm, thus providing a basis for realistic and conservative policies. 

2.7     Chapter Summary 

This chapter has reviewed topics pertinent to software acquisition risk management. The 

complexities of the software acquisition process, in particuar the numerous elements 

asssociated with the software estimation process and software reliability require a multi- 

visionary approach to software acquisition management. The holistic framework of HHM 

provides the basis for systematic investigation of the many dimensions of software 

acquisition. Probabilistic extensions of software estimation models will explicitly 

incorporate the uncertainties associated with the software estimation effort. Through the 

HHM, appropriate software estimation models can be brought together, allowing for 

coordinated trade-off analysis and risk-based decision making that utilizes the additional 

information of the conditional expected value of extreme events. 
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Chapter 3 
A Holistic Management Framework for Software Acquisition 

This Chapter develops a holistic framework for software acquisition that provides a 

comprehensive representation of the multitude of elements, issues, activities, organizations, 

and products that taken together constitute software acquisition. Centered on hierarchical 

holographic modeling (HHM), the framework has provisions for exploration and 

expansion of the multiple visions or decompositions. The intent of this Chapter is not to 

explicitly address and consider all of the multiple aspects associated with the software 

acquisition process; rather, the objective is to develop a framework that would enable the 

consideration of such complexities and interconnectedness. This framework forms the 

foundation of a systemic approach to software risk identification, software cost and 

schedule estimation, and software project management decision making - topics that are 

addressed in subsequent chapters of this work. 

3.1    Introduction 

Effective management of modern, complex processes such as software acquisition requires 

capable, mature direction. To do justice to the management of technological systems, one 

must address the holistic nature of the system in terms of its hierarchical, organizational, 

and functional decision-making structure; the various time horizons; the multiple decision 

makers, stakeholders, and users of the system; and the host of technical, institutional, 

legal, and other socioeconomic conditions that require consideration. With the ever- 

increasing importance and complexity of the software component of modern systems, it is 

essential that software acquisition be addressed in terms of its overall system. 

The role of models is to represent the intrinsic and indispensable properties that serve to 

characterize the system, i.e., good models must capture the essence of the system. "In the 

abstract, a mathematical model may be viewed as a one-sided limited image of the real 

system that it portrays. To clarify and document not only the multitude of components, 

objectives, and constraints of a system but also its welter of functional, temporal, and other 

aspects is quite impossible with single-model analysis and interpretation" [Chittister and 

Haimes 1993]. Given this assumption and the notion that ever-present integrated models 
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cannot adequately cover a system's aspects per se, the concept of HHM constitutes a 

comprehensive theoretical framework for systems modeling. 

Clearly, the multi-dimensionality of the acquisition process, and the large number of 

activities, organizations, and disciplines that are engaged in this process defy the capability 

of any single model to represent the essence of the acquisition process. To overcome the 

shortfalls of single planar models and to identify all sources of risk associated with the 

software acquisition process, an HHM framework will be adopted here. HHM assumes an 

iterative approach to providing the structure for identifying all risks. If one fails to identify 

a risk source with the current views of the HHM, then expansion of the model to include a 

new decomposition is possible. This process, itself, will eventually capture all risk 

sources. 

In the remaining sections of this Chapter, the five major decompositions (visions) of the 

software acquisition HHM framework are described first, followed by a discussion of their 

integration within the overall HHM structure for risk identification and model development. 

3.2    The HHM Decompositions for Software Acquisition 

Development of an HHM model for software acquisition requires consideration of the 

multitude of issues and factors associated with the process. As the intent of an HHM 

model is to identify and manage risk sources, the elements of the model should be as 

comprehensive as possible. Specifically, we seek the set of decompositions or visions that 

together describe the multi-faceted nature of the problem. The materials presented in 

Chapters 1 and 2 regarding the complex issues affecting software acquisition assist in 

formulating the dimensions of the problem: the stages and activities of the process, the 

participant communities, consequences of mismanagement, and risk causation and sources. 

Investigations into the software acquisition field (e.g., [Sage 1995], [Chittister and Haimes 

1995], [Chittister and Haimes 1993], [Blum 1992]) underscore the criticality of a multi- 

vision approach: the need to consider a continuously changing environment, the pace of 

technology advancement, and organizational considerations. The Software Development 

Risk Taxonomy [Can et al. 1993] provides additional insight regarding the range of issues 

and concerns affecting the software product in terms of product engineering, development 

environment, and program constraints. 



43 

The HHM for software acquisition developed in this Chapter includes five principal 

decompositions, perspectives, visions, or hierarchical holographic submodels (HHSs) (see 

Figure 3.1). Each HHS addresses software acquisition from one particular perspective or 

dimension. In their totality, these seemingly disparate visions of sources of risk constitute 

the building stones of a risk identification framework. The program consequence HHS 

represents those outcomes or effects that provide a measure of acceptability for project 

progress and program management policies. The community maturity HHS recognizes the 

competing, yet coordinated activities, interests, objectives, and concerns of each participant 

group. The life cycle HHS contributes a temporal perspective, accounting for the 

progression of events and activities of the software life cycle. The modality HHS 

represents the major classes of failures, and the interaction of these failures, that contribute 

to system risk. The project elements HHS considers the project complexity and the 

development environment. 

Software 
Acquisition 

1 
Program 

Consequence 

Cost 

Schedule 

L—    Technical 

Community 
Maturity 

User 

Customer 

Contractor 

— Requirements 

Life Cycle 

Design 

Development 

Integration/ 
Test 

1— Maintenance 

Modality 

—    Hardware 

—    Software 

Organiza- 
tional 

Human 

External 

Project 
Complexity 

Development 
Environment 

Figure 3.1 Hierarchical holographic modeling for software acquisition 
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The claim is not made that the HHM in Figure 3.1 is all-inclusive or is a totally 

comprehensive set of software acquisition risk sources. It does, however, provide the 

framework that, as our knowledge of software acquisition improves over time, new aspects 

or visions that are not foreseen today can be added. 

3.2.1 Program Consequences Decomposition 

One of the visions or decompositions that constitutes the HHM for the risk assessment and 

management of software acquisition is the perspective of program consequences. This 

decomposition represents the principal elements that describe the acceptability and progress 

of an acquisition program: cost, schedule, and technical performance. 

1) Cost: The programmatic costs associated with software acquisition. Program 

costs are most often measured against the planned or budgeted expenditures, and costs in 

excess of these amounts signals potential problems. 

2) Schedule: The time requirement to design, develop, test, and implement the 

software system. The total schedule requirement is often segmented into the several life 

cycle phases for more accurate project tracking. 

3) Technical: The ability of the system to meet its intended functions and 

performance requirements. 

This vision incorporates the notion of quality, addressing both technical and nontechnical 

risks: technical performance of the product, cost overrun, and time delay in schedule. To 

address the risk associated with the program consequences, one must address the 

overlapping with all other visions and their sub-elements. 

3.2.2 Community Maturity Decomposition 

Another vision of the HHM can be obtained through consideration of the three principal 

participant communities associated with a software acquisition endeavor, as described in 

Chapter 1: the user, customer, and contractor communities. 

1) User: The community responsible for identifying operational needs (hence, 

system requirements) and for using and operating the developed system. 

2) Customer: The organization that works with both of the other communities to 

procure a system that meets the operational requirements, and do so within budgetary and 

time constraints. 
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3) Contractor:   The organization responsible for developing the system that will 

satisfy the stated requirements. 

The participant community decomposition provides an investigative framework for 

examining the risk sources within and among each group, relative to the other 

decompositions. The capabilities, maturity, experience, and competence of each 

community in performing their required functions and activities is addressed through this 

vision. 

3.2.3 Life Cycle Decomposition 

The life cycle decomposition represents the temporal element of software acquisition; the 

progression of events and activities, along with the sequence of associated decisions, 

through the various phases of the life cycle. These phases, which may be represented in a 

waterfall, spiral, or other process paradigm are described in Chapter 1 and include: 

1) Requirements 

2) Design 

3) Development 

4) Integration/Test 

5) Maintenance. 

These categories provide a comprehensive scheme for the identification and assessment of 

the sources of risk associated with each category at different points in time, and with all the 

other decompositions (within the other four visions of the HHM). This decomposition also 

addresses the propagation of the development effort within the life cycle of a product. For 

example, the impact of requirements changes over time. 

3.2.4 Modality Decomposition 

The modality vision addresses five general sources of possible risk of failures: 

1) Hardware: the hardware used to develop and test the software, as well as the 

hardware components with which the software is to be integrated. 

2) Software: includes consideration of various software development technologies 

(COTS, re-use, etc.) as well as software languages and software used to develop other 

software (e.g., CASE). 
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3) Organizational: the institutional procedures, regulations, policies, structures, 

philosophies, maturity, and influence that contribute to program risk. 

4) Human: software development and acquisition is, fundamentally, a human 

endeavor - thus is affected by human failures and shortcomings. 

5) External: this element is to provide coverage of sources of risk that are 

essentially beyond the control of the software acquisition domain. Examples of external 

risk sources include political influence, international events, etc. 

3.2.5 Project Elements Decomposition 

The project elements decomposition includes two sub-decomposition: 

1) Development environment: consideration of the environment within which the 

software is to be developed: the software process maturity, software development tools 

and systems, the work environment, etc. 

2) Project complexity: the relative degree of difficulty and effort that is to be 

expected in developing this product. Considers project size, functions, platform, etc. 

This decomposition contributes an understanding of the overall complexity of the intended 

system and the risks that are associated with that complexity. It also captures the sources 

of risk due to the development environment. 

3.2.6 Adding Detail to the HHM Decompositions 

In many ways, Figure 3.1 does not do justice to the task of communicating the myriad of 

risk sources associated with each decomposition element. As mentioned above, however, 

the HHM provides the framework for expanded analysis and investigation. Consider, for 

example, the two sub-decompositions of the project elements decomposition. Additional 

analysis provides sub-elements for these sub-decompositions: project complexity includes: 

size, re-use, functions, and platform; development environment includes: process 

maturity, tools, systems, and work site (Figure 3.2). 

Similar exploration of the other decompositions and their sub-decompositions leads to the 

inclusion of additional elements within the HHM, providing increased understanding and 

comprehension concerning software acquisition and the risks associated with each element. 



47 

Project 
Elements 

Development 
Environment 

process 
maturity 

-      tools        h - systems ■ work site 

Project 
Complexity 

size reuse    - functions platform 

Figure 3.2 Expanding the detail of the program elements decomposition 

3.3 HHM for Software Acquisition Risk Identification 

The HHM model of Figure 3.1 does not fully represent the HHM concept to the reader. 

The most critical shortcoming of Figure 3.1 is that the HHM philosophy builds on a 

multidimensional representation of the system (in this case, the multidimensional 

representation of the sources of risk in software acquisition). As Chittister and Haimes 

note [1995], "the two-dimensional depiction of the HHM [as in Figure 3.1] conceals the 

couplings, interconnectedness, and the interactions among the various subsystems that 

constitute the sources of risk." This said, a systemic exploration of software acquisition 

risk source relations and interactions can be conducted using the HHM model. Each of the 

five decompositions can be viewed as the primary vision from which to assess program 

risks. The HHM framework then enables one to trace, assess, and analyze all other factors 

affecting and affected by these primary sources of risk. Figure 3.3 depicts one such 

representation from the perspective of the program consequence decomposition, focusing 

on identifying the cost, schedule, and technical risks associated with each participant 

community. 

Continued investigation, by systematically selecting each decomposition as the primary 

vision and associating it with the other decompositions, will provide a comprehensive 

coverage of the sources of risk associated with software acquisition. 

3.4 HHM for Analytic Model Development 

Systemic investigation of software acquisition risk sources, as described in the previous 

section, provides increased understanding of the relationships, dependencies, causation, 

and impacts of decomposition elements on each other. Such understanding permits the 
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Figure 3.3 Risk assessment - program consequences-based HHM structure 

HHM decomposition elements to be used in the development of analytic models. 

Representing the knowledge of decomposition element relationships in an influence 

diagram-type structure provides the next level of detail required for an analytic modeling 

effort. 

Consider, for example, the model depicted in Figure 3.4. Investigation using the HHM 

reveals a relationship between the program consequence and project element 

decompositions. Furthermore, project complexity is found to be influenced by the intended 

size of the system, its, functions, opportunity for software re-use, not to mention the system 

requirements. In addition, the capabilities and experience of project personnel (e.g., 

analysts and programmers) and the selected technologies also affect project cost, schedule, 

and technical performance. Desired system requirements are identified by the user, with 

the aauthorized system requirements approved by the customer community. Selection of 

personnel and technologies for the actual development effort are generally within the 

contractor's decision domain. With even such simple investigation of element 

relationships, a framework of an analytic model for software cost, schedule, and technical 

performance takes form. This graphical element-relationship extension of HHM 

approaches the graphical model management concept of Muhanna and Pick [1994]. A 

series of interrelated analytic models can be now developed, with the selection of particular 

areas for modeling based on the interests and needs of the decision makers. 
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Figure 3.4 A representative influence diagram relationship 
of some HHM decomposition elements 

3.5   Chapter Summary 

This chapter has developed the HHM framework for software acquisition that provides a 

comprehensive framework for identification of risk sources and leads to the development of 

analytic models for the various software acquisition decompositions. The ultimate efficacy 

of the HHM framework lies in at least two dimensions: i) its capability to account for and 

display as complete a set (as possible) of sources of risk associated with software 

acquisition from their multidimensional perspectives as the analysts and experts can 

envision, and ii) its facility to provide in-depth varied interpretations of the various 

dimensions and relations of risks arising whether from the life cycle, program 

consequences, participants, project elements, or other perspectives. 

The work of the following chapters builds on the HHM framework developed in this 

Chapter. In particular, the focus is on the ever-critical program consequences 

decomposition and the relationship between that vision and the participant community 

decomposition. 
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Chapter 4 
Exact Determination of the Triangular Distribution's 

Conditional Expectations 

Quantitative modeling of software acquisition decision-making situtations must account for 

the inherent uncertainties of the acquisition process and environment. Unfortunately, such 

decision situations often lack the objective data required for quantifying the uncertainty 

through the use of many common probability distributions. In such situations the 

triangular distribution is often employed [Haimes et al. 1994a]. Probabilistic analysis 

introduces the conditional expectation to be used in decision making as a measure of the 

risk of extreme events. Previous works focused on deriving the analytical expressions for 

the conditional expectation of extreme events for the normal, lognormal, and Weibull 

distributions [Leach and Haimes 1987], [Romei et al. 1992]. This Chapter extends 

previous results by deriving conditional expectation expressions for the triangular 

distribution and exploring the sensitivity of the conditional expectation of extreme events 

with respect to the selected probability partitioning point. The results are demonstrated in 

examples related to software acquisition project decision making. 

4.1    Background 

In most cases, the traditional use of a single value estimate in quantitative system modeling 

is not adequate to represent the variability associated with that system or environment. 

Because the assessment and ultimate prevention of risks (e.g., cost overrun) are of such 

major concern, it is desirable to retain as much information as is possible in the 

quantification of model parameters. Probabilistic quantification is one approach for 

addressing the problems associated with single value estimation. Unfortunately, in most 

cases where probabilistic quantification is practiced, the expected value is used as the sole 

measure of risk. As indicated in Section 2.6, this may lead to inaccurate or 

misrepresentative results. 

The inadequacy of the expected value approach provides the motivation behind the 

development of the partitioned multiobjective risk method (PMRM) [Asbeck and Haimes 

1984] with its conditional expected-value functions, or risk functions. In particular, 
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Asbeck and Haimes [1984] defined the following unconditional and conditional 

expectations of a random variable: 

f2 - high-probability, low-damage expectation 

/3 - intermediate damage and probability expectation. 

f4 - low-probability, high-damage expectation 

f5 - unconditional expectation. 

In addition, there exists the additional objective function 

fl - the cost function associated with implementing a mangement policy or risk 

mitigation effort. 

The/i is often used in a multiple objective framework as the opposing objective to the 

minimization expectation functions. 

Of the expectation functions listed above, the/4 and^ values provide the broadest 

application to risk-based decision making. Extreme event analysis based on the/i andfs 

values has been applied to a wide variety of problems, including: water resources 

management [Karlsson and Haimes 1988], [Haimes and Karlsson 1989], [Haimes et al., 

1992]; dam and flood management [Haimes 1986], [Haimes et al. 1998], [Li et al. 1992], 

[Lambert et al., 1994]; government project management [Haimes et al. 1994b]; and 

contractor selection [Haimes and Chittister 1993], [Haimes and Chittister 1995]. 

The^ and^3 conditional expected values generally contribute less risk information for 

decision-making purposes than the/i and fe values. Thef2 may be useful in the rare cases 

where one is examining the most likely scenarios - performance or behavior of the system 

in its most common lifecycle, excluding any extreme possibilities. The/5, a restricted 

expected value calculation that also commensurates adverse events of high consequences 

and low probabilities with events of low consequences and high probabilities, is 

appropriate when the tail information of the distribution is unreliable, or for some other 

reason not pertinent to the analysis. 

Our development and analysis of the expectations of the triangular distribution will focus 

on the fa and/5 values. For completeness, the derivations of the f2 and/3 conditional 

expected values are included in Appendix C. 
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4.2    Previous Derivation of Conditional Expectation Equations 

Leach and Haimes [1987] derived exact expressions for the conditional expectation of the 

normal distribution, while [Romei et al. 1992] contributed such expressions for the 

lognormal and Weibull distributions. Romei's work also explored the sensitivity of the 

conditional expectation with respect to distribution parameters, and the selected partitioning 

point. 

The lack of data in many decision situations rules out the use of many probability 

distributions. In such situations, expert opinion is often sought to estimate a triangular 

distribution for the parameter. One of the simplest, yet still substantial probability 

distributions, the triangular distribution requires three parameters: the lower bound, the 

upper bound, and the most likely value. Use of the triangular distribution is widespread; 

the Army Corps of Engineers accepts the triangular distribution as the basis for their 

probabilistic analysis for flood and river risk management [Haimes et al. 1994a]. 

Extending the previous works to the triangular distribution will provide increased analytical 

support for decision makers in the situation of a lack of data. 

4.3   Exact Determination of the Triangular Distribution Conditional 

Expectations 

A triangular distribution has the following form of the probability density function [Law 

and Kelton 1982]: 

2(x-a) 
a<x<c 

/(*) = 

(b-a)(c-a) 
2{b-x) 

(b-a)(b-c) 

0 otherwise 

c<x<b (4.1) 

where a is the minimum value, b is the maximum value, and c is the most likely value 

(Figure 4.1). 
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b-a 

Figure 4.1 Triangular Probability Distribution 

4.3.1    The Low-probability, High-damage Conditional Expectation, /4 

The high-consequence scenarios, those of greatest potential harm, are of most concern to 

decision makers. For that reason, the^ conditional expectation has particular significance 

in planning and policy evaluation. For a range of extreme events, the conditional expected 

damage (given that the damage is within that particular range) provides a measure of the 

impact associated with extremely large and potentially very costly and catastrophic events. 

The function^ is the expected value of the random variable, given that its observations are 

greater than a partitioning value ß [Asbeck and Haimes 1984]: 

f xf(x)dx 
f< = E\X\x>ß] = f„ , (4.2) 

Deriving the conditional expectation for high-damage, low-probability events,^, for the 

triangular distribution is accomplished by substituting the element corresponding to c < ß < 

bofEq. (4.1) into Eq. (4.2): 

f»   2x(b-x)     ,      Cb 

r 2(b~x) dx " 
h(b-a)(b-c) 

rb 
\{b-x)dx 

W-'^j    hb'-kb'HW-W)\ 
M4 " H*-i*H»ß-\P)] 
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^-^bß' + '-ß' _ b3-3bß2+2ß' 
\b2-bß + \ß2       3(b2-2bß + ß2) 

(b-ß)(b2 + bß-2ß2) _(b-ßf(b + 2ß) 
3(b-ßf 3(b-ßf 

b + 2ß 

Thus    /4 = A±2£    c<ß<b. (4.3) 

Hence, for the triangular distribution, the extreme event conditional expected value with 

damage partition ß, c < ß < b, is given by Eq. (4.3). 

Applying Eq. (4.3) to the example problem described in [Haimes and Chittister 1993] 

verifies the expression (Table 4.1). 

Table 4.1 Triangular Distribution Conditional Expectations Example 
data from [Haimes and Chittister 1993] 

Minimum 
(a) 

Most Likelj 
(c) 

Maximum 
(b) 

l-in-10 Extreme Event l-in-100 Extreme Event 

J8 h* B /4* 
Customer 0.00 1Ü.ÜÜ 30.ÖÜ 52.25 24.84 ril.55 2Ü.37 
Contractor A Ü.ÖÜ 15.ÖÖ 5Ö.ÖÖ 36.77 41.18 45.82 47.21 
Contractor B Ö.ÖÖ 2Ö.ÖÖ 4Ö.ÖÖ 31.Ü6 34.04 37.17 38.11 

♦calculated using equation (4.3), results compare 
exactly with [Haimes and Chittister 1993] 

4.3.2    The Unconditional Expected Value, f5 

The general expression for the unconditional expectation,^, given by Asbeck and Haimes 

[1984] is: 

/,=■ 

\xf(x)dx 

jf(x)dx 

(4.4) 

By definition of the probability density function, the denominator in Eq. (4.4) equals one, 

thusJ5 is equivalent to the common expected value EJx] 
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f5=]xf(x)dx = E[x]. (4.5) 

Deriving the unconditional expected value for the triangular distribution requires 

substituting Eq. (4.1) into Eq. (4.5): 

fs = 

c a 

\xf(x)ax+\xf(x)dx 
K° 

(b-a)(c-a){ 

1 * 
 \(2x2-2ax)dx + \(2bx-2x2)dx 
-n\JK ' fh-aVb-cV (b-a)(b-c)J 

1 
3(b-a)(c-ay 

 [2c3 -3ac2 +a3l + l- -W-3bc2 -2cl\ 
-aV- J    5(b-a)b-cV J 

3{b 
-i -\(a-c)(a2 + ac-2c2)] + \ \(b-c)(b2+ bc-2c2)\ 
-a)c-a)v J   3(b - d)(b - c)L J 

_-{a2+ac-2c2)    (b2 + bc-2c2) 

3(b-a) 3{b-a) 

b2-a2 + bc-ac    (b - a)(b + a) + c(b - a) 

3(b-a) 3(b-a) 

{b-a){b + a + c) 

3{b-a) 

a + b + c 

This result is equivalent to the familiar expression for the expected value of the triangular 

distribution [Law and Kelton 1982]: 

/s=E[x] = 
a + b + c (4.6) 
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4.4    Sensitivity of the Triangular Distribution's./^-)  Conditional 

Expectation with Respect to the Damage Partitioning Point 

AS./4 has the most significance in risk analysis and in decision making, examination of the 

sensitivity of this conditional expected value with respect to the partitioning point is 

desirable. Of particular interest is the impact that changes in the probability partitioning 

value, a, have on the conditional expectation/4. Recall that partitioning the probability axis 

of the exceedance function, 1-F(x), identifies the corresponding damage axis partitioning 

point ß.   For a given probability partition value, one would determine the damage 

partitioning point by solving 

or 
1 - F(/3) = 1 - a 

F(0) = a. (4.7) 

The exceedance function for the triangular distribution is adapted from the cdf [Law and 

Kelton 1982]: 

l-F(x) = 

1 
(x-a)2 

(c-a)(b-a) 
(b-xY 

(b-a)(b-c) 
0 

x<a 

a<x<c 

c<x<b 

x>b 

(4.8) 

Considering ß to be on the interval [c,b], solving for Eq. (4.7) requires evaluating 

(b-ß)2 

(b-a)(b-c) 
= (l-a) 

which when solved for ß results in the expression 

ß = b-[{\-a)(b-a)(b-c)}y\  ^-<a<\. 
b-a 

(4.9) 

Eq. (4.9) is easily verified by applying the example from [Haimes and Chittister 1993] 

(Table 4.2). 
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Table 4.2 Triangular Distribution Partitioning Values Example 
data from [Haimes and Chittister 1993] 

Minimum 

(a) 

Most Likely 
(c) 

Maximum 

(b) 

Beta partitioning value* 

alpha=.9 alpha=.99 

Customer 0.00 10.00 30.00 22.25 27.55 

Contractor A 0.00 15.00 50.00 36.77 45.82 

Contractor B 0.00 20.00 40.00 31.06 37.17 

exactly match [Haimes and Chittister 1993] 

We can now state ^ in terms of the probability partitioning value a by substituting the 

results from Eq. (4.9) into Eq. (4.3) 

h = 
b + 2ß    1 = -lb + 2{b-[a-a)(b-a)(b- c)f2) 

or 
X    c-a f^b-\[{\-a)(b-a){b-c)\\  —<cc<\. (4.10) 

The conditional expected value ^4 depends on the selected probability partitioning value a 

and on the parameter vector <a,b,c> of the distribution function. Facing uncertainty in the 

real world, especially where extreme events are concerned, the value offa should be 

supplemented with its sensitivity analysis. Taking the derivative of Eq. (4.10) with respect 

to a 

f±=-i[(i-aX*-«XMr[-(*-«X»-') da 

(*-«)(*-*) 

3[(l-a)(b-a)(b-c)\> 

_ 1 (b-a)(b-c) 

(1-a) 
(4.11) 

The derivative (4.11) expresses the sensitivity of/4 with regards to changes in the 

probability partitioning value. As b^-a and b^-c, the numerator of Eq. (4.11) is 

nonnegative. Also, 0^a<l, hence the denominator of Eq. (4.11) is on (0,1]. Therefore 
Eq. (4.11) is non-negative, implying^ is a non-decreasing function in a.   The application 

of this result is shown in the following example problems. 
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4.5    Partitioning Sensitivity Examples 

Two examples are presented to demonstrate probability partitioning sensitivity analysis for 

triangular distribution conditional expectations. The first example, adapted from [Haimes 

and Chittister 1993], is originally presented in the context of differentiating among the cost 

estimates from a customer and two contractor groups. Haimes and Chittister employed the 

conditional expected value in conjunction with the more common unconditional expected 

value, and we extend their results to indicate the significance of examining the probability 

partitioning value. 

The second example also compares three cost estimates, each quantified in the form of a 

triangular probability distribution. In this example, each distribution has different high, 

low, and most likely parameter values, however all of the distributions have the same 

unconditional expected value. Sensitivity analysis concerning the selection of probability 

partitioning values for the conditional expectation is conducted to assist in decision making. 

4.5.1 Example 4.1 -- Project Cost Overrun Evaluation 

Consider the example proposed in [Haimes and Chittister 1993] where a governmental 

request for proposal (RFP) to develop a software system requires contractors to submit 

their estimate of the project's cost in a form that accounts for the variance to be expected in 

the project's cost overrun. Specifically, each contractor is asked to provide three values of 

the projected cost overrun percentage: (a) lower bound, (b) upper bound, and (c) most 

likely. The government (customer) also produces an estimate of the project's cost overrun. 

Table 4.3 indicates the parameters associated with each group's estimates, along with the 

unconditional expected value f$ for each. 

Table 4.3 Example 4.1- Project cost overrun estimate parameters 
Minimum 

(a) 
Most Likely 

(c) 
Maximum 

(b) 
Expected Value5 

(ß) 
Customer O.OC 10.0C 30.0C 13.32 

Contractor A 0.0C 15.0C 50.0C 21.6' 

Contractor B 0.0( 20.CX 40.0C 20.0C 
*Equation (4.6) 
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For comparison, Figure 4.2 depicts the triangular probability distributions for the customer 

and two contractors. 

Customer 

Contractor B 

Contractor A 

0 10 50 15        20        25        30        35 

Project Cost Increase (%) 

Figure 4.2 Triangular probability distributions for Customer and Contractors A and B 

The low-probability, high-damage conditional expectation in terms of the probability 

partitioning value for each group's estimate is derived by substituting the values from Table 

4.3 into Eq. (4.10). The/i equation for each is: 

Customer: /f"' = 30 - f [6(1 - a)f2 

Contractor A: /4
A = 50 - f [70(1 - a)f2 

Contractor B:   /4
fl = 40 - f [8(1 - a)f2. 

(4.12) 

(4.13) 

(4.14) 

A plot of Eqs. (4.12), (4.13), and (4.14) for various values a is shown in Figure 4.3. 

Observe the significant relative change in the conditional expected values between that of 

Contractor A and the other two groups as a increases. At a = 0.5, the difference in the 

conditional expected value of percentage cost increase between Contractors A and B is 

approximately 3.5. However, at a = 0.9, this difference has more than doubled to over 

7.1. The various a partitioning values correspond to risk sensitivity levels for a decision 

maker. Higher a values permit greater focus on less-likely, yet more-damaging events. 
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Customer 

Contractor B   — 

Contractor A 

10 

:.99 

oc-5 oc=-75 oc=.9      a=.95 

+ 
20 30 40 

Project Cost Increase (%) 
50 

Figure 4.3 Unconditional and Conditional Percentage Cost Overrun 
for Varying a Values 

Selection of the appropriate a value depends on the risk attitude of the decision maker. The 

selection can also be assisted by evaluating the sensitivity of the conditional expectation 

with respect to changes in a. Examining the rate of change of the conditional expected 

values as a increases (Eq. (4.11)), provides an indication of the risk involved with each 

estimate (Figure 4.4). In particular, one notices the rapidly increasing rate of change of the 

conditional expected value as the probability partitioning point is extended further into the 

extreme ranges. Seemingly miniscule changes in the partitioning value have dramatic 

effects on the conditional expectation. For example, extending the probability partitioning 

value from a = 10"4 to a = 10"5, increases the rate of change of the conditional expected 

value for the Customer from 816 to 2582! Extending the partitioning point further to a = 

10-6 increases the conditional expected value's rate of change to 8165. The use of very 

small partitioning points is common for examining the extreme-scenario expected reliability 

of a mission-critical systems. For other problems such as the software cost problem, 

however, one is not necessarily concerned with exceptionally small partitioning values; 

examining the conditional expectation for a = 10"1 or a = lO2 generally provides sufficient 

decision-making support. In these ranges, the conditional expected value is less sensitive 

to the partitioning point. 
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Figure 4.4 Rate of Change of/4 for varying partitioning values 

4.5.2   Example 4.2 -- Evaluating Alternatives with Identical Unconditional 

Expected Values 

In this example, the triangular probability distributions of the cost of three alternatives 

(cases) are compared. While each case has the same unconditional expected value, the 

differences in conditional expected values at various probability partitioning points is 

significant. Table 4.4 provides a summary of the distribution parameters for each of the 

three cases. 

10 

Table 4.4 Example 4.2 - Cost estimate parameters for each case 

Minimum 
(a) 

Most Likely 
(c) 

Maximum 
(b) 

Expected Value* 
(15) 

Case 1 10.00 30.00 50.00 30.00 
Case 2 20.00 30.00 40.00 30.00 
Case 3 5.00 10.00 75.00 30.00 

♦Equation (4.6) 
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Comparison of the three triangular probability distributions indicate wide differences in 

their variances (Figure 4.5). 

0.10- 

.a 
2    0.06 

k Case 2 

30 40 50 

Cost 
Figure 4.5 Triangular probability distributions for the three cases 

Substituting the values from Table 4.4 into Eq. (4.10) produces the following^ equations 

for each case: 

Case 1: 

Case 2: 

Case 3: 

f? =50-f [2(1-a)lp 

/f = 40-f [2(1-a)f2 

/f = 75 -f [182(1-a)]^. 

(4.15) 

(4.16) 

(4.17) 

A plot of each case's values f\ (Eqs. (4.15), (4.16), and (4.17)) for various values of a is 

shown in Figure 4.6. Without the additional information of the conditional expectation, a 

decision maker may be indifferent among the three cases, as each has the same 

unconditional expected value. Again, the increasing difference in conditional expectation of 

the three cases as a increases provides a measure of each case's cost risk for extreme 

events. Examining the rate of change in the conditional expected value as a increases 

indicates the rapidly-increasing conditional expectation associated with Case 3, the most 

risky of the three cases (Figure 4.7). 



0 30 40 50 60 70 

Figure 4.6 Unconditional and Conditional Expected Values for Varying a Values 

2500O 

10 A 10 
.-2 10"J 10 

Probability Partitioning Value a 

Figure 4.7 Rate of Change of fy for varying partitioning values 

10 10 

4.6   Chapter Summary 

The additional information provided by the conditional expected value gives decision 

makers a better understanding of the risk of extreme events associated with alternative 

policy options. A supplement to the traditional expected value analysis, extreme event 

analysis provides greater insight regarding the impact of potential catestrophic events, 
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assisting decision makers in selecting appropriate risk-mitigation options. The 

contributions of this Chapter in deriving exact solutions of the triangular distribution's 

conditional expectation and partitioning sensitivity analysis with respect to partitioning 

values provides an increased analytical capability for evaluating decision situations that are 

hampered by a lack of empirical data. These results are applied within the methodologies 

developed over the next chapters. 
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Chapter 5 
Probabilistic Software Estimation 

This Chapter focuses on the cost element of the program consequences HHS of the HHM from 

Chapter 3. This Chapter develops a probabilistic approach to software estimation that focuses on 

the risk of extreme events and utilizes the conditional expected value as an additional risk 

management decision-making metric. The benefits that a probabilistic approach provide to project 

management are presented. A methodology for calculating the conditional and unconditional 

expected values from Monte Carlo simulation is developed. Application of the approach, using 

Monte Carlo simulation, is demonstrated for the Basic and Intermediate COCOMO models. 

Comparisons between the probabilistic approach, the original COCOMO results, and the actual 

project results are presented. 

5.1    Introduction 

One of the most difficult, yet important aspects of software project management is accurately 

estimating the needed resources for software development. Such estimation requires establishing 

the functions and performance characteristics of the desired system, estimating the size of the 

software product to be produced, estimating effort requirements, and producing project schedules. 

Software estimation models are used to provide decision makers with a forecast of the actual 

manpower and time resources required to develop a software product. As these models are 

typically employed during the early phases of the development life cycle, accurately estimating a 

software project's resource requirements is complicated by the inherent uncertainty associated with 

quantifying the scope, size, and complexity of the project while still in these early stages. Most 

software estimation models rely on traditional, single-value parameter estimates, and produce a 

single-value estimate. Such an approach discounts the uncertainty associated with each parameter 

estimates and down-plays the uncertainty inherent in the early life cycle of project development. 

While some probabilistic approaches to software estimation have been introduced (e.g., [Zhu and 

Lowther 1993]), their application has been limited due to proprietary restrictions and to a general 

lack of understanding within the software development community concerning how to effectively 

utilize such models. 
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5.2   Parameter Estimation Concerns for Software Estimation Models 

Existing software estimation models rely on the use of historical data for gauging future program 

costs. Relationships among model variables (e.g., KLOC estimates, effort adjustment factors, 

development cost multipliers) are most often derived from historical experience using statistical 

regression techniques. These are then adjusted for a specific project's complexity or difficulty. 

Unfortunately, the rapid advancement in software practices, tools, and environments makes 

comparison to previous projects increasingly difficult [Przemieniecki 1993]. The validity and 

appropriateness of traditional estimation models are being called into question as to their 

applicability to today's software systems [Matson et al. 1994]. 

One of the limitations to increasing the accuracy of the KLOC-based models is the difficulty of 

estimating the number of lines of code that will be needed to develop a system from the information 

available at the requirements or design phases of development [Emrick 1987]. The KLOC-based 

models, to be useful, require one to be able to predict the size of the final product as early and 

accurately as possible. Unfortunately, estimating software size using the KLOC metric depends so 

much on previous experience with similar projects that different experts can make radically 

different estimates [Conte et al. 1986]. More detailed models require a greater number of variable 

and parameter estimates, each of which contributes to the overall uncertainty of the final effort and 

schedule estimates. The Detailed COCOMO Model requires one to estimate 15 cost multipliers for 

each of the 4 development phases — a total of 60 parameter estimates! 

The function-point approach is no less immune from a large number of required estimates. A 

function point count requires 15 estimates ~ an estimate of the count of each component (input, 

output, files, interfaces, and inquiries) at each level (low, average, high) [Albrecht and Gaffney 

1983]. Each estimate is subject to a range of possible values. Within a single organization there 

are sometimes significant differences in the function point counts for the same project as 

determined by separate individuals [Matson et al. 1994]. This arises from subjective assessments 

in both the raw counts and adjustment factors. 

5.3   Accounting for Uncertainty in Software Estimation 

Recognizing that the result of a software estimation model relies on the subjective assessment of 

numerous model parameters, a means to account for, and describe, the uncertainty of the estimate 
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is required. The common practice of many organizations is simply to conduct multiple estimations 

- with separate groups of personnel preparing independent estimates [Barrow et al. 1993]. The 

drawback of this approach is the task of resolving the differences in estimates. Unfortunately, this 

approach often causes that the organization accepts the average of all proposals or some other more 

politically-motivated means as its strategy for determining the final estimate. 

Without addressing an estimation model in particular, Pressman [1987] introduced an approach to 

account for software cost uncertainty, suggesting the use of three estimates for each parameter. 

The most likely (m) is, as its name suggests, the best guess assuming nothing goes wrong. The 

other two estimates are an optimistic (o) and a pessimistic (p) one. Pressman then advocates using 

the expected (e) estimate, computed as 

e = (o + 4m + p)/6. 

The formula adjusts the estimate by approximating the fact that, in the normal distribution, one 

third of the points will be more than one standard deviation from the mean. 

Pressman's approach may allow for an initial consideration of an estimate's variability; however, 

reducing the three values to a single expected estimate discards the additional information contained 

in the range of the estimates. An improved approach would retain and utilize the information 

gained through estimating o, m, and p. 

Haimes and Chittister [1993], [1995] address the issue of maintaining information, also proposing 

the use of three estimates: most likely, high, and low. The application of their approach would 

require a software developer to submit three cost estimates in place of the more common single 

value when bidding on a contract. Unlike Pressman's approach, however, the three estimates are 

employed as the basis for forming a triangular probability distribution for the project's cost. The 

use of a probability distribution not only maintains the information concerning the most likely 

scenario, but also provides an indication of the uncertainty associated with that estimate. 

Additional decision-making information and risk information are available with this approach. The 

principal shortcoming of this approach is that it estimates cost directly, without explicitly capturing 

the many factors included in traditional software estimation methodologies. 

Zhu and Lowther [1993] describe a probabilistic software estimation approach for the Intermediate 

COCOMO Model. Their approach, implemented in a spreadsheet model, allows the cost drivers, 

KLOC estimate, cost-per-effort, and other parameters of the COCOMO model to be represented by 

probability distributions. A Monte Carlo simulation of the realizations of the model's input 
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parameter probability distributions is used to produce a distribution of the development effort. 

Unfortunately, their paper does not address the benefits of such an approach, how one would 

make use of the probabilistic aspects of the model, or how the information provided in the model is 

to be used for decision making. 

The remainder of this Chapter is devoted to the development of a probabilistic approach to software 

estimation that builds on the works of Haimes and Chittister, and Zhu and Lowther. This 

approach is based on the risk of extreme events and utilizes the conditional expected value [Asbeck 

and Haimes 1984] as an additional decision-making metric. 

5.4   The Probabilistic Software Estimation Approach 

The central concept of the probabilistic approach to software estimation is the explicit incorporation 

of uncertainty. Where possible, all or any of the model's parameters are quantified in terms of 

probability distributions. Those parameters not so quantified are set to their expected value. 

Applying a software estimation model, the output is now in terms of a probability distribution 

instead of the traditional single-point value. To demonstrate the approach, we consider two 

application contexts. First, the direct approach for circumstances in which the development effort 

is directly quantified by a known, closed-form probability distribution. For this case, the 

conditional and unconditional expected values can be determined by Eqs. (4.2) and (4.4) (or Eqs. 

(4.3) and (4.6) for the triangular distribution). Second, a Monte Carlo simulation approach for 

situations where the development effort cannot be quantified by a closed-form distribution. In 

such cases, we can estimate the expectation values by examining the set of outcomes of the 

simulation. Examples of each approach are presented, demonstrating the use of the conditional 

expected value for decision making. 

5.4.1    Direct Approach to Probabilistic Software Estimation 

Quite often, an initial evaluation of the effort required to develop a software product can be 

estimated, not by way of a traditional estimation model, but by the direct assessment of a 

probability distribution of the development effort. The expected value and conditional expected 

values of this distribution are then used for evaluating the relative desirability of various program 

alternatives. Romei [Romei et al. 1992] derived the exact-form solutions for the conditional and 

unconditional expectation functions for normal, lognormal, and Weibull distributions. 

Unfortunately, there is often insufficient empirical evidence to support the use of one of these 



69 

distributions for estimating software development effort. In such cases, subjective assessment of 

probability distributions by area experts using the triangular distribution or fractile method [Haimes 

and Chittister 1993] is appropriate. The triangular distribution expectation function results of 

Chapter 4 are central to the direct approach to software estimation. The direct approach is 

demonstrated in the following example. 

5.4.1.2   Example 5.1 - Alternative Selection using the Direct Approach.   Consider 

the project manager who is debating about the selection from among three alternative approaches 

for a software system. Expert evaluation of each alternative led to the triangular distribution 

information in Table 5.1 concerning the most likely, lowest, and highest development effort 

requirements. While each alternative has the same unconditional "business as usual" expected 

value, E[X], the differences in conditional expected values at various probability partitioning 

points are significant. This comparison also indicates wide differences in their variances (Figure 

5.1). 

Table 5.1 Development effort (man-month) estimates for each alternative 

Minimum 
(a) 

Most Likely 
(0 

Maximum 
(b) 

Expected Value 

05) 
Alternative 1 10.0C 30.0C 50.0C 30.0C 
Alternative 2 20.0C 30.0C 40.0C 30.0C 
Alternative 3 5.00 10.0C 75.0C 30.0C 

« 
o 
u 

BL, 

i Alternative 2 

60 70 80 20 30 40 50 

Effort (Man-months) 
Figure 5.1 Development effort probability distributions for the three alternatives 

The conditional expected value, J4, of the triangular distribution can be stated in terms of the 

probability partitioning values ßand a Eqs. (4.3) and (4.10): 
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/4-*±2    c<ß<b 

and 
/i     c-a f4 = b-l[(l-a)(b-a)(b-c)f,   ^-^^<l 

b-a 

(5.1) 

(5.2) 

The value/4 depends on the selected probability partitioning value a and on the parameter vector 

<a,b,c> of the triangular distribution function. Substituting the values from Table 5.1 into Eq. 
(5.2) produces the following conditional expected-value functions for the three alternatives: 

Alternative 1: ff = 50 - f [2(1 - a)] X 

Alternative 2: 

Alternative 3: 

ff =40-f[2(l-a)f 

ff =75-f[l82(l-a)f. 

A comparative plot of/5 andy^ for each alternative for various a values is shown in Figure 5.2. 

Alternative 2 

Alternative 1 

Alternative 3 
oe=.5 cc=75 a=.9 a=95       a=.99 

4- + + + + + 
30 60 70 40 50 

Effort (Man-months) 

Figure 5.2 Unconditional and conditional expected values for varying a values 

Without considering the additional information of the conditional expected value, each alternative 
seems equally desirable ~ each has the same unconditional expected value. However, given the 
additional information of the conditional expectation, we observe the increasing difference in the 
three alternatives as a increases.   Compare, for example, the conditional expected values of the 
three alternatives for a = 0.9, the l-in-10 scenario. Alternative 2's conditional expected value is 
37.02 man-months, a 23 percent increase over the unconditional expected value. The l-in-10 
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conditional expected value of Alternative 1 is 44.04 man-months, while that of Alternative 3 is 

60.78 -- more than double its unconditional expected value!. We see that Alternative 2 is the 

least risky of the three alternatives, while the greatly-increasing conditional expected value of 

Alternative 3 indicates the influence of the tail of its distribution. The conditional expectation 

provides a measure of each alternative's development effort risk for extreme events. 

5.4.2   Monte Carlo Simulation Approach to Probabilistic Software Estimation 

While the previous method developed a direct probabilistic estimate of project development effort, 

this approach considers the use of a traditional, analytic cost estimation model, for which all or 

some of the input parameters are quantified by probability distributions. For example, consider the 

probabilistic estimation of project development effort using the Intermediate COCOMO model Eq. 

(2.3). If we treat the input parameter KLOC as a random variable (a triangular distribution, for 

instance), then evaluating Eq. (2.3) requires solving a nonlinear function of a random variable. 

The result will be a probability distribution of the development effort, but one without explicit, 

analytic expression. 

While there are analytic, closed-form solutions for the function of certain random variables having 

known distributions (e.g., a linear combination of normal random variables produces a normal 

random variable), such is not the case for a nonlinear function of a triangular random variable. In 

this case we must apply an approximation method - Monte Carlo simulation — to determine the 

distribution of Eq. (2.3) and evaluate its conditional and unconditional expected values. 

With Monte Carlo simulation, the outcome of probabilistic events is determined by randomly 

drawing one value from each parameter's density function and assessing the outcome based on 

those random draws. A single outcome is only one sample out of a very large number of possible 

cases. In order to discover what the expected or average outcome of the situation would be, it is 

necessary to run many cases — take a large sample ~ varying only the random values selected. 

To simplify notation, denote man-months of development effort by M (instead of the previous 

MM). To approximate E[MJ, the expected man-months of development effort, we generate a 

random value KLOCW= kloc from the density function of KLOC and then compute MW by Eq. 

(2.3). We next generate a second random value (independent of the first) KLOC© and compute 

M®. This continues until n, a fixed number of independent and identically distributed random 

variables M© = (EAF)(a(KLOC('))fe), / = 1,..., n have been generated. By the strong law of 

large numbers [Ross 1989] we know that 
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M(i)+ ...  +M(»)        ,    , 
Inn = EM =/s. (5.3) 
n-»«o ft L      J 

Hence, we can use the average of the generated M$s as an estimate for E[M], the unconditional 

expected value. To approximate the conditional expected value, /4, we form the sub-set of 

outcomes M» whose members are those outcomes that exceed the partitioning value ß associated 

with the predetermined a value. Simply stated, 

M^={M(,)|M(/)>^}. (5.4) 

The average of the members of M^ is the average of all outcomes that exceed a particular damage 

level - precisely the definition of the conditional expected value. Therefore, given m elements of 
the set Mo (for m sufficiently large), an approximation to the conditional expected value of the 

development effort is given by 

M^+ •■• +M(„m>       r     i      r   i       „i 
S. 2-sEM, =EMM>/J =/4. (5.5) 

m L     J      L   ' J 

Obviously, Monte Carlo simulation is a computationally-intensive approach, as the number of 

observations n must be large. Fortunately, the availability of personal computers and powerful, 

yet easy-to-use simulation software packages makes this approach feasible. Without such 

resources, the method would be computationally burdensome. In the following example, we use 

the software package @RISK [Palisade 1995] to perform the Monte Carlo simulation calculations 

for the Intermediate COCOMO model. 

5.4.2.1   Example 5.2 - The Monte Carlo Approach for Intermediate COCOMO. 

For this example, we extend the problem described in [Boehm 1981] and evaluate the required 

development effort of three competing alternatives for a semidetached software project. Unlike the 

first example, quantification of the required development effort is achieved using the Intermediate 

COCOMO model Eq. (2.3). The cost multipliers that constitute the effort adjustment factor (EAF) 

are assumed to be identical for each alternative, where EAF = 1.18. For a semidetached product, 

the parameters of Eq. (2.3) are set at a = 3.0, b = 1.12 (see Table A.3). The KLOC estimate for 

each alternative is quantified as a triangular probability distribution (Table 5.2). With an expected 

value of 32 KLOC, the deterministic expression of Alternative 2 is identical to the original problem 

in [Boehm 1981]. 
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Table 5.2 KLOC requirement estimates for each alternative 

Minimum 
(a) 

Most Likely 
(c) 

Maximum 
(b) 

Expected Value* 
(15) 

Alternative 1 20 30 48 32.67 

Alternative 2 26 32 38 32.00 

Alternative 3 28 32 46 35.33 

A Monte Carlo simulation of 1000 iterations (i.e., n = 1000) using the approach described above 

was conducted for each of the three alternatives of Table 5.2. Figure 5.3, a histogram plot of the 

simulation results for Alternative 2, provides a graphical representation of the simulation's 

approximation of the output probability distribution for development effort. The partitioning point 

for determining the conditional expected value was set at a = 0.9, the l-in-10 occurrence. The 

conditional and unconditional expected value results for each alternative are given in Table 5.3. 

Since the parameters associated with Alternative 2 were selected to be identical to the example from 

[Boehm 1981], we can compare our results with the original paper. The expected development 

effort result from the simulation for Alternative 2, f5 = 172.05, is nearly identical to Boehm's 

reported 172. 

0.09 

0.08 

=  0.06 

x; o 
£ 0.04 

Distribution for Development Effort 

0.02 

0.00 
137.3 149.0 160.7 172.4 184.1 195.8 207.5 

Man-months Mean value = 172.05 

Figure 5.3 Histogram of Monte Carlo Simulation Results for Alternative 2 



74 

Table 5.3 Expected Value Results from Monte Carlo Simulation 

Expected Value 

U_ f±(a = 0.9) 
Alternative 1 176.19 242.55 

Alternative 2        172.05 198.31 

Alternative3 192.30 238.09 

A plot of the /4 and /5 results provides a graphical comparison of the desirability of each 

alternative (Figure 5.4). While the unconditional expected values of Alternatives 1 and 2 are very 

close, there is great disparity in their l-in-10 extreme-event, conditional expected values. Without 

the additional information of the conditional expected value, a decision maker may be indifferent 

between Alternatives 1 and 2. However, the conditional expected value indicates that Alternative 2 

is the least risky of the three alternatives. If all three alternatives were to have the same 

implementation costs, Alternative 2 would be most preferable. For a complete evaluation of the 

relative preference of one alternative toward another, one must determine the cost of each 

alternative, and then tradeoff this cost with the conditional and unconditional expected development 

effort values of each alternative. 
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Alternative 1-- 

Alternative 3- - 

V—/ 
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+ + + 4- 
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■+■ 

200 220 
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Figure 5.4 Unconditional and conditional expected values from Monte Carlo simulation 

5.5    Comparing Probabilistic Results, Original Model Results, and Actual Values 

In the previous sections we demonstrated the added insight that is provided to decision makers 

through the use of a probabilistic approach to software cost estimation. The additional information 

of the conditional expected value contributes an improved understanding of the risk associated with 
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each alternative. We are now interested in comparing the results of the probabilistic approach with 

the results of the original model. Note that both comparisons use the actual project development 

effort from the software project data introduced in Boehm's original data set [Boehm 1981] (Table 

5.4). The original data for each software development project include: classification of the 

development mode (organic, semidetached, embedded), the total KLOC of the delivered product, 

the effort adjustment factor (EAF), the project's actual development effort in man-months, and the 

estimated effort results of the original Basic COCOMO model and the Intermediate COCOMO 

model. 

It is important to note that the KLOC parameter in the data set represents the actual number of lines 

of code that were developed for the software project. This is a critical observation, for in practice, 

the use of such ex-post data is never possible. Software estimation models are employed early in 

the development life cycle, requiring one to use an ex-ante estimate of the required KLOC - not the 

actual total - to estimate project cost. Unfortunately, Boehm's data set of software projects does 

not contain ex-ante KLOC requirement estimates. 

Estimates of KLOC requirements made early in the development life-cycle often differ greatly from 

the actual final total. As Augustine states [Augustine 1993], "in 90% of the cases, cost is 

underestimated from the beginning." This statement applies to KLOC estimates, which can be 

considered a pseudo-cost variable. While original ex-ante estimates of the KLOC requirements for 

the projects of Table 5.4 do not exist, we use the actual ex-post data as the basis for a probabilistic 

formulation of KLOC requirements, keeping in mind Augustine's observation. 

5.5.1    Baseline Comparison Formulation 

In order to compare the probabilistic approach with the original deterministic method, we apply the 

Monte Carlo simulation approach to the Basic and Intermediate COCOMO models to determine the 

values of unconditional and conditional expected development effort for each project in the dataset. 

Although the KLOC values in Table 5.4 are the exact, ex-post values, we generously treat them as 

extremely accurate ex-ante estimates made by software development experts. In recognition of the 

inherent uncertainty in estimating a project's size, the KLOC input for each project is quantified in 

terms of a triangular probability distribution. 

For each software project, the three triangular distribution parameters are set at: a = 0.5*(actual 

KLOC), b = 1.75*(actual KLOC), and c = 0.75*(actual KLOC). This approach slightly 

understates the actual KLOC requirement, yet maintains the actual value as the expected value for 
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Table 5.4 Software Development Projects Data, from [Boehm 1981] 
Estimated Effort (MM\ 

Actual Actual Basic Intermed. 

Project Mode* KLOC EAF Effort(MM) COCOMO COCOMO 

1 3 113.00 2.72 2040.00 1047.00 2218.00 

2 3 249.00 0.84 1600.00 2702.00 1770.00 

3 2 132.00 0.34 243.00 711.00 245.00 

4 1 46.00 1.17 240.00 134.00 212.00 

5 1 16.00 0.66 33.00 44.00 39.00 

6 1 4.00 2.22 43.00 10.30 30.00 
7 1 6.90 0.40 8.00 18.00 9.80 
8 3 22.00 7.62 1075.00 147.00 869.00 
9 3 30.00 2.39 423.00 213.00 397.00 
10 3 18.00 2.38 321.00 115.00 214.00 
11 3 20.00 2.38 218.00 131.00 243.00 
12 3 37.00 1.12 201.00 274.00 238.00 
13 3 24.00 0.85 79.00 163.00 108.00 
14 2 3.00 5.86 73.00 10.30 60.00 
15 3 3.90 3.63 61.00 18.00 52.00 
16 3 3.70 2.81 40.00 17.00 38.00 
17 3 1.90 1.78 9.00 7.80 10.70 
18 3 320.00 3.89 11400.00 3652.00 11056.00 
19 3 966.00 0.73 6600.00 13749.00 7764.00 
20 2 287.00 3.85 6400.00 1698.00 6536.00 
21 3 252.00 0.86 2455.00 2741.00 1836.00 
22 3 109.00 0.94 724.00 1003.00 733.00 
23 3 75.00 0.89 539.00 640.00 443.00 
24 2 90.00 0.70 453.00 463.00 326.00 
25 3 38.00 1.95 523.00 283.00 430.00 
26 3 48.00 1.16 387.00 375.00 339.00 
27 3 9.40 2.04 88.00 53.00 89.00 
28 1 13.00 2.81 98.00 35.00 133.00 
29 2 2.14 1.00 7.30 7.00 7.00 
30 2 1.98 0.91 5.90 6.40 5.80 

*Mode: l=Ore lanic       2 = = Semidetached        3 = Embedded 

each distribution. All other model parameters are fixed at their original values. Deterministic 

evaluation of the Basic and Intermediate COCOMO models, using the expected values of KLOC in 

the effort equations, produces the same results as those of the original models (with slight variation 

due to rounding in [Boehm 1981]). Since each input distribution was developed with an expected 
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value identical to the actual KLOC value, we anticipate the resulting unconditional expected value 

(ß) of the probabilistic approach to be relatively close to the forecast of the original model. 

5.5.1.1 Baseline Comparison:   Basic COCOMO.  As the goal of the software estimation 

models is to accurately predict the actual development effort and costs, we compare the model 

forecasts to the actual development requirements. A comparison of Boehm's original Basic 

COCOMO model with that of the actual project development effort, along with similar plots of the 

probabilistic results,^ and/4, is shown in Figure 5.5. 

Due to the conservative approach in using the actual KLOC requirement as the expected value of 

the input distribution, Figures 5.5(a) and 5.5(b) are nearly identical — a result that was expected. 

Such an observation validates the probabilistic approach as being consistent with the original 

COCOMO model. Interestingly enough, the conditional expected value also provides a consistent 

measure of actual development effort (Figure 5.5(c)). This, in part, is an effect of the limited 

variability of the input distributions. The conditional expected value may often be a more accurate 

indicator of actual development effort, particularly considering the tendency of underestimating 

parameters early in the life cycle. From these comparative results, one realizes that the probabilistic 

approach not only provides additional information concerning the extreme event scenarios of an 

alternative, but its results are consistent with those of the original method. 

To better evaluate the model results as they compare to the actual values, we calculate the 

normalized percentage error for each project in the dataset. Plots of the normalized percentage 

error histograms depict the range of accuracy with which the original model and its probabilistic 

extensions forecast actual development effort requirements. A distribution with the majority of its 

results centered around the zero value indicates an accurate predictive model. From Figures 5.6(a) 

and 5.6(b), one observes the tendency of the Basic COCOMO model to underestimate development 

effort, even when the actual KLOC value is used in the model. The distribution of normalized 

error associated with the conditional expected value is shown in Figure 5.6(c). As it is an indicator 

of the extreme event scenarios, one would anticipate that the conditional expected value would tend 

to overestimate the actual value. Figure 5.6(c) exhibits some evidence of overestimation, however 

not as great as might have been expected. 

5.5.1.2 Baseline Comparison: Intermediate COCOMO. Conducting Monte Carlo 

simulation of the Intermediate COCOMO model for the projects in the dataset produces results 

consistent with that of the original model (Figure 5.7). Comparing Figure 5.7 with Figure 5.5 
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Figure 5.5 Basic COCOMO model results: (a) Original forecast versus actuals, 
(b) Unconditional expected values versus actuals, (c) Conditional expected values 

versus actuals. 

shows the Intermediate COCOMO model's improvement over the Basic model in accurately 

forecasting actual development effort. Again, because of the conservative scheme employed for 

developing the input distributions, the unconditional expected value results (Figure 5.7(b)) are 

similar to the original results (Figure 5.7(a)). Examining Figure 5.7(c), we observe that the 

conditional expected values tend to over-estimate the actual development effort. While this is true, 
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Figure 5.6 Baseline Comparison: Basic COCOMO model normalized percentage error: 

(a) Original forecast versus actuals, (b) Unconditional expected values actuals, 
(c) Conditional expected values versus actuals. 

it is readily apparent that the/i values still show good correlation with the actual development effort 

values. 

In a more-realistic application, where the uncertainty concerning the project's size early in the 

software development life cycle causes underestimation of the KLOC requirements, the conditional 

expected value may be an important complementary metric. Conducting analysis similar to the 
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Figure 5.7 Intermediate COCOMO model results: (a) Original forecast versus 
actuals, (b) Unconditional expected values versus actuals, (c) Conditional expected 

values versus actuals. 

above, but for left-skewed input distributions (indicating an underestimation of KLOC 

requirements) would even more strongly indicate the relationship of the conditional expectation to 

the actual results. 
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5.5.2    Underestimation Comparison Formulation 

To test the claim that the conditional expected value is a useful decision making metric when 

considering the tendency to underestimate project size early in the development life cycle, we 

consider the scenario in which the parameters of the KLOC input distribution estimates are set at: a 

= 0.40*(actual KLOC), b = 1.25*(actual KLOC), and c = 0.60*(actual KLOC). Again, all other 

model parameters are fixed at their original value. 

5.5.2.1   Underestimation Comparison: Basic COCOMO.   Comparative plots of the 

Basic COCOMO model values of the unconditional and conditional expected development effort 

versus actual values are shown in Figure 5.8. In this underestimation scenario, the conditional 

expected values more closely reflect the actual development effort than do the unconditional 

expected values. As depicted in Figure 5.8(a), the unconditional expected values generally 

underestimated the development effort, with most points lying above the principal diagonal. On 

the other hand, the conditional expectation results are more closely aligned with the actual values 

(Figure 5.8(b)), showing a great improvement over that of the unconditional expected value 

results. 
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Figure 5.8 Underestimation Scenario -- Basic COCOMO model results: (a) Unconditional 

expected values versus actuals, (b) Conditional expected values versus actuals. 
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5.5.2.2   Underestimation Comparison: Intermediate COCOMO.  Figure 5.9 depicts the 

results of the probabilistic assessment of the Intermediate COCOMO model for the underestimation 

scenario. Again, the improvement of the Intermediate COCOMO model over the Basic model in 

estimating actual effort is easily noticed. As with the Basic model, the unconditional expected 

values underestimate the actual development effort (Figure 5.9(a)), but the deviation from actual 

values is much less than with the Basic model. Figure 5.9(b) shows the remarkable accuracy with 

which the conditional expected values correspond with actual development effort values. 
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Figure 5.9 Underestimation Scenario Intermediate COCOMO model results: 
(a) Unconditional expected values versus actuals, (b) Conditional expected 

values versus actuals. 

Histogram plots of the normalized percentage error (Figure 5.10), indicate the increased value of 

examining the conditional expectation under the circumstances of parameter underestimation. The 

conditional expected value results are much more closely aligned about the zero point (indicating 

exact correlation), while the unconditional expected values underestimate the actual development 

effort. 
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Figure 5.10 Underestimation comparison: Intermediate COCOMO model normalized 
percentage error: (a) Original forecast versus actuals, (b) Unconditional expected values 

versus actuals, (c) Conditional expected values versus actuals. 

5.6   Chapter Summary 

In this chapter, we have developed and demonstrated a probabilistic approach to software 

estimation. This included both a direct approach and a Monte Carlo simulation approach to 

software estimation. We also developed a method for determining the conditional and 

unconditioanl expected values from a Monte Carlo simulation.   The probabilistic approach was 

tested using the original COCOMO data set, and the results were compared to those from the 

COCOMO. 

The added benefit of the probabilistic approach for software estimation, particularly the use of the 

conditional expected value used to supplement the more traditional unconditional expected value, 

provides a greater representation of the risks of extreme events associated with a particular policy 

or alternative. As uncertainty is at its greatest early in the life cycle when model parameter 

estimates are least certain, the need for supplementing the traditional expected value analysis with 

that of the conditional expected value is critical for decision making. The conditional expected 
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value provides not only an understanding of the extreme-event possibilities, but also indicates the 

potential effects that could be realized from underestimating model parameters. 

The results of the comparison with actual development effort underscore the consistency of the 

probabilistic approach with the original deterministic form of the COCOMO model. This provides 

a measure of confidence for the software cost estimation community as they employ a probabilistic 

approach - the method behaves in a manner consistent with the traditional approach. The results 

also indicate the importance of using the conditional expected value for analysis, particularly early 

in the development life cycle when project parameters such as project size are often underestimated. 

While the probabilistic approach has been demonstrated for the Basic and Intermediate COCOMO 

models, the flexibility of this methodology permits its application to the full range of software cost 

estimation models. 
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Chapter 6 
Dynamic, Multistage Software Estimation 

Discrete-time dynamical models that incorporate the probabilistic estimation approach of the 

previous Chapter are developed for the software estimation problem. These models, with 

increasingly complex forms of the state and observation equations and expanding 

probabilistic representation flexibility, provide a range of dynamic modeling formulations 

for software estimation. Recognizing that practical limitations often exist in data form and 

availability, these models allow selection of a dynamical model most appropriate for a 

specific situation. First, a linear-normal dynamical model with closed-form solution is 

developed. This model provides the context for defining the components of the software 

cost estimation dynamical model and for describing the interaction of these components. 

Then, the second model relaxes the linearity and normal distribution restrictions, employing 

nonlinear state and observation equations derived from the Intermediate COCOMO model. 

6.1   Introduction and the Need for Dynamic Software Estimation 

Software acquisition is not generally considered a static decision activity. Rather, as 

captured in the spiral model of software development [Boehm 1988], the process consists 

of multiple repetitions of primary stages that often extends over a great length of time. 

Lederer and Prassad [1993] report that in practive, software estimation is most often 

prepared at the initial project proposal stage; then, with declining frequency, at the 

requirements, systems analysis, design, and development stages. However, as the 

software development community continues to move away from the traditional waterfall 

development process model to the spiral-type models, the demand has increased for cost 

estimation models that account for the dynamics of changing software requirements and 

design (and the always-present uncertainty) over multiple time periods. Bell's survey of 

software development and software acquisition professionals indicate that a vast majority 

believe a dynamic software estimation model would be most applicable for their estimation 

requirements [Bell 1995]. 

At each stage of the acquisition process, decisions are made that affect the events and 

decision opportunities of subsequent phases. Software estimation is a required activity in 
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each of the stages of the process. Applying the probabilistic cost estimation method with 

its multiple objective risk functions, //, described in the previous Chapter, constitutes a 

multiple objective decision problem that is solved over multiple stages. We next give a 

brief background on dynamic modeling and multiobjective, multistage trade-off analysis. 

Then, the remainder of the Chapter is a development of dynamical models for software 

estimation. 

6.1.1    Dynamic Modeling -- The Basic Problem 

Dynamic modeling is the term applied to methodologies that are concerned with sequential 

decision problems that involve a dynamic system [Bertsekas 1976], [Reid 1983]. Such 

systems have an input-output description and system inputs are selected sequentially after 

observing past outputs. The formulation of optimal control of a dynamic system is very 

general since the state space, control space, and uncertainty space are arbitrary and may 

vary from one state to the next. The system may be defined over a finite or infinite state 

space. The problem is characterized by the fact that the number of stages of the system is 

finite and fixed, and by the fact that the control law is a function of the current state. 

(Problems where the termination time is not fixed or where termination is allowed prior to 

the final time can be reduced to the case of fixed termination time [Bertsekas 1976]). 

The discrete-time dynamic system is given by 

x(k+l)=f(x(k), u(k), w(k)) (6.1) 

where x(k) is the state of the system at stage k, u(k) represents the control, or policy 

implemented at that stage, and w(k) accounts for the random "disturbance" not otherwise 

captured in the model. The system output associated with each stage is given by 

y(k) = g(x(k), v(k)) (6.2) 

where y(k) is a cost or other output metric associated with the state of the system, x(k) is 

the state of the system, and v(k) is another purely random sequence accounting for 

randomness in the observation process. 

Given an initial state x(0), the problem is to find a control policy sequence that minimizes 

both the sum of all output costs y(k), k = 1,..., N and the cost associated with the 

implementation of the control policies u(k), k=l,..., N. 
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Figure 6.1 depicts the dynamical model that has been described. The input to each stage 

includes the state value from the previous stage x(k), a policy input u(k), and the effect of 

random process disturbances w(k).   These are used in Eqs. (6.1) and (6.2) to produce the 

cost estimate output y(k) and to update the state variable x(k+l). 

u(0)   w(0) u(1)    w(1) 

i i 
y(0) y(V 

Figure 6.1 Discrete-Time Dynamical Model 

6.1.2    Multiobjective, Multistage Tradeoff Analysis 

As the objective of the dynamical model is to find a cost-minimizing control policy 

sequence, the trade-off among project cost versus policy costs must be examined. Gomide 

and Haimes [1984] developed a theoretical basis for impact analysis in a multiobjective 

framework. In their multiobjective multistage impact analysis method (MMIAM), the 

trade-off decision metric is the marginal rate of change of one objective function.// per unit 

change in another objective function^-. Applying the concepts of the MMIAM along with 

that of the PMRM in a dynamical model introduces the concept of the stage trade-off. The 

stage trade-off, given by X", represents the marginal rate of change of /* (x, u, k) per unit 

change in /;'(x, u,l). These trade-offs provide a measure of the impacts upon levels of the 

risk objective functions at various stages. Additional discussion concerning full and partial 

trade-offs is given in [Haimes and Chankong 1979], [Chankong and Haimes 1983], and 

[Gomide and Haimes 1984]. 

6.2    Dynamical Modeling for Software Estimation 

As the acquisition process progresses through its several stages, the knowledge regarding 

the project is updated and the uncertainty is (hopefully) reduced. More specifically, the 

greater the understanding of the software project as a whole, the better one can estimate key 
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systems characteristics. From this information, appropriate project management policies 

regarding resource allocation and systems requirements can be made. 

Each stage k of the model represents a decision point in the software acquisition process. 

These include such milestones as the formal milestone decision points of the federal 

government acquisition process [DoD 1991], and the less formal, yet more frequent, 

intermediary review points: preliminary design review (PDR), software specification 

review (SSR), critical design review (CDR), etc. 

For the software cost estimation problem, we define the state variable x(k) to be the 

estimated KLOC required for the intended system. As a state variable, KLOC conveys the 

overall characterization of the complexity and feasibility of the desired software system. 

The system output at each stage of the acquisition process, y(k), is the development effort 

or cost of the software project. The functional form of y(k) may be that of one of the 

software cost estimation models described earlier. 

The estimated KLOC requirement of a software system can be impacted in several ways, 

most notably from: i) the characteristics or attributes imposed on the system, ii) the 

resource allocation and acquisition strategy policies, and iii) external factors. Each of these 

factors are accounted for in the state equation. The performance threshold levels imposed 

on a system are those metrics required to meet the operational requirements of the user 

community. Some of these factors are: system reliability requirements, software purpose 

(functionality), execution or turn-around time, and computational throughput [Boehm 

1981], [Sage 1995]. For example, requiring a high degree of system reliability may 

require greater KLOC for the system. System constraints often increase the complexity of 

the intended system, further contributing to greater KLOC requirements. 

The control policy, u(k), represents the acquisition strategy control and project control 

decisions that are selected. This includes the type and amount of non-budgetary resources 

expended for software development.   The control policies affect the KLOC requirement for 

the project and also influence the overall cost of the project. The resource allocation 

policies considered in this model concern two principal non-budgetary resources, namely 

personnel and technology. Personnel policy decisions relate to the selection and utilization 

of personnel with suitable qualifications (highly skilled, skilled, limited knowledge, etc.) 

and experience. Technological resources include the availability and allocation of specific 

programming languages and programming tools, the employment of certain programming 
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practices, and data base and storage resources. 

While there are numerous external factors that impact a software system's characteristics, 

one common external factor is the user community's changing operational requirements. 

The dynamic world of the user often results in modifications to the originally-specified 

requirements and functionality of the system. Other external influences that impact the 

KLOC requirement for the system include political factors, technology advances, and the 

current status of the software development industry. All these external factors have a 

possible effect on the system complexity, the estimated KLOC requirements, and the 

resource allocation policies. 

6.3   A Linear Dynamical Software Estimation Model 

Having introduced the general form of the state and output equations and having defined 

the model elements for a software cost estimation context, we develop a dynamical model 

for software cost estimation. While this initial model assumes a linear relationship among 

the parameters, it is anticipated that reality will often dictate a more complex formulation. 

The intent of this initial model, however, is to describe the general dynamics of the 

estimated size of the intended software system (measured in KLOC), the control policy and 

system constraints, and the resultant cost output associated with these elements. The initial 

model also serves as a vehicle for describing the application of dynamical modeling to 

software acquisition. Having used a linear model to accomplish these purposes, we will 

relax the linearity requirement in following extensions. 

In addition to the model parameters described above, we consider the output of each stage, 

y(k), to be a vector output as we consider the unconditional as well as the conditional 

expectation functions associated with the output function. We also introduce a cost 

function, /*, that accounts for the cost of implementing the chosen control policy at each 

stage. The problem is to choose a control sequence {u(l), u(2), u(3),..., u(n)} so as to 

minimize the policy implementation cost as well as the development cost vector. 

The dynamics of the system are described by 

x(k+l) = cx(k) + du(k) + w(k) (6.3) 

and the output equation for each stage, representing the cost of project development is 
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given as 

y(k) = ax(k) + v(k). 

The multiobjective cost estimation problem/or each stage is stated as follows 

(6.4) 

Minimize: 

Subject to: 

where 

k 

x(k) 

y(k) 

u(k) 

w(k) 

v(k) 

a 

x(k+l) = cx(k) + du(k)+ w(k) 

y(k) = ax(k) + v(k) (6.5) 

ft 
fks 

ft 

represents the discrete stages (decision points) of the system 

is the state of the system, the estimated KLOC input to stage k 

is the calculated effort (cost) output of stage k 

is the resource allocation and acquisition strategy control policy of stage k 

is a random variable accounting for process noise 

is a random variable accounting for observation noise 

is a cost-per-KLOC multiplier measured in equivalent terms as y(k) 

is the KLOC-adjustment multiplier reflecting system and environment 

attributes 

is a KLOC requirements-per-selected policy multiplier 

is the conditional expectation of the output variable y(k) at stage k 

is the unconditional expectation of the output variable y(k) at stage k 

is the cost of implementing control policy u(k). 

6.3.1   Solution Approach for the Linear Dynamical Problem 

The solution to a deterministic formulation of the problem given by Eq. (6.5), in which the 

values of all model parameters are known with certainty and the preferred control policy is 

ascertained, is a straightforward application of multiobjective math programming methods 

(see [Chankong and Haimes 1983]). In order to introduce the consideration of uncertainty 

and variance in the model parameters, we apply the probabilistic approach of Leach and 

Haimes [1987] to describe the model parameters where the disturbances v(k) and w(k) are 

permitted to be normally distributed, purely random sequences with mean zero and variance 
d\ and a^ respectively (constant for all it). 

The selection of normal random variates is based on the knowledge that any linear 

combination of normal random variables is also a normal random variable [Ross 1989]. 
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Thus, examining Eq. (6.3) we conclude x(k+l) is a normally distributed random variable 

and, therefore, so is y(k) by Eq. (6.4). Leach and Haimes [1987] and Romei [Romei et al. 

1992] derive exact-form solutions for the unconditional and conditional expected values of 

normally-distributed functions with the form of Eqs. (6.3) and (6.4).   The conditional 

expectation objective function /* of the normally-distributed y(k), is defined in terms of 

the mean p(k) and variance o2^) of the cost distribution. The conditional expectation on 

the region [sk fyj, s/c< t^ is [Leach and Haimes 1987]: 

fl{u) = ß{k;u)+ß\o(k) (6.6) 

where 

fi = \*. , (6-7) 

Js',. ■JlK ' 

,    tk-ji(k)       , _sk-ß(k) 
k       a(k)    '    *       o(k)    ' 

(6.8) 

p(k;u) = E[y(k)] = E[ax(k) + v(k)] = aE[x(k)] + 0 = aE[x(k)], (6.9) 

o*(k) = Var\y(k)]. (6.10) 

As y(k) represents cost, the conditional expectation (6.6) is an objective function to be 

minimized. 

The unconditional expected cost, /*, is the expected value of the output cost function and, 

using Eq. (6.9), and can be represented as 

f5
k=E\y(k)] = dE[x(k)]. (6.11) 

The general solution to Eq. (6.11) can be proven by induction [Haimes and Li 1995], 

resulting in 

/* = E\y(k)] = ackx0+^ac'du(k-l-i). (6.12) 
i=0 

Observe from Eqs. (6.6), (6.7), and (6.10), that the term ßk
Ao(k) is a factor of k only, and 

not of the control u(k). Therefore, minimizing the conditional expected value function 

(6.6) is reduced to minimizing the unconditional expected value: 
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mmf^(u) = mm{/j.(k;u) + ßla(k)\ = ßk
A(7(k) + mmfi(k;u). (6.13) 

u u    L J u 

This implies that minimizing the mean of y(k), i.e., minimizing fd,(k;u), should yield the 

same controls as minimizing /*. Because of this, the trade-offs associated with the 

conditional and unconditional expectation functions for any given k will be equal. Only the 

levels of the objectives will be different. In other words, the expectation functions at stage 

k are parallel lines. 

Using the results of Eq. (6.13) and the fact that the variance is independent of the control, 

we can consider a deterministic system model that is equivalent to the stochastic one 

described by Eqs. (6.3) and (6.4) but without the elements of randomness - for the 

optimization process all random variables are assigned the value of their mean. LetA 

denote the equivalent variables for the deterministic system, Eqs. (6.3) and (6.4) become: 

x(k + l) = cx(k) + dü(k) 
y(k) = ax(k),   and 

x(0) = x0. (6.14) 

Solving Eq. (6.14) for y(k) yields the same solution as Eq. (6.12) [Haimes and Li 1995]. 

Hence the important result: 

Kk) = f!=E\y(k)] = fi(k;u). (6.15) 

An outline of a methodology for solving the multiobjective, multistage problem (6.5), is 

given by [Leach and Haimes 1987]: 

1. Determine the partitioning scheme for each component of damage 
(cost) for each stage and calculate the values of all /J*. 

2. Calculate the variance G2{k) for each stage. 

3. Formulate the equivalent deterministic system (6.14). 

4. Include the deterministic cost equation y(k) with the other objective 

functions in finding noninferior solutions. 

5. The value of y(k) is equal to the unconditional expected value. 

Determine the conditional expected values by Eq. (6.6). Tradeoffs 

for a given stage are the same for all conditional expected values are 
equal to the stage tradeoffs calculated for y(k). 

6. Use a multiobjective decision-making method such as the surrogate 
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worth tradeoff (SWT) method [Haimes 1980] to find the preferred 

solution. 

6.3.2   Example 6.1 - Policy Evaluation using the Linear Dynamic Software 

Estimation Model 

The following is an example of how the multistage model described in the previous section 

may be applied. The model is a stochastic, time invariant, linear difference equation 

representing the relationship between software development management control policies, 

estimated model size, and project cost. Three stages are considered here, representing 

original cost and system requirement estimates obtained through a pre-bid conference, 

which are then updated at decision points early in the Requirements Determination and 

Design phases of the software acquisition process. 

Let x(k), the state variable at stage k representing estimated KLOC, be expressed as a ratio 

to the initial estimate. The initial state is known with certainty, hence x(0) = 1. The control 

policy u(k) (level of resource allocation) is expressed as a ratio to the nominal level of 

allocations, just before the beginning of the planning horizon. Implementation of a 

particular policy is selected as a risk-prevention measure — reducing the risk of excessive 

project cost overruns. This value can be considered as incorporating the personnel and 

product elements of the Intermediate COCOMO model [Boehm 1981], along with 

acquisition management options such as additional review and study, the hiring of external 

consultants, requirements for the development of prototype systems, etc. 

The cost-per-KLOC constant, a, is fixed at $ 1 million, an often-quoted figure for mission- 

critical flight control software [Rifkin 1995]. Let the performance characteristics constant, 

c, be fixed at c = 1.44, representing increasing complexity due to operational demands 

imposed on the system. This value is obtained by considering the product and computer 

attributes of the Intermediate COCOMO model [Boehm 1981]. The parameter d, the 

KLOC-adjustment due to policy selected, is fixed at d = -0.25. This value is negative, 

assuming a modest moderating effect of the application of resources on the otherwise 

increasing system complexity. Finally, let w(k) represent an external random disturbance 

with mean zero and variance crw = 0.04. The system's representation is then: 

x(k+l) = l.44x(k) - 0.25u(k) + w(k) 
y(k) = x(k) 
x(0) = 1 
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o£ = 0.04 
u(k) > 0 
k = 0,1,2,3. (6.16) 

For this example, the present-value cost function associated with the implementation of a 

particular policy is given by 

n-1 

/,-X*["<*>-1] I1+ *)' 
-2k 

(6.17) 
k=0 

where K = $100* 103> r = 10% is the annual discount rate, and the time period between 

stages is 6 months. Note that the cost function does not change with time - the dynamics 

are incorporated through the present value. 

Following the procedure outlined above, we now formulate the deterministic system. The 

multiobjective optimization that includes the project cost output, Eqs. (6.6) and (6.11), and 

the control policy implementation cost (6.17) can now be stated as 

min 
«(*) 

/.°(K(*)) 

/,3(«(*)) 

,  / = 4,5 (one i at a time). 

Using the e-constraint approach [Chankong and Haimes 1983] to generate the needed 

Pareto optimal solutions, the problem formulation is given as 

min/,°(w(A:) 
u(k) 

f){<k))<ex 

s.t.    ff(u(k))<£2   ,/ = 4,5. 

ff(u(k))<£3 

This leads to forming the Lagrangian function, 

^(•) = /I
0 + AI(/;-e1) + A2(/,2-e2) + A3(/,3-e3), i = 4,5 (6.18) 

where the Lagrange-multipliers describing the trade-offs between the cost function and risk 

functions are represented by 
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At=^=-fjr- (6-19) 

To solve the multiobjective optimization problem, we need only generate the unconditional 

expected cost function, /*, for each stage k = 1, 2, 3 (due to Eqs. (6.13) and (6.15)). 

Applying Eqs. (6.11), (6.12), and (6.16) produces the following unconditional expectation 

functions for each stage: 

f5=E[y(l)] = aE[x(l)] 

= aE[cx(0)] + du(0) + w(0)] = acE[x(0)] + adE[u(0)] + E[w(0)] 

= (1)(1.44)(1) + (l)(-0.25)40) + 0 

= 1.44-0.2540); 

/S
2=ED'(2)] 

= (1.44)2-0.25M(i) - (1.44)(0.25)M(0) 

= 2.074 - 0.3640) - 0.254^); 

/S
3=ELK3)] 

= (1.44)3 - 0.2542) - (1.44)(0.25)4i) - (144)2(0.25)40) 

= 2.986 - 0.2542) - 036u(l) - 0.518440). 

Substituting the above three results and that of Eq. (6.17) into Eq. (6.18), the Lagrangian 

is now 

LC) = [100(40) - 1)2+ 90.70(u(l) - 1)2+ 82.27(42) - l)2] 

+ ?il[1.44-0.2540)] 

+ X2[2.074 - 0.3640) - 0.254^)] 

+ k3[2.986 - 0.25«(2) - 0.36u(l) - 0.518440)]. (6.20) 

Taking the derivatives of Eq. (6.20) with respect to the controls at u(2), u(l), and u(0) and 

applying first-order stationary conditions, we determine the trade-off values (6.19). Table 

6.1 gives three possible noninferior solutions. For each solution, the Table gives the 

values of the control variables, the value and the levels of the risk functions, and the trade- 

off values between the cost and risk functions. 

Policy A represents no change in resource allocation over the planning horizon. Because 

there is no additional application of resources, no policy implementation costs are incurred. 

However, the conditional and unconditional expected project costs become increasingly 
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Stage 

Table 6.1 Noninferior Policies for Software Acquisition 
 Policy Aa  

Risk Function Trade-offs 

k=l fl= 1-467 

fl= 1-190 A?i = ^°; = o 

lc = 2 fl= 1.741 

fs= 1-464 ^=A- = 0 

Jfe = 3 /4
3= 2.135 

fl= 1.858 A-=A- = 0 

Policy Bb 

Stage Risk Function Trade-offs 

k=l fl = 1-442 

fl= 1.165 AI4 = A, 5 = 863.62 

k = 2 f]= 1-642 

/5
2= 1.365 *% = %) = 181.40 

fc = 3 /4
3 = 1.868 

fl= 1-591 A?3 = A?3 = 329.08 

Policy Cc 

Stage Risk Function Trade-offs 

k= 1 

k = 2 

k = 3 

fl= 1-342 

fl = 1.065 

f]= 1-436 

/5
2= 1-159 

fl= 1-570 

/s
3 = 1.293 

X\\ = A°; = 804.84 

X°l = Xf5 = 362.80 

A?3 = Af5 = 329.08 

a Control variables: wfO) = 1, u(l) = 1, «(2) = 1; cost, /,0 = 0 ($103). 
b Control variables: u(0) =1.10, u(l) = 1.25, u(2) = 1.50; cost, /,° = 27.24 ($103). 
c Control variables: u(0) = 1.5, u(l) = 1.5, u(2) = 1.5; cost, /° = 68.24 ($103). 
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worse over time. By the third stage, the expected value of project cost has become 1.858, 

with the extreme-event conditional expected value at 2.135. The trade-offs between all risk 

functions and cost are zero (due to no implementation costs), so that small improvements in 

the risk functions can be made at little additional cost. Because the trade-offs are zero, this 

is an improper noninferior solution [Chankong and Haimes 1983]. 

Policy B is a policy of gradual increase in personnel and technological resources allocated 

for project development. The expected project cost increases less dramatically over the time 

period, and the conditional and unconditional expected values indicate less risk than policy 

A. The lower project costs over those of policy A are achieved with relatively low policy 

implementation costs. This will be demonstrated graphically. 

Policy C represents an immediate increase in resource allocation. The result is a significant 

decrease in expected project cost, with the expected value rising to only 1.293 by the third 

stage. Of the three solutions in Table 1, policy C is the one of lowest risk, but it is also the 

most expensive. The trade-offs are also much larger for this policy, indicating that it 

becomes increasingly expensive to gain additional improvement in the risk functions. 

Selection of the most preferred of the three noninferior policies must be made by the 

decision maker, taking into account his/her personal preferences in the trade-offs between 

the cost function and the risk functions. Formal methods such as the surrogate worth 

tradeoff (SWT) method [Haimes 1980] are appropriate. Analysis of the impact that control 

policies have on later- stage decision making options must also be taken into account. 

To demonstrate why impact analysis is so useful in a problem such as this one, suppose the 

multiobjective problem was solved only one stage at a time. The cost associated with 

resource allocation policy control (6.17) in the first stage, denoted by //, is 

// = 100[u(0) - 1]2. 

Figure 6.2 shows the set of noninferior solutions when the first-stage costs // and the 

expected damage at the first stage f\ are the only objectives considered. The points 

corresponding to the policies A, B, and C are indicated on the curve. Considering only the 

first-stage objectives, the selection of policy C over the other alternative policies would 

appear desirable; the initial $25,000 policy implementation cost produces an expected 

$125,000 project cost reduction over the project's life cycle. 
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Figure 6.2 Noninferior solution set considering only first-stage objectives 

Consider now the second stage, with the cumulative control costs, denoted by /,2, given 

by 

f\ = 100[w(0) - 1]2+ 90.10[u(l) - 1]2. 

Depending on which policy was implemented in the first stage, three different noninferior 

solution sets are possible in the second stage, as shown in Figure 6.3. Each curve is 

labeled with its associated first-stage policy. The way in which the first-stage policy affects 

the second-stage (and subsequent-stage) decision making is what makes impact analysis 

desirable. Li and Haimes [1987] [1988] show that there is a family of such noninferior 

solution sets, where each curve depends on the chosen policy of the previous stage. The 

envelope of this family of curves engulfs all the noninferior solutions of each stage, thereby 

defining the noninferior frontier for the multistage problem. Additional decision-making 

information can be provided by plotting the conditional expectation curves for each 

alternative policy. Trade-offs are then made in terms of both expectation values. 
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Figure 6.3 Impact analysis at the second stage 

6.3.3     Observations 

The linear, multistage software estimation model has provided a necessary framework for 

understanding and analyzing the interactions of the software cost estimation parameters. 

The closed-form solution enabled an analytical description of the dynamics of the software 

cost estimation model parameters. The example problem demonstrated the benefits to 

decision making by using this approach - both in terms of the importance of impact 

analysis and multiobjective tradeoff analysis. This model sets the stage for the 

development of a multistage software cost estimation model that is more closely associated 

with existing methods. 

6.4   A Nonlinear Multistage Software Estimation Model 

While the linear dynamical formulation provides a general representation of the interactions 

of the state, control, and external factors in software cost estimation, the linear relationships 

imposed in the model do not necessarily represent actual parameter interactions. It is 
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desirable to relax some of the conditions of the above model and develop a multistage 

dynamical model that is more closely aligned with existing estimation methods. Unlike Eq. 

(6.5), this new model constitutes a nonlinear formulation. Such a formulation precludes 

the expectation for an analytic closed-form solution. This is not a deterrent, however, due 

to the availability of powerful computer software. We formulate this more-realistic 

nonlinear dynamical software cost estimation model and use a Monte Carlo simulation 

approach for its analysis. The form of the state and output equations, as well as an 

example problem that demonstrates the application of this revised model, are based on the 

Intermediate COCOMO model. 

Recall that the KLOC-based software development effort models, such as the COCOMO 

model, produce both nominal and modified development effort values, where the modified 

value is based on the existence of certain project attributes. The nominal man-months of 

development effort equation has the nonlinear form [Boehm 1981] 

MMNOM = a(KLOC)b (6-21) 

which written in the notation of Eqs. (6.1) and (6.2) gives 

y(k)NOM= a(x(k))K (6-22) 

The Intermediate COCOMO model's effort adjustment factor (EAF) then revises the 

nominal effort result according to the available resources, project requirements, and 

environmental attributes (similar to the earlier definitions of u(k) and c), resulting in the 

development effort requirement 

MM =   (EAF)MMNOM = (EAF)[a(KLOC)b] (6.23a) 
or 

y(k) = (EAF)[a(x(k))bJ. (6.23b) 

EAF is defined as [Boehm 1981]: 

EAF = ne, (6-24) 

where e; is an effort multiplier associated with a particular cost multiplier attribute. 

The adjusted effort (6.23b) may also be viewed as the result of a revision in the KLOC 

requirements. In other words, the existence of a requirement for a certain program 

attribute, or the implementation of a certain control policy, impacts the KLOC requirement 
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for the system (e.g., increasing the system reliability requirement may increase the KLOC). 

The relationship between the effect of system attributes and control policy on KLOC and 

Boehm's EAF can be found by solving 

a[u(k)c(k)(KLOC)]b = (EAF)[a(KLOC)b] (6.25) 

for the product u(k)c(k), where c(k) represents system and environment attributes at stage k 

and u(k), as defined earlier, represents the control policy of stage k. Solving Eq. (6.25) 

for u(k)c(k) leads to 

[u(k)c(k)(KLOC)]b = (EAF)(KLOC)b 

u(k)c(k)(KLOC) = (EAFf\KLOC) 

u(k)c(k) = (EAF)yb. (6-26) 

Hence, the combined adjustment factor to KLOC due to the system characteristics and the 

selected control policy at stage k is quantified as the bth root of Boehm's effort adjustment 

factor. The system output at each stage of the process (6.23b), defined as the projected 

development effort of the intended system y(k), can now be represented as 

y(k) = a[(c(k)u(k) + v(k))x(k)]b (6.27) 

where v(k) is a random sequence accounting for the influence of external factors on the 

project's development. Equation (6.27) reflects the combined effects that the state of the 

system (the estimated KLOC), the control policy, specific system attributes, and external 

forces have on the project's eventual development effort. 

The state update equation, the sequential revision of the estimated KLOC, is given by 

x(k +1) = [c(k)u(k) + w(k)]x(k) (6.28) 

where the random sequence w(k) accounts for the influence of external factors, c(k) reflects 

system and environment attributes, and u(k) represents the resource allocation and 

acquisition strategy policies employed at that stage. Equations (6.27) and (6.28) provide 

the mathematical description of this nonlinear discrete-time system for software cost 
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estimation, paralleling Eqs. (6.4) and (6.3) of the linear model. 

The formulation for this nonlinear, dynamical model for software cost estimation can now 

be written. As with the previous model, the objective functions to be optimized at each 

stage include the conditional and unconditional expected values of project development 

effort and the implementation cost associated with the selected control policy. The model 

consists of an equality (6.27) that relates the current state x(k) and the current policy u(k) to 

obtain the output value y(k). Also, it includes a difference equation (6.28) that relates the 

current state x(k) and the control policy u(k) to obtain the next state x(k+l). The 

multiobjective problem/or each stage is: 

Minimize:        /*=(/*,   fl   f5
k 

Subject to:       x(k +1) = [c(k)u(k) + w(k)]x(k) 

y(k) = a[(c(k)u(k) + v(£))x(£)]* (6.29) 

where: 

k represents the discrete stages (decision points) of the system 

x(k)     is the state of the system, the estimated KLOC input to stage k 

y(k)     is the calculated effort (cost) output of stage k 

u(k)     is the resource allocation and acquisition strategy control policy of stage k 

c(k)     is a composite adjustment multiplier to the required KLOC reflecting system 

and environment attributes at stage k 

v(k), w(k)  are composite random variables that account for external disturbances 

a, b     are parameters depicting system characteristics, as with the COCOMO 

models [Boehm 1981] 

/*      is the conditional expectation of development effort y(k) at stage k 

fs       is the unconditional expectation of development effort y(k) at stage k 

fi       is the cost of implementing control policy u(k). 

6.4.1    Solution Approach for the Nonlinear Dynamical Problem 

Having relaxed the linearity requirements of the previous formulation, we also no longer 

require the random variables to be normally distributed -- allowing representation by any 

suitable probability distribution. In addition to v(k) and w(k), we also permit probabilistic 

representations of x(k), c(k), and u(k). 
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A common practice in the solution of problems such as Eq. (6.29) is to set v(k) and w(k) to 

their expected values in order to permit a more focused exploration of the impact and 

interaction of the state and control variables [Leach and Haimes 1987]. Application of this 

technique, however, overlooks the fact that these variables are often the most critical, as 

they are the unpredictable changes of policies and requirements during the software 

lifecycle and that removing them from consideration in the model may impact analysis of 

the model's results. 

Considering the nonlinear relationships among model parameters in this new formulation, 

and that these parameters may be represented by a variety of probability distributions, we 

can no longer assume a closed-form solution for the cost output distribution, y(k), or its 

conditional expected values /* and/*. We are interested in computing E[y(X)] and 

E[y(X)IX>x], where the notation, X (actually X(k)), indicates that the estimated KLOC is 

now treated as a random variable. Since it is not analytically possible to compute a closed- 

form solution of the expected values, we apply a simulation approach. 

To approximate E[v(X)] for each stage, we generate a random value XW = x from the 

density function of X and then compute YW = yiX^). We next generate a second random 

value (independent of the first) X© and compute Y© = y(X(2)). This continues until n, a 

fixed number of independent and identically distributed random variables Y© = y(X©), / = 

1,. .., n have been generated. By the strong law of large numbers [Ross 1989] we know 

that 

y(l)   . , y(") 
lim -n = E[Y] = E[y(X(k))] = f5

k. (6.30) 

By Eq. (6.30) we can use the average of the generated YC)s as an estimate for E[y(X(fc))], 
the unconditional expected value. To approximate the conditional expected values, /*, we 

form the sub-set of outcomes Y^ whose members are those outcomes that exceed the 

partitioning value ß associated with the predetermined a value. Simply stated, 

Yß=[Y(i)\Y(0>ß]. (6.31) 

The average of the members of Y^ is the average of all outcomes that exceed a particular 

damage level - precisely the definition of the conditional expected value. Hence, given m 
elements of the set Y^ (for m sufficiently large), an approximation to the conditional 

expected value of the development effort (cost) is given by 
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Y(1) + ••• + Y(m) 

-l ß— = E[ Y,] = E[y(X(k))\y(X(k)) >ß] = /*. (6.32) 

Monte Carlo simulation of the present-value cost function of implementing a particular 

control policy /* is conducted in a similar manner. The unconditional and conditional 

expected control policy costs are generated from the simulation outcomes. 

While the initial density function for KLOC, X(0) = f(x0), may have a pre-specified form, 

subsequent updates of the KLOC probability distribution cannot be obtained analytically. 

Therefore, a Monte Carlo simulation of the stage-wise update for the state equation (6.28) 

is similar to the procedure described for the effort and policy cost equations. The n 

outcomes, X®(k+1), provide the data for probability distributions of the simulated outcome 

results that are the state input distributions for the following stages. 

An outline of a methodology for solving this new multiobjective, multistage problem is: 

1. Determine the partitioning scheme for each component of damage (cost) for each 

stage. 

2. Solve the probabilistic problem using Monte Carlo simulation to produce a 

distribution for the cost output at each stage and to update the state distribution. 

3. Determine the conditional and unconditional expected values of the simulation 

cost distribution results. Use localized variations to estimate the tradeoffs for a 

given stage. 

4. Use a multiobjective decision-making method such as the surrogate worth 

tradeoff (SWT) method to find the preferred solution. 

6.4.2    Example 6.2 - Policy Analysis using the Nonlinear Dynamic 
Software Estimation Model 

This example problem demonstrates how the nonlinear dynamical model (6.29) is applied 

and solved. A natural extension of a probabilistic software cost estimation, the model is a 

stochastic, nonlinear difference equation representing the relationship between software 

development resource allocation control, estimated model size, and project cost. The 

example employs probabilistic representation of model parameters and demonstrates the 

power of modern analytic support tools to solve complex mathematical problems. 
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We adapt for this example, the problem described in [Boehm 1981] concerning the 

development of a semidetached software product. We account for the inherent uncertainty 

associated with the early stages of a software acquisition effort by quantifying the initial 

estimate of KLOC requirements, x(0), as a triangular probability density function. This 

distribution is derived from considering three values for x(0): a low, most likely, and high 

estimate (Table 6.2). As the project is intended to be a 32-KLOC product, this value is 

taken as the Most Likely. A slightly lower, Low value and a High value one and one-half 

times that of the Most Likely are assumed. 

Table 6.2 Triangular distribution parameters for initial KLOC estimate, x(0) 
Low Most Likely High 

x(0) 28 32 48 

For this example problem we use a present-value control policy cost function that reflects 

the direct relationship of u(k) and its implementation cost; greater allocation of resources 

increases the policy costs. The complexity of the system within which the control policy is 

implemented also affects the cost of that policy. The control policy implementation cost, as 

a function of both the policy and the environmental attributes within which that policy is 

implemented is given by: 

f« =%K[c(k)(2-u(k))](\ + j)'2k. (6.33) 
k=0 

We set K = $ 1 * 106> r = 10%, and the time period between each of the n stages is 6 

months. In this new formulation, the possibility is open for parameters K and r to also be 

represented by probability distributions. 

The effect of system and environmental attributes c(k) is quantified by considering the 

effort adjustment factor of the Intermediate COCOMO model's product and computer 

complexity attributes. The ratings and scores of the system attributes of the first stage are 

listed in Table 6.3. Each attribute is rated on a scale from Very Low to Extra High, and 

each rating has an associated KLOC adjustment factor. Nominal ratings have an 

adjustment factor of 1.0. Note that a high system attribute rating translates to an increased 

KLOC requirement. While each attribute's score in Table 6.3 could be represented by a 

probability distribution, we will instead use single values for this example. Furthermore, 

for this example, these values are held constant for all it. Using the data from Table 6.3 in 

Eq. (6.24), the contribution to the EAF due to system attributes is 1.438. By Eq. (26), 
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Table 6.3 System Complexity Attribute KLOC adjustment factors 

Adjustment 
Attribute Rating Factor (e) 
Reliability Nominal 1.00 
Data Base Size Low 0.94 
Complexity Very High 1.30 
Execution Time High 1.11 
Storage High 1.06 
Virtual Machine Volatility Nominal 1.00 
Turnaround Time Nominal 1.00 

c(k) = 1.383. This value reflects the increased system complexity, execution time, and 

storage requirements reported at this stage, resulting in an increasing trend for KLOC 

requirements. 

Quantification of the control policy, u(k), is governed by the resource allocation elements 

of the Intermediate COCOMO model's personnel and project attributes. As above, each 

element is rated on a scale from Very Low to Extra High, with each rating having an 

associated quantitative KLOC adjustment factor. The resource allocation adjustment factors 

impact KLOC requirements and resource allocation costs in opposite directions -- a low 

rating (implying limited allocation of qualified resources) results in an increased KLOC 

requirement, but a lower implementation cost. This explains the differences in the 

functional form of u(k) in Eqs. (6.29) and (6.33). Table 6.4 lists the control policy ratings 

and scores for the resource allocation policy for one stage. Similar ratings and scores are 

determined for each control policy at each stage in the process. Using the values from 

Table 6.4 in Eq. (6.24) and applying Eq. (6.26), the adjustment to KLOC due to the 

control policy is 0.832. The employment of highly-qualified analysts and programmers, 

along with advanced programming practices leads to efficient, accurate programming that 

requires less KLOC. 

Table 6.4 Resource allocation control policy KLOC adjustment factors 
(from [Boehm 1981]) 

Resource 
Analyst Capability 
Applications Experience 
Programmer Capability 
Virtual Machine Experience 
Programming Language 
Programming Practices 
Software Tools 
Development Schedule 

Adjustment 
Allocation Factor (e) 
High 0.86 
Nominal 1.00 
High 0.86 
Low 1.10 
Nominal 1.00 
High 0.91 
Low 1.10 
Nominal 1.00 
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The constants, a and b, are assigned the values from the Intermediate COCOMO model that 

correspond to the development environment. For a semidetached product, a = 3.0 and b = 

1.12 [Boehm 1981]. The two random variables that account for external disturbances, v(k) 

and w(k), are assumed to be normally distributed with mean zero and variance 

o^ = o^ = 0.04. 

6.4.2.1 Model Verification.  In order to verify the formulation of this model, we 

compare the solution of its deterministic formulation with the results from [Boehm 1981]. 

Setting each probabilistic parameter to its most likely value gives x(0) = 32 KLOC, v(0) = 

0, and w(0) = 0. The initial evaluation of the nominal effort for this example problem is 

found by Eq. (6.22): 

y(k)NOM= a(x(k))b = (3.0X32)1-12 = 146 man-months (MM), k = 0. 

Using Eq. (6.26), the impact on the estimated KLOC requirement due to the observed 

system attributes c(0) and chosen policy u(0) is 

c(0)w(0) = (1.171)X'2 = 1.151. 

The effect of the system attributes and control policy in revising the estimated KLOC is 

given by Eq. (6.28): 

x(l) = c(0)u(0)x(0) = 36.832 KLOC. 

Hence, the adjusted development effort output from the first stage as a function of the 

estimated KLOC and the control policy is found by Eq. (6.27): 

y(l) = y(x(l)) = (3.0)[c(0)u(0)x(0)]Ll2 = 170.33 MM. 

This result is very close to the rounded solution of 171 MM given in [Boehm 1981]. 

Similar, near-exact solutions were produced for additional example problems also from 

[Boehm 1981]. 

6.4.2.2 Probabilistic Evaluation.  We now extend the application of the nonlinear 

dynamical model beyond single-stage estimation, where the results of stage 1 provide the 

input for stage 2. In each subsequent stage, a new control policy is implemented, reflecting 

the decision maker's resource allocation strategy for the development of the intended 

system.   This, along with a revised observation of system and environment attributes and a 
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new estimate of the KLOC requirement, is used to revise the development effort output in 

light of the updated knowledge. 

Allowing each parameter to assume its probabilistic form, the Monte Carlo simulation 

approach described above is used for solving the development effort output equation 

(6.27), state equation (6.28), and control policy cost equation (6.33). 

Similar to the linear example problem, consider three representative, noninferior control 

policies (Table 6.5). Policy A represents a nominal resource allocation, policy B is a 

gradual increase in the amount and quality of allocated resources, and policy C is an 

immediate and sustained increase in resource allocation. These policies may be considered 

optimistic, since even policy A has no resource category with a worse-than-nominal 

allocation. The partitioning value for the conditional expected value was set at a= 0.9, thus 

/* reflects the l-in-10 extreme event. 

Table 6.5 Noninferior Policies for Nonlinear Multistage Software Acquisition Example 
Policy Aa Policy Bb Policy Cc 

Stage Risk Function Risk Function Risk Function 

k= 1 fl = 535.66 f\ = 445.41 f\ = 199.25 
fl = 344.54 fl = 276.78 /]= 122.17 

k = 2 fl = 833.68 fl = 493.35 fl = 172.97 
fl = 506.54 fl = 285.32 fl= 106.16 

k = 3 fl = 1353.76 fl = 423.25 fl= 151.71 
fl= 714.86 fl = 182.71 fl = 80.43 

a Control variables: u(0) = 1, u(l) = 1, u(2)= 1; cost, /,° = 1.35 ($106). 
b Control variables: u(0) = 0.9, u(l) = 0.8, u(2) = 0.6; cost, /,° =1.51 ($106). 
c Control variables: u(0) = 0.6, u(l) = 0.6, u(2) = 0.6; cost, /,° = 2.09 ($106). 

Since policy A has no application of resources beyond the nominal level, its implementation 

cost is the lowest of the three policies considered. However, the conditional and 

unconditional expected development effort results become increasingly worse over time. 

By the third stage, the expected development effort is 715 MM, with the extreme-event 

conditional expected value a terrifying 1354 MM. This additional risk information 

regarding potential catastrophic events is the essential advantages of the probabilistic 

approach. The information regarding the range of possible outcomes associated with each 
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alternative benefits the decision maker in the process of selecting the most desired 

alternative. In this example, the conditional expected value information identifies that 

Policy A has a l-in-10 potential of an almost doubling its the required development effort. 

Risk mitigation policies B and C reflect the effects of the additional allocation of resources 

~ the required development effort decreases. The gradual approach of policy B shows 

marked improvement over policy A: the expected development effort increases less 

dramatically over the time period, even beginning to decrease by stage 3; the conditional 

and unconditional expected values indicate less risk than policy A. Policy C shows 

dramatic improvement over the other two options ~ both at the first stage, and over the 

long run. With a development effort expected value of only 80.43 after the third stage, 

policy C is the one of lowest risk. It is also the most expensive - over half again the cost 

of policy A and a third again the cost of policy B. . 

A plot of the first stage conditional and unconditional expected development effort values 

for each policy against its implementation cost is shown in Figure 6.4. By including the 

conditional expected value in the graph, the decision maker can graphically comprehend the 

additional information to consider when trading-off among the control policy options. One 

observes the relative little difference between the conditional and unconditional expected 

development efforts for policy C, compared with the larger difference for the other two 

policies. Such risk reduction comes at a cost, however. Policy C is 38% more expensive 

than that of policy B, but reduces the expected development effort to less than half of that 

required under policy B. Policy B is 12% more expensive than policy A, yet produces a 

nearly 25% reduction in the expected development effort requirement. Conducting similar 

analysis of the extreme event values, we see an even more-pronounced difference in the 

policies. 

Again, analysis of the impact of early-stage decisions on later-stage decision opportunities 

(as in Section 6.3.2) is readily calculated. 

6.5   Chapter Summary 

In this Chapter we have extended the traditional application of software cost estimation 

methods by developing multistage, dynamical software cost estimation models. Both the 

linear and nonlinear dynamical models showed promise as multistage software cost 
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Figure 6.4 Noninferior solution set considering only the first stage objectives 

estimation tools. Although it does not provide for an analytically closed-form solution, the 

availability of Monte Carlo simulation software makes the nonlinear dynamical model 

practical and desirable. The nonlinear model offers the greatest opportunity for realistic 

extension of existing, static software cost estimation models (as Example 6.2 demonstrated 

for the COCOMO model). 

As the software development community continues to move away from the traditional 

waterfall development models to repetitive, spiral-type models, software cost estimation 

methods must be responsive to this new development paradigm. No longer a single time- 

period activity, methodologies for software cost estimation must provide updated estimates 

by considering the system characteristics, policies, and requirements of a changing 

environment. One overriding characteristic of this environment, particularly in the early 

stages of the development life cycle, is the uncertainty regarding the desired software 

system. To this end, a probabilistic approach that explicitly accounts for parameter 

variability is required. 

fl 

The dynamical models developed in this Chapter account for the need to update software 

cost estimates due to the dynamics of changing requirements, improved system design 

information, and various resource allocation policies associated with the early stages of the 

software development lifecycle. Incorporating a probabilistic extension of traditional 
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software cost estimation methods, the models utilize the conditional expected value as an 

additional decision-making metric. Stage-wise updating of software cost estimates gives 

the decision maker greater understanding of anticipated project costs and development 

effort requirements, as well as information concerning the expected impact of various 

control policy options in reducing project risk. 
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Chapter 7 
The HHM Framework for Dynamic Software Estimation 

Updating and for Multiobjective Decision Making Coordination 

7.1    Introduction 

The probabilistic approach to software estimation of Chapter 5 added explicit consideration 

of the uncertainty and risk associated with software acquisition endeavors. Then the 

dynamic formulation of the software estimation process developed in Chapter 6 extended 

software estimation to a multi-stage, repeated process that parallels modern development 

paradigms and allows analysis of the impact of current decisions on future opportunities. 

In this Chapter we demonstrate the extensions of HHM in addressing two remaining 

software acquisition management issues: 

• Actual project effort and schedule are rarely exact duplicates of their estimates. Of 

concern is how to explain the deviation between estimated and actual values, and then 

in light of the actual results, how to improve the estimate of the remaining 

development effort and schedule. 

• Software project management policy options do not fall entirely in the domain of the 

customer nor entirely in the domain of the contractor, yet both parties are affected by 

each other's decisions. At issue is how to coordinate and resolve the competing 

issues, objectives, and decision opportunities of these participant communities for the 

benefit of all. 

Hierarchical holographic modeling (HHM) is extended to address these two issues. First, 

we demonstrate a dynamic updating framework that can be implemented within the 

dynamic software estimation model of Chapter 6 to provide revised project effort and 

schedule estimates throughout the live cycle. The investigative framework of HHM - 

initially applied for risk identification - is well-suited for providing on-going 

understanding of the causes for differences between actual software project progress and 

the estimated effort and schedule requirements. This understanding is a key element for 

determining the appropriate actions within the dynamic software estimation updating 

process. 
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Second, with revised estimates of project effort and schedule, management control policies 

can be selected so as to best meet stated objectives. The decision authority concerning 

these policies, however, does not entirely rest with any one participant community, but is 

divided among the groups. A hierarchical coordination decision-making scheme is 

employed to help resolve decision-making conflicts and trade-offs associated with the 

software project participant communities. Each community's multiobjective decision- 

making problem includes unique, as well as overlapping objectives, decision variables, and 

model parameters. HHM gives the structure to assist in achieving mutually acceptable 

solutions. 

7.2   Dynamic Software Estimation Updating 

After the initial software estimation has been conducted, the contract awarded, and the 

formal design and development work started, the need for software cost and schedule 

estimation has not ended. Evaluating and revising these estimates are a critical project 

management function. 

At the project milestones associated with the life cycle phases, actual effort and 

development schedule data can be collected. With these data, an important question is 

asked, "Is the project on track?" Stated a bit differently, "Given that the project has used x 

MM of effort and taken y months to get to this point, will it still be completed according to 

the original effort and schedule estimates? If not, what caused the deviation from the 

original estimate, and what is a new estimate for the effort and schedule?" 

Project milestone charts (Figure 7.1) are a tool commonly used for recording and 

comparing actual effort and schedule results against estimated projections [Rozum 1992]. 

Unfortunately, these charts don't provide the analytic means for projecting future results or 

analyzing effects of deviations from previous estimates to answer the above questions. In 

this section we demonstrate a dynamic software estimation updating methodology to 

sequentially revise effort and schedule estimates and use the HHM as an aid in identifying 

contributing factors that may explain any deviation from the expected. 
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Figure 7.1 Sample project milestone chart 

7.2.1    Dynamic Software Estimation Updating Process 

Dynamic software estimation updating, as used in this section, refers to the "on-line" 

revisions of software estimates using the models developed in the previous two chapters. 

The process involves collecting actual project effort and schedule data and comparing these 

with previous estimates [Kitchenham and Walker 1989]. The estimation model is then 

adjusted based on the actual values, and an updated estimate for the remaining effort and 

schedule is made. 

A critical element to updating the estimation model is being able to account for the cause of 

deviation from previous estimates. We ask, "Of the model parameters and variables, what 

do we believe? What has changed from the original estimation?" There will often be many 

possible causes for deviations from estimates, and for each cause there may be several 

different types of corrective action [Dorflinger and Basili 1985]. Appropriately changing 

model parameters or variable values to reflect current knowledge leads to an improved 

estimate. 

The three-step process of dynamic software estimation, depicted graphically in Figure 7.2, 

is: 

1. Baseline Estimate. Apply a software estimation methodology, with estimates of 

project size, environment, and other model parameters, to produce a baseline 

estimate of project effort and schedule. 
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2. Actual Observation. Collect known effort and schedule information, along with 

actual size, environment, and other parameter values, at appropriate project 

milestone points. 
3. Dynamic Estimate. Recalibrate the variable values or equation parameters of the 

estimation model to produce a revised estimate of the remaining effort and schedule 

to complete the project. This revised estimate becomes the new baseline estimate. 

Baseline Estimate 
Original effort, schedule 

estimates. 

i 
Observe Actuals 

Collect actual effort, schedule, 
size, and environment data. 

I 
Dynamic Estimate 

Evaluate actuals vs estimates, 
recalibrate model, prepare new 
effort and schedule estimates. 

Figure 7.2 Dynamic Software Estimation Updating Process 

Step 1 consists of the activities discussed in Chapters 5 and 6 - establish model parameter 

and variable values, use an estimation model to determine project effort and schedule, and 

make policy decisions based on the expected value as well as the conditional expected 

value. 

Step 2 is the simple step of collecting project progress data. While not all data are collected 

monthly, data collection at project milestones is generally available. These milestones may 

include the formal event activities [DoD 1991]: system design review (SDR), software 

specification review (SSR), preliminary design review (PDR), critical design review 

(CDR), test readiness review (TRR), functional configuration audit (FCA), and physical 

configuration audit (PCA). These may also include interim milestone events and other less- 

formal review points. 

Step 3 is the actual dynamic estimation activity. This first includes using the HHM to 

conduct an analysis of the factors that contributed to the project's deviation from the 
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estimated effort and schedule. Then, the estimation model is calibrated to reflect the 

observed values by appropriately updating model parameters and variable values according 

to the results of the HHM analysis. Finally, the calibrated model is used to project a new 

estimate of project effort and schedule. 

7.2.2    Dynamic Software Estimation Updating Methodology 

The general methodology adopted for the dynamic software estimation updating problem is 

from [Kile 1995] and [Kitchenham and Walker 1989]. Let us first consider the effort and 

schedule equations of either the original static form of the Intermediate COCOMO model or 

the dynamic form of the model that was developed in Chapter 7 (Table 7.1). In both forms 

of the model, parameters represent the influence of environmental factors on the 

development effort requirement, the size (representing complexity) of the project, and the 

variable relationships. 

Table 7.1 Original and Dynamic Intermediate COCOMO equations 

Equation Original Model Dynamic Model  

Effort MM = a(EAF)(KLOC)b        y^) = a[(c(k)u(k) + v(Jt))jc(*)] 

Schedule tD = c(MM)d tD(k) = c(y(k))d 

For the software estimation updating activity, we initially utilize an HHM framework with 

two sub-visions: environment and size (Figure 7.3). The extension of this simplification 

can be achieved by subsequently adding details to the HHM structure until we have the 

HHM described in Chapter 3. The environment decomposition represents those elements 

associated with the system attribute adjustment factors of Chapter 6: system complexity, 

storage, programming language, software tools, etc. 

Software Estimation 

Environment Size 

Figure 7.3 Dynamic Software Estimation HHM (Initial Application) 
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Again, considering two visions (environment and size), if the actual effort or schedule 

deviate from the estimate, at least one of the following must be true: 

• the size estimate is incorrect, 

• the environment is specified incorrectly, 

• the model's equations require calibration, or 

• the stated control policy wasn't implemented (e.g., the program wasn't staffed 

according to the model). 

7.2.2.1 Recalibration Strategy.  Depending on which of the above factors is (are) 

assumed to be the problem, appropriate changes to the model and its elements can be made. 

Determining the appropriate course of action is facilitated through the use of decision 

diagrams (Figure 7.4). If one assumes that the stated control policy was, in fact, the 

implemented policy, then one uses the HHM to evaluate the relative confidence of the size 

and environment estimates. If the size estimate is deemed valid, then the problem must be 

with the specification of the environment and the model is recalibrated for a new 

environment value. On the other hand, if the problem is assumed to be with the size 

estimate, then recalibrating the model for a new size value is necessary. If both estimates 

are deemed accurate, or both are viewed as equally inaccurate, then the model's parameters 

are recalibrated to reflect actual values. 

Once the initial problem element has been identified, then appropriate action is taken 

depending on the specific nature of the actual effort and schedule results versus the 

estimates. Different adjustments are made for underestimation than are made for 

overestimation. 

7.2.2.2 Recalibration via Environment Specification.   Making appropriate 

changes to a model parameter depends on the nature of the difference between estimated 

versus actual effort and schedule (depicted in Figure 7.5). If the estimate is greater than the 

actual effort, then there has been more progress made than was expected (the tasks of the 

particular milestone were accomplished with less expenditure of effort than was 

anticipated). Therefore, the estimation model is recalibrated by improving the environment 

parameter so that the effort estimate is reduced to correspond with the actual value. 
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Observe Actuals 
Collect actual effort, schedule, 

size, and environment data. 

environment 

Calibrate for new 
environment 

Calibrate for new 
size 

Calibrate for new 
equations 

T 

Take corrective 
management action 

and re-baseline 

Figure 7.4 Software estimation recalibration strategy 
(sub-level decision details are described in following figures) 

adapted from [Kile 1995] 

Conversely, if the estimate is less than the actual effort, then the original estimate was 

overly optimistic and the project is doing worse than was anticipated. The recalibration 

action is to degrade the environment parameter until the model's estimate increases to the 

actual value. If the estimated and actual effort values are the same, then no recalibration 

action needs to be made. Once the model has been appropriately recalibrated, it is used to 

estimate the project's remaining effort and schedule requirements. This estimate is the new 

baseline estimate. 

7.2.2.3   Recalibration via Size Specification.   The recalibration process that 

modifies the size estimate is very similar to that for the environment (Figure 7.6). 

Considering only the effect of size, if the estimated effort is greater than the actual value, 

then the original size estimate was too large. Recalibration is accomplished by decreasing 

the size parameter so that the effort estimate is reduced to correspond with the actual value. 
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Take corrective 
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Figure 7.5 Recalibration via environment specification 

Observe Actuals 

Calibrate ^**-+*^^^ I /- «*.  ..., 
enrironmeml J [Calibntttj 

f Calibrate IL 

Decrease the size to 
reduce the estimate 

Increase the size to 
increase the estimate 

management action 
and re-baseline 

Figure 7.6 Recalibration via size specification 
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If the estimated effort is less than the actual, then the size was originally underestimated and 

must be increased to increase the effort estimate to match the actual value. Once the model 

has been recalibrated, it is used to determine the new baseline estimate of the project's 

remaining effort and schedule requirements. 

7.2.2.4   Recalibration via Model Parameters.  Referring to Figure 7.4, if both the 

size and environment parameters are equally believed (or equally disbelieved), then 

recalibration of the estimation model is accomplished by modifying the other parameters of 

the model -- namely the coefficients (e.g., the <a,c> vector of the Intermediate COCOMO 

model). This can be done in one of three ways: i) change the effort equation coefficient 

only, ii) solve for the schedule coefficient only, or iii) solve for both the effort and schedule 

coefficients simultaneously. In either process, the coefficient value is recalibrated so that 

the actual effort and/or schedule is produced. Either process will affect both of the model 

equations - adjusting effort impacts the schedule due to the compression effect, etc. 

7.2.3    Example 7.1 - Dynamic Software Estimation Updating 

To demonstrate the dynamic software estimation updating approach, consider the 

development of a 50-KLOC, embedded-mode software system. For this example, we use 

the original Intermediate COCOMO formulation; the approach for the dynamic formulation 

would be similar. The model parameter values are listed in Table 7.2. With EAF = 1.00, 

the original management control policies assume nominal personnel (capability and 

experience) and nominal environment influences (programming languages, development 

tools, system complexity, etc.). 

Table 7.2 Dynamic software estimation updating example - initial model values 

KLOC = 50 
Mode = Embedded, hence the COCOMO parameters 

(from Table 3.3) 
a = 2.80 
b= 1.20 
c = 2.50 
d = 0.32 

EAF = 1.00 
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The original, baseline estimate of development effort and schedule is found using Eqs. 

(3.7) and (3.2) 

MM = 2.8(1.0)(50)120 = 306.14 man-months 
and 

tD = 2.5(306.14)0-32 = 15.6 months. 

Distribution of the estimates by life cycle phase is given in Table 7.3. Recall that the effort 

and schedule equations are for the development phases of the life cycle. Total project 

resource requirements through development must also include the plans and requirements 

phase requirements. 

Table 7.3 Software estimation updating example - original estimates 

Life Cycle Phase 
(% of total effort, schedule) 

Effort 
(man-months) 

Schedule 
(months) 

Plans & Requirements (8,32) 24.48 5.12 

Development 

Design (18, 34) 

Detailed Design (26,19) 

Code & Test (28,21) 

Integration & Test (28, 26) 

Total Development 

55.08 

79.56 

85.68 

85.68 

306.00 

5.44 

3.00 

3.40 

4.16 

16.00 

Consider that the initial design for the project has been completed and that the preliminary 

design review (PDR) has been conducted. The original estimate for the required effort to 

reach PDR was 79.56 MM (24.48 + 55.08) and the schedule estimate to PDR was 10.56 

months (5.12 + 5.44). Assume the actual effort expended in reaching PDR was 90 MM, 

accomplished over a 9-month period. Hence, more effort was utilized to reach PDR than 

was estimated, but over a shortened schedule. We will now demonstrate the three 

approaches for accomplishing the software estimation updating in light of this new 

information. 

7.2.3.1    Example 7.1 (cont.) - Accurate size, recalibrate via environment. 

Assume that the HHM investigation concluded that the size estimate is accurate, while the 

environment specification is suspect. To recalibrate the environment element, first find the 

total development schedule that has a distribution of 9.0 months for the first two phases: 
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. 66t D = 9.0   =>   rD =13.64 months. 

Next, determine the total development effort that distributes 90 MM to the first two phases: 

.26MM = 90   =>  MM = 346.15 man -months. 

As the development effort estimate was less than the actual effort expended through PDR, 

degrade the environment factor by increasing the EAF until the appropriate development 

effort value is given: 

346.15 = 2.8(EAF)(50)U0   =>   EAF = 1.131 

The updated project development effort and schedule distribution is given in Table 7.4 

Table 7.4 Software estimation updating example - revised estimates 

Life Cycle 
Phase 

Effort 
(man-months) 

Schedule 
(months) 

Plans & Requirements 27.69 4.36 

Development 

Design 62.31 4.64 

Detailed Design 90.00 2.56 

Code & Test 96.92 2.89 

Integration & Test 96.92 3.55 

Total Development 346.15 13.64 

The new development effort and schedule estimates are used to update the effort and time to 

complete development of the project, which includes the development phase resource 

requirements as well as that of the earlier phases. We can now update the project's effort 

requirement 346.15 + 27.69 = 373.84 man-months, and the schedule estimate to 13.64 + 

4.36 = 18 months. A plot of the original estimates, actual values, and revised estimates is 

shown in Figure 7.7. We see that the new estimate calls for more development effort, but 

has the project being completed in a shorter time than was originally anticipated. 

7.2.3.2    Example 7.1 (cont.) -    Accurate environment, recalibrate via size. 

Assume, now, that the environment parameter is correct and that the size parameter must be 

recalibrated . Following the steps of the above section, find the revised development 

schedule and effort that correspond with the actual schedule and effort 
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Figure 7.7 Project milestone chart with revised estimates 
(DEV indicates the original estimate of development effort and schedule, 

DEV" indicates the revised estimate) 

expended through the current phase. Then, adjust the KLOC until the appropriate total 

development effort is given: 

346.15 = 2.8(1.0)KLOCf20   =>   KLOC = 55.40. 

7.2.3.3    Example 7.1 (cont.) -   Accurate size and environment, recalibrate 

via model parameters. This option is used when both the size and environment 

specifications are equally believed, or equally disbelieved. Demonstrating the last of the 

three options for this approach, we first recalibrate the effort coefficient until the total 

development effort corresponds to the revised projection: 

346.15 = a(1.0)(50) 1.20 a = 3.166 

Then, recalibrate the schedule coefficient to correspond the total schedule that corresponds 

with that observed through the current stage: 

13.64 = c(346.15)°32   =>   c = 2.10 
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These new parameters are then used for future estimates, until more-current observations 

are made. 

7.2.4    Software Estimation Updating Summary 

The software estimation updating methodology demonstrated in the above example is 

repeated at each project milestone and at other points in the development process to provide 

an update on the overall progress and expected resource requirements for the project. The 

methodology is flexible, easily applied, and provides the needed updated information 

regarding project progress in terms of expected completion. The provision for expanding 

the environment and size elements to include additional factors adds increased awareness 

and robustness to the project management effort. 

7.3    Software Acquisition's Multiobjective, Multi-Decision Maker 

Decision-Making Coordination 

As introduced in the dynamic software estimation model of Chapter 6, software 

management policy decision making is conducted on a recurring basis throughout the life 

cycle. Updating the software estimation dynamically, and projecting the latest estimate of a 

project's required effort and schedule, provides the opportunity for updating and adjusting 

management policy options. These management control options, however, do not fall 

within any one participant community's domain of control. Rather, each group has its own 

decision making options, and each is affected by the other's decisions. HHM provides the 

hierarchical framework for exploring the competing issues, objectives, and decision 

opportunities for the various participant communities to assist in resolving a solution that is 

mutually-acceptable to all parties. 

7.3.1    Hierarchical Decision Problems 

In a classical decision making problem, a decision maker has to select an alternative among 

those which are acceptable or feasible and that choice is made according to his preferences. 

In hierarchical decision problems, some of the elements of the decision problem are actually 

in systems which are related to the strategies adopted by other decision makers. In that 

case, the way resources are allocated is no longer characterized entirely by restrictive 

constraints or requirements to satisfy, but are characterized as the solutions of other 



125 

decision making problems, related to the preference structure of the other decision makers 

involved. This leads to a model with a hierarchical structure of decision, with different 

decision makers possibly located at different levels of decision. 

Hierarchical problems involving multiple decision makers have been considered by several 

authors, traditionally from either the optimization theory point of view (e.g. [Chankong and 

Haimes 1983], [Haimes et al. 1990], [Bard and Moore 1990], [White 1982], [Bialas and 

Karwan 1982], [Nijkamp and Reitveld 1981], or from the game theory point of view (e.g., 

[von Neumann and Morgenstern 1944], [Blackwell and Girshick 1954], [Luce and Raiffa 

1957], [Chen and Cruz 1972]). For the software acquisition context, however, the zero- 

sum decision rule and similar such constructs of a game theory approach are not desirable. 

Also, many traditional hierarchical optimization methods (e.g., [Installe 1994], [Haimes et 

al. 1990], [Tarvainen and Haimes 1982]) do not directly apply, for in software acquisition 

there does not exist an ultimate higher level decision maker -- no higher decision-making 

authority to whom the user, customer, and contractor all report, and who is directly 

concerned with all the objectives, etc. 

Contrary to the traditional discussion and approach of hierarchical methods with higher- 

level coordination, we are interested in synchronizing the solutions of the multiple visions 

(e.g., the user/customer and the contractor) so that ultimately we have an acquisition 

process not marred by cost overrun and time delay. 

The intent is to use the holistic visions of the HHM to provide understanding and 

accounting for the objectives and constraints of the different decompositions and find a 

process or mechanism that would bring the necessary collaboration together. With the 

absence of a higher-level decision maker to dictate a compromise solution between the 

competing visions, the approach could be considered for application in several contexts: 

i) Direct negotiation. Having knowledge of the other decision maker's objectives, 

data, and possible responses to environment changes, is most important to 

negotiation [Neirenberg 1978], [Fisher 1981], [Raiffa, 1982]. With each 

participant aware of the other's problem and model, each is better prepared for 

negotiations. 

ii) Independent analysis. Each participant can solve the problem separately with full 

knowledge of the other's model (although without full knowledge of the actual 



126 

decision variable values of the other decision maker). The differences in each 

decision maker's solutions can be openly negotiated to a mutually-agreeable level 

iii) Iterative coordination. A bi-element, or bi-decomposition iterative approach in 

which one party sets the level of overlapping variables, the other responds by 

solving their problem, and the first then re-adjusts the original solution [Installe 

1994], [Haimes et al. 1990], [Stackelberg 1952]. 

7.3.2    Hierarchical Decision Problem Formulation 

For this chapter, we consider the existence of two decision decompositions in interaction, 

denoted respectively as the "a" decomposition and the "ß" decomposition. These terms 

connote a parallel level of decision interaction, versus the traditional "higher" and "lower- 

decompositions that connote increasing authority. In the a decomposition, the best 

alternative is selected according to the a decision maker's preference structure, to the set of 

all feasible alternatives, and to the reaction of the ß decomposition decision maker with 

respect to the decision. In the ß decomposition, the decision maker reacts to the a 

decomposition decision according to his preference structures and according to the feasible 

alternatives. Hence a bi-element hierarchical decision making problem can be defined using 

the following mathematical model: 

Find xa the best compromise with respect to/Kx«, xß*(xa)) 

such that x« e X« and g«(x« xß*(x«)) < 0 

where xß*(xa) is the solution of the following problem: 

Given xa, find xß the best compromise with respect to/ß(xa, xß) 

such that xß e Xß and gß(x« xß) < 0 (7.1) 

where 
xa is the a decomposition decision variables 

xß is the ß decomposition decision variables 

xß*(xa) stands for the reactions of the ß decomposition decision makers, given x« 

/* is the a decomposition objectives; vector valued function of xa and xß*(x«) 

ga is the a decomposition constraints 

Xa is the a decomposition definition set 

fi> is the ß decomposition objectives 
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gß       is the ß decomposition constraints 

Xß       is the ß decomposition definition set. 

Simplifications of the form of the objectives and constraints (e.g., linear, convex, mono- 

objective lower level problem) permit solution of the above problem using classic 

approaches, including: direct methods [Chankong and Haimes 1983], [Mako and Haimes 

1978], [Bard 1983], [Edmunds and Bard 1991]; implicit search methods [Bialas and 

Karwan 1984], [Candler and Townsley 1982], [Jongen and Weber 1990], [Sobol 1992]; 

and penalty methods [Aiyoshi and Shimizu 1984], [Installe 1994]. Additionally, classical 

interactive optimization procedures can be applied to solve the problem, allowing the user 

to investigate the various potentially satisfying alternatives [Haimes et al. 1990], [Durso 

1992], [Haimes 1980], [Nijkamp and Spronk 1980], [Goicoechea et al. 1979], [Wallenius 

1975]. 

7.3.3    Software Acquisition's Program Consequence Hierarchical Decision 

Problem 

We focus the application of the hierarchical decision problem described in the previous 

section on the program consequence HHS. This decomposition constitutes the risk 

management decision-making problem associated with estimating and managing a software 

project's cost, schedule, and performance. Each of the participant communities (user, 

customer, contractor) contributes to resolving the competing issues of the program 

consequence HHS - individually, as well as jointly. 

We consider two participant community decompositions: the contractor decomposition, 

and the user/customer decomposition. In this formulation, the interests and objectives of 

the user and customer communities are combined. This is a plausible simplification, as the 

customer is an agent acting for, and in behalf of, the user. The customer is responsible for 

procuring a system that meets the user's needs, while ensuring that the procedures and 

requirements of the acquisition process are followed and enforced. We also consider two 

program consequence elements: project cost and project schedule. 

The two community decompositions are interrelated through their mutual interests in the 

successful acceptance, continuance, and completion of the software project. More 

specifically, the contractor and customer communities are connected by solutions to the cost 

and schedule elements of the program consequence HHS that meet the specific objectives 
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of each community and are mutually-agreeable as to the objectives that overlap 

constituencies. Figure 7.8 provides a graphical depiction of the two-decomposition 

coordination problem. 

a Decomposition ß  Decomposition 

User/Customer 

fa(f,a,f2
a,f3

a) 

_ _ -V- 

Requirements Cost 

f 

Contractor 

Schedule 

r t 
Profit 

Figure 7.8 Hierarchical Decision Problem for Participant Community - Program 
Consequence Coordination 

Each community has objectives related to the cost and schedule elements as well as its own 

unique objectives. The general description of the objectives, uncertain quantities, and 

decision variables of the hierarchical decision problem is given in Table 7.5. 

Table 7.5 Description of the Hierarchical Decision Problem Formulation 

a Decomposition: User/Customer ß Decomposition; Contractor 

Objectives fa 

minimize: /," - Cost overrun 

minimize: f" - Schedule delay 

minimize: f" - Unmet requirements 

Random variable 
R- Requirement change requests 

Decision variable xa 

x\ - Allowed requirements changes 

Objectives fß 

minimize: ff - Cost overrun 

minimize: /f - Schedule delay 

maximize: ff - Profit 

Random variable 
R- Requirement change requests 

Decision variables xp 

X2 - Personnel resources 
*3 - Technology resources 

7.3.4    The User/Customer Decomposition Decision Problem 

The user/customer's multiobjective decision problem is focused on how to deal with the 

ever-increasing demand for system requirement changes. The frequency or extent of 

requirements changes has been shown to be a primary factor affecting software project cost 
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overruns and schedule delays [Lederer and Prasad 1993], [Boehm and Papaccio 1988]. 

Generally, increased requirements lead to a more complex, more costly system that takes 

longer to develop. Controlling the requirements changes has been shown to be one way in 

which the customer can make a significant, direct impact on managing cost overruns and 

schedule delays [Boehm and Papaccio 1988]. Hence, the decision variable for the 

customer is the allowable requirements changes. This decision is made in light of the 

objectives of minimizing cost overruns and schedule delays, and the desire to maximize the 

user's satisfaction with the system by minimizing the unmet requirements changes. 

The formulation of the cost and schedule objective functions is consistent with those in 

previous chapters and is based on the COCOMO models. The cost overrun and schedule 

delay objective functions for the user/customer are the difference between the original 

estimates and the new estimates considering the allowed requirements changes: 

/,"= cost overrun = kJ a(KLOC ■ x^  -ft, a(KLOC) 

= ak,(KLOC)"(x?-\), (7.2) 

/" = schedule delay = c -c 

= c 

a(KLOCxx) 

a(KLOC)bl\{xb
x
d-\), 

a(KLOC) 

(7.3) 

where 
a,b,c,d are system characteristic parameters as with the COCOMO 

KLOC is the original system size estimate 
x j is the allowed requirements changes, quantified as a percentage 

KLOC multiplier (x\ > 1.0) 

kx is a cost-per-man-month multiplier. 

Note that objective functions (7.2) and (7.3) are minimized when the decision variable x\ 

equals 1.0, or when there is no increase in system size or complexity due to requirements 

changes that lead to cost overruns and schedule delays. 

The user/customer's third objective function is to minimize unmet requirements changes. 

The user's desire over the life cycle for requirements changes (R) is difficult to predict and 

never known with certainty. Quantified as a percentage KLOC multiplier, R > 1.0. With 

a probability distribution associated with R that captures the degree of uncertainty 
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concerning the user's desired requirements changes, and xj defined as the level of allowed 

requirements changes as set by the customer, an important measure of the user's eventual 

dissatisfaction with the completed system is the unmet requirements changes (R - xi). As 

there is a probability distribution associated with R, then the new measure (unmet 

requirements) is also a probability distribution -- a translation of the desired requirements 

changes distribution (Figure 7.9). 

(R-x j) - unmet 
requirements, 

1.0-x, 

Prob. 

R - desired requirements 
changes 

0.0      1.0 

Figure 7.9 Requirements and unmet requirements probability distributions 

Of most interest in the (R - xi) distribution is the non-negative portion that describes the 

unmet requirements given the customer's decision (shaded region in Figure 7.9). There are 

several possible decision-making metrics related to the unmet requirements: 

i) Prf R - x, > Ol the probability of unmet requirements; an indication of the 
chance of user dissatisfaction, 

ii)E[R-x,] the expected unmet requirements, 

iii) E[R - X, I X, = /J]        the extreme-event conditional expected unmet requirements, 
where ß is the partitioning point associated with a particular 
probability partitioning value, 

iv) E[R - X,IR - X, > O]   the expected unmet requirements, given that there are unmet 
requirements. 

The first measure indicates the chance of unmet requirements, while the remaining three 

measures are indications of the extent to which the requirements are not met. Measures (ii) 

and (iii) include in their calculation the portion of the distribution that is negative 

(requirements being fully met or exceeded) ~ hence may not give an accurate 

representation of the magnitude of unmet requirements. Measure (iv), however, indicates 
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the extent of unmet requirements, given that there are some. Together, measures (i) and 

(iv) indicate the chance of user dissatisfaction due to unmet requirements and how great that 

dissatisfaction may be. These two elements are included in the two-part, third 

user/customer objective function: 

f"a = probability of unmet requirements = Pr[R - x, > 0], 

f"b = expected unmet requirements (given some exist) = E[R - x,|R - xl > 0] (7.4) 

where 
R is the desired requirements changes, quantified as a percentage KLOC 

multiplier 
x\        is the allowed requirements changes, quantified as a percentage KLOC 

multiplier (1.0 < x\). 

This third objective function can be considered a type of disutility measure, where 
increasing values of f" indicate increasing dissatisfaction with the system. While Eq. 

(7.4) is improved by increasing x\, doing so degrades the other two objective functions. 

Resolution of the user/customer's multiobjective problem will be through trade-off 

evaluation of the Pareto optimal solutions considering the (non-commensurate) objective 

functions:  /,a vs/2
a, /," vs/3

a, and f2
a vs/3

a. 

7.3.5    The Contractor Decomposition Decision Problem 

The contractor's multiobjective decision problem includes maximizing profit, and two 

objectives similar to that of the user/customer: minimize cost overrun and schedule delay. 

It is in the contractor's interest to consider the satisfaction of the customer, which is done 

by meeting the cost and schedule limitations of the original contract. Minimizing cost 

overruns and schedule delays also provide the contractor a good working relation with the 

customer, good track-record for future contracts, the possibility of incentive awards, etc. 

Additionally, reducing project time delays allows the contractor to re-assign personnel to 

other efforts, allowing the organization to take on more projects. 

The contractor affects the project's cost and schedule by the personnel and technology 

resources employed in the development effort. Higher qualified and more capable analyst 

and programmer personnel may require higher personnel costs (higher salaries), however 

productivity is higher, which decreases the man-months of effort and development time 
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requirements, and may lower the overall project costs. Application of software 

development technologies (e.g., CASE tools, clean-room development environments, 

COTS, etc.) may also reduce effort and development time requirements. 

The cost and schedule objective functions for the contractor consider the customer's 

approved requirements changes decision and the contractor's personnel and technology 

decisions: 

/,' = cost overrun = kJ^KLOC- x,)(x2 • x5)]' - kxa(KLOC)b 

= a{KLOC)b k2(xlx2x3)
h - kA, (7.5) 

r b~\      r 
fl = schedule delay = c a[(KLOC • x,)(x2 • x3)]     - c[a(KLOC) 

= c\a(KLOC)b     (x,x2x3)
M-l , (7.6) 

where 

a,b,c,d 

KLOC 

x\ 

*2 

*i 

k2 

are system characteristic parameters as with the COCOMO 

is the original system size estimate 

is the customer-determined allowed requirements changes, 

quantified as a percentage KLOC multiplier (xi > 1.0) 

denotes personnel experience and capability, quantified as a 

percentage KLOC multiplier (0.5 < x2 < 1.5, nominal = 1.0) 

denotes the software development technology resources, quantified 

as a percentage KLOC multiplier (0.5 <x3< 1.5, nominal = 1.0) 

is the original cost-per-man-month multiplier 

is the new cost-per-man-month multiplier considering the new 

personnel and technology resource decisions. 

The contractor's profit function, formulated according to a cost-plus development contract, 

is given by 

(7.7) f? = profit = p[k2a[(KLOCxl)(x2x3j\ j, 

where all terms are defined as above, and 

p is the percentage of costs allowed for profit (cost-plus percentage). 
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Note that while Eqs. (7.5) and (7.7) are minimized when the product of the decision 

variable values equals 1.0, Eq. (7.7) provides no such incentive for improving personnel 

or technology resources to compensate for the customer's requirement changes. In fact, 

with a cost-plus objective function the contractor desires that the customer make more 

requirements changes -- doing so increases the overall costs and the contractor's profit. 

7.3.6 The Program Consequences Decomposition Hierarchical Decision 

Problem 

The program consequences decomposition hierarchical decision problem, in the form of 

Section 7.3.2 where the user/customer constitutes one decision making decomposition and 

the contractor the other, is given by: 

Find xa the best compromise with respect to/*(xa, xß*(xa)) 

such that x« e X« and g«(xa, xß*(x«)) < 0 

where xß*(xa) is the solution of the following problem: 

Given xa, find xß the best compromise with respect to/ß(xa, xß) 

such that xß e Xß and gß(x«, xß) < 0 (7.8) 

where 

xa consists of xi, the customer decision variable 

xß consists of X2, X3, the contractor decision variables 

xß*(xa) stands for the reaction of the contractor, given xa 

/* is the customer objectives, /", f", f° 

ga is the customer constraints 

Xa is the customer definition set, xa > 1.0 

ß is the contractor objectives, ff, /f, /f 

gß is the contractor constraints 

Xß is the contractor definition set, 0.5 < xß < 1.5. 

7.3.7 Solution Procedure for the Hierarchical Bi-element Decision Problem 

To solve the bi-element problem, we must be able to compute individually the solution of 

both decision problems [Installe 1994]. In other words, the solution approach for the two- 

decomposition problem of the user/customer and contractor requires the solution of the 
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independent problems and then a coordinated resolution of their results. We first outline 

the solution approach for the individual multiobjective decision problems and then 

introduce approaches for a coordinated solution. 

7.3.7.1    Solution Procedure for the User/Customer Decomposition.   The 

customer determines allowed requirements changes based on Pareto optimal solution trade- 

offs among objective functions /,*, /", f°. In particular, increasing levels of 

requirements changes lead to greater user satisfaction with the system, but simultaneously 

leads to greater cost overruns and schedule delays. Subjective trade-offs between the 

user's dissatisfaction (unmet requirements changes) and cost overruns, and between unmet 

requirements changes and schedule delays leads to the selection of a preferred solution 

from the set of Pareto optimal solutions (Figure 7.10). Selection of the desired option then 

fixes the value of the requirements changes decision variable. 

J3 

\ 

V 

■r 
Unmet 
Requirements 

•    Option A 

►    Option B 

Option C 

Damage (cost overrun, schedule delay) 

Figure 7.10 User/Customer Pareto optimal trade-offs 

7.3.7.2   Solution Procedure for the Contractor Decomposition.   The 

individual solution to the contractor's problem is similar to that of the customer's. Given 

the customer's requirements change level, the contractor determines the personnel and 

technology resource allocations based on Pareto optimal solution trade-offs among 
objective functions ff, /f, //. In particular, increasing the technology quality or 

personnel experience leads to a reduction in development schedule, but at a greater cost. 
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The increased cost, however, also increases the contractor's profit when assuming a cost- 

plus arrangement. Decreasing the quality of technology and personnel resources may 

reduce per-month resource costs, but these are often offset by the lengthened schedule. 

Subjective trade-offs between the customer's satisfaction (minimizing cost overrun and 

schedule delay) and maximizing contractor profit (or the equivalent, minimizing negative 

profit) lead to the selection of a preferred solution from the set of Pareto optimal solutions 

(Figure 7.11). Selection of the desired option then fixes the value of the personnel and 

technology resource allocation decision variable. 

-f 
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Damage (cost overrun, schedule delay) 

Figure 7.11 Contractor Pareto optimal trade-offs 

7.3.7.3    Example 7.2 - The Hierarchical Decision Problem Approach 

Applied to the User/Customer and Contractor Decompositions.   Consider 

again the software development problem of Example 7.1. Assuming an initial $3000 per 

man-month cost, this 50-KLOC, embedded mode project has an original project cost 

estimate of $918,000 and a development time of 15.6 months. The user organization' s 

desired requirements changes (a factor increase over the originally-projected system size), 

R, is quantified as a triangular distribution with a low value of 1.0, high value of 5.0 , and 

most likely value of 4.0. The customer must trade-off meeting all of the user's requests, 

while keeping project costs and schedule in control. The range of the customer's decision 

variable is 1.0 < x\ < 5.0, where the lower limit indicates no change in requirements (not 

allowing any of the change requests) and the upper limit indicates full compliance with the 
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entire possible range of the user's request. Table 7.6 summarizes the values of the three 

objective functions for varying levels of allowed requirements changes. 

Table 7.6 Customer objective function values, varying x\ 
Allowed 

Requirements 
(KLOC multiplier) 

Cost overrun 
(dollars) 

Schedule delay 
(months) 

Unmet Requirements 
Prob.            Expect. 

*i Eq. (7.2) 
ft 

Eq. (7.3) Pr[R-i°i>0] 
f 

E[R-JCIIR-XI>0] 

1.00 0.00 0.00 1.000 2.333 

1.50 575,583.44 2.63 0.979 1.876 

2.00 1,191,560.46 4.76 0.917 1.485 

2.50 1,839,430.05 6.58 0.813 1.141 

3.00 2,513,903.97 8.19 0.667 0.833 

3.50 3,211,337.10 9.64 0.479 0.558 

4.00 3,929,047.54 10.97 0.250 0.333 

4.50 4,664,970.27 12.20 0.125 0.167 

Observe that complying with nearly all of the user's requirements change : requests would 

lead to a cost overrun more than five times the project's ori ginal cost and would have a 

schedule delay eighty percent again as long as the original project schedule. A plot of the 

expected unmet requirements changes versus the other two objective functions allows 

graphical consideration of the customer's Pareto optimal alternatives (Figure 7.12). From 

this plot one observes the relationship between the unmet requirement changes and the 

other two objective functions. Interactive trade-off approaches such as the surrogate worth 

trade-off (SWT) [Haimes 1981] can be applied to select the most desirable solution. 

Selection of a desired solution then fixes the value of the decision variable x\. 

In response to the Customer's determination of x\ (allowed requirement changes), the 

contractor must trade-off meeting the cost and schedule requirements while maximizing 

profit. The contractor's personnel and technology decision variables have a schedule 

compression effect as well as a cost effect ~ more experienced personnel are more 

productive and the project can be accomplished in less time. This a schedule savings 

comes at a cost, however, as more experienced personnel mean higher personnel costs. A 
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Figure 7.12 Customer's Pareto optimal solutions 

parallel argument can be made for advanced technologies - using better technologies 

increases cost, but can reduce development time. On the other hand, less expensive but 

less capable personnel (technologies) lead to a longer development time and the anticipated 

cost savings may be negated by the longer schedule. 

The range of the contractor's decision variables is set at 0.5 < x2, x3 < 1.5, implying the 

limitations that personnel and technology can have on affecting project development effort 

and schedule. A decision variable value of 1.0 implies the nominal resource level. Higher 

decision variable multiplier values indicate degraded technology or less-experienced 

personnel that lead to higher effort requirements; lower decision variable multiplier values 

indicate a reduction in effort requirement due to better technology or experienced personnel. 

Table 7.7 summarizes the values for the contractor's three objective functions for varying 

levels of allowed requirements changes and personnel and technology resources. The 

resource cost multiplier k2, is associated the personnel and technology decision. The cost 

multiplier for less-experienced personnel decreases less rapidly than does the increasing 
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Table 7.7 Contractor objective function values, varying x\, x2, x?  
Resource Schedule 

Allowed Personnel/ cost Cost overrun delay Profit 
Req'mts Technology multiplier (dollars) (months) (dollars) 

k2 
ft f! f! 

*i •*2**3 Eq. (7.5) Eq. (7.6) Eq. (7.7) 

1.00 
0.50 7,500 80,994.18 -3.65 99,941.83 
0.75 4,500 57,032.72 -1.63 97,545.69 
0.90 3,500 25,813.03 -0.62 94,423.72 
1.00 3,000 0.00 0.00 91,842.41 
1.10 2,750 25,475.79 0.58 94,389.99 
1.25 2,500 81,930.66 1.40 100,035.48 
1.50 2,250 202,081.55 2.63 112,050.57 

1.50 
0.50 7,500 707,337.29 -1.63 162,576.14 
0.75 4,500 668,359.00 0.72 158,678.31 
0.90 3,500 617,573.69 1.91 153,599.78 
1.00 3,000 575,583.44 2.63 149,400.76 
1.10 2,750 617,025.10 3.31 153,544.92 
1.25 2,500 708,860.67 4.26 162,728.48 
1.50 2,250 904,311.04 5.70 182,273.52 

2.00 
0.50 7,500 1,377,636.21 0.00 229,606.04 
0.75 4,500 1,322,587.23 2.63 224,101.14 
0.90 3,500 1,250,863.22 3.95 216,928.74 
1.00 3,000 1,191,560.46 4.76 210,998.46 
1.10 2,750 1,250,088.45 5.52 216,851.26 
1.25 2,500 1,379,787.69 6.58 229,821.18 
1.50 2,250 1,655,821.94 8.19 257,424.61 

2.50 
0.50 7,500 2,082,640.26 1.40 300,106.44 
0.75 4,500 2,010,688.52 4.26 292,911.27 
0.90 3,500 1,916,941.70 5.70 283,536.58 
1.00 3,000 1,839,430.05 6.58 275,785.42 
1.10 2,750 1,915,929.02 7.41 283,435.32 
1.25 2,500 2,085,452.34 8.57 300,387.65 
1.50 2,250 2,446,242.76 10.32 336,466.69 

cost of advanced technology and experienced personnel. As anticipated, improved 

resources result in schedule compression (hence, less schedule delay) and increased cost. 

It can also be noted that an attempt at cost reduction through less expensive personnel and 

technology is, instead, offset by the longer development schedule. 
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Selecting the scenario for which the customer's decision variable is set at a particular level, 

we can analyze the contractor's associated decision problem. A plot of the negative profit 

objective function values (negative, so all objectives are now to be minimized) versus the 

cost overrun and schedule delay objective function values for x\ = 1.50 shows the Pareto 

optimal alternatives for the contractor (Figure 7.13). 
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Figure 7.13 Contractor's Pareto optimal solutions (x\ = 1.50) 
(note: vertical axis indicates the minimization of negative profit) 

With the cost-plus contract, the contractor's profit increases as cost increases -- hence the 

addition of more costly personnel and technology increases profit; interestingly enough, 

the longer development time required by less-experienced personnel has a similar effect on 

profit. In light of the other objectives, however, those alternatives that include improved 

personnel and technology would be preferred as these also lead to reduced schedule delays. 

7.3.8    Negotiation and Convergence for the Hierarchical Decision Problem 

Resolution of the two decomposition solutions is possible through negotiated iteration, 

with consideration of the (possibly subjective) trade-off information for each decision 

maker. After each decision maker optimizes his or her subproblem, the trade-offs between 

objective functions for each decision maker can be calculated as in Section 6.3.2 (e.g., 

trade-off between /,° and//*).  Then, based on this trade-off information, the decision 

makers agree on the direction and amount of change in /," and/f (using his or her own 
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decision rule). Now, after observing the contractor's response, the customer adjusts the 

original decision in light of this new information. Then, with the customer's revised 

solution, the contractor is also able to adjust the former solution. 

The trade-off between first objectives (cost overrun), selected for its consistent formulation 

between the subproblems, is a simple measure of the interdependence of the decision 

makers. Note that each decision maker's reaction to that trade-off may also depend 

naturally on the levels of all objectives. With the other community's trade-off information, 

negotiations can lead to a mutually-agreeable solution. 

Concerning convergence of the process, "an iterative negotiation scheme converges if the 

objective functions converge to some limits when the process is continued by consistent 

decision makers, and if the limit values of the objectives are a best compromise among all 

feasible objective values for the decision makers" [Haimes et al. 1990]. To fully consider 

the convergence of the iterative scheme, one must address several assumptions [Sage 

1977]: the existence of a best-compromise solution, the existence of a utility function, 

existence of all trade-offs between objectives, etc. Convergence may also be considered in 

less-rigid terms, such as the continued reduction in the difference between the subproblem 

solutions, percentage improvement in objective function values, etc. 

7.4   Chapter Summary 

In this Chapter we have made two important contributions to the software estimation 

methodologies developed in previous chapters: i) an approach for updating software 

estimates throughout the life cycle in light of actual project progress , and ii) formulation 

and resolution of a hierarchical decision making problem that manages the competing issues 

and objectives within and among participant communities. 

The HHM provides an ideal framework for evaluating the cause for deviation between 

actual and estimated project development effort and schedule requirements. Accounting for 

the cause for the discrepancy permits appropriate adjustments to be made to the estimation 

models. The HHM allows for a wide range in the level of detail considered in such on- 

going analysis. Systematic updating of the software estimates provides an improved 

indication of a software project's progress relative to its estimated completion, along with a 

way for analyzing those factors which contribute to deviation from previous estimates. 
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Finally, the bi-element hierarchical decision-making formulation provides increased insight 

and understanding, along with improved decision-making correlation among the various 

decompositions of the software acquisition HHM framework. While this Chapter applied 

the hierarchical decision problem approach to the user/customer and contractor 

decompositions, the decision problems associated with other decompositions can be 

represented through similar formulation. Each decomposition's multiobjective decision 

making problem includes distinct, as well as overlapping objectives and other model 

elements. The decisions of each decomposition affect the others, and no decomposition 

has control of all decisions and other model elements. The problem formulation provided 

in this Chapter permits independent and coordinated solutions, while increasing the 

understanding of the interactions between the decompositions. By applying this method, 

mutually-agreeable solutions can be obtained. 
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Chapter 8 
Summary, Conclusions, and Future Work 

8.1    Summary and Conclusions of the Dissertation 

This dissertation addresses the assessment and management of risks associated with the 

software acquisition processes from a holistic perspective using hierarchical holographic 

modeling (HHM). The multiple visions and perspectives within which the life cycle of 

software acquisition is stated and modeled, provide a comprehensive framework for risk 

assessment and management of software acquisition. In particular, widely used models in 

software acquisition such as the COCOMO model, can now be extended to incorporate 

probabilistic as well as dynamic dimensions. The ultimate contributions of this dissertation 

can be found in at least two major areas: (a) in the theoretical and methodological domain 

of systems modeling in the quest of a more quantitative risk assessment and management 

framework, and (b) in advancing the state of practice in the assessment and management of 

software acquisition by extending highly used models in practice to incorporate more 

realistic probabilities and dynamic dimensions. 

A holistic framework for risk assessment and management that provides a comprehensive 

structure for identifying risk sources, assessing and measuring the risks, explicitly 

considering inherent uncertainties, and resolving competing objectives and issues among 

participant communities and other decompositions, is important to improving software 

acquisition management. The potential exists for a positive improvement in software 

acquisition management by maturing the capabilities of the customer community through 

the development of theoretical and methodological foundations. New software estimation 

and software acquisition decision-making methodologies developed in this research address 

the customer's capability to identify and assess the programmatic risks associated with 

software acquisition and to make more-informed control policy and resource allocation 

decisions. 

As the customer community is, in general, in the process of maturing from very low levels 

of software acquisition knowledge, analytical methods for software acquisition 

management must be appropriate for the customer's capabilities and needs. The 
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contributions of this research are for use at several levels of software acquisition maturity, 

and build on one another in terms of complexity and detail. 

The general HHM framework for software acquisition was developed in Chapter 3. This 

model provides the framework for a comprehensive investigation of risk sources for 

software acquisition and leads to the development and interpretation of software acquisition 

analytic models, including software cost and schedule estimation models. 

In Chapter 4, the theoretical contribution of the triangular distribution for extreme event 

analysis was enhanced by the derivation and analysis of closed-form solutions for the 

conditional expectation functions of the triangular distribution. These results were then 

used in developing a probabilistic software estimation approach in Chapter 5 -- both a direct 

probabilistic estimation approach, and an approach that uses Monte Carlo simulation in 

producing the estimate. The probabilistic approach advances current practices in software 

estimation by explicitly considering the uncertainty associated with estimating a software 

project's cost and schedule, and by utilizing the conditional expected value as a 

supplementary decision-making metric. Also in Chapter 5, a method for calculating the 

conditional and unconditional expected values when using Monte Carlo simulation was 

developed as part of the probabilistic software estimation methodology.   Deploying the 

approach to the COCOMO model demonstrated the benefits of the probabilistic software 

estimation approach. 

In Chapter 6, dynamic software estimation models were developed that advanced the state- 

of-the-art in software estimation to meet the analytic requirements of the most-current spiral 

and prototyping software development process paradigms. These models account for the 

dynamics of changing requirements, system design, and other policy factors. The dynamic 

formulation permits analysis of the effect of current-stage decisions on future decision 

opportunities in light of the multiple objectives associated with cost overrun and schedule 

delay. 

Chapter 7 addressed two issues associated with the dynamic models: updating software 

estimates in light of actual project progress and resource expenditures; and coordinating and 

resolving competing issues, objectives, and decision opportunities among the participant 

communities. Development of a software estimation updating scheme provided the 

framework for on-going improvement in estimating a project's cost and schedule 

requirements. Then, a hierarchical decision problem formulation was devised that allowed 
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for equal-level interaction among hierarchical sub-problems to resolve the overlapping and 

unique issues of the sub-problems. Deployment to the software acquisition user, 

customer, and contractor decision problems demonstrated the approach for resolving the 

individual multiobjective sub-problems and for coordination among the sub-problems that 

leads to a mutually-agreeable solution. 

The multiobjective problems of the user/customer and contractor decompositions provide 

greater insight concerning the interactions and effects of each community's decisions, 

particularly concerning the effect of requirements changes and resource allocation policies 

on project cost overrun and schedule delay. 

8.2 Recommendation for Future Work 

This section outlines four areas for future work that would extend the theoretical and 

methodological contributions of this research. 

8.2.1 Determine the Functional Form of the Time-Variant Coefficients in 

the Dynamical Software Estimation Model. 

The deployment of the dynamic model in Chapter 6 assumed constant values over time for 

several of the model parameters. In practice, this assumption may be unrealistic. For 

example, programmer capabilities improve over the development period as the 

programmers become more familiar with the project, the language used, etc. Accounting 

for such 'learning curves' and other dynamic tendencies would improve the software 

estimate. The functional forms of some model elements could be derived through 

examining existing datasets of completed software projects. 

8.2.2 Evaluate the Effect of Up-Front Expenditures on Overall Project 

Costs Using the Dynamic Model 

Krishnan and Kellner [1995] [1993] have explored the empirical relationship between 

software cost and product quality, and between software life-cycle costs and front-end 

expenditures. Further exploration of the impact of early-life cycle requirements, design, 

and expenditure policies on life-cycle costs is possible by using the dynamic software 

estimation model. Additionally, the dynamic software estimation model could be used to 
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explore the effects of personnel characteristics, tool deployment, and other factors on life- 

cycle costs. 

8.2.3 Include Bayesian Revision in the Dynamical Software Cost 

Estimation Model 

The dynamical software estimation model might possibly be reformulated as a sequential 

forecast process ([Katz et al. 1992], [Krzysztofowicz and Davis 1983]), not unlike the 

flood forecasting problem [Li et al. 1992]. In a pure sequential forecast process, forecasts 

of a fixed but uncertain state are prepared with decreasing lead times, with each subsequent 

forecast incorporating additional information and, therefore, updating the previous forecast. 

The real thousands of lines of code (KLOC) in the software estimation problem acts as the 

real flood peak in the flood forecasting problem, whose true value is hidden and can only 

be known with certainty after the whole process is realized. However, at every time period 

before the final stage, there is an attainable estimation of the hidden variable. Each stage's 

estimate of KLOC could be used to update the probabilistic description of the true KLOC 

through Bayesian revision. It may then be possible to derive a probabilistic description of 

project development effort from the posterior density function and use the conditional 

expected value of project cost as a supplement to the traditional expected value for decision 

making. 

8.2.4 Analyze Contract Vehicle Options and Requirements Change Policies 

Using the Hierarchical Decision Problem Formulation 

The hierarchical decision problem formulated in Chapter 7 assumed a cost-plus contract 

arrangement for the contractor, where profit is a percentage of development costs. The 

hierarchical decision-making approach can be used to analyze other contracting options 

(e.g., incentive contracting, fixed-price contracting) as they impact project cost overrun and 

schedule delay. 

The user/customer - contractor hierarchical decision problem formulated in Chapter 7 

identified the significance of requirements changes as a principal factor contributing to 

project cost overrun and schedule delay. The decision problem can be used to provide 

additional investigation regarding requirement change policies, their impact at different 

points in the life cycle, etc. on cost overrun and schedule delay. 
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Appendix A 
A COCOMO Tutorial 

The Constructive COst MOdel (COCOMO) is widely recognized within the software 

community as the predominant software estimation methodology. In light of COCOMO's 

preeminence, the approaches developed through this research are deployed to this model. 

This Appendix presents an overview of the parameters and methodology of the model - the 

three models that constitute COCOMO - and a brief discussion of recent advances 

concerning the model. 

A.l   An Overview of COCOMO 

While there are many software cost estimation models, each having its own followers and 

advocates, no one model has been shown to provide a definitive estimation solution. 

Although this is true, due to its widespread use, open publication of its methodology, 

extensive application to a wide variety of software, and adaptations for modern software 

practices, COCOMO has become the de facto standard for software cost estimation 

[Charette 1989]. 

Originally developed in the early 1980's, the complete COCOMO and associated data base 

from which the model was developed appear in [Boehm 1981]. COCOMO uses 

development effort equations to estimate the total man-months (MM) of development effort 

required to complete a project. An initial project cost estimate can then be derived by 

multiplying MM by a dollar-per-month cost multiplier. COCOMO also includes an 

equation for estimating development time (tD) in months as a function of MM. The effort 

equations require project size estimates, measured in thousands of delivered source 

instructions (KDSI), and estimates of other key cost drivers. 

KDSI offers a more specific definition of the often-misinterpreted KLOC. Delivered is 

meant to exclude nondelivered support software. Source instruction "includes all program 

instructions created by project personnel, and processed into machine code by some 

combination of preprocessors, compilers, and assemblers" [Boehm 1981]. KDSI excludes 

comment statements and unmodified utilities, while including job control language, format 
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statements, data declarations, and instructions. For the purposes of this paper, the terms 

KLOC and KDSI are used interchangeably. 

COCOMO considers three software project development modes that define three types of 

software development environments: organic, semidetached, and embedded. The organic 

mode involves development by relatively small teams in a highly familiar, in-house 

environment. An organic-mode project is similar to previously developed products, is 

relatively small, and requires little innovation. An accounting system is an example of an 

organic-mode project. 

An embedded-mode project is typified by tight, inflexible constraints and interface 

requirements, and requires a great deal of innovation. The project is developed "under a 

strongly coupled complex of hardware, software, regulations, and operational procedures." 

[Boehm 1981]. Real-time systems with critical timing constraints and customized 

hardware are generally embedded-mode projects. 

The semidetached-mode project is a combination of the organic and embedded modes, 

lying somewhere in-between the other two modes in terms of complexity, size, and 

required innovation. 

COCOMO consists of three models of increasing complexity: Basic COCOMO, 

Intermediate COCOMO, and Detailed COCOMO. The primary distinction among the 

models is the detail and number of model parameters. While the less-detailed Basic 

COCOMO is usually appropriate for quick, rough estimation, the higher-detailed models 

may not necessarily produce more accurate cost projections unless accurate estimates of the 

additional model parameters are obtainable. The requirement to estimate a greater number 

of model parameters introduces additional uncertainty into the more-detailed models. The 

following sections provide mathematical descriptions of the three software cost estimation 

models that constitute COCOMO. 

A.2   Basic COCOMO 

The Basic COCOMO's estimate of required development effort is based entirely upon the 

user's estimate of project size and correct determination of the development mode. The 
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essential effort equation of the Basic COCOMO model is a nonlinear function of the 

estimated project size 

MM = a(KLOC)fc (A1) 

where the parameter vector <a,b> takes on differing values according to the development 

mode of the project. The value MM that is produced from the effort equation is used in the 

schedule equation to estimate development time to (in months) 

tD = c(MM)d. (A-2) 

Table A.l lists the Basic COCOMO development effort and development time equations. 

Table A.l Basic COCOMO Equations [Boehm 1981] 

Mode 

Organic 

Semidetached 

Embedded 

Development 
Effort 

MM = 2.4(KLOC)105 

MM = 3.0(KLOC)112 

MM = 3.6(KLOC)120 

Development 
Time 

tD = 2.5(MM)0-38 

tD = 2.5(MM)0-35 

tn = 2.5(MM)0-32 

The total development effort and total development time are distributed over the life cycle 

phases according to distribution percentages determined from analysis of completed 

projects. The differences in the software development activities among the three modes 

produce different estimated phase distributions of effort and schedule. For example, 

embedded-mode projects consume more effort in the integration and test phase and 

proportionally less effort in the code and unit test phase [Boehm 1981]. 

The effort and schedule results of the Basic COCOMO can be used to evaluate pertinent 

software development measures. Average personnel staffing requirements can be estimated 

as 

FSP = 
MM (A.3) 

where FSP stands for full-time-equivalent software personnel, a measure of the equivalent 

number of people working on the project at a given time. A measure of average 

productivity (KLOC per man-month of effort) can be determined by 

Productivity = 
KLOC 

MM ' 
(A.4) 
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Use of the Basic COCOMO model is intended for initial estimation, providing quick, rough 

order-of-magnitude estimates of a software project's effort and cost. The model requires 

estimation of a single parameter, which makes implementation of the model quite easy. 

Obviously, the importance of accurately estimating the KLOC parameter cannot be 

overstated. In accuracy tests using ex-post (actual) KLOC data, the reported accuracy of 

the Basic COCOMO model is generally within a factor of 2 of the actual results 60% of the 

time and within a factor of 1.3 of the actual results 29% of the time [Barrow et al. 1993], 

[Boehm 1981]. 

A.3   Intermediate COCOMO 

The Intermediate COCOMO model improves upon the Basic COCOMO model's approach 

by including the effect of 15 "cost drivers" or effort multipliers The Intermediate 

COCOMO model begins by assessing a nominal effort estimate, using equations of the 

same form as those used in the Basic COCOMO: 

MMACw=a(KLOC)* (A-5) 

The user's assessment of the software project's attributes, relative to the 15 cost drivers, 

provides the means for "fine-tuning" the nominal effort estimate. These cost drivers are 

grouped in four categories: software product attributes, computer attributes, personnel 

attributes, and project attributes (Table A.2). 

Table A.2 Intermediate COCOMO Effort Multipliers [Boehm 1981] 

Product Attributes Project Attributes 
Required Software Reliability Modern Programming Practices 
Data Base Size Use of Software Tools 
Product Complexity Required Development Schedule 

Computer Attributes Personnel Attributes 
Execution Time Constraints Analyst Capability 
Main Storage Constraints Applications Experience 
Virtual Machine Volatility Programmer Capability 
Computer Turnaround Time Virtual Machine Experience 

Programming Language Experience 

The user must rate each attribute on a scale from Very Low to Extra High, where each 

rating has an associated numerical score that represents an effort adjustment multiplier. 
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Nominal ratings have an adjustment multiplier of 1.0, while the numerical range of each 

multiplier is from 0.0 to 2.0. These 15 numerical scores are combined to produce an 

overall effort adjustment factor (EAF), defined as the product of all attribute scores 

EAF = f[e„ (A.6) 

/=i 

where e{ is the effort multiplier score of a particular attribute. The development effort 

equation of the Intermediate COCOMO then incorporates the effect of the EAF multiplier 

Eq. (A.6) on the nominal development effort Eq. (A.5): 

MM = (EAF)MMN0M = (EAF)[a(KLOC)b]. (A.7) 

The Intermediate COCOMO effort equations for the three development modes are listed in 

Table A.3; the development time equations are the same as those of Basic COCOMO. 

Distribution of time and effort among life cycle phases, as well as productivity and staffing 

measures, are developed as with Basic COCOMO. 

Table A.3 Intermediate COCOMO Equations [Boehm 1981] 
Mode 

Organic 

Semidetached 

Embedded 

Development Effort 

MM = (EAF)[3.2(KLOC)105] 

MM = (EAF)[3.0(KLOC)112] 

MM = (EAF)[2.8(KLOC)1-°l 

Development Time 

tD = 2.5(MM)0-38 

tD = 2.5(MM)0-35 

tD = 2.5(MM)0-32 

The consideration of the effort adjustment factors contributes to the Intermediate 

COCOMO's improved estimation capabilities. Again, when considering ex-post KLOC 

and effort multiplier data, the Intermediate COCOMO's estimation accuracy is reported to 

be usually within 20% of the actual results 68% of the time [Barrow et al. 1993], [Boehm 

1981]. Obviously, the user's ability to accurately determine the development mode, 

estimate the project size, and evaluate all 15 cost multipliers is the key determinant affecting 

the accuracy of the model's results. 

The Intermediate COCOMO model has been the most widely implemented of the COCOMO 

models and, therefore, the most widely implemented of all software estimation models. 
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A.3.1   Example Software Estimation Using Intermediate COCOMO 

To demonstrate the Intermediate COCOMO model, we consider the following example 

software development scenario. A 32-KLOC, semidetached-mode software project is to be 

developed. The values of the model parameters and the cost multiplier values of the 

attributes characterizing the development effort are listed in Table A.4. 

Table A.4 Intermediate COCOMO example problem -- model values 

Variable 
KLOC=         32 
Mode =           Semidetached, hence from Table A.3 

a = 3.00 
b= 1.12 
c = 2.50 
d = 035 

Adjustment 
Attribute Rating Factor (e) 
Reliability Nominal 1.00 
Data Base Size Low 0.94 
Complexity Very High 1.30 
Execution Time High 1.11 
Storage High 1.06 
Virtual Machine Volatility Nominal 1.00 
Turnaround Time Nominal 1.00 
Analyst Capability High 0.86 
Applications Experience Nominal 1.00 
Programmer Capability High 0.86 
Virtual Machine Experience Low 1.10 
Programming Language Nominal 1.00 
Programming Practices High 0.91 
Software Tools Low 1.10 
Development Schedule Nominal 1.00 

EAF, Eq. (A.6) = 1.171 

Applying the above values to Eq. (A.5), the nominal development effort is 

MMNOM= 3.0(32)112 = 145.51 man-months. 

Adjusting the nominal effort to consider the project-specific attributes, leads to the adjusted 

development effort requirement Eq. (A.7) 

MM = EAF(MMAOW) = (1.171X145.51) = 170.39 man-months. 

The development time is given by Eq. (A.2) 
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tD = c(MM)d = 2.5(170)0-35 = 15.087 months. 

Hence, the initial estimate for project development effort and schedule is 170 man-months 

of effort over a 15-month development period. The required average staffing and 

productivity measures can be calculated by Eqs. (A.3) and (A.4): 

FSP = MM = (170)/(15) =11.33 persons, 

Productivity = ^^- = (32)/15) = 2.133 KLOC per man-month. 
MM 

Additionally, the effort, schedule, and average staffing analysis can conducted for each 

phase of the development life cycle using percentage distributions [Boehm 1981]. The 

phase distribution values and the overall development resource requirements for this 

example are summarized in Table A.5. Such information is useful for developing staffing 

plans, and for determining and then monitoring project progress. 

Table A.5 Intermediate COCOMO Example - Phase Distribution of Resources 

Life Cycle Effort Schedule Avg. Staffing 
Phase (man-months) (months) (FSP) 

Plans & Requirements 11.90 3.00 4.0 

Development 

Design 28.90 3.90 7.4 

Detailed Design 42.50 3.10 13.7 

Code & Test 56.10 4.10 13.7 

Integration & Test 42.50 3.90 10.9 

Total Development 170.00 15.00 

A.4   Detailed COCOMO 

The Detailed COCOMO model builds upon the Intermediate model by considering the effect 

of changing effort multipliers as the software development effort progresses through the 

life cycle. With the Detailed COCOMO, the project is divided into at least four phases 

(Requirements and Product Design, Detailed Design, Code and Unit Test, Integrate and 
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Test) and the 15 cost drivers are estimated separately for each phase, rather than for the 

project as a whole. 

The effort equations of the Detailed COCOMO are essentially the same as those of the 

Intermediate COCOMO, however the total MM of development effort is now accounted for 

by considering the effort estimates of each phase. When considering four development 

phases, the Detailed COCOMO requires the user's estimate of development mode, KLOC, 

and 60 cost drivers (15 in each of four phases). This additional detail, however, has not 

resulted in a significant improvement in cost estimation accuracy. The Detailed COCOMO 

has been shown to produce only modest improvement over the Intermediate COCOMO, 

estimating within 20% of project actuals 70% of the time [Boehm 1981]. 

A.5   Ada COCOMO 

With the directive that the programming language Ada be the language of choice for new 

Department of Defense software systems, a COCOMO model especially tailored for Ada 

projects was needed. Many factors that influence the development of Ada software were 

not considered by the standard COCOMO estimation equations. An initial Ada COCOMO 

was developed for estimating software products developed in the Ada programming 

language [Boehm and Royce 1987]. Ada COCOMO includes additional effort multipliers, 

consideration of a phase distribution unique to Ada projects, and revised model coefficient 

values <a,b, c, d>. Since initial development, the Ada COCOMO has been tested and 

refined. Additional applications and adjustments are part of an ongoing effort[Boehm and 

Royce 1989]. 

A.6   COCOMO 2.0 

Software development trends towards reuse, re-engineering, and commercial off-the-shelf 

(COTS) packages, object orientation, non-sequential process models, rapid development 

and prototype approaches motivate a recent effort for updating COCOMO [Boehm et al. 

1995]. While still in the design stage, this model (designated COCOMO 2.0) includes 

consideration of spiral and prototype development paradigms, software reuse and re- 

engineering, COTS, and other current software engineering practices, technologies, and 

environments. COCOMO 2.0 will allow a range of software sizing options: FP, KLOC, 
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and object points [Boehm 1995]. Furthermore, capabilities for integrating reused and 

COTS software and re-engineering and conversion efforts are to be included [Boehm 

1995]. A comprehensive set of recently completed software projects will be used to update 

the effort-multiplier cost drivers to reflect the most current software development effores. 

A.7   Summary 

COCOMO is the most widely used, most openly published software estimation model. 

The three increasingly-complex COCOMO models provide a range of software estimation 

sophistication. The outputs of the COCOMO models, especially the Intermediate and 

Detailed models, have been shown to be reliable if the number of lines of code is 

reasonably well known and the multipliers can be chosen correctly. However, even with 

perfect input data, their projected accuracy is only within 20 percent of actual costs 70 

percent of the time. 

These reported accuracy levels define the upper limit of accuracy for software cost 

estimation, as these have been evaluated using actual, ex-post data. This can pose a serious 

risk to a user of the model if the projected accuracy ~ the uncertainty of the estimate - is 

ignored.   The accuracy falls off in practice when users are faced with estimating parameter 

values in an uncertain environment, disregard good estimation practices, or use the cost 

estimation exercise to justify a previously predicted result. Explicitly accounting for the 

uncertainty associated with the COCOMO's effort estimation is a key contribution of this 

research. 
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Appendix B 
Software Estimation Tools 

This Appendix provides a summary of the major software estimation tools available from 

private vendors and public agencies. Much of the information came from the product 

vendors themselves, and other information came from software estimation tool reviews 

such as [Barrow et al. 1993]. 

The COCOMO is widely used as a baseline for many estimation tools because it is 

considered an "open model" since all details are well documented and published. For this 

reason, and that there are so many computerized estimation tools available that use 

COCOMO, a separate section on these tools is provided (B.l). Function Point analysis is 

increasingly gaining acceptance as a size-estimation methodology, with particular 

application to Information Systems. Section B.2 discusses tools based on Function Point 

analysis. Finally, Section B.3 describes additional software estimation methdologies that 

are based on methodologies other than COCOMO or Function Points. 

B.l    COCOMO-Based Software Estimation Tools 

This Section discusses COCOMO-based estimation tools. 

B.l.l   CB COCOMO 

Crystal Ball (CB) COCOMO is distributed by Decisioneering Incorporated. This tool 

estimates time and cost of software development projects, and allows entering of actual 

project data at various phases in the software life cycle. This tool requires Decisioneering's 

forecasting and risk analysis tool, Crystal Ball, and operates on Macintosh and DOS 

systems. Decisioneering Inc., Boulder CO 80301. (303)292-2291. 

B.1.2   COCOMOID 

COCOMOID is distributed by the Air Force Cost Center (via electronic bulletin board) and 

the Society for Cost and Economic Analysis (SCEA). COCOMOID is a complete 
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COCOMO implementation supporting all known published COCOMO specifications. 

COCOMO models used include Basic, Intermediate, Detailed, and Maintenance models. It 

also includes Enhanced Ada, Ada Process, and Incremental Development models. This 

tool operates on PC compatible systems. Air Force Cost Center, Wright-Patterson AFB, 

OH 45433. (513)257-3927. 

B.1.3 COCOMOl 

COCOMO 1 was developed by Level Five Research, Inc. and is marketed by Solar 

Powered Emergency Communications Systems (SPECS), Inc. It is an expert systembased 

software tool that estimates cost and time requirements for software projects. Through a 

series of questions COCOMOl assists in determining the proper COCOMO cost model, 

mode, and effort coefficients. This tool uses fifteen development and maintenance cost 

drivers and applies formulas from the COCOMO model to these factors. COCOMOl runs 

on all PC compatible systems. Specs Inc., Junction City, OR 97448. (503) 998-8729. 

B.1.4   CoCoPro 

CoCoPro is distributed by Iconix Software Engineering, Inc. It estimates resources needed 

to complete software development projects using the COCOMO model. This tool uses 

exponential functions and attributes to calculate development costs. Inputs allowed include 

personnel experience and capabilities, project complexity, product factors, and hardware 

limitations. CoCoPro operates on a Macintosh. Iconix Software Engineering, Inc., Santa 

Monica, CA 90405. (310)458-0092. 

B.1.5   COSTAR 

COST AR is an interactive software cost estimation tool marketed by Softstar Systems. It is 

a full implementation of the detailed COCOMO model and offers side-by-side comparisons 

of several alternative estimates. This tool also provides automatic recalculation and display 

of results, and uses definable cost drivers. COSTAR version 3.0 includes support of Ada 

COCOMO. This tool also uses Function Point analysis for software size estimations. It is 

available for both PC compatible and VAX computer systems. Softstar Systems, Amherst, 

NH 03031. (603)672-0987. 
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B.1.6 COSTMODL 

COSTMODL was developed by the Software Technology Branch, Spacecraft Software 

Division, NASA/Johnson Space Center [NASA/JSC 1991], and provides estimates for 

effort, cost, and schedule. It implements all the COCOMO models except the detailed 

model. In addition, it includes a simplified linear model using productivity data from 

completed NASA projects. 

COSTMODL is presently used at over 100 government, military, and contractor sites, as 

well as NATO headquarters, the British Ministry of Defense, and several universities in the 

United States and England. It has been selected as the standard cost estimating tool for 

NASA's Space Station Freedom Software Support Environment. 

COSTMODL contains five different models for estimating non-Ada and Ada products, and 

products which are to be delivered as a series of incremental development phases. All of 

the parameters defining each of the models are accessible to the user. Basic estimating 

equations can be calibrated to the user's software development environment and type of 

product. Also, the set of factors which influence software development costs can be 

redefined. 

Given the data describing the software development productivity experience for a user's 

organization, COSTMODL will automatically compute the coefficients and exponents 

which will provide the most meaningful estimates for new products to be developed within 

that organization. It also contains an extensive set of linked, context-sensitive help displays 

and demonstration files designed to quickly familiarize the new user with its operation. 

This tool is free to both employees and contractors of NASA, as well as other government 

agencies, and has been submitted to NASA's Computer Software Management and 

Information Center (COSMIC) for distribution into the private sector. COSTMODL 

currently runs on PC compatible systems. NASA/JSC Software Technology Branch, 

Houston, TX 77058. (713)483-9092. 

B.1.7 GECOMO Plus 

GECOMO Plus is marketed by GEC-Marconi Software Systems. It is a special 

enhancement of the COCOMO model and uses 17 cost drivers. It provides cost estimations 
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for both non-Ada and Ada projects. GEC-Marconi markets a companion tool for size 

estimation called SIZE Plus. Both GECOMO Plus and SIZE Plus are X-Windows/OSF 

Motif compatible and are available for both the UNIX and VMS operating systems. GEC- 

Marconi Software Systems, Reston, VA 22090. (703) 648-1551. 

B.1.8   GHL COCOMO 

GHL COCOMO is marketed by GHL Associates, Inc. and features three levels of detail: 

multiproject, data retention, and sensitivity analysis. This tool also allows for "what-if' 

scenarios. It operates on PC compatible systems. GHL Associates, Inc., Haverford, PA 

19041. (215)896-7307 

B.1.9    REVIC 

The Revised Enhanced Version of Intermediate COCOMO (REVIC) was developed by 

Hughes Aerospace. The Air Force Contract Management Division, Air Force System 

Command, Kirtland Air Force Base, New Mexico, sponsored the development for use by 

its contract administrator [Kyle 1991]. The main difference between REVIC and 

COCOMO is the coefficients used in the effort equations. REVIC changed the coefficients 

based on using a database of recendy completed DOD projects. It also uses a different 

method of distributing effort and schedule to each phase of product development, and 

applies an automatic calculation of standard deviation for risk assessment 

REVIC provides a single-weighted "average" distribution for effort and schedule along 

with the ability to let the user vary the percentages in the system engineering and 

development test and evaluation phases. REVIC employs a different Ada model than Ada 

COCOMO. The REVIC model has also been enhanced by using a Program Evaluation and 

Review Technique (PERT) statistical method for determining the lines of code to be 

developed. 

In addition to providing estimates for cost, manpower and schedule, the program creates 

estimates for typical DOD-STD-2167A documentation sizing and long term software 

maintenance (with planned modification to meet MDL-STD-498 requirements). REVICs 

schedule estimates are often considered lengthy because it assumes that a project's 

documentation and reviews comply with the full requirements of DOD-STD-2167A. 
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REVIC operates on PC compatible systems. Air Force Cost Agency, Arlington, VA 

22202. (703)746-5865. 

B.1.10  SECOMO 

Software Engineering Cost Model (SECOMO), an implementation of COCOMO, is 

available at no cost from ITT Research Institute in Rome, NY. Enhancements include an 

improved user interface, online help, and an expanded user's manual. Version 7.0 will 

operate on a PC compatible system or a VAX/VMS 5.2 or later operating system. ET 

Research Institute, Rome, NY 13440. (315) 336-2359. 

B.l.ll   SWAN 

The Software Analysis (SWAN) cost model was developed by IIT Research Institute for 

the U.S. Army Program Manager for Training Devices (PMTRADE) in the Ada 

programming language. SWAN is available at no cost to government agencies and 

associated contractors 

This tool supports the intermediate version of COCOMO, including Ada COCOMO with 

fall three-level software hierarchy support. SWAN utilizes FPA techniques to determine 

software size estimates. It provides estimates for software development from requirements 

analysis through integration and test, as well as estimates for up to 5 years of maintenance. 

SWAN runs on PC compatible systems under MS-DOS 3 1 or later. IIT Research 

Institute, Rome, NY 13440. (315) 336-2359. 

B.2    Function Point-Based Software Estimation Tools 

This Section contains a discussion of software estimation tools based on Function Point 

analysis. 

B.2.1    ASSET-R 

ASSET-R is a function point sizing tool developed to estimate the size of data procesing, 

real-time, and scientific software systems which is marketed by Reifer Consultatnts, Inc. It 

utilizes a knowledge-based system which extends the theory of function points into 
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scientific and real-time systems by considering issues like concurrence, synchronization, 

and reuse in its mathematical formulation. The formulas use as many as nine parameters to 

develop function point counts. It operates on PC compatible systems. Reifer Consultants, 

Torrance, CA 90510. (310) 373-8728. 

B.2.2    CA-FPXpert 

CA-FPXpert is distributed by Computer Associates International, Inc. It uses FP analysis 

for size estimation of Information System type software projects. It includes an on-line 

tutor to help the function point counting process. CA-FPXpert works in conjunction with 

CA.ESTIMACS to provide software size estimation input and operates on PC compatible 

systems. Computer Associates International, Inc., Calverton, MD 20705. (301) 937- 

1133. 

B.2.3    CHECKPOINT 

CHECKPOINT is a software estimation tools distributed by Software Productivity 

Research (SPR). It is a knowledge-based software estimation tool that has largely 

superseded SPQR/20. It's algorithms are derived from measurements of more than 4200 

software projects, and it is applicable to all phases of the software development life cycle. 

It applies to all types of programs and incorporates Function Points or Feature Points to 

calculate the size of a software product. Feature points are SPRs method of measuring 

functionality. Software Products Research, Inc., Burlington, MA 01803. (617) 273- 

0140. 

B.2.4   MicroMan ESTI-MATE 

MicroMan ESTI-MATE is an estimating and planning tool for Information Systems 

oriented projects. It uses FP methodologies, and is distributed by POC-IT Management 

Services, Inc. MicroMan ESTI-MATE provides a breakdown of the hours required for all 

phases, activities, and tasks that make up a project. It is fully integrated with the MicroMan 

n Project and Staff Management System tool used for scheduling, tracking, and reporting. 

MicroMan ESTI-MATE operates on PC compatible systems. POC-IT Management 

Services, Inc., Santa Monica, CA 90401. (301) 393-4552. 
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B.2.5    PROJECT BRIDGE 

PROJECT BRIDGE Planning and Estimating System is marketed by Applied Business 

Technology Corporation. It is a knowledge-based tool used for profiling, estimating, and 

planning projects in a software engineering environment. It allows users to produce 

estimates based on Function Points or an organization's own estimating factors. This tool 

integrates with the Project Workbench project management tool for Information Systems 

projects. PROJECT BRIDGE operates on PC compatible systems. Applied Business 

Technology Corp., New York, NY 10013-3992. (800) 444-0724. 

B.2.6    SIZE Plus 

SIZE Plus is marketed by GEC-Marconi Software Systems. This tool uses FP analysis to 

estimation the size of the software project. It supports both data processing and real-time 

applications. SIZE Plus provides five different methods to perform FP analysis. Three of 

these are oriented towards Information System applications and the other two are used for 

real-time or embedded software applications. The tool is available for UNIX or VMS 

operating systems running X-Windows/OSF Motif. GEC-Marconi Software Systems, 

Reston, VA 22090. (703) 648-1551. 

B.2.7     SPQR/20 

SPQR/20 (Software Product, Quality, and Reliability TwentyQuestions) is a software 

estimation tool distributed by Software Productivity Research (SPR). SPQR/20 is based 

on the work of Capers Jones [Jones 1986] and incorporates proprietary algorithms. It was 

one of the first models to use function points as a measure of size to estimate source lines 

of code. Most of the inputs define experience level, development method, and 

development environment. Other inputs include project type and class. SPQR/20 estimates 

maintenance support for up to a five-year period [SPR 1986]. SPQR/20 operates on PC 

compatible systems. Software Products Research, Inc., Burlington, MA 01803. (617) 

273-0140. 
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B.3   Other Method-Based Software Estimation Tools 

This section presents software cost estimation tools that are neither exclusively based on 

COCOMO nor on Function Point analysis. Several of these models are based on 

proprietary algorithms and databases. 

B.3.1    CA-ESTIMACS 

CA-ESTMACS is part of a family of tools called CA-UNIPACK/PEP marketed by 

Computer Associates International, Inc. CA-UNIPACK/PEP consists of four tools: CA- 

ESTIMACS. CA-PLANMACS, CA-ADVISOR, and CA-SuperProject. CA-ESTMACS 

uses research drawn from a data base of more than 14,000 completed software projects. 

The ESTMACS model is a proprietary model that does not require KLOC as an input, 

relying instead on "Function-Point-like" measures The original application domain for this 

model was the insurance industry. Since this model is proprietary, details, such as the 

equations used, are not available. It is known that, like SLIM and COCOMO, ESTMACS 

utilizes a series of 25 questions to adjust model parameters.  It develops estimates at or 

before the requirements definition phase of the software life cycle. This tool allows for 

early "what-if' analyses of alternative life cycle strategies. A companion tool named CA- 

FPXpert is also distributed by Computer Associates and is used to estimate the size of the 

software product. All of these tools operate on PC compatible systems. Computer 

Associates International, Inc., Calverton, MD 20705. (301) 937-1133. 

B.3.2    CEIS 

Computer Economics Incorporated Sizing (CEIS) system is marketed by Computer 

Economics, Inc. Estimation are generated by comparing the attributes of the new project to 

the attributes of three reference projects of known size. The user determines any six 

attributes that contribute to the number of lines of code and ranks them in order of 

importance, then selects three reference projects of known size. Separate algorithms are 

used to produce four independent estimates and to determine a level of confidence. CEIS 

works in conjunction with SYSTEM-4. Computer Economics, Inc., Marina Del Rey, CA 

90292. (310)827-7300. 
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B.3.3 COSTEXPERT 

COSTEXPERT is a software estimation tool that uses expert system technology. It was 

developed by the Institute for System Analysis, Inc. (ISA) and is marketed by Technology 

Applications/Engineering Corporation. It asks questions about the functionality of the 

software being developed [ISA 1990]. COSTEXPERT directly estimates software-related 

efforts such as program management security, and configuration management. It supports 

multiple languages and different development standards. It also takes into account software 

reuse. A companion tool named SIZEEXPERT is also distributed by Technology 

Applications/Engineering Corporation and is used to estimate the size of the software 

product based on the COSTEXPERT questions. These tools operate on PC compatible 

systems. Technology Applications/Engineering Corp., Bethesda, MD 20817. (301) 571- 

8510. 

B.3.4    PRICE S 

The PRICE S tool is distributed by GE PRICE Systems. This tool was first developed in 

1977 primarily for aerospace applications [Freiman and Park 1979]. Equations used by 

this tool are proprietary, however, descriptions of the methodology scheduling algorithms 

used can be found in a paper published by GE PRICE Systems [GE Price 1988]. 

Wolverton [1980] describes the several project and environmental attributes considered in 

the model's effort adjustment equations. These attributes were chosen specifically for the 

aerospace applications. As the model is intended for a specific software domain, its use for 

business and other non-aerospace applications is questionable. 

The PRICE S tool is based on Cost Estimation Relationships (CERs) that make use of 

product characteristics in order to generate estimates. CERs were determined by statistically 

analyzing completed projects where product characteristics and project information were 

known. The major input to PRICE S is KLOC. Software size may be input directly or 

automatically calculated from quantitative descriptions. PRICE S also permits function 

points to be input as an alternative to KLOC. Other inputs include software function, 

operating environment, software reuse, complexity factors, productivity factors, and risk 

analysis factors. Successful use of the PRICE S tool depends on the ability of the user to 

define inputs correctly. It can be customized to the needs of the user. It is now available 

for Windows and Unix/Motif. GE Price Systems, Moorestown, NJ 08057. (800) 437- 

7423. 
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B.3.5   SASET 

The Software Architecture, Sizing and Estimating Tool (SASET) was developed for DOD 

by the Martin Marietta Corporation. SASET is a forward-chaining rule-based expert 

system utilizing a hierarchically structured knowledge data base. The data base is 

composed of projects with a wide range of applications. SASET provides functional 

software sizing values, development schedules, and associated manloading outputs. It 

provides estimates for all types of programs and all phases of the development cycle. It 

also provides estimates for maintenance support and performs a risk assessment on sizing, 

scheduling, and budget data. 

SASET uses a five-tiered approach for estimation including class of software, source lines 

of code, software complexity, maintenance staff loading, and risk assessment. The user 

can either input the program size directly or allow SASET to compute size, based on 

function-related inputs. The tool also has an extensive customization file in which the user 

can adjust many parameters. It operates on PC compatible systems. Air Force Cost 

Aanlysis Agency, Arlington, VA 22202. (703) 746-5865. 

B.3.6   SEER-SEM 

System Evaluation and Estimation of Resources - Software Estimation Model 

(SEER-SEM) is distributed by Galorath Associates and is under a five year Air Force wide 

license agreement. It provides software estimations with knowledge bases developed from 

many years of completed projects [Galorath 1992]. The knowledge base allows estimates 

with only minimal high level inputs. The user need only select the platform (i.e. ground, 

unmanned space), application (i.e. command and control, diagnostic), development 

methods (i.e. prototype, incremental), and development standards (i.e. 2167A). 

SEER-SEM is applicable to all types of software projects and considers all phases of 

software development. 

A companion tool called SEER-Software Size Model (SSM) is also distributed by Galorath 

Associates and is used to estimate the size of the software product. SEER-SEM is 

designed to run on PC compatible systems running Microsoft Windows 3.0/3.1 (Air Force 

license includes MS-DOS version). It is also available for the Apple Macintosh running 
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system 6.0.3 and above and the UNIX/SUN workstation. Galarath Associates, Inc., Los 

Angeles, CA 90009. (310) 670-3404. 

B.3.7    SEER-SSM 

SEER-SSM is marketed by Galorath Associates and is available to government and 

contractors under an Air Force-wide contract. It produces software size estimates in lines 

of code or function points. It also provides its historical database to save time in producing 

the size estimates. Galarath Associates, Inc., Los Angeles, CA 90009. (310) 670-3404. 

B.3.8    SIZE PLANNER 

SIZe PLANNER is distributed by Quantitative Software Mangement, Inc. It uses four 

independent approaches for size estimation including Fuzzy Logic, Function Points, 

Standard Component, and New/Reuse/Modified sizing. Each approach views the product 

from a unique perspective. This capabiity provides a cross check for the overall estimate 

which reduces the uncertainty of the estimate. SIZE PLANNER is used in conjunction 

with SLIM and operates on PC compatible systems. Quantitative Software Management, 

Inc., McLean, VA 22102. (703) 790-0055. 

B.3.9    SIZEEXPERT 

SIZEEXPERT was developed by the Institute for Systems Analysis and is marketed by 

Technology Application/Engineering Corporation. This tool is an expert judgment tool that 

produces estiamtes of lines of code based on questions asked by COSTEXPERT. Both 

tools are packaged and distributed together and operate on PC compatible systems. 

Technology Applications/Engineering Corp., Bethesda, MD 20817. (301)571-8510. 

B.3.10    SLIM 

The Software Life Cycle Model (SLIM) is marketed by Quantitative Software Management 

(QSM). Originally developed from analyses of ground-based radar programs, the SLIM 

tool has been expanded to include other types of programs. It can be customized for the 

user's development environment [QSM-SLM 1987]. SLIM supports all phases of 

software development, except requirements analysis, as well as all sizes of software 

projects, but was especially designed to support large projects. 
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SLIM is a proprietary model; therefore, much of the current models details are not publicly 

available. Early publications concerning the model ([Putnam and Fitzsimmons 1979] 

indicate that the SLIM model uses a KLOC estimate for the software project's general size, 

then modifies this through the use of the Rayleigh curve model to produce its effort 

estimates. The user can influence the shape of the curve through two key parameters: the 

life-cycle development effort (K) and a productivity factor (PF) that accounts for the state 

of technology. In practice, these values can be chosen by inputting data from completed 

projects, or by answering a series of 22 questions, from which SLIM will provide 

recommended values. The SLIM model's central equation is given by 

KLOC = (PF)KAtP 

where PF is the productivity factor, K is the life-cycle effort, and td is the development 

time, and KLOC is the estimated thousands of lines of code. Rearranging the above 

equation allows one to solve for the development time. 

Success in using SLIM depends on the user's ability to customize the tool to fit the 

software development environment, and to estimate both a Productivity Index (a measure 

of the software developer's efficiency) and a Manpower Buildup Index (a measure of the 

software developer's staffing capability). SLIM also provides a life-cycle option which 

extrapolates development costs into the maintenance phase. A companion tool named SIZE 

PLANNER is also distributed by QSM and is used to estimate the size of the software 

product. Quantitative Software Management, Inc., McLean, VA 22102. (703) 790-0055. 

B.3.11 SOFTCOST-R and SOFTCOST-ADA 

SOFTCOST-R and SOFTCOST-ADA are software estimating tools developed by Reifer 

Consultants, Inc. (RCI) [Reifer 1989]. SOFTCOST-R is based upon the pioneering 

modeling work done by Dr. Robert Tausworthe of the Jet Propulsion Laboratory 

[Tausworthe 81]. It contains a data base of over 1500 data processing, scientific and 

real-time programs. A key input is KLOC, which can be input directly or computed from 

Function Points. SOFTCOST-R is applicable to all types of programs, however, it was 

specifically configured to estimate real-time and scientific software systems, and considers 

all phases of the software development cycle. 
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Although the tool's primary input is KLOC, it also uses the same inputs and provides the 

same outputs as COCOMO which allows direct comparisons to be made. SOFTCOST-R 

has some unique inputs such as use of peer reviews, customer experience, and degree of 

standardization. It also supports a standard WBS for task planning and scheduling. 

RCI provides SOFTCOST-Ada, which is a tool to estimate Ada and C++ development 

costs. SOFTCOST-Ada is a cost estimation tool specifically developed to estimate systems 

using object-oriented techniques. RCI also has a separate size estimation tool called 

ASSET-R to estimate the size of the software product. SOFTCOST-R, SOFTCOST-Ada, 

and ASSET-R are leased on an annual license basis, and require a PC compatible running 

DOS 2.3 or higher. Reifer Consultants, Torrance, CA 90510. (310)373-8728. 

B.3.12   SYSTEM-4 

SYSTEM-4 is marketed by Computer Economics, Inc. (CEI). It contains a proprietary 

model that is based on the work of Jensen, Boehm, Putnam, and other noted software 

experts [Jensen 1981]. SYSTEM-4 is applicable to all types of programs and all phases of 

the software life cycle. Inputs consist of size (KLOC), twenty environmental factors, 

seven development factors, software type, and constraints. This tool comes with 23 pre- 

defined default parameter files. The default sets provide typical values for all parameters 

except size. There are also seven parameter subset files for various implementations of 

DOD-STD-2167A, and varying degrees of Ada experience. CEI has a companion software 

size estimating tool, CEIS. These tools operate on PC compatible systems. Computer 

Economics, Inc., Marina Del Rey, CA 90292. (310) 827-7300. 
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Appendix C 
The /2 and fy Conditional Expected Values of the Triangular 

Distribution 

This appendix includes the derivation of the/2 and/3 conditional expected value equations 

for the triangular distribution. Although not commonly used in risk-based decision making 

situations, these equations are included for completeness and for use in the limited 

scenarios where they are applicable. 

C.l    The High-probability, Low-damage Expected Value, fi 

Asbeck and Haimes [1984] define the high-probability, low-damage expected value/2 , as 

ß 

\xf(x)dx 
f _L  (C.l) 

J 2 ~    ß 

]f(x)dx 

Deriving the/2 conditional expectation for the triangular distribution is accomplished by 

substituting the element corresponding to a < ß < c of Eq. (4.1) into Eq. (C. 1): 
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jxf(x)dx    ]2x(x-a)dx 
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\f{x)dx      \l(x-a)dx 

[fx3- ax2l _ \l? - aß2 -\al + a3]    fj33 - aß2 + \a 
= [x2-2axl = [ß2~2aß-a2

+2a2]       ß2-2aß + a 

_(a3 -3aß2 +2j83) _{a-ß)2(a + 2ß) _a + 2ß 
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Thus, 
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f2=^M,   a<ß<c. (C.2) 

C.2   The Moderate-damage, Moderate-probability Conditional Expected 

Value, /3 

Finally, we derive the intermediate conditional expectation,^, for the triangular 

distribution. This expected value is similar to the unconditional expected value in that it 

also commensurates events of low probability and high damage with those of high 
probability and low damage. The general form of the/3 conditional expected value is 

[Asbeck and Haimes 1984]: 

\xf(x)dx 

/a = -, where ßx^ß2- 
(C.3) 

\f{x)dx 

In deriving the/3 conditional expected value for the triangular distribution, we consider the 
two partitioning points ß\ and jfc, such that a<ßx<c<ß2<b. Substituting Eq. (4.1) 
into Eq. (C.3) requires solving 

/a = 

C HI 

\xf{x)dx+\xf{x)dx 
Vß> 

C HI 

\f{x)dx+\f(x)dx 
V». 

Solving the numerator of the above expression produces 

C 1 ^2 

 \ f 2x(x - a)dx + ——- \2x(b - x)dx 
(b-a)(c-a)l (b-a)(b-c)Jc 

= 1 [2c3 -3ac2 -2A3 + 3aA2] + „.     \h     J^3 -^ -2ß\ + 3bßl], 
3(b-a)(c-a)\- J   Xb-a)b-c)i 

while solving the denominator results in 
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1             c                                   1 ^2 

 \2(x-a)dx + [2(b-x 
(b-a)(c-a) (b-a)(b-c) 

)dx 

1 
(b-a)(c-a) c^2ac-ß2+2aßl] + - ^77—-\2bß2-ß2

2-2bc + c2} J    (b-a)(b-c)1 J 

Combining the numerator and denominator results, and without much simplification other 
than canceling the obvious (b-a) terms, we observe 

A = 

(2c3-3ac2+3aß2-2ß3)    (2c3-3bc2+ 3bß2-2ß2) 
3(c-a) 3(b-c) 

(c2 - 2ac + 2aßx - ß]) | (c2 - 2bc + 2bß2- ß\) 
(c-a) + (b-c) 

, a<ß<c<ß2<b. 

(C.4) 

Equations (C.2) and (C.4), coupled with Eqs. (4.3) and (4.6) are the exact-form 
conditional expectation equations for the triangular distribution. 


