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Abstract 

A new measure of intrinsic time is introduced which broadens 

the endochronic theory and lends it a wider predictive scope.  Ideali- 

zed plastic models are shown to be constitutive subsets of the general 

theory and the phenomenon of yield is proved to be a consequence of a 

particular definition of the intrinsic time measure in terms of the 

plastic strain tensor. 

Various versions of the classical plasticity theory are shown 

to be asymptotic cases of the endochronic theory.  In particular the 

kinematic hardening model, the isotropic hardening model as well as 

their combinations, are derivable directly from the general theory.  In 

addition, the translation vector of the yield surface in stress space 

is found to be a constitutive property given by a linear functional of 

the history of the plastic strain.  The Prager and Ziegler rules are im- 

mediately obtainable as special cases. 

It is also shown that the essential features of plastic re- 

sponse under conditions of "stress reversals" are contained in the con- 

stitutive equation whose form remains invariant of the deformation his- 

tory.  It is believed that this is the first time that one single consti- 

tutive equation has been shown to predict correctly the essential features 

of plastic response under conditions of loading, unloading and reloading. 

However, when the intrinsic time measure is precisely equal to the norm 

of the increment of the plastic strain tensor, the constitutive unity, 

spoken of above, no longer exists.  In this event loading and unloading 

cases must be distinguished. 



1.  Introduction 

The concept of the intrinsic time scale was introduced as a proper base 

of measurement of the memory of a material of its past deformation history, 

(1 2) 
leading to constitutive theories which we have called "endochronic".  ' 

The case of strain rate independent yet history dependent materials was 

dealt with at length in previous references by the author and subsequently 

(3-8) 
by other workers in the field whose contributions are duly referenced. 

Other work, in other directions, involving the inelastic behavior of metals 

is currently being pursued by other authors.  References 9, 10 and, 11 are 

typical of this work.  In the papers cited heretofore, we introduced two 

measures of intrinsic time.  One pertains to the path traced by the deforma- 

tion state in a nine dimensional strain space.  The other pertains to a 

stress path traced by the state of stress in a nine dimensional stress space, 

If we denote these times by t.    and c respectively, then: 

dC^ = P. ., , dE. . dE, . (1.1) c   i^kl  1]  k£ 

dc^ = p.  , d^r"^ d^^^ (1.2) 

where E and ir are the Green strain and Piola stress tensors respectively 

and P and R are the metrics of the corresponding spaces.  Specifically, 

^«3 = P_ |X_ |X_ T.. (1.3) 

where T is the Cauchy stress tensor.  Repeated indices imply summation un- 

less otherwise stated. 

The constitutive equations that followed, in the light of these defini- 

tions, were obtained from thermodynamic arguments.  In particular, the 



internal variable theory was used to arrive at the following set of consti- 

tutive equations, which pertain to isothermal conditions. 

^ . H (1.4) 
^ - 3E 

^^.   +  b • -^ =0   (r not summed) (1.5) 
3o   =r  dz 

^--M    . t'" "■" 

where i|; is the free energy density and q^ are the internal variables of the 

thermodynamic system.  In eq. (1.5) b^ is a dissipation tensor which is at 

least positive semidefinite - but without loss of generality may be viewed 

as positive definite since otherwise, if ^^ = 0, the corresponding r'th internal 

variable may be eliminated from the equations as a consequence of the rp- 

sulting condition: 

ilL. - 0 ^^•'^^ 

The rate of irreversible entropy production which is a measure of the in- 

ternal dissipation is obtained from the equation 

9q^  % 

where a roof over a symbol indicates differentiation with respect to z and 

T is the absolute temperature. Evidently as a result of eqs. (1.5) and (1,8) 



(^  9") 
TY = q  • b  •  q "-^-^^ 

-^  z^ ~ (r. Slimmed) 

where the right-hand side of eq. (1.9) is an inner product, clearly a posi- 

tlve scalar. 

Observation of accumulated results of the application of the theory to 

a variety of histories indicates certain broadly consistent trends. The 

theory is evidently simple, versatile and has powers of prediction addition- 

al to the theories of plasticity of the classical type provided there are no 

reversals in the rate of stress.  In particular, in one dimension, the slope 

of unloading at a point as the uniaxial stress strain curve was predicted by 

the "linear" version of the theory to be 2E^ - E^ where E^ is the elastic 

modulus and E^ the tangent modulus. This is an over-estimate of the normally 

observed unloading slope which is close to E^. 

■nie purpose of this paper is to eliminate this deficiency of the endo- 

chronic theory by introducing a measure of Intrinsic time which is more 

closely representative of the dissipation properties of metals.  The under- 

lying cause of this discrepancy is of a thermodynamic nature and has to do 

with the fact that the theory, heretofore, predicts a rate of dissipation 

during loading which is identical to that which occurs at the onsent of un- 

loading. 

In this paper we introduce a new concept of intrinsic time ? which cor- 

rects both these deficiencies.  In one (axial) dimension we stipulate that 

d^=  !d. -k^l (1-10) 
o 

where k is a positive scalar such that 0 < k < 1 and E^ is the elastic modu- 

lus.  If, at the onset of unloading, we denote the unloading slope by E_ 



and the rate of dissipation by Y_, then it is shown that E_ tends to E^ and 

Y tends to zero as k tends to unity. 

In three dimensions we form a strain-like tensor Q^^  given by eq. (1.11) 

e. . = £..-<(>.•„ CT . (1.11) 

where (j) is a positive definite symmetric fourth order material tensor. Deal- 

ing strictly with isotropic materials where ^  is isotropic we proceed to de- 

fine a deviatoric strain-like tensor 9.^^  by the equation: 

i?.. = e.. -^s.. (1-12) 

where e  and s.. are the deviatoric strain and stress tensors respectively. 
11   i: 

We also define a hydrostatic strain-like tensor 6^^ by the equation 

e =e      -4a (1-13) 
KK     KK    3K  KK 

The relation between k and k, on one hand and the components of (() on the other 
o     1 ~ 

is shown in Section 6. Evidently, Q^^  and 9^^ are the deviatoric and hydro- 

static components, respectively, of 9^.. 

A hydrostatic intrinsic time measure dc,^  and a deviatoric counterpart 

dt,    are now defined by the eq.'s 

material parameters which provide for a coupling between hydro- where K  are 
rs 

static and shear response. 

The resulting constitutive equation for isotropic materials is given 



by eq.'s (6.8) and (6.9).  These are identical in form to those of the simple 

endochronic theory (where both k^ and k^ are equal to zero) but predict be- 

havior that is far closer to that of metals, when k^ and k^ are close to 

unity. 

The very significant particular case: k^ = 1, z^ k, = 1, z„ = 0. 

This is the case of elastic hydrostatic response and the intrinsic time 

measure dC is equal to the norm of the plastic strain tensor. The resulting 

constitutive equation is eq. (6.36) or, equivalently, (6.38).  With the aid of 

these equations the following propositions are proved in Section 6 of the text. 

(i) A spherical yield surface in deviatoric stress space exists. 

(ii) If p = 0 in eq. (6.36) and f(C) increases monotonically with ?> 

then the classical theory of plasticity with isotropic hardening follows. The 

increment of plastic strain is shown to be normal to the yield surface. 

(iii)  If p / 0 (in which case p^ > 0) and f(?) = 1, then the spheri- 

cal yield surface translates in deviatoric stress space and a theory of kine- 

matic hardening results with a general rule which contains Prager's and 

Ziegler's rules as special cases. 

(iv) If p 7^ 0 and f( 0  is a monotonically increasing function then 

the yield surface translates and expands simultaneously according to rules 

inherent in the theory. 

(v) The above are true in the case of softening, instead of hardening, 

when f( C) is a monotonically decreasing function. 

Remark:  No yield surface exists if K^ < 1.  Thus the classical theory 



of plasticity is the "boundary" of the endochronic theory. 

2.  The Rate of Entropy Production 

For the purposes of concentrating on the physical aspects of the prob- 

lem and to rid our argument of superfluous analytical complications, we 

limit the discussion in this Section to a one dimensional stress field and 

to theories with one scalar internal variable.  To this end we let 

i|; = 5sE (e - q)^ (2.1) 

a = |^E(e - q) (2.2) 

|^+ bq = 0 (2.3) 
3q 

or. 

bq (2.4) 

where e is the uniaxial strain and a  the appropriate axial stress.  No limi- 

tation to small deformation is theref^ore implied except in so far as the 

validity of the algebraic forms of eqs. (2.1) and (2.3) are concerned.  It 

follows from eq. (1.9) that 

T^ = ^a^   . (2.5) 
dz    b 

A typical unloading response, given by the linear version of the endo- 

chronic theory, using eqs. (2.2) and (2.3) is shown in Figure 1. The slope 

at the point of unloading (point A) is 2E ~ E > in variance with the observed 



slope which is in the vicinity of E^. The reason for the discrepancy may 

well lie in the expression for the dissipation, i.e. eq. (2.5).  The in- 

ference is that the rate of dissipation at A is the same whether one pro- 

ceeds to load or unload at A. 

This, unfortunately, is not in accord with experimentally established 

mechanisms of plastic flow.  For instance, in single crystals the latter 

occurs during loading by cumulative slip along planes between which the 

crystal suffers only elastic distortion.^■'■^■'  During initial unloading, 

back slip is minimal and the crystals change shape mainly (if not totally) 

by elastic recovery of the parts of the crystal between slip planes.  This 

indicates that the rate of dissipation, if not zero during unloading, 

should at least be much less than its counterpart during loading. 

The endochronic theory cannot predict such a result unless the incre- 

ment of intrinsic time corresponding to a decrement de_ is much less than 

that due to an increment de such that 

\'i<^J  -  l^sl <'•'' 

If indeed 

dC=k|dE| ^2.7) 

where 

k = k(e, a, C) ^^-^^ 

a prediction of this type of dissipation behavior is impossible.  This 



observation lies at the root of the difficulty that one encounters in using 

the endochronic theory to describe unloading. 

Interestingly enough, quasilinear versions of the theory have been 

proposed^^^ which correct the slope of the unloading response. However, 

the thermodynamic relation 

dy^ = dY_ ^2-^^ 

ft 
in obvious notation, remains intact and equally inapplicable to metals. 

*'To  avoid this difficulty other authors^^' ""■  have proposed one type of 

constitutive equation for loading and another for unloading. Here we 

show that the difficulty is circiamvented without this dichotomy. 



The situation is similar when many internal variables are used. In 

this case the expression for * is a generalization of eq. (2.1): 

^ =jl^r>^^ - %^' 
(2.10) 

2 ^ r 
r 

correspondingly, 

= I E  (e - q^) 
r 

i^+ b i = 0 
3q_ ■ "r '^ 

^ dz   ^ 3q.. ^ 

(2.11) 

(2.12) 

(2.13) 

This last equation in conjunction with eq. (2.12) shows that 

dxv 1.(31.)'  . (2.1'*) 
T dz  ^ b^ '9q^ 

dy 
The important conclusion from the right-hand side of eq. (2.11) is that ^^ 

is a function of state, i.e., of the state variables e and q^. Thus if 

(2.15) 
dz^ = dz_ 

when lde|^ = ldel_, then 

(2.16) 
dY^. = dY_ 

as before. 



10 

From the above discussion it is fairly conclusive that the unloading 

behavior of metals will be predicted more precisely if dz < dz at the 

point of unloading, for the same value of |de|. 

3.  Physical Considerations 

The essential premise of the endochronic theory is that the intrinsic 

time increment is a measure of irreversibility. For instance, reference to 

eq. (2.3) shows that 

d<,= -i|tdz. U.l) 

Thus if in the course of a change in the thermodynaraic state of a system dz 

is zero, then it follows from eq. (3.1) that dq is also zero, in which case 

(13 ) the system is behaving reversibly.     Since at the point of unloading, the 

process of unloading borders on the reversible, though it may not be exactly 

dz 
so, one is led to conclude that in one dimension the ratio  ■. T  must be [de] 

close to zero. Furthermore, since during elastic unloading in one dimension 

the strain decrement is governed essentially by the relation 

de = 1^ (3.2) 
0 

one is led to the conclusion that a definition of intrinsic time which is 

more closely representative of unloading behavior should be given by the re- 

lat ion 

d; = |de - k 1^1 (3.3) 
0 
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where k is a scalar which in the case of metals is close to and possibly 

equal to unity and certainly non-negative. Thus: 

0 < k < 1. (3.U) 

Note that except for a scalar multiplier this definition of intrinsic time 

reduces to our previous one,   when k = 0. 

It will be shown presently that as k approaches unity the constitutive 

behavior as depicted by a single internal variable, approaches that of an 

elastic perfectly plastic solid. 

i+.  Application of the Theory to One Dimension 

We proceed to apply the theory to those materials which do not harden 

cyclically.  In this case z = c• 

Elimination of the internal variable q from eqs, (2.2) and (2.3) leads 

to the following constitutive equation in one dimension: 

Ide - k 1^ I a = b(de - f- )  • (^-D 
o o 

We shall proceed to study materials for which de > — •  In this case the 
o 

sign of de - k -r;^ • is the same as the sign of de. 
o 

We shall consider the cycle where loading begins at ( a,e) = (0,0) and 

continues into the plastic range where unloading begins, followed by com- 

pression into the plastic range and unloading to zero stress. 

In Figure 3, we show a plot of ^ vs/ | de| for a perfectly plastic 

solid for the purposes of comparison with the predictions of the constitu- 

tive equation (4.1). 
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In the course of the paths OYA and CDEA of the ideal solid of Figure 

3, eq. (H.l) will read 

d. -k|^-b (de .|^) . (•♦.2) 
o 0 

It follows from this equation that 

1_ do _ 1 - (g/b) (4^3) 
E  de " 1 - k(a/b) * 

As 0 increases the numerator will vanish before the denominator at b = a 

since k < 1.'  Furthermore, it can be easily verified that as k •+ 1, the 

slope 4^ of the stress response approaches that of a perfectly plastic 
de 

solid given in Figures 2 and 3, for the paths OYA and CD. 

In the course of the unloading-compression path ABC of Figure 2, eq. 

(4.1) will read 

1  d0    1 + (o/b) 
E  de    1 + k(a/b) 

C4.U) 

which predicts a behavior which will also tend to that of the perfectly 

plastic solid as k -*• 1. 

Also of interest is that eqs. (H.3) and i^A)  give stress responses 

in tension and compression which are mirror images of each other as one 

can readily verify by substituting minus a  for a in eq. (4,4), 

Integration of the constitutive equation (4.1) for the two conditions 

de > 0 and de < 0 gives the following two equations respectively for the 

ft . 
The case of k = 1 must be treated as a limiting case otherwise one is 
lead to erroneous results. 
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uniaxial stress response; 

de > 0: 

E.     -    °-°n       _b-a (4.5) ^^(,_,^)=,^_(,_UlOg^ 

de < 0: 

^ (e-=„) = k ^ . (l-k) log ^ '»-^' 

where (e ,a ) is the initial point on the path of the appropriate solution. 
0  0 

The essential constants of eq. (4.5) are the initial modulus E^ and the 

ultimate stress b. In Figure 4 we give a stress response curve, typical of 

pure aluminum where E^ = 9.1 x 10^ Ib/in^ and b = 16.24 x 10^ Ib/in^  It 

is quite apparent that the material response tends to that of an elastic per- 

fectly plastic solid as k ^ 1. 

This result is quite obviously a major development in the evolution 

of the endochronic theory. 

5,  The Question of Dissipation 

The difficulty that one encounters in calculating the dissipation, 

using the older version of the endochronic time measure given by eq. (1.1) 

has also been circumvented. The following expressions are easily obtained 

for dy and dy 

^      ^      l-k(^) 
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If one takes limits of dy in their proper sequence, one finds that 

Lim (Lim . dy^) = bldcj (5.3) 

k->l    ^"^  ^ 

Lim (Lim , dy ) = 0 . (S.**) 

k-*l 

Eqs, (5.3) and (5.4) give the precise dissipation properties of an elastic 

perfectly plastic solid in the plastic state.  In Figure 5 ^ is plotted 

versus stress in the case of a solid where k = .99 on a serailogarithmic 

dvl 
scale.  Note that as the deformation increases the divergence between -rf- 

(ie' + 

and -r^   increases the limiting ratio being equal to 2 x 10 , 
de'_ 

5.  Generalization to Three Dimensions and n Internal Variables 

We define the strain-like tensor 0.. by the following equation: 

Q..   =  z. .   - ^..   ,  a   . (6.1) 

where ^ is a positive definite symmetric fourth-order tensor.  In the case 

of isotropic materials, $ is of the form: 

(t). .. „ = 5., 6 „ (|. + (J., (6. 6., + 8.,S   .) . (6.2) 
iJKi   ij KI ^0       ^1  IK- -Jl        il <2 
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In this event, 9 may be decomposed into its deviatoric and hydrostatic parts 

as follows: 

"i3  3 Kcic ij     11 

where 

9  = c  - ^a (6.U) 
"kk   kk   3K^ KK 

<?.. = e.. -^s.. (6.5) 

In eq. (6.5) e and s are the deviatoric parts of e and a  respectively, y^ 

and K are the elastic shear and bulk moduli of the material respectively 
o 

and the constants k^ and k^ are related to ^^  and ^^  by the relations 

k k 

^n O 

Various degrees of generality are now possible.  For instance, mindful 

of the consequence that in the case of isotropic materials, undergoing small 
(2) 

deformation, the deviatoric and hydrostatic responses are separable,   we may 

define a hydrostatic intrinsic time measure d^^,  where 

and a deviatoric intrinsic time measure d^^ where 
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The hydrostatic measure d^^^ would then be the appropriate one to use in the 

hydrostatic constitutive response, while dc^ would be used in the deviatoric 

constitutive response.  In this case K.. (i.j = 1,2) is a matrix of nondimen- 

sional scalars. 

Using the formulation of Reference 1 as a point of departure, we may 

then write the rate independent (plastic) response of metals, in the small 

deformation region as follows: 

o D 

and 

where 

o n 

^  - "^^D Ce'.io) 

and 

dz '^'^H C6.ll) 
H - fTc,)   • 

The functions f_ and f„ are both non-negative. 
D     n 
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6.1 Particular Cases 

We wish to examine in greater detail the case where K^^= 1 and, 

K  and K  are equal to zero. We also set d^ identically zero there- 
ol     10 " 

by dealing with a material with an elastic hydrostatic response and no 

coupling between deviatoric and hydrostatic behavior. Now the constitu- 

tive description of the material simplifies considerably so that 

a      =3KE (6.12) 

z 9e 

iz' s = 2 /  y(z - z') -r^Az' (6.13) 

where we have temporarily dropped the suffix D in z^^ since no confusion 

is likely to result. Also we have set 

and 

d.2 = dO^. dO,. ^''''' 

dz = f^ . f(0 > 0  . <6.16) 

The constant K^^  in eq. (6.7) does not appear in eq. (6.14) since it is now 

an imma1:erial constant and can be appended to the function fU).    Such re- 

dundancies in the number of constants that describe the constitutive 
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properties of a metal are present in the theory and can be dealt with as 

they arise without the need for further conunent. 

6.1.2 Uncoupled Hydrostatic and Deviatoric Responses 

The nature of the matrix K.. merits further discussion. For in- 

stance, if it is diagonal then there is no coupling between the deviatoric 

and hydrostatic response.  In this case a hydrostatic strain history will 

have no effect on the shear behavior and vice versa. On the other hand 

the theory does admit such an effect if K^^ is not diagonal. At this time 

we do not have enough evidence to comment on the symmetry, or asymmetry. 

of <... 

Of particular importance are the cases where the deviatoric and hydro- 

static responses are uncoupled and either k^, k^ or both are equal to unity. 

We wish to discuss, at length, the case of the shear response; the arguments 

will apply equally well to its hydrostatic counterpart. With reference to 

eq. (6,8) one obtains the following relation 

(6.17) 

where 

y(z) ^i^ p^ G(z)  ; G(0) = 1  , <^6,18) 

and p(z) is related to G(z) by the integral equation 

p(z) - k^ f^    p(z.z') g, dz' = G(z)  . (6.19) 

The solution of this equation in the case of two internal variables is given 

in Appendix A. 
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More simply, the following algebraic relation exists between the Laplace trans- 

forms p and G of p and G, where P is the Laplace transform" variable: 

G (6.20) 
P =  T 

1-k^pG 

This specific form of the theory has the characteristic feature that it leads 

to a constitutive equation which gives the deviatoric stress response to the 

history of the deviatoric strain-like tensor Z in terms of the path in Z 

space.  We point out however that there is no specific connection with an 

a priori existence of a yield surface.  Furthermore there is no dichotomy 

in the constitutive representation of the loading and unloading responses. 

Equations (4.5) and (4.6) are derivatives of one and the same eq. (4.1). 

It is of interest to note that dQ is akin to and is equal to the de- 

viatoric "plastic strain" increment, in classical plasticity terms, if k^ is 
ds 

unity and the "elastic strain" increment is defined as 2^ • Moreover, we 

will proceed to show that if k^ = 1, then a yield surface exists.  The proof 

will apply strictly to the case where k^ = 1. 

To this end we invoke the result of Reference 1 according to which: 

n     -a z ■      , 
G(z) = I G e - C6,21) 

r=l 

where G are positive; also, a are all positive with the exception of a^ 
r r 

which may be zero,  Furthermore, since G(0) = 1 it follows that 

y G = 1  . ^^-22) 
r=l ^ 

Let G(p) be the Laplace transform of G(z). Then as a result of eq, (6,21) 

G(p) is of the form  

''«For explanatory notes on this treatment see Appendix C. 
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G(p) = ^ <«•") 

where 

P = G (p + 02) ... (P + \)  + (P + a^) ^2 ... <P + Oji^ •" 

+ (p t a^) ... (p + a^_j^)  G^ (6.24) 

and 

Q(p) = (p + a^) (P + ^2^ ••• ^P ^  °n^  * (6.2H) 

Evidently, P and Q are polynomials of order (n-1) and n respectively. Further- 

more, the coeffiGient of the leading term of P is equal to unity.  It follows 

from eqs. (5.20) and (6.23) that 

P(p) 

where 

R(p) = Q(p) - P P(p)  . <6.26) 

It may be shown by direct computation that R(p) is a polynomial of order 

-1 " 
n-1, such that the coefficient of p ~ is exactly the sum ^ a G . Hence 

the ratio _ P-■ is not function-like, in the sense of Mikusinski, in that 
R(p) 

it contains a delta function of strength   .  In fact if-6^ are the 

y a G 
r=i r r- 

zeros of R, then p(p) may be written as 
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y o G 
r=l 

p(P) = ^r^-* i   jfj (6.27) 

since p(p) is the ratio of two polynomials, the numerator being 

y a G 
r=l 

of degree n-2, and the denominator R(p) of degree n-1. It is shown below that 

if the absolute values of the zeros of Q(p) are ordered in the sense that 

a^ <a2 < ag ... < ct^ 

then g    must always satisfy the inequalities: 
r 

a^ < e, <a2 <  e2<«3   •'•   ' ^n-1 '\ 

and are therefore all positive. The proof is elementary. Evidently 

R(-a^) = -a^^ci^- a^Xag- «j^) ••• ^\-  a^) < 0 

RC-a^) = -Og^^i" °'2^^"3~ ^2^ '*' ^"n~ "2^ ^ °  ' 

Similarly, 

R(-ag) < 0 

and generally R(p) alternates in sign at the zeros of Q(p).  It follows that 

R(p) must vanish at the points p = -g., p = -8- ... P = ~P__i where 3 are 

all positive and are bounded from above and below by a according to the 
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inequalities given above.  Finally, since R(p) is a polynomial of degree 

n-1 it can have no other zeros. This completes the proof. 

The values of the residues R are found from the formula 

P(-3^) 
R = —^- (6.28) 

"^      R'_(-^) 
  - JD ... 

where R (p) def ^ .  For a detailed calculation see Appendix B where it is 
-dp 

shown that the residues R^ are all positive. 

Clearly, as a result of eq. (6.27) 

r/ ,    n-1    -6 z 
p(,)=^<5)_. I R^e " (6.29) 

Ic G   --' 
r=l 

which we write as 

p(z) = p 6(z)+ p^(z) (6.30) 

where p- (?;) is composed of a finite sum of exponential terms. 

Evidently, it follows that 

dQ, -z        3<Z 

Now, as a consequence of eq. (6.31) , at z = 0: 

da 
s = 2vi„ P„ 0  0 -:— dz 

(6.32) 

z=0 

Also from eq. (6.15) (and for k^ = l),.the condition g = 0 (and, therefore, 

z = 0) gives the relation 
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s'= 2p e 
0 - 

(6.33) 

Equation (6.33) merely attests to the fact that while z = 0 the deformation 

process is reversible and therefore the deviatoric stress response is elastic. 
da 

See Sec7. It is also of interest that at z = 0, T^ is indeterminate and 

can take any value consistent with eq, (6.33).  Specifically, eqs. (6.32) 

and (6.33) combine to give 

dQ, 

PQ d^ 
(6.34) 

da 
However, at z > 0 the derivative -r^ exists and specifically at z = 0+ one 

da 
obtains the limit of -r^   by approaching z = 0 from the right.  In fact, 

dz 

the point 0+ is the point of deviation from elastic response or the yield 

point.  At this point 

da 
= 1 

in accordance with eq. (6.1i|). Therefore, applying eq. (6.33) 

1 |2  .22 ,di 2 def 2 
C6.35) 

In conclusion, in the process of monotonic loading, while |s| <^ s , z = 0 

and eq. (6.33) applies and the material response is elastic.  However, 

when |s| > s  , then eq. (6.31) applies and the response is no longer elas- 

tic.  Of course, s is the YIELD stress and eq. (6.35) is the VON MISES 

yield criterion. 
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In particular, as a result of eq. (6.35), the constitutive relation 

(6.31) may be vfritten more succinctly as 

2. 8^ 

s = s 
O    W ^l 

j  Pl^^D + 2u     P,(z^ - z' ) ^—. dz' (6.36) 
Y dZj^ " ^^0 j  ^I'^'D  '^ D' 9 z ; "" D 

where s° = 2u p and has the physical significance of an initial yield stress. 
Y    0 0 

We shall show presently that eq. (6.36) yields very rich results and re- 

veals important characteristics of plastic behavior that first appeared as 

assumptions or conjectures in the classical theory of plasticity. 

To this end, let the integral on the right-hand side of eq. (6.36) be 

denoted by r, i.e., set: 

Equation (6.36) then reads, 

d^ 
s _ P = s° _^ f(^ ) (6.38) 
!  .   Y d^p ^^D^ 

We recall that k  = 1 and therefore dj^ is exactly equal to the increment of 

plastic strain.  We wish to examine eq. (6.38) in the specific case where t.^ 

and C are uncoupled, 
H 

d.^  = d2 • d^ (6.39) 
D   ~   ~ 

and the hydrostatic response is elastic, i.e., dz^ = 0, in which event eq. 

(6.9) gives rise to eq. (6.12), i.e. 

a  = 3Ke (6.40) 

in our previous notation. 
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Case (i): f(i;) = 1 

Equations (6.38) and (6.39) give rise immediately to the following two 

results: 

||s-r||' = sf (6.41) 

d^ = ^ (s - r) dCp (6.42) 
~    s° 

It is clearly obvious that if r = 0 then eq. (6.42) is that of an elas- 

tic perfectly plastic material with a Von Mises yield criterion.  In this 

case 

do =-i-s d^ (6.42a) 
r: o ^  D 

On the other hand, if r # 0, then eq. (S.i+l) shows readily that case (i) 

corresponds to kinematic hardening. This relation is in fact the equation of 

a hypershere in deviatoric stress space.  It also represents the equation of 

a circle in principal stress space.  In either case s^ is the radius of the 

hypershere (circle) and r is the radius vector which connects the origin of 

the stress space to the centre of the hypersphere (circle).  The yield surface 

is, therefore, a translating spherical (circular) surface.  Eq. (6.42) shows 

that the increment in plastic strain is normal to the yield surface. These 

results are shown diagrammatically in Figure 6. Note however that whereas in 

the classical theory of plasticity the concept of kinematic hardening was a 

conjecture, here it is a derived resiilt. 

Furthermore, we feel it important to emphasize that in the classical 

theory it is not known how the surface translates, i.e., it is not known 



a priori how r depends on the history of loading or plastic strain. For in- 

stance, Prager assumed that 

dr = cde ^'-^'^ 

where c is a material constant.  Ziegler suggested that 

dr = dy(s-r) (6.44) 

where dy is a positive quantity not specified.  We point out that eq. (6.43) 

is equivalent to eq. (6.44) if dy is proportional to d^^ as eq. (6.42) readily 

indicates. However, Prager's (or Ziegler's) rule is a particular case of the 

present theory as is pointed out in the following Remark. 

Remark 1:  Prager's rule of kinematic hardening is a particular case of the 

present theory obtained from eq. (6.37) but setting 

p^U^)  = constant (^-'^^^ 

in which event. 

This, as is well known, is called linear hardening in the sense that the 

stress strain curve in shear is linear beyond the onset of yield. 

In this same vein, if p^if^j^)  is not a constant but consists of a single 

exponential, i.e., 

Pl(?p) = P^e-^^D (e.'^V) 

then it is easily shown as a result of eq.'s (6.37) and (6.38) that 

dr .^^hPSLd^is  -  Br) (6.48) 
„    o     ^   ~ 

where ~o° 

B - 1 +^ (6.49) 
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This is a new type of kinematic hardening.  Note that the yield surface no 

longer translates along the outward normal at the extremity of the stress 

vector but in a direction which is skew.  The skewness depends on the value 

of 6. 

Of course the above are particular cases.  In general the translation 

vector is determined by eq. (6.37), in terms of a convolution product which 

involves the material function P-|(Sp)- Within the assumptions of the present 

case, it is important to observe that P-, (^Q) can be determined by a simple 

shear experiment.  In fact one can show readily from eq. (6.37) that 

2p pAr.)  = ^        ,T > T (6.50) 
o 1 D   dv  I I 

p   ^ 

where x is the shear stress and y    the tensorlal plastic shear strain compo- 

nent . 

Remark 2:  The function p   (t.^)  is determinate from a single monotonic shear 

test. 
5'! 

Remark 3:  The mode of translation of the yield surface is determined from 

a single monotonic shear experiment. 

Case (ii):  f(g) monotonically increasing 

The counterparts of eq.'s (6.41) and (6.12) are now the following: 

l|s - r|| = fiZ^)s° (6.51) 

d^  =   • (s - r) dt^ (6.52) 
~   s°f(^)  ~  ~   ' 

•for all histories 
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Clearly, if r = 0, then eq. (6.52) is that of a plastic material with 

isotropic hardening and a Von Mises yield criterion.  In this case 

On the other hand if r ^ 0 then eq. (6.52) shows that the yield surface now 

expands as well as translates. The increment of plastic strain is still nor- 

mal for the yield surface.  The translation vector r is still given by eq. 

(6.37).  We shall not go into the details of determining f (O and p^ir;^)  in 

this case, at this juncture.  The reader is referred to Appendix D. 

The constitutive equation for 0 > a^  for the hydrostatic response is 

identical in form to the above and can be written down by inspection using 

analogous terminology.  To wit, when <o = 1' ^^6"= 

ii- dz' (6.53) ode ^ ^     r ^  A. (^      TM ^^ dz' 
n      o " 

where o = o, ,/3.  If a < o^, then the response is elastic and 

r. - \(    r C6.54) a - K e,, o kk 

Of course, the above discussion applies only to the case where k^ is equal 

to unity. 
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7.  Elastic Response as Points of Interdeterminancy ot j^ 

In this Section we shall show that when k = 1, there exist physical 

processes for which dC is equal to zero and that in fact these processes 

are associated with elastic deformation. Analogous conclusions can be drawn 

with regard to diLj when k =1.  The above remarks are made in the context 

of assumed strict independence between deviatoric and hydrostatic response, 

in the sense that a history of deviatoric strain has no effect on the hydro- 

static response and correspondingly a history of hydrostatic strain has no 

effect on the deviatoric response.* 

It is important for o\ir purposes to introduce certain definitions: 

Deviatoric plastic strain space: The space of deviatoric strain com- 

ponents with metric 6...  The coordinates of this space, will be denoted by 

X., (i = 1, 2, ..., 9) corresponding to the components of the tensors... 

Deviatoric plastic strain path:  A continuous line in x. space. 

Remark:  The path determines the variation of x^ in this space.  We limit 

the discussion to paths that pass through the origin.  In this event X^ = 0 

at some point in the path, in fact the origin. 

Let the extremity of the vector x change continuously along the path. 

We define quantities s and 5 as follows: 

s: The distance of the point x- f^o™ "the origin measijred along the 

'''Henceforth the suffix D will be omitted. Also, this chapter will apply 
exclusively to deviatoric response and occasional omission of the word 
"deviatoric" must not be construed to imply otherwise. 
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path, where X. is the current position of the extremity of the vector x- 

?:  The cummulative distance travelled by the extremity of x. i-e. 

dc = |ds| (7.1) 

or 

,=/|ds| (V.2) 

Stipulations: 

There exists a point on the path at which s = 0; in the present case 

this is the origin of the deviatoric strain space. 

There exists a positive direction of s, which is the direction of 

increasing s along the path. In a similar sense there exists a negative 

direction of s which is the direction of decreasing s along the path. 

The path is separated into two regions of negative and positive s 

with a common point which is the origin of x^; s is equal to zero at this 

point. 

In a physical context we note that in the case of simple shear, for 

Instance, the shear strain is positive when the material is sheared in a 

specific (positive) direction and negative when shearing takes place in 

the opposite direction. In a similar sense in a unlaxial plastic strain 

experiment there exists a positive (tensile) strain and a negative (com- 

pressive) strain.  Of course this is precisely the meaning of s in one 

dimensional tests. 

ds 
Remark I.  Givai a path, the derivative — experiences a jump equal 

to 2 when one traverses the origin in the positive s direction.  The jump 

is equal to - 2 when the origin is traversed in the negative s direction. 
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ds ds 
The proof is trivial: 3— = 1 at s = 0+; -3— = -1 at s = 0-. 

d? dc 
ds 

Remark II. The derivative -r— is indeterminate at s = C = 0. 
  dc 

Figure 7 illustrates the above statements. 

Discussion of eg. (6.36) at ^ = 0. 

At t, =  0, and therefore at s = 0 

s = s° — (7.3) 
Y dz 

Therefore, 

o 
dQ 

Y d^ 

since at C = 0, f(o) = 1. 

On the basis of eq. (7.4) 

s = s„ ^ (7.4) 

|SJ1'=(SY^)2 (7.5) 

But the right hand side of eq. (7.5) is indeterminate at C = 0, hence 

||s||, and therefore s, are also indeterminate. However ?= 0, requires 

that 

i? = 0 (7.6) 

Equation (7.6), therefore, and the definition of ^ (eq. (6.5) with k = 1) 

lead to the relation, 

s = 2y e (7.7) 
o^ 

which is a statement to the fact that at ^ = 0, the deviatoric response is 

elastic. 
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Equation (6.36) at c,  = 0+ and 0-. 

In the vicinity of s = 0, let ^ be given by the relation 

9, =  Us (7.8) 

where L.  are the direction cosines at s = 0. Then as a result of eq. (6.36) 

(note that the second term of the right hand side of eq. (6.36) tends to 

zero at z -> 0) 

s = s°Jl.. (7.9a) 
~+   Y 1] 

s  = -s°l.. (7.9b) 

where s = s(0+) and s = s(O-). The deviatorlc stress tensor as therefore 

discontinuous, with a discontinuity of magnitude 2SYJ at S = C =0. 

Equation (6.36) at Reversal Points. 

Definition: A reversal point R is a point on the strain path s at 

which there is a reversal in the sign of the strain Increment. In effect at 

R 

dY. = - dY."*" (7.10) 

With reference to Figure 8» the following relations are of interest: 

3-i (R') = 3-i (R) + e. (7.11) 
ds        ds        1 

Lim e. = 0,  R' -> R. 
1 
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However, as a result of our definitions of ds and d?: 

Li. I I,. = 1 <'•"-) 

R' -»- R 

Lim 

^1   r -1 (7.12b) 
R" -> R   d? 'j^.. 

Hence, invoking eq. (6.10); 

''"    ^ I ^ = f(,)L (7.13a) 
j^. ^ R dz 'R      R 

Lim      j 

R" -> R  ^^  ^ ^ 

Also, 

Lim r(R') = r(R) (7.14a) 

R' -5- R 

Lim r(R'') = r(R) (7.14b) 

R'' -> R. 

Let in the vicinity of R 

d^ = Ms (7.15) 

where il.. are the direction cosines of the tangent to the path at R. Then 

as a re suit of eq.'s (7.11) through (7.15) and eq. (6.36): 
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s(R') = s°£^4(0 + r>(R), (7.16a) 

s(R'') = - s°£..f„(c) + r(R), (7.16b) 
1 IJ K 

in the limits R' ^ R, R" -^ R. 

Since in fact Jl. . is normal to the stress hypersphere at R and 

s°f(?) is the current radius of the hypersphere, eq.'s (7.16a,b) admit the 

geometric ocmstruction shown in Figure 9. 

Note that the response in the stress range R'R" is elastic, and 

corresponds to constant C and z.  IXiring the elastic response dt,  is there- 

fore zero and the constitutive equation is simply 

ds = 2ii de (7.17) 
o _ 

A plot of c,  versus s for this process is shovm in Figure 10. 

ds 
Clearly, at R, the slope ^ is indeterminate. 

More General Deformation Processes With Constant t,- 

We begin with eq.'s (6.36) and (6.37) which we write in the form 

s = s° ^+ r (7.18) 
®  ^Y dz ^ ^ 

or, equivalently, 

s = s° /^ 6(z - z') I?, dz' + r (7.19) 
~      0 
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Since, however, the delta function in eq. (7.19) was obtained by 

a limiting process in which k^ -> 1, we replace 6( z ) by a function which 

in the above limiting process becomes a delta function, i.e., we write 

- 

g ._ ^^o     r^       -a(z - z')    ^^. + r( z )          (7.20) 
:   i-k, •'                   dz         . 

1 0 

where 
2y 

o                                    (7.21) a ,- 
(l-k^)s° 

and s is obtained from eq. (7.20) by a limiting process in which k^ tends 

to unity. Equation (7.20) may now be written as a differential equation 

in the form: 

1  (s - r)dz +^d(s - r) = d^ .               (7.22) 
o ^  ~    ■'y^  ~  ~ 

We note in passing that in the limit k^ -> 1 

s - r  = s°fU)  -  SY                       C^-^a^' b) 

a result given previously in eq. (6.41). We also recall the definition of 

. d? : 

- 
de = de - \  ds                                (7.24) 

o ~ 

Equations (7.22) and (7.24) combine to give the result 

k ^ dc + (l-k,)de = d<e                       (7.25) 
Is         1 ~   ~ 

Y 
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where 

;=s-r (7.26) 

a; = de - ^ dr (7 -21) 

However, from eq (6.37) 

where 

dr = 2p (p,(o)dQ+ h dz) (7.28) 
o 1   ~  ~ 

h = r P-(Z -.') i-dz' a.29) 

and 

p' = ^  (0 < z < ») (7.30) 
•^l   dz 

Thus, p' is well behaved (continuous, monotonically decreasing) function of 

z.  Note that h(0) = 0. 

Equations (7.25) and (7.28) combine to give the following equation 

for dz: 

adz + (l-k^)de = cd^ (7.31) 

where 

a = {k, — - k fl - k.)h}/f(C) (V-32) 
1 o   1     1 ~ 

SY 

c = 1 + k^(l - k^)p^(o) (7.33) 

By taking the norm of both sides of eq. (7.31) one obtains the following 
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quadratic equation in dC 

(c'- Hall!) .2 2 

^-h 
dc - 2 a • ded? - (l-k^)|lde||  = 0  (7.34) 

The two roots of eq. (7.3i+) are given by eq. (7.35): 

a  •  de ± / a  •  de + (l-k^)C||de| ^ 

d5 = :—:—:—: — (7.35) 

where 

C - g^ -   H^ll (7.36) 
^ 1 - k^ 

It may be shown that 

Lira C = C 
1 (7.37) 

k^-.! 

where 

n = 2(1 + p,(o) +4-^9^ ^'^•^^^ 
^       ^   .s°f(0^ 

In the limit of k -> 1, the two roots of dC are, therefore: 

s'de/C^ 
dC =^ ~  ~ ^ (7.39) 

0 

with the constraint d^ ^ 0, 
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The Two Roots of dc,. 

At the initiation of plastic deformation h is equal to zero as evi- 

denced by eq. (7.29).  Now, from eq.'s (6.29) and (6.30) 

n-1 
~%^ (7.40) p^(C) = I    R^r 

r=l 

where R are all positive as shown in Appendix B. Therefore, p,(o) is posi- 
r -'■ 

tive.  However, the scalar product s*h may be negative.  In fact, in the 

particular case where p (?) consists of a single exponential term, i.e. 

p^(C) = fR^eA^ (7.41) 

The function p'(c) is given by eq. (7.42): 

p{(C) = -BiV'^^ ^'^•''^■^ 

in which event 
r(0 

h(c) = -6, 1 2y 
o 

Thus 
g 

s-h = - -^ s-r (7.43) 

The scalar product s*h will, therefore, be negative if the angle between 

s and r is acute —in this particular case.  It is therefore quite possible 

that during the process of deformation C, will decrease from a positive 

value to zero. 
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We shall first investigate the situation where C is bounded by 

the inequalities 

0 < C^ < 2{1 + p^(0)} 

' 
Case (i): s • de > 0 

- In this case the dissipation is positive, see eq. (2.14), since d^ 

is in fact positive and is given by the eq. (7.44) 

s«de 
^r - ~  ~                                        (7.44) 

The process is admissible. 

Case (ii): s-de < 0 

In this case the dissipation is negative (since d? is negative. 

see eq. (2.14)) and the process is inadmissible. Therefore the second 

root of d^ must be chosen and as a result: 

dC = 0.                                        (7.45) 

In this event the dissipation is zero and the deformation is elastic 

since eq. (7.45) implies that 

di^= 0                                        (7.46) 

in which case 

ds = 2p de.                                    (7.47) 
o -, 

Remark: Case (ii) is the "unloading condition" given unequivocably by the 

endochronic theory. More specifically, given a state of stress on the 
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yield surface, the process is dissipative and dt. >  0, if the strain incre- 

ment makes an acute angle with the radius vector through the point which 

represents the state of stress; the process is elastic if the angle is equal 

to or greater than ninety degrees. 

The Case:  C^^ = 0 

The situation where C -> 0 results in dt,  becoming unboundedly large 

in which event the material flows without limit. This event will occur 

when 

O,,  .    ,  s^.,_s2 
s-h = - s°(l + p^(o))f(c) (7.^8) 

Stress Paths Within the Yield Surface. 

If eq. (6.36) is to apply, di^must be different from zero (in fact 

positive), since otherwise the derivative ^ is not determinate. There- 

fore, if eq. (6.36) applies, then the incremental process emanating from 

state s is dissipative and vice-versa.  In the same vein, eq. (6.51) is a 

direct consequence of eq. (6.36).  Therefore if an incremental process ori- 

ginating at state s is to be dissipative eq. (6.51) must necessarily apply. 

It follows as a corollary that stress states which do not satisfy eq. (6.51) 

cannot lead immediately to dissipative processes. 

Remark:  State s which lie within the yield surface cannot lead immediately 

to dissipative incremental processes. 

It follows from the above remark that all incremental processes 

which emanate from stress states within the yield surface are elastic 

(dC = 0), in which event for all ds emanating from such state s: 

ds = 2yde (7.49) 
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Incremental Determination of the Constitutive Response. 

Given that the constitutive properties of a material are known, 

let, at some point in the course of the deformation (strain) history, 

s and h also be known.  Then C^ can be determined from eq. (7.38). 

Given an increment of strain de, eq. (7.39) determines d^, depending on 

the sign of s-de.  If the sign is negative or zero, then d? = 0 and ds 

is given by eq. (7.47).  If the sign is positive then 

s • de , ^ 
dC = ■-- ^'-''^ 

and 

In the limit of k^  -> 1, then as a result of eq. (7.22) or eq. (7.18) 

dl?= — dz r*     o 
(7.52) 

Hence,   di^   may be calculated.     Itoowledge of dQ   leads  to the  direct deter- 

mination of ds  from eq.   (7.24)  in the limit of k^ ^ 1,  i.e., 

ds =  2y  (de  -  d?) ("7.53) 
o     ^ 

Clearly dr may now be found from eq. (7.28), and the procedure may thus be 

repeated at will. 

We note that at the initiation of plastic deformation r = 0, h = 0 

and s = 2y e. 
o„ 
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8.  The Closure of Hysteresis Loops. 

The question of closure is treated by means of an application to 

aluminum undergoing stress reversals in a uniaxial stress field.  One has 

difficulties in obtaining closed hysteresis loops in the first quadrant of 

the stress-strain diagram, if one uses the definition of intrinsic time of 

Reference 1, i.e., eq. (1.1).  The purpose of this Section is to demonstrate 

that no such difficulties arise when 

d? = Ide^l (8.1) 

and 
ka 

e. 1 (8.2) 
1   1   E 

and k = 1. 

For the purpose of demonstration we use the constitutive equation 

de   ^c     de 
^i = ^Ydr"^ ^^^-'^'^dT^ ''' ^'-'^ 

where 

2 
with the following values of the constants: o^ = 5 tons/in , E^ = 1500 

tons/in^, E = 200 tons/in^, a = 500.  The elastic modulus E^ is equal to 

H.U6 X 10^ tons/in^; however, this value is not pertinent to the present 

application since a    is plotted directly against 9^, The computation of 

the stress response to loading-unloading-reloading histories is straight- 

forward and will not be treated in detail here.  For a more elaborate treat- 

ment of this problem the reader is referred to Reference 2, The results 

are shown in Figure il. 
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The point A is the initial yield event.  Point B denotes the point of 

unloading and C, D, E, F, G, and H are points of reloading.  Note that points 

such as C, where a^ > ff„ - 2ff , gives rise to reloading paths which coincide 

with the unloading paths.  In such a case the area of the hysteresis loops is 

zero.  However, reloading from points where a < a.^ - 2a^  gives rise to loops 

that are closed, as shown in the Figure.  In this constitutive theory as it 

is constituted by equations (7.1), (7.2) and (7.3), no open loops exist for 

k = 1. 

9.  Discussion 

In this paper we have presented an endochronic theory of plasticity 

which is based on a new definition of intrinsic time which is broader than 

the one we proposed before.    In its two limiting forms the intrinsic time 

measure is expressible either in terms of the increment of the total defor- 

mation on one hand, or in terms of the increment of the plastic deformation, 

on the other.  An intermediate definition is made possible by means of a 

material tensor 'l>.--i^£' 

The theory is shown to predict essential features of the plastic re- 

sponse of metals and in certain asymptotic cases it evinces commonalities 

with classical theories of plasticity and contains a number of classical plas- 

ticity models as special cases.  In particular, the existence of a yield sur- 

face is shown as a consequence, when the intrinsic time measure is defined in 

terms of the increment of plastic strain.  Also, the response of an elastic 

perfectly plastic solid is shown to be predictable by the theory.  However, 

the most significant feature of the present theory is that it predicte correctly- 

in the case of metals where k is almost equal to unity—the stress response 

to strain histories involving reversals in the sign of the strain rate.  This 
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is a particularly powerful result, as one and the same constitutive equation 

is used in the prediction of the stress response to such reversals.  When k 

is equal to imity a dichotomy in the constitutive representation results in 

the sense that an elastic constitutive relation must be used in the course of 

strain histories involving "unloading". 

It is felt that the endochronic theory has now evolved to a stage 

where it can be used in design as a predictive tool in the understanding of 

the mechanical response of metals and other materials. 
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Appendix A 

We solve eq. (6,19) by the Laplace Transform technique, where 

-a 2     -a z 
G(z) = G^ e + Gj e ^ (A.l) 

Then, as a result of eq. (6,19), 

r=  ,  P^ " -_  (A.2) 
(1-k^) p + (a^+ a^- ka) p + ot^a^ 

where 

a = G2a^ + \OL^     . (A.3) 

It can be shown by straightforward analysis that as k ->• 1 

.P_L_SL 
(l-k^)(p+e^)(p+B2) 

where 

CA,«+) 

^1 = i^ ^°1°1 '  «2S^ • ('^•5) 

°l"2 
3« = —7;—r ••'r'" (A.6) 2  a^G^ + a^G^ 

In the limit of k^->- 1 and as a result of eq. (A."*), p(z) may be written 

explicitly in the form; 
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p(z) = 3^ exp (- il^ ^) + V2 ^^^ ^^P ^- -IT" ^^-     ^^-^^ 

where X = G^a^ + G^a^ . (A.8) 

It is worth repeating that as k -> 1, the first term on the right-hand side 

of eq. (A.7) becomes proportional to a delta function and 

/a -a, \2     a a 
p(z) = \ 6(z) + G^G2 \-^T~^l    exp(- -^ z). (A.9) 

The fact that 6(z) is an essential part of p(z) when k^^ = 1, was demonstrated 

in the text in the case of any number of internal variables. 
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Appendix B_ 

We note the following relations; 

R = Q - pP (B-1) 

p = Q y—ii- 
^ ^ p + a^ 

(B-2) 

We also note that, since -3^ are the zeros of R, it follows from eq. (B-1) 

that 

Q(-33) = -^s^(-h'> 

Also from eq. (B-2): 

P(-3 ) = Q(-3 ) I 
r   s   r 

It follows from eq.'s (B-3) and (B-4) that 

y  E  
r  s   r e. 

Also from eq.'s (B-1) and (B-2) 

1 - I—T- ^ p + a 
= 0 

P = -K 

(B-3) 

(B-U) 

(B-5) 

(B-6) 

But, from eq. (6.22), 

I G = 1 

Hence from eq.'s (B-6) and (B-7) 

a G 
y   ^^   = 1 
^ -6 + a 
r  s   r 

(B-7) 

(B-8) 
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At this point we are in a position to evaltiate R'.    To this end we note that 

as a result of eq.   (6.24), 

G 

^ ^ ^ p + a 
(B-9) 

r " r 

Also in view of eq.   (B-2): 

— 
^ ^ p + ct      ^ p + a    ~ ^ ^  (p + a^)' r^        rr r r r 

CB-10) 

Therefore it follows from eq.   (B-1) and eq.'s  (B-9) and  (B-10) that, 

- 1 -        ^ (-1 ^ 

r r        r r \   v rr r 

^r ) 
Q^(F^)2) (B-ll) 

At this point evaluating "R' at -6 and invoking eq. (B-6), we find that 

R'(-e3) = -QC-gg) 
G G B 

Y   ^   + y    r s 
^ -3 + ct ^ (-B + a )2 
r  s   r r   s   r 

(B-12) 

or 

R'(-B3) = -QC-gg) I (/"_% )2 
r  r   s 

(B-13) 

Now from (B-1) 
Q(-3„) 

P(-33) = ^(O (B-1I+) 

At this point use of eq. (6.28) gives an explicit expression for R^ given by 

eq. (B-15) 

R = 
s 

^s -^ (a - g )2 
r  r   s 

(B-15) 



1+9 

However, the constants a , 3 and G are all positive.  Thus the residues 

R are all positive.' 
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Appendix C 

In the theory of Laplace Transform, one may deal with fxmctions with 

simple jump discontinuities by enlarging the class of differentiable functions 

to include such functions. This is achieved by making the Heavinside step 

function a member of this class and by stipulating that the derivative of this 

fimction is the Dirac delta function, i.e., 

I-H (t) = 6(t) (C-1) 
dt 

If one does not do this one can only deal with differentiable functions in the 

classical sense in which case if such a function f(t) is such that f(0) ^  0, 

then f(t) is defined in the interval 0 < t < « and, of course, as is well 

known 

L(5f)= Pf(p) - f(0+). (C-2) 

where L denotes the Laplace transform over the open interval (0,« ) with respect 

to the parameter p. 

It follows from (C-2) that 

pf(p) = feO+) + L (^) (C-3) 

or 

L"V(P) = f(0+) 6 (t) + %  I (C-4) 
"^^ t > 0 

If, however, functions with simple jump discontinuities are admitted, the 

Laplace transformation may be used over the half open interval [O^ <» ) and a func- 

tion f (t) can now be defined on this interval with the condition that fCO) = 0, 
o ° 

f (t) = f(t), t>0. This is what we have done in this paper. This function 
o 

f (t) now has a jump discontinuity at t = 0 of strength f(0+). 
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In this case 

L(3= Pfjp) <c-=) 

Note that f (p) = f(p) since f differs from f only on a set of measure zero. 

Thus, using eq. (C-5) 

df 
L _°-  = pf(p) . (C-6) 

dt 

since f (o) = 0, 
o 

It follows that 

df df 
L-Vf(p) -TT-    -    f(0+)5(t)+i|l       (C-7) dt t>0 

in accordance with eq. (C-1) 
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Appendix D 

Experimental determination of the functions p^^Cz) and f(^). 

In pure shear eq. (6.36) becomes 

where x is the shear stress and Y^ the plastic shear strain. We recall the 

relation 

The suffix D on ? and z has been omitted for simplicity of notation. 

With reference to Figure 12 which is self-explanatory and eq. (D-1), 

the following resiilts are evident: 

(i) c,  is the plastic shear strain at point A, and is equal to the 

distance oA'. 

(ii) The equation below holds 

s°f(Cj (D-3^ 

Thus f(0  can be determined from measurements of the yield points upon load- 

ing (point Y) and load reversal (point Y'). The function z(0  may now be 

determined by integration of eq. (D-2). Thus we have the functional relation 

f(0  = f{C(z)} = f(z) (D-^) 

At this juncture we show that p^(z) can be determined from a simple monotonic 

loading test.  During such a test dz is related to dy by eq. (D-5) 

dz = ^ (D-5) 
<^^  f(YP) 



53 

since, in fact, during loading 

d^ = dyP (D-6) 

and 

^ = yP (D-7) 

upon observation of the condition ^= 0 wheny= 0. As a result of eq.'s 

(D-4) through (D-7), eq. (D-1) reduces to the following form: 

z 
T = s°f(z) + 2y^ / p^(z - z')f(z')dz' (D-8) 

o 

However since T(Y^) is known, then so is < 0 and hence tCz) = t{c(z)}. 

Thus, since f(z) is also known, the function g(z), where 

g(z) = kz)  -  SyfCz) (D-9) 

is a known function of z.  Equation (D-8) therefore, now reduces to the fol- 

lowing Volterra integral equation 

z^ 
(D-10) 

O 
2u / f(z - z') p-(z')dz' = g(z) 

o •' 1 

where the right hand side is a known function. 

Equation (D-10) determines p^(z) uniquely if f is a continuous bounded 

function of z in the interval (0,z). The function f is expected to have 

these properties on physical grounds. 
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Fig. 1.  Unloading response of an endochronic solid. 
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Fig, 2. An elastic-perfectly plastic solid. 
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Fig.   3,     Comparison of an elas.ti,c..perfectly-plastic and an endochronic 

solid. 
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Fig. 4.  Effect of the value of k on the stress-strain curve. 
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Fig, 5, Dissipation in loading and unloading, 
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Fig. 6.  Geometric illustration of eq.'s (6.41) and (6.42). 
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Fig. 7. s plotted vs. t.  showing cusp at s = ?. 
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Fig. 8. R as a reversal point. 



63 

s  space 

Fig. 9. Stress responses in the limits R' -»■ R, R" ,-♦• R- 
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Fig. 10. A history with a point of strain reversal. 
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Fig. 11. Theoretically predicted unloading-reloading behavior of aluminum. 


