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1. Introduction 
This is the final report of a two year study on the use of fuzzy pattern recognition of 
polygraph data for the identification of truth versus deception. The goals of this study as 
stated in the original proposal where to: 

1. develop a data parsing algorithm which will process polygraph data obtained from the 
NSA into three domains: time-domain, frequency domain, and correlation domain; 

2. design a fuzzy classifier algorithm to accept the featurized data and modify its 
membership functions based on the error between its classification of the polygraph 
data and the classification in the NSA files; 

3. study relationship between number of membership functions an the success of the data 
classification and; 

4. investigate the feasibility of the classification being performed in a near-real-time 
scenario. 

The data to be used was MGQT polygraph data. However, the proposal for the second 
year of the study introduced the goal of comparing the performance of the developed 
fuzzy classification system with "zone comparison" polygraph data. Ultimately this was 
changed to be the simulated "relevant only" data obtained from DODPI. 

There were two secondary objectives of this project. First, are the features identified as 
optimal in determining the veracity of a subject optimal for all subjects. Second, are there 
features not presently being used in polygraph analysis the may be optimal. 

This report and its attached appendices will show that all objectives of the original 
proposal where met. A fuzzy parser and classifier system were developed that could run 
in near real-time, achieve performances as good or better than the presently available 
automatic polygraph systems, and identify new features that previously where not used in 
polygraph classification. Results of 97% correct for the MGQT data and 100% correct 
for the "relevant only" data were achieved. It will be shown that while certain features 
yield good identification across all subjects, a clustering algorithm, fuzzy C-means, 
developed in the second phase of this work identified many sets of features that probably 
should be tried to achieve optimal performance. 
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2. Phase I: 1993-1994 
The first phase of this project developed a complete automatic data parsing system and 
fuzzy pattern recognition system based on the fuzzy k nearest neighbor algorithm. These 
two elements are summarized below. 

2.1 Development of Data Parsing Algorithm 
The initial goal of this phase was to be able to read the MGQT data files received from the 
NSA and separate this data into appropriate features for classification. After consulting 
with the University of Washington, we were able to develop our own data reading 
program. 

After consultation with experienced polygraph examiners and a detailed review of the 
polygraph literature, the data reading program was then modified to parse the data into a 
matrix of features. The feature set included, as outlined in the project proposal, time 
domain, frequency domain, and correlation domain data. Some examples of the feature set 
are: 

Time Domain Features 

- Mean, curvelength, area, and standard deviation for all polygraph channels 

- Average of the amplitudes of the peaks in the cardio and respiratory channels 

- Derivative of the amplitudes of the peaks of cardio and respiratory channels 

- Number of peaks in the cardio and respiratory channels 

- Inhalation amplitude/exhalation amplitude of respiratory channels 

Frequency Domain Features 

-Fundamental frequency of cardio and respiratory signals 

-Coherency and cross power spectral density between cardio and respiratory channels 

-Power spectral density of cardio and respiratory channels 

-Integrated power spectral density for cardio channel 

Correlation Domain Features 

- Autoregressive parameters (10) for cardio signal 

- Cross-correlation between cardio and respiratory channels 

In order to classify subjects using the difference between control and relevant responses, 
and to minimize the size of the feature vector, the features were combined according to 
the following method: for each feature /' (except for the three features corresponding to 
the cross power spectral density and integrated spectral difference) from each subject y 
compute: 
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1. The average control responses AvgConttJ 

2. The average relevant responses AvgRel^ 

3. The maximum and minimum control responses MaxContyMinCont^ 

4. The maximum and minimum relevant responses McocRelyMinRely 

The feature vector components for feature / are then: 

1.   Avg Re l{j - AvgContjj 

Avg Re li} - AvgConty 
2. 

Avg Re ltj + AvgConttj 

3. Max Re ltJ - MaxConttj 

4. Min Re ltj - MinConty 

5. Max Re ltJ - MinConty 

6. Min Re ltj - MaxCont^ 

Max Re /,.,. 
7. 

MaxConty 

For the three features mentioned previously that cannot be combined as above then from 
each subjecty compute: 

1. The average of relevant-control responses Avg(KelCont)y 

2. The maximum of relevant-control responses Max(Re/Co«Oy 

3. The minimum of relevant-control responses Min(RelCont)tJ 

For a complete description of this method, see the report in Appendix B entitled Feature 
Analysis of the Polygraph by Mitra Dastmalchi. 

Ultimately 669 features were automatically extracted from the data. The complete list of 
all 669 features used in this project are shown in Table 1 in the report in Appendix D 
entitled Pattern Recognition of the Polygraph Using Fuzzy Set Theory. The use of this 
automatic data parsing algorithm is described in more detail in section 4.1. 

2.2 Design of Fuzzy Classifier Algorithm 
Fuzzy classifier design first focused on the development of a fuzzy set based k nearest 
neighbor algorithm. (This work is described in detail in Appendix C entitled Pattern 
Recognition of the Polygraph Using Fuzzy Set Theory and in Pattern Recognition of the 
Polygraph Using Fuzzy Classification, Proceedings of the 1994 IEEE International 
Conference on Fuzzy systems, Vol III, pages 1825-1829.) This algorithm is a supervised 
learning algorithm which means that training data is presented to the algorithm and then 
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the algorithm is "frozen" and test data is presented. Training on this and all other 
algorithms in both phases of the study was always performed on 3/4 of the data with 
testing performed on the remaining 1/4 of the data. The algorithm learned using a set 
of MGQT data divided equally between truthful and deceptive. Since there were 150 
deceptive files and only 50 truthful files, the deceptive files were divided into three sets of 
50 files each. When a question was asked more than once by an examiner the questions 
were scored individually and then combined at the end on a majority basis. The results of 
this work are summarized collectively in section 4.2 below. 

3. Phase II: 1994-1995 
The second phase of this project dealt with creating an unsupervised clustering algorithm 
which could identify important features more rapidly, creating another supervised learning 
algorithm to determine if the fuzzy k-NN algorithm was optimal (fuzzy-LMS), creating a 
genetic search algorithm to try to aid in the search for optimal features, and expanding the 
algorithm testing to look at simulated "relevant-only" data from DODPI in addition to the 
MGQT data. These elements are summarized in the two sections below 

3.1 Comparison of the Fuzzy C-means, Fuzzy LMS, and Fuzzy k- 
NN Algorithm 
An unsupervised clustering algorithm was created to visualize which features allow for 
larger separation in the truthful and deceptive data clusters. In addition, a supervised 
learning algorithm, fuzzy LMS, was created to compare with fuzzy C-means and fuzzy k- 
NN. (This work is described in much more detail in, and partially excerpted from, 
Appendix D, Use of Fuzzy Set Classification for Pattern Recognition of the Polygraph, 
and in Classification of Deception Using Fuzzy Pattern Recognition, Psychophysiology, 
Volume 31, Supp.l, August 1994.) 

The fuzzy LMS system is unique in its application of linguistic knowledge. The use of 
linguistic knowledge ensures the robustness of the fuzzy system. The use of linguistic 
information also ameliorates the problem of not having enough reliable numerical data. 
Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy LMS algorithm is 
not entirely dependent on numerical data. 

When applied to pattern recognition, fuzzy logic systems can be set up to perform like 
KNN systems. In KNN systems, numerical data of known class patterns are set up to 
estimate the probability density distribution of the classes. The probabilities of new data 
points belonging to the different classes are then computed based on such distribution. 
Data points around known class samples are then classified into the same class with a 
higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by 
taking into account the distance between the data point and the known class patterns when 
estimating the probability. Conceptually this is similar to setting up clusters around all 
known class samples and calculating the degree of belonging of new data points in the 
different types of clusters. Other than the exact mathematical equations, that description 
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fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the 
size of the clusters is the same for all rules. 

However, fuzzy adaptive systems give up some of the nice theoretical understandings of 
the KNN systems but gain some practical advantages. The number of rules required are 
usually much smaller than the number of known samples. Fuzzy logic can usually exploit 
that to reduce system complexity. 

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as 
new information are available. This is partly a result of the way this algorithm adapt 
continuously; new information are learned as old ones are forgotten. The fuzzy LMS 
learning technique is like backpropagation, a popular neural network training technique. 
However, the fuzzy LMS learning algorithm requires few epochs for training. In all our 
trials the maximum recognition rates for testing data peaked in less than thirty epochs. 
About 95% of them peaked in less than twenty epochs 1. This is a few orders of magnitude 
less than most applications of backpropagation. In many cases the peaks occurred before 
any training; that is, the system uses only linguistic rules. Here the use of expert 
knowledge speeds up the training of the system. 

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm. 
Given a set of data, FCM looks for a (usually) predetermined number of clusters within 
the data points. It does not use any knowledge about the correct, or desired classification 
of any of the elements. The algorithm only minimizes an objective function, which is the 
sum of a function of the data points' membership values and the distances between the 
data points and the clusters' centers. 

FCM operates like a black box; given some data, the algorithm automatically computes 
the results2. This presents the advantage that different sets of data using different features 
can be tested in a routine manner. FCM also presents a way to normalize the different 
dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However, 
unlike fuzzy LMS, FCM does not present a method to find the optimal way for such 
normalization. 

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The 
use of expert knowledge, while a benefit in some senses, may not be always 
straightforward. For example, in our project we did not have any specific knowledge 
about the polygraphy itself. Whatever we learned, we learned by looking at numerical 
data. As we tried to find more complicated patterns, patterns involving three, four, or 
more features, the analysis became more difficult. Naturally one wishes to automate this 
process. If we do not rely on some learning procedures, however, rules cannot be 
automatically found for the fuzzy system. Much research also needs to be done to 
understand the fuzzy LMS algorithm's learning dynamics. While the same method, 
gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the 
general shapes of the error surface between the two are different. In backpropagation, all 

'However, we ran every trial to forty epochs to ensure that there is no "false" peak. 

2Our job is basically to adjust the parameters. 
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the parameters have the same range and lie in an uniform neural network structure. In the 
fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic 
structure that is not completely uniform. The effects of such differences on the shape of 
the error surface and the learning dynamic are unknown. 

A summary of the data comparing these methods is presented in section 4.2 below. All 
MGQT data was processed as was summarized in section 2.2 above. 

3.2 Fuzzy C-means Algorithm on "Relevant Only" Data 
The data parsing algorithm was extensively modified to process the relevant only data. 
This data was composed of 166 truthful and 166 deceptive tests with no irrelevant 
questions asked. Thus the seven techniques of data combination described in section 2.1 
could not be used. Instead, four combinations were used as follows: 

1. Avg(Feature) 

2. Max(Feature)-Min(Feature) 

3. Max(Feature) /Min(Featnre) 

4. Std(Feature) 

Also, these files were in an entirely different data format which head to be interpreted for 
data parsing. (See Appendix E for a summary of incorrect data formats from the "relevant 
only" data.) 

4. Summary of Results 
The results for the entire project are summarized below. First, the complete automatic 
data analysis package is summarized including data parsing and classification. Second, 
comparison of accuracies amongst the different methods for both MGQT and "relevant 
only" polygraph data is presented. 

4.1 Automatic Data Analysis Method 
Below is a description of the automatic data parsing and classification technique 
developed in this project. Refer to Appendices A-D for a more complete description. 

4.1.1  Parsing the Data 

4.1.1.1 Reading the Data 

It should be noted that the data reading methods are only important for "off-line" 
processing and would not be used for near real-time applications. 

The data was collected in three phases labeled ERS-1, ERS-2 and ERS-3. Each polygraph 
test may consist of one to five charts with each chart consisting of three files. Each chart is 
a series of questions, usually ten questions. The files are given in DOS file format and 
must be read and decoded before they can be seen. 
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The following files comprise a chart: 

$$EACOWO.0U 

$$EACOWO.021 

$$EACOWO.031 

Each of these three files has a specific significance. The .XX3 files are text files which 
contain the questions which the subjects were asked. The .XXI and .XX2 files are 
encoded in a specific format created by Axciton polygraph testing devices. These files can 
be decoded by a program entitled read3. Read3 can be invoked in DOS as in the following 
example: 

read3 $$EACOWO.0U output 1 

readS $$EACOWO.021 output! 

read3 $$EACOWO.031 output3 

The read3 command decodes the data in files X.011, X.021 and X.031 and writes them in 
ASCII files entitled output 1, output2 and output 3, respectively. Output2 and output3 
contain the actual signals from four polygraph channels with a timing signal which shows 
the times when the questions were asked. The output files were labeled such that minimal 
confusion was allowed. For example, the output file for non-deceptive subject 45, text file 
.XX3 compiled during phase ERS-1 reads: 

nd45t3.exl 

4.1.1.2 Feature Extraction 

After the polygraph files are decoded and written into output files, they can be processed 
in MATLAB. MATLAB is a commercially available mathematical analysis program which 
runs on a PC, Macintosh, and most UNIX platforms. The feature extraction process 
consists of a MATLAB program which extracts features for all files and saves them in a 
matrix consisting of subjects and features. The main feature extraction program is a 
MATLAB routine called Do.M. This program extracts the pre-selected 52 features, from 
each subject, contained in the variable featurejist. Featurejist is a MATLAB matrix 
which includes the names of the feature extraction routines. In each row of the featurejist 
matrix, a feature extraction routine is named along with the channel number(s) this routine 
will be applied to. The mean, standard deviation, maximum subtracted from the minimum 
and the maximum divided by the minimum is taken of the extracted features. These four 
results are put into a matrix which is then put into a larger matrix called xlO.mat, 
consisting of all non-deceptive and deceptive subjects and all 52 features from the feature 
list. 

4.1.2 Classifying the Data 
After the data is parsed in DOS and MATLAB, the classifying process takes place entirely 
in MATLAB. 
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4.1.2.1 K-Nearest Neighbor Algorithm 

The main program which runs the KNN algorithm is called fknn which is written in the C 
programming language. This file interacts with MATLAB by reading and writing files in 
MATLAB format, that is .mat files. This algorithm is implemented by the program fknn 
which opens a MATLAB data file, reads the training matrix, classifies each entry in the 
testing matrix and writes the result in an output file. The file from which this program 
receives information from is "fdatafile.mat" which is in MATLAB file format. 

Because the KNN algorithm has been automated, it can be run in only a few simple steps. 
For a complete description of this process see Appendix C. Before running the algorithm a 
few variables must be determined. For example, for the "relevant only" data: 

1. A single variable 'C, the number of classes was set equal to two for deceptive and 
non-deceptive. 

2. A single variable 'K', determines how many different points surrounding a chosen 
point will be compared to it and classified. The parameter 'K' in the K-NN algorithm 
was varied from one to ten throughout the simulations. 

3. A single variable 'M', the coefficient in the fuzzy algorithm was set equal to two. 

4. A training matrix 'P', contains a set of feature vectors. Each vector is a column of the 
matrix. There were fifty deceptive and fifty non-deceptive tests used for training. The 
combination of features to be tested is also entered in this matrix. 

5. A class membership matrix T, which contains the membership values of the training 
set vectors to the classes. This matrix was set such that a one was displayed for a non- 
deceptive detection and a zero for a deceptive detection. 

6. An input matrix 'U\ which contains a set of unclassified feature vectors contained the 
rest of the tests not used for training. These remaining tests make up the testing 
matrix. The same combination of features entered in 'P' are to be entered in the 'U' 
matrix. 

7. Threshold which is varied from 0.2 to 0.8 throughout the simulations. 

Once the matrix XlO.mat is loaded in MATLAB, the KNN algorithm can be invoked by 
simply typing "KNN". The user will then be asked to enter a numerical value for the K 
parameter in the K-NN algorithm. Parameters chosen between one and ten have been 
found to produce the best results. Once the k parameter has been entered, the number of 
correct deceptive and non-deceptive detections can be obtained by entering the following: 

sum(fresult(l, 1:116)>0.5) non-deceptive 

sum(fresult(l, 117:232) < 0.5) deceptive 

The correct detection for non-deceptive data is shown by a one, so the threshold is greater 
than 0.5. The percent correct for the deceptive data can be obtained by dividing the 
number of correct deceptive detections by 166. This same process works for the non- 
deceptive data. Finally, the total correct detection percent is obtained by taking the 
average of the two percentages. 
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4.1.2.2 Fuzzy C-Means 

The Fuzzy C-Means algorithm for MGQT data has been made user friendly through 
automated push buttons written in MATLAB (see Figure 1). These buttons allow the user 
to execute the feature extraction and classification process without an understanding of 
the complexity of each program used in the algorithm. With minor modifications, the push 
buttons can be used for the "relevant only" data as well. 

Figure 1: User Interface for Fuzzy C-Means Clustering Algorithm 

Before running the algorithm a few variables must be determined. For example, for the 
"relevant only" data: 

1. The 'temp' matrix in the fc_means program was set equal to the dimensions (1,332). 

2. The threshold was varied from 0.2 to 0.8 for each different simulation that was run. 

3. Combination of features to be tested can be changed as described below. 

The following execution process is necessary only if the push button automation is not 
used. After the matrix X10.mat is loaded, the user must type the following to run the 
algorithm: 

[Uik,z] =fc_means(5,0.000005,xl0([8 23 24],:)) 

The z parameter is the number of iterations made by the algorithm to obtain the results 
and Uik is the membership values. To calculate the correct detection of non-deceptive and 
deceptive subjects, the user must type the following: 
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sum(Uik(l,l:166)<0.5) non-deceptive 

sum(Uik(l,117:332)>0.5) deceptive 

where 0.5 is the selected threshold for this particular simulation. The percent correct for 
each class can be determined by dividing the number correct by the total number. The total 
percent correct is then obtained by averaging the two percentages. 

4.1.2.3 Least Mean Squares Algorithm 

The LMS fuzzy adaptive filter is a nonlinear adaptive filter which makes use of both 
linguistic and numerical information concerning the physical characteristics of the 
polygraph data in their natural form. This filter is constructed from a set of changeable 
fuzzy IF-THEN rules. We have the choice of setting the rules according to our 
experiences and incorporating them directly into the filter, or initializing the rules 
arbitrarily. Before running the algorithm a few variables must be determined. For example, 
for the "relevant only" data: 

1. The number of training subjects was set equal to 100. 

2. The 'running time', how often the algorithm goes through the data, was set to 70. 

3. Different combinations of the features was changed manually for each different 
simulation. 

After the matrix XlO.mat is loaded, the user must simply type: 

Imstest.m 

The total percent correct of deceptive and non-deceptive data is automatically displayed 
under the variable 'maximum'. 

4.2 Classification Accuracy 

4.2.1 MGQT 
Figure 2 shows a comparison of the best results for each of the classification algorithms 
found in this study. (See Appendix D for a more complete description of how this 
comparison was performed.) It should be noted that the optimum features found for the 
fuzzy c-means and the fuzzy k-NN algorithms were different. This is important because it 
means that if both algorithms were run on a given subject, there results could be 
independent and corroboratory. The fuzzy LMS algorithm was simply run using the 
optimal four features found for the fuzzy c-means algorithm. The method number refers to 
the 7 combination methods described in section 2.1 above. The three data files refer to the 
fact that the 150 deceptive files were separated into three files of 50 and compared to the 
50 non-deceptive files. 
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Features Used Data Set 1 Data Set 2 Data Set 3 

Fuzzy C-Means Ampl of Peaks(High Freq 
Cardio) Meth. 4, 

Max-Min(High Freq Cardio) 
Meth. 7, 

Std(GSR) Meth. 2, 

Std(GSR) Meth. 4 

93 87 97 

Fuzzy k-NN Max(GSR) Meth. 1, 

Max(Lower Resp) Meth. 6, 

Max(Upper Resp) Meth. 3, 

Max-Min(High Freq Cardio) 
Meth. 4 

86 80 91 

LMS Fuzzy Ampl of Peaks(High Freq 
Cardio) Meth. 4, 

Max-Min(High Freq Cardio) 
Meth. 7, 

Std(GSR) Meth. 2, 

Std(GSR) Meth. 4 

81 83 83 

Figure 2: Comparison of Different Classification Techniques ofMGQTData (in percent 
correct) 

4.2.2   "Relevant Only" 

For the relevant only data the fuzzy c-means algorithm was used since it achieved the best 
performance for the MGQT data. Figure 3 shows the summary of results for different 
combinations of the four optimal features described in Figure 2 above. 
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Feature(s) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

[2 4] N:95 N:81 N:64 N:43 N:33 N:20 N:34 
D:4 D:10 D:28 D:45 D:60 D:78 D:79 

[2 34] N: 100 N:96 N:78 N:51 N: 11 N:0.6 N:3 
D:0 D:2 D:28 D:58 D:92 D:99 D:97 

[2 39] N:100 N:97 N:83 N:56 N:9 N:3 N:4 
D:2 D:5 D:29 D:55 D:92 D:97 D:91 

[4 34] N:85 N:52 N:28 N:20 N: 11 N:5 N:6 
D: 12 D:41 D:63 D:78 D:84 D:94 D:96 

[4 39] N:84 N:61 N:33 N:21 N: 13 N:5 N:4 
D: 10 D:37 D:65 D:72 D:83 D:93 D:92 

[34 39] N: 100 N:97 N:90 N:78 N:64 N:36 N:45 
D:0.6 D:3 D: 16 D:26 D:40 D:64 D:68 

[2 4 34] N: 100 N:96 N:78 N:49 N: 11 N:0.6 N:3 
D:0 D:3 D:28 D:58 D:93 D:99 D:96 

[2 4 39] N:48 N:45 N:36 N:30 N:29 N:24 N:34 
D:24 D:30 D:32 D:36 D:45 D:48 D:54 

[2 34 39] N:48 N:0 N:5 N:33 N:77 N:99 N: 100 
D:24 D: 1 D:5 D:32 D:71 D: 99 D: 100 

[4 34 39] N:48 N:45 N:34 N:3 N:22 N:23 N:4 
D:24 D:30 D:6 D:65 D:54 D:5 D:66 

[2 4 34 39] N: 100 N:99 N:95 N:67 N:23 N: 1 N:54 
D:0 D:0 D:5 D:33 D:71 D:99 D:33 

Figure 3: Classification of "Relevant Only" Data Using the Fuzzy C-Means Algorithm 
and Different Combinations of the Four Features Given in Figure 2 
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Note that for the combination of three features, 2, 34, 39 (which correspond to Std(GSR) 
Meth. 2, Ampl of Peaks(High Freq Cardio) Meth. 4, Max-Min(High Freq Cardio) Meth. 
7) a score of 100% correct for both deceptive and non-deceptive was achieved. 

5. Conclusions 
This project achieved all goals set in the phase 1 and phase 2 proposals: 

1. a data parsing algorithm was developed which will process polygraph data obtained 
from the NSA into three domains: time-domain, frequency domain, and correlation 
domain; 

2. several fuzzy classifier algorithms were designed to accept the featurized data and 
modify its membership functions based on the error between its classification of the 
polygraph data and the classification in the NSA files; 

3. relationships were found between number of membership functions an the success of 
the data classification up to four simultaneous features; 

4. the feasibility of the classification being performed in a near-real-time scenario was 
shown; and 

5. near perfect scores were achieved for both MGQT and "relevant only" data without 
allowing for any "don't know" results. 
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Abstract 

A polygraph examination is the most popular method used to determine if an 
individual is being truthful or deceptive. During an examination, a subject is asked a series 
of questions and the physiological responses to the questions are recorded using a 
polygraph. The three physical responses currently obtained from a polygraph 
examinations are blood pressure, respiration, and skin conductivity. Polygraph charts are 
usually analyzed by a human interpreter for evidence of truth or deception; however, 
computer algorithms are now being used to verify results [1][2]. 

In this project, the K nearest neighbor algorithm was used to determine truth or 
deception. By using this adaptive fuzzy system, it was possible for the computer 
evaluation of the polygraph to adapt to individual differences in the physiological 
responses. Two algorithms were necessary for this project. The first was a parsing 
algorithm which preprocessed polygraph data and extracted features from it. These 
features can be separated into three domains: time domain, frequency domain, and 
correlation domain. The second was the K nearest neighbor fuzzy classifier which 
analyzed the data from the parsing algorithm and determined the possibility of deception. 
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1.1 History 

The first attempt to use a scientific instrument in an effort to detect deception 
occurred around 1895 [3].  That was the year that Cesar Lombroso published the results 
of his experiments in which a hydrosphygmograph was used to measure the blood 
pressure-pulse changes of criminals in order to determine whether or not they were 
deceptive. Although the hydrosphygmograph was originally intended to be used for 
medical purposes, Lombroso found that it worked well for lie detection. Lombroso may 
have been the first to use a peak of tension test format. This was done by showing a 
suspect a series of photographs of children, one being the victim of sexual assault.   If the 
suspect did not react more to the victims picture than the pictures of the other children, 
Lombroso concluded that the suspect did not know what the victim looked like and 
therefore was not the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by 
measuring recorded respiration tracings [4]. He found that if the length of inspiration 
were divide by the length of expiration, the ratio would be larger after lying than before 
lying and also before telling the truth than after telling the truth. In 1921 John A. Larson 
constructed an instrument capable of simultaneously recording blood pressure pulse and 
respiration during an examination [3][4]. Larson reported accurate results which 
prompted Leonarde Keeler to construct a better version of this instrument in 1926 [3] [4]. 

The use of galvanic skin response in lie detection began during the turn of the 
century. It's usefulness, however, did not become evident until the 1930's during which 
time several articles written by Father Walter G. Summers of Fordham University in New 
York [4].   In these articles he reports over 90 criminal cases in which examination using 
the galvanic skin response had all been successful and confirmed by confession or 
supplementary evidence. The usefulness of the galvanic skin response prompted Keeler 
to add an galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

1.2 Modern Test Formats 

The effectiveness of a polygraph examination is often the result of the test format 
that is used. A polygraph test format consists of an ordered combination of relevant 
questions about an issue, control questions that provide a physical response for 
comparison, and irrelevant questions that also provide a response or the lack of a response 
for comparison [1][4]. Three general types of test formats are in use today. These are 
Control Question Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. 
Each of the general test formats may have a number of more specific variations. Each test 
consists of two to five charts containing a prescribed series of questions. The test format 
that is used in an examination is determined by the test objective [3][4]. 

The concealed knowledge test, also called peak of tension test, is used when facts 
about a crime are known only by the investigators and not by the public. In this case, a 
subject would not know the facts unless he or she was guilty of the crime. For example, 
if a gun was used in a crime and the public did not know the caliber, an examiner could 
ask a suspect if it was a 22 caliber, a 38 caliber, or a 9mm. If the gun used was a 9mm 



and the suspect was deceptive, a polygraph chart would probably indicate evidence of 
deception. 

A control question test is often used in criminal investigations. In this type of test 
a series of relevant, irrelevant, and control questions are asked. A relevant question is one 
which is specific to the crime being investigated. For example,M Did you molest the 
child?".   A control question is designed to make the subject feel uncomfortable. It is not 
specific to the crime being investigated however it may be related in an indirect way. A 
control question that could follow the relevant question stated above is "Have you ever 
forced yourself on another person sexually ?". The control questions are compared to the 
relevant questions and if the responses to the relevant questions are greater, the subject is 
usually classified as deceptive.   Irrelevant questions are used as buffers. Examples of 
irrelevant questions are "Are the lights in this room on?" or "Is today Monday?". 

Relevant-Irrelevant tests are usually used to test people trying to obtain security 
clearance or get a job. In this test, relevant questions are compared to irrelevant 
questions. Very few control questions are asked. The purpose of control questions in this 
test is to make sure that the subject is capable of reacting at all. 

1.3 Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 
1945 and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The 
Reid polygraph scrolls a piece of paper under pens that record the biological signals. The 
Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 
scored by hand the traditional way. The Axciton and Reid polygraphs are shown in 
figures 1 and 2 respectively. 

Both machines record the same biological signals using standard methods. Blood 
pressure is measured by placing a standard blood pressure cuff on the arm over the 
brachial artery. Respiration is monitored by placing rubber tubes around the abdominal 
area and the chest of the subject. This results in two signals, an upper and lower 
respiratory signal. Skin conductivity is measured by placing electrodes on two fingers of 
the same hand. 



Figure 1   Axciton Polygraph [1] 

Figure 2  Reid Polygraph [3] 
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2.1 Fuzzy Set Theory 

In 1965 fuzzy sets were introduced by Lofti Zadeh [5][6]. They provided a new 
way to represent vagueness and made description of many situations much easier. For 
example, it is not practical to say that all temperatures below 72 degrees Farenheit are 
cold and all temperatures above are hot. Instead, temperatures between 50 and 72 would 
by described as cool, temperatures between 30 and 50 would be considered cold, and 
anything below 30 would be very cold.  One way to describe this situation is through the 
use of fuzzy set theory. In fuzzy set theory an element is not defined as belonging or not 
belonging to a given set. Instead, it has a degree of membership in a set which is 
characterized by a compatibility function uA [6] [7]. The compatibility function, also 
called a membership function, states the degree of membership in a set "A" and has a 
range [0,1]. An illustration of how this applies to the temperature example above is 
illustrated in figure 1 and described below. 

uhot(T) 

30 72 100 

Figure 3 Compatibility functions ucold(T) and uhot(T) vs. temperature. 

Here, ucold(T) and u^JT) are the degrees of membership in each set and T is the 
temperature in Farenheit. Figure 1 shows that the temperatures around 72 degrees have 
membership in ucohj(T) and u^/T). These memberships have values around .5 which 
represents cool or warm. As the cooler temperatures decrease, ueoU(T) increases thus 
representing a colder situation. Once the temperatures become less than 30 degrees, 
ucoid(T) obtains a membership value of 1 which indicates very cold temperatures. 

Fuzzy set theory is often thought of as another form of probability theory. In 
actuality, the two are very different [8].  In Bayesian probability theory, elements either 
belong or do not belong to a given set, and a probability density function determines the 
likelihood. For example, a light may be either on or off and the probability of either event 
occurring will depend on some statistical parameters (Is the room occupied? Is it dark 
out? etc.). The following is an example of the difference between fuzzy logic and 
Bayesian probability theory [6]. 



Example 1 

Let L = set of all liquids, and let fuzzy subset 1 = {all (potable) liquids}. 
Suppose you had been in the desert for a week without drink and you came upon two 
bottles marked "C" and "A" as in figure 4a. 

*W» • 

**i m 

mL{C)« 0.91 Pr (A c I) * 0J1 

Figure 4a Liquids before observation 

Confronted with this pair of bottles, and given that you must drink from the one 
that you choose, which would you choose to drink from? Most readers, when presented 
with this experiment, immediately see that while "C" could contain, say, swamp water, it 
would not (discounting the possibility of a Machiavellian fuzzy modeler) contain liquids 
such as hydrochloric acid. That is, membership of 0.91 means that the contents of HC" are 
fairly similar to perfectly potable liquids (e.g., pure water). On the other hand, the 
probability that" A" is potable = 0.91 means that over a long run of experiments, the 
contents of A are expected to be potable in about 91% of the trials; in the other 9% the 
contents will be deadly - about 1 chance in 10. Thus, most subjects will opt for a chance 
to drink swamp water. 

There is another facet to this example, and it concerns the idea of observationion. 
Continuing then, suppose that we examine the contents of X" and "A" and discover them 
to be as shown in figure 4b. Note that, after observation, the membership value for "C" is 
unchanged while the probability value for A drops from 0.91 to 0.0. 



tnAC) * 0.91 Pf (4c L) « 0 

Figure 4b Liquids after observation 

This example shows that these two models possess philosophically different kinds 
of information fuzzy memberships, which represent similarities of objects to imprecisely 
defined properties, and probabilities, which convey information about relative frequencies. 



3.1 MGQT 

The test format used in this project was the MGQT test format. It is a type of 
control question test in which relevant, irrelevant, and control questions are asked in the 
order given in table 1 [9][12].   Before each test, the questions that will be asked are 
discussed with the subject. The series of questions is asked three times in the order 
specified in table 1. This produces three test charts. The examiner waits about 20 
seconds between each question. 

Not all of the Axciton charts used in this study follow the format of table 1 exactly. 
Many examiners rearranged the order in which the questions were asked. All polygraph 
charts used, however, were variations of this test. For example, one examiner used a test 
format in which questions 3 and 4 were switched. Many of the examiners changed the 
order in which the questions were asked in the second and third charts. 

Ouestion TvDe of Ouestion 
1 irrelevant 
2 irrelevant 
3 relevant 
4 irrelevant 
5 relevant 
6 control 
7 irrelevant 
8 relevant 
9 relevant 
10 control 

Table 1 MGQT question format 

4.1 File Formats 

Axciton files, digitized polygraph data from the axciton polygraph, were obtained 
from the National Security Agency (NSA) in standard MSDOS format. The sampling 
frequency of the data was 30Hz. Each test consisted of nine files. The labling of the files 
is shown in table 2 and the purpose of each file is explained below. 

Chart 1 
$$xxxxxx.011 
$$xxxxxx.012 
$$xxxxxx.013 

Chart 2 
$$xxxxxx.021 
$$xxxxxx.022 
$$xxxxxx.023 

Chart 3 
$$xxxxxx.031 
$$xxxxxx.032 
$$xxxxxx.033 

Table 2 File format 



As stated in the section above, each examination is composed of three charts. The 
chart number is specified by the second number after the period. The third number after 
the period represents the type of file. 

SSxxxxxx.Oxl is the event marker file which contains the length of the chart and 
the event markers. The start and end of an examiners question is marked with a 0 and 1, 
respectively. The beginning of the subjects response is indicated with a 2 and the rest of 
the file is marked with 9's. File $$xxxxxx.0x2 is the file containing the biological signals. 
These signals correspond to the marker file. File $$xxxxxx.0x3 contains the questions and 
labels them relevant, irrelevant, or control. 

An ASCII file of five columns is created by using $$xxxxxx.Oxl and $$xxxxxx.0x2 
and a program provided by the NSA. An example of this file along with a description of 
the function of each file is shown in table 3 [12]. 

Event Marker FileChart Data FileQuestion TextFile 

SSxxxxxx.Oxl $$xxxxxx.0x2 $$xxxxxx.0x3 

Axciton Contains the length of 
File the chart, the number 

of channels, and the 
position of the event 
marker. 

Contains the digitized 
series values formatted 
according to flags in the 
Event Marker File. 

Contains the script of 
ofquestionsora 
shorthand script of 
questions. 

Processing 
Notes 

Becomes the 5th 
column of ASCII file. 
0=start of a question 
l=end of a question 
2=start of response 
9=No Event Marker 

Becomes lst-4th columns Files used to 
of ASCII file. 
Column 1-GSR 
Column 2-Cardio 
Column 3-Upper Resp 
Column 4-Lower Resp 

determine deviations 
from standard test 
format. 

ASCII File Format (with column labels) 

DOS 
File 

File Row  GSR  Cardio    UR LR EvMark 
1 1983     1931          1482 1083      9 
2 1983     1922          1483 1084      9 
3 1983     1913          1483 1084      9 
4 1983     1906          1483 1085      9 

Table 3 File description and example 



5.1 Preprocessing 

MATLAB was used to display the signals and implement all of the filters and 
feature extraction algorithms. First, the four biological signals were processed into six 
channels. Hamming windowed FIR filters were used to create these channels and 
eliminate noise. A low frequency cardiovascular channel was produced by lowpass 
filtering the cardiovascular signal at .5 Hz using a 134 tap lowpass filter. Then, a high 
frequency cardiovascular channel was produced by highpass filtering the cardiovascular 
signal at .5 Hz using a 134 tap highpass filter. The derivative of the low frequency 
channel was then used to create a third channel. To eliminate noise, the upper and lower 
respiratory signals were lowpass filtered at 1.2 Hz using a 160 tap filter. Noise was 
eliminated from the galvanic skin response by using a 100 tap lowpass filter with a cutoff 
frequency of .5 Hz.   Any DC trends that existed within a chart were eliminated using the 
detrend function in MATLAB. This function finds the best straight line fit to the data and 
then subtracts the line from the data. Each signal was normalized by dividing by its 
standard deviation. The raw data and results of this processing are shown in figures 5-14. 

Fragments of each signal were accessed before features were extracted. These 
fragments were successfully used by Brian M. Duston of the Naval Control and Ocean 
Surveillance Center in his study and are given in table 4 [9]. The start and end points 
given in table 4 refer to the time elapsed after the question was asked by the examiner. 

Channel Start End 
GSR 
Upper respiratory 
Lower respiratory 
Low frequency cardiovascular 
High frequency cardiovascular 
Derivative of low frequency cardiovascular 

2 sec. 14 sec 
2 sec. 18 sec 
2 sec. 18 sec 
2 sec. 18 sec 
3 sec. 9 sec. 
Osec. 8 sec. 

Table 4 Time fragments used in feature extraction 
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Figure 5   Cardiovascular 
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Figure 6   Preprocessed Low Frequency Cardiovascular 

Figure 7   Preprocessed Derivative of Low Frequency Cardiovascular 
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Figure 8   Preprocessed High Frequency Cardiovascular 
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Figure 9   Upper Respiratory 

Figure 10   Preprocessed Upper Respiratory 
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Figure 11   Lower Respiratory 

Figure 12   Preprocessed Lower Respiratory 
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Figure 13   GSR 
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Figure 14   Preprocessed GSR 
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5.2 Time Domain Feature Extraction 

Many of the time domain features were chosen by talking to examiners and finding 
out what was important to them in an examination [10][11]. One feature examiners use to 
determine deception involves the height of the peaks in the respiratory signal. If the peaks 
become smaller or staircase during a relevant question there is a good chance that the 
subject is being deceptive. From looking at different polygraph charts it could be seen that 
individual reactions may vary slightly with time. For this reason, many features were 
extracted from the respiratory channels in order to determine if the deceptive 
characteristics described above may be present. One feature extracted from the 
respiratory signal was the average height of the peaks. Because the time fragments from 
which the features are extracted remain constant, this feature may not give good results 
for subjects reacting early or late. For this reason, the minimum peak height was also used 
as a feature. 

To try and capture the effect of staircasing, the average of the derivative of the 
amplitudes of the peaks was used as feature. To compensate for early and late reactions, 
the maximum of the derivative of the amplitudes of the peaks was also used as a feature. 

Another respiratory feature used in this project was the curve length. This feature 
was successfully used and researched by Howard Timm in the early 1980's[10][13]. 
Interest in curve length lead to curiosity about the area under the respiratory curve. For 
this reason it was also extracted to see if it could be used as a feature. Because people 
tend to breath quicker when they are stressed or nervous, the number of peaks produced 
during a given period of time was used as a feature. 

Because it was one of the first features used to successfully determine deception, 
Benussi's I/E ratio was tested [3] [4]. Benussi's method requires that the I/E ratio of the 
subject is calculated before and after the examiner asks a question. The value of the I/E 
ratio calulated after the question is asked is then divided by the value of the I/E ratio 
before the question is asked. According to Benussi's findings, if the ratio is greater than 
one, the subject is deceptive. In an attempt to reduce the number of computations 
required for Benussi's method, a modification of Benussi's feature was tested. In the 
modification of Benussi's test, the ratio was taken only after the question was asked and 
was not compared to the subjects I/E ratio before the question was asked. 

The examiners we spoke to would usually try to find evidence of deception in 
respiratory signals first. If a subject did not show a strong respiratory response however, 
the examiner would analyze the subjects cardiovascular response. Because a subjects 
heart rate will often increase when deceptive, the number of peaks in the high frequency 
cardiovascular signal was used as a feature. From looking at many charts, it became 
evident that some of the processing used in extracting features from the respiratory 
channels would also be useful in determining deception from the high frequency 
cardiovascular channel. For this reason, the average of the peak height, minimum of the 
peak height and curve length were extracted from the high frequency cardiovascular 
channel in order to determine if they would be useful features. 

Many of the standard statistcal features used in other computerized polygraph 
algorithms were also examined [9]. These features included the mean, the standard 
deviation, the maximum amplitude, and the minimum amplitude of the signal. Variations 
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of these such as the minimum subtracted from the maximum were also examined. 
Although the original use of the curve length and area was to determine deception from 
the respiratory channel, it was extracted from the GSR and cardiovascular channels as 
well. It was not possible from looking at the signals to determine if the curve length had 
changed, but almost any change in a signal would affect this feature. A list of the features 
extracted from each channel are given in table 5. The programs used to extract these 
features were written in MATLAB and are included in the appendix of this report. 

High frequency cardiovascular 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) average amplitude of peaks 
8) minimum amplitude of peaks 
9) derivative of the amplitudes of 

the peaks in the signal 
10) number of peaks in the signal 
11) minimum subtracted from maximum 

Low frequency cardiovascular 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) minimum subtracted from 

maximum 

Upper and lower respiratory 
l)mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) average amplitude of peaks 
8) minimum amplitude of peaks 

GSR 
1) mean of signal 
2) standard deviation of signal 
3) minimum value of signal 
4) maximum value of signal 
5) curve length of signal 
6) area under signal 
7) minimum subtracted from 

maximum 

Derivative of low frequency 
1) mean of signal 
2) standard deviation ofsignal 
3) minimum value ofsignal 
4) maximum alue ofsignal 
5) curve length ofsignal 
6) area under signal 
7) minimum subtracted from 

maximum 

9) derivative of the amplitudes of 
the peaks in the signal 

10) number of peaks in the signal 
11) inhalation/exhilation ratio 
12) ratio of inhalation ratios before 

and after a question is asked 
13) minimum subtracted from 

maximum 

Table 5 List of time domain features 
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5.3 Feature Extraction Methods 

To extract the following features which are listed in table 5, (respiratory 7, 8,9,10 
,11 and high frequeny cardiovascular 7, 8, 9), it was necessary to locate the peaks of the 
respiratory and the high frequency cardiovascular signals. This was not a trivial task 
because these signals contained low amplitude high frequency noise which was difficult to 
eliminate without distorting the data (see figures 8,10, and 12). In order to find the useful 
peaks, two programs were written. The program that found the peaks of the respiratory 
signal was titled peaklr and the program that found the peaks in the cardiovascular signal 
titled peakcard. Both programs can be found in the appendix. The way that these 
programs find peaks is as follows: The second derivative was taken and points that had 
values equal to zero were labeled as peaks. The amplitudes of the signal at points near 
these peaks were evaluated and the maximum of these values were labeled as peaks. 

In order to eliminate the effects of the low amplitude high frequency noise, it was 
necessary to check the amplitude of data points that were near each point that had been 
labeled as a peak. The number of the data points from the peaks that were determined by 
the second derivative was chosen by examining many respiratory and cardiovascular 
signals and determining the average width of the peaks in these signals. It was found that 
twenty points on each side of the each peak found by the second derivative was a 
satisfactory range for the respiratory signals. Similarly eight points on each side of the 
initial peak gave would satisfy this criterion for the cardiovascular signal.   All of the 
routines used to perform these operations are in appendix B (see peak.m, peakcard.m, and 
peaklr.m). 

In order to determine the I/E ratio, it was necessary to find the valleys of the 
respiratory signals as well as the peaks. The method used to find the valleys was the same 
as that used to find the peaks (see appendix B valley.m and valleylr.m). The I/E ratio was 
found by the following method. First the time that a valley occurred was subtracted from 
the time that a peak occurred. Then the time that the peak occurred was subtracted from 
the time that the next valley occurred. The first value was then divided by the second 
value (see appendix B ie.m and ieie.m). 

6.1 Conclusion 

A vector of features was created by the program featurev.m which first executed 
all of the preprocessing routines. The program then extracted features for all of the 
questions using the times specified in table 4. This program extracted features from all 
polygraph files in a directory and produced a set of vectors. These vectors were then used 
for training and testing of a fuzzy K nearest neighbor classifier. For details on the 
methods used for training and testing as well as the frequency and correlation domain 
features used in the study refer to Dastmalchi [14]. For details on the K nearest neighbor 
algorithm refer to Layeghi [15]. 
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Appendix A 

Preprocessing   Programs 



DERCD.M 

function y = dercd(var) 

% This extracts the derivative of a lowpass 
% filtered version of the cardio signal. 
% 
% To use this command the user must enter the file name 
% 
% eg.  dercd(variable name) 

q = detlc(var);  % detrends the lower frequencies 
% of the cardio signal 

e = diff(q);    % differentiates the lower 
% frequencies of the cardio signal 

x = e/std(e); 

y = [x1,x(length(x))•]•; 

Page 1 



DETGSR.M 

function y = detgsr(var) 

% This function detrends the gsr 
% 
% To use this command the user must enter the file name 
% 
% eg.  detgsr(file name) 

dtrnd = detrend(var(:,1)); 

window = 100; 

% elliminates dc trends in signal 
% eg. a line added to the signal 

dtrnd = [dtrnd', zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.03); 
x = filter(b,1,dtrnd); 
q = x/std(x); 
1 = length(q); 

y = q(window/2:1); % compensate for time delay 
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DETHIC.M 

function y = dethic(var) 

% This function detrendeds the high frequencies 
% of the cardio signal. 
% 
% To use this command the user must enter the file name 
% 
% eg.  dethic(file name) 

dtrnd = detrend(var(:,2)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 134; 

dtrnd = [dtrnd*, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.035,'high'); 
% filter to elliminate low frequencies 

x = filter(b,1,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1); % compensate for time delay 
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DETLC.M 

function y = detlc(var) 

% This function extracts and detrends the low 
% frequencies of the cardio signal 
% 
% To use this command the user must enter the file name 
% 
% eg.  detlc(file name) 

dtrnd = detrend(var(:,2)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 134; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.035);   % filter to elliminate high frequencies 
x = filter(b,l,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1);       % compensate for time delay 
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DETLR.M 

function y = detlr(var) 

% This function extracts and detrends the lower respiratory signal 
% 
% To use this command the user must enter the file name 
% 
% eg.  detltr(file name) 

dtrnd = detrend(var(:,4)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 240; 

dtrnd = [dtrnd1, zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b - firl(window,.083);   % filter to elliminate noise 
x = filter(b,l,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1);       % compensate for time delay 
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DETUR.M 

function y = detur(var) 

% This function detrends the upper respiratory signal 
% 
% To use this command the user must enter the file 
% 
% eg.  detur(file name) 

dtrnd = detrend(var(:,3)); % elliminates dc trends in signal 
% eg. a line added to the signal 

window = 240; 

dtrnd = [dtrnd', zeros(window/2 - 1,1)']'; 
% adds zeros to end of signal so that no 
% information is lost during filter delay 

b = firl(window,.08); 
x = filter(b,1,dtrnd); 
q = x/std(x); 

1 = length(q); 

y = q(window/2:1); 

% filter to elliminate noise 

% compensate for time delay 
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Appendix B 

Feature   Extraction   Programs 



function [x,y,z] = featurev(file_name)relevant,irrelevant,control,features) 

% This function produces a feature vector for a given file 
% Relevent, irrelevent, and control are vectors which contain 
% the questions these features are extracted from. 
% 
% eg. featurev(t79,[3 5],[1 4], [6 10],fearure_list) 

% The above example gives the features for 
% the file t79 of the 3rd and 5th question which are relevent in this 
% MGQT format, the 1st and 4th question which are irrelevent 
% and the 6th and 10th questions which are control 

% feature_list=['10rnean(frag)'; 
% '20curve(frag)'; 
% '30area(frag)']; 

feature list = features 

% The channels are ordered as follows: 
% 1:GSR, 2:HiCardio, 3:LowCardio, 4:DerLowCardio, 5:LowResp, 6:UpResp 

% This is a matrix of the time delay after asking a question to start of extracting 
% the feature, and finish extracting the feature for each channel. 

Times=[ 2, 14; 
3, 9; 
2, 18; 
0, 8; 
2, 18; 
2, 18]; 

% These are preprocessing functions 
Preprocess =[ 'detgsr'; 

'dethic'; 
'deüc'; 
'dercd'; 
'deür'; 
'detur']; 

data=zeros(6,length(file_name(:,5))); 
% Standardize and detrend the channels and derive new channels 

fori=l:6, 
data(i,:)=eval([P^eprocess(i,:),,(file_name)^),; 

end 



marker = file_name(:,5);    % 0 begin test and end test 
% 0 examiner begins asking question 
% 1 examiner finishes asking question 
% 2 subject begins response to question 
% 9 does not mark an event 

begin = find(marker = 0);     % finds indecies where marker = 0 (question begins) 
begin=begin(2:length(begin));       % eliminates the marker at the beginning of the test 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This for loop creates feature vectors for each relevant quesion 
% 
% eg x = [meanCgsrJ.stdCgsrJ.areaCgsO.meanClrJ.stdClrJ.areaClrJ.etc  
% curve length,amplitude of peaks,* of peaks] 

'0 

feature_count=l; 

for i = l:length(relevant), 
queslion=relevant(i); 

forj=l:length(feature_list(:,l)) 
channel_number=e\al(fearure_list(j, 1)); 
second_channel=eval(feature_hst(j,2)); 
st=begin(question)+30*Times(channel_number, 1); 
fn=begin(question)+30*Times(channel_number,2); 

st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number,l); 

fr=feature_list(j,3:length(featurejist(l,:))); 
fTag=data(channel_number,st:fn); 
frag2 = data(channel_number,st2:fn2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel,l); 
fh3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fh3); 
end 
tempy=eval(fr); 

for m = l:length(tempy) 
x(feature_count) = tempy(m); 

feature_count=feature_count+1; 
end 

end 
end 

% Irrelevant questions 

feature_count=l; 

for i = l:length(irrelevant), 
question=irrelevant(i); 

forj=l:length(feature_list(:,l)) 
channel_number=eval(feature_list(j,l)); 



second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number, 1); 
fh=begin(question)+30*Times(chaniiel_nuinber,2); 

sl2=begin(question)-30*Times(channel_niimber,2); 
fti2=begin(question)-30*Times(channel_number,l); 

fir=feature_list(j,3:length(feature_list(l,:))); 
frag=data(channel_number,st:fii); 
frag2 = data(channel_number,st2:fii2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel>l); 
fii3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fia3); 
end 
tempy=eval(fr); 

for m = l:length(tempy) 
y(feature_count) = tempy(m); 

feature_count=feature_count+1; 
end 

end 
end 

% Control questions 

feature_count=l; 

for i = l:length(control), 
question=control(i); 

for j= 1 :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number, 1); 
fn=begin(question)+30*Times(channel_number,2); 

st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number,l); 

fT=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number,st:fii); 
frag2 = data(channel_number,st2:fn2); 
if second_channel ~= 0 

st3=4>egin(question)+30*Times(second_channel)l); 
fn3=begin(question)+30*Times(second_channel,2); 

frag3 = data(second_channel,st3:fh3); 
end 
tempy=eval(fr); 

for m = l:Iength(tempy) 
z(feature_count) = tempy(m); 

featurej»unt=feature_count+l; 
end 

end 
end 



AMPCARD.M 

function y = ampcard(var) 

% This function finds the average of the amplitudes 
% of the peaks in the high 
% oardio signal over a specified period of time. 

% To use this command the user must enter the 
% file name and the start and finish points 
% of the signal to be displayed 

% eg.  ampcard(variable name) 

p = peakcard(var);     % the indecies of the peaks 

for n = 1:length(p) 

q(n) = var(p(n));   % amplitude of the peaks 

end 

y = sum(q)/length(q); 
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AMPR.M 

function y = ampr(var) 

% This function finds the average of the 
% amplitudes of the peaks in the lower 
% respiratory signal over a specified period of time. 

% To use this command the user must 
% enter the variable name 
% 
% eg.  ampr(variable name) 

p = peaklr(var);      % the indecies of the peaks 

for n = 1:length(p) 

q(n) = var(p(n));  % amplitude of the peaks 

end 

y = sum(q)/length(q); 
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CURVE.M 

function y = curve(var) 

% This function finds the length of the variable 
% 
% To use this command the user must enter the 
% variable name and the start and finish points 
% of the signal to be displayed 
% 
% eg.  curve(variable name) 

x = sqrt(diff(var). ~2 + 1); 
y = sum(x); 
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IE.M 

function y = ie(var) 

% This function takes the i/e ratio of the respiratory signals. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  ie(variable name) 

p = peaklr(var); 

plength = length(p); 

v = valleylr(var); 

% finds the indices of 
% the peaks in a signal and puts them 
% in a vector a 

% finds the indices of the 
% valleys in a signal and puts them 
% in a vector b 

vlength = length(v); 

if vlength < 2 | plength < 2 

message = ' Warning !!!! 

end 

if p(l) > v(l) 

for n = 1:vlength - 1 

q = p(n) - v(n) ; 

z = v(n + 1) - p(n); 

e(n) = q ./ z; 
end 

end 

if p(l) < v(l) 

for n = 1:vlength - 1 

q = p(n + 1) - v(n); 

% check that enough peaks 
% and valleys exist for 
% the calculation to be done 

Not enough data' 

% calculates a vector of 
% e/i ratios for the given 
% time period 

% calculates a vector of 
% e/i ratios for the peaks 
% and valleys in the 
% given time period 

z = v(n + 1) - p(n + 1); 
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IE.M 

e(n)   = q  ./  z; 
end 

end 

y = mean(e); 
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IEIE.M 

function y = ieie(varl,var2) 

% This function takes the i/e ratio of the respiratory signals 
% before and after a question is asked.  It then divides the two 
% values. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  ieie(variable namel, variable name2) 

a = ie(varl); 

b = ie(var2); 

y = a/b; 
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PEAK.M 

function y = peak(var) 

% This function finds the peaks in a signal and returns the index 
% It also creates a plot of the variable with the peaks marked 
% 
% To use this command the user must enter the variable name 
% of the signal to be displayed 
% 
% eg.  peak(variable name) 

q = diff(var); % differentiates the variable 

z = q>0; % z = 1 if q is greater than 0 

f = diff(z); % 2nd derivative of the variable 

a = f<0; 

y = find(a);      % finds the indices where the 2nd derivative 
% is -1 which indicates peak 
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PEAKCARD.M 

function y = peakcard(var) 

% This function finds the peaks in 
% the cardio signal and returns a vector of 
% indexes where they occur. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  peakcard(variable name) 

ty «= peak(var) ; 

if ty(l) < 8 
ty = ty(2:length(ty)); 

end 

if ty(length(ty)) > length(var) - 8 
ty = ty(l:length(ty)-1); 

end 

for n = 1:length(ty); 
% finds the maximum peak over a 10 point s 

pan 

temp = var(ty(n)-8 : ty(n)+8); 

z(n) = ty(n) - 9 + find(temp == max(temp)); 
% finds the time that the peak 
% occurs in the original signal 

end 

for n = 1:length(z)-l % elliminates duplicate indicies 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); % finds indecies of elements 
% that are not equal to zero 

for n = 1:length(ind)      % elliminates 0 elements 

z(n) = z(ind(n)); 

end 
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PEAKCARD.M 

y = z(1:length(ind)); 

% pmark = zeros(l,length(var)); % a vector of l's where peaks occu 
r 

% O's everywhere else 
% pmark(y) = ones(1,length(y)); 

% plot(var,'r') 

% title('lr marked with peaks') 

% hold on 

% plot(5*pmark,'g') 

% hold off 
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PEAKLR.M 

function y = peaklr(var) 

% This function finds the peaks 
% in the lr signal and returns a vector 
% of indecies where they occur. 
% 
% To use this command the user must enter the variable name 
% 
% eg.  peaklr(variable name) 

[b,a] = butter(4,.034); 
filtout = filtfilt(b,a,var); 

% elliminate noise 

ty = peak(filtout); % finds the time that the 
% peaks of filtered lr signal occur 

if ty(l) < 20 
ty = ty(2:length(ty)); 

end 

if ty(length(ty)) > length(var) - 20 
ty = ty(l:length(ty)-l); 

end 

for n = 1:length(ty) 

temp = var(ty(n)-20:ty(n)+20); 
z(n) = ty(n) - 21 + find(temp == max(temp)); 

% finds the time that the peak occurs in 
% the original signal 

end 

for n = 1:length(z)-1 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); 

% elliminates duplicate indicies 

% finds indecies of elements 
% that are not equal to zero 

for n = 1:length(ind)  % elliminates 0 elements 

z(n) = z(ind(n)) ; 

end 
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PEAKLR.M 

y =  z(1:length(ind)); 
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PEAKNUMC.M 

function y = peaknumc(var) 

% This function finds the number of 
% peaks in the high cardio signal 
% 
% To use this command the user 
% must enter the variable name 
% 
% eg.  peaknumc(variable name) 

p = peakcard(var);      % the indecies of the peaks 

y = length(p); 
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PEAKNUMR.M 

function y = peaknumr(var) 

% This function finds the number 
% of peaks in the respiratory signal 
% 
% To use this command the user 
% must enter the variable name 
% 
% eg.  peaknumr(variable name) 

p = peaklr(var);       % the indecies of the peaks 

y = length(p); 
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TSTFEAT.M 

feature_list=[  'lOmean(frag) 
•lOcurve(frag) 
'lOarea(frag) 
'20mean(frag) 
•20curve(frag) 
•20area(frag) 
'20ampcard(frag) 
• 2 Opeaknumc(frag) 
'30mean(frag) 
'30curve(frag) 
•30area(frag) 
'40mean(frag) 
'40curve(frag) 
•4 0area(frag) 
•50mean(frag) 
'50curve(frag) 
•50area(frag) 
'50ampr(frag) 
'50peaknumr(frag) 
'50ie(frag) 
•50ieie(frag, frag2) 
•60mean(frag) 
'60curve(frag) 
'60area(frag) 
*60ampr(frag) 
160peaknumr(frag) 
'60ie(frag) 
'60ieie(frag, frag2)   ']; 

[x y z] = featurev(t79,[1 2],[3 4],[6 10],feature_list) 
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VALCARD.M 

function y = valcard(var,start,finish) 

% This function finds the valleys in 
% the lr signal and returns a vector of indexes where 
% they occur 
% 
% To use this command the user must enter the 
% file name and the start and finish points 
% of the signal to be displayed 
% 
% eg.  valcard(file name, start, finish) 

k -  hicardio(var,start,finish); 

[b,a] = butter(4,.034);       % elliminate high frequencies 
filtout = k; % filtfilt(b,a,k); 

tv = valley(filtout,start,finish) % finds the time that the 
% peaks of filtered lr signal oc 

cur 

1 = length(ty); 

for n = 1:1 

temp = k(max(l,ty(n)-10+start) : min(ty(n)+10+start,length(k) 

)); 

if ty(n)<10 
dd=length(temp)/2+1; 

else 
dd=ll; 

end 

v(n) = ty(n) - dd + find(temp — min(temp)); J % finds the time that the peak occurs in 
% the original signal 

end 

vmark = zeros(1,finish - start); % a vector of l's where peaks occ 
ur 

% 0's everywhere else 
vmark(y) = ones(1,length(y)); 

subplot(211),plot(k(start:finish),'r') 
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VALCARD.M 

title('lr marked with peaks') 

hold on 

plot(-5*vmark,'g») 

hold off 

subplot(212),plot(filtout(start:finish), 'r') 

title('filtered lr marked with peaks') 

hold on 

plot(vmark,'g') 

hold off 

% subplot(223),plot(k(start:finish),'r') 

% hold on 

% plot(5*a(l:finish - start - 3),'g') 

% hold off 

% subplot(224),plot(x) 

% subplot(111) 
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VALLEY.M 

function y = valley(var) 

% This function finds the 
% valleys in a signal and returns the index 

% To use this command the user 
% must enter the variable name 
% 
% eg.  valley(variable name) 

q = diff(var);      % differentiates the variable 

z = q > 0; % z = 1 if q is greater than 0 

f = diff(z); % 2nd derivative of variable 

a = f > 0; % finds valleys 

y = find(a);  % finds the indices where the 2nd derivative 
% is +1 which indicates valleys 
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VALLEYLR.M 

function y = valleylr(var) 

% This function finds the valleys in 
% the lr signal and returns a vector of 
% indecies where they occur 
% 
% To use this command the user must enter the variable name 
% 
% eg.  valleylr(variable name) 

[b;a] « butter(4,.034);      % elliminate high frequencies 
filtout = filtfilt(b,a,var); 

ty = valley(filtout);  % finds the time that the 
% peaks of filtered lr signal occur 

for n = 1:length(ty) 

temp = var(max(l,ty(n)-20) : min(ty(n)+20,length(var))); 

if ty(n)<20 
dd=length(temp)/2+1; 

else 
dd=21; 

end 

z(n) = ty(n) - dd + find(temp == min(temp)); 
% finds the time that the peak occurs in 
% the original signal 

end 

for n = 1:length(z)-l 

if z(n) == z(n+l) 

z(n) = 0; 

end 

end 

ind = find(z); 

for n = 1:length(ind) 

z(n) = z(ind(n)); 

end 

% elliminates duplicate indicies 

% finds indecies of elements 
% that are not equal to zero 

% elliminates 0 elements 
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VALLEYLR.M 

y = z(1:length(ind)); 
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0 Introduction 

The polygraph examination is one of the most popular methods to measure deception. 
Polygraph tests are used in criminal investigations to determine if a suspect is being 
deceptive when answering the questions concerning a crime. During a polygraph test, the 
subject is asked a series of control, relevant and irrelevant questions that provide 
physiological responses for comparison with question that are relevant to the investigation. 
The three physiological responses that are currently measured are electrocardiogram, 
galvanic skin response and respiration. The controversy surrounding the use of polygraph 
tests centers on the subjective judgment of polygraph examiners in classifying the subject as 
deceptive or non-deceptive. The object of this project is to develop an automatic scoring 
system to overcome this perception. The computer algorithm will be able to use more 
sophisticated techniques than human examiners, should be more accurate and will ensure 
consistency from case to case. 

In order to implement the automatic scoring system, two main algorithms were developed. 
These were: the feature extraction algorithm, which process the polygraph data in three 
time, correlation and frequency domains, and the fuzzy classifier algorithm, which accepts 
the features and determines the possibility of deception. Because of the nature of the input, 
fuzzy logic was chosen to implement the system which gives the possibility of belonging of 
an input to each class. Initially, a set of features based on physiological reactions were 
selected. Then, the fuzzy K-nearest neighbor classifier was used to classify the features. 



1 Polygraph 

1.1 Polygraph Examination 

The primary use of the polygraph test is during the investigation stage of the criminal justice 
process. In addition to the sigrjficance role in criminal justice, they are also used for 
national security, intelligence and counterintelligence activities [1]. The three physiological 
responses currently obtained from a polygraph examination are electrocardiogram, 
respiration and galvanic skin response. Electrocardiogram is measured by placing a standard 
cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes 
around the abdominal area of the subject. Skin conductivity is measured by electrodes 
placed on two fingers of the same hand of the subject [1]. 

The effectiveness of a polygraph examination is often the result of the test format that is 
used. A polygraph test format is an ordered combination of relevant question about an 
issue, control questions that provide physiological responses for comparison and irrelevant 
questions that act as a buffer [1]. An example or a relevant question is," did you embezzle 
any of the missing $12000?" The corresponding control question would be about stealing; 
an example is, "did you ever steal money or property from an employer?" The example of 
an irrelevant question is," is your name John?" Irrelevant questions are answered truthfully 
and are not stressful. The rational for scoring these tests is that a deceptive subject will be 
more threatened by the relevant question than by the control question while a non deceptive 
subject will be more threatened by the control questions than the relevant question. 

Polygraph charts are usually analyzed by a human interpreter for evidence of truth or 
deception. A control question polygraph chart usually consists of 3 sets of control relevant 
question pairs separated by neutral questions. The examiner scores the charts by comparing 
each relevant question. For each of three physiological responses, he will give a numerical 
score ranging from -3 tO +3, depending on the magnitude of the difference. He then adds up 
scores for all control relevant pairs. If the score is below threshold value, he scores the 
chart as deceptive or non deceptive. 

Sometimes the examiner can not make a clear decision and must score the chart as 
inconclusive. The examiner's decision will be based on his or her experience and training. 
For example, a change in the polygraph tracing considered by one examiner as a 
physiological changes, may be considered by another as an artifact of the recording system. 
In an effort to eliminate the inconsistencies involved in interpreting polygraph data, 
computer algorithm are being developed. 



1.2 History1 

The first attempt to use a scientific instrument in an effort to detect deception occurred 
around 1895 [2].   That was the year that Cesar Lombroso published the results of his 
experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse 
changes of criminals in order to determine whether or not they were deceptive. Although 
the hydrosphygmograph was originally intended to be used for medical purposes, 
Lombroso found that it worked well for lie detection. Lombroso may have been the first 
to use a peak of tension test format. This was done by showing a suspect a series of 
photographs of children, one being the victim of sexual assault.   If the suspect did not 
react more to the victims picture than the pictures of the other children, Lombroso 
concluded that the suspect did not know what the victim looked like and therefore was not 
the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 
recorded respiration tracings [3]. He found that if the length of inspiration were divide by 
the length of expiration, the ratio would be larger after lying than before lying and also 
before telling the truth than after telling the truth. In 1921 John A. Larson constructed an 
instrument capable of simultaneously recording blood pressure pulse and respiration 
during an examination [2][3]. Larson reported accurate results which prompted Leonarde 
Keeler to construct a better version of this instrument in 1926 [2][3]. 

The use of galvanic skin response in lie detection began during the turn of the century. It's 
usefulness, however, did not become evident until the 1930's during which time several 
articles written by Father Walter G. Summers of Fordham University in New York [3]. 
In these articles he reports over 90 criminal cases in which examination using the galvanic 
skin response had all been successful and confirmed by confession or supplementary 
evidence. The usefulness of the galvanic skin response prompted Keeler to add an 
galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 
Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

1.3 Modern Test Formats1 

The effectiveness of a polygraph examination is often the result of the test format that is 
used. A polygraph test format consists of an ordered combination of relevant questions 
about an issue, control questions that provide a physical response for comparison, and 
irrelevant questions that also provide a response or the lack of a response for comparison 
[1][3]. Three general types of test formats are in use today. These are Control Question 
Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general 
test formats may have a number of more specific variations. Each test consists of two to 

'These sections were exerpted from Jacobs [10]. 



five charts containing a prescribed series of questions. The test format that is used in an 
examination is determined by the test objective [2J[3]. 

The concealed knowledge test, also called peak of tension test, is used when facts about a 
crime are known only by the investigators and not by the public. In this case, a subject 
would not know the facts unless he or she was guilty of the crime. For example, if a gun 
was used in a crime and the public did not know the caliber, an examiner could ask a 
suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the 
suspect was deceptive, a polygraph chart would probably indicate evidence of deception. 

A control question test is often used in criminal investigations. Relevant-Irrelevant tests 
are usually used to test people trying to obtain security clearance or get a job. In this test, 
relevant questions are compared to irrelevant questions. Very few control questions are 
asked. The purpose of control questions in this test is to make sure that the subject is 
capable of reacting at all. 

1.4 Present Day Equipment2 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 
and the Axciton Systems computerized polygraph developed in 1989 [1][4]. The Reid 
polygraph scrolls a piece of paper under pens that record the biological signals. The 
Axciton polygraph digitizes physiological signals and uses a computer to process them. 
The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 
based system for ranking the subject responses but allows printouts of the charts to be 
scored by hand the traditional way. 

Both machines record the same biological signals using standard methods. Blood pressure 
is measured by placing a standard blood pressure cuff on the arm over the brachial artery. 
Respiration is monitored by placing rubber tubes around the abdominal area and the chest 
of the subject. This results in two signals, an upper and lower respiratory signal. Skin 
conductivity is measured by placing electrodes on two fingers of the same hand. 

2This section was exerpted from Jacobs [10]. 



2 Classifier Algorithm 

| 2.1 K-Nearest Neighbor Algorithm3 

K-nearest neighbor algorithm is a supervised classification method. There is no need for 
| the training or adjusting the classifier. A set of labeled input samples is given to the 
1 classifier. When a new sample is given to the system, it finds its K nearest neighboring 

samples, and assigns this sample to the class that the majority of the neighbors belong to. 
| K could be any positive integer. When K is set to 1, the algorithm is called the nearest 

neighbor algorithm. In this case each new sample is assigned to the class of its nearest 
I" neighbor. If K is greater than 1, it is possible that there is no majority class. To remove 
I this tie, the sum of the distances of the new sample to its neighbors in each class is 

computed and the sample is assigned to the class that has the minimum distance. The 
< main advantage of using this method is that the samples of each class are not needed to 

cluster in a pre specified shape. For example, for a two class classification, the K-nearest 
neighbor classifier can still give very good results if the samples of each class are clustered 
in two distinct points in the space. The algorithm for the K nearest neighbor is shown in 
flow chart 1. It is supposed that C is the number of classes, K is the number of neighbors 
in KNN, x. xt is the \th labeled sample and y is the input to be classified. 

3This section was exerpted from Layeghi [11]. 
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The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest 
neighbor algorithm, that is finding the K samples that are closest to sample to be classified. 
But there is a conceptual difference in classification. When fuzzy classification is used, the 
input is not assigned to a single class. Instead, the degree of belongings of the input to 
each class is determined by the classifier. By using this method more information is 
obtained about the input. For example if the result of classification determines 
membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs 
to class A with a very good possibility. But if the membership to class A is 0.55 and to 
class B is 0.45, it means that we cannot be very sure about the classification of the input. 
If the crisp classifier is used, in both cases the input will be assigned to class A and no 
further information is obtained. 

Refer to [5] [6] for more detailed discussions about fuzzy K nearest neighbor algorithms. 
The flowchart for a fuzzy K nearest neighbor classifier is drawn in flow chart 2. 

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp 
classifier. In both cases K nearest neighbors of the input are found. While in crisp 
classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier 
membership of the input to each class should be found. In order to do so the membership 
vector of each sample is combined to obtain the membership vector of the input. If the 
samples are crisply classified, membership vectors should be assigned to them. One 
method to do so is to assign the membership of 1 to the class that it belongs to, and 
membership of 0 to other classes. Other methods assign different memberships to the 
samples according to its distance from the mean of the class, or the distances from the 
nearby samples of its own class and the other classes. 

When the membership vectors of the labeled samples are specified, they are combined to 
find the membership vector of the unknown class. This procedure should be done in a 
way that samples that are closer to the input have more effect on the resultant membership 
function. The following formula uses the inverse distance to weigh the membership 
functions, x is the input to be classified, x} is the j/A nearest neighbor and «,-, is the 

membership of the ]th nearest neighbor of the input in class i. D(x,y) is a distance measure 
between the vectors x and y which could be the Euclidean distance. 

ftuv(l/D(x.xJj^) 
u,(x) = ^ 

Zfl/Dfx.x,)"-*) 
;=i 

m is a parameter that changes the weighing effect of the distance. When m » 1, all the 
samples will have the same weight. When m approaches 1, nearest samples have much 
more effect on the membership value of the input. 
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3 Frequency and correlation Domain Features 

3.1 Preview 

The purpose of this chapter is to show how the frequency and correlation domain 
representations of polygraph signals can be used effectively in polygraph analysis. The first 
step in analysis of a time series is to plot the data and to obtain simple descriptive 
measures of the main properties of the series. For some series, in addition to features such 
as trend, seasonal effect and cyclic changes, more sophisticated features such as mean, 
variance, auto correlation and frequency content will be required to provide an adequate 
analysis. 

Most physical processes, including polygraph signals, involve a random element in their 
structures. Currently, human examiners score polygraph tests by analyzing obvious 
features in the time domain. It is presumed that processing polygraph signals in frequency 
and correlation domain will provide features which are discriminator between deceptive 
and non-deceptive subjects. Before finding the frequency domain features the trend in the 
electrocardiogram channel was eliminated. In order to do so, a high frequency 
electrocardiogram channel, called heart pulse, is produced by highpass filtering it. 

The goal of this chapter is to explain the techniques used to extract appropriate features in 
frequency and correlation domains. The methods for estimating features of the polygraph 
signals such as fundamental frequency, spectral density and cross correlation between the 
channels will be discussed. 

3.2 Fundamental Frequency 

One feature which is considered important in the frequency domain is the fundamental 
frequency of the signal. The purpose of finding the fundamental frequency is to classify 

; the way the frequency changes in a specific time segment. The assumption in polygraph 
\ signals is that the frequency of the signal changes after a relevant or a control question is 

asked. Different methods have been proposed to find the fundamental frequency of a 
signal. One of these methods is using the auto correlation function. 

i 
i 

The auto correlation representation of a signal is a convenient way of displaying certain 
( properties of the signal. For example, the auto correlation function of a periodic signal is 
■ also periodic with the same period. For periodic signals with period P, the auto 

correlation function attains a maximum at samples 0,±P ,±2P  Regardless of the time 
origin of the signal, the period can be estimated by finding the location of the first 
maximum in the auto correlation function [7]. 



This property makes the auto correlation function an attractive basis for estimating 
periodicity in most signals including the electrocardiogram and respiration signals of the 
polygraph records.   Therefore, a short segment of the signals (electrocardiogram and 
respiratory) after each question is selected and pre-processed. The auto correlation is then 
calculated for the windowed segments of the heart pulse and respiratory signals using 
MATLAB. Figure 1 shows the examples of auto correlation functions computed for heart 
pulse with N = 150 and upper respiratory with N = 400 sampled at 30 Hz. N is the 
number of samples. 

It is noticeable that the auto correlation functions of the above signals are a mixture of 
damped exponential and sinusoids. For the heart pulse, peaks occur approximately at 
multiples of 20 samples indicating a period of 20/30=0.67 seconds or a fundamental 
frequency of approximately 1.5 Hz. For the upper respiratory, peaks occur approximately 
at multiples of 133 samples indicating a period of 133/30 = 4.4 seconds or a fundamental 
frequency of approximately 0.23 Hz. 
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Figure 1. Plots of auto correlation function for (a) heart pulse and (b) upper respiratory 
where k is the number of samples. 
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For some subjects, the period of the electrocardiogram or upper respiratory signal changes 
across the N sample interval. Also, the shape of the signal varies somewhat from period 
to period. Because of the finite length of segments involved in the computation of auto- 
correlation, there is less and less data involved in the computation as the lag increases. 
This leads to the reduction in amplitude of the correlation peaks as lag increases. 

An important issue is how N should be chosen to give a good indication of periodicity. 
Because we are interested in observing changes in signal after the question is asked, N 
should be small. On the other hand, it should be noted that to get any indication of 
periodicity in the auto correlation function, the window must have the duration of at least 
two periods of the waveform. In order to choose the best N, the fundamental frequency 
for different time frames without overlap were calculated and the results were examined. 
The fundamental frequencies of heart pulse for the four second frame are shown in Table 1 
and 2 in Appendix A. No single value of N is entirely satisfactory because the frequency 
changes from individual to individual. However, a suitable practical choice for N was 
chosen on the order of 180 and 480 for heart pulse and upper respiratory respectively. 

3.3 Modeling 

Detailed information about a time series can be obtained from creating a model. In this 
section a model will be found for the heart pulse signal. Finding a suitable model for a 
given time series depends on the properties of the series and the number of observations 
available. In signal modeling the output signal is known and the model development is 
based upon the fact that signal points are correlated. Estimated auto correlation function 
(ACF) of the time series is helpful in identifying which type of ARMA model is 
appropriate and gives the best representation of the signal. 

The ACF of a MA process cuts off at lag q whereas the ACF of an AR process is a 
mixture of damped exponential and sinusoids and dies out slowly. For example, if rl is 
significantly different from zero but the subsequent values of n are all close to zero then 
an MA(1) model is indicated since its theoretical ACF is of this form. Alternatively, if 
r\,n,ri,.. appear to be decreasing exponentially, then an AR(1) model may be 
appropriate. 

It is usually difficult to find the order of an AR process from the sample ACF alone. A 
model with too low an order will not represent the properties of the signal.   Also a model 
with too high an order will represent any measurement noise or inaccuracies. Therefore, 
neither a high order nor a low order model will be a reliable representation of the signal. 
As a result, method that will determine the model order should be used. One approach is 
to fit AR processes of progressively higher order, to calculate the squared error for each 
value of model order (M), and to plot this against model order. It may then be possible to 
see the value of M where the curve flattens out and the addition of extra parameters gives 
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little improvement in fit. Another approach based upon the principals of prediction is that 
to increase the model order until the residual process becomes a white noise. 

Other criteria have been developed that are based upon concepts in mathematical statistics 
[9]. The first one is the final prediction error (FPE), 

FPE = pNU^l (3.3a) 
N-M-l 

Where P, N and M are error, number of samples and model order respectively. 

The fractional portion of FPE increases with M and accounts for the inaccuracies in 
estimating the parameters. The other criterion is called Akaike's information criterion 
(AIC). It is: 

AIC=Ann/>2 + 2P (3.3b) 

The first criterion tends to have a minimum at values of M that are less than the model 
order and the second one tends to overestimate model order. 

The above criteria were calculated for electrocardiogram signal and the results were 
plotted in Figure 2. As shown in Figure 2(a), the error decreases but there is no definitive 
slope change. The largest decrease occurs from order 1 to 2 and the error does not seem 
to decrease significantly with orders greater than 11. For FPE (Figure 2(b)) and AIC 
(Figure 2(c)) plots, the error does not decrease much with orders greater than 11. Thus, 
the order can be approximately 10. The Levinson-Durbin algorithm was used to calculate 
the AR parameters with order 10 for heart pulse. These parameters were used as features. 
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Figure 2. The different criteria for heart pulse versus model order (M): (a) error; (b) 
FPE; (c)AIC. 

3.4 Cross-covariance and cross-correlation functions 

In general, it may be necessary to study the interactions between two processes with 
possibly different scales of measurement or different variances. In polygraph where time 
series data are generated from more than one channel at a time, features like cross- 
correlation which contain information about relationships between the channels are 
extracted. The cross covariance(C*>) and cross correlation function {rv) are defined as 
following: 

N-l 
X(X(n)-mx)(Y(n + k)-my) 

Cxy(*) = *=i 

N 

rv = Cxy/J[Cxx(0)Cyy(0)) 

where    /"* = £—     OT>' = L— 

[* = 0,l,....(tf_l)]   (3.4a) 

(3.4b) 

(3.4c) 
*=i *=i 

Cxr(O) and Cyy(0) are the variances of observations on X and Y respectively. 
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This estimate is asymptotically unbiased. However, the variance of the estimate depends 
on the auto correlation functions of the two components. Therefore, for moderately large 
values of N it is possible for two series, which are actually uncorrelated, to give rise to 
large cross-correlation coefficients which are actually spurious. Thus, both series should 
first be filtered to convert them to white noise before computing the cross-correlation 
function [8]. 

In order to determine the relationship between the upper respiratory and heart rate, the 
cross correlation between them was calculated. Figure 3 shows the cross correlation 
between heart pulse and upper respiratory for a control and a relevant question for two 
different deceptive and non deceptive cases. 
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Figure 3. Cross correlation between upper respiratory and heart pulse before 
modeling, (a) and (b) 90 seconds after relevant question 5. (b) and 
(c) 90 seconds after control question 6. 
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3.5 Whitening filter 

For a given process {x(n)}, the innovation process {v(n)} is defined as a white noise 
process such that (v(n)} can be determined from the signal (x(n)} by the whitening filter. 
The innovations representation of a random process is a powerful analytic tool. The 
innovation process makes the interpretation of the original process simpler than the 
original signal. Yet both processes contain the same statistical information. In other 
words, there is no loss of information as a result of the transformation. 

As stated in section 3.4, it is possible for two series, which are actually uncorrelated, to 
give rise to large cross-correlation coefficients which are actually spurious. Thus, the 
series should first be filtered to convert them to white noise before computing the cross- 
correlation function. The AR parameters were used to design the whitening filter. Then, 
the heart pulse signal was filtered to convert it to white noise. 

When the time series is white noise and purely random, the neighboring points of the ACF 
are uncorrelated. In order to compare the whitening filter output and the theoretical white 
noise, both the output of the whitening filter and its auto correlation for electrocardiogram 
were plotted in Figure 4. It is seen that the auto correlation shows high correlation for lag 
zero (k=175) and small correlation for other lags as it expected. 
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Figure 4. Plots of (a) white noise (output of the whitening filter); (b) auto correlation 
of the white noise. 
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The heart pulse and its innovation process (pre whitening filter output) contain the same 
information. The results of cross-correlation between upper respiratory and heart rate 
signals after pre whitening are shown in figure 5. It can be seen that the cross-correlation 
after modeling is similar to the cross correlation before modeling (Figure 2) with less 
spurious peaks. The maximum and minimum value of cross correlation and their lags 
were considered as potential features in correlation domain. As presented in figure 5 (b), 
heart pulse and upper respiratory channels are positively correlated after the 30 to 90 lags 
(1-3 seconds) and are negatively correlated after 130 lags (4.3 seconds). 
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Figure 5. Cross correlation between heart pulse and upper respiratory after modeling for 
(a) and (b) 90 seconds after relevant question 5. (b) and (c) 90 seconds 
after control question 6. 
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3.6 Spectral Analysis 

In this section the frequency properties of the polygraph signals such as power spectrum 
and cross spectral density are analyzed. The cross-correlation and cross spectral density 
are the tools for examining the relationships between two signals in the time and frequency 
domains respectively. The power spectrum shows how the variance of the signal is 
distributed with frequency. The total area underneath the spectrum curve is equal to the 
variance of the signal. A peak in the spectrum indicates an important contribution to the 
variance at different frequencies. 

The estimated spectrum for different channels were plotted on linear scale in Figure 6 and 
on logarithmic scale in Figure 7. For spectrum showing large variations in power, a 
logarithmic scale makes it possible to show more detail over a wide range. However, this 
exaggerates the visual effects of variations where the spectrum is small. It is often easier 
to interpret the spectrum plotted on a linear scale than logarithmic scale. 
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Figure 6. Frequency contents of four polygraph signals on linear scale, (a) GSR for 
480 samples, (b) heart pulse for 200 samples, (c) and (d) lower and upper 
respiratory for 480 samples. 
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Figure 7. Frequency contents of four polygraph signals on logarithmic scale, (a) GSR 
for 480 samples, (b) heart pulse for 200 samples, (c) and (d) lower and upper 
respiratory for 480 samples. 

Figure 7 shows for GSR the variance is concentrated at low frequencies indicating a trend 
or non-stationary behavior. The spectrum for heart pulse signal shows the presence of 
harmonics with a large peak at fundamental frequency of f = 2 Hz and related peaks at 
2f, 3f, ....These multiples of the fundamental indicate the non sinusoidal character of the 
main cyclical component. 

The correlation between two signals can be described in the frequency domain by their 
cross amplitude, phase spectra or the squared coherency. The coherency measures the 
linear correlation between the two components of the two channels at frequency f. The 
closer the coherency is to one, the more closely related are the two signals at frequency f. 

The MATLAB function spectrum.m finds the cross-spectrum and coherency between 
upper respiratory and electrocardiogram and are shown in Figure 8. Their cross spectrum 
shows a large peak at f = 2 Hz. Maximum cross spectral density and the magnitude of 
cross spectral density and coherency at fundamental frequency and the second harmonic 
were considered as features in frequency domain. 
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Figure 8. Plots of coherency and cross spectral density between heart pulse and 
upper respiratory signals. 

3.7 Integrated spectral distance 

This section describes how to obtain a feature in the frequency domain called integrated 
spectral difference. This feature was introduced by Martin and Pounds [12]. Other 
features are calculated separately for each control, relevant and irrelevant questions. The 
integrated spectral distance is calculated in a different way than the other features. This 
feature is calculated by taking the difference between the cumulative values of the power 
spectral density for each relevant and its closest control question. The integrated spectral 
distance measures the distance between a control and a relevant question directly. Figure 
9 shows the cumulative spectral density for a control and a relevant question. The 
maximum, the frequency where this maximum happens and the area underneath were 
considered as features. 
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3.8 Frequency and Correlation Domain Features 

Table 1 summarizes the frequency and correlation features explained in the above sections. 

Feature 
Maximum cross correlation 
Lag of maximum cross correlation 
Minimum cross correlation       
Lag of minimum cross correlation 
Spectral value at fundamental frequency 
Spectral value at fundamental frequency 
Spectral value at (fundamental frequency of channel 2) *2 
Spectral value at (fundamental frequency of channel 6) *2 
Maximum cross spectral density 
Coherency at fundamental frequency of channel 2 
Coherency (at fundamental frequency of channel 2)*2 
Fundamental frequency  
Fundamental frequency 
Maximum or minimum integrated spectral difference 
Frequency of the maximum integrated spectral difference 
Area underneath integrated spectral difference 
maximum or minimum integrated spectral difference 
Frequency of the maximum integrated spectral difference 
Area underneath integrated spectral difference 
Autoreeressive parameter 

Channel 
between 2 & 6 
between 2 & 6 
between 2 & 6 
between 2 & 6 

between 2 & 6 
between 2 & 6 
between 2 & 6 

Table 1. Frequency and correlation domain features. 
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4 Feature extraction 

4.1 Preprocessing 

This chapter explains the steps taken in feature extraction algorithm. In polygraph tests, 
four physiological responses are measured. These responses are: upper respiratory, lower 
respiratory, galvanic skin response (GSR) and electrocardiogram. These four polygraph 
responses are processed into six channels. A low frequency electrocardiogram channel is 
produced by lowpass filtering the electrocardiogram channel. A high frequency 
electrocardiogram channel is produced by highpass filtering it. The high frequency 
electrocardiogram, called heart pulse, the low frequency electrocardiogram, called blood 
volume and derivative of the low frequency electrocardiogram are used instead of one 
electrocardiogram channel. To eliminate the noise and any trend, all the signals are 
filtered and detrended. For more information about the filtering and detrending refer to 
Jacobs [10]. 
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4.2 Feature Selection 

Many of the time domain features were selected based on the examiners' suggestions. 
However, many of the standard statistical features were also considered as potential 
features. For more information about time domain features refer to Jacobs [10]. The 
selected features and the channels which they were extracted from are listed below. 

Features Channel 
l)Mean 1,2,3,4,5,6 
2) Standard deviation 1,2,3,4,5,6 
3) Minimum 1,2 , 3, 4, 5 , 6 
4) Maximum 1 ,2 , 3, 4, 5 , 6 
5) Curve length 1,2 , 3, 4, 5 , 6 
6) Mean of derivative 1,2 , 3, 4, 5 , 6 
7) Median of derivative 1,2 , 3, 4, 5 , 6 
8) Average amplitude of peaks 2.5,6 
9) Minimum amplitude of peaks 2,5,6 

10) Derivative of amplitudes of peaks 2,5,6 
11) Number of peaks 2,5,6 
12) Minimum subtracted from maximum 1 ,2 , 3, 4, 5 , 6 
13) Inhalation/exhalation 5,6 
14) ratio of inhalation/exhalation before 5,6 

and after a question is asked 

15) Fundamental frequency 2,5 

16) Maximum cross correlation between 2 and 6 
17) Lag of maximum cross correlation between 2 and 6 
18) Minimum cross correlation between 2 and 6 
19) Lag of minimum cross correlation between 2 and 6 

20) Spectral value at fundamental frequency between 2 and 6 
21) Spectral value at second harmonic between 2 and 6 
22) Maximum cross spectral density between 2 and 6 
23) Coherency at fundamental frequency between 2 and 6 
24) Coherency at second harmonic between 2 and 6 

25) Autoregressive parameters(AR) 2 

26) Maximum or minimum 1,2 
integrated spectral difference (ISD) 

27) Frequency of maximum ISD 1,2 
28) Area under ISD 1,2 
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4.3 Feature Extraction Algorithm 

All features are extracted for 10 relevant, irrelevant and control questions except features 
26, 27 and 28 that are extracted for each relevant and its closest control question. The 
program called fextract.m extracts all the basic features for each question on each chart 
for about 18 non-deceptive and 51 deceptive cases. Due to the small number of non- 
deceptive cases, each chart for a subject was used as a separate case. By doing this 50 
non-deceptive and 150 deceptive files were created. 

The test format used in this project is MGQT format. It is a type of control question test 
in which relevant, irrelevant and control questions are asked in a specific order. Each 
polygraph test is made of three and in very rare cases four charts for each case. The 
order in which the questions are asked is changed in the third and fourth charts and 
sometimes in the second chart. The feature extraction routine needs to have the control, 
relevant and irrelevant questions labeled. Therefore, for each polygraph chart a 
complementary chart called question file was created which contains a matrix called Q. 
The first row of this matrix contains the relevant, the second row the irrelevant and the 
third row the control questions respectively. 

Fragments of each signal are selected before features are extracted. These fragments are 
shown in Table 2. Start and end points given in the table refer to the time elapsed after the 
question is asked. A vector of features for each file is created by the program feature.m 
which is called by fextract.m program. The program first executes all of the processing 
routines and then extracts the features for each question in the file. The features are 
extracted for the appropriate time segment (see Table 2) of six channels for each 
polygraph file. The time segment is created by taking a sample of time series starting 
several seconds after a question is asked and continuing for a number of seconds. 
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Channel description Channel Start End 

Galvanic Skin conductivity(GSR) 1 2 sec. 14 sec. 

High frequency electrocardiogram 2 2 sec. 9 sec. 

Low frequency electrocardiogram (LC) 3 2 sec. 18 sec. 

Derivative of low frequency 
electrocardiogram (DLC) 

4 Osec. 8 sec. 

Lower Respiratory (LR) 5 2 sec. 18 sec. 

Upper Respiratory (UR) 6 2 sec. 18 sec. 

Table 2. Time fragment used in feature extraction 

The feature extraction algorithm provides a 960 dimensional vector for each file. The 
features were extracted for the 150 deceptive and 50 non deceptive files and saved in a 
960 by 200 matrix called " M". In order to classify subjects using the difference between 
control and relevant responses, and to make the feature vector smaller, the features were 
combined according to the following method: for each feature /' except features 26, 27,28 
from each subject./ compute: 

1) The average control responses AvCij 
2) The average relevant responses AvRij 
3) The maximum and minimum control responses MaxCij and MinCij 
4) The maximum and minimum relevant responses MaxRij and MinRij 

The feature vector components for feature i are then: 
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l)Fij(l) = AvRij -AvCij 

*)\rnn\     AvRiJ ~ AvCij 

2)FU(2)=AvRiJ+Avaj 

3)F//(3) = MaxRij - MaxCij 

4)Fij(4) = MinRij - MinCij 

5)Fij(5) = MaxRij - MinCij 

6)Fij{6) = MinRij - MaxCij 

MaxRij 
7)F//(7) = 

MaxCij 

For features 26, 27, 28 from each subject j compute: 

1) The average of relevant-control responses Av(RC(ij) 
2) The maximum of relevant-control responses Max(RC(ij) 
3) The minimum of relevant-control responses Min(RC(ij) 

The feature vector components for feature /' are then: 

l)F„(l) = i4v(*C(0) 
2)Fv(2) = Max(RC(,j)) 

3)Fv(3) = Min(RC(<ij)) 

The above procedure is executed by program called procesf.m which creates a 669 by 200 
dimensional matrix called "F". In order to run the classifier program, the matrix F was 
divided into three 100 (50 deceptive and 50 non-deceptive) sets of matrices called setl, 
set2 and set3. These sets are made of 50 non-deceptive cases common in all three sets 
and three 50 different deceptive sets, called deceptive 1, deceptive 2 and deceptive 3 
respectively. The list of the files used in the setl, set2 and set3 are shown in Table 3 in 
Appendix A. 
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5 Results 

5.1 Frequency Domain Clustering 

Classifier is the final stage in a pattern recognition system. The classifier assigns each 
input to one of the classes. The classifier could be designed after studying the distribution 
of samples in each class. The KNN classifier was used in this study because of the 
following: 

1) The uncertainty about the shape of deceptive and non deceptive clusters and 
their sample distributions. 

2) The possibility that the samples for one class cluster around more than one point 
in space. 

The frequency domain features did not create a separate distribution of samples for 
deceptive and non deceptive classes. However, the combination of frequency and time 
domain features resulted in more distinct clusters. Figure 10 and 11 show the examples of 
sample distribution (clustering) for non deceptive (x) and deceptive (+) classes. 
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A clustering of two class data 
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Figure 10. Plot of maximum of GSR versus maximum of Upper Respiratory. 

29 



2.5 

1.5 

A clustering of two class data 
-i 1 1 -r r 

*• + +    + 

X 

+    Wf +4+ 
+ 

■:X +    HK   +■■■■■     4- 

>(■♦■     X " 

X*4f/ vX 4J4444.Vf 
-f 

j t •• ' •■ *'   »'*'••■   ^^x    ••^■■'t-^' -t-^-J—I UX- 

-1 0 1 

Figure 11. Plot of maximum of GSR versus frequency of maximum integrated 
spectral difference of GSR. 
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5.2 Discussion 

The 669 features are more than can be used by any classification techniques. Thus, the 
classification program and the scatter measurement program were run for each feature in 
each set individually. The results of the first experiment were examined and compared to 
determine the features which were the best discriminators between deceptive and non- 
deceptive subjects. After comparing the results, the 30 features with the highest accuracy 
rate and common in all three sets were selected. These best features were listed in 
Table 3. 

The second experiment used the combination of two features out of the best 30 features. 
The results for the best 30 features were examined for each set separately. The set3 
always had a better performance than the other two sets. However, in order to be 
consistent, the best features common in all three sets were selected as the 30 best features. 
More features were added for combination of three and four. The results are shown in 
Table 4 and 5 in Appendix A. 

As it was discussed before, the classifier was used to compare the effectiveness of the 
single features and to choose the combination of the best features. Changing the classifier 
parameters such as K might change the results of the classification. However, it is not 
practical to change all parameters at the same time. Therefore, the classifier was used 
with the fixed parameters of K=5 and m=2. After selecting the final feature set, theses 
parameters were changed to find the best classification. 
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No feature Description Channel Method 
1 lOmean mean GSR 1 

2 lOcurve curve length GSR 2 

3 lOmed dif median of the derivative GSR 1 

4 lOmax min minimum subtracted from the maximum GSR 2 

5 lOmax maximum of the signal GSR 1 

6 lOmdif mean of derivative GSR 3 

7 20curve curve length Heart pulse 1 

8 20ampcard amplitude of the peaks Heart pulse 1 

9 20max min minimum subtracted from the maximum Heart pulse 4 

10 20max maximum of the signal Heart pulse 4 

11 20min minimum of the signal Heart pulse 1 

12 30med dif median of the derivative Blood pressure 3 

13 30max maximum of the signal Blood pressure 1 

14 40mean mean Derivative of Blood pressure 1 

15 40max maximum of the signal Derivative of Blood pressure 1 

16 50curve curve length Lower Respiratory 6 
17 50ampr amplitude of the peaks Lower Respiratory 2 

18 50peaknumr number of the peaks Lower Respiratory 5 

19 50ie inhalation divided by exhalation Lower Respiratory 5 

20 50ma\ min minimum subtracted from the maximum Lower Respiratory 2 

21 50max maximum of the signal Lower Respiratory 6 

22 60max min minimum subtracted from the maximum Upper Respiratory 2 

23 60max maximum Upper Respiratory 3 
24 lOstd standard deviation GSR 2 

25 20std standard deviation Heart pulse 1 

26 50std standard deviation Upper Respiratory 6 

27 20armodl auto regressive parameter Heart pulse 7 

28 26psdcohl max cross spectral density Heart pulse, Lower 
Respiratory 

1 

29 lOisdl frequency of maximum integrated spectral 
difference of control-relevant pair 

GSR 1* 

30 20isdl area under integrated spectral difference Heart pulse 3* 

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min, 

5=Max-Min, 6=Min-Max, 7=Max/Min, l*=Average of relevant-control pairs, 3*=Max of relevant- 

control pair. 

Table 3.30 best selected Features 
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Conclusion 

The classification results improved consistently by increasing the number of features. The 
best features are {5 9 21 23} and {5 21 23 29}with 81 and 80 percent correct 
classification respectively. These features are maximum of GSR(5), difference between 
maximum and minimum of heart pulse(9), maximum of lower respiratory(21), maximum 
of upper respiratory(23) and frequency of maximum integrated spectral difference of 
control-relevant pair for GSR(29). 

The best features are simple and obvious features such as maximum and minimum of the 
polygraph signals. In other words, the features that an examiner can see are the best 
discriminators between deceptive and non deceptive. 

It is important to notice that the best features are the combination of features from all 4 
different GSR, heart pulse, lower and upper respiratory. As expected, each subject shows 
reaction to different channels. Therefore, the combination of all channels is the best 
representative of deception. 

Another point to notice is that the set3 has better classification results than the other two 
sets. For example, the features {9 14 19 24} and {5 21 23 29}show 87.4 and 86.6 
percent correct classification for set3. The data in set3 is made of 50 non deceptive 
common in all three sets and 50 deceptive cases. This set of deceptive cases, called 
deceptive 3, are the Acxiton files listed in Table 3 in Appendix A. It is possible that there 
is some characteristic in these deceptive files that results in better classification. 

As stated before, due to the small number of non-deceptive cases available, each chart for 
a subject was used as a separate case. After classifying the charts, the charts for each case 
were combined in a way that each case was assigned to the class that the majority of the 
charts belong to. Using this method, the classification results improved from 81 percent 
to 85.6 percent for setl and set2 and from 87 percent to 91 percent for set3. The final 
result is included in appendix A. 
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FILE NAME FUNDAMENTAL FREQUENCY (Hz) 
CHANNEL: Heart pulse, WINDOW: 120 S 

QQAV53P6.021 relevant = 
control = 

1.3636 
1.2500 

1.3636 
1.5000 

1.3636 1.4286 

QQAV53P6.031 relevant = 
control = 

1.5000 
1.4286 

1.3636 
1.3636 

1.3043 
1.3636 

1.3636 
1.4286 

QQBQ4SH1.011 relevant = 
control = 

2     2 
2     2 

2     2 

QQBQ4SHI.021 relevant = 
control = 

1.7647 
1.8750 

1.7647 
1.76 

1.7647 1.8750 

QQBQ4SHI.031 relevant = 
control = 

1.7647 
0.8571 

1.7647 
1.7647 

1.7647 
1.7647 

1.7647 
1.6667 

QQBSS7WT.011 relevant = 
control = 

1.5000 
1.5789 

1.5000 
1.4286 

1.5000 1.3636 

QQBSS7WT.021 relevant = 
control = 

1.5000 
1.5000 

1.4286 
1.4286 

1.4286 1.4286 

QQBSS7WT.031 relevant = 
control = 

1.4286 
1.4286 

1.5000 
1.5000 

1.4286 
1.4286 

1.3636 
1.5000 

Table 1. Fundamental frequency for non-deceptive files for 120 seconds for heart pulse. 
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FILE NAME                            FUNDAMENTAL FREQUENCY(Hz) 
CHANNEL: CARDIO, WINDOW: 120 S 

1 
i 

QQ9SOW8L.021                   relevant»    1.7647    1.6667    1.5789    1.6667 
control  =    1.5789    1.5789 

QQ9SOW8L.031                    relevant»      1.5789    1.5789    1.6667    1.6667 
control»      1.8750    1.6667    1.7647    1.5789 

• 
QQ9SQDC9.011                     relevant»     1.5789    1.5000    1.5000    1.5789 

control =     1.5789    1.5000 

QQ9SQIK9.021                     relevant»     1.3043    1.5789    1.5789    1.4286 
control»      1.5789    1.5789 

i 
QQ9SQIK9.031                     relevant»    1.5000    1.5000    1.6667 

control»      1.4286    1.2000    1.5789    1.5789 

• QQ9W0B9F.011                     relevant»     1.5000    1.4286    1.5000    1.5000 
control =      1.4286    1.5789 

QQ9W0B9F.031                    relevant»      1.4286    1.5000    1.4286    1.4286 
control»      1.5000    1.4286 

QQ9W0B9F.041                     relevant»     1.4286    1.3636    1.4286    1.5000 
control =      1.4286    1.3636 

, 

QQ9U4FMU.011                    relevant»    1.5789    1.6667    1.6667    1.6667 
control»      1.6667    1.5789 

I                             ' —  

t 

i                      Table 2. Fundamental frequency for deceptive files for 120 seconds for heart pulse. 

( 
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1 Non deceptive deceptive 1 Deceptive 2 Deceptive 3 

QQ8R9OIO.011 QQ4Q1O83.011 QQ7LX5Q0.021 QQ8RAJ0C.011 

QQ8R9OIO.021 QQ4Q1O83.021 QQ7LX5Q0.031 QQ8RAJ0C.021 

QQ8R9OIO.031 QQ4Q1O83.031 QQ7MN2Y0.011 QQ8RAJ0C.031 
t 

QQ95LU1T.011 QQ4Q3MDC.011 QQ7MN2Y0.021 QQ9EUKVT.011 

QQ95LU1T.021 QQ4Q3MDC.021 QQ7MN2Y0.031 QQ9EUKVT.021 
1 

1 QQ95LU1T.031 QQ4Q3MDC.031 QQ7TC5UF.011 QQ9EUKVT.031 
I QQAURNUS.021 QQ51DE36.011 QQ7TC5UF.021 QQ9IOOXO.021 

QQ AURNUS.031 QQ51DE36.021 QQ7TC5UF.031 QQ9IOOXO.041 

I QQAV53P6.011 QQ51DE36.041 QQ7TQVER.011 QQ9SOW8L.011 
1 
i QQAV53P6.021 QQ6RQGH6.011 QQ7TQVER.021 QQ9SOW8L.021 

QQAV53P6.031 QQ6RQGH6.021 QQ7TQVER.031 QQ9SOW8L.031 

) QQBQ4SHI.011 QQ6RQGH6.031 QQ7TVADC.011 QQ9SQIK9.011 
1 
t QQBQ4SHI.021 QQ6RQGH6.041 QQ7TVADC.021 QQ9SQIK9.021 
1 

QQBQ4SHI.031 QQ6T711O.011 QQ7TVADC.031 QQ9SQIK9.031 

QQBSS7WT.011 QQ6T711O.021 QQ7U2T4R.011 QQ9W0B9F.011 
I QQBSS7WT.021 QQ6T7110.031 QQ7U2T4R.021 QQ9W0B9F.031 
' QQBSS7WT.031 QQ6Z59IG.011 QQ7U2T4R.031 QQ9W0B9F.041 

QQ7OXM60.021 QQ6Z59IG.021 QQ7YP7QU.011 QQ9U4FMU.011 
I QQ7RH0RO.011 QQ6Z59IG.031 QQ7YP7QU.021 QQ9U4FMU.021 

QQ7RH0RO.021 QQ7PP9B9.011 QQ7YP7QU.031 QQ9U4FMU.031 

QQ7RH0RO.031 QQ7PP9B9.021 QQ7YZOJ3.011 QQ9Y SVF.011 

QQ7R51P9.011 QQ7PP9B9.031 QQ7YZOJ3.021 QQ9Y~SVF.021 

i QQ7R51P9.021 QQ7PDU1X.011 QQ7YZOJ3.031 QQ9Y SVF.031 

QQ7R51P9.031 QQ7PDU1X.021 QQ8 0DPT.011 QQ9YH3QF.011 

QQ9TDSP3.011 QQ7PDU1X.031 QQ8 0DPT.021 QQ9YH3QF.021 

QQ9TDSP3.021 QQ7 PIPF.011 QQ8 0DPT.031 QQ9YH3QF.031 

QQ9TDSP3.031 QQ7 PIPF.021 QQ8 0DPT.041 QQA2TT4C.011 

QQA8OWOI.011 QQ7 PIPF.031 QQ8 2UQ9.011 QQA2TT4C.021 
; QQ A8OWO1.021 QQ7_JT70.011 QQ8 2UQ9.021 QQ A2TT4C.031 
• QQ A8OWOI.031 QQ7 JT70.021 QQ8 2UQ9.031 QQA3HIRX.011 

QQBT22O6.011 QQ7JT70.031 QQ800IG6.011 QQA3HIRX.021 

QQBT22O6.021 QQ738DYX.011 QQ800IG6.021 QQA3HIRX.031 

QQBT22O6.031 QQ738DYX.021 QQ800IG6.031 QQA32UTF.011 

QQB090 9.011 QQ738DYX.031 QQ82OIU9.011 QQA32UTF.021 

QQBO9O_9.021 QQ75ULP9.011 QQ82OIU9.021 QQA32UTF.031 

QQB090 9.031 QQ75ULP9.021 QQ82OIU9.031 QQA6U IF.011 

t QQBC7PP6.011 QQ75ULP9.031 QQ82SUTX.011 QQA6U IF.031 
\ 

QQBC7PP6.021 QQ79 EYF.011 QQ82SITTX.021 QQA6U IF.041 

QQBC7PP6.031 QQ79 EYF.021 QQ82SUTX.031 QQAM4E3L.011 

QQCHCK O.011 QQ79 EYF.031 QQ860ZNU.011 QQAM4E3L.021 

QQCHCK_O.021 QQ7BGDML.011 QQ860ZNU.021 QQAM4E3L.031 

QQCHCK O.031 QQ7BGDML.021 QQ860ZNU.031 QQARF2 X.011 
r 

| QQCDTKP0.011 QQ7BGDML.031 QQ89U ZR.011 QQARF2 X.021 
! 
i QQCDTKP0.031 QQ7ETC8I.011 QQ89U ZR.021 QQARF2 X.031 

QQCDTKP0.041 QQ7ETC8I.021 QQ89U_ZR.031 QQAWA38X.011 
/ QQCM5Y56.011 QQ7ETC8I.031 QQ8ATÜ26.011 QQ AWA38X.021 

| QQCQQT8Y.011 QQ7JAQCS.011 QQ8ATU26.021 QQAWA38X.031 
i 

QQCQQT8Y.021 QQ7JAQCS.021 QQ8ATU26.031 QQAYXZGU.011 

i QQCQQT8Y.031 QQ7JAQCS.031 QQ8FGMVI.011 QQAYXZGU.021 

QQCQQT8Y.041 QQ7LX5Q0.011 QQ8FGMVI.021 QQAYXZGU.031 

Table 3. List of files used in this experiment. 50 non-deceptive cases and 50 deceptive 
cases from setl, set2 and set3 are listed in column 1 through 4 respective 



Set Features accuracy 

Setl 10  21 

5  11 

5  21 

26 

23 
23 

79.4 

77.6 

77.4 

Set2 12  20 
19  24 
5  21 

24 
30 
23 

79.8 
78.6 
77.4 

Set3 9  19 
5  23 
5  21 

24 
29 
23 

85.2 
82.4 
81.2 

Average 5  23 
5   7 
5  21 

29 
23 
23 

78.2 
77.6 
77.3 

Table 4. The three best features of combination of 3 for each set and their average. 

Set Features accuracy 

Setl 5   9 21 

5  11 21 
5  21 23 

23 
23 
29 

81.0 

80.2 
74.4 

Set2 5  14 23 
5   9 21 
5  21 23 

29 
23 
29 

81.0 
79.4 
79.0 

Set3 9  14 19 
5  21 23 
5  21 23 

24 
29 
9 

87.4 
86.6 
82.5 

Average 5   9 21 
5  21 23 
5  21 23 

23 

29 
11 

81.0 

80.0 
79.8 

Table 5. The three best features of combination 4 for each set and their average. 



File Membership Defuzzifled Result 
1.0000 0.2736 0 
2.0000 0.3339 0 
3.0000 0.5397 0 0 

4.0000 0.5450 0 
5.0000 0.7423 1.0000 
6.0000 0.1732 0 0 

7.0000 0.8901 1.0000 
8.0000 1.0000 1.0000 1      Misclassified 

9.0000 0.5376 0 
10.0000 0.1742 0 
11.0000 0.4366 0 0 

12.0000 0.3458 0 
13.0000 0.5145 0 
14.0000 0.5178 0 0 

15.0000 0.1016 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.1334 0 0 

19.0000 0 0 
20.0000 0 0 
21.0000 0.2923 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.1607 0 0 

25.0000 0 0 
26.0000 0.4421 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3307 0 

29.0000 0.0583 0 

30.0000 0.4965 0 0 

31.0000 0.3505 0 

32.0000 0.1181 0 
33.0000 0.2101 0 0 

Table 6. Classification of the files in Setl. 
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File Membership Defuzzified Result 
34.0000 0.5970 0 

35.0000 0 0 

36.0000 0.1193 0 0 

37.0000 0.3174 0 

38.0000 0.8117 1.0000 
39.0000 0.0997 0 0 

40.0000 0.1889 0 

41.0000 0.4215 0 

42.0000 0.1635 0 0 

43.0000 0.6474 1.0000 
44.0000 0 0 

45.0000 0.5495 0 0 

46.0000 0.1115 0 0 

47.0000 0 0 

48.0000 0.3986 0 

49.0000 0 0 

50.0000 0 0 0 

51.0000 0.6709 1.0000 
52.0000 1.0000 1.0000 
53.0000 0.5297 0 1 

54.0000 0.7245 1.0000 
55.0000 0.9200 1.0000 
56.0000 1.0000 1.0000 1 

57.0000 0.9105 1.0000 
58.0000 0.9398 1.0000 
59.0000 0.5657 0 1 

60.0000 0.8968 1.0000 
61.0000 1.0000 1.0000 
62.0000 0.2793 0 

63.0000 0.1088 0 0      Misclassified 

64.0000 0.6245 1.0000 
65.0000 0.8643 1.0000 
66.0000 0.5054 0 1 

Table 6. Continued. 

42 



File Membership Defuzzified Result 
67.0000 0.8498 1.0000 
68.0000 0.6969 1.0000 
69.0000 0.8397 1.0000 1 

70.0000 0.2901 0 

71.0000 0.8291 1.0000 
72.0000 0.3982 0 0      Misclassified 

73.0000 1.0000 1.0000 
74.0000 0.2463 0 

75.0000 0.8043 1.0000 1 

76.0000 0.6676 1.0000 
77.0000 1.0000 1.0000 
78.0000 1.0000 1.0000 1 

79.0000 1.0000 1.0000 
80.0000 0.7538 1.0000 
81.0000 1.0000 1.0000 1 

82.0000 1.0000 1.0000 
83.0000 0.8378 1.0000 
84.0000 1.0000 1.0000 1 

85.0000 0.8926 1.0000 
86.0000 0.5448 0 

87.0000 0.5751 0 0      Misclassified 

88.0000 0.8273 1.0000 
89.0000 0.2945 0 

90.0000 0.9110 1.0000 1 

91.0000 1.0000 1.0000 
92.0000 1.0000 1.0000 
93.0000 0 0 1 

94.0000 0.2887 0 ' 

95.0000 0.2079 0 

96.0000 0.5793 0 0      Misclassified 

97.0000 1.0000 1.0000 
98.0000 0.7971 1.0000 
99.0000 0.8708 1.0000 1 

100.0000 1.0000 1.0000 1 

Table 6. Continued. 
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File Membership Defuzzified Result 
1.0000 0.2579 0 

2.0000 0.1307 0 

3.0000 0 0 0 

4.0000 0.2652 0 

5.0000 0.4345 0 

6.0000 0.1175 0 0 

7.0000 1.0000 1.0000 
8.0000 0.7086 1.0000 1         Misclassified 

9.0000 0.2856 0 
10.0000 0.2745 0 

11.0000 0.3056 0 0 

12.0000 0.2720 0 

13.0000 0.5019 0 

14.0000 0.8871 1.0000 0 

15.0000 0.0912 0 
16.0000 0 0 

17.0000 0 0 0 

18.0000 0.8334 1.0000 1      Misclassified 

19.0000 0 0 

20.0000 0 0 

21.0000 0.5483 0 0 

22.0000 0 0 

23.0000 0 0 

24.0000 0.1535 0 0 

25.0000 0.4955 0 

26.0000 0.1013 0 

27.0000 1.0000 1.0000 0 

28.0000 0.3788 0 

29.0000 0.1638 0 

30.0000 0.0905 0 0 

31.0000 0 0 

32.0000 0.1431 0 

33.0000 0.0937 0 0 

Table 7. Classification of the files in set2. 
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File Membership Defuzzified Result 
34.0000 0 0 

35.0000 0 0 

36.0000 0.1281 0 0 

37.0000 0.3690 0 

38.0000 0.5734 0 

39.0000 0.1569 0 0 

40.0000 0.3659 0 

41.0000 0.4124 0 

42.0000 0.1704 0 0 

43.0000 0.4251 0 

44.0000 0.0664 0 

45.0000 0.5356 0 0 

46.0000 0.5084 0 0 

47.0000 0.1735 0 - 

48.0000 0.7512 1.0000 
49.0000 0.5115 0 

50.0000 0.0976 0 0 

51.0000 0.6361 1.0000 
52.0000 0.8482 1.0000 1 

53.0000 0.3471 0 

54.0000 0.8822 1.0000 
55.0000 1.0000 1.0000 1 

56.0000 1.0000 1.0000 
57.0000 1.0000 1.0000 
58.0000 0.8730 1.0000 1 

59.0000 0 0 

60.0000 0.0389 0 

61.0000 0.3643 0 0        Misclassified 

62.0000 1.0000 1.0000 
63.0000 0.8174 1.0000 
64.0000 0.8875 1.0000 1 

65.0000 0.7995 1.0000 
66.0000 0.5919 0 

67.0000 0.7533 1.0000 1 

Table 7. Continued. 
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File        Membership Defuzzified Result 

68.0000 0.7337 1.0000 
69.0000 0.8524 1.0000 
70.0000 0.8602 1.0000 1 

71.0000 0.2217 0 

72.0000 1.0000 1.0000 
73.0000 0.1268 0 0        Misclassified 

74.0000 0.8860 1.0000 
75.0000 0.2121 0 

76.0000 0.1684 0 

77.0000 0.6903 1.0000 0        Misclassified 

78.0000 0.7680 1.0000 
79.0000 0.8735 1.0000 
80.0000 0.8013 1.0000 1 

81.0000 0.1748 0 

82.0000 0.5428 0 

83.0000 0.8496 1.0000 0        Misclassified 

84.0000 0.3444 0 

85.0000 0.8298 1.0000 
86.0000 0.8590 1.0000 1 

87.0000 0.6879 1.0000 
88.0000 0.9082 1.0000 
89.0000 0.6653 1.0000 1 

90.0000 0.1636 0 
91.0000 0.8754 1.0000 
92.0000 0.8594 1.0000 1 

93.0000 0.5185 0 

94.0000 0.4932 0 

95.0000 0.7802 1.0000 0        Misclassified 

96.0000 0.8684 1.0000 
97.0000 0.8788 1.0000 
98.0000 1.0000 1.0000 1 

99.0000 1.0000 1.0000 
100.0000 0.8669 1.0000 1 

Table 7. Continued. 

46 



File         Membership Defuzzified Result 
1.0000          0.3986 0 

2.0000          0.284S 0 

3.0000          0.2562 0 0 

4.0000          0.2786 0 
5.0000          0.3226 0 
6.0000                      0 0 0 

7.0000          1.0000 1.0000 
8.0000          0.5055 0 

9.0000          0.1434 0 0 

10.0000                      0 0 

11.0000                      0 0 0 

12.0000          0.0691 0 
13.0000          0.4744 0 
14.0000          0.4708 0 0 

15.0000                      0 0 

16.0000                      0 0 

17.0000                      0 0 0 

18.0000          0.4623 0 0 

19.0000                      0 0 

20.0000                      0 0 

21.0000          0.2096 0 0 

22.0000                      0 0 

23.0000                      0 0 

24.0000          0.0516 0 0 

25.0000          0.2885 0 

26.0000          0.0981 0 

27.0000          0.9336 1.0000 0 

28.0000          0.2254 0 

29.0000          0.1465 0 

30.0000          0.0680 0 0 

31.0000                      0 0 

32.0000                      0 0 

33.0000         0.0939 0 0 

Table 8. Classification of the files in Set3. 
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File        Membership Defuzzified Result 
34.0000          0.3917 0 

35.0000                      0 0 

36.0000                      0 0 0 

37.0000          0.1689 0 

38.0000          0.5220 0 

39.0000                      0 0 0 

40.0000          0.0969 0 

41.0000                      0 0 

42.0000                      0 0 0 

43.0000          0.4810 0 

44.0000          0.3154 0 

45.0000          0.4552 0 0 

46.0000          0.3285 0 0 

47.0000          0.3690 0 

48.0000          0.5593 0 

49.0000          0.3522 0 
50.0000          0.2325 0 0 

51.0000          1.0000 1.0000 
52.0000          0.9052 1.0000 
53.0000          0.8115 1.0000 1 

54.0000          0.8397 1.0000 
55.0000          0.8754 1.0000 
56.0000          0.0930 0 1 

57.0000          0.8330 1.0000 
58.0000          1.0000 1.0000 1 

59.0000          1.0000 1.0000 
60.0000          1.0000 1.0000 
61.0000          1.0000 1.0000 1 

62.0000          1.0000 1.0000 
63.0000          0.6496 1.0000 
64.0000          0.5075 0 1 

65.0000          0.0823 0 

66.0000          0.7810 1.0000 
67.0000          0.2356 0 0      Misclassified 

Table 8. Continued. 
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File Membership     Defuzzified 
68.0000 
69.0000 
70.0000 

71.0000 
72.0000 
73.0000 

74.0000 
75.0000 
76.0000 

77.0000 
78.0000 
79.0000 

80.0000 
81.0000 
82.0000 

83.0000 
84.0000 
85.0000 

86.0000 
87.0000 
88.0000 

89.0000 
90.0000 
91.0000 

92.0000 
93.0000 
94.0000 

95.0000 
96.0000 
97.0000 

98.0000 
99.0000 
100.0000 

1.0000 1.0000 
1.0000 1.0000 

1.0000 1.0000 

1.0000 1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

0.6068 
0.9054 
0.4134 

1.0000 

0.2914 

1.0000 
1.0000 
0.8786 

0.9018 
1.0000 
1.0000 

1.0000 
0.9135 
0.8292 

0.7423 
1.0000 
0.0902 

0.2564 

0.4387 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

Result 

Misclassified 

Misclassified 

Table 8. Continued. 
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Programs 
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function v=armod(var,M) 

% This function finds the autoregressive parameter fo the signal 
% and then prewhitens the signal using the prewhiten filter. 
% Recursive Levinston and durbin algorithm is used to find the AR parameters 

% To use the function the user should enter the signal and the AR model order 
% eg armod(variable, model order) 

Fs=30; %sampling frequency 

r=xcoiT(var)'biased'); %rx(0) is at index K 
K=length(var); 
rx=r(K:K+M+l); %rx(0),rx(l),..rx(M) 

% Estimate the reflection coefficients 

a(l,l)=l; 
P=rx(l); 

fork=0:M-l 
accum=0; 
for m=0:k 

accum=accum+a(k+l,m+l)*rx(k-m+2); 
end 
gamma(k+2)=-accum/P; 
P=P*(l-abs(gamma(k+2))A2); 
a(k+2,l)=l; 
a(k+2,k+2)=gamma(k+2); 
for m=l:k 

a(k+2,m+1 )=a(k+1 ,m+1 )+gamma(k+2)*a(k+1 ,k-m+2); 
end 

end 
parameter=a(M+1,:); 

bb=[l]; 
aa=a(M+l,:); 

v=filter(aa,bb,var); 



! 
1 function freq=fundfreq(frag) 

i % This function called fundfreq (stands for fundamental frequency) 
1 % finds the fundamental frequency of the desired signal. 

% for the K interval of a question using autocorrelation function. 
% For a periodic signal with the period p, the autocorrelation function 

i % attains a maximum at 0,p,2p,.. 
% regardless of the time origin of the si gnal, the period can be estimated 

t % by finding the location the first maximum in the autocorrelation function. 

i %For using this function the user should enter the file segment fundfreq(frag). 

; Fs = 30; %Sampling frequency 
K=length(frag); 

I 

y = xcorr(frag); % finds the autocorralation function 

t 
q = diff(abs(y(K:2*K-l))); % differentiates the variable 

i 

z = q>0; % z = 1 if q is greater than 0 

f 
f f = diff(z); %finds the indices where the 2nd derivative 

%is -1 or +1 which indicates peaks and valleys 

j peak = find(f<0); %finds the peak indices 

i 
1 
i 

m =K+peak; 
[i,j]=max(abs(y(m))); %finds the maximum peak value and its index 

lofreq =find(f>=0); 
if length(lofreq)=length(f) 

; freq=0; 
i else 

freq = Fs/peak(j); 
i end 



function y=croscor(varl,var2) 

% This function finds the cross correlation between two variables 
% The first variable is prewhitened first by calling 
% armod (stands for AR modeling) program. 
% The function returns maximum and minimum of the croscorrelation 
% and the lag that these maximum and minimum happen. 
%To use this command the user must enter the two 
%variable names to be correlated. 
% 
% eg.   croscor(variablel,variable2) 

K=min(length(var 1 ),length(var2)); 

M=10; % Model order 
v 1 =armod(var 1 ,M); 

yd=xcorr(vl(20:K),var2(20:K),*biased'); 

[maximum lagmax]=max(real(yd)); 

[minimum lagmin]=min(real(yd)); 

y=[maximum lagmax minimum lagmin]; 



function feature=feature(file_name,relevant,iiTelevant,control,features,ofFset,CR_feature) 

% This function produces a feature vector for a given file 
% Relevent, irrelevent, and control are vectors which contain 
% the questions these features are extracted from. 
% 
% eg. featurev(t79,[3 5],[1 4], [6 10],feature_list) 

i % The above example gives the features for 
{ % the file t79 of the 3rd and 5th question which are relevent in this 

% MGQT format, the 1st and 4th question which are irrelevent 
[ % and the 6th and 10th questions which are control 
i 

% feature_list=['10mean(frag)'; 
% '20curve(frag)'; 
% '30area(frag)']; 

featurejist = features; 

% The channels are ordered as follows: 
% 1:GSR, 2:HiCardio, 3:LowCardio, 4:DerLowCardio, 5:LowResp, 6:UpResp 

% This is a matrix of the time delay after asking a question to start of extracting 
% the feature, and finish extracting the feature for each channel. 

Times=[ 
2,14; 
3,9; 
3,18; 
1,8; 
2,18; 
2, 18]; 

% These are preprocessing functions. 
Preprocess=[   'detgsr'; 

'dethic1; 
•detlc'; 
'dercd'; 
'detlr'; 
'detur']; 



data=zeros(6,length(file_name(:,5))); 
% Standardize and detrend the channels and derive new channels 

fori=l:6, 
data(i,:)=eval([Preprocess(i,:),'(file_name)1])'; 

end 

marker = file_name(:,5);    % 0 begin test and end test 
% 0 examiner begins asking question 
% 1 examiner finishes asking question 
% 2 subject begins response to question 
% 9 does not mark an event 

begin = find(marker = 0);     % finds indecies where marker = 0 (question begins) 
begin=begin(2:length(begin)); % elliminates the marker at the beginning of the test 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Vo%%%Vo%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% I fl I I i I I I I II I I I I I I I I I I I I I I I I I I I I I ! I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I 
I I I I I  I  I I II I 1 I I 

% This for loop creates feature vectors for each relevant quesion 
% 
% eg x = [mean(gsr),std(gsr),area(gsr),mean(lr),std(lr),area(lr),etc  
% curve length,amplitude of peaks,# of peaks] 
%++++++++++++iiiiiiiiiit iiiiiiiiiiiiiiiiit iiiiiiiiiiiiiiiiiiiii 
-H-+I I I I I I I I I  I I I I I I 

feature_count=l; 

for i = 1 :max(find(relevant~=0)), 
question=relevant(i); 

for j=l :length(feature_list(:, 1)) 
channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number, 1); 
fh=begin(question)+30*Times(channel_number,2); 
st2=begin(question)-30*Times(channel_number,2); 
fh2=begin(question)-30*Times(channel_number,l); 
fr=feature_list(j,3:length(feature_list(l,:))); 
frag=data(channel_number, st :fh); 
frag2 = data(channel_number,st2:fii2); 
if second channel ~= 0 



st3=begin(question)+30*Times(second_channel, 1); 
fh3=begin(question)+30*Times(second_channel,2); 
frag3 = data(second_channel,st3:fh3); 

end 
tempy=eval(fr); 
for m = 1 :length(tempy) 

x(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 
%  

% Irrelevant questions 

feature_count=l; 

for i = I:(max(find(irrelevant--=0))-orrset) 
question=irrelevant(i); 
for j=l :length(feature_list(:,l)) 

channel_number=eval(feature_list(j, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number,l); 
fn=begin(question)+30*Times(channel_number,2); 
st2=begin(question)-30*Times(channel_number,2); 
fn2=begin(question)-30*Times(channel_number,l); 
fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number,st:fh); 
frag2 = data(channel_number,st2:fh2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel, 1); 
fh3=begin(question)+30*Times(second_channel,2); 
frag3 = data(second_channel,st3:fh3); 

end 
tempy=eval(fr); 
for m = 1 :length(tempy) 

y(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 



%  

% Control questions 

feature_count=l; 

for i = 1 :max(find(control-~=0)), 
question=control(i); 

for j=l :length(feature_list(:,l)) 
channel_number=eval(feature_listö, 1)); 
second_channel=eval(feature_list(j,2)); 
st=begin(question)+30*Times(channel_number,l); 
fh=begin(question)+30*Times(channel_number,2); 
st2=begin(question)-30*Times(channel_number,2); 
fh2=begin(question)-30*Times(channel_number, 1); 
fr=feature_list(j,3 :length(feature_list( 1,:))); 
frag=data(channel_number,st:fh); 
frag2 = data(channel_number,st2:fii2); 
if second_channel ~= 0 

st3=begin(question)+30*Times(second_channel, 1); 
fh3=begin(question)+30*Times(second_channel,2); 
frag3 = data(second_channel,st3:fh3); 

end 
tempy=eval(fr); 
for m = 1 :length(tempy) 

z(feature_count) = tempy(m); 
feature_count=feature_count+l; 

end 
end 

end 
%  

% control & relevant 

feature_count=l; 

for i = 1 :max(find(relevant-=0)), 
for k=l :max(find(control~=0)), 

q(k)=abs(relevant(i)-control(k)); 
end 

[a b]=min(q); 



t 

question l=relevant(i); 
question2=control(b); 

i for j=1 :length(CR_feature(:, 1)) 
channel_numbep=eval(CR_feature(j, 1)); 
st=begin(questionl )+30*Times(channel_number, 1); 

j fh=begin(questionl )+30*Times(channel_number,2); 
st2=begin(question2)+30*Times(channel_number,l); 

j fii2=begin(question2)+30*Times(channeI_number,2); 
fr=CR_feature(j,3 :length(CR_feature( 1,:))); 
fragl=data(channel_number,st:fh); 

! frag2=data(channel_number,st2 :fh2); 
! tempy=eval(fr); 

for m = 1 :length(tempy) 
w(feature_count) = tempy(m); 
feature_count=feature_count+1; 

end 
end 

end 

feature=[x,y,z,w]'; 



function   isd_dif=isd(fragl,frag2) 

% This is a integrated spectral difference(isd) function that finds the cumulativespectral 
% density of a control-relevant pair, then calculates the difference between the 
% isd of control and the relevant for a part of a question. 
% This function returns the max or min and the frequency (points) 
% where this max or min happens and the area underneath this difference. 

% To use this command the user must enter the two variable names. 
% The first variable is a control question fragment and the second is 
% a relevant question fragment. 
% eg.   isd 1 (variable 1 ,variable2) 

Fs = 30; 
K=min(length(frag 1 ),length(frag2)); 

nnp =1; 
np = 2Annp; 
L = K/np; 
L=2A(nextpow2(L)); 

M= spectrum (fragl,L); 
N= spectrum (frag2,L); 

pqc = cumsum(M(:,l)); 
pqr = cumsum(N(:,l)), 

clear M 
clear N 
he = pqc/pqc(L/2); 
hr = pqr/pqr(L/2); 

%spectral density of the first (control) question 
%spectral density of the second(relevant) question 

%Cumulative sum of the integrated spectral density 
%Cumulative sum of the integrated spectral density 

CR_dif= hr' - he'; 
if(abs(max(CR_dif))>abs(min(CR_dif))) 

[CR_dif, mpoint]=max(CR_dif); 
else 

[CR_dif ,mpoint]=min(CR_dif); 
end 

isd_dif=[ CR_dif mpoint trapz(hr'-hc')]; 



feature_list=[      'lOmean(frag) 
'lOcurve(frag) 
'lOarea(frag) 
'10med_dif(firag,8) 
'10max_min(frag) 
'10max(frag) 
'lOmin(frag) 
•10mdif(frag) 
'20mean(frag) 
'20curve(frag) 
'20area(frag) 
70ampcard(frag) 
'20dampcard(frag) 
'20peaknumc(frag) 
•20med_dif(frag,5) 
'20max_min(frag) 
'20max(frag) 
'30min(frag) 
•20min(frag) 
'20mdif(frag) 
'20minampc(frag) 
'30mean(frag) 
'30curve(frag) 
'30area(frag) 
'30med_dif(frag,5) 
'30max_min(frag) 
'30max(frag) 
'30mdif(frag) 
'40mean(frag) 
'40min(frag) 
'40mdif(frag) 
'40curve(frag) 
'40area(frag) 
'40med_dif(frag,5) 
'40max_min(fiag) 
'40max(frag) 
*50mean(frag) 
'50curve(frag) 
'50area(frag) 
'50ampr(frag) 
'50peaknumr(frag) 
'50ie(frag) 
'50dampr(frag) 
'50ieie(frag, frag2) 
•50med_dif(frag,8) 
'50max_min(frag) 
'50max(frag) 
'50min(frag) 
•50mdif(frag) 
'50minampr(frag) 
'60mean(frag) 



'60curve(frag) 
'60area(frag) 
'60ampr(frag) 
'60dampr(frag) 
'60peaknumr(frag) 
'60ie(frag) 
'60ieie(frag, ftag2) 
•60med_dif(frag,8) 
'60max_min(frag) 
'60max(frag) 
'60min(frag) 
•60mdif(frag) 
'60minampr(frag) 
'lOstd(frag) 
•20std(frag) 
*30std(frag) 
'40std(frag) 
'50std(frag) 
■60std(frag) 
'20armodl(firag) 
'20corl(frag) 
'50corl(frag) 
'26croscor(frag,frag3) 
•26psdcohl(frag,frag3) 

CR_feature=[ 
•10isdl(fragl,frag2) '; 
*20isdl(fragl,frag2) ']; 

lfHength(feature_list(:, 1)); 
cd \mgqt\gl 
files 1 
ford=l:3 

ifd=2 
cd \mgqt\g2 
files2 

elseif d==3 
cd \mgqt\non_dec 
filesn 

end 

for k=l:length(flist(:,l)) 
file_name=[flist(k,:)]; 
flength=length(file_name); 
question=[,ZZ,,num2str(file_name(3:flength-l)),,4']; 

% creates the name of the file that holds the questions(zz*.014) 



% load the data & the file with the 
% question number 
%eleminates the extention(.013) 
% in order to use the data. 

%The length of relevant questions 
%The length of control questions 
%The length of irrelevant questions 
% finds the number of questions over 10 

eval(['load', file_name]); 
eval(['load', question]); 
file_name=file_name(l :flength-4); 
question=question(l:flength-4); 
Q=eval(question); 
l_rel=max(find(Q(2, :)~=0)); 
l_con=max(find(Q(4,:)~=0)); 
l_irr=max(find(Q(3,:)~=0)); 
qover =l_con+l_rel+l_irr-10; 
offset=qover* (qover>0); 
CRlength=l_rel*6; 
size_M=(10+(qover<0)*qover)*(lf+18)+CRlength; %total size of features 

initial=zeros(10*(18+lf)+30,l); "/(.Initializing M with a 10*lf zeros 
M(:,k)=initial; 
M(l:size_M,k)=feature(eval(file_name),[Q(2,:)],[Q(3,:)],[Q(4,:)],featureJist,ofFset,C 
R_feature); 

eval(['clear ',upper(file_name)]) 
eval(['clear ',upper(question)]) 

end 

save new_feat M If flist 
clear M 

end 



*        L         t       «P 

clear 
,                       featlength=23; 
;                      load new_feat 

for k=l:length(flist(:,l)) 
file_name=[flist(k,:)]; 

j                                 flength=!ength(file_name); 
question=['ZZ',num2str(file_name( ;3:flength-l)),'4']; 

j                                  eval(['load ',question]); % load the file with the question numbers. 
[                                 Q=eval(question( 1 :flength-4)); % in order to use the data. 

l_rel=max(find(Q(2, :>-=0)); %The length of relevant questions 
'                                  l_con=max(find(Q(4,:)~=0)); %The length of control questions 
1                                  l_irr=max(find(Q(3,:)~=0)); %The length of irrelevant questions 

% Averaging relevant questions 
forj=l:lf-5+featlength 

m=(j-l)*7; 
clear r 
for i=l:l_rei 

r(i)=M((i-l)*(lf-5+featlength)+j,k);    %finds the feature values 
end %for all the relevant questions. 

feat_vec(m+1 ,k)=mean(r); %returns mean value for relevant 
feat_vec(m+2,k)=mean(r); 
feat_vec(m+3,k)=max(r); 
feat_vec(m+4,k)=min(r); 
feat_vec(m+5,k)=max(r); 
feat_vec(m+6,k)=min(r); 
feat_yec(m+7,k)=max(r); 

end 
qover =l_con+l_rel+l_irr-10; %The number of questions over 10 
offset=qover*(qover>0); 
l=(l_irr-offset+l_rel)*(lf-5+featlength); %The position of the 

!                        cr_l=l+l_con*(lf-5+featlength); 

o/ft :  

%first control question 

'                      % Averaging control questions 

forj=l:lf-5+featlength 
clear c 

,                                   m=(j-l)*7; 
for i=l :1 con 

c(i)=M((i-l)*(lf-5+featlength)+j+l,k);           %finds the feature values for 



end %all the control questions. 

%feature values for control questions 

f(m+1 ,k)=feat_vec(m+1 ,k)-mean(c); 
if (feat_vec(m+2,k)+mean(c)==0) 

f(m+2,k)=100; 
else 

f(m+2,k)=2*(feat_vec(m+2,k)- 
mean(c))/(feat_vec(m+2,k)+mean(c)); %for every feature, 

end 
f(m+3 ,k)=feat_vec(m+3 ,k)-max(c); 
f(m+4,k)=feat_vec(m+4,k)-min(c); 
f(m+5,k)=feat_vec(m+5,k)-min(c); 
f(m+6,k)=feat_vec(m+6,k)-max(c); 

ifmax(c)=0 
f(m+7,k)=100; 

else 
f(m+7,k)=feat_vec(m+7,k)/max(c); 

end 
end 

% feature values for control_relevant 

forj=1:6 
m=(j-l)*3; 
clear cr 
for i=l:l_rel 

cr(i)=M((i-l)*6+j+cr_l,k); 
end 

f(m+l+(lf-5+featlength)*7,k)=mean(cr); 
f(m+2+(lf-5+featlength)*7,k)=max(cr); 
f(m+3+(lf-5+featlength)*7,k)=min(cr); 

end 

decep( 1 ,k)=Q( 1:1); % finds if file is deceptive or not 
% creates 1 if deceptive and 0 if not. 

eval(['clear ',upper(question(l :flength-4))]); 
end 

save fh_dec f decep 
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I. Introduction 

Polygraph examinations are the most widely used method to distinguish between truth and 

deception. In a Polygraph examination a person is connected to a special instrument 

called a Polygraph which records several physiological signals such as blood pressure, 

Galvanic Skin Response, and respiration. The subject is asked a set of questions by an 

examiner. By looking at these signals the examiner is able to determine the reactions of 

the subject to the questions and decide whether the person was truthful or deceptive in 

answering each question. The problem with human classification of Polygraph tests is that 

the outcome depends on the examiner's experience and personal opinion. Automatic 

scoring of Polygraph tests has been a subject of extensive research. Several methods for 

Polygraph classification have been studied which are mostly based on statistical 

classification techniques. 

In this study two main goals were presented. The first goal was finding appropriate 

features which have physiological basis. The second purpose was trying a new 

classification method based on fuzzy set theory. The advantage of using fuzzy logic is that 

the it does not simply assigns each input to one of the classes, but it gives the possibility of 

belonging of an input to each class. 

Digitized Polygraph data used in this project were collected from various police stations. 

The data files were organized according to the test format used and were decoded to 

ASCII format so they can be read by Matlab. Preprocessing and feature extraction 

routines were implemented in the Matlab language. Three sets of files were chosen, each 

one of them contained 50 deceptive and 50 non-deceptive files. These files are listed in 

Table 10 in Appendix A. A set of features were selected based on physiological reactions, 

and the feature vectors for every file in each set were found.   Different classification 

methods were studied and a Fuzzy K-nearest neighbor classifier was selected. 

Significance of each feature was examined according to the clustering and correct 

classification obtained by using that individual feature. Thirty features were selected as 

the final set of features and a subset of combinations of 2 to 4 of these features were 

examined to study the effects of combining the features on classification results. The 



combination that produced the best classification for all three sets on the average was 

selected and the effects of changing the classifier parameters on classification was studied. 



II. Polygraphs* 

A polygraph examination is the most popular method used to determine if an individual is 

being truthful or deceptive. During an examination, a subject is asked a series of questions 

and the physiological responses to the questions are recorded using a polygraph. The 

three physical responses currently obtained from a polygraph examinations are blood 

pressure, respiration, and skin conductivity. Polygraph charts are usually analyzed by a 

human interpreter for evidence of truth or deception; however, computer algorithms are 

now being used to verify results [1][2]. 

II. 1. History 

The first attempt to use a scientific instrument in an effort to detect deception occurred 

around 1895 [3].   That was the year that Caesar Lombroso published the results of his 

experiments in which a hydrosphygmograph was used to measure the blood pressure-pulse 

changes of criminals in order to determine whether or not they were deceptive. Although 

the hydrosphygmograph was originally intended to be used for medical purposes, 

Lombroso found that it worked well for lie detection. Lombroso may have been the first 

to use a peak of tension test format. This was done by showing a suspect a series of 

photographs of children, one being the victim of sexual assault.   If the suspect did not 

react more to the victims picture than the pictures of the other children, Lombroso 

concluded that the suspect did not know what the victim looked like and therefore was not 

the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 

recorded respiration tracings [4]. He found that if the length of inspiration were divide by 

the length of expiration, the ratio would be larger after lying than before lying and also 

before telling the truth than after telling the truth. In 1921 John A. Larson constructed an 

instrument capable of simultaneously recording blood pressure pulse and respiration 

during an examination [3] [4]. Larson reported accurate results which prompted Leonarde 

Keeler to construct a better version of this instrument in 1926 [3] [4]. 

* This section is exerpted from [17] 



The use of galvanic skin response in lie detection began during the turn of the century. It's 

usefulness, however, did not become evident until the 1930's during which time several 

articles written by Father Walter G. Summers of Fordham University in New York [4]. 

In these articles he reports over 90 criminal cases in which examination using the galvanic 

skin response had all been successful and confirmed by confession or supplementary 

evidence. The usefulness of the galvanic skin response prompted Keeler to add an 

galvanometer to his polygraph. At the time of Keelers death in 1949, the Keeler 

Polygraph recorded blood pressure-pulse, respiration, and galvanic skin response [3]. 

II.2 Modern Test Formats 

The effectiveness of a polygraph examination is often the result of the test format that is 

used. A polygraph test format consists of an ordered combination of relevant questions 

about an issue, control questions that provide a physical response for comparison, and 

irrelevant questions that also provide a response or the lack of a response for comparison 

[1][4]. Three general types of test formats are in use today. These are Control Question 

Tests, Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general 

test formats may have a number of more specific variations. Each test consists of two to 

five charts containing a prescribed series of questions. The test format that is used in an 

examination is determined by the test objective [3][4]. 

The concealed knowledge test, also called peak of tension test, is used when facts about a 

crime are known only by the investigators and not by the public. In this case, a subject 

would not know the facts unless he or she was guilty of the crime. For example, if a gun 

was used in a crime and the public did not know the caliber, an examiner could ask a 

suspect if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and 

the suspect was deceptive, a polygraph chart would probably indicate evidence of 

deception. 

A control question test is often used in criminal investigations. In this type of test a series 

of relevant, irrelevant, and control questions are asked. A relevant question is one which 

is specific to the crime being investigated. For example," Did you steal the money?".   A 

control question is designed to make the subject feel uncomfortable. It is not specific to 

the crime being investigated however it may be related in an indirect way. A control 



question that could follow the relevant question stated above is "Have you ever taken 

anything that did not belong to you?". The control questions are compared to the relevant 

questions and if the responses to the relevant questions are greater, the subject is usually 

classified as deceptive.   Irrelevant questions are used as buffers. Examples of irrelevant 

questions are "Are the lights in this room on?" or "Is today Monday?". 

Relevant-Irrelevant tests are usually used to test people trying to obtain security clearance 

or get a job. In this test, relevant questions are compared to irrelevant questions. Very 

few control questions are asked. The purpose of control questions in this test is to make 

sure that the subject is capable of reacting at all. 

II.3 Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 

and the Axciton Systems computerized polygraph developed in 1989 [1][11]. The Reid 

polygraph scrolls a piece of paper under pens that record the biological signals. The 

Axciton polygraph digitizes physiological signals and uses a computer to process them. 

The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 

based system for ranking the subject responses but allows printouts of the charts to be 

scored by hand the traditional way. Both machines record the same biological signals 

using standard methods. Blood pressure is measured by placing a standard blood pressure 

cuff on the arm over the brachial artery. Respiration is monitored by placing rubber tubes 

around the abdominal area and the chest of the subject. This results in two signals, an 

upper and lower respiratory signal. Skin conductivity is measured by placing electrodes 

on two fingers of the same hand. 



III. Feature Extraction and Classification 

III.l Introduction 

The problem of Classification of Polygraph data like other pattern recognition problems 

can be considered of consisting of several main stages. Figure [1] shows these stages and 

the relationship between them. At the beginning data is preprocessed so that noise and 

redundancies are removed from data and feature extraction can be done more accurately. 

The next stage is feature extraction. In this step data is read and appropriate features are 

extracted from it. This is a very important step in all pattern recognition problems, 

because the purpose of pattern recognition is finding similarities in data that belong to the 

same class, and features are elements that represent these similarities. Therefore, a good 

set of features can lead to good classification whereas a satisfactory result cannot be 

achieved with an inappropriate set of features. Having a set of features, the next step is to 

use a method to classify data using these features. These steps as applied to Polygraph 

classification are described in more details in the following sections. 
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III.2. Preprocessing 

Polygraph data consists of signals from four different channels: galvanic skin response 

(GSR), blood pressure, higher respiration, and lower respiration. First blood pressure 

signal was decomposed into a high frequency component showing heart pulse, and a low 

frequency component showing blood volume. Derivative of the blood volume channel 

was taken and used as another channel. These six derived signals were detrended and 

filtered. For more details on preprocessing refer to [17]. 



III.3. Feature Extraction 

In this step appropriate features are selected and extracted. Feature extraction is itself 

divided into several steps. Figure [2] shows different stages involved in feature extraction. 

By feature gathering we mean selecting features that might have useful information in 

them. Feature Combination is a special step in polygraph classification. In this step 

features derived for different questions in a test are combined to build a single feature, 

feature selection is a step in which a small number of features is selected from the main 

feature set to be used in final classifier section. 
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III.3.1. Feature Gathering 

Features that possibly convey some information in them were selected and extracted in this 

stage. Literature about Polygraph were studied and several Polygraph examiners were 

interviewed to find out what had been done about this problem and what characteristics in 

a signal are used as indicators of truth or deception. In general features are divided into 

three main groups, time domain features, frequency domain features and correlation 

features. Time domain features are mostly standard characteristics like mean, standard 

deviation, median and so on. Some more specific time domain features were also added, 

such as the ratio between inhalation and exhalation. Auto Regressive parameters were 

also extracted and tried as features. To extract each feature for each question a time 

frame was considered that started with a specific delay after each question was asked and 

lasted for a specific amount of time. Different time frames were used for different 

channels because each channel represents a different physiological parameter. Frequency 

domain features include fundamental frequency, magnitude of power spectral density at 

fundamental frequency, coherency at fundamental frequency and so on. Figure 3 shows 

the feature gathering and the decisions that involved in this step. 
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For every question in a test 93 features were selected and extracted . Also 6 Integrated 

Spectral Density features were used which directly compare each relevant question to the 

nearest control question. The total number of features derived for each test was : 

93x10 + 6x5 = 960 

This was repeated for all the tests in feature sets 1, 2 and 3. The results of each set were 

saved in a 960x100 matrix called the M matrix. 

For a detailed description of time domain features and frequency domain features refer 

respectively to [17] and [16]. 

III.3.2. Feature Combination 

As mentioned earlier each feature is extracted for all questions in a test, that is for 
relevant, irrelevant, and control questions. In a polygraph test responses to relevant 
questions are compared to responses to irrelevant and control questions. But in any test 
there are several questions of each type and many methods can be used to combine them. 
Figure [4] shows different methods to combine the features. It was decided not to use 
irrelevant questions in this study, because in a Controlled Question Polygraph Test 
comparison between the responses to relevant and control questions is the most important 
factor. For most of the features seven methods were tried to combine features of different 
questions in a test. For the last six features three ways to combine them were tried. These 
methods were finding the average, maximum and minimum of relevant-control pairs. The 

first 93 features combined in seven ways and six integrated spectral density features were 
combined in three ways so the total number of features at this stage was equal to: 

f93x7j +(6x3,1 = 669 
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m.3.3 Feature Selection 

Feature selection was done in two independent steps, reduction and combination. Figure 
[5] shows the relationship of these two steps. These two steps are explained in the 

following two sections. 
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ni.3.3.1 Feature Selection (Reduction) 

The next step in our Feature Extraction was to reduce the number of features to a number 

so that a practical algorithm can be used to select the feature set from them. It was 

decided to bring down the number of features from 669 to 30 at this step. Two different 

methods were chosen to test the features one at time to find the best 30. The first method 

was using the KNN classifier to classify the data files using one feature at a time. It was 

decided to use a Fuzzy version of K-nearest neighbor algorithm. The value 5 was selected 

for the K because it seemed that it gave better results than the other values for 1 feature 

classification . Also a threshold of 0.5 was used to defuzzify the output of the classifier. 

Refer to the section on classification for the reason of choosing this classifier. The second 

method was using the scatter criterion is given below. 

jjm±mj_ (1) 
s\ + s; 

mt = mean of class i, s, = standard deviation of class i 

This criterion measures the distance between the means of the two classes, normalized 

over the sum of the variances. Therefore the more compactly the samples in each class re 

separated, the higher will be the value of J. 

The two methods were run on three sets of data. At this point a method was needed to 

choose the features. Different methods are possible for this step. The method that was 

followed is shown in figure [6] and explained below. 

At first the results of KNN and scatter criterions were averaged for 3 sets of data so that 

features that work well for all data sets would be selected. As mentioned in an earlier 

section for Basic features 1 to 93, 7 features and for the features 94 to 99, 3 features were 

derived. Because these features are derived from one basic feature and are strongly 

correlated, it was decided to choose only one from them. So the best feature from these 

sets of 3 or 7 was selected, and the results were sorted. 

13 



Two sets of 30 features were found using the above mentioned criterions. The next step 

was choosing 30 features from these 60. This was done by examining the tables and 

selecting the features that showed a good performance in both cases or had a special 

physical meaning. 

This set of features is the final set used for examining and selection. Table 1 in Appendix 

A shows these features with their corresponding meaning, channel used to derive the 

feature, and the method to combine the features for different questions. 
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m.3.3.2 Feature Selection (Combination) 

The number of features was reduced to 30 in the Feature Reduction step. This number 

should be further reduced because there is 100 samples in each data file, and using 30 

features in a classifier might give very good results for that particular data set, but it won't 

be able to generalize. At this step measuring the performance of individual features is not 

a very logical method. Because for example features 'A* and "B' might be good features 

individually, but combining them might not necessarily give better results. Whereas 

feature 'C that might not be a very good feature by itself might improve the classification 

if combined with feature 'A'. 

Therefore the combinations of the features should be examined. Many methods are 

suggested to solve this problem. The most basic way is exhaustive search. That is trying 

all the combinations for these features. It is obvious that this is not practical when the 

number of features is not very small. For example choosing 10 or less features from a set 

of 30 and trying all the different combinations needs 

10 10 "}/\/ 

computations. 

The method that was chosen was to start with all the combinations of two, find the best N 

ones among them, and use only these combinations to combine features in sets of 3. Then 

again find the best combinations of 3 and use them in combinations of 4 features. 

This procedure is continued until satisfactory results are gained or features are not 

improved by increasing the number of features. Figure [7] shows the algorithm for this 

step. 
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All pairwise combinations of the features were tried to see the classification results. The 

classifier used was Fuzzy K-nearest neighbor with a threshold of 0.5, and K=5. This was 

done for three sets of features. The results were sorted and 30 best combinations for each 

set were found. Also the results of classification for each combination for the 3 sets was 

averaged and the 30 combinations that gave best results on the average were found. 

These combinations are shown in Table 2 in Appendix A. 

It was decided to select 20 sets of pairwise combinations to use in combinations of 3. 

Results for sets 1-3 and Average were studied and combinations that showed a good 

result in one of the sets or had a good average were selected. Table 3 in Appendix A 

shows these combinations. 

The same steps were repeated to study the combinations of 3 and 4 features. The results 

are shown in Tables 4 and 6 in Appendix A. Because of time limitations it was decided 

not to go further from combinations of 4 features. 
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m.3.4 Discussion about the results: 

The classification results improved consistently by increasing the number of features from 

one to four. The features that showed the best result for the three sets were features {5, 

9, 21, 23} with 81 percent correct classification. These features represent Maximum Of 

GSR, Difference between Maximum and Minimum of High Cardio, Maximum of Lower 

Respiratory, and the Difference between Maximum and Minimum of Upper Respiratory. 

These features show approximately the same classification results for all three sets which 

is 81 percent. 

Other combinations of features also gave comparable results. For example {5, 21, 23, 29} 

and {5, 11, 21, 23}, and {5, 10, 21, 23}. Note the repetition of {5, 21, 23}. Refer to the 

table 1 in Appendix A for a meaningful listing of the features. It is very notable that 

feature sets that show the best classification results has features that come from different 

channels. It can be concluded that signals from different physiological channels convey 

independent information, so that using features extracted from them improves the 

classification. 

Another point to notice is that data set three shows better classification results than the 

two other sets, 87 percent versus 81 percent for the sets one and two. The feature set that 

gives the best result for data set three is {9, 14, 19, 24}. This feature set gives 87.4 

percent correct classification for data set three. The feature set {5, 9, 21, 23} that gives 

the best classification on the average, has approximately the same results for all three sets, 

81 percent. The polygraph tests that were used in this project came from several sources 

and were done by different examiners that used slightly different methods. Fifty 

consecutive tests were used to build each data set. So it is possible that some 

characteristic exists in the deceptive files of data set three that results in better 

classification. This is a matter of future investigation. 
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III.4. Classification 

The classifier is the final stage in a pattern recognition system. The inputs to the classifier 

are usually a set of feature vectors. The classifier ordinarily assigns each input to one of 

the classes. There are many methods to design a classifier. The classifier could be 

designed after studying the distribution of samples of each class, or a learning 

classification algorithm can be implemented. We were not sure about the shape of 

clustering and the distribution of samples for deceptive and non deceptive classes, and it 

was possible that samples for one class cluster around more than one point in space. It 

was decided to use the K-nearest neighbor classifier* in this project because it does not 

explicitly use the distribution of the samples. 

One of the characteristics of the conventional classification methods is that they assign 

each input to one of the possible classes (crisp Classification) or find probability 

distributions of belongingnesses of the inputs to the classes. While the way that humans 

think and classify objects is fundamentally different. Each object can be considered to 

belong to more than one class at the same time, and there are degrees of belongingness for 

each class. This is the basic idea that is followed in Fuzzy Logic. It was decided to follow 

a Fuzzy Logic based classifier in this project, because the output will be the possibility of 

deception and a person will not be considered completely deceptive or non deceptive. 

Conventional K-nearest neighbor algorithm and a Fuzzy version of it are described in the 

following two sections. 

* We are indebted to Professor R. Duda for suggesting KNN classifier. 
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m.4.1. K-Nearest Neighbor Algorithm 

K-Nearest neighbor algorithm is a supervised classification method. There is no need for 

the training or adjusting the classifier. A set of labeled input samples is given to the 

classifier. When a new sample is given to the system, it finds its K nearest neighboring 

samples, and assigns this sample to the class that the majority of the neighbors belong to. 

K could be any positive integer. When K is set to 1, the algorithm is called the nearest 

neighbor algorithm. In this case each new sample is assigned to the class of its nearest 

neighbor. If K is greater than 1, it is possible that there is no majority class. To remove 

this tie, the sum of the distances of the new sample to its neighbors in each class is 

computed and the sample is assigned to the class that has the minimum distance. The 

main advantage of using this method is that the samples of each class are not needed to 

cluster in a pre specified shape. For example for a two class classification, the K-nearest 

neighbor classifier can still give very good results if the samples of each class are clustered 

in two distinct points in the space. The algorithm for the K nearest neighbor is shown in 

figure 8. It is supposed that C is the number of classes, K is the number of neighbors in 

KNN, x, x, is the \th labeled sample and y is the input to be classified. 
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III.4.2. Fuzzy K Nearest Neighbor Algorithm 

The fuzzy K nearest neighbor algorithm uses the same idea of conventional K nearest 

neighbor algorithm, that is finding the K samples that are closest to sample to be classified. 

But there is a conceptual difference in classification. When fuzzy classification is used, the 

input is not assigned to a single class. Instead, the degree of belongingness of the input to 

each class is determined by the classifier. By using this method more information is 

obtained about the input. For example if the result of classification determines 

membership of an input to class A is 0.9 and to class B is 0.1, it means the input belongs 

to class A with a very good possibility. But if the membership to class A is 0.55 and to 

class B is 0.45, it means that we cannot be very sure about the classification of the input. 

If the crisp classifier is used, in both cases the input will be assigned to class A and no 

further information is obtained. 

Refer to [14, 15] for more detailed discussions about fuzzy K nearest neighbor algorithms. 
The flowchart for a fuzzy K nearest neighbor classifier is drawn in figure 9. 

The first step in the fuzzy K nearest neighbor algorithm is the same as first step in crisp 

classifier. In both cases K nearest neighbors of the input are found. While in crisp 

classifier the majority class of the neighbors is assigned to the input, in Fuzzy classifier 

membership of the input to each class should be found. In order to do so the membership 

vector of each sample is combined to obtain the membership vector of the input. If the 

samples are crisply classified, membership vectors should be assigned to them. One 

method to do so is to assign the membership of 1 to the class that it belongs to, and 

membership of 0 to other classes. Other methods assign different memberships to the 

samples according to its distance from the mean of the class, or the distances from the 

nearby samples of its own class and the other classes. 

When the membership vectors of the labeled samples are specified, they are combined to 

find the membership vector of the unknown class. This procedure should be done in a 

way that samples that are closer to the input have more effect on the resultant membership 

function, The following formula uses the inverse distance to weigh the membership 
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functions, x is the input to be classified, x; is the \th nearest neighbor and utj is the 

membership of the j/A nearest neighbor of the input in class i. D(x,y) is a distance measure 

between the vectors x and y which could be the Euclidean distance. 

»,(*) = —* — 
^(l/D(x,Xj)^) 

m is a parameter that changes the weighing effect of the distance. When m »1, all the 

samples will have the same weight. When m approaches 1, the nearest samples have much 

more effect on the membership value of the input. 
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III.4.3. Methods and Discussion: 

As mentioned in an earlier section the classifier was needed to compare the effectiveness 

of single features and to choose the combinations of the features that gave the best 

classification results. Therefore, the classifier was selected and used before the final 

feature set was determined. The classifier might change the results of the classification 

and finding the best classifier is not a trivial task. For example using the value of 10 for K 

may change the set of 30 best features that was found by using K = 5. 

It is not practical to try all different cases for different classifiers and different parameters 

of classifiers, so it was decided to use a classifier with fixed parameters up to the point 

that final set of features were selected. The classifier as mentioned earlier was a Fuzzy K- 

nearest neighbor with the following parameters: 

K = 5, 

m = 2, 

Defuzzification threshold = 0.5; 

It should be noted that in order to save computation time throughout this project, each set 

of files was randomly broken into a training and a testing set. Each file in the testing set 

was classified using the labeled files in training set. Each experiment was repeated 20 

times, and the results were averaged. The number of files that were used for training and 

testing were accordingly 75 and 25. In the last stage of experiments after the final feature 

set had been fixed, instead of randomly selecting testing and training files, one file was 

kept for testing each time and the experiment was repeated 100 times changing the test 

file. 

After the final feature set was selected (Refer to the section on Feature Extraction), 

different values for K were tried on fuzzy and crisp classifier to compare the two 

classifiers and find the best parameters. In addition to percentage of correct classification 

a measure of performance was also used which is explained below. 

The measure that is used to compare the performance of fuzzy classifier is the root mean 

square of the distances between the output of the classifier and the correct class. The 

correct ouput of the classifer should be 0 for non-deceptive cases and 1 for the deceptive 
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ones. For example if for a deceptive sample the classifier output is 0.8, 0.2 is the distance 

between the output and the correct class. The same measure is used for the crisp 

classifier. In the case of the crisp classifier the distance is always 0 for correct 

classification and 1 for incorrect classification. 

For the fuzzy classifier the threshold used for defuzzification was also changed to find the 

optimum value. Tables 7 and 8 in Appendix A show the results. The best classification on 

the average over three sets is obtained using the fuzzy classifier with K = 6, and threshold 

= 0.6 . Using this values correct classification of 81.6 percent was achieved. The best 

result using the crisp classifier was 80.6 percent which was obtained using K=6. The 

performance measures for the fuzzy and crisp classifiers were accordingly 0.3915 and 

0.4377 which shows fuzzy classifier has a better performance in this respect. 

One final experiment that was done is explained below. In a Polygraph examination a set 

of questions is repeated one to five times and the decision is made by considering the 

responses to all these charts. In this project each chart was classified separately. As the 

final experiment responses to all the charts in a Polygraph examination were combined and 

classified as deceptive or non-deceptive. The way they were combined was finding the 

majority class and assigning the case to that class. In the case that equal number of files 

classified as deceptive and non-deceptive, the membership function of the files was 

averaged and the case was classified according to this value. The classification results for 

all the files in sets 1 to 3 are shown in Table 9 in Appendix A. The number of cases in 

each set was 35. The number of misclassified cases in sets 1 to 3 are 5, 7, and 3, which 

correspond to correct classifications of 85.7, 80.0, and 91.4 percent. 
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IV. Conclusion and future work 

The set of four features that showed best classification results in this project were 

Maximum of GSR, Upper Respiration and Lower respiration signals, and the difference 

between the Maximum and Minimum of High Cardio signal. These are all very simple 

time domain features. The best classification was obtained using the fuzzy classifier with 

K = 6, and threshold = 0.6 . Using this values correct classification of 81.6 percent was 

achieved. By combining all the files in a Polygraph examination 85.7 percent correct 

classification was achieved on the average. 

There are several suggestions for the future work. First is to repeat this work with larger 

sets of data files and observe the generalizability of the feature sets obtained in this 

research. A possible way to improve the results is to change time frames used to extract 

each feature for every question. In this way the optimum time for obtaining a response 

could be found. Another suggestion is to try different methods for fuzzification and 

defuzzification of feature vectors to optimize the fuzzy classifier. 
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Appendices 



Appendix A: 

Tables 



No. feature Description Channel Method 

1 lOmean mean GSR 1 

2 lOcurve curve length GSR 2 

3 lOmed dif median of the derivative GSR 1 

4 lOmax min minimum subtracted from the maximum GSR 2 

5 lOmax maximum of the signal GSR 1 

6 lOmdif mean of derivative GSR 3 

7 20curve curve length High Cardio 1 

8 20ampcard amplitude of the peaks High Cardio 1 

9 20max min minimum subtracted from the maximum High Cardio 4 

10 20max maximum of the signal High Cardio 4 

11 20min minimum of the signal High Cardio 1 

12 30med dif median of the derivative Low Cardio 3 

13 30max maximum of the signal Low Cardio 1 

14 40mean mean Derivative of Low Cardio 1 

15 40max maximum of the signal Derivative of Low Cardio 1 

16 50curve curve length Lower Respiratory 6 

17 50ampr amplitude of the peaks Lower Respiratory 2 

18 50peaknumr number of the peaks Lower Respiratory 5 

19 50ie inhalation divided bv exhalation Lower Respiratory 5 

20 50max min minimum subtracted from the maximum Lower Respiratory 2 

21 50max maximum of the signal Lower Respiratory 6 

22 60max min minimum subtracted from the maximum Upper Respiratory 2 

23 60max maximum Upper Respiratory 3 

24 lOstd standard delation GSR 2 

25 20std standard deviation High Cardio 1 

26 50std standard deviation Upper Respiratory 6 

27 20armodl auto regressive parameter High Cardio 7 

28 26psdcohl max cross spectral density High Cardio, Lower Respiratory 1 

29 lOisdl frequency of maximum integrated spectral 
difference of control-relevant pair 

GSR 1* 

30 20isdl area under integrated spectral difference High Cardio 3* 

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min, 
5=Max-Min, 6=Min-Max, 7=Max/Min, l*=Average of relevant-control pairs, 3*=Max of relevant- 
control pair. 

Table 1. Selected Features 



Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 
74.2000 8.0000 18.0000 
74.0000 10.0000 21.0000 
73.0000 5.0000 7.0000 
72.0000 24.0000 26.0000 
71.8000 23.0000 24.0000 
71.6000 4.0000 26.0000 
70.4000 25.0000 26.0000 
70.4000 18.0000 25.0000 
70.2000 24.0000 27.0000 
70.2000 9.0000 21.0000 
70.0000 5.0000 27.0000 
69.6000 11.0000 21.0000 
69.6000 9.0000 24.0000 
69.4000 11.0000 27.0000 
69.4000 5.0000 26.0000 
69.2000 8.0000 19.0000 
69.2000 5.0000 18.0000 
69.0000 25.0000 27.0000 
69.0000 9.0000 18.0000 
69.0000 5.0000 23.0000 

68.8000 24.0000 30.0000 
68.8000 18.0000 20.0000 
68.8000 17.0000 20.0000 
68.8000 4.0000 15.0000 
68.6000 22.0000 24.0000 
68.4000 6.0000 24.0000 

68.4000 1.0000 27.0000 
68.2000 15.0000 24.0000 
68.2000 9.0000 26.0000 
68.2000 5.0000 19.0000 

Table [2.1] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 
74.4000 5.0000 23.0000 
74.4000 4.0000 27.0000 
74.2000 4.0000 15.0000 
74.0000 20.0000 24.0000 
73.6000 16.0000 24.0000 
73.2000 3.0000 27.0000 
72.8000 27.0000 30.0000 
72.6000 4.0000 30.0000 
72.6000 4.0000 7.0000 
72.4000 5.0000 25.0000 
72.2000 24.0000 30.0000 
72.2000 8.0000 27.0000 
72.2000 4.0000 17.0000 
72.2000 4.0000 16.0000 
72.0000 24.0000 27.0000 
72.0000 24.0000 25.0000 
72.0000 4.0000 20.0000 
71.8000 7.0000 23.0000 
71.8000 4.0000 10.0000 

71.2000 25.0000 27.0000 
70.8000 24.0000 26.0000 

70.8000 8.0000 22.0000 
70.6000 7.0000 27.0000 
70.6000 6.0000 27.0000 
70.4000 14.0000 21.0000 

70.4000 14.0000 20.0000 

70.4000 4.0000 8.0000 

70.2000 4.0000 24.0000 

70.0000 22.0000 27.0000 

70.0000 17.0000 24.0000 

Table [2.2] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 

81.0000 1.0000 10.0000 
80.6000 9.0000 24.0000 
80.4000 10.0000 24.0000 
80.4000 4.0000 25.0000 
80.2000 4.0000 9.0000 
79.8000 5.0000 11.0000 
79.2000 17.0000 24.0000 
79.2000 1.0000 21.0000 

79.2000 1.0000 8.0000 

79.0000 1.0000 24.0000 

79.0000 1.0000 11.0000 

78.8000 4.0000 11.0000 

78.6000 4.0000 17.0000 

78.2000 24.0000 25.0000 
78.2000 1.0000 14.0000 
78.0000 1.0000 23.0000 

78.0000 1.0000 20.0000 

77.8000 23.0000 24.0000 

77.8000 1.0000 5.0000 

77.6000 19.0000 24.0000 

77.4000 11.0000 24.0000 

77.4000 5.0000 18.0000 

77.2000 4.0000 19.0000 

77.0000 4.0000 18.0000 

76.8000 4.0000 15.0000 

76.6000 5.0000 13.0000 

76.6000 4.0000 24.0000 

76.2000 4.0000 5.0000 

76.2000 1.0000 26.0000 

Table [2.3] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in average 

Percent correct Feature 1 Feature 2 
73.2667 4.0000 15.0000 
72.8000 24.0000 26.0000 
72.6667 4.0000 17.0000 
72.6000 5.0000 23.0000 
72.2667 23.0000 24.0000 
72.0667 24.0000 30.0000 
71.9333 20.0000 24.0000 
71.8667 24.0000 27.0000 
71.4667 24.0000 25.0000 
71.4000 4.0000 26.0000 
71.0667 4.0000 10.0000 
70.9333 1.0000 8.0000 

70.9333 4.0000 23.0000 

70.6000 5.0000 11.0000 

70.6000 4.0000 24.0000 
70.5333 9.0000 24.0000 
70.4667 6.0000 24.0000 
70.4667 4.0000 25.0000 
70.4667 4.0000 19.0000 
70.4000 4.0000 30.0000 
70.3333 1.0000 23.0000 
70.0667 17.0000 24.0000 

70.0667 1.0000 24.0000 

70.0000 16.0000 24.0000 

69.9333 4.0000 9.0000 
69.8667 4.0000 20.0000 
69.8667 5.0000 7.0000 
69.8667 4.0000 7.0000 

69.8000 15.0000 24.0000 

69.8000 1.0000 21.0000 

Table [2.4] Results of pairwise combinations of features 



4 15 
24 26 
4 17 
5 3 
23 24 
24 30 
20 24 
24 27 
24 25 
4 26 
1 10 
9 24 
10 24 
5 11 
17 24 
4 27 
16 24 
8 18 
10 21 
5 7 

Table [3]. 20 combinations of 2 features selected to combine in sets of 3 



Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 Feature 3 

79.4000 10.0000 21.0000 26.0000 

77.6000 5.0000 7.0000 23.0000 

77.6000 5.0000 23.0000 11.0000 

77.4000 5.0000 23.0000 21.0000 

76.4000 16.0000 24.0000 18.0000 

76.4000 5.0000 23.0000 19.0000 

75.8000 23.0000 24.0000 19.0000 

75.8000 23.0000 24.0000 15.0000 

75.8000 5.0000 23.0000 7.0000 

75.6000 5.0000 7.0000 22.0000 

75.6000 5.0000 7.0000 21.0000 

75.6000 5.0000 7.0000 16.0000 

75.4000 5.0000 7.0000 14.0000 

75.4000 5.0000 11.0000 10.0000 

75.2000 10.0000 21.0000 19.0000 

75.2000 8.0000 18.0000 6.0000 

75.2000 5.0000 23.0000 2.0000 

75.0000 10.0000 21.0000 16.0000 

75.0000 10.0000 21.0000 8.0000 

75.0000 5.0000 11.0000 18.0000 

75.0000 4.0000 26.0000 14.0000 

75.0000 5.0000 23.0000 29.0000 

75.0000 5.0000 23.0000 25.0000 

74.8000 10.0000 21.0000 9.0000 

74.6000 10.0000 21.0000 12.0000 

74.6000 5.0000 11.0000 23.0000 

74.6000 10.0000 24.0000 9.0000 

74.6000 5.0000 23.0000 10.0000 

74.6000 5.0000 23.0000 9.0000 

74.4000 5.0000 7.0000 19.0000 

Table [4.1] Results of combinations of 3 features 



Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 Feature 3 

79.8000 20.0000 24.0000 12.0000 
78.6000 24.0000 30.0000 19.0000 

78.6000 4.0000 15.0000 28.0000 
78.0000 24.0000 27.0000 19.0000 
77.8000 4.0000 17.0000 19.0000 
77.6000 8.0000 18.0000 4.0000 
77.4000 4.0000 27.0000 19.0000 
77.4000 5.0000 23.0000 21.0000 
77.2000 5.0000 23.0000 29.0000 

77.2000 4.0000 15.0000 27.0000 

77.0000 4.0000 27.0000 18.0000 
77.0000 4.0000 15.0000 21.0000 

76.6000 5.0000 7.0000 23.0000 

76.6000 20.0000 24.0000 3.0000 

76.4000 16.0000 24.0000 30.0000 

76.4000 4.0000 27.0000 25.0000 
76.4000 24.0000 27.0000 10.0000 

76.4000 23.0000 24.0000 30.0000 

76.2000 5.0000 23.0000 3.0000 

76.2000 4.0000 17.0000 2.0000 

76.2000 4.0000 15.0000 26.0000 

75.8000 5.0000 7.0000 15.0000 

75.8000 24.0000 30.0000 4.0000 

75.8000 5.0000 23.0000 28.0000 

75.6000 4.0000 27.0000 15.0000 

75.6000 24.0000 27.0000 26.0000 

75.6000 24.0000 27.0000 1.0000 

75.6000 20.0000 24.0000 25.0000 
75.6000 24.0000 30.0000 16.0000 

75.4000 4.0000 15.0000 8.0000 

Table [4.2] Results of combinations of 3 features 
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Appendices 



Appendix A: 

Tables 



No. feature Description Channel Method 
1 lOmean mean GSR 1 
2 lOcurve curve length GSR 2 
3 lOmed dif median of the derivative GSR 1 
4 lOmax min minimum subtracted from the maximum GSR 2 
5 lOmax maximum of the signal GSR 1 
6 lOmdif mean of derivative GSR 3 
7 20curve curve length High Cardio 1 
8 20ampcard amplitude of the peaks High Cardio 1 
9 20max min minimum subtracted from the maximum High Cardio 4 
10 20max maximum of the signal High Cardio 4 
11 20min minimum of the signal High Cardio 1 
12 30med dif median of the derivative Low Cardio 3 
13 30max maximum of the signal Low Cardio 1 
14 40mean mean Derivative of Low Cardio 1 
15 40max maximum of the signal Derivative of Low Cardio 1 
16 50curve curve length Lower Respiratory 6 
17 50ampr amplitude of the peaks Lower Respiratory 2 
18 50peaknumr number of the peaks Lower Respiratory 5 
19 50ie inhalation divided by exhalation Lower Respiratory 5 
20 50max min minimum subtracted from the maximum Lower Respiratory 2 
21 50max maximum of the signal Lower Respirator}' 6 
22 60max min minimum subtracted from the maximum Upper Respiratory 2 
23 60max maximum Upper Respiratory 3 
24 lOstd standard deviation GSR 2 
25 20std standard deviation High Cardio 1 
26 50std standard deviation Upper Respiratory 6 
27 20armodl auto regressive parameter High Cardio 7 
28 26psdcohl max cross spectral density High Cardio, Lower Respiratory 1 
29 lOisdl frequency of maximum integrated spectral 

difference of control-relevant pair 
GSR 1* 

30 20isdl area under integrated spectral difference High Cardio 3* 

Methods: l=Difference of Averages, 2=Normalized Average, 3=Max-Max, 4=Min-Min, 
5=Max-Min, 6=Min-Max, 7=Max/Min , l*=Average of relevant-control pairs, 3*=Max of relevant- 
control pair. 

Table 1. Selected Features 



Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 
74.2000 8.0000 18.0000 
74.0000 10.0000 21.0000 
73.0000 5.0000 7.0000 
72.0000 24.0000 26.0000 
71.8000 23.0000 24.0000 
71.6000 4.0000 26.0000 
70.4000 25.0000 26.0000 
70.4000 18.0000 25.0000 
70.2000 24.0000 27.0000 
70.2000 9.0000 21.0000 
70.0000 5.0000 27.0000 
69.6000 11.0000 21.0000 
69.6000 9.0000 24.0000 

69.4000 11.0000 27.0000 

69.4000 5.0000 26.0000 

69.2000 8.0000 19.0000 
69.2000 5.0000 18.0000 
69.0000 25.0000 27.0000 

69.0000 9.0000 18.0000 

69.0000 5.0000 23.0000 
68.8000 24.0000 30.0000 
68.8000 18.0000 20.0000 

68.8000 17.0000 20.0000 
68.8000 4.0000 15.0000 

68.6000 22.0000 24.0000 
68.4000 6.0000 24.0000 
68.4000 1.0000 27.0000 
68.2000 15.0000 24.0000 
68.2000 9.0000 26.0000 

68.2000 5.0000 19.0000 

Table [2.1] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 

74.4000 5.0000 23.0000 

74.4000 4.0000 27.0000 

74.2000 4.0000 15.0000 

74.0000 20.0000 24.0000 

73.6000 16.0000 24.0000 

73.2000 3.0000 27.0000 

72.8000 27.0000 30.0000 

72.6000 4.0000 30.0000 

72.6000 4.0000 7.0000 

72.4000 5.0000 25.0000 

72.2000 24.0000 30.0000 

72.2000 8.0000 27.0000 

72.2000 4.0000 17.0000 

72.2000 4.0000 16.0000 

72.0000 24.0000 27.0000 

72.0000 24.0000 25.0000 

72.0000 4.0000 20.0000 

71.8000 7.0000 23.0000 

71.8000 4.0000 10.0000 

71.2000 25.0000 27.0000 

70.8000 24.0000 26.0000 

70.8000 8.0000 22.0000 

70.6000 7.0000 27.0000 

70.6000 6.0000 27.0000 

70.4000 14.0000 21.0000 

70.4000 14.0000 20.0000 

70.4000 4.0000 8.0000 

70.2000 4.0000 24.0000 

70.0000 22.0000 27.0000 

70.0000 17.0000 24.0000 

Table [2.2] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 

81.0000 1.0000 10.0000 

80.6000 9.0000 24.0000 

80.4000 10.0000 24.0000 
80.4000 4.0000 25.0000 
80.2000 4.0000 9.0000 
79.8000 5.0000 11.0000 

79.2000 17.0000 24.0000 

79.2000 1.0000 21.0000 

79.2000 1.0000 8.0000 

79.0000 1.0000 24.0000 

79.0000 1.0000 11.0000 

78.8000 4.0000 11.0000 

78.6000 4.0000 17.0000 

78.2000 24.0000 25.0000 

78.2000 1.0000 14.0000 

78.0000 1.0000 23.0000 

78.0000 1.0000 20.0000 

77.8000 23.0000 24.0000 

77.8000 1.0000 5.0000 

77.6000 19.0000 24.0000 

77.4000 11.0000 24.0000 

77.4000 5.0000 18.0000 

77.2000 4.0000 19.0000 

77.0000 4.0000 18.0000 

76.8000 4.0000 15.0000 

76.6000 5.0000 13.0000 

76.6000 4.0000 24.0000 

76.2000 4.0000 5.0000 

76.2000 1.0000 26.0000 

Table [2.3] Results of pairwise combinations of features 



Percentage of correct classification for 30 best combinations in average 

Percent correct Feature 1 Feature 2 

73.2667 4.0000 15.0000 
72.8000 24.0000 26.0000 
72.6667 4.0000 17.0000 
72.6000 5.0000 23.0000 
72.2667 23.0000 24.0000 
72.0667 24.0000 30.0000 
71.9333 20.0000 24.0000 
71.8667 24.0000 27.0000 
71.4667 24.0000 25.0000 

71.4000 4.0000 26.0000 
71.0667 4.0000 10.0000 
70.9333 1.0000 8.0000 

70.9333 4.0000 23.0000 

70.6000 5.0000 11.0000 

70.6000 4.0000 24.0000 

70.5333 9.0000 24.0000 

70.4667 6.0000 24.0000 

70.4667 4.0000 25.0000 

70.4667 4.0000 19.0000 

70.4000 4.0000 30.0000 

70.3333 1.0000 23.0000 

70.0667 17.0000 24.0000 
70.0667 1.0000 24.0000 

70.0000 16.0000 24.0000 

69.9333 4.0000 9.0000 

69.8667 4.0000 20.0000 
69.8667 5.0000 7.0000 
69.8667 4.0000 7.0000 
69.8000 15.0000 24.0000 
69.8000 1.0000 21.0000 

Table [2.4] Res nits of pairw ise combinations of features 



4 15 
24 26 
4 17 
5 3 
23 24 
24 30 
20 24 
24 27 
24 25 
4 26 
1 10 
9 24 
10 24 
5 11 
17 24 
4 27 
16 24 
8 18 
10 21 
5 7 

Table [3]. 20 combinations of 2 features selected to combine in sets of 3 



Percentage of correct unification for 30 best combinations in sei * 

Percent correct Feature 1 Feature 2 Feature 3 

79.4000 10.0000 21.0000 26.0000 

77.6000 5.0000 7.0000 23.0000 

77.6000 5.0000 23.0000 11.0000 

77.4000 5.0000 23.0000 21.0000 

76.4000 16.0000 24.0000 18.0000 

76.4000 5.0000 23.0000 19.0000 

75.8000 23.0000 24.0000 19.0000 

75.8000 23.0000 24.0000 15.0000 

75.8000 5.0000 23.0000 7.0000 

75.6000 5.0000 7.0000 22.0000 

75.6000 5.0000 7.0000 21.0000 

75.6000 5.0000 7.0000 16.0000 

75.4000 5.0000 7.0000 14.0000 

75.4000 5.0000 11.0000 10.0000 

75.2000 10.0000 21.0000 19.0000 

75.2000 8.0000 18.0000 6.0000 

75.2000 5.0000 23.0000 2.0000 

75.0000 10.0000 21.0000 16.0000 

75.0000 10.0000 21.0000 8.0000 

75.0000 5.0000 11.0000 18.0000 

75.0000 4.0000 26.0000 14.0000 

75.0000 5.0000 23.0000 29.0000 

75.0000 5.0000 23.0000 25.0000 

74.8000 10.0000 21.0000 9.0000 

74.6000 10.0000 21.0000 12.0000 

74.6000 5.0000 11.0000 23.0000 

74.6000 10.0000 24.0000 9.0000 

74.6000 5.0000 23.0000 10.0000 

74.6000 5.0000 23.0000 9.0000 

74.4000 5.0000 7.0000 19.0000 

Table [4.1] Results of combinations of 3 features 



Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 Feature 3 

79.8000 20.0000 24.0000 12.0000 . 

78.6000 24.0000 30.0000 19.0000 

78.6000 4.0000 15.0000 28.0000 

78.0000 24.0000 27.0000 19.0000 

77.8000 4.0000 17.0000 19.0000 

77.6000 8.0000 18.0000 4.0000 

77.4000 4.0000 27.0000 19.0000 

77.4000 5.0000 23.0000 21.0000 

77.2000 5.0000 23.0000 29.0000 

77.2000 4.0000 15.0000 27.0000 

77.0000 4.0000 27.0000 18.0000 

77.0000 4.0000 15.0000 21.0000 

76.6000 5.0000 7.0000 23.0000 

76.6000 20.0000 24.0000 3.0000 

76.4000 16.0000 24.0000 30.0000 

76.4000 4.0000 27.0000 25.0000 

76.4000 24.0000 27.0000 10.0000 

76.4000 23.0000 24.0000 30.0000 

76.2000 5.0000 23.0000 3.0000 

76.2000 4.0000 17.0000 2.0000 

76.2000 4.0000 15.0000 26.0000 

75.8000 5.0000 7.0000 15.0000 

75.8000 24.0000 30.0000 4.0000 

75.8000 5.0000 23.0000 28.0000 

75.6000 4.0000 27.0000 15.0000 

75.6000 24.0000 27.0000 26.0000 

75.6000 24.0000 27.0000 1.0000 

75.6000 20.0000 24.0000 25.0000 

75.6000 24.0000 30.0000 16.0000 

75.4000 4.0000 15.0000 8.0000 

Table [4.2] Results of combinations of 3 features 
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Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 Feature 3 

85.2000 9.0000 24.0000 19.0000 

85.0000 9.0000 24.0000 22.0000 

84.2000 16.0000 24.0000 19.0000 

84.0000 17.0000 24.0000 9.0000 

84.0000 4.0000 26.0000 17.0000 

83.6000 4.0000 26.0000 11.0000 

83.6000 4.0000 17.0000 9.0000 

83.6000 24.0000 26.0000 17.0000 

83.6000 4.0000 15.0000 9.0000 

83.4000 5.0000 11.0000 24.0000 

83.4000 9.0000 24.0000 21.0000 

83.4000 9.0000 24.0000 17.0000 

83.4000 9.0000 24.0000 14.0000 

83.4000 4.0000 26.0000 9.0000 

83.2000 16.0000 24.0000 1.0000 

83.2000 4.0000 17.0000 26.0000 

83.2000 24.0000 26.0000 9.0000 

83.0000 9.0000 24.0000 12.0000 

83.0000 9.0000 24.0000 6.0000 

83.0000 4.0000 17.0000 11.0000 

82.8000 9.0000 24.0000 18.0000 

82.8000 23.0000 24.0000 1.0000 

82.8000 4.0000 17.0000 24.0000 

82.8000 4.0000 17.0000 8.0000 

82.6000 17.0000 24.0000 19.0000 

82.4000 17.0000 24.0000 8.0000 

82.4000 9.0000 24.0000 2.0000 

82.4000 5.0000 23.0000 29.0000 

82.2000 5.0000 23.0000 10.0000 

1  82.0000 9.0000 24.0000 26.0000 

Table [4.3] Results of combinations of 3 features 
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Percentage of correct classification for 30 best combinations on average 

Percent correct Feature 1 Feature 2 Feature 3 

78.2000 5.0000 23.0000 29.0000 

77.6000 5.0000 7.0000 23.0000 

77.3333 5.0000 23.0000 21.0000 

76.6000 5.0000 23.0000 10.0000 

76.0000 23.0000 24.0000 15.0000 

75.8667 5.0000 7.0000 21.0000 

75.8667 5.0000 23.0000 7.0000 

75.6667 5.0000 23.0000 11.0000 

75.6000 8.0000 18.0000 4.0000 

75.5333 4.0000 17.0000 19.0000 

75.5333 5.0000 11.0000 17.0000 

75.5333 24.0000 26.0000 14.0000 

75.4667 5.0000 23.0000 28.0000 

75.4667 4.0000 15.0000 26.0000 

75.3333 17.0000 24.0000 19.0000 

75.3333 5.0000 23.0000 25.0000 

75.2000 5.0000 7.0000 17.0000 

75.2000 4.0000 15.0000 23.0000 

75.0000 5.0000 23.0000 17.0000 

74.9333 5.0000 23.0000 3.0000 

74.8667 4.0000 26.0000 15.0000 

74.8000 23.0000 24.0000 19.0000 

74.8000 5.0000 23.0000 14.0000 

74.8000 5.0000 23.0000 1.0000 

74.8000 24.0000 26.0000 25.0000 

74.7333 24.0000 30.0000 19.0000 

74.7333 5.0000 23.0000 19.0000 

74.7333 5.0000 23.0000 9.0000 

74.6667 5.0000 7.0000 22.0000 

74.6667 4.0000 26.0000 19.0000 

Table [4.4] Results of combinations of 3 features 
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4 17 26 
5 23 29 
9 19 24 
4 5 9 
5 10 23 
5 21 23 
4 8 18 
19 24 30 
5 7 23 
19 23 24 
9 14 24 
4 15 28 
5 11 17 
4 19 17 
5 23 24 
5 7 21 
5 11 23 
14 24 26 
10 21 26 
4 11 26 

Table [5]. 20 combinations of 3 features selected to combine in sets of 4 
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Percentage of correct classification for 30 best combinations in set 1 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0000 5.0000 21.0000 23.0000 9.0000 

80.6000 5.0000 7.0000 23.0000 6.0000 

80.2000 5.0000 21.0000 23.0000 11.0000 

79.6000 5.0000 21.0000 23.0000 10.0000 

79.4000 5.0000 7.0000 23.0000 12.0000 

79.4000 5.0000 10.0000 23.0000 21.0000 

79.0000 5.0000 7.0000 23.0000 28.0000 

79.0000 5.0000 7.0000 23.0000 19.0000 

79.0000 5.0000 21.0000 23.0000 26.0000 

78.8000 5.0000 11.0000 23.0000 7.0000 

78.6000 5.0000 21.0000 23.0000 12.0000 

78.4000 5.0000 21.0000 23.0000 15.0000 

78.4000 5.0000 10.0000 23.0000 8.0000 

78.0000 5.0000 11.0000 23.0000 21.0000 

78.0000 5.0000 7.0000 23.0000 20.0000 

78.0000 5.0000 7.0000 23.0000 14.0000 

77.8000 5.0000 7.0000 23.0000 2.0000 

77.8000 5.0000 21.0000 23.0000 28.0000 

77.8000 5.0000 21.0000 23.0000 6.0000 

77.8000 5.0000 21.0000 23.0000 3.0000 

77.8000 5.0000 23.0000 29.0000 26.0000 

77.8000 5.0000 23.0000 29.0000 22.0000 

77.6000 10.0000 21.0000 26.0000 2.0000 

77.6000 5.0000 7.0000 23.0000 22.0000 

77.6000 5.0000 10.0000 23.0000 19.0000 

77.6000 5.0000 23.0000 29.0000 19.0000 

77.6000 5.0000 23.0000 29.0000 1.0000 

77.4000 10.0000 21.0000 26.0000 9.0000 

77.4000 5.0000 11.0000 23.0000 10.0000 

77.4000 5.0000 11.0000 23.0000 8.0000 

Table [6.1] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations in set 2 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0000 5.0000 23.0000 29.0000 14.0000 

79.8000 5.0000 10.0000 23.0000 21.0000 

79.6000 5.0000 21.0000 23.0000 11.0000 

79.4000 14.0000 24.0000 26.0000 19.0000 

79.4000 5.0000 21.0000 23.0000 9.0000 

79.2000 5.0000 21.0000 23.0000 13.0000 

79.0000 5.0000 11.0000 23.0000 3.0000 

79.0000 5.0000 23.0000 29.0000 21.0000 

78.8000 5.0000 23.0000 29.0000 6.0000 

78.6000 4.0000 19.0000 17.0000 25.0000 

78.6000 5.0000 21.0000 23.0000 10.0000 

78.4000 4.0000 19.0000 17.0000 6.0000 

78.4000 5.0000 23.0000 29.0000 19.0000 

78.2000 5.0000 11.0000 23.0000 25.0000 

78.2000 5.0000 11.0000 23.0000 6.0000 

78.2000 4.0000 15.0000 28.0000 27.0000 

78.2000 5.0000 7.0000 23.0000 11.0000 

78.2000 19.0000 24.0000 30.0000 11.0000 

78.0000 5.0000 21.0000 23.0000 27.0000 

77.8000 19.0000 24.0000 30.0000 23.0000 

77.8000 19.0000 24.0000 30.0000 16.0000 

77.8000 5.0000 10.0000 23.0000 11.0000 

77.6000 4.0000 19.0000 17.0000 3.0000 

77.6000 5.0000 7.0000 23.0000 28.0000 

77.4000 14.0000 24.0000 26.0000 20.0000 

77.4000 5.0000 21.0000 23.0000 30.0000 

77.2000 5.0000 11.0000 23.0000 8.0000 

77.2000 4.0000 19.0000 17.0000 11.0000 

77.2000 5.0000 7.0000 23.0000 26.0000 

77.2000 5.0000 21.0000 23.0000 12.0000 

Table [6.2] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations in set 3 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

87.4000 9.0000 19.0000 24.0000 14.0000 

87.2000 9.0000 14.0000 24.0000 19.0000 

87.0000 9.0000 19.0000 24.0000 11.0000 

86.8000 9.0000 19.0000 24.0000 18.0000 

86.6000 5.0000 21.0000 23.0000 29.0000 

86.6000 9.0000 19.0000 24.0000 16.0000 

86.4000 9.0000 19.0000 24.0000 21.0000 

86.4000 4.0000 17.0000 26.0000 18.0000 

86.2000 4.0000 11.0000 26.0000 24.0000 

86.2000 4.0000 8.0000 18.0000 9.0000 

86.2000 9.0000 19.0000 24.0000 22.0000 

86.2000 9.0000 19.0000 24.0000 6.0000 

86.0000 9.0000 19.0000 24.0000 12.0000 

86.0000 9.0000 19.0000 24.0000 10.0000 

85.8000 9.0000 19.0000 24.0000 26.0000 

85.8000 4.0000 17.0000 26.0000 9.0000 

85.6000 5.0000 7.0000 21.0000 16.0000 

85.6000 5.0000 7.0000 21.0000 8.0000 

85.6000 9.0000 19.0000 24.0000 8.0000 

85.6000 9.0000 19.0000 24.0000 5.0000 

85.6000 9.0000 19.0000 24.0000 1.0000 

85.4000 9.0000 14.0000 24.0000 4.0000 

85.4000 5.0000 21.0000 23.0000 1.0000 

85.2000 4.0000 19.0000 17.0000 10.0000 

85.2000 9.0000 19.0000 24.0000 4.0000 

85.0000 5.0000 11.0000 17.0000 4.0000 

85.0000 9.0000 19.0000 24.0000 2.0000 

85.0000 4.0000 17.0000 26.0000 8.0000 

84.8000 4.0000 11.0000 26.0000 9.0000 

84.8000 5.0000 21.0000 23.0000 22.0000 

Table [6.3] Results of combinations of 4 features 
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Percentage of correct classification for 30 best combinations on average 

Percent correct Feature 1 Feature 2 Feature 3 Feature 4 

81.0667 5.0000 21.0000 23.0000 9.0000 

79.9333 5.0000 23.0000 29.0000 21.0000 

79.8667 5.0000 21.0000 23.0000 11.0000 

79.6000 5.0000 10.0000 23.0000 21.0000 

79.2667 5.0000 23.0000 29.0000 19.0000 

79.1333 5.0000 21.0000 23.0000 10.0000 

79.0667 5.0000 23.0000 29.0000 14.0000 

79.0000 14.0000 24.0000 26.0000 19.0000 

78.9333 5.0000 7.0000 23.0000 12.0000 

78.8667 5.0000 21.0000 23.0000 22.0000 

78.8667 5.0000 7.0000 23.0000 28.0000 

78.7333 5.0000 7.0000 23.0000 6.0000 

78.6667 5.0000 21.0000 23.0000 7.0000 

78.5333 5.0000 21.0000 23.0000 1.0000 

78.4667 5.0000 23.0000 29.0000 1.0000 

78.4000 5.0000 7.0000 21.0000 8.0000 

78.4000 5.0000 7.0000 23.0000 26.0000 

78.2667 5.0000 7.0000 23.0000 11.0000 

78.2000 5.0000 7.0000 23.0000 22.0000 

78.2000 5.0000 23.0000 29.0000 28.0000 

78.1333 5.0000 11.0000 23.0000 10.0000 

78.1333 5.0000 10.0000 23.0000 25.0000 

78.0667 5.0000 7.0000 23.0000 16.0000 

78.0000 5.0000 7.0000 23.0000 20.0000 

77.8667 5.0000 10.0000 23.0000 29.0000 

Table [6.4] Results of combinations of 4 features 
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k Correct 
classification 

Performance 
Index 

1 73 0.5196 
2 74 0.5099 
3 77 0.4796 
4 77 0.4796 
5 82 0.42 
6 81 0.4359 
7 76 0.4899 
8 80 0.4472 
9 79 0.4583 
10 79 0.4583 

Table[7.1] Classification results with changing K for the crisp classifier for set 1 

k Correct 
classification 

Performance 
Index 

1 74 0.5099 

2 74 0.5099 

3 77 0.4796 

4 77 0.4796 

5 74 0.5099 

6 76 0.4899 

7 76 0.4899 

8 75 0.5000 

9 78 0.4690 

10 78 0.4690 

Table[7.2] Classification results with changing K for the crisp classifier for set 2 
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k Correct 
classification 

Performance Index 

1 79 0.4583 

2 79 0.4583 

3 81 0.4359 
4 84 0.4000 

5 83 0.4123 

6 85 0.3873 

7 81 0.4359 

8 81 0.4359 
9 82 0.4243 

10 82 0.4243 

Table[7.3] Classification results with changing K for the crisp classifier for set 3 

k Correct 
classification 

Performance 
Index 

1 75.3333 0.4959 

2 75.6667 0.4927 

3 78.3333 0.4650 

4 79.3333 0.4531 

5 79.6667 0.4474 

6 80.6667 0.4377 

7 77.6667 0.4719 

8 78.6667 0.4610 

9 79.6667 0.4505 

10 79.6667 0.4505 

Table[7.4] Average classification results with changing K for the crisp classifier 
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percent classification performanc 
e index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 

1 73 73 73 73 73 73 0.5196 

2 77 75 73 74 72 73 0.4267 

3 75 74 77 75 73 69 0.4261 

4 75 74 76 77 76 69 0.4157 

5 74 74 81 79 76 73 0.4061 

6 69 74 78 79 76 74 0.3993 

7 70 74 77 81 77 72 0.3980 

8 70 75 79 79 79 72 0.3977 

9 69 72 78 80 79 71 0.3971 

10 68 73 78 79 79 70 0.3978         | 

Table[8.1] Classification results for the fuzzy classifier for set 1 

percent classification performance 
index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 

1 74 74 74 74 74 74 0.5099 

2 72 75 74 77 78 77 0.4328 

3 73 75 79 79 77 73 0.4316 

4 73 75 79 76 76 72 0.4262 

5 71 76 76 78 77 74 0.4176 

6 72 73 76 79 75 72 0.4164 

7 71 73 79 79 77 70 0.4092 

8 69 74 78 80 77 70 0.4099 

9 73 75 80 79 77 70 0.4059 

10 72 73 81 79 76 72 0.4004 

Table[8.2] Classification results for the fuzzy classifier for set 2 
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percent classification performance 
index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 

1 79 79 79 79 79 79 0.4583 

2 73 76 79 84 84 84 0.3991 

3 72 75 81 85 85 82 0.3862 

4 75 78 84 86 86 83 0.3704 

5 74 80 83 86 86 84 0.3635 

6 75 82 85 87 85 83 0.3588 

7 74 80 82 84 84 82 0.3605 

8 73 78 83 84 84 81 0.3638 

9 73 79 83 84 85 81 0.3625 

10 73 80 83 84 85 82 0.3615 

Table[8.3] Classification results for the fuzzy classifier for set 3 

percent classification performanc 
e index 

k \ Threshold 0.3 0.4 0.5 0.6 0.7 0.8 

1 75.33 75.33 75.33 75.33 75.33 75.33 0.4959 

2 74 75.33 75.33 78.33 78 78 0.4195 

3 73.33 74.67 79 79.67 78.33 74.67 0.4146 

4 74.33 75.67 79.67 79.67 79.33 74.67 0.4041 

5 73 76.67 80 81 79.67 77 0.3957 

6 72 76.33 79.67 81.67 78.67 76.33 0.3915 

7 71.67 75.67 79.33 81.33 79.33 74.67 0.3892 

8 70.67 75.67 80 81 80 74.33 0.3905 

9 71.67 75.33 80.33 81 80.33 74 0.3885 

10 71 75.33 80.67 80.67 80 74.67 0.3866 

Table[8.3] Average classification results with for the fuzzy classifier 

21 



File Membership Defuzzified Result 
1.0000 0.2736 0 
2.0000 0.3339 0 
3.0000 0.5397 0 0 

4.0000 0.5450 0 
5.0000 0.7423 1.0000 
6.0000 0.1732 0 0 

7.0000 0.8901 1.0000 
8.0000 1.0000 1.0000 1      Misclassified 

9.0000 0.5376 0 
10.0000 0.1742 0 
11.0000 0.4366 0 0 

12.0000 0.3458 0 
13.0000 0.5145 0 
14.0000 0.5178 0 0 

15.0000 0.1016 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.1334 0 0 

19.0000 0 0 
20.0000 0 0 
21.0000 0.2923 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.1607 0 0 

25.0000 0 0 
26.0000 0.4421 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3307 0 
29.0000 0.0583 0 
30.0000 0.4965 0 0 

31.0000 0.3505 0 
32.0000 0.1181 0 
33.0000 0.2101 0 0 

Table [9.1] Classification of the files of set 1 
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File          Membership     Defuzzified Result 
34.0000          0.5970                      0 
35.0000                      0                      0 
36.0000          0.1193                      0 0 

37.0000          0.3174                      0 
38.0000          0.8117          1.0000 

39.0000          0.0997                      0 0 

40.0000          0.1889                      0 
41.0000          0.4215                     0 
42.0000          0.1635                     0 0 

43.0000          0.6474          1.0000 
44.0000                      0                      0 
45.0000          0.5495                      0 0 

46.0000          0.1115                      0 0 

47.0000                      0                      0 
48.0000          0.3986                      0 
49.0000                      0                      0 
50.0000                      0                      0 0 

51.0000          0.6709          1.0000 
52.0000          1.0000          1.0000 
53.0000          0.5297                      0 1 

54.0000          0.7245          1.0000 
55.0000          0.9200          1.0000 
56.0000          1.0000          1.0000 1 

57.0000          0.9105          1.0000 
58.0000          0.9398          1.0000 
59.0000          0.5657                      0 1 

60.0000          0.8968          1.0000 
61.0000          1.0000          1.0000 
62.0000          0.2793                      0 
63.0000          0.1088                      0 0      Misclassified 

64.0000          0.6245          1.0000 
65.0000          0.8643          1.0000 
66.0000          0.5054                      0 1 

Table [9.1] Continued 
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File Membership Defuzzified Result 
67.0000 0.8498 1.0000 
68.0000 0.6969 1.0000 
69.0000 0.8397 1.0000 1 

70.0000 0.2901 0 
71.0000 0.8291 1.0000 
72.0000 0.3982 0 0      Misclassified 

73.0000 1.0000 1.0000 
74.0000 0.2463 0 
75.0000 0.8043 1.0000 1 

76.0000 0.6676 1.0000 
77.0000 1.0000 1.0000 
78.0000 1.0000 1.0000 1 

79.0000 1.0000 1.0000 
80.0000 0.7538 1.0000 
81.0000 1.0000 1.0000 1 

82.0000 1.0000 1.0000 
83.0000 0.8378 1.0000 
84.0000 1.0000 1.0000 1 

85.0000 0.8926 1.0000 
86.0000 0.5448 0 
87.0000 0.5751 0 0      Misclassified 

88.0000 0.8273 1.0000 
89.0000 0.2945 0 
90.0000 0.9110 1.0000 1 

91.0000 1.0000 1.0000 
92.0000 1.0000 1.0000 
93.0000 0 0 1 

94.0000 0.2887 0 
95.0000 0.2079 0 
96.0000 0.5793 0 0      Misclassified 

97.0000 1.0000 1.0000 
98.0000 0.7971 1.0000 
99.0000 0.8708 1.0000 1 

100.0000 1.0000 1.0000 1 

Table [9.1] Continued 
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File Membership Defuzzified Result 
1.0000 0.2579 0 
2.0000 0.1307 0 
3.0000 0 0 0 

4.0000 0.2652 0 
5.0000 0.4345 0 
6.0000 0.1175 0 0 

7.0000 1.0000 1.0000 
8.0000 0.7086 1.0000 1        Misclassified 

9.0000 0.2856 0 
10.0000 0.2745 0 
11.0000 0.3056 0 0 

12.0000 0.2720 0 
13.0000 0.5019 0 
14.0000 0.8871 1.0000 0 

15.0000 0.0912 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.8334 1.0000 1      Misclassified 

19.0000 0 0 
20.0000 0 0 
21.0000 0.5483 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.1535 0 0 

25.0000 0.4955 0 
26.0000 0.1013 0 
27.0000 1.0000 1.0000 0 

28.0000 0.3788 0 
29.0000 0.1638 0 
30.0000 0.0905 0 0 

31.0000 0 0 
32.0000 0.1431 0 
33.0000 0.0937 0 0 

Table [9.2] Classification of the files of set 2 
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File Membership     Defuzzified 
34.0000 
35.0000 
36.0000 

37.0000 
38.0000 
39.0000 

40.0000 
41.0000 
42.0000 

43.0000 
44.0000 
45.0000 

46.0000 

47.0000 
48.0000 
49.0000 
50.0000 

51.0000 
52.0000 

53.0000 
54.0000 
55.0000 

56.0000 
57.0000 
58.0000 

59.0000 
60.0000 
61.0000 

62.0000 
63.0000 
64.0000 

65.0000 
66.0000 

0.1281 

67.0000 

0.3690 
0.5734 
0.1569 

0.3659 
0.4124 
0.1704 

0.4251 
0.0664 
0.5356 

0.5084 

0.1735 
0.7512 
0.5115 
0.0976 

0.6361 
0.8482 

0.3471 
0.8822 
1.0000 

1.0000 
1.0000 
0.8730 

0.0389 
0.3643 

1.0000 
0.8174 
0.8875 

0.7995 
0.5919 
0.7533 

1.0000 

1.0000 
1.0000 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

1.0000 

1.0000 

Result 

Misclassified 

Table [9.2] Continued 
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Membership    Defuzzified 
68.0000    0.7337    1.0000 
File 

69.0000 
70.0000 

71.0000 
72.0000 
73.0000 

74.0000 
75.0000 
76.0000 
77.0000 

78.0000 
79.0000 
80.0000 

81.0000 
82.0000 
83.0000 

84.0000 
85.0000 
86.0000 

87.0000 
88.0000 
89.0000 

90.0000 
91.0000 
92.0000 

93.0000 
94.0000 
95.0000 

96.0000 
97.0000 
98.0000 

99.0000 
100.0000 

0.8524 
0.8602 

0.2217 
1.0000 
0.1268 

0.8860 
0.2121 
0.1684 
0.6903 

0.7680 
0.8735 
0.8013 

0.1748 
0.5428 
0.8496 

0.3444 
0.8298 
0.8590 

0.6879 
0.9082 
0.6653 

0.1636 
0.8754 
0.8594 

0.5185 
0.4932 
0.7802 

0.8684 
0.8788 
1.0000 

1.0000 
0.8669 

1.0000 
1.0000 

1.0000 

1.0000 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 
1.0000 
1.0000 

0 
1.0000 
1.0000 

1.0000 

1.0000 
1.0000 
1.0000 

1.0000 
1.0000 

Result 

Misclassified 

Misclassified 

Misclassified 

Misclassified 

Table [9.2] Continued 
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File Membership Defuzzified Result 
1.0000 0.3986 0 
2.0000 0.2845 0 
3.0000 0.2562 0 0 

4.0000 0.2786 0 
5.0000 0.3226 0 
6.0000 0 0 0 

7.0000 1.0000 1.0000 
8.0000 0.5055 0 
9.0000 0.1434 0 0 

10.0000 0 0 
11.0000 0 0 0 

12.0000 0.0691 0 
13.0000 0.4744 0 
14.0000 0.4708 0 0 

15.0000 0 0 
16.0000 0 0 
17.0000 0 0 0 

18.0000 0.4623 0 0 

19.0000 0 0 
20.0000 0 0 
21.0000 0.2096 0 0 

22.0000 0 0 
23.0000 0 0 
24.0000 0.0516 0 0 

25.0000 0.2885 0 
26.0000 0.0981 0 
27.0000 0.9336 1.0000 0 

28.0000 0.2254 0 
29.0000 0.1465 0 
30.0000 0.0680 0 0 

31.0000 0 0 
32.0000 0 0 
33.0000 0.0939 0 0 

Table [9.3] Classification of the files of set 3 
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File         Membership Defuzzified Result 
34.0000          0.3917 0 
35.0000                      0 0 
36.0000                       0 0 0 

37.0000          0.1689 0 
38.0000          0.5220 0 
39.0000                       0 0 0 

40.0000          0.0969 0 
41.0000                      0 0 
42.0000                      0 0 0 

43.0000          0.4810 0 
44.0000          0.3154 0 
45.0000          0.4552 0 0 

46.0000          0.3285 0 0 

47.0000          0.3690 0 
48.0000          0.5593 0 
49.0000          0.3522 0 
50.0000          0.2325 0 0 

51.0000          1.0000 1.0000 
52.0000          0.9052 1.0000 
53.0000          0.8115 1.0000 1 

54.0000          0.8397 1.0000 
55.0000          0.8754 1.0000 
56.0000          0.0930 0 1 

57.0000          0.8330 1.0000 
58.0000          1.0000 1.0000 1 

59.0000          1.0000 1.0000 
60.0000          1.0000 1.0000 
61.0000          1.0000 1.0000 1 

62.0000          1.0000 1.0000 
63.0000          0.6496 1.0000 
64.0000          0.5075 0 1 

65.0000          0.0823 0 
66.0000          0.7810 1.0000 
67.0000          0.2356 0 0      Misclassified 

Table [9.3] Continued 
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File Membership Defuzzifled Result 
68.0000 1.0000 1.0000 
69.0000 1.0000 1.0000 
70.0000 1.0000 1.0000 1 

71.0000 1.0000 1.0000 
72.0000 1.0000 1.0000 
73.0000 1.0000 1.0000 1 

74.0000 1.0000 1.0000 
75.0000 1.0000 1.0000 
76.0000 1.0000 1.0000 1 

77.0000 1.0000 1.0000 
78.0000 1.0000 1.0000 
79.0000 1.0000 1.0000 1 

80.0000 0.6068 1.0000 
81.0000 0.9054 1.0000 
82.0000 0.4134 0 1 

83.0000 1.0000 1.0000 
84.0000 0 0 
85.0000 0.2914 0 0      Misclassified 

86.0000 1.0000 1.0000 
87.0000 1.0000 1.0000 
88.0000 0.8786 1.0000 1 

89.0000 0.9018 1.0000 
90.0000 1.0000 1.0000 
91.0000 1.0000 1.0000 1 

92.0000 1.0000 1.0000 
93.0000 0.9135 1.0000 
94.0000 0.8292 1.0000 1 

95.0000 0.7423 1.0000 
96.0000 1.0000 1.0000 
97.0000 0.0902 0 1 

98.0000 0.2564 0 
99.0000 0 0 

100.0000 0.4387 0 0      Misclassified 

Table [9.3] Continued 
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Non deceptive Deceptive 1 Deceptive 2 Deceptive 3 

QQ8R9OIO.011 QQ4Q1O83.011 QQ7LX5Q0.021 QQ8RAJ0C.011 
QQ8R9OIO.021 QQ4Q1O83.021 QQ7LX5Q0.031 QQ8RAJ0C.021 
QQ8R9OIO.031 QQ4Q1O83.031 QQ7MN2Y0.011 QQ8RAJ0C.031 
QQ95LU1T.011 QQ4Q3MDC.011 QQ7MN2Y0.021 QQ9EUKVT.011 
QQ95LU1T.021 QQ4Q3MDC.021 QQ7MN2Y0.031 QQ9EUKVT.021 
QQ95LU1T.031 QQ4Q3MDC.031 QQ7TC5UF.011 QQ9EUKVT.031 
QQAURNUS.021 QQ51DE36.011 QQ7TC5UF.021 QQ9IOOXO.021 
QQAURNUS.031 QQ51DE36.021 QQ7TC5UF.031 QQ9IOOXO.041 
QQAV53P6.011 QQ51DE36.041 QQ7TQVER011 QQ9SOW8L.011 
QQAV53P6.021 QQ6RQGH6.011 QQ7TQVER021 QQ9SOW8L.021 
QQAV53P6.031 QQ6RQGH6.021 QQ7TQVER031 QQ9SOW8L.031 
QQBQ4SHI.011 QQ6RQGH6.031 QQ7TVADC.011 QQ9SQK.9.011 
QQBQ4SHI.021 QQ6RQGH6.041 QQ7TVADC.021 QQ9SQK9.021 
QQBQ4SHI.031 QQ6T711O.011 QQ7TVADC.031 QQ9SQIK9.031 
QQBSS7WT.011 QQ6T7110.021 QQ7U2T4R011 QQ9W0B9F.011 
QQBSS7WT.021 QQ6T7110.031 QQ7U2T4R021 QQ9W0B9F.031 
QQBSS7WT.031 QQ6Z59IG.011 QQ7U2T4R031 QQ9W0B9F.041 
QQ7OXM60.021 QQ6Z59IG.021 QQ7YP7QU.011 QQ9U4FMU.011 
QQ7RH0RO.011 QQ6Z59IG.031 QQ7YP7QU.021 QQ9U4FMU.021 
QQ7RH0RO.021 QQ7PP9B9.011 QQ7YP7QU.031 QQ9U4FMU.031 
QQ7RH0RO.031 QQ7PP9B9.021 QQ7YZOJ3.011 QQ9Y SVF.011 
QQ7R51P9.011 QQ7PP9B9.031 QQ7YZOJ3.021 QQ9Y SVF.021 
QQ7R51P9.021 QQ7PDU1X.011 QQ7YZOJ3.031 QQ9Y~SVF.031 
QQ7R51P9.031 QQ7PDU1X.021 QQ8 0DPT.011 QQ9YH3QF.011 
QQ9TDSP3.011 QQ7PDU1X.031 QQ8 0DPT.021 QQ9YH3QF.021 
QQ9TDSP3.021 QQ7 PIPF.011 QQ8 0DPT.031 QQ9YH3QF.031 
QQ9TDSP3.031 QQ7 PIPF.021 QQ8 0DPT.041 QQA2TT4C.011 
QQ A8OWOI.011 QQ7 PIPF.031 QQ8 2UQ9.011 QQ A2TT4C.021 
QQA8OWOI.021 QQ7 JT70.011 QQ8_2UQ9.021 QQA2TT4C.031 
QQA8OWOI.031 QQ7_JT70.021 QQ8 2UQ9.031 QQA3HIRX.011 
QQBT22O6.011 QQ7 JT70.031 QQ800IG6.011 QQA3HIRX.021 
QQBT22O6.021 QQ738DYX.011 QQ800IG6.021 QQA3HIRX.031 
QQBT22O6.031 QQ738DYX.021 QQ800IG6.031 QQA32UTF.011 
QQBO9O_9.011 QQ738DYX.031 QQ82OIU9.011 QQA32UTF.021 
QQB090 9.021 QQ75ULP9.011 QQ82ORJ9.021 QQA32UTF.031 
QQB090 9.031 QQ75ULP9.021 QQ82ORJ9.031 QQA6U EF.011 
QQBC7PP6.011 QQ75ULP9.031 QQ82SUTX.011 QQA6U IF.031 
QQBC7PP6.021 QQ79 EYF.011 QQ82SUTX.021 QQA6U IF.041 
QQBC7PP6.031 QQ79 EYF.021 QQ82SUTX.031 QQAM4E3L.011 
QQCHCK O.011 QQ79 EYF.031 QQ860ZNU.011 QQAM4E3L.021 
QQCHCK O.021 QQ7BGDML.011 QQ860ZNU.021 QQAM4E3L.031 
QQCHCK O.031 QQ7BGDML.021 QQ860ZNU.031 QQARF2_X.011 
QQCDTKP0.011 QQ7BGDML.031 QQ89U ZR.011 QQARF2 X.021 
QQCDTKP0.031 QQ7ETC8I.011 QQ89U ZR.021 QQARF2 X.031 
QQCDTKP0.041 QQ7ETC8I.021 QQ89U ZR.031 QQAWA38X.011 
QQCM5Y56.011 QQ7ETC8I.031 QQ8ATU26.011 QQAWA38X.021 
QQCQQT8Y.011 QQ7JAQCS.011 QQ8ATU26.021 QQAWA38X.031 
QQCQQT8Y.021 QQ7JAQCS.021 QQ8ATU26.031 QQAYXZGU.011 
QQCQQT8Y.031 QQ7JAQCS.031 QQ8FGMVI.011 QQAYXZGU.021 
QQCQQT8Y.041 QQ7LX5Q0.011 QQ8FGMVI.021 QQAYXZGU.031 

Table [10] NSA Polygraph files used in sets 1-3. 

Note: Each set consists of non-deceptive files and one of the deceptive sets 
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Appendix B: 

Program Listings 
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Classify Program 

% This is a Matlab program 
% This script parses a matrix of polygraph 
% vectors into training and testing vectors. 
% It then calls the classifier, trains, tests 
% and gives results. 

c = 2; 
percent_train=75; 

% number of classes 
% percentage of inputs used for training 

features=[ 1 ] % features to use 
classification^; % use fuzzy classifier 
kk=5; % K in K nearest neighbor 
change= 1; % Randomize training and testing inputs 
repeat=20; % Number of repeatitions 
ut=5; % Upper threshhold for 3 class fuzzy classifier 
lt=5; % Lower threshhold for 3 class fuzzy classifier 

load set31; 

%classvect; 

% file containing feature matrix 
% and vector that indicates whether 

% column is truthful or deceptive 
% vector of classes eg. 1 = deceptive 

% 0 = truthful vector 
featurematrix = featmat; % matrix of features 
dimension = size(featurematrix); 
columns = dimension(2); % the total number of columns in the feature matrix 
number_train = round(percent_train*columns);        % number of vectors 

% used for training 

ur=.5; 
continue=l; 
while (continue=l) 

%upper threshold 
% to repeat the program 

apercent_classified=[]; 
acorrect=[]; 
acc=[]; 
ffresult=[]; 
ccresult=[]; 
ttestclass=f]; 

% clear average results 

men=0; 
while(men ~=7) 

men=menu(,Selea:,,,Features,,T>pe','K,,'Random'... 
,'Repeat7%traimng7Start7Defuzz7Exit'); 

if (men==l) 
'enter a vector of the features you want tested (eg. [12 4])  ' 
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features = input(''); % features being tested 
end 

if (men=2) 
classification=menu(Type:','Fuzzy','Crisp'); 

end 

if (men=3) 
kk = input('enter the "K" in K nearest neighbor  ') 
end 

if (men=4) 
change=menu('Selection','Random',,Constant'); 

end 

if (men==5) 
repeat=input('Enter number of repeatitions') 

end 

if (men=6) 
percent_train=input('Enter percentage of the files used for training, 1 for all-l') 

end 
if (men==8) 

ch=menu('Defuzzification', '3class', Upper thresh','Lower thresh'); 
if ch=l, classification=3, end 
ifch==2 

ut=input('enter the upper threshhold'); % lower limit for class 1 
end 
ifch=3 

lt=input('enter the lower threshhold'); %upper limit for class 0 
end 

end 
if (men==9) break,end 

end 
if men==9 break,end 
number_train = round(percent_train*columns); 
acorrect=[]; % vector for the average of correct classification 
acc=[]; % vector for the average of performance index 

if percent_train =1        % To repeat nonrandom testing for all the files. 
repeat =columns; 

end 

fortrial=l:repeat 

featurematrix = featmat(features,:);   % creates a feature matrix of the 
% the features being tested 

if ((change—1) & (percent_train~l)) 
[trainvect, testvect] = randvect(number_train,columns); 

end; 
if percent_train == 1 

testvect = trial; 
if (trial ==1) 

trainvect=2 :columns; 
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end 
if (trial = columns) 

trainvect=l :columns-l; 
end 
if (trial ~=1 & trial ~=columns) 

trainvect = [l:trial-l, trial+l:columns]; 
end 

end 
testvect 
trainvect 
u = featurematrix(:,testvect); % testing matrix 

testclass = classvect( 1 .testvect); % class of each column in testing matrix 

p = featurematrix(: .trainvect); % training matrix 

t = classvect( 1 .trainvect); % class of each column in training matrix 

if classification = 1 % Fuzzy classifier 

% m = input('enter the degree of fuzziness MM" (l<=M<=infinfity)') 
m = 2; 
save fdatafil c kk m p t u 

% !fknn %This line invokes the classifier program in a dos window 
dos('del foutfile.matD %to make sure that the program actulally works 
dos('fknnl') 
'Now loading the result of the fuzzy classifier' 
load foutfile 

kk, features 
fresult 
testclass 

if(percent_train= 1) 
ffresult=[ffresult fresult] 
ttestclass=[ttestclass testclass]; 

end 

cr =fresult(2,:) > ut % denazification of the result 
correct = 100*(l-mean(abs(testclass-cr)))  % percentage correct classified 
cc = [ 1 -testclass; testclass]; % adding a row of complements to c 
cc=fresult-cc; 
•Performance Index-' 
cc = sqrt(mean(mean(cc .A 2))) 

end 

if classification = 2 % crisp classifier 

save cdatafil c kk p t u 
% !cknn %This line invokes the classifier program in a dos window 

dos('del foutfile.matD %to make sure that the program actulally works 
dos('cknn|') 
'Loading the Crisp output file' 
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load coutfile 

kk, features 
cresult 
testclass 

if(percent_train=1) 
ccresult=[ccresult cresult] 
ttestclass=[ttestclass testclass]; 

end 

correct = 100*(l-mean(abs(testclass-cresult)))  % percentage correct classified 
cc = sqrt(mean(abs(testclass-cresult))) % performance index 

end 
if classification = 3 % Fuzzy classifier but defuzzification into 3 classes 

% m = input('enter the degree of fuzziness "M" (l<=M<=infinfity)') 
m = 2; 
save fdatafil c kk m p t u 

% !fknn %This line invokes the classifier program in a dos window 
dos('del foutfile.matD %to make sure that the program actulally works 
dos('fknnr) 
'Now loading the result of the fuzzy classifier' 
load foutfile 

kk. features 
fresult 
testclass 

if(percent_train== 1) 
ffresult=[ffresult fresult] 
ttestclass=[ttestclass testclass]; 

end 
classl=find(fresult(2,:) >ut); 
class0=find(fresult(2,:) <lt); 
class3=find(fresult(2,:) >lt & fresult(2,:) <ut); 
percent_classified=100*((length(class0)+length(classl))/length(testclass)) 
fr=[fresult(:,classl) fresult(:,classO)] % the section that is classified into one of the two 

classes 
cr=fr(2,:)>ut 
tr=[testclass(classl) testclass(classO)] % the section that is classified into one of the two 

classes 
correct = 100*(l-mean(abs(tr-cr)))  % percentage correct classified 
cc = [ 1 -tr; tr]; % adding a row of complements to cc 
cc=fr-cc; 
'Performance Index=' 
cc = sqrt(mean(mean(cc .A 2))) 

end 

apercent_classified = [apercent_classified percent_classified] 
acorrect=[acorrect correct] 
acc=[acc cc] 
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end % for trial 

if classification =3 % 3 class fuzzy 
apercent_classified=mean(apercent_classified) 
end 
acorrect, mean(acorrect) 
ace, mean(acc) 

continue=3; 
while (continue — 3 | continue=4) 
continue=menu('Repeat?', Yes', W/Plot', 'threshold'); 
if(continue=3) 

dim=menu(T>imension', Two', Three')+1; 
if(dim=2) 

pp=p(:,find(t)); 
plot(pp(l,:),pp(2,:),'r+'); 
title('A clustering of two class data'); 
hold on 
pp=p(:,find(t=0)); 
plot(pp(l,:),pp(2,:),'gx'); 

pp=u(:, find(testclass)); 
plot(pp(l,:), pp(2,:), 'r+'); 
pp=u(: ,find(testclass=0)); 
plot(pp(l,:),pp(2,:),'gx'); 

hold off 
end       %if(dim==2) 

if(dim==3) 

pp=p(:,find(t)); 
plot3(pp(l,:),pp(2,:),pp(3,:),'r+'); 
title('A clustering of two class data'); 
hold on 
pp=p(:,find(t=0)); 
plot3(pp(l,:), pp(2,:), pp(3,:), 'rx'); 

pp=u(:, find(testclass)); 
plot3(pp(l>:),pp(2,:),pp(3,:),'g+'); 
pp=u(:,find(testclass=0)); 
ploO(pp(l,:), pp(2,:), pp(3,:), 'gx'); 

hold off 
end       %if(dim=3) 

end    %if(continue=3) 

if (continue=4) 

ch=menu('Defuzzification', '3class', 'Upper thresh','Lower thresh'); 
ifch=l, classification=3, end 
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ifch==2 
ut=input('enter the upper ihreshhold'); % lower limit for class 1 

end 
ifch=3 

lt=input('enter the lower threshhold'); %upper limit for class 0 
end 

if classification=1 
cr =ffresult(2,:) > ut % defuzzification of the result 
correct = 100*(l-mean(abs(ttestclass-cr)))  % percentage correct classified 
cc = [ 1 -ttestclass; ttestclass]; % adding a row of complements to c 
cc=ffresult-cc; 
'Performance Index- 
cc = sqrt(mean(mean(cc .A 2))) 

end 

if classification=2 
correct = 100*(l-mean(abs(ttestclass-ccresult)))   % percentage correct classified 
cc = sqrt(mean(abs(ttestclass-ccresult))) % performance index 

end 

if classification=3 
class l=find(ffresult(2,:) >ut); 
class0=find(ffresult(2,:) <lt); 
class3=find(ffresult(2,:) >lt & ffresult(2,:) <ut); 
fr=[ffresult(:,class 1) ffresult(:,classO)] % the section that is classified into one of 

the two classes 

the two classes 

cr=fr(2,:)>ut 
tr=[ttestclass(classl) ttestclass(classO)]        % the section that is classified into one of 

percent_classified=100*((length(class0)+length(classl))/length(ttestclass)) 
correct = 100*(l-mean(abs(tr-cr)))  % percentage correct classified 
cc = [ 1 -tr; tr]; % adding a row of complements to cc 
cc=fr-cc; 
'Performance Index=' 
cc = sqrt(mean(mean(cc .A 2))) 

end 
end 

end       % while continue = 3 14 

end % while continue 
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/*        This program implements a K-nearest neighbor classifier, 
created by: Shahab Layeghi 

created: 8/4/93 
last modified: 9/17/93 
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/* The main program opens a matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "cdatafil.mat". As the name implies it is in matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter TC' in K-NN Algorithm. 
3. A trainig matrix "P' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
4. A classes vector T which contains the classes of the training set 
5. An input matrix V which contains a set of unclassified feature vectors. 

The main program uses the CrispKNN routine to classify each one of the input 
vectors and saves the results (the classes that these inputs belong to) in a 
file called coutfile. mat. This file is in Matlab format. This file contains 
a vector of the classes called: 

'cresult' 

This program can be called from dos, or within Matlab by using dos escpae 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "cknntest.m". 

*/ 

#include <stdio.h> 
include <stdlib.h> 
^include <time.h> 
^include <math.h> 
#include <conio.h> 

#define INPUTFILE "cdatafil.mat" 
#define OUTPUTFILE "coutfile.mat" 

// Function Prototypes • 

int CrispKNN(double *Input, double *Samples, double *Lables); 
double FindDistance(double *vecl, double *vec2); 
double Maxd(double *vec, int *index, int Length); 
int FindMax(int *vector, int *count, int Length, int Max); 
int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols, 

int *imagf, double **preal, double **pimag); 
void savemat(FILE *fp, int type, char *pname, int mrows, int ncols, 

int imagf, double *preal, double *pimag); 

// Global variables, these variables will be set by reading matlab file  

int classes; /* the number of classes */ 
int features; /* Number of features in a class */ 
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intKK; 
int SampleSize; 
int TestSize; 

/* K in K-nearest neighbors */ 
/* Number of Labled Samples */ 

II- 

I* 

void main() 
{ 

here. 

double *Lables; 
double *KP; 
double * input; 
int i j; 
FILE *fp; 
char name[20]; 
int type, imagf; 
double *Samples, *isamples;    // isamples is for imaginary part of the matrix that is not used in 

double Testdata; 
double *result; 
^>=fopen(INPUTFILE,"ib"); 
if(!fp) { 

printf("cannot open the file"); 
exit(-l); 

} 
// read classes from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printf("error: You should include classes at the beginning of the file\n"); 
exit(-l); 

} 
classes=*KP; 

// read KK from the file 
loadmat(fp. &type, name, &i, &j, Äirnagf, &KP, &isamples); 

if(i!=l||j!=l){ 
printf("error: You should include K at the beginning of the file\n"); 
exit(-l); 

} 
KK=*KP; 

// read the matrix from the datafile. 
loadmat(fp, &type, name, &features, &SampleSize, &imagf, &Samples, &isamples); 

// reading lables from data file 
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, Äisamples); 
if(i!=l ||j!=SampleSize){ 

printf("error: Number of labels is different from the number of samplesui"); 
exit(-l); 

} 
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// read data to be classified from the file 
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples); 
if(i != features) { 

printfC'error: Training and testing matrices should have the same size"); 
exit(-l); 

} 

// Allocate space for result vector 

result = (double *) malloc(TestSize*sizeof(double)); 
if(! result) { 

printf("Error: cannot allocate memory for the result vector"); 
exit(-l); 

} 

for(i=0; i<TestSize; i++) { // for each input 
input=Testdata+i *features; 
result[i]=CrispKNN(input, Samples, Lables); 

// printffclass: %lf\n", result[i]); 
} 
fclose(fp); 

// printf("\n End of classification, Now writing the result in the file"); 

fp=fopen(OUTPUTFILE, "wb"); 
if(!fp) { 

printfC'Error: Cannot write the file"); 
getch(); 

} 
savemat(fp, 0, "cresult", 1, TestSize, 0, result, result); 
fclose(fp); 

} 

/* */ 
int CrispKNN(double *Input, double *Samples, double *Lables) 
{ 

int i j ; 
int nj, k, nk; 
double *distance; 
int *index; 
double x,y; 

distance = (double *) malloc(KK*sizeof(double)); 
if(!distance) { 

printfC'Error: Not enough memory for distance vector"); 
exit(-l); 

} 

index = (int *) malloc(KK*sizeof(int)); 
if(! index) { 

printf("Error: Not enough memory for index vector"); 
exit(-l); 

} 
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for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples 
index[i]=Lables[i]+l; 
distance[i]=FindDistance(Input, &Samples[i*features]); 

} 
for(i=KK; i<SampleSize; i++) {   // This is the loop that finds the K nearest Neighbors 

x=Maxd(distance, &j, KK); 
y=FindDistance(Input, &Samples[i*features]); 
if(y < x) { // This sample is closest to the input than the farthest K Neighbors 

distance[j]=y; 
index[j]=Lables[i]+l; 

} 
} 
j=FindMax(index, &nj, KK, classes);  // Finds the class of maximum occurance 

/* In this section it is checked to see if there is a tie. That is if 
there are two or more classes with the same number of occureances. If 
there is a tie for two classes, the class with the minimum sum of 
distances is selected. No action is taken for a tie of more than two 
classes. */ 

for (i=0; i<KK; i++) 
if(index[i]=j) index[i]=0; 

k=FindMax(index, &nk, KK, classes); 
if(nk=nj) { // If there is a tie. 

x=0; 
for(i=0; i<KK; i++) { 

if(index[i]=0) 
x+=distance[i]; 

} 
y=0; 
for(i=0; i<KK; i++) { 

if(index[i]=k) 
y+=distance[i]; 

} 
if(y<x) //If sum of the distances to class j is 

less than that of class k 
j=k; 

} 

free(distance); 
free(index); 
return j-1; 

/* */ 
/* This function returns the Euclidian distance between two vectors */ 

double FindDistance(double *vecl, double *vec2) 
{      . 

int k; 
double distance; 
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distance = 0; 
for(k=0; k<features; k++) { 

distance +=(vecl [k]-vec2[k])*(vecl [k]-vec2[k]); 
// distance += po\v(vecl[k]-vec2[k], 2); 

} 
return distance; 

} 

/* This function finds the biggest element of an array. It returns that 
value and also returns the index to that element in index. 
*/ 

double Maxd(double *vec, int *index, int Length) 
{ 

int ij=0; 

j=o; 
for(i=l; i<Length; i++) 

if(vec[i]>vec[j])j=i; 
*index=j; 
return(vecOl); 

} 

/* */ 
/* This function finds a number that is most often repeated in an array of 
integer values, and returns that number. Length of array shoud be less than 
100. It is supposed that number is an integer greater than zero, 
vector is a pointer to the array, count is the number of times that the 
number is repeated. Length is the length of the vector. 
*/ 

int FindMax(int ""vector, int *count, int Length, int Max) 
{ 

int i, j, m; 
int t[101]; 

if(Ma\>100)Max=100; 
for(i=0; i<Max+l; i++) 

t[i]=0; 
for(i=0; i<Length; i++) 

t[vector[i]]++; 
m=t[l]; 

for(i=l;i<Max+l;i++){ 
if(t[i]>m) { 

m=t[i]; 

} 
} 
*count=m; 
return (j); } 
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This program implements a fuzzy version of K-nearest neighbor classifier, 
created by: Shahab Layeghi 

created: 9/1/93 
last modified: 9/3/93 

*/ 

/* The main program opens a matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "fdatafile.mat". As the name implies it is in matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm. 
3. A single variable 'M' which is the coefficient in fuzzy algorithm. 
4. A trainig matrix 'P' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
5. A class membership matrix T which contains the membership values of the 
training set vectors to the classes. 
6. An input matrix 'U' which contains a set of unclassified feature vectors. 

The main program uses the FuzzyKNN routine to classify each one of the input 
vectors and saves the results (the classes that these inputs belong to) in a 
file called "foutfile.mat". This file is in Matlab format. This file contains 
a single variable called fresult. It is a vector of the classes. 

This program can be called from dos, or within Matlab by using dos escpae 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "fknntest.m". 

*/ 

#include <stdio.h> 
^include <stdlib.h> 
#include <time.h> 
^include <math.h> 
^include <conio.h> 

#define INPUTFILE "fdatafil.mat" 
#define OUTPUTFILE "foutfile.mat" 

// Function Prototypes • 

void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result); 
double FindDistance(double *vecl, double *vec2); 
double Maxd(double *vec, int «index, int Length); 
int FindMax(int *vector, int *count, int Length, int Max); 
int loadmat(FILE * fp,int *type, char *pname, int *mrows, int *ncols, 

int *imagf, double **preal, double **pimag); 
void savemat(FILE *fp, int type, char *pname, int mrows, int ncols, 
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int imagf, double *preal, double *pimag); 

// Global variables, these variables will be set by reading matlab file 

int Classes; 
int features; 
intKK; 
int SampleSize; 
int TestSize; 
double M; 
algorithm 

II- 

I* the number of classes */ 
/* Number of features in a class */ 

/* K in K-nearest neighbors */ 
/* Number of Labled Samples */ 

/* Coefficient in fuzzy 

/* 

void main() 
{ 

here. 

double *Lables; 
double *KP; 
double *input; 
int ij; 
FILE *fp; 
char name[20]; 
int type, imagf; 
double * Samples, *isamples;    // isamples is for imaginary part of the matrix that is not used in 

double Testdata; 
double *result; 
double *iresult; 

// pointer to the result matrix 
// result vector of classification of a single vector 

fp=fopen(INPUTFILE,"rb"); 
if(!fp) { 

printf("cannot open the file"); 
exit(-l); 

} 
// read classes from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printf("error: You should include classes at the beginning of the file\n"); 
exit(-l); 

} 
Classes=*KP; 

// read KK from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printf("error: You should include K at the beginning of the file\n"); 
exit(-l); 

} 
KK=*KP; 
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// read M from the file 
loadmat(fp, &type, name, &i, &j, &imagf, &KP, &isamples); 
if(i!=l||j!=l){ 

printfC'error: You should include M as the thrid parameter\nH); 
exit(-l); 

} 
M=*KP; 

// read the matrix from the dataflle. 
loadmat(fp, &type, name, &features, &SampleSize, &imagf, &Samples, &isamples); 

// reading lables from data file 
loadmat(fp, &type, name, &i, &j, &imagf, &Lables, &isamples); 
if(i!=l ||j!=SampleSize){ 

printfC'error: Number of labels is different from the number of samples\n"); 
exit(-l); 

} 

// read data to be classified from the file 
loadmat(fp, &type, name, &i, &TestSize, &imagf, &Testdata, &isamples); 
if(i != features) { 

printfC'error: Training and testing matrices should have the same size"); 
exit(-l); 

} 

// Allocate space for result vector 

result = (double *) malloc(TestSize*Classes*sizeof(double)); 
if(! result) { 

printf("Error: cannot allocate memory for the result Matrix"); 
exit(-l); 

} 

for(j=0; j<TestSize; j++) { // for each input 
input=Testdata+j*features; 
FuzzyKNN(input, Samples, Lables, iresult); 

// printf("\n Memberships:"); 
for(i=0; i<Classes; i++) { 

result[j*Classes+i]=iresult[i]; 
printf("%lf", iresult[i]); 

} 
} 
fclose(fp); 

// printf("\n End of classification, Now writing the result in the file"); 

fp=fopen(OUTPUTFrLE, "wb"); 
if(!fp) { 

printffError: Cannot write the file"); 
getch(); 

} 
savemat(fp, 0, "fresult", Classes, TestSize, 0, result, result); 
fclose(fp); 
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} 

/* This is a fuzzy K Nearest neighbor classifier routine. Input is the 
vector to be classified, Samples is the matrix of classified samples, 
Lables is the vector of the classes that these samples belong to. 
Result is the vector of membership values of Input to each class. 
*/ 
void FuzzyKNN(double *Input, double *Samples, double *Lables, double *Result) 

{ 
int i j,n; 
int nj, k, nk; 
double *distance; 
int *index; 
double x,y; 
double * membership; // pointer to membership matrix 
double nsum, dsum, temp; 

/* This section builds a fuzzy membership matrix from the lables. 
Membership of each sample to the class that it belongs to is assigned 
to 1, and the membership of it to other classes is assigned to 0 */ 

membership = (double *) malloc(SampleSize*Classes*sizeof(double)); 
if(! membership) { 

printf("Error: Not enough memory for membership matrix"); 
exit(-l); 

} 
for(i=0; i<SampleSize*Classes; i++) 

*(membership+i)=0; // Initializing matrix to zero 
for(j'=0; j<Samp!eSize; j++) { 

i=*(Lables+j); 
*(membership+i*SarnpleSize+j)=l; 

} 

distance = (double *) malloc(KK*sizeof(double));   // allocate space for the vector 
if(! distance) { 

printf("Error: Not enough memory for distance vector"); 
exit(-l); 

} 

index = (int *) malloc(KK*sizeof(int)); 
if(! index) { 

printf("Error: Not enough memory for index vector"); 
exit(-l); 

} 

for(i=0; i<KK; i++) { // This loop initializes K nearest neighbors to the first K Samples 
index[i]=i; 
distance[i]=FindDistance(Input,&Samples[i*features]); 

} 
for(i=KK; i<SampleSize; i++) {   // This is the loop that finds the K nearest Neighbors 

x=Maxd(distance, &j, KK); 
y=FindDistance(Input, &Samples[i*features]); 
if(y < x) { // This sample is closest to the input than the farthest K Neighbors 
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distance[j]=y; 
index[j]=i; 

} 
} 
for(j=0; j<Classes; j++) { 

nsum=dsum=0; 
for(n=0; n<KK; n++) { 

i=index[n]; 
temp=FindDistance(Input,&Samples[i*features]); 
if(temp < le-10) { //If distance is 

zero 
Result[j]=membership[j*SampleSize+i]; 
break; 

} 
if(M = 2) 

temp=l/temp; 
else if(M !== 1) 

temp=po\v(l/temp, 1/(M-1)); 
else 

temp=0; 
nsum += membership[j*SampleSize+i]*temp; 
dsum += temp; 

} 
if(dsum !=0) 

Result[j]=nsum / dsum; 
} 
free(membership); 
free(distance); 
free(index); 

/* */ 
/* This function returns the Euclidian distance between two vectors */ 

double FindDistance(double *vecl, double *vec2) 
{ 

int k; 
double distance; 

distance = 0; 
for(k=0; k<features; k++) { 

distance += (vecl[k]-vec2[k])*(vecl[k]-vec2[k]); 
// distance += pow(vec 1 [k] -vec2 [k], 2); 

} 
return distance; 

/* */ 
/* This function finds the biggest element of an array. It returns that 
value and also returns the index to that element in index. 
*/ 
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double Maxd(double *vec, int *index, int Length) 
{ 

int i j=0; 

j=0; 
for(i=l; i<Length; i++) 

if(vec[i]>vec[j]) j=i; 
*index=j; 
return(vec[j]); 

/* */ 
/* This function finds a number that is most often repeated in an array of 
integer values, and returns that number. Length of array shoud be less than 
100. It is supposed that number is an integer greater than zero. 
vector is a pointer to the array, count is the number of times that the 
number is repeated. Length is the length of the vector. 
*/ 

int FindMax(int *vector, int *count, int Length, int Max) 
{ 

int i, j, m; 
intt[101]; 

if(Max>100)Max=100; 
for(i=0; i<Max+l; i++) 

t[i]=0; 
for(i=0; i<Length; i++) 

t[vector[i]]-H-; 
m=t[l]; 
j=i; 
for(i=l;i<Max+l;i-H-){ 

if(t[i]>m) { 
m=t[i]; 

} 
} 
*count=m; 
return (j); 
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I. Project Summary 

Polygraph testing has been used as a technique for measuring deception throughout the twentieth 
century. Throughout most of this time period the task of interpreting the data has rested solely 
on the trained examiner. Recently, automated computer evaluation of the polygraph using statis- 
tically derived discrimination functions has begun in an effort to aid the polygraph examiner. 
The purpose of this proposed study is to continue the work begun under ONR Grant N00014-93- 
1-0570 to investigate the use of fuzzy set classification to perform the data analysis. In that previ- 
ous study it was shown that fuzzy membership functions can accurately classify the MGQT poly- 
graph data at greater than 90% accuracy levels. This study will focus on optimizing the fuzzy 
classifier further, test the classifier on Zone Comparison Data as well as MGQT, and adapt the 
algorithm for use in a real-time testing scenario. At the completion of this project, a software 
program will be delivered that will perform classification of the polygraph data on an 80486 
based personal computer. 
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II. Project Description 

A. Objectives of Proposed Project 

The objectives of the proposed project are to: 

(1) study the relationship between the fuzzy classifier and the success of classification; 

(2) test the optimized algorithm on both MGQT and zone-comparison data; 

(3) and investigate the algorithm in a real-time testing scenario. 

B. Introduction 

1. The Polygraph 
The ability to directly measure the signals, both mechanical and electrical, emanating from the 
living human body has been around for hundreds of years. Ever since the beginning of these ob- 
servations the interpretation of biological data has been used to understand the physiology, 
pathology, neurology, and psychology of the living human. In the late 1800's, study began on in- 
terpreting biological data in an effort to better understand one particular aspect of human cogni- 
tive psychology - deceit (Lombroso, 1895). Specifically, respiration rate, heart rate/blood pres- 
sure, and galvanic skin response, measured by a device known as the polygraph, were used to de- 
termine whether a person was telling the truth or lying. Over the past 90 years this device has 
been used with varying degrees of success. Because of its recent and abundant use in criminal in- 
vestigations and employee screening, the accuracy of the test has become increasingly critical. 

Two of the leading causes of failure of the polygraph test to accurately and definitively assess a 
subject's veracity are the individual administrator's variability in interpreting the polygraph data 
and the complexity of the interpretation protocols (Office of Technology Assessment, 1983). To 
overcome this shortcoming of the polygraph test, recent work (see Olsen, 1991) has focused on 
the use of computers for interpretation of the biological data. 

One technique used for computer analysis of the polygraph involves two steps (Olsen, 1991 and 
Kircher, 1988, for example). First the data is described by approximately 20 parameters (descrip- 
tors) which have been determined to be important in the evaluation of the polygraph. Second, 
this data is evaluated using statistical discriminant analysis to "construct an optimal linear combi- 
nation of physiological measures for diagnosing truth and deception" (Kircher, 1988). The results 
of Kircher's work showed that by using a derived discriminating function and arbitrary threshold 
level, the computer could equal (and actually exceed) the performance of an experienced poly- 
graph examiner. This discriminating function reinforced the observation that the Galvanic Skin 
Response is the most important indicator of a subjects truthfulness. 
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Two questions that arise from this type of discriminant analysis are: 

1) Is this discriminant function and threshold level optimal for all subjects? 

2) Are there other possible descriptors of the polygraph which would yield even more informa- 
tion about the subject's veracity? 

The use of fuzzy set theory may shed light on these questions, and in so doing may produce an 
even more accurate polygraph analysis. 

2. Fuzzy Logic 
Signals can be generally classified into three categories; deterministic, probabilistic, and possi- 
bilistic (fuzzy events). In the case of biological data the patterns are probabilistic or possibilistic 
because they generally contain a large random component. As mentioned previously, computer 
scoring of the polygraph relies on probabilistic discrimination functions and an arbitrary thresh- 
old to classify the data. Fuzzy set theory, however, defines the concept of a possibilistic distribu- 
tion as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned 
to a variable (Zadeh, 1977). "A fuzzy variable is associated with a possibility distribution in 
much the same way as a random variable is associated with a probability distribution." (Zadeh, 
1977) 

The key to fuzzy logic is that classes of objects exist with a continuum of grades of memberships 
(Zadeh, 1965) so that, unlike probabilistic discrimination functions, no arbitrary threshold is 
needed. Rather, classification is made according to the degree of membership in a given class. In 
addition, the membership function itself can be automatically adapted for a given training set 
composed of data and its corresponding class. This is because the theory of possibility, as com- 
pared to the theory of probability, relates to the perception of degrees of evidence instead of de- 
grees of likelihood (Zadeh, 1977). 

Figure #1 shows the components of a fuzzy set classification system (Martin, 1982). One can 
see that the learning mechanism is only active in the adaptation of the partition (membership 
function). This system operates on a set of data xn(t) which are extracted from a training set, that 
is: 

x(t) = [xi(t), x2(t),..., xn(t)] with 0 < xi(t) < 1 

The process of extracting the data set from the training set is completed in the "Signal Process- 
ing" step. This step is also known as the data parser. 
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Figure #1: Fuzzy Logic Classification System 

For each class Ck, there corresponds a vector of descriptors characterizing the class. 
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The estimated parameter set, pk, defines a set of membership functions, u*. The degree of mem- 
bership of a set x < U to a class Ck is given by the function 

n 

* - n p"j. <' - n*»" ■M 

i.l 
The form of the above function is not unique. The function has a maximum value when xi is 
equal to pa as shown in Figure #2. For example, for input data xi« 0.7, the grades of member- 
ship functions uijc are 0.4,0.3,0.55, and 052 corresponding to pa equal to 0.2,0.3,0.7, and 0.8, 
respectively. Thus the maximum value is 0.55 when pa is 0.7, which is equal to XL Note the 
maximum value is not necessarily 1. Each data xi has equal contribution to the membership 
function uk. The possibility that the value xi is an object in class Ck depends on the degree of 
membership of xi to Ck. The decision for the assignment of elements to classes depends on the 
values of the maximum membership. That is: 

Ck = max m(x)       where 0<i. k<n 
i 

If the decision disagrees with the training set, the parameter pk(t) will be modified to pk(t+l): 

Pk(t+1) • PkW + 
1 

Nk(t)+1 
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It is also believed that the transformation of the polygraph data into the frequency domain will 
allow the fuzzy set to detect such known parameters as baseline shift and amplitude modulation 
in the respiration rate (suppression and staircase suppression can both be classified as amplitude 
modulation). For the same reason it is conjectured that the auto- and crosscorrelation of the three 
different data types will present any correlated behavior of the biological signals to the fuzzy 
classifier. 

In fact, the work preformed under the previous polygraph proposal has begun to confirm these 
hypotheses (see Appendix A, "Progress Report").  Over 600 features in time and frequency, both 
individual and cross-correlated, were examined. With little optimization of the fuzzy classifica- 
tion algorithm, classification levels of greater than ninety percent were achieved. 

2. Methods 
While time-shortened by almost half a year, three out of the five previous project goals were 
achieved. (Once again, please see Appendix A, "Progress Report" for a complete report.) First, a 
program for parsing the MGQT data has been developed. This program extracts all waveforms 
from the the case files and parses the data taking into account the fact that some MGQT ques- 
tions may be asked out of order, may not always be repeated three times, and may not be asked at 
all. 

Second, a fuzzy classifier has been created, based on the fuzzy k-nearest neighbor algorithm. 
This algorithm returns a continuous truth versus deception value between zero and one. It was 
trained on 25 truthful and 25 deceptive files, and achieved 91% accuracy on another set of 25 
truthful and 25 deceptive files. 

Lastly, relationships between feature sets and classifier success were determined. Of great im- 
portance was that the set of four best features had a feature from each one of the physiological 
channels. 

In the proposed study, three goals will be achieved. First, a study of the relationship between 
fuzzy classifiers and success of classification will be performed. There are several forms of 
fuzzy classifiers, using both unsupervised and supervised learning. The first phase of this project 
will focus on which algorithm, or combination of algorithms will be optimal. Specifically, a su- 
pervised adaptive fuzzy mebership function algorithm will be compared with the fuzzy k-nearest 
neighbor algporithm. 

Secondly, a comparison between the performance of this algorithm and algorithm used elsewhere 
is important in understanding its benefits. Therefore, the second phase of this project will focus 
on comparing our results on the MGQT with our results on the more common zone comparison 
test. 

Finally, the ultimate goal of this project is to create a program that will assist the polygraph ex- 
aminer in evaluating a subject while the examination is in progress. To do this, the algorithm 
will output a fracional number from 0 to 1 (0 meaning deceptive and 1 meaning truthful) after 
each examination question. If the question is a control or irrelevent question, the examiner will 



tell the program this, and it will learn, in real-time accordingly. Because the examiner is given a 
continuous measure of truth or deception, he/she can now focus on questions that are yielding in- 
determinate results. 

D. Deliverable 

At completion of this project, a highly optimized, real-time, automatic polygraph algorithm will 
be delivered on IBM PC compatable discs. This program will run on a 80486 PC or faster with 
at least 4MB of memory. In addition, as was done on the previous project, a complete report will 
be written documenting all results and operations of the algorithm. 
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V. Budget 

One Year Budget Summary 
January 1,1994 - December 31,1994 

PERSONNEL 

Salaries: 
Principal Investigator: 
Ben Knapp - 20% Release Time AY 

Graduate Student Assistants (1): 
6 mos. <2> 50% @ $8.50/hr 
3 mos. @ 100% @ $8.50/hr 

Total Salaries 

Fringe Benefits: 
Students @ 5% 
Release Time @ 34% 

Total Fringe Benefits 

TOTAL PERSONNEL 

EQUIPMENT 

SUPPLIES 

TOTAL DIRECT COSTS 

INDIRECT COSTS @ 49% MTDC 

AMOUNT 
HfcUUfcSlfcU 

$10,214 

$4,386 
$4,386 

$18,986 

$439 
$3,473 
$3,911 

$22,898 

$0 

$1,000 

$23,898 

$11,710 

TOTAL PROJECT COSTS $35,608 
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Appendix A 
Progress Report 

1. Overview 

A. Development of Data Parsing Algorithm 
The first phase cf this project was tc be able tc read the 
MGQT data files received from the NSA and separate this data 
into appropriate features for classification. After 
consulting with the University of Washington, we were able 
to develop our own data reading program. 

After consultation with experienced polygraph examiners and 
a detailed review of the polygraph literature, the data 
reading program was then modified to parse the data into a 
matrix of features. The feature set included, as outlined in 
the project proposal, time domain, frequency domain, and 
correlation domain data. Some examples of the feature set 
are: 

T-ifflP Domain Features 
- Mean, curvelength, area, and standard deviation for all 
polygraph channels 
- Average of the amplitudes of the peaks in the cardio and 
respiratory channels 
- Derivative of the amplitudes of the peaks of cardio and 
respiratory channels 
- Number of peaks in the cardio and respiratory channels 
- Inhalation amplitude/exhalation amplitude of respiratory 
channels 

rrpryiPrigy Domain Features 
-Fundamental frequency of cardio and respiratory signals 
-Coherancy and cross power spectral density between cardio 
and respiratory channels 
-Power spectral density of cardio and respiratory channels 
-Integrated power spectral density for cardio channel 

Pnrrelation Domain Features 
- Autoregressive parameters (10) for cardio signal 
- Cross-correlation between cardio and respiratory channels 

B. Design of Fuzzy Classifier Algorithm 
Fuzzy classifier design has focused on the development of a 
fuzzy set based k nearest neighbor  algorithm. The algorithm 
learns using a set of MGQT data divided equally between 
truthful and deceptive. Since there were 150 deceptive 
files and only 50 truthful files, the deceptive files were 
divided into three sets of 50 files each. The algorithm was 
trained separately for each data set. When a question was 
asked more than once by an examiner the questions were 



scored individually and then combined at the end on a 
majority basis.  Some examples of the results achieved using 
the best four features and no indecision allowed are: 

Deceptive Rpt iCorrect ICorrect * correct. 
Deceptive Truthful Total 

1 94       78 86 
2 89       72 80 
3 100      83 91 

The following are three reports which describe in detail the 
work performed. In addition, a copy of a paper which has 
been submitted to the IEEE International Conference on Fuzzy 
Systems is also included. Finally, a manual is included 
which instructs the user how to repeat the work performed at 
SJSU. 
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I. Introduction 

A great amount of work has been done on the application of fuzzy logic techniques for pattern 
recognition. In this study some of the more important algorithms are summarized and compared. 

Pattern recognition could be defined as search for structure in data. This means organizing data in 
groups in a way that members of each group have some kind of similarity. A system that does this job is 
called a classifier. A classifier can be designed by a human expert and be used to classify the data (fixed 
design). Another approach is to provide the classifier with the data and make it adapt itself according to 
the data that it receives. Adaptive systems can be divided into two main categories, supervised and 
unsupervised. 

In supervised learning, another system (or a human expert) which is usually called a teacher, 
furnishes the classifier with the group that each data item belongs to, so that classifier can learn from a set 
of labeled input data and be able to classify new data. This process is called training. 

In unsupervised learning, which is also called clustering, the system is given a set of unlabled data, 
and it is expected that it find internal similarities between the data items and put them in different groups 
accordingly. If data are represented quantitatively as vectors in a vector space, data that are spatially close 
should be put in one group. 

In the section ,a method of classification is described which uses fuzzy linguistic variables. This 
method uses human experts to train the system and then uses the labeled linguistic samples to refine the 
classifier. In section 2, C-Means Algorithm which is a clustering method is explained. Section 3 covers 
K Nearest Neighbor algorithm which is a supervised classification method. 
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After polygraph files were decoded and put in a directory, they could be processed using 
Matlab. It was tried to write the programs in a structured way so that creating and 
debugging of individual sections would be easier and program segments would have direct 
conformity with conceptual block diagrams. At the lowest levels, there are many Matlab 
routines that operate on pieces of data and extract features from them, and return these 
features to the calling routines. At the top, there is a Matlab program that extracts the 
features for all the files in a directory and saves it as a matrix. The structure of these 
programs is explained in the following sections. 

The main feature extraction program is a Matlab routine called newfeat. This program 
finds the features for the files in a directory and saves the features in a matrix. The main 
part of the program is a loop that extracts the features of a single file and puts them in a 
vector. This action is repeated for all the files that their name is given. In order for the 
Matlab program to find the files to processed in a directory, a C program was written that 
searches in a directory and saves all the names of all the files that it finds in an ASCII file 
containing a Matlab matrix. This C program is called 'flist' and could be found in the 
\polygrap\project\source directory. The way this program works is explained below: 

/* This program lists the files in a dos directory and saves this 
listing in a file called files.m. This file is actually a Matlab script 
that contains a matrix called 'flist' which holds a filename in each row. 
The first character of file names can be given to this program as an 
input argument. 

Ex: 
flist t 

is equal to use the dos command 
dirt*.* 

and save the result in a Matlab m file called files.m 

*/ 

After running the flist.exe program in a directory, and checking that the appropriate 
filenames are saved in the files.m file, the Matlab program can use them by executing the 
command 
files 
and using the variable flist. 

Another important data item that is used in the feature extraction programs is called 
featurejist. It is a Matlab matrix that includes the names of feature extraction routines. 
In each row of the featurejist matrix a feature extraction routine is named along with the 
channel number(s) that this routine will be applied to. For example 

'lOmean(frag)' 



means to apply the mean function to a piece of data called frag, which is defined later. 
The channel that data is to be gathered from is channel 1. As another example 

'26crosscor(frag, frag3)' 

means to apply the function crosscor to two pieces of data coming from channels 2 and 6, 
in variables called frag and frag3. 

featurejist is defined in newfeat program. All the features that are extracted from the 
data are listed in it. If a new feature is to be investigated, it is enough to write a program 
that extracts it, and add that program name in this list. 
Note: It is highly recommended that the programs newfeat, feature, and processf be read 
carefully before making any changes in feature list. 

Before being able to do any processing on the data, for each data file another file should 
be created that holds the types of the questions. These files are named zzname.0x4. Note 
that these files are not a standard part of axciton files and were created here by referring to 
the question files and data sheets that accompanied each the files. The format of these 
files is as follows: 

x 0    0   0    0 
al bl cl dl el 
a2 b2 c2 d2 e2 
a3 b3 c3 d3 e3 

x is either one or zero.  1 means the file is deceptive, and zero means it is non-deceptive. 
The rows 2, 3 and 4 in this file show the numbers of relevant, irrelevant, and control 
questions. For example for a deceptive file in which questions 3, 5, 8 and 9 are relevant, 
questions 1, 2, 4, and 7 are irrelevant, and questions 6 and 10 are control, a question file is 
constructed that looks like this: 

10 0 0 0 
3   5 8 9 0 
12 4 7 0 
6 10 0 0 0 

The newfeat program, for each data file which is listed in flist, loads the above mentioned 
question file to find the question types. Then it calls the actual feature extraction routine 
which is called feature. The program feature finds all the features for each relevant, 
irrelevant, and control question and returns the results in a vector. This vector is added as 
a new column to a matrix called M. At the end of the newfeat program the matrix M is 
saved in a file. This file is manipulated by another program called processf. 



processf is a program that loads the M matrix, combines the features for each question in 
different ways that are explained in reports of Mitra and Shahab, and saves the resultant 
matirx, the F matrix, in a file. 
The above procedure was repeated for the polygraph files in several directories. One of 
the directories contained files for non-deceptive cases and the other ones included 
deceptive files. Three sets of data were built by combining the features for non-deceptive 
cases with three sets of deceptive files. Each data set contained 50 deceptive and 50 non- 
deceptive cases. These sets were used by classification programs. 

Classification: 

There are two classifier programs written for this project, fknn and cknn, which implement 
fuzzy and crisp K-nearest neighbor classifiers accordingly. These programs are written in 
C programming language. The way they interact with Matlab is through reading and 
writing files in Matlab format, that is .mat files. There are two C functions inside these 
programs called loadmat and savemat which are interfaces to Matlab files and can be used 
to load and save date, which in Matlab are matrices, from Matlab files. These two 
functions are in a file called matldsv.c which should be compiled with the source files that 
use them, fknn and cknn programs load matrices that include the features and were 
prepared by Matlab feature extraction routines. After loading the matrices, the feature 
vectors in test matrix are classified individually, and the result is saved in a file as a Matlab 
matrix. The comments in the source codes of the programs cknn and fknn are repeated 
here for reference: 

/* cknn: This program implements a K-nearest neighbor classifier. 

The main program opens a Matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "cdatafil.mat". As the name implies it is in Matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm. 
3. A training matrix T' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
4. A classes vector T which contains the classes of the training set 
5. An input matrix 'U' which contains a set of unclassified feature vectors. 

The main program uses the Crisp KNN routine to classify each one of the input 
vectors and saves the results (the classes that these inputs belong to) in a 
file called coutfile.mat. This file is in Matlab format. This file contains 
a vector of the classes called: 



'cresult' 

This program can be called from dos, or within Matlab by using dos escape 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "cknntest.m". 

*/ 

/*        fltnn: This program implements a fuzzy version of K-nearest neighbor classifier. 

The main program opens a Matlab data file, reads the training matrix, 
classifies each entry in the testing matrix, and writes the result in an 
output file. The file that this program gets the information from should be 
called "fdatafile.mat". As the name implies it is in Matlab file format. 
The data in this file should have the following order: 

1. A single variable 'C which is the number of classes. 
2. A single variable 'K' which is the parameter 'K' in K-NN Algorithm. 
3. A single variable 'M' which is the coefficient in fuzzy algorithm. 
4. A training matrix T' which contains a set of feature vectors. Each vector 
is in a column of the matrix. 
5. A class membership matrix T which contains the membership values of the 
training set vectors to the classes. 
6. An input matrix 'U' which contains a set of unclassified feature vectors. 

The main program uses the Fuzzy KNN routine to classify each one of the input 
vectors and saves the results (the memberships of the inputs to classes) in a 
file called "foutfile.mat". This file is in Matlab format. This file contains 
a single variable called fresult. It is a matrix of the memberships of the 
inputs to the classes. 

This program can be called from dos, or within Matlab by using dos escape 
character'!'. An example Matlab script file that shows how this program can 
be used is included in the file "flenntest.m". 

*/ 

As mentioned above, the programs fknn and cknn are the actual classifiers which can be 
called directly from dos or within a Matlab program. Several Matlab programs were 
written that used these two programs for classification of data. The Matlab programs 
acted mostly as a front end or user interface for the classifier programs. A listing of many 
Matlab programs and functions is included as an appendix in this report. Understanding of 
all the functions is not necessary because they are used inside the programs. Some of the 



programs were created to test other programs or to experiment with the data. These 
programs are not necessary for classification, but knowing about them might help to 
prevent recoding routines that are already there. In the case of user interface programs, 
the best way is to run them and become familiar with the way they work. They were 
intended to be very flexible, and usually by changing a few parameters inside the code, 
they can be used for other purposes. 

Classifier programs were used not only to classify a given data set, but also to select a set 
of good features from all the features that initially were tried. For a detailed discussion of 
the steps involved in this refer to Shahab's and Mitra's reports. Some of the programs and 
data files which were used or produced in this stage are explained here: 

Classify is a Matlab program that loads a feature matrix from a .mat file, randomly breaks 
it into a set of training, and a set of testing feature vectors, classifies every entry in the 
testing set using all the entries in the training set by calling either fknn or cknn programs, 
repeats this process a number of time, and returns the result of classification of each file 
and the percentage of correct classification and a performance index for the classification. 
Some of the parameters like the filename to load can be changed inside the program 
classify.m. Other parameters can be changed while the program is running. This program 
is extremely useful for experimenting with combinations of features, and even includes an 
option to plot the scattering of the first two features. 
Note: By setting percent_training=l, The testing and training sets wont be randomly 
selected, instead, all the entries except one are used in the training set and that entry is 
classified. This action is repeated for all the entries in the matrix. 

CIas_aut is an automated version of classify program. Instead of asking the user for 
entering parameters, this program includes a loop that checks the classifications using all 
the features individually. The results are saved in a file called clas_res. All the other 
parameters should be set in the program. It should be noted that running this program 
might take a long time depending on the number of features and repetitions. CIasaut2, 
clasaut3, and clasaut4 are alterations of clas_aut that instead of using single features use 
combinations of 2 to 4 features. Clasaut2 tries all the pairwise combinations of the 
features. Clasaut3 and clasaut4 use the combinations of 2 and 3 features supplied to them 
in the program and combine them with other features to test the combinations of 3 and 4 
features. 

bestfk is a Matlab script that sorts the features according to their performance in 
classifying the files. Note that the correct_classification vectors for data sets 1-3 were 
saved as resl, res2, and res3 in a file called Knn-res. This file is loaded by the bestfk 
program. The best features are found for the three data sets. For more details about the 
selection strategy refer to Shahab's report. It is informative to look at the program code 
to find out about the outputs that it produces. 
Bestfs is the same program as bestfk. The only difference is that it loads the results from a 
file called scat_res. This file is produced by saving the results of the scatter criterion. 



Scat is a Matlab function that finds the scatter criterion for the feature vectors in a matrix. 
It was used for the feature matrices of sets 1-3, and the results were saved in scat_res. 
Bestf2, bestß, and bestf4 work the same way as bestfk, but as output give the best 
combinations of 2-4 features. 



Appendix: A listing of the Matlab programs 

bestß: 
This Matlab script finds the best 30 combinations of features from three 
sets of features. Same features are tried on 3 sets of data. 
This is used to rank the combinations of 2 features 

bestf3: 
Same as bestO, but for combinations of 3 features. 

bestf4: 
Same as bestf2, but for combinations of 4 features. 

bestfs: 
This Matlab script tries a method to find the best 30 features from three 
sets of features. Same features are tried on 3 sets of data. Scatter criterion is 
used to measure each feature's performance. 
Note that for the features 1-651 each set of seven features are in fact the same 
feature combined differently for different features. For the rest of the features 
i.e. 652-669 each set of three is the same feature. 

bestfk: 
This Matlab script tries a method to find the best 30 features from three 
sets of features. Same features are tried on 3 sets of data. The results of 
classification using a KNN classifier is saved on a vector called correct_res. 
Note that for the features 1-651 each set of seven features are in fact the same 
feature combined differently for different features. For the rest of the features 
i.e. 652-669 each set of three is the same feature. 

clas_aut 
This program adds a loop to the classify program. It repeats classification 
for different input vectors. It saves the results (percentage correctly 
classified and performance index) 
as two vectors in a file called clas_res. 

clasaut2: 
This program adds a loop to the classify program. It repeats classification 
for different combinations of 2 features. It saves the results (percentage correctly 
classified and performance index) and the indexes of these features 
in a file called clasres2. 

clasaut3: 
same as clasaut2, but for the combinations of 3 features. 



clasaut4: 
same as clasaut4, but for the combinations of 4 features. 

classify: 

This script parses a matrix of polygraph 
vectors into training and testing vectors. 
It then calls the classifier, trains, tests 
and gives results. 

clusterl: 
This is a program that tests the K-Nearest-Neighbor 
algorithm with a set of two class data that have 
gaussian distribution 

cluster2: 
Another program like clusterl. 

feattst: 
An older version of classify. 

feattst2: 
Another version of feattst. 

featurev: 
Mitra 

plotf: 
This script prompts the use to enter two features and plots them. 

randvect: 
function [y,x] = randvect(elements,maximum) 

This function creates a vector 
of random numbers between 1 
and the maximum number given 
to the function (maximum). 
The length of the vector is 
specified by the number of 
elements given to the function, 
e.g. randvect(elements,maximum) 

scat: 
function J=scat(Sample, Class) 



scatv 

J=scat(Sample, Class) 
returns a value that shows how the labeled samples of a two class distribution 
are scattered. Samples is a vector that contains the values of the samples. 
Class is a vector that contains the class labels(0 or 1). 
The criterion function is: 

J=(ml-m2)A2/slA2+s2A2 
m's are the means for the classes and S's are scatters of samples. 
Larger result means better separation between the classes. 
Reference: Pattern Classification and Scene Analysis, Duda and Hart 

function JV=scatv(M, Class) 
scatv returns a vector that contains the scatter criterion of a matrix, 

each row of the matrix M contains values of the samples for one feature. 
Class is the class labels for the samples, 
see also scat 
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§1. ABSTRACT 

Polygraph tests are a widely used method to distinguish between truth and deception. 

During a polygraph test, the subject is asked a series of control, relevant and irrelevant 

questions which provide different physiological responses useful for a comparison. The 

three physiological responses that are currently measured are Electrocardiogram, Galvanic 

Skin Response (GSR) and Respiration. 

Polygraph charts are usually analyzed by human interpreters. However, computer 

algorithms are now being developed to score the tests or verify the results. These methods 

are based on statistical classification techniques. 

In this study two different fuzzy algorithms were implemented to classify the polygraph 

charts, using a number of time, frequency and correlation domain features. These two 

algorithms and their results were then compared with those from the previous works. The 

major advantage of using fuzzy set theory is that it does not simply assign each input to 

one of the clusters, but it gives a degree of belonging of an input to each cluster. 

The average correct detection rate we achieved in this study was 80% - 85%. Using 

certain set of data we even obtained up to 97% correct detections. 



§2. INTRODUCTION 

2.1. POLYGRAPH1 

2.1.1. Preview: 

Polygraph examinations are the most widely used method to distinguish between truth and 

deception. In a Polygraph examination a person is connected to a special instrument called 

a Polygraph which records several physiological signals such as blood pressure, Galvanic 

Skin Response, and respiration. The subject is asked a set of questions by an examiner. By 

looking at these signals the examiner is able to determine the reactions of the subject to 

the questions and decide whether the person was truthful or deceptive in answering each 

question. 

The problem with human classification of Polygraph tests is that the outcome depends on 

the examiner's experience and personal opinion. Automatic scoring of Polygraph tests has 

been a subject of extensive research. Several methods for Polygraph classification have 

been studied which are mostly based on statistical classification techniques. 

Digitized Polygraph data used in this project were collected from various police stations. 

The data files were organized according to the test format used and were decoded to 

ASCII format so they can be read by Matlab. Preprocessing and feature extraction 

routines were implemented in the Matlab language in privious works [Layeghi 1993,1] 

[Dastmalchil993][Jacobsl993]. Three sets of files were chosen, each one of them 

contained 50 deceptive and 50 non-deceptive files. 

These files are listed in the appendix, Fig.42. 

2.1.2. History: 

The first attempt to use a scientific instrument in an effort to detect deception occurred 

around 1895 [Reidl966]. That was the year that Caesar Lombroso published the results of 

his experiments in which a hydrosphygmograph was used to measure the blood pressure- 

pulse changes of criminals in order to determine whether or not they were deceptive. 

Although the hydrosphygmograph was originally intended to be used for medical 

Portions of this section were extracted from [Layeghi 1993,1] using particularly [Cappsl992] [01senl983] 
[Reidl966]. 



purposes, Lombroso found that it worked well for lie detection. Lombroso may have been 

the first to use a peak of tension test format. This was done by showing a suspect a series 

of photographs of children, one being the victim of sexual assault. If the suspect did not 

react more to the victims picture than the pictures of the other children, Lombroso 

concluded that the suspect did not know what the victim looked like and therefore was not 

the alleged perpetrator. 

In 1914 Vittorio Benussi published his research on predicting deception by measuring 

recorded respiration tracings [Cappsl992]. He found that if the length of inspiration were 

divide by the length of expiration, the ratio would be larger after lying than before lying 

and also before telling the truth than after telling the truth. In 1921 John A. Larson 

constructed an instrument capable of simultaneously recording blood pressure pulse and 

respiration during an examination [Reidl966] [Cappsl992]. Larson reported accurate 

results which prompted Leonarde Keeler to construct a better version of this instrument in 

1926 [Reidl966] [Cappsl992]. 

The use of galvanic skin response in lie detection began during the turn of the century. It's 

usefulness, however, did not become evident until the 1930's during which time several 

articles written by Father Walter G. Summers of Fordham University in New York 

[Cappsl992]. In these articles he reports over 90 criminal cases in which examination 

using the galvanic skin response had all been successful and confirmed by confession or 

supplementary evidence. 

The usefulness of the galvanic skin response prompted Keeler to add an galvanometer to 

his polygraph. At the time of Keelers death in 1949, the Keeler Polygraph recorded blood 

pressure-pulse, respiration, and galvanic skin response [Reidl966]. 

2.1.3. Modern Test Formats: 

The effectiveness of a polygraph examination is often the result of the test format that is 

used. A polygraph test format consists of an ordered combination of relevant questions 

about an issue, control questions that provide a physical response for comparison, and 

irrelevant questions that also provide a response or the lack of a response for comparison 

[01senl983][Cappsl992]. 



Three general types of test formats are in use today. These are Control Question Tests, 

Relevant-Irrelevant Tests, and Concealed Knowledge Tests. Each of the general test 

formats may have a number of more specific variations. Each examination consists of two 

to five sessions containing a prescribed series of questions. The test format that is used in 

an examination is determined by the test objective [Reidl966] [Cappsl992]. 

1. The Concealed Knowledge Test, also called peak of tension test, is used when facts 

about a crime are known only by the investigators and not by the public. In this case, a 

subject would not know the facts unless he or she was guilty of the crime. For example, if 

a gun was used in a crime and the public did not know the caliber, an examiner could ask a 

suspect, if it was a 22 caliber, a 38 caliber, or a 9 mm. If the gun used was a 9 mm and the 

suspect was deceptive, a polygraph chart would probably indicate evidence of deception. 

2. A Control Question Test2 is often used in criminal investigations. In this type of test a 

series of relevant, irrelevant, and control questions are asked: 

• A relevant question is one which is specific to the crime being investigated. 

For example, "Did you steal the money?". 

• A control question is designed to make the subject feel uncomfortable. It 

is not specific to the crime being investigated however it may be related in 

an indirect way. A control question that could follow the relevant question 

stated above is "Have you ever taken anything that did not belong to you?". 

The control questions are compared to the relevant questions and if the 

responses to the relevant questions are greater, the subject is usually classified 

as deceptive. 

• Irrelevant questions are used as buffers. Examples of irrelevant questions are 

"Are the lights in this room on?" or "Is today Monday?". 

3. Relevant-Irrelevant Tests are usually used to test people trying to obtain security 

clearance or get a job. In this test, relevant questions are compared to irrelevant questions. 

Very few control questions are asked. The purpose of control questions in this test is to 

make sure that the subject is capable of reacting at all. 

2 It was decided to use this method in our project (as it was also in previous works). 



2.1.4. Present Day Equipment 

The most popular polygraph machines today are the Reid Polygraph developed in 1945 

and the Axciton Systems computerized polygraph developed in 1989 [Olsen 1983]. The 

Reid polygraph scrolls a piece of paper under pens that record the biological signals. The 

Axciton polygraph digitizes physiological signals and uses a computer to process them. 

The sampling frequency of the Axciton machine is 30 Hz. Axciton provides a computer 

based system for ranking the subject responses but allows printouts of the charts to be 

scored by hand the traditional way. 

Both machines record the same biological signals using standard methods. Blood pressure 

is measured by placing a standard blood pressure cuff on the arm over the brachial artery. 

Respiration is monitored by placing rubber tubes around the abdominal area and the chest 

of the subject. This results in two signals, a lower and upper respiratory signal. Skin 

conductivity is measured by placing electrodes on two fingers of the same hand. 

The focus of this thesis is to investigate two different fuzzy pattern recognition algorithms 

using the aforementioned signals. 



2.2. PATTERN RECOGNITION UTILIZING FUZZY TOOLS 

2.2.1. Why the "FUZZY" approach? 

While observing the history of science, we notice that one of its major goals has always 
been what we call today "pattern recognition". Having this in mind, man created models, 

functional relationships and mathematical tools to come closer to a perfect and precise 

model for almost every area of the nature and our being. In fact, "precision" became more 

and more important, to the extent that an imprecise model was a bad model by default. 

1965 Lotfi A. Zadeh introduced in his innovative paper [Zadehl965] an "imprecise" 

structure for mathematical observation; Hence, the fuzzy set was born. A companion to 
the classical one with often more useful and suitable representation of our environment. 

"The fuzzy set was conceived as a result of an attempt to come to grips with the problem 

of pattern recognition in the context of imprecisely defined categories. In such cases, the 

belonging of an object to a class is a matter of degree, as is the question of whether or not 
a group of objects form a cluster"; These were the introductory words from LA. Zadeh in 
[Bezdekl981]. They summarize the fundament of any fuzzy clustering or classifying 
algorithm concerning any search of data structure or pattern recognition. This concept is 

exactly what this project is all about. 

An example: 
Imagine, you have two groups of objects "chairs" and "desks" in different varieties. In a 
simple version of a typical pattern recognition problem, you have the task to cluster or 
classify the given objects into these two groups. In reality, we will also have other objects 
like a big box or a bed within the pool of the objects, but only the two aforementioned 
clusters by definition. Now, a conventional crisp clustering method would put these 
critical objects in either one of these two clusters. Thus, the big box or the bed may be 

labeled as if they would be chairs. 
A fuzzy clustering method would label the objects with soft membership values. In this 

case, a big box (that can be used as a chair or a desk) might be labeled with 0.6 degree 
chair and 0.4 desk. Information like this serves a useful purpose - "fuzzy memberships in 

several classes are a signal to take a second look" [Bezdekl993] [Bezdekl992]: 
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Hard memberships of data cannot support this. Thus, the fuzzy model provides a richer 

and more flexible solution structure, one that models the real objects with a finer degree of 

detail than the harshness of the crisp models. Notice also that hard membership values 

build a subset of the fuzzy membership3 set. 

There are different types of fuzzy algorithms to find the appropriate membership values 

within the data. In this project, we used the follwoing two approaches: 

1. Clustering algorithms: 
Given any finite data, the problem of clustering is to find similarities between the objects 

of the data and to assign labels that matching objects would belong to the same subgroups. 

The algorithm starts its search without any initial interpretative information about the data 

elements. It only seeks for objective numerical similarities between the elements. Because 

the initial objects are unlabeled, this method is often called "unsupervised learning". The 

word learning implies that the clustering algorithm will ultimately find the correct labels 

at the end of the process. This is what we hope to obtain, but we do not know it a priori. 

Notice that because of the unsupervised nature of this algorithm, we may find "correct" 

clusters which represent some similarities, but not the ones we were looking for. In the 

aforementioned example with chairs and desks, the algorithm may provide two clusters of 

"wood-made" and "metal-made" objects (which are also correct), but not "chairs" and 

"desks" as we had hoped for. 

In this case, the performance of a clustering model is influenced by the choice of the 

parameters5, features, geometrical properties and our eventual interpretation of the labels. 

2. Classifying algorithms: 
In contrast to a clustering system which labels a given data, a classifier is capable - once it 

is defined (and trained) - of labelling every appropriate data. In addition, a classifying 

system is ususally initialized by labeled objects. In these cases, we call this method 

"supervised learning". 

3Notice that membership values are not probabilities; they are similarities of object vectors to a class 
structure. They represent the degree of belonging of an object to a group of objects. 
4The word learning does not imply any training. In fact, a clustering system - as is its nature - is almost 
the opposite of any system which learns by training. 
5See chapter 2.2.3.2. for the meanings of the parameters and chapter 3.1.3.3. for the strategies we used. 
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Notice that we can also use a clustering algorithm as a modified classifying algorithm: 

After having set the optimal combination of parameters and features, we can use the 

clustering system to classify any new data by: 

• adding the new element to a given and already correct clustered data, and letting 

the system relabel6 the data. Thus, our new object ends up to be in one of the 

clusters representing its identity, 

• saving all the parameters, cluster centers and the data elements and calculate 

appropriately the membership value of the new object, which will eventually 

represent its identity. 

6Running a new clustering process with one more element will probably change the structure of the 
original clusters, because the cluster centers and the membership values of each element depend on all of 
the members. In spite of this fact, we will be able to classify a normal (= not an outlier) object by having 
a large number of already clustered objects in a stable condition. 
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2.2.2. Why fuzzv-c-means (FCM)? 

One of the most significant characteristic of/wzzy-c-means algotithm is its "fuzziness"7, as 

the name assumes. Unlike crisp clustering methods, FCM gives us "membership functions" 

c [0, 1] which determine the grade of belongingness of the elements to a cluster. As 

mentioned before, this information is totally lost by conventional clustering techniques. 

The advantage of FCM is the fact that the results we may get from a crisp clustering 

method are automatically within those from FCM. 

We chose FCM as an alternative and a comparison to the fuzzy K-Nearest-Neighbor 

algorithm (KNN) investigated previously [Layeghil993,l][Dastmalchil993][Jacobsl993], 

specially because FCM is an unsupervised clustering method which works only by using 

"mathematical" tools such as spatial distances or similarities, without any training or 

additional interpretative information. 
By this method, good8 features will then hopefully provide an optimal mathematical 

grouping that presents in some sense an accurate portrayal of natural structures in the 

physical process from where the polygraph data are drived. 

Whv we chose FCM algorithm; 

Because it 

does not need previous training, 

does not make any assumption about 
the distribution of samples, 

is unsupervised, objective and self organized, 

can be used as an alternative and a comparison 
to fuzzy KNN investigated previously.  

Fig.l: FCM characteristics 

7See chapter 2.1.1. for characteristics of a fuzzy approach. 
8"Good" features are in our study those which can cluster the data in deceptive and truthful groups. 
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2.2.3. Fuzzv-c-means algorithm and its interpretation 

2.2.3.1. FCMcode -An iterative procedure: 

The fuzzy-c-means algorithm9 is basically an iterative procedure to minimize an objective 
function Jm representing a spatial fuzzy distance between data points xk and cluster 

centers v,.. In this project, I chose the most widely used Euclidean distance, i.e. the sum of 

the squared errors performance index; 

n 

k=l /=1 

• X = {xl,x2,...,x„ } c 9*5 is a finite data set in the pattern space 9? . 

• c is a fixed and known number of clusters (here: c=2). 
• U = [uik] G 9?cw is a fuzzy c-partition of X, uik is referred to as the grade of membership 

of xk to the cluster i. uik satisfy the following constraints; 

uik G[0,1];1</<C,1<ä:<« 

c 

£%=1;1<*<« 

n 

0< VwlA. <n;l<i<c 
k=\ 

• V = ( vl5v2,...,vc ) eft" ; each vf e9?5 represents a prototype of class i. 

• m is the weighting exponent and represents the level of fuzziness; 1 < m < QO. 

9[Ruspinil969] was the first one who suggested the structure of fuzzy-c-partition spaces. The fuzzy-c- 
means algorithm (originally ISODATA) was initially developed by Punnl974] and generalized by 
[Bezdekl973]. . 
Dunn extended and developed the classical "within-groups sum of the squared errors" (WGSS) function to 
a fuzzy clustering criterion and developed the fuzzy-c-means clustering algorithm to minimize the 
objective function through an iterative method. Bezdek further extended the fuzzy objective function 
proposed by Dunn to a more genral form of fuzzy clustering criterion by introducing the weighting 
exponent m, 1 < m < oo. It turns out that Dunn's function is a special case (m=2 ) of an infinite family of 
objective functions. 
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I** ~ vi IL is an inner product induced norm on 5R3 

By differentiation Jm(U,v) with respect to uik where v,. is fixed and to v,. where U is 

fixed, we obtain 

uik =  
1 

z "K-V,I 
21 

mh~vj 
2 

m-1 

and 

2>*r% 
V, = 

*=1 

£(«*)" 
*=i 

These two equations cannot be solved analytically, but approximate solutions can be 

obtained by an iterative procedure. The FCM uses iterative optimization of an objective 

function based on a weighted similarity measure between data points and cluster centers. 

Step 1. Input the number of clusters, c, the weighting exponent, m, and the error 

tolerance, e. 
Step 2. Input the data X = { x],x2,..-,x„ }. 
Step 3. Initialize the membership values U = [uik ]. 

Step 4. Calculate the new cluster centers F(/) by the 3rd equation. 

Step 5. Update the U^ by the 2nd equation. 

Step 6. Return to Step 3, if U(/+l)-U(/) > £; otherwise output U... 

X 

u 
V 

[ sxn ]       n: # of data elements - polygraph test sessions. 

[ cxn ]       s: # of features - dimension of the samples in each cluster. 

[ sxc ]        c: # of clusters 

Fig.2: The iterative FCM10 procedure 

10See Fig.3 , the flow chart of the FCM code implemented in this project. 
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Adjustment 

No 

Initialization 

X 
r(L) 

IT Ik 

J(U,V) 

Adjustment 

No 

Fig.3: Flow chart of the FCM code implemented in this project 

2.2.3.2. What the influential parameters practically mean or represent, 

and how to interpret the clustering algorithm itself: 

The weighting exponent m represents the "fuzziness" level. It controls the extent of 

membership sharing among the fuzzy clusters. Recall the example of the two clusters, 
"desks" and "chairs" in chapter3.1; In a hard c-means clustering environment (/«->• 1) each 
object can either belong to "chairs" or "desks", i.e. its membership value is either one or 
zero for each cluster. Now, the higher m is, the fuzzier the results will be. Thus, a desk - 

. which can also be used as a chair- may get a membership value higher than zero for 
belongingness to the chairs cluster. In this sense, m controls the membership values as 

following 

lim uik = —. 
m->oo C 
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The control parameter epsilon represents the interrupt criterion. It influences the number 

of iterations and therefore the accuracy of the algorithm which is the search for c minima. 

By making epsilon smaller we get more accurate clustering results, but also more 

computing time, which is not important in this specific case. 

The algorithm primarily gives us after each iteration new cluster centers vi and new 

membership values Uik. It then calculates the spatial distances between each data element 

and the found cluster centers then checks the interrupt criterion. If these distances are 

small enough, the algorithm will eventually give us the best membership values and the 

appropriate cluster centers. At this point, the search for an internal structure within the 

polygraph data -the original intention of every clustering process- will be finished. 

FCM algorithm belongs to the so-called partitional clustering algorithms which generate a 

fuzzy c-patition matrix in a feature space. In this project I set the number of clusters c, as a 

known parameter, equal to two. It can otherwise be a part of the clustering optimization 

itself. This decision was made after running some initial tests with c = 3 as well, which 

represents "deceptive", "truthful" and "ambiguous" clusters. 

unlabeled 
data 

=> 

initialized 
data 

+j +* + 

clustered 
data 

=> 

after the first 
iteration 

*: non-deceptive elements 
+: deceptive elements 

Fig.4: Fuzzy C-means algorithm applied on polygraph data 
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2.2.4. Why LMS fuzzy adaptive filter? 

Filters are information processors. In practice, information11 usually exists in two different 

modes: 

• Numerical data associated with the problem, 

• linguistic descriptions of human experts 

(often in the form of fuzzy IF-THEN rules) 

Conventional filters can only process numerical data, whereas expert systems can only 

make use of linguistic information, i.e. a successful pattern recognition system in 

conventional form can only be guaranteed where either linguistic rules or numerical data 

do not play a critical role. Recall the fact that even in those cases we decide for a 

numerical method, we use linguistic information, consciously or unconsciously, in the 

choice among different filters, the evaluation of filter performance, the choice of the filter 

orders, the interpretation of filtering results, and so on. 

The LMS12 fuzzy adaptive filter is a new kind of nonlinear adaptive filter which makes use 

of both linguistic and numerical information concerning the physical characteristics of the 

polygraph data in their natural form. This filter is constructed from a set of changeable 

fuzzy IF-THEN rules, i.e. we have the choice of setting the rules according to our 

experiences and incorporating them directly into the filter, or initializing the rules 

arbitrarily; similar to the polynomial, neural nets, or radial basis function adaptive filters. 

2.2.5. LMS fuzzy adaptive filter and its interpretation: 

2.2.5.1. Filter code - An adaptive procedure 

As stated before, this filter is constructed from a set of changeable fuzzy IF-THEN rules 

by matching input-output pairs through an adaptation procedure. The adaptive algorithm 

updates the parameters of the membership functions which characterize the fuzzy concepts 

in the IF-THEN rules by minimizing a criterion function. 
Consider a real-valued vector sequence [x(k)) and a real valued scalar [d(k)]. The adaptive 

filter fk: U -> R is to determine, such that L = E[(d(k)-fk(x(k)))2] is minimized. 

11 About the pattern of the subject to be studied. 
12LMS = Least Mean squares 
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With * = 1,2,3,... and x(k) cU^[Q,C;]x[C;,C;}x-x[C;,C;]czR".   U and R are 

the input and output spaces of the filter, respectively. 

The following steps describe the LMS fuzzy adaptive filter13 used in this project: 

Step 1: M fuzzy sets F' are to be defined in each interval [C~,Q] of U with the 

following Gaussian membership functions 

/^(x,) = exp 
7^ 

*/-*/ 

where /= 1,2,...,M, i = 1,2,...,/?, x, &[C;,C-l and x't and o\ are free parameters which 

will be updated in the LMS adaptation procedure of Step 4. 

Step 2: A set of M fuzzy IF-THEN rules is to be constructed in the following form: 

R': JFx, isFl and ... xn \sF'n, THENtf is G', 

iW RM: JFxi is FX
M and ... xn is Fn

M, THENrfis G 

where x = (x x )eU,dzR, F/'s are defined in Step 1, and G"s are fuzzy sets 

defined in R. The (parameters of) membership functions fip, and nG, in these rules will 

change during the LMS adaptation procedure of step 4. Therefore, the rules constructed 

in this step are initial rules of the fuzzy adaptive filter. 

Step 3: The filter fk: U^>R is constructed based on the M rules of the Step 2 as 

follows: 
M        (   n ^ 

fk (^) =      M (   n V" 

irKw 
;=i V 1=1 / 

where u ,'s are the Gaussian membership functions of Step 1, and 6' GR is any point at 

which u. achieves its maximum value. 
'   G 

13This algorithm is suggested in [Wangl993] and [Wangl994]. 

19 



Because we chose the membership functions to be Gaussian functions which are nonzero 
for any x, e[C~,C,+], the denominator of the last equation is nonzero for any xeU. 

Therefore, the filter fk is well defined, and because the 0' as well as xj and o\ are free 

parameters, this filter is nonlinear in the parameters. 

Step 4: The following LMS algorithm [Widrowl985] is used to update the filter 
parameters 01', x\ and o\. With the initial 0'{o), x/(0) and a/(0) values determined in 

Step 2, the adaptive procedure is as following: 

0>(k) = e>(k-i)+c{d(k)-fk]?^ 

x'i(k) = xi(k-l) + a[d(k)-fk]     ^_i}     a(k-l)   (^_i 

ß'(k     l)-f U(*)-?(*-l)) 

-*/(*-l) 

(^/(*-l)) 
2 

2 

M 
T,0'a'(k-l) 
M  

where a^-l^fW-V''***, *'(*   1})2], ^-1)= Ifl'^-l), A 

and a is a small positive step-size. These equations are obtained by taking the gradient of 

L ignoring the expectation £(see chapter 2.2.5.1). 

2.2.5.2. Influential parameters - meanings & interpretations: 

The LMS algorithm is a gradient algorithm, i.e. a good choice of initial parameters 0', x\ 

and o\ is very important to its convergence concerning accuracy and time. Since the error 

measure of this "back-propagation" algorithm is an extremely complicated function of all 
the parameters 0', x] and a,', it can have numerous local minima. Depending on the 

initial parameter estimates, this algorithm always leads to the nearest minimum, i.e. it can 

become stuck in a local minimum of the error measure. 

Recall that this filter is constructed based on linguistic rules from our previous experiences 

and some arbitrary rules. Both sets of rules are updated during the LMS adaptation 

procedure of Step 4 by changing the parameters in the direction of minimizing L. 
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In other words, the adaptation procedure can be directed to the local minimum we want 

(i.e. accuracy factor) and can converge quickly (i.e. time factor). 

if these rules provide good instructions for how the filter should perform, that is, good 
description of the input-output pairs [x(k);d(k)]. 

The updating parameters 0'[Mxl], x/[MxN] andcr/fMxN] represent output means, input 

means and the input width of the Gaussian distributed data, respectively. The scalar output 
d is basically the label14 of the test data[lxN] in numerical form, and o] describes how far 

the data from the output mean can be and still be assigned to it in an appropriate fuzzy 
form. M represents the number of the rules and N the number of the features, i.e. the 

dimension of the data. The parameter a is the "learning factor" or the step-size of training. 

It represents how fast and how smooth the training process proceeds. 

polygraph 

data 

linguistic rules 

\/ 

LMS adaptive filter {defuzzifieh 
labels 

> 

/\ 

conventional 
initialization 

Fig.5: The LMS fuzzy adaptive filter used in this project 

14"deceptive" or "non-decptive" 
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§3. APPROACH 
3.1. Part I - FCM 

3.1.2. Initial stage (conditions and methods); 

A primary component of every pattern recognition problem is feature extraction. And this 

is actually one of the most important and influential tasks for any successful approach. 

In previous researches [Layeghi 1993,1] [Jacobsl993] [Dastmalchil993], students have 

already investigated a set of 669 features for each polygraph test session. They used these 

features to train, optimize and eventually classify the data by a fuzzy K-Nearest Neighbor 

algorithm (KNN). 
In this project, I have used these same features in their original form. I have also selected 

their best features and feature combinations for initial tests of my algorithm and for 

comparison between fuzzy-CM, fuzzy LMS adaptive filter and the fuzzy KNN approach. 

At this point, the question of consistency and transferability of the features - independent 

of the algorithm - became more significant. It turned out to be one part of this research15. 

ft 669/    ft 669 

session #1 session #100 

Fig.6: An example for a set of polygraph data as a matrix 
and its features used in this study 

As mentioned earlier, each feature (total number=960) is extracted for all polygraph test 

questions, that is for relevant, irrelevant and control questions. It was, however, decided 

15See also chapter 4.1.2.3. 
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not to use irrelevant questions in this study, because in a Controlled Question Polygraph 
Test comparison between the responses to relevant and control questions is the actual and 

most important factor. 

I Featured /Feature\ 

Subtract the averages 

A 
Use control 
and relevant 
seperately 

 >  ■> 

 ...> Different 
methods of 

combining the 
features 

\ Subtract the 
normalized averages 

Compare 
control & relevant 

y 
/ / 

I   Setl    I ^ 
\<960)J 

 7 
\ (669) J 

\ Subtract maximum 
from maximum \.                     J ? ? 

-> 
Use control, 
relevant and 

irrelevant 
I 

\. Divide the averages ? / 

Fig.7: The original feature combinations 

The Total number of the features for every test session at this stage is 669. Each set 
contains the same non-deceptive files but different deceptive ones. For more specific 
details about how the feature extraction was processed, and about combination methods 
which narrowed the total number from 960 to 669, see the references mentioned above. 

3.1.3. Clustering stage 

3.1.3.1. One-dimensional search and selection of the "best" single features: 

After implementation and initial tests of the FCM-code, I began with the one-dimensional 

clustering (using one feature for all sessions). I used three sets (polydat_l, polydat_2, 
polydat_3) of such structured data as shown in Fig.42 containing 100 data elements, i.e. 

50 truthful and 50 deceptive files. With these data, we ran 669 one-dimensional clustering 

searches containing 100 different one-dimensional data points at each time. As a result, we 

attained 669 times 2 clusters for each polydatj. 
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After running these tests and evaluating them, I decided to select four sets of "best" one- 

dimensional features out of each polydatj in preparation for the multi-dimensional 

clustering search. This decision was necessary to narrow the number of features, since it is 

impractical to find the best combination (concerning the quantity and the quality)16 out of 

this immense number of features by an exhaustive way of searching. 

For example, chosing only 4 or less feature-tuples from a set of 669 by trying all the 

possible different combinations needs the following number of computations: 

z 
i = l 

'6691_ =  I 
669! 

V i  J    irii!(669-i)! 
«10 10 

The other challenge while finding good feature combinations is the problem of single 

features which yield poor results by one-dimensional clustering, but when used in 

combination with other features yield very good17 results. 

To narrow the amount of possible features, I decided to select the following four sets of 

single features with different performances. 

percentage of right detections in 

deceptive files non-deceptive files 

group 1 

group 2 

group 3 

group 4a 

group 4b 

> 60% & 

> 80% & 

> 50% & 

> 98% & 

no constraints & 

> 60% 

> 50% 

> 80% 

no constraints 

> 98% 

Fig.8: Selected features by using one-dimensional FCM 

The threshold of 60% was chosen, because any other value below or above that limit 

would again give us either too many or not enough features. Furthermore, any other value 

16That means: How many features and which ones should be taken in a combination. 
17"Good" or "poor" in sense of the definition in chapter 1.1.2. 
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closer to the limit 50% for both deceptive and non-deceptive files would be only a random 

clustering process. Yet, this decision was not enough. We would have lost some good 

features which provide correct detections - better than 80% - for at least one of the files. 

The fourth group was chosen to enable us to consider some extreme cases. 

As an additional set of one-dimensional features, I chose those with good results in multi- 

dimensional tests18 for one of the polydatj's, and used them also for the other two 

polydatj's, even though they didn't belong to one of the four feature sets mentioned 

above. This set was important to fulfill the constraint of consistency and transferability for 

any chosen polygraph data19. 

18See chapter 3.1.3.2. 
19See the comparison in chapter 4.1.2.3. 
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ft_#  w-dcp dcp-ok w-non non-ok iter_#                      E-669 
#    % #    % 

1.0000 12.0000 76.0000 9.0000 82.0000 13.0000 
2.0000 37.0000 26.0000 44.0000 12.0000 15.0000 
3.0000 16.0000 68.0000 10.0000 80.0000 14.0000 
4.0000 12.0000 76.0000 18.0000 64.0000 15.0000 
5.0000 15.0000 70.0000 16.0000 68.0000 16.0000 
6.0000 38.0000 24.0000 27.0000 46.0000 15.0000 
7.0000 48.0000 4.0000 0   100.000 40.0000 
8.0000 22.0000 56.0000 9.0000 82.0000 8.0000 
9.0000 22.0000 56.0000 8.0000 84.0000 13.0000 
10.0000 22.0000 56.0000 11.0000 78.0000 38.0000 
11.0000   0   100.000 33.0000 34.0000 26.0000 
12.0000 20.0000 60.0000 15.0000 70.0000 6.0000 
13.0000 46.0000 8.0000 26.0000 48.0000 10.0000 
14.0000 22.0000 56.0000 11.0000 78.0000 16.0000 
15.0000 12.0000 76.0000 9.0000 82.0000 27.0000 
16.0000 37.0000 26.0000 44.0000 12.0000 17.0000 
17.0000 16.0000 68.0000 10.0000 80.0000 25.0000 
18.0000 12.0000 76.0000 17.0000 66.0000 37.0000 
19.0000 15.0000 70.0000 16.0000 68.0000 40.0000 
20.0000 38.0000 24.0000 27.0000 46.0000 34.0000 
21.0000 48.0000 4.0000 0   100.000 31.0000 
22.0000 12.0000 76.0000 14.0000 72.0000 25.0000 
23.0000 10.0000 80.0000 45.0000 10.0000 20.0000 
24.0000 21.0000 58.0000 15.0000 70.0000 23.0000 
25.0000 18.0000 64.0000 24.0000 52.0000 29.0000 
26.0000 24.0000 52.0000 19.0000 62.0000 18.0000 
27.0000 12.0000 76.0000 23.0000 54.0000 22.0000 
28.0000 46.0000 8.0000 2.0000 96.0000 35.0000 
29.0000 18.0000 64.0000 9.0000 82.0000 28.0000 
30.0000 12.0000 76.0000 10.0000 80.0000 14.0000 

447.0000 17.0000 66.0000 36.0000 28.0000 17.0000 
448.0000 7.0000 86.0000 40.0000 20.0000 25.0000 
449.0000 16.0000 68.0000 11.0000 78.0000 15.0000 
450.0000 12.0000 76.0000 9.0000 82.0000 15.0000 
451.0000 13.0000 74.0000 18.0000 64.0000 20.0000 
452.0000 5.0000 90.0000 20.0000 60.0000 13.0000 
453.0000 18.0000 64.0000 18.0000 64.0000 12.0000 

662.0000 27.0000 46.0000 34.0000 32.0000 9.0000 
663.0000 16.0000 68.0000 30.0000 40.0000 9.0000 
664.0000 21.0000 58.0000 37.0000 26.0000 17.0000             Feature number: ft_# 
665.0000 31.0000 38.0000 23.0000 54.0000 14.0000 # of wrong results in decept. data: w-dcp 
666.0000 34.0000 32.0000 17.0000 66.0000 45.0000  % right detection in decept. data: dcp-ok 
667.0000 25.0000 50.0000 28.0000 44.0000 20.0000  # of wrong results in truthful data: w-non 
668.0000 15.0000 70.0000 37.0000 26.0000 12.0000  % right detection in truthful data: non-ok 
669.0000 15.0000 70.0000 39.0000 22.0000 11.0000     Iterations_# for each feature: iter_# 

Fig.9: An example for one-dimensional clustering 
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ft_#  w-dcp dcp-ok w-non non-ok iter_#                      2-45 
#    % # % 

1.0000 12.0000 76.0000 9.0000 82.0000 13.0000 
3.0000 16.0000 68.0000 10.0000 80.0000 14.0000 
4.0000 12.0000 76.0000 18.0000 64.0000 15.0000 
5.0000 15.0000 70.0000 16.0000 68.0000 16.0000 
12.0000 20.0000 60.0000 15.0000 70.0000 6.0000 
15.0000 12.0000 76.0000 9.0000 82.0000 27.0000 
17.0000 16.0000 68.0000 10.0000 80.0000 25.0000 
18.0000 12.0000 76.0000 17.0000 66.0000 37.0000 
19.0000 15.0000 70.0000 16.0000 68.0000 40.0000 
22.0000 12.0000 76.0000 14.0000 72.0000 25.0000 
29.0000 18.0000 64.0000 9.0000 82.0000 28.0000 
30.0000 12.0000 76.0000 10.0000 80.0000 14.0000 
31.0000 14.0000 72.0000 16.0000 68.0000 21.0000 
33.0000 18.0000 64.0000 16.0000 68.0000 14.0000 
36.0000 15.0000 70.0000 8.0000 84.0000 14.0000 
37.0000 8.0000 84.0000 13.0000 74.0000 15.0000 
38.0000 12.0000 76.0000 14.0000 72.0000 18.0000 
39.0000 14.0000 72.0000 13.0000 74.0000 17.0000 
40.0000 16.0000 68.0000 15.0000 70.0000 13.0000 
50.0000 17.0000 66.0000 17.0000 66.0000 18.0000 
52.0000 15.0000 70.0000 20.0000 60.0000 23.0000 
68.0000 13.0000 74.0000 18.0000 64.0000 17.0000 
70.0000 20.0000 60.0000 20.0000 60.0000 23.0000 
82.0000 16.0000 68.0000 20.0000 60.0000 12.0000 
141.0000 17.0000 66.0000 17.0000 66.0000 15.0000 
155.0000 17.0000 66.0000 17.0000 66.0000 25.0000 
176.0000 16.0000 68.0000 18.0000 64.0000 13.0000 
177.0000 16.0000 68.0000 16.0000 68.0000 13.0000 
197.0000 13.0000 74.0000 17.0000 66.0000 15.0000 
200.0000 17.0000 66.0000 13.0000 74.0000 12.0000 
211.0000 13.0000 74.0000 16.0000 68.0000 42.0000 
214.0000 17.0000 66.0000 12.0000 76.0000 27.0000 
216.0000 15.0000 70.0000 14.0000 72.0000 32.0000 
235.0000 15.0000 70.0000 19.0000 62.0000 14.0000 
395.0000 18.0000 64.0000 17.0000 66.0000 10.0000 
449.0000 16.0000 68.0000 11.0000 78.0000 15.0000 
450.0000 12.0000 76.0000 9.0000 82.0000 15.0000 
451.0000 13.0000 74.0000 18.0000 64.0000 20.0000 
452.0000 5.0000 90.0000 20.0000 60.0000 13.0000 
453.0000 18.0000 64.0000 18.0000 64.0000 12.0000             Feature number: ft_# 
458.0000 16.0000 68.0000 14.0000 72.0000 8.0000  # of wrong results in decept. data: w-dcp 
459.0000 20.0000 60.0000 10.0000 80.0000 10.0000  % right detection in decept. data: dcp-ok 
460.0000 14.0000 72.0000 18.0000 64.0000 9.0000  # of wrong results in truthful data: w-non 
462.0000 14.0000 72.0000 17.0000 66.0000 7.0000  % right detection in truthful data: non-ok 
600.0000 18.0000 64.0000 20.0000 60.0000 37.0000     Iterations_# for each feature: iter_# 

Fig.10: An exmple for the first group of selected features 
( representing group #1 at page) 
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3.1.3.2. Multi-dimensional search for the best feature combination: 

3.1.3.2.1.Overview: 

Having obtained these four sets of features, a multi-dimensional searching process through 

all of them was initiated to find the best feature combinations (concerning the quantity and 

the quality20). 
Even though the number of the features21 has already been narrowed, it is still impractical 

to do an exhaustive search, since the total number of the features contained in these four 

sets is about 100 for each polydatj. In other words, the following number of 

computations is still needed for calculation of all 4 or less possible feature-tuples: 

4 
Z 

i = l 

10(A 

v l J 
=  £       100!      ,4.0.106 

i = l«000-i)! 

At this stage, I decided to investigate 3 different search methods to bypass the exhaustive 

way. They are 

1. random search without duplication of any feature within a tuple, 

2. pseudo-exhaustive search with the option of duplication and finally 

3. genetic search with "uncontrollable" possibility of duplications. 

In previous research projects [Layeghi 1993,1] [Dastmalchil993] [Jacobsl993], it was 

decided to narrow the feature numbers from 669 to 30 "best" ones and then an exhaustive 

search was run for up to four- or five-tuple combinations. In other words, their strategy 

was completely different than the aforementioned three strategies. 

As mentioned before a "poor" or an average single feature by one-dimensional clustering 

might give us in combination with other features very good or even better results by a 

multi-dimensional clustering than any of them individually. 

This fact was totally neglected by the feature selection methods used in the previous 

researches22 [Laueghi 1993,1] [Dastmalchil993]. 

20That means: How many features and which ones should be taken in a combination. 
21See chapter 3.1.3.1. 
22See chapter 4.3. comparison for more details about differences between this and previous works. 
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Applying these three new strategies, I was able to consider more possible features for a 

multi-dimensional clustering than in previous works, without using the impractical 

exhaustive method. 

polygraph data 

ft 669 

session #1 

best feature combination 

session #100 

\ one- dimensional 
? FCM-cIustering 

\/ 

feature selection 

\/ \/ \/   •"   s/ 

feature combination 

random search 
I 

pseudo-exhaustive search 
I          

genetic search 

multidimensional 
FCM 

Fig. 11: General search to find the best feature combination 

3.1.3.2.2. Random search method: 

Applying this method, an average of 14 to 20 different features out of the aforementioned 

four sets were taken, and then the FCM algorithm including the evaluation program for 

randomly chosen 4-tuples were run. After about 1000 combinations were constructed, I 

then picked out the best features and their combinations, and replaced the poor ones with 

new features. This same procedure was repeated until good23 combinations were found. 

23"Good" in sense of the definition in chapter 1.1.2. 
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Every time the results were out of balance - i.e. highly better detection either for deceptive 

or non-deceptive files by the cost of the other one - I appropriately took additional 

features from those four sets to eliminate the difference by improving the results of the 

worse file - and as much as possible - by maintaining the results of the better file. 

After running this kind of tests several times, we were able to estimate which features are 

the good ones to combine together. 

3.1.3.2.3. Pseudo-exhaustive search method: 

Having some idea24 which features are good in a combination with others25, I built every 

possible four- to six-tuples out of those features and evaluated them. This method was 

very important to make sure that we did not lose any good combinations which might 

have been neglected by the random search. 

I called this method "pseudo"-exhaustive, because each time it considers only a small part 

of the available features; but "exhaustive", because it takes all the possible combinations 

within this part. Except for this major difference, all the other steps of this method are 

exactly the same as the random search. 

3.1.3.2.4. Genetic search method: 

This algorithm is basically a compromise between the pseudo-exhaustive and the random 

search method, plus a weighting system which supports those features with good results. 

Initial populations of 200 to 300 chromosomes26 are randomly created. Each chromosome 

is a combination of N features, where N stays constant for each population during the 

outgrowth. Each single feature is selected from a gene pool for the particular population 

that the individual belongs to. Each gene pool consists of twenty to forty features that we 

have chosen27. 

24By using the results of the random search method and also the 5th group mentioned at page 3.1.3.1. 
"Remember the fact that some "poor" single features might give us in combination with others very 

good results 
26Individuals or feature-tuples. 
27Directed by our experience from using the random and the pseudo-exhaustive methods. 
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In this project three processes operate on the evolution28 of each population: 

• reproduction 

• crossover 

• mutation. 

These three processes determine how each new generation will be created based on the 

old one. Before genetic reproduction, the fuzzy-c-means algorithm evaluates the 

percentage of correct deceptive and non-deceptive detections for each chromosome. The 

average of them is the fitness value ofthat chromosome. During the genetic reproduction, 

the chromosomes of the new generation are copied from the chromosomes of the old 

generation in a probabilistic sense. The probability that a particular chromosome will be 

copied is the ratio ofthat chromosome's fitness value against the total fitness values of the 

entire population of the old generation. 

After selection, genetic crossover randomly chooses pairs of chromosomes as parents, 

splices them, and recombines them - by randomly mixing some of the parents genes - into 

pairs of offsprings. Finally, genetic mutation randomly substitutes a new gene within a 

randomly chosen chromosome. The extent to which crossover and mutation occur can be 

verified by appropriate initialization. 

reproduction crossover mutation 

Number of feature tuples: 300 

Number of features in each tuple: 4 

Fig. 12: An example for the genetic outgrowth with 
4 genes (=features) in each chromosome (individual) 

28See chapter 4.1.2.2 for particular results of this method. 
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3.1.3.3. General process - Optimization by changing parameters: 

Simultaneously to the search for the best features and their combinations, we were 

optimizing the system by changing and adjusting the parameters. Recall, the whole idea of 

this pattern recognition was to cluster the unlabeled data into two clusters which represent 

the deceptive and the truthful group29. 

Knowing the information of which files were deceptive or truthful30, we were able to 

change the parameters in the way that the output could continuously come closer to the 

real cluster structure. This process is depicted in the following figure. The "fuzzy c-means 

algorithm" block not only represents the pure FCM algorithm shown in Fig.3, but also the 

general search for good features shown in Fig. 11 which ran simultaneously with the 

optimization process. 

polygraph test 
data 

fuzzy c-means 
algorithm 

parameters 

defuzzification 
hard 

>/ 
>   \ 

uik 

defuzzification 
soft 

\f s \ 

 <  evaluation 

^non-deceptive cluster 

"deceptive cluster 

'ik 

{ 
non-deceptive cluster 
deceptive cluster 
membership values 

Fig.13: Optimization of the clustering environment 
- General process - 

As an example, I will briefly discuss how the parameter m was chosen and eventually 

modified: The weighting exponent m plays a significant role in this system. Since the 

control parameter m itself does not belong to the optimizing values within the iterative 

process of FCM algorithm, one must choose m before implementing the algorithm, and 

29See chapter 3.1.2. 
30We know this information beforehand for sure, because the subjects have confessed their case or the 
actual offender was found. 
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optimize it manually. There are several research papers written as an attempt to find the 

optimal m for different clustering problems. 

The effect of m was discussed in [Bezdekl981]. Although Bezdek proposed heuristic 

guidelines for m, no theoretical basis for an optimal choice for m has been reported. The 
only known paper in this matter [Choel992] proposed a method for determining m based 

on the concept of fuzzy decision theory initiated by [Zadehl970]. 

But since the definition of "good" clusters in [Choel992] did not exactly match to our 
clustering environment, I chose the "trail and error" strategy to find the optimal m by 
systematically increasing it. Fortunately, there is a logical limit31 for this increasing process 

in our case, even though m can mathematically be any value from [ 2, oo). 
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30 3                  20                 40                 60                  80                 K 

Polygraph sessions 

"." represents the mmebership values for m=2 
"+ " represents the membership values for m=5 

»^.» Fig. 14: An example for the influence of 'm 

31See chapter 2.2.3.2. for the meaning of m. 
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For more details on this matter see the chapter 4.1.1. In Fig. 14, you see an example for 

how the weighting exponent m influences the membership values for one of the features 

from polydat_3 in one-dimensional mode. 

3.1.3.4. Evaluation strategy: 

Due to the small number of non-deceptive cases available, each session for a subject was 

used as a separate and individual case. But in average, each group of three sessions belong 

to one person concerning the same crime, meaning the results of these sessions are not 

independent of each other. Using this additional information, the clustering system can 

come closer to the actual structure of the data, i.e. we can get a better performance. 

polygraph examination for a deceptive subject 

session #1 session #2 session #3 

© 
© 
(D 
© 

© 

© 
© 
® 
© 

© 

© 
© 
© 
© 

© 

FCM FCM FCM 

non-deceptive deceptive deceptive 

fc~] : Control question 

[R] : Relevant question 

deceptive 

Fig. 15: An example for the final evaluation using the 
dependency of the sessions 
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After clustering and evaluating32 each session separately, some cases with different 

responses to the algorithm were found, although they belonged to one person. In 

circumstances like this, we combined the individual results within each group in a way that 

the majority response was assigned to the whole group (see Fig. 15). 

In those cases that each polygraph examination contains 2 or 4 test sessions where there is 

no majority response to build, I decided to take only those membership values further to 

the threshold 0.5. For example, by the feature combination [30, 30, 39, 235, 363, 450] 

used to cluster polydatj, we obtained for one of the examination with four sessions the 

following membership values: 0.4164, 0.5519, 0.5377, 0.4780. After denazification we 

got 0, 1, 1, 0 where no majority class can be build. However, the second and the third 

membership values are closer to the threshold than the other two ones. With the 

aforementioned strategy, this examination is labeled with 0. 

Recall that each polygraph examination has a set of control and relevant questions which 

is repeated an average of three times. The only difference between each session is the 

order in which the questions are asked. 

32The general evaluation process is contracted as following: 
After each clustering procedure ( one- or multi-dimensional) a two-row vector of membership values is 
given which represent the two deceptive and non-deceptive clusters. The evaluation process takes the 
membership values of one these clusters and counts the values below and above the threshold 0.5. Thus, as 
a result we get the absolute number of wrong and right detections. 
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3.2. Part II - LMS fuzzv adaptive filter 

3.2.1. Feature selection bv visual inspection: 

One advantage of a fiizzy logic system is its use of common sense human reasoning as 

inference rules. The fuzzy LMS algorithm we used extends this advantage by further 

optimizing such inference rules to "fit" a given set of data. To fully utilize the advantages 

of this fuzzy LMS algorithm, we had to face two issues: coming up with the proper 

intuitive rules for initialization and a set of data that reflects real-world examples for 

training. 

As mentioned before, for practical reasons, the polygraph recognizer can use only a subset 

of the given 669 features, and we would have to choose the effective ones. Furthermore, 

the fuzzy logic system needed reasoning rules, operating on those features we selected, to 

analyze the data. We believed that we could visually inspect graphical plots of the feature 

data to learn about the feature information. Since fuzzy logic corresponds closely with 

human reasoning, we would then, based on the knowledge obtained from our visual 

inspection, select features that help differentiate deceptive and non-deceptive subjects and 

codify the patterns we would find into reasoning rules. 

For the visual inspection, a scatter plot was made of the data in polydat_3 of each single 

feature. We looked at each plot individually. In any given plot, if the deceptive and non- 

deceptive subjects showed distinctive clusters, then the feature was considered good. If 

the elements of these two classes seemed to be randomly located, then the feature was 

considered bad. After viewing all 669 plots, we subjectively determined the following 

features33 to be very good: 9, 11, 29, 164, 399, 449, 450, 451, 452, and 454; with 451 and 

452 to be the best. 

Initially the fuzzy adaptive filter was to be designed based on two features, with more 

features to be added in the future as the project progresses. We limited the feature couple 

to be composed of good features from the above list. Visual inspection was made of the 

scatter plots of the data in polydat_3 of various such feature combinations to determine 

the effective ones. While selecting feature couples, we again searched for combinations 

that show distinctive clusters for deceptive and non-deceptive subjects. The features 

33See Fig.41 for the meaning of these numbers. 
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within a combination should also be uncorrelated with each other. A plot of the feature 

449 and 450 combination shows that they are a bad couple because they seem to be 

linearly correlated34, as the data points fall closely along a straight line. 
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'+': non-deceptive files 

'o': deceptive files 

polydat_S 

Fig.16: Scatter plots of two linearly correlated features 

Visual inspection of feature couples consumed much more time than visual inspection of 

individual features, as the clusters took on more complicated shapes. Furthermore, in the 

fuzzy LMS algorithm each inference rule exerts influence centered in an elliptical contour 

where the major and minor axes are parallel with the axes of the feature plot. Clusters with 

a complicated shape must be built from those elliptical regions (see next figure). Therefore 

we had the additional task of finding clusters in the feature plots that could be easily 

approximated with few ellipses, to reduce system complexity. 

Due to the lack of time, we did not examine the plots of all forty-five possible 

combinations of the ten very good features listed above. We only examined a random few. 

Based on the ones we did examine, we settled on the combination of features 451 and 452 

because: 

34Correlation between two features means that information in one is similar to the information in the 
other one, and using them together only introduces redundancy and hardly improves the system. 
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they were the best - visually recognizable - features individually, 

they seemed uncorrelated with each other and 

we roughly found four elliptical clusters from the plot. 

CM 

3 

0.5 

-0.5 

-1.5 
-1.5 -1 -0.5 0 0.5 

feature # 451 

1.5 

'+': non-deceptive flies 

'o': deceptive files 

Polydat-3 

Fig. 17: The four elliptical clusters used for setting the linguistic rules 
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3.2.2. Setting linguistic rules: 

We initialized the fuzzy system such that it would exploit the knowledge we had just 

obtained about the clusters for features 451 and 452. There were two inputs, one for each 

feature, and four rules, one for each cluster. We had to represent those visual clusters we 

found with inference rules. The linguistic rules are shown in the following figure. 

1. IF fl is about -1 (±0.5) and £2 is about -0.5 (+0.8), 
THEN decision is non-deceptive => output is +1. 

2. IF fl is about 0 (±0.5) and f2 is about -0.25 (±0.25), 
THEN decision is non-deceptive => output is +1. 

3. IF fl is about 0 (±0.1) and £2 is about 0 (±0.2), 
THEN decision is deceptive => output is -1. 

4. IF fl is about 1 (±0.6) and £2 is about 0.3 (±0.5), 
THEN decision is deceptive => output is -1. 

fl: measurement of feature # 451 
f2: measurement of feature # 452 

Fig. 18: Initial linguistic rules for the fuzzy adaptive filter 
based on the clusters in Fig. 17 

The linguistic rules above were then translated to fuzzy membership functions as outlined 
in [Wang 1994]. The xi's were the centers of the clusters; the sigmas were the widths of the 

clusters (±xxx in the above rules); and the thetas were either +1 or -1 for non-deception 

and deception, respectively. 

The output of the fuzzy reasoning based on the above four rules would not be exactly +1 
or -1. It would be within the range limited35 by +1 and -1. For our project, we decided 
that a positive output denotes non-deception and a negative output denotes deception. In 

other words, the decision threshold was at zero. 

"After training the output may go beyond that range. 
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For future investigations one may experiment with a different threshold36. 

The choice of plus and minus one for non-deception and deception is based on the 

following argument: The learning technique uses the squared error, which is the square of 

the difference between the desired output and actual output. In computing that squared 

error, if the difference between the desired output and actual output is greater than one, 

then the squaring operation expands the error value and therefore gives more significance 

to such mistakes. On the other hand, if the difference is less than one, than the squaring 

operation compresses the error value and therefore gives it less significance. 

Given zero as the threshold between deception and non-deception and assuming the actual 

output would never go beyond plus two or minus two, then the choice of plus and minus 

one as desired outputs would mean that the error calculation gives more significance to 

misclassifications and less to correct classifications; Here classification refers to the crisp, 

defuzzified classification, not the degree of belonging. 

For example, the desired output for non-deceptive subjects is plus one. If the actual output 

is between zero and two, then the crisp classification is non-deception, which is correct. 

The numerical difference between the actual output and the desired output is less than one 

in this case, and the squaring operation would lessen the significance ofthat error. On the 

other hand, if the actual output is less than zero, then the crisp classification would be 

deception, which is wrong. In that case, the numerical difference between the desired 

output and the actual output is greater than one and more significance would be given to 

such mistakes. Similar argument can be apply for the choice of minus one as the desired 

output for deceptive subjects. 

3.2.3. Training, testing and evaluation strategy: 

The fuzzy LMS algorithm can be optimized to a specific set of data. To exploit that aspect 

of the algorithm, we also selected a set of data to train the system. Following a procedure 

similar to one used in an earlier project with KNN classifying algorithm [Layeghil993], 

we had 35 deceptive subjects and 35 non-deceptive subjects - from each polydat_i - for 

360ne may also view the output as a fuzzy value and map it to a confidence value in addition to just a 
deception/non-deception decision. That would differentiate a sure judgment from an unsure one and may 
be more helpful in practice. 
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training. However, with a set of only 100 subjects within each polydatj, that left a rather 

small amount for testing (i.e. 15 deceptive and 15 non-deceptive subjects). Therefore we 

also tested the algorithm with 10 deceptive subjects and 10 non-deceptive subjects for 

training and the rest (40 deceptive subjects and 40 non-deceptive subjects) for testing. 

That might be a bit extreme in the other direction, but we could interpolate the results and 

also see the sensitivity of the algorithm to the amount of training data. 

We tested both cases for all three polydatj's, giving a total of six tests. Each test was 

repeated twenty times. The training data were randomly chosen each time, and the rest of 

the available data in each set were used for testing. We recorded for each test the average 

of those twenty trials. This repeated testing was done to ensure that the results were not 

dependent on a particular choice of training data. 
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3.2.4. What to do with the memorizing problem? 

Most learning algorithms suffer the dilemma of overlearning, or memorizing. Usually the 

problem occurs when the learning algorithm tries too hard at optimizing itself to a set of 

training data, sometimes to the point of memorizing them, such that it does not generalize 

to understand new data. Overlearning is exacerbated when the training data set is not 

completely representative of the testing set. 

In a pattern recognition problem, while the recognition rate for the training data may 

increase steadily until it reaches a certain plateau, the recognition rate for testing data may 

only increase for a while, after which it may decrease until it hits a plane. We observed 

such phenomenon in our system: 

0.85    . 
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c        0.8  1_ o 
c 
8> 
8     0.75 

0.65 
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training data 

/ 

testing data 

10 15 20 25 30 35 40 

epochs 

The training data consist of twenty non-deceptive subjects and twenty deceptive subjects from polydat_3. 

The testing data consist of all one hundred subjects from polydatj. 

Fig. 19: An example for memorizing as the system "learns" 

The point where the recognition rate starts to decrease marks the beginning of 

overlearning. In practical applications, most adaptive learning algorithms are trained only 

to the point before overlearning occurs, when the performance on the testing data reaches 

its peak. 
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In our testing we had taken that approach and, for each trial, the percentage of correct 

recognition was taken as the maximum attained for the testing data within forty epochs37. 

We disregarded the recognition rate for the training data because for many systems, 

including our own, a proper set-up could easily attain a recognition rate of 100%. That is, 

the recognition rate of the training data bears little importance in practical applications. 

37An epoch is defined as one complete cycle through all the training data. 

43 



§4. RESULTS AND CONCLUSIONS 

4.1. Fuzzv-c-means 

4.1.1. Searching for the best level offuzziness (parameter 'm'): 

One of the major steps during the one-dimensional clustering was the searching process 

for the best value of w38. For this process, it was necessary to run the FCM algorithm for 

different m's and for different data by increasing m systematically. This was done for all 

669 features and for each polydatj, by every new m. 

Recall that it was decided to consider four groups of features to limit the feature pool for 

multi-dimensional clustering. Even though the general development - while changing m - 

was similar for each polydatj, the individual reaction of these 4 groups within each 

polydatj was a little different. For the final decision, we considered all these variances, 

correct detection rates and also the distributions of the membership values for each m. 

In the following, I will mention some of the remarkable observations we have made during 

this process (see also the following tables and figures representing the results of 

polydat_3): 

As expected, the membership values Uik did approach the 0.5-level39 by increasing m, i.e. 

the results became fuzzier. Thus, we had to limit the increasing process to avoid the 

uncertainty of the results caused by too much "fuzziness" (which means that every person 

belongs to both clusters with almost the same possibility). However, we could observe a 

very interesting phenomenon. Even though the membership values came closer to 0.5, and 

the distances for different persons to this level were around 10"x (with x > 3), they were 

still visually recognizable as deceptive and truthful clusters. 

See the following two figures and also the Fig. 14 for examples. Notice that the first 50 

sessions represent the non-deceptive persons and the other 50 the deceptive ones. 

38See also chapter 3.1.3.3. for the discussion about finding the best m. 
39See chapter 2.2.3.2. for more details. 
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In the following two tables, the influence of changing m (for polydat_3/group #1, as an 

example) is depicted. As mentioned earlier this group represents those features which give 

us better than 60% right detection for both deceptive and non-deceptive files by one- 

dimensional clustering. 

As you see in these examples, while increasing the parameter m, new "good" features 

appear. Some old ones provide even better detection rates and some get worse or even 

disappear. This progress is not unlimited. As you see, the development from 'm=4' to 'm=5' 

is smoother than between 'm=2' and 'm=4' regardless of 'm=3' step. By continuing this 

process above 'm=5', the tendency becomes rather negative. 

Those features marked with (*) represent a better detection rate than 75% at least in one 

of the two clusters. Notice that these features also change during the increasing process of 

m. By continuing this process above 'm=5', also this tendency becomes rather negative. 

After considering the other groups40 and their development for each polydat_i, 'm=5' 

appeared to be the best compromise. Notice that there is also an outstanding result for 

feature number 452 by 'm=5' (see Fig.23). That was the only individual feature ever by an 

one-dimensional clustering process with a correct detection rate of 90% for non-deceptive 

files. 

Another interesting aspect is that independent of m, the conglomeration areas where 

"good" features appear are always the same: For example the half of the "good" features 

are among the first hundred, but between 200 and 300, there is only one. 

In the next tables we will use the following abbreviations: 

ft #: Feature number. 

w dcp: Wrong detection within the deceptive cluster in percent. 

w_non: Wrong detection within the non-deceptive cluster in percent. 

Features with a better detection rate than 75% at least in one of the two 

clusters. 

*• 

'm=...' MINUS 'm=...': Represents the difference in detection rates by using different iris. 

40SeeFig.8. 
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polydat_3 

group #1 & m=4 

ft #     w_dcp    w_non 

1.0000 
3.0000 
4.0000 
5.0000 

12.0000 
15.0000 
17.0000 
18.0000 
19.0000 
22.0000 
29.0000 
30.0000 
31.0000 
33.0000 
36.0000 
37.0000 
38.0000 
39.0000 
40.0000 
50.0000 
52.0000 
68.0000 
70.0000 
82.0000 

141.0000 
155.0000 
176.0000 
177.0000 
197.0000 
200.0000 
202.0000 
211.0000 
214.0000 
216.0000 
235.0000 
395.0000 
449.0000 
450.0000 
451.0000 
453.0000 
458.0000 
459.0000 
460.0000 
462.0000 
600.0000 

24.0000 
32.0000 
22.0000 
30.0000 
40.0000 
24.0000 
32.0000 
22.0000 
30.0000 
24.0000 
36.0000 
24.0000 
28.0000 
36.0000 
30.0000 
16.0000 
24.0000 
28.0000 
32.0000 
34.0000 
30.0000 
24.0000 
40.0000 
32.0000 
34.0000 
34.0000 
32.0000 
32.0000 
26.0000 
34.0000 
30.0000 
26.0000 
32.0000 
30.0000 
30.0000 
38.0000 
32.0000 
24.0000 
24.0000 
36.0000 
32.0000 
40.0000 
26.0000 
28.0000 
36.0000 

18.0000 
20.0000 
36.0000 
32.0000 
30.0000 
18.0000 
20.0000 
36.0000 
32.0000 
28.0000 
18.0000 
20.0000 
32.0000 
32.0000 
16.0000 
26.0000 
28.0000 
26.0000 
30.0000 
34.0000 
40.0000 
36.0000 
40.0000 
40.0000 
34.0000 
34.0000 
36.0000 
32.0000 
32.0000 
26.0000 
28.0000 
32.0000 
26.0000 
28.0000 
38.0000 
32.0000 
20.0000 
18.0000 
38.0000 
36.0000 
26.0000 
18.0000 
38.0000 
34.0000 
40.0000 

* 
* 

* 
* 
* 

* 

* 

'm=2' MINUS 'm=4' 

% % 

0 -2.0000 
2.0000 0 
 new feature  
2.0000 0 
 new feature  

0 -2.0000 
2.0000 0 
 new feature  
4.0000 0 

0 0 
0 0 

-2.0000 4.0000 
-2.0000 0 

0 0 
0 0 
0 4.0000 
0 0 

-6.0000 4.0000 
0 0 

2.0000 0 
 new feature  
 new feature  
-2.0000 0 
 -new feature  
-4.0000 0 
-4.0000 0 
 new feature  

0 0 
0 2.0000 

-2.0000 0 
0 0 
0 0 
0 0 
0 0 

-4.0000 2.0000 
 new feature  

0 6.0000 
0 2.0000 
 new feature  

0 0 
6.0000 -2.0000 
 new feature  
 new feature  

0 0 
0 0 

for the abbreviations see page 46 

Fig.22: Comparison between the results for fm=2' and 'm=4' 
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polydat_3 
group #1 & m=5 'm=4' MINUS 'm=5' 

ft#     w_dcp    w_non % % 

1.0000 24.0000 18.0000   *   0 0 
3.0000 32.0000 20.0000   *   0 0 
4.0000 24.0000 36.0000   *   -2.0000 0 
5.0000 30.0000 32.0000       0 0 
12.0000 40.0000 30.0000       0 0 
15.0000 24.0000 18.0000   *   0 0 
17.0000 32.0000 20.0000   *   0 0 
18.0000 24.0000 34.0000   *   -2.0000 2.0000 
19.0000 30.0000 32.0000       0 0 
22.0000 24.0000 28.0000   *   0 0 
29.0000 36.0000 18.0000   *   0 0 
30.0000 24.0000 20.0000   *   0 0 
31.0000 28.0000 32.0000        0 0 
33.0000 36.0000 32.0000       0 0 
36.0000 30.0000 16.0000   *   0 0 
37.0000 16.0000 26.0000   *   0 0 
38.0000 24.0000 28.0000   *   0 0 
39.0000 28.0000 26.0000       0 0 
40.0000 32.0000 30.0000       0 0 
50.0000 34.0000 34.0000       0 0 
52.0000 30.0000 40.0000       0 0 
68.0000 26.0000 36.0000       -2.0000 0 
70.0000 40.0000 40.0000       0 0 
82.0000 32.0000 40.0000       0 0 
141.0000 34.0000 34.0000        0 0 
155.0000 34.0000 34.0000        0 0 
176.0000 32.0000 36.0000       0 0 
177.0000 32.0000 32.0000       0 0 
197.0000 26.0000 34.0000       0 -2.0000 
200.0000 34.0000 26.0000       0 0       -—feature # 202 is missing— 
211.0000 26.0000 32.0000       0 0 
214.0000 34.0000 24.0000   *   -2.0000 2.0000 
216.0000 30.0000 28.0000       0 0 
235.0000 30.0000 38.0000       0 0 
395.0000 36.0000 34.0000       2.0000 -2.0000 

0 -2.0000 
0 0 
-2.0000 2.0000 
 new feature  
0 0 
0 -2.0000 
0 -2.0000 
-2.0000 2.0000 
0 0 
0 0 

for the abbreviations see page 46 

449.0000 32.0000 22.0000   * 
450.0000 24.0000 18.0000   * 
451.0000 26.0000 36.0000 
452.0000 10.0000 40.0000   * 
453.0000 36.0000 36.0000 
458.0000 32.0000 28.0000 
459.0000 40.0000 20.0000   * 
460.0000 28.0000 36.0000 
462.0000 28.0000 34.0000 
600.0000 36.0000 40.0000 

Fig.23: Comparison between the results for 'm=4' and 'm=5' 
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4.1.2. Searching for the best feature combination: 

4.1.2.1. Results of the conventional methods and general observations: 

As mentioned in chapter 3.1.3.2.1, we decided for three different strategies to find out the 

best feature combination that can represent the two sought clusters within the polygraph 

data. 

After a short while of a "trial-and-error" testing with the multi-dimensional clustering 

algorithm and achieving some experience about how well which features are in a 

combination with others, I decided to start a systematic searching process beginning with 

four-tuple combinations. In the followings, I will mention some of the general 

observations41 we made; 

• not always all of the good one-dimensional features were represented 

within the best feature combinations, 

• good one-dimensional features with the same detection rate did not 

provide the same results within coequal combinations, 

• some poor or average individual features turned out to be the best 

features in a combination with others, 

• by repeating some features in a combination, we obtained a few new 

good combinations, 

• good feature combinations always gave us better results than any of the 

features individually and 

• the quality of the feature tuple does not depend on the order of the 

features within the tuple. 

In the following tables, you see an example for using the random search method for 
polydat_3 ('m=2* and 'm=5') for four-tuple combinations. 

41See also chapter 4.3. 
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feature number = {1,4,3,9,22, 29,30,36,37,39,450,457,458,460] 
condition: iff ((nn>=80) & (ww>=80))   |   ((nn>=86) \ (ww>=86)) ) 

table 1 

feature positions 

5 1 
1 7 
4 8 
5 6 
8 3 
6 8 
4 1 
2 3 
1 8 
6 12 
8 1 
8 7 
1 8 
6 3 
2 6 
6 10 
1 3 
6 7 
2 6 
7 5 
5 8 
8 5 
3 8 
3 7 
8 7 
3 1 
5 4 

7 
3 
5 
8 
4 
13 
6 
6 
5 
13   8 
4     6 
6 
5 
7 
10    1 
2    7 

right detection 
non-ok   dcp-ok 

6     5 88 70 
3     1 88 72 
4     1 86 72 
1     4 86 78 
1     4 86 70 

13    3 86 72 
6   14 88 70 
4     2 86 78 
1     6 86 70 
6     5 88 70 
8     2 86 76 

feature positions        right detection 

6 
2 
8 

4 
4 
4 

10     8 
7     9 
8 1 
5 4 
1 7 
1 4 
2 12 
1 2 
8 1 
7 3 
4 1 
3 6 
8 1 
1 8 
8 4 
1 10 
1 6 
1 5 
3 8 
1 6 
5 1 
1 4 
2 5 
2 6 

8 5 
10 6 
1 5 
2 1 

3 1 
6 14 
2 8 
8 6 
8 10 
8 1 

4 
2 
4 
6 

8 
4 
2 
8 

1     4 88 70 
5   10 86 72 
2     4 86 76 
13    1 86 70 
2     6 86 68 
3     5 88 70 
8     3 86 72 
2     6 86 72 
3   14 88 70 
8     2 86 76 
6   10 86 68 
4     8 86 76 
10    1 86 68 

feature number = {1,4,3,8,9,18,22,29,30,36,37,39,81» 457} 
condition: if(((nn>=80)&(ww>=80))    |    ((nn>=86) & (ww>=78)) ) 

table 2 

feature positions right detection 
non-ok dcp-ok 

2     3 9 14 86 78 
3     5 2 9 86 78 
9     3 2 4 86 78 
9     1 4 5 86 78 
1     4 13 9 86 78 
9     4 3 2 86 78 
7     1 4 9 86 78 
5     7 9 1 86 78 
2     9 3 7 86 78 

feature positions right detection 
non-ok   dcp-ok 

7 
9 
1 
7 
7 
4 
1 
9 

1    13 
3 
9 
3 
9 
2 
7 
1 

13 
5 
2 
4 
3 
9 
13 

9 
2 
4 
9 
1 
9 
4 
5 

86 
86 
86 
86 
86 
86 
86 
86 

78 
78 
78 
78 
78 
78 
78 
78 

Fig. 24.1: Feature combinations by 'random search' - polydat_3, 'm-2' 
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feature number = {1,4,3,7,8,9, 22,30,36,37,81, 308,457,459} 
condition: iff ((nn>=80) & (ww>=80) )    \    ((nn>=86) & (ww>=78) ) ) 

table 3 

feature Dositions        rieht detection feature positions        rieht detection 
non-ok   dcp-ok non-ok dcp-ok 

8 7 6     1             86         78 1     8    10    3             82 80 

7 8 15             86         78 1     7     8   14             86 78 

3 2 8     6             86         78 6     7     18             86 78 

3 8 5     2             86         78 10    8     1     3             82 80 

1 3 10    8             82         80 5     3     2     8             86 78 

3 8 2     6             86         78 7     16     8             86 78 

3 2 13    8             86         78 6     2     8     3             86 78 

2 8 5     3             86         78 7     6     8     1             86 78 

1 6 5     8             86         78 8     5     3     2             86 78 

5 8 3     2             86         78 1     8     6    14            86 78 

1 8 13    5             86         78 3     5     8     2             86 78 

6 1 8     7             86         78 7     3     8     2             86 78 

2 5 8     3             86         78 8     5     2     3             86 78 

5 2 3     8             86         78 8     6     7     1             86 78 

3 8 6     2             86         78 8     15     7             86 78 

3 7 2     8             86         78 1     6    13    8             86 78 

2 8 5     3             86         78 7     3     8     2             86 78 

7 6 18             86         78 6     8     15             86 78 

3 5 2     8             86         78 5     18     7             86 78 

8 5 6     1             86         78 1     7    13    8             86 78 

7 2 3     8             86         78 18     5     6             86 78 

8 5 6     1             86         78 8     3     2     7             86 78 

7 8 2     3             86         78 6     2     8     3             86 78 

7 8 6     1             86         78 8     2     3     5             86 78 

8 1 7     6             86         78 6     8     2     3             86 78 

1 8 5     6             86         78 8     3     6     2             86 78 

1 7 6     8             86         78 2     8     3     5             86 78 

5 8 16             86         78 2     6     3     8             86 78 

6 1 5     8             86         78 5     8     17             86 78 

7 8 5     1             86         78 8     5    13    1             86 78 

8 7 2     3             86         78 1     3     8    10            82 80 

8 2 3     7             86         78 7     3     2     8             86 78 

6 5 18             86         78 3     2     5     8             86 78 

1 8 7     6             86         78 3    10    1     8             82 80 

6 7 8     1             86         78 8     3     1    10            82 80 

1 6 13    8             86         78 8     15     6             86 78 

6 8 13    1             86         78 3     2    13    8             86 78 

8 7 16             86         78 17     8     6             86 78 

5 1 7     8             86         78 3     2     5     8             86 78 

2 6 8     3             86         78 2     3     8     6             86 78 

3 2 8     7             86         78 5     8    13    1             86 78 

1 6 8     5             86         78 8     3    13    2             86 78 

2 5 8     3             86         78 8     3     5     2             86 78 

8 1 5     7             86         78 8     2     3     5             86 78 

2 5 3     8             86         78 6     8     2     3             86 78 

Fig. 24.1: Continued 
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feature number = {1,4,3,8,9,21» 22,30,35,36,81,198,457,459} 
condition: if( ( (nn>=80)&(ww>=80) )    \    ((nn>=86) & (ww>=78)) ) 

table 3 
feature positions        right detection 

non-ok   dcp-ok 

18     5     4             86         78 
7     1     8    14            86         78 
7     18     5             86         78 
4     2     8     3             86         78 
3     2     8     5             86         78 
8     14     7             86         78 
3     4     2     8             86         78 
8     2     3     7             86         78 
5     8    13    1             86         78 
1     4    13    8             86         78 

feature number = {1,4,3,8,9,22,30,35,51, 111, 210,455,457,459} 
condition: if( ( (nn>=80)&(ww>=80))    \    ((nn>=86) & (ww>=79)) ) 

table 4 
feature positions        rieht detection 

non-ok   dcp-ok 

7     5    10    6            80         80 
6     4     7    10            80         80 
7     4    10     5            80         80 

Fig. 24.1: Continued 

feature number = {1,3,4,8,9,22,30,37,81, 111, 452,450,459,460} 
condition: if( ((nn>=80) & (ww>^80)) \ ((nn>=86) & (ww>=79)) ) 

table 1 

feature positions        right detection feature positions        right detection 
non-ok   dcp-ok non-ok dcp-ok 

1    12    5     9             86         80 8     5     12             80 80 

5    10    2     8             80         80 8     5     2     1             80 80 

6    12    1     9             86         80 16     2     8             80 80 

19     7     5             86         80 10    6     2     8             80 80 

10    9     6     7             84         82 1     9     7    14            86 80 

7    10    9     6             84         82 19     8     2             80 80 

2     15     8             80         80 5    12    9     8             80 80 

10    8     7     6             80         82 3    10    8     1             80 80 

7     4     9     1             86         80 8    12    1     3             80 80 

18     2     4             80         80 14     8     2             80 80 

17     5     9             86         80 1    12    13   9             86 80 

8     3     1    10            80         80 10    8     2     9             80 80 

5     8     12             80         80 7    9     6     1             86 80 

8     2     4    10            80         80 9     5     7    10            84 82 

5    12    7     3             82         80 2     14     8             80 80 

Fig. 24.11: Feature combinations by 'random search' - polydat_3, 'm=5' 
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feature number = {1,4,8,9, 22,30,32,37,67,81,452,450, 459,457} 
condition: if( ((nn>=8JJ & (ww>=8JJ) I ((nn>=86) & (ww>=79) ) ) 

table 2 
feature positions rieht detection 

non-ok dcp-ok 

1     6 4 10 86 80 
6    4 1 10 86 80 
1    12 3 10 86 80 
1    12 13 14 86 80 
3    6 1 10 86 80 
6    10 5 1 86 80 
4     6 10 1 86 80 
10    3 1 6 86 80 
3    12 10 1 86 80 
1    12 10 5 86 80 

10   12 1 14 86 80 

Fig. 24.11: Continued 

After running similar simulations for different m's with randomly chosen features from the 

pool of the aforementioned five42 groups, I started a sequence of pseudo-exhaustive 

searches with those features from which we received good results by random search. 

For this sequence of simulations the parameter m was set equal to 5. We started with 

four-tuple combinations out of a pool of 14 features (4/14). We then gradually increased 

the number of the features - within the tuple and the pool - up to 8/22. To run the 

simulation with this final setting, we needed a computation time of several weeks. 

In the following figures, you see an example for one of the best 4-tuple results we 

obtained for the polydat_3: 

4*tuplecombination: 81 & 111 &450&45243. 

dimension: polygraph session. 
correct detection rate: 84% for non-deceptive and 86% for deceptive files. 

dimension: polygraph examination44 - containing 1 to 4 sessions. 
correct detection rate: 89% for non-deceptive and 94% for deceptive files. 

dimension: polygraph examinations with more than two sessions. 
detection rate: 100%. 

42See Fig. 8 for four of them and page 25 for the additional fifth one. 
43For information about the exact meaning of these feature numbers, see Fig.41. 
44See "Evaluation strategy" in chapter 3.1.3.4. 
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Uik    defuzzification per 
session     test 

0.2727 
0.4680 
0.4404 

0.5774 
0.3208 
0.4075 

0 
0 
0 
 0 

1.0000 
0 
0 

0.6157 
0.5416 

1.0000 
1.0000 

0.4095 0 
0.4480 0 
0.4862        0 

0.4722 
0.4755 
0.5046 

0 
0 

1.0000 

0.4387 
0.4459 
0.4346 

0 
0 
0 

0.4005 

0.4351 
0.4251 
0.3723 

0 
0 
0 

0.4505 
0.4414 
0.3218 

0 
0 
0 

misclustered 

0.4428 0 
0.4474 0 
0.5997 1.0000 

0.3764 0 
0.3709 0 
0.3383 0 

0.4668 0 
0.4843 0 
0.4515 0 

0.3964 0 
0.5232 1.0000 
0.4085 0 

0.3915 0 
0.4425 0 
0.3860 0 

0.4200 0 
0.4443 0 
0.4315 0 

0.4974 0 
0.3980 0 
0.3964 0 

0.5863 1.0000 

0.3786 0 
0.5783 1.0000 
0.4377 0 
0.3527 0 

misclustered 

non-deceptive files 
polydat_3 

WJ=5 

Fig.25: Defuzzified results for 
[81-111-450-452] feature combination 
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Uik defuzzification per 
session  test 

0.6374 1.0000 
0.5389 1.0000 
0.5094 1.0000 

0.5696 1.0000 
0.4185   0 
0.5057 1.0000 

0.5508 
0.5237 

1.0000 
1.0000 

0.5533 1.0000 
0.5878 1.0000 
0.5941 1.0000 

0.4533   0 
0.5383 1.0000 
0.5316 1.0000 

0.5452 1.0000 
0.5266 1.0000 
0.3128   0 

0.5068 1.0000 
0.5735 1.0000 
0.6276 1.0000 

0.5504 1.0000 
0.5706 1.0000 
0.5542 1.0000 

0.5555 1.0000 
0.5692 1.0000 
0.5650 1.0000 

0.4418   0 
0.6468 1.0000 
0.5009 1.0000 

0.5593 1.0000 
0.5596 1.0000 
0.4109   0 

0.6002 1.0000 
0.5550 1.0000 
0.5148 1.0000 

0.5964 1.0000 
0.6112 1.0000 
0.6224 1.0000 

0.7130 1.0000 
0.5834 1.0000 
0.5844 1.0000 

0.5472 1.0000 
0.5758 1.0000 
0.5924 1.0000 

0.5879 1.0000 
0.6284 1.0000 
0.6078 1.0000 

0.3902   0 
0.5399 1.0000 
0.4636   0 

Fig.25: Continued 

misclustered 
deceptive files 

polydat_3 
m-5 
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4.1.2.2. Results of the genetic method: 

Simultaneously to the aforementioned sequence of searches, I started with a compromise 

between the random and the pseudo-exhaustive search method; i.e. the genetic alternative. 

I decided to use this method in two different ways: 

1. In order to increase the number of potentially good features in the pool, I 

initialized the genetic code with up to 50 features from which (in different 

simulations) 4-, 6-, 8-tuple combinations were made. 

2. In order to accelerate the search, but process the data more exhaustively, 

I decided to use the genetic code only for the best features from random 

and pseudo-exhaustive simulations and narrow the feature pool to these 

30 selected features. In this simulation, 15-tuple combinations were made. 

Recall that having 30 or 50 features in the pool makes a big computation difference. For 

example, choosing exhaustively 8-tuples out of 50 or 30 features makes a difference of 

following number of computations: 

fS0\   f30 

K*J v«y 

50! 30!      «5.10* 
81(50-8)1    8 !(30-8)! 

In the first part of the genetic search - as expected - we had similar problems as scientists 

have with the theory of evolution as the cause of our being45. The only way we could get 

the following good results was the continuous manipulating of the evolution process - by 

changing parameters (like mutation rate), features (=genes) and feature numbers 

(=population size and also number of genes in one chromosome), or by starting again if 

the simulation began with a very low detection rate (=average fitness). In spite of these 

manipulations the first version of the genetic search took a simulation time of over two 

months of continuous computation. Without the constant controlling process over this 

genetic system the evolution (by chance as it is its nature) could have hardly provided any 

appropriate improvement46. As a result we obtained 12 (see Fig.26) 8-tuples combination 

45Further discussion about "evolution vs. creation" would break up the limitations of this project; For 
interested readers I recommend the following references: [Morrisl987] [Johnsonl991]. 
^For example, one of the uncontrolled simulation for polydat_l was stopped after 561 generations 
providing no particular results. 
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with an average of 85% correct detection rate for polydat_3 similar to the results of the 4- 

tuple combination mentioned in chapter 4.1.2.1. We also obtained 3 outstanding (86% 
correct detection rate) individuals within three different generations (population size of 

200 to 300, total number of generation 1000, polydat_3). 

feature numbers of the best 
8-tuple combinations 

8,30,81,81,111,363,458,482 

9,37,81,111,111,449,458,460 

9,37,111,111,449,457,457,482 

9,37,111,111,358,449,457,458 

9,37,111,111,235,449,457,460 

37 , 79 , 111 , 111, 197 , 358 , 449 , 457 

37 , 111, 111 , 197 , 449 , 457 , 460 , 460 

37,111,111,111,235,358,457,458 

37 , 111 , 111, 235 , 235 , 449 , 453 , 457 

37,111,111,197,358,361,458,460 

37,81,111,235,235,363,450,453 

37,81,111,235,235,359,450,453 

37, 79 , 111, 111, 197 , 235 , 449 , 457 

37,111,111,235,235,453,457,460 

37 , 111, 111, 197 , 235 ,452 , 457 , 460 

correct detection rate 
ndcp dcp 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

84 86 

86 84 

86 84 

86 86 

86 86 

86 86 

ndcp: non-deceptive files 

dcp: deceptive files 

data: polydatS 

Fig.26: Results of the first version of the genetic search 

Concerning the defuzzified results, all the combinations with 85% correct detection rate 

show similar structure as depicted in Fig.25. The three best 8-tuple combinations (86% 
correct detection rate) cluster the data exactly in the same groups as shown in the 

following figure. 
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Uik    defuzzification per 
session     test 

0.4143 
0.4780 
0.4583 

0 
0 
0 

0.5269 
0.4035 
0.4035 

1.0000 
0 
0 

0.5601 
0.5412 

1.0000 
1.0000 

0.4391 
0.4465 
0.4833 

0 
0 
0 

0.4401 
0.4392 
0.4481 

0 
0 
0 

0.4114 

0.4405 
0.4212 
0.4664 

0 
0 
0 

0.4523 0 
0.4488 0 
0.3645 0 

1 misclustered 

0.4669 0 
0.4679 0 
0.5058 1.0000 

0.4565 0 
0.4853 0 
0.5849 1.0000 

0.4441 0 
0.4471 0 
0.3506 0 

0.4983 0 
0.4872 0 
0.4938 0 

0.4008 0 
0.4962 0 
0.4058 0 

0.4268 
0.4740 
0.4050 

0 
0 
0 

0.4475 
0.4517 
0.4440 

0 
0 
0 

0.5692 1.0000 
0.4432   0 
0.4118   0 

0.4289 0 

0.4271   0 
0.5548 1.0000 
0.4696   0 
0.4135   0 

• 0 compare to Fig. 25 

non-deceptive files 
polydat_3 

m=5 

Fig.27: Defuzzified results for 
[37-111-111-197-235-452-457-460] feature combination 
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Uik    defuzzification per 
session     test 

0.5842 1.0000 
0.5511 1.0000 
0.5197    1.0000 

0.5665 1.0000 
0.5483 1.0000 
0.6586    1.0000 

0.5227 
0.5169 

1.0000 
1.0000 

0.4308 
0.4916 
0.4801 

0 
0 
0 

— 1 

0.5519 1.0000 
0.5727 1.0000 
0.5747 1.0000 

0.5411 1.0000 
0.5224 1.0000 
0.6020 1.0000 

0.5044 1.0000 
0.5686 1.0000 
0.5830 1.0000 

0.5488 1.0000 
0.5460 1.0000 
0.5413 1.0000 

misclustered 

0.5446 1.0000 
0.5495 1.0000 
0.5615    1.0000 

0.5345 1.0000 
0.5666 1.0000 
0.5370    1.0000 

0.5539 1.0000 
0.5565 1.0000 
0.4388        0 

0.5817 1.0000 
0.5042 1.0000 
0.4946        0 

0.5706 1.0000 
0.5990 1.0000 
0.6133    1.0000 

0.6386 1.0000 
0.5674 1.0000 
0.5576    1.0000 

0.5457 1.0000 
0.5646 1.0000 
0.5482    1.0000 

0.5096 1.0000 
0.5954 1.0000 
0.6347    1.0000 

0.4532 0 
0.4323 0 
0.5457    1.0000 

Fig.27: Continued 

1   compare to Fig. 25 

deceptive files 
polydat_3 

m=5 
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The followings are the clustering results of the best 8-tuple combinations for polydatj: 

dimension: polygraph session47. 
correct detection rate: 86% for both non-deceptive and deceptive files. 

dimension- polygraph examination - containing 1 to 4 sessions. 
correct detection rate: 94% for both non-deceptive and deceptive files. 

dimension: polygraph examinations with more than two sessions 

detection rate: 97%. 

In the second part of the genetic search as we fed the evolution process with the best 

features we obtained after about 3 weeks of continuous simulation the following results: 

twelve 15-tuple combinations: (the features in each tuple are ordered vertically) 

37 11      8 8 37 30 11 30 11 11 11 

HI n     11 37 81 32 30 32 30 30 30 

111 36 37 50 81 32 32 39 32 32 32 

197 36 111 79 81 32 39 81 39 39 39 

358 37 111 111 81 36 81 81 81 79 81 

358 37 197 111 197 37 81 81 81 81 81 

361 67 235 235 235 39 81 111 81 81 81 

361 81 358 235 358 50 111 197 111 81 111 

449 197 359 358 359 67 197 235 197 111 197 

457 235 359 452 450 79 235 235 235 197 235 

458 457 363 453 450 359 235 358 235 235 235 

458 458 363 478 453 449 358 358 358 235 358 

478 482 452 478 458 449 359 450 358 358 359 

478 482 478 478 478 478 450 478 450 359 450 

482 482 482 482 478 478 482 482 482 450 478 

correct detection rates (in %): 
84 84    84 84 84 84 84 84 84 84    84 :non-deceptive files 

86 86    86 86 86 86 86 86 86 86    86 :deceptive files 

polydat_3, m=5 

Fig.28: Results of the second version of the genetic search 

47See "Evaluation strategy" in chapter 3.1.3.4. 
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polydat_3, m=5. 

15-tuple combinations out of a pool of'30 features4*. 

Fig.29: Average fitness of each generation 
provided by the second version of the genetic search 

As you see in this figure, the average fitness (from all the chromosomes within a 

generation) increases over the period of time. It then approaches a local asymptote which 

represents a local error minimum. By increasing the mutation rate after the 150th 

generation, we could avoid being stuck in that local minimum for further development. 

This higher mutation rate helped the evolution process getting a 1% better average fitness 

per generation for the rest of the simulation. 

Our hope for this simulation was to get outstanding chromosomes with a very high fitness 

simultaneously to the increasing process of the average fitness per generation. However, 

the outstanding chromosomes appeared unsystematically in different generations and not 

at the end. In fact, most of them49 belong to the first part of this evolution. 

48See the begining of this chapter for more details. 
49See Fig.28 for the best feature combinations. 
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4.1.2.3. Final results ofFCM-A comparison between all threepolydatj's: 

All the aforementioned results belong to the data set polydatj, and all the three methods, 

(1) previous researches using the fuzzy K-nearest neighbor (KNN) classifier, (2) the LMS 

fuzzy adaptive filter and also (3) the fuzzy-c-means algorithm show that the data structure 

within the polydat_3 is better to cluster or classify than the other two sets. 

As it is the nature of a clustering versus a classifying method, I did not set the highest 

priority on finding the same best features for all three polydatj's, but for each of them 

individually. After finding those best combinations, I then compared the results and tested 

the consistency of the features (see Fig. 33, 34, 35). 

Using either sessions or examinations™ as the counting dimension the best results for each 

polydatj individually are shown in the following figures. 

data average correct detection rate 

polydat_l 81% 

polydat_2 79% 

polydat_3 86% 

Fig.30: Clustering results using individual features 
(using sessions as the counting dimension) 

data average correct detection rate 

polydat_l 91% 

polydat_2 82% 

polydat_3 94% 

Fig.31: Clustering results using individual features 
(using examinations as the counting dimension) 

50See "Evaluation strategy" in chapter 3.1.3.4. 
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data average correct detection rate 

polydatj 93% 
polydat_2 87% 
polydatj 97% 

Fig.32: Clustering results using individual features 
(counting only those examinations with more than two sessions) 

In the following figures, a comparison between the three polydatj's were made using the 

best feature combination for one of the polydatj's at a time and testing it for the other 
two ones. As you will see, the best result51 - while taking the same features for each 
polydatj - is 79.7% for the feature combination52 [9, 30, 81, 197, 478, 111], and in 

average 79.3%. 

polydat i 

tl i=2 i=l 

86% 77% 75% 

86% 11% 75% 

86% 11% 74% 

85% 79% 73% 

85% 79% 73% 

feature tuple 

37,79,111,111,197,235,449,457 
37,111,111,197,235,452,457,460 
37,111,111,235,235,453,457,460 

30,81,81,111,197,458 

9,30,81,111, 197,458 
8,37,50,79,111,111,235,235,... 
358,452,453,478,478,478,482 85% 76% 76% 

Fig.33: Comparison #1 (dimension: sessions) 
(taking some of the best polydatj feature tuples and testing it for the others) 

For the exact labels of this feature numbers see appendix, Fig.42. 

51 With polygraph sessions as the counting dimension. 
"See Fig.35, "Comparison #3". 
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polydat_i 

feature tuple Izl i=2 i=3 

9, 30, 30, 39, 235, 450 80% 75% 81% 

30, 30, 39, 50, 235, 450 80% 75% 81% 

30, 30, 39, 81, 235, 450 80% 75% 81% 

30, 30, 39, 197, 235, 450 81% 74% 82% 

30, 30, 39, 235, 363, 450 81% 75% 81% 

30, 30, 39, 235, 358, 450 80% 76% 81% 

30, 30, 39, 235, 450, 458 80% 75% 81% 

30, 30, 39, 235, 482, 450 80% 75% 81% 

30, 30, 39, 235, 361, 450 80% 75% 81% 

30, 30, 39, 235, 359, 450 80% 75% 81% 

30, 30, 39, 235, 450, 457 80% 75% 81% 

30, 39, 235, 363, 450, 482 80% 72% 83% 

30, 39, 235, 363, 450, 478 80% 71% 83% 

Fig.34: Comparison #2 (dimension: sessions) 
(taking some of the best polydatj feature tuples and testing it for the others) 
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feature tuple 

9,30,81,197,478,111 

9,30,50,81,197,111 

9,30,81,358,197,111 

9,30,81,359,197,111 

9,30,81,197,457,111 

30,81,105,111,197,358 

30,81,105,111,197,359 

30,81,105,111,197,457 

30,81, 105, 111,197,459 

30,81,111,197,358,359 

30,81, 111,197,358,456 

30,81,111,197,358,457 

30,81,111,197,358,459 

30,81, 111,197,359,456 

30,81,111,197,359,457 

30,81,111,197,359,459 

30,81, 111,197,456,457 

30,81,111,197,456,459 

30,81, 111, 197,457,459 

30,105,111,197,359,459 

30,105,111,197,456,459 

30,105,111,197,457,459 

30,105,111,197,456,457 

30,111,197,358,359,459 

30,111,197,358,456,459 

30,111,197,358,457,459 

30,111,197,456,457,459 

poIydat_i 

tl i=l i=3 

79% 75% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 84% 

79% 74% 84% 

79% 74% 85% 

79% 74% 84% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 85% 

79% 73% 85% 

79% 74% 85% 

79% 74% 85% 

79% 74% 84% 

79% 74% 84% 

79% 74% 85% 

78% 74% 85% 

78% 74% 85% 

78% 74% 85% 

78% 74% 85% 

78% 74% 85% 

Fig.35: Comparison #3 (dimension: sessions) 
(taking some of the best pofydat_2 feature tuples and testing it for the others) 
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4.2. LMS fuzzy adaptive filter 

The first test we did, was to find the performance of the filter before any training. That is, 

we used the classifier as a conventional fuzzy logic system designed solely based on the 

four linguistic rules mentioned above. The results are listed in the following table: 

polydat_i 

correct detection rate in 
average non-deceptive files deceptive files 

i=l 70% 72% 71% 

i=2 70% 76% 73% 

i=3 70% 88% 79% 

Fig.36: Results based solely on 4 aforementioned linguistic rules 
without any training 

Note that the percentage of correct recognition for non-deceptive subjects are the same 

for polydatj, polydat_2, and polydatj, because they are all the same data53. Also note 

that the results are best for polydatj, as it was for KNN and FCM. This may be partially 

due to polydat_3's good performance in general, independent of the classifying schemes. 

We believe that it may also be a result of us setting up the linguistic rules by having 

observed polydat_3. 

However, the outcomes for polydatj and polydatj are good enough such that one can 

be sure the linguistic rules are sufficiently general even for data that we did not examine. 

As mentioned in chapter 3.2.3, we then tested the fuzzy LMS algorithm trained with 

twenty training data (ten deceptive and ten non-deceptive) and again with seventy training 

data (thirty-five deceptive and thirty-five non-deceptive) for the three sets of data, for a 

total of six tests. Twenty trials were performed for each test, and the system was 

initialized with the linguistic rules before each trial. The training data were randomly 

chosen for each trial, and the rest of the available data in each set were for testing. 

53See polygraph files on chapter 6.2. 
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We computed the percentage of correct recognition of testing data for each trial, 

averaging the performance for deceptive and non-deceptive subjects. The recognition rate 

of those twenty trials are averaged, rounded to two digits, and reported in the following 

table. The sample standard deviations are also shown. 

correct detection rate 

polydat_i version #1 version #2 

i=l 75% (6%) 73% (2%) 

i=2 74% (7%) 73% (3%) 

i=3 78% (6%) 79% (2%) 

version #1: 70 training & 30 testing sessions 
version #2: 20 training & 80 testing sessions 

(standard deviation in parentheses) 

Fig.37: Average percentage of correct detection rate 
for twenty trials of each test 

As may be expected, the recognition rate improves in general when training data is used, 

as compared to the results of the untrained system. Also, the recognition rate is typically 

higher when the system is trained with more data. The difference, however, is not 

dramatic. The use of training data offers small incremental improvements. The one 

exception would be for data set polydatj. Here more training data seems to lower the 

performance. The effect is probably due to the fact that the initialization of the reasoning 

rules were based on our examination of polydatj, which covered all 100 data. Yet the 

training algorithm was to learn only a subset ofthat, so it was handicapped compared to 

human reasoning. 

Human reasoning may also be better in this case because the training algorithm only 

attempts to optimize the system in the least mean square sense, slightly different than our 

ultimate goal of maximizing recognition rate. At any rate, when the standard deviation is 

taken into account, the difference in recognition rate becomes insignificant. 

Another noticeable difference between the results using different amounts of training 

samples is the value of the sample standard deviation. A large number of testing data leads 
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to a small standard deviation. Conversely, a small amount of testing data leads to a large 

standard deviation. This confirms what we intuitively know; the average percentage of 

correct recognition is more accurate when a large amount of testing data is available. 

The above observations illustrate a practical issue in using many adaptive and learning 

algorithms, that of partitioning a limited amount of data into training and testing sets. For 

most algorithms, too much data in training and little in testing leaves little assurance about 

the performance of the system. On the other hand, too much data in testing and little in 

training assures mediocre performance from the system. 

More data for both training and testing would help, but many times that may not be 

available. Fuzzy logic systems mitigate this problem by exploiting linguistic information. 

Unlike neural networks and many statistical techniques, which are completely dependent 

on numerical data, this fuzzy LMS algorithm uses numerical data mainly to optimize a 

good fuzzy system. The above results show that, given good initialization of the reasoning 

rules, the system can perform well even with little or no training data. This robustness is 

one of the many advantages of fuzzy logic. 
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4.3. Other observations: 

During this project, aside from the results and conclusions we were looking for, we also 

obtained several side results. In this passage, I will mention some of the interesting 

observations we made. 

1. As mentioned before, the fuzzy-c-means (FCM) algorithm is initialized by random 

chosen membership values which will be modified and optimized during the iterative 

process. Thus, FCM algorithm is almost independent of the initial membership values. 

During our testing process, we noticed that the FCM algorithm is not absolutely 

independent of the initial values. Thus, it is possible that 

• the algorithm may run into different local minima or 

• because of its unsupervised nature, the algorithm may switch the clusters, 

i.e. if- depending on our interpretation - the first cluster represents the non- 

deceptive and the second one the deceptive files, it might be the opposite 

while using other initial random values. 

To avoid any misinterpretations, I decided to create two sets of random membership 

values (for c=2 and c=3) and save them as fixed initialization values for any further 

simulations. In the following figure,'+• represents the non-deceptive, '*' the decptive files; 

in a 
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Fig.38: Fixed initial random membership values for c=2 
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2. "Outlier effect": 
In the real world of using an automated polygraph system as suggested in this project, we 

have to keep in mind the existence of the outlier effect. This occurs, for instance, when a 

non-deceptive person (= membership value between zero and 0.5) becomes misclustered 

in a deceptive data space with a very high membership value close to one. In other words, 

if a normal non-deceptive person gets labeled as very deceptive, or vice-versa. 

We noticed this phenomenon in both clustering and classifying algorithms54. We also 

noticed that by making the system "fuzzier" - e.g. higher m or/and c for FCM - as 

expected, the outlier effect can be reduced, but not eliminated though. 

3. "Performance limitations": 

There seem to be a limit in recognition rate using the features available by both fuzzy 

algorithms used in this project and also by fuzzy k-nearest neighbor algorithm used in 

previous works [Layeghi 1993,1] [Dastmalchil993] for all the available polydat_i's. There 

may also be psychophysiological limitation on the recognition rate. However, polydat_3 

provided, independent of all the three algorithms, the best results compared to the other 

two polydat_i's. 

54Seealso"£/w7ogwe". 
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4.3. A COMPARISON 

BETWEEN THE THREE FUZZY ALGORTHMS USED IN THIS 

AND THE PREVIOUS PROJECT 

(FUZZY-C-MEANS, LMS FUZZY ADAPTIVE FILTER AND FUZZY K-NEAREST NEIGHBOR) 

The fuzzy LMS system is unique in its application of linguistic knowledge. As mentioned 

earlier, the use of linguistic knowledge ensures the robustness of the fuzzy system. The 

use of linguistic information also ameliorates the problem of not having enough reliable 

numerical data. Unlike classification schemes such as the K-Nearest Neighbor, the fuzzy 

LMS algorithm is not entirely dependent on numerical data. 

When applied to pattern recognition, fuzzy logic systems can be set up to perform like 

KNN systems. In KNN systems, numerical data of known class patterns are set up to 

estimate the probability density distribution of the classes. The probabilities of new data 

points belonging to the different classes are then computed based on such distribution. 

Data points around known class samples are then classified into the same class with a 

higher probability. The fuzzy-KNN algorithm modifies the classical KNN algorithm by 

taking into account the distance between the data point and the known class patterns when 

estimating the probability. Conceptually this is similar to setting up clusters around all 

known class samples and calculating the degree of belonging of new data points in the 

different types of clusters. Other than the exact mathematical equations, that description 

fits a fuzzy adaptive system where each rule corresponds to a known class pattern and the 

size of the clusters is the same for all rules. 

However, fuzzy adaptive systems give up some of the nice theoretical understandings of 

the KNN systems but gain some practical advantages. The number of rules required are 

usually much smaller than the number of known samples. Fuzzy logic can usually exploit 

that to reduce system complexity. 

Furthermore, the system complexity for a fuzzy adaptive system stays the same even as 

new information are available. This is partly a result of the way this algorithm adapt 

continuously; new information are learned as old ones are forgotten. The fuzzy LMS 

learning technique is like backpropagation, a popular neural network training technique. 

However, the fuzzy LMS learning algorithm requires few epochs for training. In all our 
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trials the maximum recognition rates for testing data peaked in less than thirty epochs. 

About 95% of them peaked in less than twenty epochs55. This is a few orders of 

magnitude less than most applications of backpropagation. In many cases the peaks 

occurred before any training; that is, the system uses only linguistic rules. Here the use of 

expert knowledge speeds up the training of the system. 

The fuzzy-c-means algorithm, unlike fuzzy LMS, is an unsupervised clustering algorithm. 

Given a set of data, FCM looks for a (usually) predetermined number of clusters within 

the data points. It does not use any knowledge about the correct, or desired classification 

of any of the elements. The algorithm only minimizes an objective function, which is the 

sum of a function of the data points' membership values and the distances between the 

data points and the clusters' centers. 

FCM operates like a black box; given some data, the algorithm automatically computes 

the results56. This presents the advantage that different sets of data using different features 

can be tested in a routine manner. FCM also presents a way to normalize the different 

dimensions of the data, just like the use of sigma in the fuzzy LMS algorithm. However, 

unlike fuzzy LMS, FCM does not present a method to find the optimal way for such 

normalization. 

The fuzzy LMS algorithm, however, does pose some potential problems of its own. The 

use of expert knowledge, while a benefit in some senses, may not be always 

straightforward. For example, in our project we did not have any specific knowledge 

about the polygraphy itself. Whatever we learned, we learned by looking at numerical 

data. As we tried to find more complicated patterns, patterns involving three, four, or 

more features, the analysis became more difficult. Naturally one wishes to automate this 

process. If we do not rely on some learning procedures, however, rules cannot be 

automatically found for the fuzzy system. Much research also needs to be done to 

understand the fuzzy LMS algorithm's learning dynamics. While the same method, 

gradient descent, is used on both backpropagation and the fuzzy LMS algorithm, the 

general shapes of the error surface between the two are different. In backpropagation, all 

the parameters have the same range and lie in an uniform neural network structure. In the 

fuzzy LMS algorithm, the parameters can have different ranges and lie a fuzzy logic 

55Ho\vever, we ran every trial to forty epochs to ensure that there is no "false" peak. 
560ur job is basically to adjust the parameters. 
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structure that is not completely uniform. The effects of such differences on the shape of 

the error surface and the learning dynamic are unknown. 

In the following, I will mention again some of the results we obtained by using different 

fuzzy clustering or classifying algorithms. Recall that also the searching strategies to find 

the best features -and feature combinations- were different for each of the aforementioned 

algorithms57. 

fuzzy-c-means58 

fuzzy-c-means59 

fuzzy K-nearest-neighbor 

LMS fuzzy adaptive filter 

fuzzy-c-means60 

po!ydat_i 

tl Izl 1^3 

91% 82% 94% 

93% 87% 97% 

86% 80% 91% 

81% 83% 83% 

81% 79% 86% 

The results are rounded. 

Fig.39: Comparison between different fuzzy algorithms 

used for polygraph classification in this and in the previous research 

The results of our fuzzy LMS system, while impressive for such a simple set-up, are not 

comparable to the results of the same project using other systems. We believe that the 

recognition rate will increase for few percentage points by using the suggestions in chapter 

5.1. 

"See the following chapters 3.1.3.1, 3.1.3.2.1 - 4 for the searching strategies used for the FCM, 
chapter 3.2.1 for the visual inspection used for the LMS system, 
and chapter III.3.3. in [Layeghil993,l] for the methods used for the KNN. 
58FCM using examinations as the counting dimension (see chapter 4.1.2.3. and Fig.31). 
59The same as above but counting those examinations with more than 2 sessions (see Fig.32). 
60Since we took 35 out of 50 available non-deceptive sessions for training the LMS filter, it would be 
meaningless to evaluate this algorithm by examinations as the counting dimension. Yet, in order to make 
it comparable to the other algorithms, the results of the FCM with sessions as the counting dimension are 
also shown. 
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§5. FUTURE STEPS AND SUGGESTIONS 

5.7. The algorithms: 

As mentioned earlier in chapter 2.2.3. about the fuzzy-c-means algorithm, the performance 

of this clustering model is influenced by the choice of various parameters. In this project, I 

tried to find the optimum values of the majority of them. However, there are several other 

points which should be studied more comprehensively: They are 

• the initial cluster centers, 

• the order in which the samples are taken as input, 

• the choice of distance measure, 

• the termination criteria and 

• the geometrical properties of the data. 

Most imprtantly, more information about the geometrical arrangement of the data points 

and the appropriate choice of the norm could help us improve the clustering algorithm. 

There are several suggestions in [Bezdekl981] [Bezdekl992] [IIScorpl993] for a better 

understanding of the algorithm's dynamics and for making systematic decisions concerning 

different types of distance norms and elliptical cluster shapes. 

For future studies, I highly recommend a deeper investigation of our clustering algorithm 

by setting c=3 and trying defuzzification thresholds other than 0.5. 

In this project, we decided to systematically test the FCM algorithm with different values 

of m to find its optimum. For additional (and more theoretical) investigations, I suggest 

[Choel992] as an introductory step. It may be also helpful to use different values of m for 

different sessions simultaneously, while looking for the most realistic clusters within the 

entire session space. 

An exciting additional investigation would be a new polydat made up of the best clustered 

sessions of our three polydatj's as a reference for any further clustering process. By doing 

this we could give the algorithm a better chance to cluster correctly even the critical 

sessions. 
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Concerning the LMS adaptive algorithm, one may investigate the effect of changing the 

learning factor; throughout our experiment it remained at 0.005. Upon observing the 

quickness of learning in our testing, we believe the learning factor can be decreased in the 

future. 

We also believe that there should not be just one but at least three different learning 

factors: one for the o*s, one for the 0's, and one for the x,'s; because these three types of 

parameters lie in a very irregular parameter space, unlike that of backpropagation where 

all parameters lie in a more or less uniform parameter space. 

For illustration, the three types of parameters comapred to one another have very different 

numerical ranges. Conceptually speaking, a parameter with a large range of movement 

should generally have a larger learning factor than one with a smaller range of movement. 

However, the gradient and the general shape of the error surface would also affect the 

value of the learning factors. It is possible that with a constant learning factor, a factor that 

is too large for one type of parameter - one that causes oscillation for that parameter - may 

be too small for another type of parameter and effects little change. That is, some 

parameters become more willing to adapt while others hesitate to change. 

Setting up separate learning factors for the different types of parameters should eliminate 

this problem. However, choosing a learning factor is still a complex trial-and-error task, 

and having more learning factors to deal with requires more sophisticated understanding 

of the learning dynamics we possess. Plots of the mean squared error of two sets of 

randomly chosen training data suggest that there are noticeable points where the rate of 

decrease dramatically changes (see the following figure). 
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Two cases of the mean squared error of training data as the system "learns. 

Fig.40: The influence of the learning factor 

More rules and features should be added to improve this LMS system. As the complexity 

of the system grows, however, the design will depend more on the learning algorithm than 

on heuristic knowledge. This requires much more understanding of the learning dynamics. 

Preliminary testing with three features and eight rules shows little improvement in 

recognition rate. Obviously many additional studies need to be done in this case. 

As mentioned in chapter "Setting Linguistic Rules", for future investigations one may also 

experiment with different decision thresholds for determining deception and nondeception. 

However, the benefit, if any, of this is not clear. One may also experiment with mapping 

the fuzzy output to a confidence value in addition to just a deception/nondeception 

decision. This may be more helpful in practical situations. One should also test the 
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algorithm with random initializations; that is, without using any expert knowledge. It 

would be interesting to compare the training time, performance, and robustness of that 

system to the present one. 

Fuzzy logic systems promote rapid development of robust, simple, and reliable systems. 

Our project validated that point. Some of the main problems with designing traditional 

fuzzy logic systems, however, are their dependence on heuristic information, their lack of 

design automation and their unproven ability to reach an optimal solution by linguistic 

rules alone. Our use of the LMS learning algorithm attempts to solve such problems. The 

learning algorithm did offer small, incremental improvements, but we believe that the 

learning algorithm has not yet been explored fully. A better understanding of the learning 

dynamics would offer more insight into improving the system. 

In future works, one may also consider other strategies which use irrelevant questions, 

(see Fig.7). These questions could be easily exploited for normalizing the data and making 

it independent of individual charateristics of the tested subjects. 

5.2. The polygraph examination: 

As expected61, and eventually proven62, our clustering system can provide an up to 12% 

more correct detection rate by using the dependency between the polygraph sessions. 

Therefore, I recommend recording at least three - ideally five - test sessions with different 

a order of questions per each examinations. Thus, in cases where some sessions within an 

examination are clustered incorrectly, the algorithm can easily ignore the minority and find 

the right cluster according to the correctly clustered majority. 

One may also consider other time frames, and emphasize those features which enabled us 

to cluster the data the best. It may also be helpful to mark the data of female and male 

subjects, or to consider them differently, since the ranges of the biophysical reactions are 

not in the same numerical spaces. 

Ultimately, an automated polygraph system which uses the aforementioned strategies to 

distinguish between truth and deception should have a built-in feature extraction tool 

which can directly feed the needed data to the algorithm. 

61See chapter 3.1.3.4. 
62See chapter 4.1.2.3. 
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Feat- 
ure 

Chan- 
nel 

Extraction Method Combination 
Method 

1 GSR mean ave(r) - ave(c) 
2 GSR mean ave(r) + ave(c) 
3 GSR mean maxfr) - max(c) 
4 GSR mean minfr) - min(c) 
5 GSR mean max(r) - min(c) 
6 GSR mean minfr) - max(c) 
7 GSR curve length maxfr) / max(c) 
8 GSR curve length ave(r) - ave(c) 
9 GSR curve length ave(r) + ave(c) 
10 GSR curve length max(r) - max(c) 
11 GSR curve length min(r) - min(c) 
12 GSR curve length max(r) - min(c) 
13 GSR curve length min(r) - max(c) 
14 GSR area max(r) / max(c) 
15 GSR area ave(r) - ave(c) 
16 GSR area ave(r) + ave(c) 
17 GSR area maxfr) - max(c) 
18 GSR area minfr) - minfc) 
19 GSR area maxfr) - minfc) 
20 GSR area minfr) - maxfc) 
21 GSR area maxfr) / maxfc) 
22 GSR median of the derivative avefr) - avefc) 
23 GSR median of the derivative avefr) + avefc) 
24 GSR median of the derivative maxfr) - maxfc) 
25 GSR median of the derivative minfr) - minfc) 
26 GSR median of the derivative maxfr) - minfc) 
27 GSR median of the derivative minfr) - maxfc) 
28 GSR median of the derivative maxfr) / maxfc) 
29 GSR min subtracted from the max avefr) - avefc) 
30 GSR min subtracted from the max avefr) + avefc) 
31 GSR min subtracted from the max max(r) - maxfc) 
32 GSR min subtracted from the max minfr) - minfc) 
33 GSR min subtracted from the max maxfr) - minfc) 
34 GSR min subtracted from the max minfr) - maxfc) 
35 GSR min subtracted from the max maxfr) / maxfc) 
36 GSR maximum of the signal avefr) - avefc) 
37 GSR maximum of the signal avefr) + avefc) 
38 GSR maximum of the signal maxfr) - maxfc) 
39 GSR maximum of the signal minfr) - minfc) 
40 GSR maximum of the signal maxfr) - minfc) 
41 GSR maximum of the signal minfr) - maxfc) 
42 GSR maximum of the signal maxfr) / maxfc) 
43 GSR minimum of the signal avefr) - avefc) 
44 GSR minimum of the signal avefr) + avefc) 
45 GSR minimum of the signal maxfr) - maxfc) 
46 GSR minimum of the signal minfr) - minfc) 
47 GSR minimum of the signal maxfr) - minfc) 
48 GSR minimum of the signal minfr) - maxfc) 
49 GSR minimum of the signal maxfr) / maxfc) 
50 GSR mean of derivative avefr) - avefc) 
51 GSR mean of derivative avefr) + avefc) 
52 GSR mean of derivative maxfr) - maxfc) 
53 GSR mean of derivative minfr) - minfc) 
54 GSR mean of derivative maxfr) - minfc) 
55 GSR mean of derivative minfr) - maxfc) 
56 GSR mean of derivative maxfr) / maxfc) 
57 HFEC mean avefr) - avefc) 
58 HFEC mean avefr) + avefc) 
59 HFEC mean maxfr) - maxfc) 
60 HFEC mean minfr) - minfc) 
61 HFEC mean maxfr) - minfc) 
62 HFEC mean minfr) - maxfc) 
63 HFEC mean maxfr) / maxfc) 
64 HFEC curve length avefr) - avefc) 
65 HFEC curve length avefr) + avefc) 
66 HFEC curve length maxfr) - maxfc) 
61 HFEC curve length minfr) - minfc) 
68 HFEC curve length maxfr) - minfc) 
69 HFEC curve length minfr) - maxfc) 
70 HFEC curve length maxfr) / maxfc) 

71 HFEC area avefr) - avefc) 
72 HFEC area avefr) + avefc) 
73 HFEC area maxfr) - maxfc) 
74 HFEC area minfr) - minfc) 
75 HFEC area maxfr) - minfc) 

76 HFEC area minfr) - maxfc) 
77 HFEC area maxfr) / maxfc) 
78 HFEC amplitude of the peaks avefr) - avefc) 

79 HFEC amplitude of the peaks avefr) + avefc) 

80 HFEC amplitude of the peaks maxfr) - maxfc) 

81 HFEC amplitude of the peaks minfr) - minfc) 

82 HFEC amplitude of the peaks maxfr) - minfc) 

83 HFEC amplitude of the peaks minfr) - maxfc) 
84 HFEC amplitude of the peaks maxfr) / maxfc) 

85 HFEC dampcard avefr) - avefc) 
86 HFEC dampcard avefr) + avefc) 
87 HFEC dampcard maxfr) - maxfc) 
88 HFEC dampcard minfr) - minfc) 
89 HFEC dampcard maxfr) - minfc) 
90 HFEC dampcard minfr) - maxfc) 
91 HFEC dampcard maxfr) / maxfc) 
92 HFEC number of peaks in cardio avefr) - avefc) 
93 HFEC number of peaks in cardio avefr) + avefc) 
94 HFEC number of peaks in cardio maxfr) - maxfc) 
95 HFEC number of peaks in cardio minfr) - minfc) 
96 HFEC number of peaks in cardio maxfr) - minfc) 
97 HFEC number of peaks in cardio minfr) - maxfc) 
98 HFEC number of peaks in cardio maxfr) / maxfc) 
99 HFEC median of the derivative avefr) - avefc) 
100 HFEC median of the derivative avefr) + avefc) 
101 HFEC median of the derivative maxfr) - maxfc) 
102 HFEC median of the derivative minfr) - minfc) 
103 HFEC median of the derivative maxfr) - minfc) 
104 HFEC median of the derivative minfr) - maxfc) 
105 HFEC median of the derivative maxfr) / maxfc) 
106 HFEC min subtracted from the max avefr) - avefc) 
107 HFEC min subtracted from the max avefr) + avefc) 
108 HFEC min subtracted from the max maxfr) - maxfc) 
109 HFEC min subtracted from the max minfr) - minfc) 
110 HFEC min subtracted from the max maxfr) - minfc) 
111 HFEC min subtracted from the max minfr) - maxfc) 
112 HFEC min subtracted from the max maxfr) / maxfc) 
113 HFEC maximum avefr) - avefc) 
114 HFEC maximum avefr) + avefc) 
115 HFEC maximum maxfr) - maxfc) 
116 HFEC maximum minfr) - minfc) 
117 HFEC maximum maxfr) - minfc) 
118 HFEC maximum minfr) - maxfc) 
119 HFEC maximum maxfr) / maxfc) 
120 HFEC minimum avefr) - avefc) 
121 HFEC minimum avefr) + avefc) 
122 HFEC minimum maxfr) - maxfc) 
123 HFEC rninimum minfr) - minfc) 
124 HFEC minimum maxfr) - minfc) 
125 HFEC minimum minfr) - maxfc) 
126 HFEC minimum maxfr) / maxfc) 
127 HFEC median of the derivative avefr) - avefc) 
128 HFEC median of the derivative avefr) + avefc) 
129 HFEC median of the derivative maxfr) - maxfc) 
130 HFEC median of the derivative minfr) - minfc) 
131 HFEC median of the derivative maxfr) - minfc) 
132 HFEC median of the derivative minfr) - maxfc) 
133 HFEC median of the derivative maxfr) / maxfc) 
134 HFEC minampc avefr) - avefc) 
135 HFEC minampc avefr) + avefc) 
136 HFEC minampc maxfr) - maxfc) 
137 HFEC minampc minfr) - minfc) 
138 HFEC minampc maxfr) - minfc) 
139 HFEC minampc minfr) - maxfc) 
140 HFEC minampc maxfr) / maxfc) 
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141 LC mean ave(r) - ave(c) 
142 LC mean ave(r) + ave(c) 
143 LC mean max(r) - max(c) 
144 LC mean min(r) - min(c) 
145 LC mean max(r) - min(c) 
146 LC mean min(r) - max(c) 
147 LC mean max(r) / max(c) 
148 LC curve length ave(r) - ave(c) 
149 LC curve length ave(r) + ave(c) 
150 LC curve length max(r) - max(c) 
151 LC curve length min(r) - min(c) 
152 LC curve length max(r) - min(c) 
153 LC curve length min(r) - max(c) 
154 LC curve length max(r) / max(c) 
155 LC area ave(r) - ave(c) 
156 LC area ave(r) + avefc) 
157 LC area maxfr) - max(c) 
158 LC area min(r) - min(c) 
159 LC area max(r) - min(c) 
160 LC area min(r) - max(c) 
161 LC area max(r) / max(c) 
162 LC median of the derivative ave(r) - ave(c) 
163 LC median of the derivative avefr) + ave(c) 
164 LC median of the derivative max(r) - max(c) 
165 LC median of the derivative min(r) - min(c) 
166 LC median of the derivative max(r) - minfc) 
167 LC median of the derivative min(r) - max(c) 
168 LC median of the derivative max(r) / max(c) 
169 LC min subtracted from the max ave(r) - ave(c) 
170 LC min subtracted from the max ave(r) + ave(c) 
171 LC min subtracted from the max max(r) - max(c) 
172 LC min subtracted from the max min(r) - minfc) 
173 LC min subtracted from the max maxfr) - min(c) 
174 LC min subtracted from the max min(r) - max(c) 
175 LC min subtracted from the max max(r) / maxfc) 
176 LC maximum ave(r) - avefc) 
177 LC maximum ave(r) + ave(c) 
178 LC maximum max(r) - max(c) 
179 LC maximum min(r) - min(c) 
180 LC maximum max(r) - min(c) 
181 LC maximum min(r) - max(c) 
182 LC maximum max(r) / max(c) 
183 LC minimum ave(r) - ave(c) 
184 LC minimum ave(r) + ave(c) 
185 LC minimum max(r) - max(c) 
186 LC minimum min(r) - min(c) 
187 LC minimum maxfr) - min(c) 
188 LC minimum min(r) - max(c) 
189 LC minimum maxfr) / max(c) 
190 LC median of the derivative ave(r) - ave(c) 
191 LC median of the derivative ave(r) + ave(c) 
192 LC median of the derivative max(r) - max(c) 
193 LC median of the derivative min(r) - minfc) 
194 LC median of the derivative maxfr) - minfc) 
195 LC median of the derivative minfr) - maxfc) 
196 LC median of the derivative maxfr) / maxfc) 
197 DLC mean avefr) - avefc) 
198 DLC mean avefr) + avefc) 
199 DLC mean maxfr) - maxfc) 
200 DLC mean minfr) - minfc) 
201 DLC mean maxfr) - minfc) 
202 DLC mean minfr) - maxfc) 
203 DLC mean maxfr) / maxfc) 
204 DLC curve length avefr) - avefc) 
205 DLC curve length avefr) + avefc) 
206 DLC curve length maxfr) - maxfc) 
207 DLC curve length minfr) - minfc) 
208 DLC curve length maxfr) - minfc) 
209 DLC curve length minfr) - maxfc) 
210 DLC curve length maxfr) / maxfc) 

211 DLC area avefr) - avefc) 
212 DLC area avefr) + avefc) 

213 DLC area maxfr) - maxfc) 

214 DLC area minfr) • minfc) 

215 DLC area maxfr) - minfc) 

216 DLC area minfr) - maxfc) 
217 DLC area maxfr) / maxfc) 
218 DLC median of the derivative avefr) - avefc) 
219 DLC median of the derivative avefr) + avefc) 
220 DLC median of the derivative maxfr) - maxfc) 

221 DLC median of the derivative minfr) - minfc) 

222 DLC median of the derivative maxfr) - minfc) 

223 DLC median of the derivative minfr) - maxfc) 

224 DLC median of the derivative maxfr) / maxfc) 

225 DLC min subtracted from the max avefr) - avefc) 
226 DLC min subtracted from the max avefr) + avefc) 
227 DLC min subtracted from the max maxfr) - maxfc) 
228 DLC min subtracted from the max minfr) - minfc) 
229 DLC min subtracted from the max maxfr) - minfc) 
230 DLC min subtracted from the max minfr) - maxfc) 
231 DLC min subtracted from the max maxfr) / maxfc) 
232 DLC maximum avefr) - avefc) 
233 DLC maximum avefr) + avefc) 
234 DLC maximum maxfr)-maxfc) 
235 DLC maximum minfr) - minfc) 
236 DLC maximum maxfr) - minfc) 
237 DLC maximum minfr) - maxfc) 
238 DLC maximum maxfr) / maxfc) 
239 DLC minimum avefr) - avefc) 
240 DLC minimum avefr) + avefc) 
241 DLC minimum maxfr) - maxfc) 
242 DLC minimum minfr) - minfc) 
243 DLC minimum maxfr) - minfc) 
244 DLC minimum minfr) - maxfc) 
245 DLC minimum maxfr) / maxfc) 
246 DLC mean of derivative avefr) - avefc) 
247 DLC mean of derivative avefr) + avefc) 
248 DLC mean of derivative maxfr) - maxfc) 
249 DLC mean of derivative minfr) - minfc) 
250 DLC mean of derivative maxfr) - minfc) 
251 DLC mean of derivative minfr) - maxfc) 
252 DLC mean of derivative maxfr) / maxfc) 
253 LR mean avefr) - avefc) 
254 LR mean avefr) + avefc) 
255 LR mean maxfr) - maxfc) 
256 LR mean minfr) - minfc) 
257 LR mean maxfr) - minfc) 
258 LR mean minfr) - maxfc) 
259 LR mean maxfr) /maxfc) 
260 LR curve length avefr) - avefc) 
261 LR curve length avefr) + avefc) 
262 LR curve length maxfr) - maxfc) 
263 LR curve length minfr) - minfc) 
264 LR curve length maxfr) - minfc) 
265 LR curve length minfr) - maxfc) 
266 LR curve length maxfr) / maxfc) 
267 LR area avefr) - avefc) 
268 LR area avefr) + avefc) 
269 LR area maxfr) - maxfc) 
270 LR area minfr) - minfc) 
271 LR area maxfr) - minfc) 
272 LR area minfr) - maxfc) 
273 LR area maxfr) / maxfc) 
274 LR amplitude of the peaks avefr) - avefc) 
275 LR amplitude of the peaks avefr) + ave(c) 
276 LR amplitude of the peaks maxfr) - maxfc) 
277 LR amplitude of the peaks minfr) - minfc) 
278 LR amplitude of the peaks maxfr) - minfc) 
279 LR amplitude of the peaks minfr) - maxfc) 
280 LR amplitude of the peaks maxfr) / maxfc) 
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281 LR number of the peaks ave(r) - ave(c) 

282 LR number of the peaks ave(r) + ave(c) 

283 LR number of the peaks maxfr) - max(c) 

284 LR number of the peaks min(r) - min(c) 

285 LR number of the peaks max(r) - min(c) 

286 LR number of the peaks min(r) - max(c) 
287 LR number of the peaks max(r)/max(c) 

288 LR inhal divided by exhal ave(r) - ave(c) 
289 LR inhal divided by exhal ave(r) + ave(c) 
290 LR inhal divided by exhal max(r) - max(c) 
291 LR inhal divided by exhal minfr) - minfc) 
292 LR inhal divided by exhal max(r) - minfc) 
293 LR inhal divided by exhal min(r) - max(c) 
294 LR inhal divided by exhal maxfr) / maxfc) 
295 LR dampr ave(r) - ave(c) 
296 LR dampr ave(r) + ave(c) 
297 LR dampr maxfr) - maxfc) 

298 LR dampr minfr) - minfc) 
299 LR dampr maxfr) - minfc) 

300 LR dampr minfr) - maxfc) 

301 LR dampr maxfr) / maxfc) 

302 LR ieie avefr) - avefc) 

303 LR ieie avefr) + avefc) 

304 LR ieie maxfr) - maxfc) 

305 LR ieie minfr) - minfc) 

306 LR ieie maxfr) - minfc) 
307 LR ieie minfr) - maxfc) 
308 LR ieie maxfr) / maxfc) 
309 LR median of the derivative avefr) - avefc) 
310 LR median of the derivative avefr) + avefc) 
311 LR median of the derivative maxfr) - maxfc) 
312 LR median of the derivative minfr) - minfc) 

313 LR median of the derivative maxfr) - minfc) 
314 LR median of the derivative minfr) - maxfc) 
315 LR median of the derivative maxfr)/maxfc) 

316 LR min subtracted from the max avefr) - avefc) 
317 LR min subtracted from the max avefr) + avefc) 

318 LR min subtracted from the max maxfr) - maxfc) 

319 LR min subtracted from the max minfr) - minfc) 

320 LR min subtracted from the max maxfr) - minfc) 

321 LR min subtracted from the max minfr) - maxfc) 

322 LR min subtracted from the max maxfr)/maxfc) 

323 LR maximum avefr) - avefc) 
324 LR maximum avefr) + avefc) 
325 LR maximum maxfr) - maxfc) 
326 LR maximum minfr) - minfc) 
327 LR maximum maxfr) - minfc) 
328 LR maximum minfr) - maxfc) 
329 LR maximum maxfr) / maxfc) 
330 LR minimum avefr) - avefc) 
331 LR minimum avefr) + avefc) 
332 LR minimum maxfr) - maxfc) 
333 LR minimum minfr) - minfc) 
334 LR minimum maxfr) - minfc) 

335 LR minimum minfr) - maxfc) 

336 LR minimum maxfr) / maxfc) 
337 LR mean of derivative avefr) - avefc) 
338 LR mean of derivative avefr) + avefc) 

339 LR mean of derivative maxfr) - maxfc) 
340 LR mean of derivative minfr) - minfc) 

341 LR mean of derivative maxfr) - minfc) 
342 LR mean of derivative minfr) - maxfc) 
343 LR mean of derivative maxfr) / maxfc) 
344 LR minampr avefr) - avefc) 
345 LR minampr avefr) + avefc) 
346 LR minampr maxfr) - maxfc) 
347 LR minampr minfr) - minfc) 

348 LR minampr maxfr) - minfc) 
349 LR minampr minfr) - maxfc) 
350 LR minampr maxfr) / maxfc) 

351 UR mean ave(r) - ave{c) 

352 UR mean ave(r) + avefc) 

353 UR mean max(r) - max(c) 

354 UR mean min(r) - minfc) 

355 UR mean maxfr) - minfc) 

356 UR mean minfr) - maxfc) 

357 UR mean maxfr) / maxfc) 

358 UR curve length avefr) - avefc) 

359 UR curve length avefr) + avefc) 

360 UR curve length maxfr) - maxfc) 

361 UR curve length minfr) - minfc) 

362 UR curve length maxfr) - minfc) 

363 UR curve length minfr) - maxfc) 

364 UR curve length maxfr) / maxfc) 

365 UR area avefr) - avefc) 

366 UR area avefr) + avefc) 
367 UR area maxfr) - maxfc) 

368 UR area minfr) - minfc) 

369 UR area maxfr) - minfc) 

370 UR area minfr) - maxfc) 

371 UR area maxfr) / maxfc) 

372 UR amplitude of the peaks avefr) - avefc) 

373 UR amplitude of the peaks avefr) + avefc) 

374 UR amplitude of the peaks maxfr) - maxfc) 

375 UR amplitude of the peaks minfr) - minfc) 

376 UR amplitude of the peaks maxfr) - minfc) 
377 UR amplitude of the peaks minfr) - maxfc) 

378 UR amplitude of the peaks maxfr) / maxfc) 
379 UR dampr avefr) - avefc) 

380 UR dampr avefr) + avefc) 
381 UR dampr maxfr) - maxfc) 
382 UR dampr minfr) - minfc) 

383 UR dampr maxfr) - minfc) 
384 UR dampr minfr) - maxfc) 

385 UR dampr maxfr) / maxfc) 

386 UR number of the peaks avefr) - avefc) 

387 UR number of the peaks avefr) + avefc) 

388 UR number of the peaks maxfr) - maxfc) 

389 UR number of the peaks minfr) - minfc) 

390 UR number of the peaks maxfr) - minfc) 

391 UR number of the peaks minfr) - maxfc) 

392 UR number of the peaks maxfr) / maxfc) 

393 UR inhal divided by exhal avefr) - avefc) 

394 UR inhal divided by exhal avefr) + avefc) 
395 UR inhal divided by exhal maxfr) - maxfc) 

396 UR inhal divided by exhal minfr) - minfc) 
397 UR inhal divided by exhal maxfr) - minfc) 

398 UR inhal divided by exhal minfr) - maxfc) 

399 UR inhal divided by exhal maxfr) / maxfc) 
400 UR ieie avefr) - avefc) 

401 UR ieie avefr) + avefc) 

402 UR ieie maxfr) - maxfc) 

403 UR ieie minfr) - minfc) 

404 UR ieie maxfr) - minfc) 

405 UR ieie minfr) - maxfc) 

406 UR ieie maxfr) / maxfc) 

407 UR median of the derivative avefr) - avefc) 

408 UR median of the derivative avefr) + avefc) 

409 UR median of the derivative maxfr) - maxfc) 

410 UR median of the derivative minfr) - minfc) 
411 UR median of the derivative maxfr) - minfc) 

412 UR median of the derivative minfr) - maxfc) 
413 UR median of the derivative maxfr) / maxfc) 
414 UR min subtracted from the max avefr) - avefc) 
415 UR min subtracted from the max avefr) + avefc) 
416 UR min subtracted from the max maxfr) - maxfc) 
417 UR min subtracted from the max minfr) - minfc) 
418 UR min subtracted from the max maxfr) - minfc) 
419 UR min subtracted from the max minfr) - maxfc) 
420 UR min subtracted from the max maxfr) / maxfc) 
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421 UR maximum ave(r) - ave(c) 

422 UR maximum ave(r) + ave(c) 
423 UR maximum max(r) - max(c) 
424 UR maximum min(r) - minfc) 
425 UR maximum max(r) - min(c) 

426 UR maximum min(r) - max(c) 
427 UR maximum maxfr) / max(c) 
428 UR minimum ave(r) - ave{c) 
429 UR minimum ave(r) + ave(c) 
430 UR minimum max(r) - max(c) 
431 UR minimum min(r) - min(c) 

432 UR minimum max(r) - min(c) 
433 UR minimum min(r) - max(c) 
434 UR minimum max(r) / max(c) 
435 UR mean of derivative ave(r) - ave(c) 
436 UR mean of derivative ave(r) + ave(c) 
437 UR mean of derivative maxfr) - max(c) 
438 UR mean of derivative min(r) - min(c) 
439 UR mean of derivative max(r) - min(c) 
440 UR mean of derivative min(r) - max(c) 
441 UR mean of derivative maxfr) / max(c) 
442 UR minampr avefr) - ave(c) 

443 UR minampr ave(r) + avefc) 
444 UR minampr maxfr) - max(c) 
445 UR minampr minfr) - min(c) 
446 UR minampr maxfr) - minfc) 
447 UR minampr minfr) - maxfc) 
448 UR minampr maxfr) / maxfc) 
449 GSR standard deviation ave(r) - ave(c) 
450 GSR standard deviation avefr) + avefc) 
451 GSR standard deviation maxfr) - maxfc) 
452 GSR standard deviation minfr) - minfc) 
453 GSR standard deviation maxfr) - minfc) 
454 GSR standard deviation minfr) - maxfc) 
455 GSR standard deviation maxfr) / maxfc) 
456 HFEC standard deviation avefr) - avefc) 
457 HFEC standard deviation avefr) + avefc) 
458 HFEC standard deviation maxfr) - maxfc) 
459 HFEC standard deviation minfr) - minfc) 
460 HFEC standard deviation maxfr) - minfc) 
461 HFEC standard deviation minfr) - maxfc) 
462 HFEC standard deviation maxfr) / maxfc) 
463 LC standard deviation avefr) - avefc) 
464 LC standard deviation avefr) + avefc) 
465 LC standard deviation maxfr) - maxfc) 
466 LC standard deviation minfr) - minfc) 
467 LC standard deviation maxfr) - minfc) 
468 LC standard deviation minfr) - maxfc) 
469 LC standard deviation maxfr) / maxfc) 
470 DLC standard deviation avefr) - avefc) 
471 DLC standard deviation avefr) + avefc) 
472 DLC standard deviation maxfr) - maxfc) 
473 DLC standard deviation minfr) - minfc) 
474 DLC standard deviation maxfr) - minfc) 
475 DLC standard deviation minfr) - maxfc) 
476 DLC standard deviation maxfr) / maxfc) 
477 LR standard deviation avefr) - avefc) 
478 LR standard deviation avefr) + avefc) 
479 LR standard deviation maxfr) - maxfc) 
480 LR standard deviation minfr) - minfc) 
481 LR standard deviation maxfr) - minfc) 
482 LR standard deviation minfr) - maxfc) 
483 LR standard deviation maxfr) / maxfc) 
484 UR standard deviation ave(r) - avefc) 
485 UR standard deviation avefr) + avefc) 
486 UR standard deviation maxfr) - maxfc) 
487 UR standard deviation minfr) - minfc) 
488 UR standard deviation maxfr) - minfc) 
489 UR standard deviation minfr) - maxfc) 
490 UR standard deviation maxfr) / maxfc) 

491 HFEC coeff of ARmod avefr) - avefc) 

492 HFEC coefF of ARmod avefr) + avefc) 

493 HFEC coeff of ARmod maxfr) - maxfc) 
494 HFEC coeff of ARmod minfr) - minfc) 

495 HFEC coeff of ARmod maxfr) - minfc) 
496 HFEC coeff of ARmod minfr) - maxfc) 
497 HFEC coeff of ARmod maxfr) / maxfc) 
498 HFEC coeff of ARmod avefr) - avefc) 
499 HFEC coeff of ARmod avefr) + avefc) 
500 HFEC coeff of ARmod maxfr) - maxfc) 

501 HFEC coeff of ARmod minfr) - minfc) 

502 HFEC coeff of ARmod maxfr) - minfc) 

503 HFEC coeff of ARmod minfr) - maxfc) 

504 HFEC coeff of ARmod maxfr) / maxfc) 
505 HFEC coeff of ARmod avefr) - avefc) 
506 HFEC coeff of ARmod avefr) + avefc) 
507 HFEC coeff of ARmod maxfr) - maxfc) 
508 HFEC coeff of ARmod minfr) - minfc) 
509 HFEC coeff of ARmod maxfr) - minfc) 
510 HFEC coeff of ARmod minfr) - maxfc) 
511 HFEC coeff of ARmod maxfr) / maxfc) 

512 HFEC coeff of ARmod avefr) - avefc) 

513 HFEC coeff of ARmod avefr) + avefc) 
514 HFEC coeff of ARmod maxfr) - maxfc) 
515 HFEC coeff of ARmod minfr) - minfc) 
516 HFEC coeff of ARmod maxfr) - minfc) 
517 HFEC coeff of ARmod minfr) - maxfc) 
518 HFEC coeff of ARmod max(Y) / maxfc) 
519 HFEC coeff of ARmod avefr) - avefc) 
520 HFEC coeff of ARmod ave(r) + ave(c) 
521 HFEC coeff of ARmod maxfr) - maxfc) 
522 HFEC coeff of ARmod minfr) - minfc) 
523 HFEC coeff of ARmod maxfr) • minfc) 
524 HFEC coeff of ARmod minfr) - maxfc) 
525 HFEC coeff of ARmod maxfr) / maxfc) 
526 HFEC coeff of ARmod avefr) - avefc) 
527 HFEC coeff of ARmod avefr) + avefc) 
528 HFEC coeff of ARmod maxfr) - maxfc) 
529 HFEC coeff of ARmod minfr) - minfc) 
530 HFEC coeff of ARmod maxfr) - minfc) 
531 HFEC coeff of ARmod minfr) - maxfc) 
532 HFEC coeff of ARmod maxfr) / maxfc) 
533 HFEC coeff of ARmod avefr) - avefc) 
534 HFEC coeff of ARmod avefr) + avefc) 
535 HFEC coeff of ARmod maxfr) - maxfc) 
536 HFEC coeff of ARmod minfr) - minfc) 
537 HFEC coeff of ARmod maxfr) - minfc) 
538 HFEC coeff of ARmod minfr) - maxfc) 
539 HFEC coeff of ARmod maxfr) / maxfc) 
540 HFEC coeff of ARmod avefr) - avefc) 
541 HFEC coeff of ARmod avefr) + avefc) 
542 HFEC coeff of ARmod maxfr)-maxfc) 
543 HFEC coeff of ARmod minfr) - minfc) 
544 HFEC coeff of ARmod maxfr) - minfc) 
545 HFEC coeff of ARmod minfr) - maxfc) 
546 HFEC coeff of ARmod maxfr) / maxfc) 
547 HFEC coeff of ARmod avefr) - avefc) 
548 HFEC coeff of ARmod avefr) + avefc) 
549 HFEC coeff of ARmod maxfr) - maxfc) 
550 HFEC coeff of ARmod minfr) - minfc) 
551 HFEC coeff of ARmod maxfr) - minfc) 
552 HFEC coeff of ARmod minfr) - maxfc) 
553 HFEC coeff of ARmod maxfr) / maxfc) 
554 HFEC coeff of ARmod avefr) - avefc) 
555 HFEC coeff of ARmod avefr) + avefc) 
556 HFEC coeff of ARmod maxfr) - maxfc) 
557 HFEC coeff of ARmod minfr) - minfc) 
558 HFEC coeff of ARmod maxfr) - minfc) 
559 HFEC coeff of ARmod minfr) - maxfc) 
560 HFEC coeff of ARmod maxfr) / maxfc) 

Fig.41: Continued 



561   ' HFEC fund fmax cross corr ave(r) • ave(c) 
562 HFEC fund fmax cross con- ave(r) + ave(c) 

563 HFEC fund finax cross corr maxfr) - max(c) 

564 HFEC fund frnax cross corr min(r) - min(c) 

565 HFEC fund fmax cross corr max(r) - min(c) 
567 HFEC fund fmax cross corr min(r) - max(c) 
568 LR fund fmax cross corr max(r)/max(c) 

569 LR fund fmax cross corr ave(r) - ave(c) 
570 LR fond fmax cross corr ave(r) + ave(c) 
571 LR fond fmax cross corr max(r) - max(c) 

572 LR fund fmax cross corr min(r) - min(c) 
573 LR fond fmax cross corr max(r) - min(c) 

574 LR fund finax cross corr min(r) - max(c) 

575 HFUR max cross correlation maxfr) / max(c) 

576 HFUR max cross correlation ave(r) - ave(c) 
577 HFUR max cross correlation ave(r) + ave(c) 

578 HFUR max cross correlation max(r) - max(c) 

579 HFUR max cross correlation min(r) - min(c) 

580 HFUR max cross correlation max(r) - min(c) 

581 HFUR max cross correlation min(r) - max(c) 

582 HFUR lag max cross correlation max(r) / max(c) 

583 HFUR lag max cross correlation ave(r) - ave(c) 

584 HFUR la^ max cross correlation ave(r) + ave(c) 

585 HFUR lag max cross correlation max(r) - max(c) 

586 HFUR lag max cross correlation minfr) - min(c) 
587 HFUR lag max cross correlation maxfr) - min(c) 
588 HFUR lag max cross correlation min(r) - max(c) 

589 HFUR min cross correlation maxfr) / maxfc) 

590 HFUR min cross correlation avefr) - avefc) 

591 HFUR min cross correlation avefr) + avefc) 
592 HFUR min cross correlation maxfr) - maxfc) 
593 HFUR min cross correlation minfr) - minfc) 
594 HFUR min cross correlation maxfr) - minfc) 
595 HFUR min cross correlation minfr) - maxfc) 
596 HFUR lag min cross correlation maxfr)/maxfc) 

597 HFUR lag min cross correlation avefr) - avefc) 

598 HFUR lag min cross correlation avefr) + avefc) 

599 HFUR lag min cross correlation maxfr) - maxfc) 

600 HFUR lag min cross correlation minfr) - minfc) 

601 HFUR lag min cross correlation maxfr) - minfc) 

602 HFUR lag min cross correlation minfr) - maxfc) 

603 HFEC spec HFEC fund freq maxfr) / maxfc) 

604 HFEC spec HFEC fund freq avefr) - avefc) 
605 HFEC spec HFEC fund freq avefr) + avefc) 
606 HFEC spec HFEC fund freq maxfr) - maxfc) 
607 HFEC spec HFEC fund freq minfr) - minfc) 
608 HFEC spec HFEC fund freq maxfr) - minfc) 
609 HFEC spec HFEC fund freq minfr) - maxfc) 

610 HFEC spec HFEC 2nd harmonic maxfr) / maxfc) 

611 HFEC spec HFEC 2nd harmonic avefr) - avefc) 

612 HFEC spec HFEC 2nd harmonic avefr) + avefc) 

613 HFEC spec HFEC 2nd harmonic maxfr) - maxfc) 

614 HFEC spec HFEC 2nd harmonic minfr) - minfc) 

615 HFEC spec HFEC 2nd harmonic maxfr) - minfc) 

616 HFEC spec HFEC 2nd harmonic minfr) - maxfc) 
617 UR spec UR fond frequency maxfr) / maxfc) 

618 UR spec UR fond frequency avefr) - avefc) 

619 UR spec UR fund frequency avefr) + avefc) 

620 UR spec UR fond frequency maxfr) - maxfc) 

621 UR spec UR fund frequency minfr) - minfc) 

622 UR spec UR fund frequency maxfr) - minfc) 
623 UR spec UR fund frequency minfr) - maxfc) 
624 UR spec UR 2nd harmonic maxfr) / maxfc) 

625 UR spec UR 2nd harmonic avefr) - avefc) 

626 UR spec UR 2nd harmonic avefr) + avefc) 
627 UR spec UR 2nd harmonic maxfr) - maxfc) 
628 UR spec UR 2nd harmonicö minfr) - minfc) 

629 UR spec UR 2nd harmonic maxfr) - minfc) 

630 UR spec UR 2nd harmonic minfr) - maxfc) 



631 HFUR max cross spec density max(r) / max(c) 
632 HFUR max cross spec density ave(r) - ave(c) 
633 HFUR max cross spec density ave(r) + ave(c) 
634 HFUR max cross spec density max(r) - max(c) 
635 HFUR max cross spec density min(r) - min(c) 
636 HFUR max cross spec density max(r) - min(c) 
637 HFUR max cross spec density min(r) - max(c) 
638 HFEC coherency HFEC&URff max(r) / max(c) 
639 HFEC coherency HFEC&URff avefr) - ave(c) 
640 HFEC coherency HFEC&URff ave(r) + ave(c) 
641 HFEC coherency HFEC&URff max(r) - max(c) 
642 HFEC coherency HFEC&URff minfr) - min(c) 
643 HFEC coherency HFEC&URff max(r) - min(c) 
644 HFEC coherency HFEC&URff minfr) - max(c) 
645 HFEC coherency HFEC&URsh max(r) / max(c) 
646 HFEC coherency HFEC&URsh ave(r) - ave(c) 
647 HFEC coherency HFEC&URsh ave(r) + ave(c) 
648 HFEC coherency HFEC&URsh max(r) - max(c) 
649 HFEC coherency HFEC&URsh minfr) - minfc) 
650 HFEC coherency HFEC&URsh max(r) - min(c) 
651 HFEC coherency HFEC&URsh min(r) - max(c) 
652 GSR max min ISD cont&relv mean(r & c) 
653 GSR max min ISD cont & relv max(r & c) 
654 GSR max min ISD cont&relv min(r & c) 
655 GSR freq max ISD meanfr & c) 
656 GSR freq max ISD max(r & c) 
657 GSR freq max ISD min(r & c) 
658 GSR area under ISD meanfr & c) 
659 GSR area under ISD maxfr & c) 
660 GSR area under ISD minfr & c) 
661 HFEC max min ISD meanfr & c) 
662 HFEC max min ISD maxfr & c) 
663 HFEC max min ISD minfr & c) 
664 HFEC freq max ISD meanfr & c) 
665 HFEC freq max ISD maxfr & c) 
666 HFEC freq max ISD minfr & c) 
667 HFEC area under ISD meanfr & c) 
668 HFEC area under ISD maxfr & c) 
669 HFEC area under ISD             (          min(r&c) 



Non-deceptive 
QQ8R9OIO.011 
QQ8R9OIO.021 
QQ8R9OIO.031 
QQ95LU1T.011 
QQ95LU1T.021 
QQ95LU1T.031 
QQAURNUS.021 
QQAURNUS.031 
QQ AV53P6.011 
QQAV53P6.021 
QQAV53P6.031 
QQBQ4SHI.011 
QQBQ4SHI.021 
QQBQ4SHI.031 
QQBSS7WT.011 
QQBSS7WT.021 
QQBSS7WT.031 
QQ7OXM60.021 
QQ7RH0RO.011 
QQ7RH0RO.021 
QQ7RH0RO.031 
QQ7R51P9.011 
QQ7R51P9.021 
QQ7R51P9.031 
QQ9TDSP3.011 
QQ9TDSP3.021 
QQ9TDSP3.031 
QQA8OWOI.011 
QQA8OWOI.021 
QQA8OWOI.031 
QQBT22O6.011 
QQBT22O6.021 
QQBT22O6.031 
QQBO9O_9.011 
QQBO9O_9.021 
QQBO9O_9.031 
QQBC7PP6.011 
QQBC7PP6.021 
QQBC7PP6.031 
QQCHCK_O.011 
QQCHCK_O.021 
QQCHCK_O.031 
QQCDTKP0.011 
QQCDTKPO.031 
QQCDTKP0.041 
QQCM5Y56.011 
QQCQQT8Y.011 
QQCQQT8Y.021 
QQCQQT8Y.031 
QQCQQT8Y.041 

Deceptive 1 
QQ4Q1O83.011 
QQ4Q1O83.021 
QQ4Q1O83.031 
QQ4Q3MDC.011 
QQ4Q3MDC.021 
QQ4Q3MDC.031 
QQ51DE36.011 
QQ51DE36.021 
QQ51DE36.041 
QQ6RQGH6.011 
QQ6RQGH6.021 
QQ6RQGH6.031 
QQ6RQGH6.041 
QQ6T711O.011 
QQ6T7110.021 
QQ6T7110.031 
QQ6Z59IG.011 
QQ6Z59IG.021 
QQ6Z59IG.031 
QQ7PP9B9.011 
QQ7PP9B9.021 
QQ7PP9B9.031 
QQ7PDU1X.011 
QQ7PDU1X.021 
QQ7PDU1X.031 
QQ7_PIPF.011 
QQ7_PIPF.021 
QQ7_PIPF.031 
QQ7_JT70.011 
QQ7_JT70.021 
QQ7_JT70.031 
QQ738DYX.011 
QQ738DYX.021 
QQ738DYX.031 
QQ75ULP9.011 
QQ75ULP9.021 
QQ75ULP9.031 
QQ79_EYF.011 
QQ79_EYF.021 
QQ79_EYF.031 
QQ7BGDML.011 
QQ7BGDML.021 
QQ7BGDML.031 
QQ7ETC8I.011 
QQ7ETC8I.021 
QQ7ETC8I.031 
QQ7JAQCS.011 
QQ7JAQCS.021 
QQ7JAQCS.031 
QQ7LX5Q0.011 

Deceptive 2 
QQ7LX5Q0.021 
QQ7LX5Q0.031 
QQ7MN2Y0.011 
QQ7MN2Y0.021 
QQ7MN2Y0.031 
QQ7TC5UF.011 
QQ7TC5UF.021 
QQ7TC5UF.031 
QQ7TQVER011 
QQ7TQVER.021 
QQ7TQVER031 
QQ7TVADC.011 
QQ7TVADC.021 
QQ7TVADC.031 
QQ7U2T4R011 
QQ7U2T4R021 
QQ7U2T4R.031 
QQ7YP7QU.011 
QQ7YP7QU.021 
QQ7YP7QU.031 
QQ7YZOJ3.011 
QQ7YZOJ3.021 
QQ7YZOJ3.031 
QQ8_0DPT.011 
QQ8_0DPT.021 
QQ8_0DPT.031 
QQ8_0DPT.041 
QQ8_2UQ9.011 
QQ8_2UQ9.021 
QQ8_2UQ9.031 
QQ800IG6.011 
QQ800IG6.021 
QQ800IG6.031 
QQ82ORJ9.011 
QQ82ORJ9.021 
QQ82ORJ9.031 
QQ82SUTX.011 
QQ82SUTX.021 
QQ82SUTX.031 
QQ860ZNU.011 
QQ860ZNU.021 
QQ860ZNU.031 
QQ89U_ZR011 
QQ89U_ZR021 
QQ89U_ZR031 
QQ8ATU26.011 
QQ8ATU26.021 
QQ8ATU26.031 
QQ8FGMVI.011 
QQ8FGMVI.021 

Deceptive 3  
QQ8RAJ0C.011 
QQ8RAJ0C.021 
QQ8RAJ0C.031 
QQ9EUKVT.011 
QQ9EUKVT.021 
QQ9EUKVT.031 
QQ9IOOXO.021 
QQ9IOOXO.041 
QQ9SOW8L.011 
QQ9SOW8L.021 
QQ9SOW8L.031 
QQ9SQIK9.011 
QQ9SQIK9.021 
QQ9SQIK9.031 
QQ9W0B9F.011 
QQ9W0B9F.031 
QQ9W0B9F.041 
QQ9U4FMU.011 
QQ9U4FMU.021 
QQ9U4FMU.031 
QQ9Y_SVF.011 
QQ9Y_SVF.021 
QQ9Y_SVF.031 
QQ9YH3QF.011 
QQ9YH3QF.021 
QQ9YH3QF.031 
QQA2TT4C.011 
QQA2TT4C.021 
QQA2TT4C.031 
QQA3HIRX.011 
QQA3HIRX.021 
QQA3HIRX.031 
QQA32UTF.011 
QQA32UTF.021 
QQA32UTF.031 
QQA6U_IF.011 
QQ A6UJF.031 
QQA6U_IF.041 
QQAM4E3L.011 
QQAM4E3L.021 
QQ AM4E3L.031 
QQARF2_X.011 
QQARF2_X.021 
QQARF2_X.031 
QQAWA38X.011 
QQAWA38X.021 
QQAWA38X.031 
QQAYXZGU.011 
QQAYXZGU.021 
QQAYXZGU.031 

Fig.42: List of polygraph files used in this experiment 
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6.3. USER INTERFACE 

For an automated polygraph system as a real product, the existence of an user-friendly 

interface is unavoidable. MATLAB software environment provide an easy-to-use toolbox 

for creating various kinds of interactive interface classes. The following figure shows an 

interface used in one of my representations. This was made for a technically oriented user 

who is familiar with the algorithm. A simpler black-box version of a polygraph system, 

appropriate to the user's requests, can likewise be programmed. 

agBBjgBjBBBj 
BfWffmfWfrm 

F«Z2Y C U&MS ,-V 
WTTH EVALUATION :; av;v,v.vww.v.v.w 

INITIAL TEST 
*MIHI 111 III! IIIIII Mill 111IIII111,1)»»» .    , 

BOTH >6U& 
•iTriwtiiiiiii^TTirnitWnTi^rTTri'T^^^'''; 

Fig.43: An example for a technical user interface 
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6.4. PROGRAM LISTINGS 
(Implementation in MATLAB) 
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% THIS PROGRAM CALCULATESTHE CLUSTER CENTERS FOR 
•/. A MULTIDIMENSIONAL FCM - C-2, CONST. 

function V - c_center(X, U, m) 

[colE,rowE] = size(X); 
k=liowE; 

»4for the lth class: 

Vljvumerator-UOJO^m • XCk)1; 
% ^»y=>C). because the "numerator sum" is automatically 
% included within the matrix mvhiplication. 

V(l,:)" VI .numerator / sum( U(l,k)/Tn ); 
% V(l,:) (and Vl_numerator] is a n-dimensiona! row-vector, 
% n represents the number of the clustering features(n=30). 

%for the 2nd class: 

V2_numerator-U(2»/m * XCk)1; 
•/. (."y=H'): •••«« above. 

V(2,:) » V2_numerator / sum( U(2,k) An); 
% This is a n-dimensional row-vector and the duster-center 
% of the 2nd class. 

V=V; 
return; 

% [nxc] matrix 

% FUZZY C-MEANS ALGORITHM FOR MULTI-DIMENSIONAL FCM. 

•/.function bestjjik » fc_means(m, epsiloiOO 
function [bestjjik, z] - fc_means(m, epsiloiOC) 
•/.function bestjjik = fc__means(m, epsilon) 
•/»function [bestjjik, V, X] = fc_means(m, epsilon) 
•/. think about the X 

loadinitji; 

•/.loadinit v, 

%loadset31; 
%X=featmat; 
•/.load seOme;X=Xselect; 

^format long; 
J_m= 100000000; 
z=0; 
whue J_m > epsilon 

'A start with the initialization of the membjct 
•/.(Uik=>Vi) 

% or with the cluster centers 
•/.(Vi=>Uik) 

V> including the data X respect XI, X2,... 

% avoid errors by visual comparing the numbers 
% to make sure the start is o.k. 

V = c_center(X,U,m); 

U = memb_fct(X,V,m), 

Jtemp = J_m; 
J_m - j_mdim(X, V, U, m); 

if epsilon <■= 0.000005 
if (abslTm - Jtemp) <= .00000000001), 
*/4ifJ m — Jtemp, % to terminate the loop by reaching 

% the minimum of J_m. 
break, 

end 
else 

if(abs(J m-Jtemp) <« .0001»—oJx. 
WfJ m — Jtemp, H to terminate the loop by reaching 

% the minimum of J_m. 
break, 

end 

end 

% t«abs(U-temp); % tolerance value for the iteration 

z-z+1; 
ifremfelO)—0 
rprmtfC.W); 

else 
rbrinttf. 0; 

end 
end 

rprmtfiAnO;rprintfC_ 

bestUk-U; 

>■); 
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%Vnew-V; 

V. recall the extrem values: J_m =7.23O8e+0O3 

return; 

% THIS PROGRAM CALCULATES THE OBJECTIVE FUNCTION 
% FOR THE MULTIDIMENSIONAL FCM. 

function J_m - j_mdim(X, V, U, m) 

[colE,rowE] = size(X); 
k=liowE; 

%for the lft class: 
VlasMatrix - V(:,l)'ones(UowE); «to avoid time-crunching fa-loops 

tempi - (XT*) - VlasMatrix y • (Xfck) • VlasMatrix); * trick matrix-operation is faster.rhe sought norm is 
% automatically the diagonal of tempi; 

tonpll«( (U(l,:)."m) ■* (diagCtempiy) ); 

Joutl = sum(templ 1); 

Wor the 2nd class: , 
V2asMabix = V(: J)'ones(UowE); *<° »v°'d tune-crunching for-loops 

temp? = (XWO - V2asMatrix J " (X(:*) - V2asMatrix ); % see above 

temp22 = ( (uaO/Tn) .* (diagflemp?)') ); 

J_out2 - sum(temp22); 

I_m = J_outI + J_out2; 
return; 

% THIS PROGRAM CALCULATES THE MEMBERSHIP VALUES FOR 
%THE MULTIDIMENSIONAL FCM. 

function U = memb_fct(X, V, m) 

[coIE,rowE] = size(X); 
i=liowE; 

%for the 1th class: 

VlasMatrix - V(:,l)*ones(! jowE); 
"/. to avoid time-crunching for-loops 

tempi = ( X(:,k) - VlasMatrix)' •( X(:,k) - VlasMatrix); 
% trick: matrix-operation is faster;rhe sought norm is 
% automatically the diagonal of tempi; 

UjnimOJe) - (diag(templ)') .A (-l/(m-l)); 

•/.for the 2nd class: 

V2asMatrix = V(:,2)'ones(l ,rowE); 
% to avoid time-crunching for-loops 

temp2 = (X(:Jc) - V2asMatrix )' • ( Xfck) - V2asMatrix); 
•/. see above 

U_num(2J0 - (diag(temp2)') .A (-l/(m-l) ); 

U(i,:)-U_num(l,k) J ( U_num(l,k) + UmimOV) f, 
U(2,:) = Unum(2,k) J ( U_nani(lJc) + Unum(JJO ); 

•/• If Acre is a third class, • U_num(3,k)..." 
% must be also considered. 

return; 

% FAST MULTIDIMENSIONAL EVALUATING PROGRAM 
dearbestJJik; 

% without plots 

best_Uik = fc_means(5,0.0000005, Xselect); 

figure(l);clg;hold on; 
ss-l:100; 
plotCss.besLUikCl.O.'+^lotCss.besLUilcCJ,:),"«; 
V.plot(ss,best_Uik<3,:Vb') 
pause; 
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wrongjicps = 0; 
wrong_nons = 0; 
figure(2),clg;hold on; 
for 5=1:100 

ifbest_Uik(2,s)>=.5 
plot(s,best Uik(2,s),'"b'); 

ifs>50 
wTong_dcps=wrong_dcps+1; 
end 

else 
plot(s,best U0e(2,s),V); 

ifs<=50 
wrong_nons=wrong_nons+1; 
end 

end 
end 

»percent - wrong_dcps/50" 100; 
V«rprintfi>Tong_dcps, percenf) 
%[wrong_dcps, wpercenfj 
npercent - wrong_nons/50* 100; 
•/ifprintfCwrongjions, npercenf) 
%[wrong_nons, npercent] 

nn=<100-npercent); 
ww={100- wpercent); 

rprintflAn'J'.rprmtfCRJGHT DETECTIONS:1); 
rprmtfrVx^tfl^n^rprintiCnD^lust D_clusf); 

[nn ww], 

% USER INTERFACE 
% Program Bl. This program creates the start button. 

figure(l);clg; 
seBgcf,'colof,[l o 1]) 

buttonl °= uicontrol(gcf,... 
'styleVpush',... 
•posirion',[195 150 75 75],... 
'stringVSTART,... 
'ca]lback','bt_choic'); 

% USER INTERFACE 
^Program B2. This program displays choices to run the various programs. 

elf reset 
set(gcf,'color',[0 01]) 

titleCONE-DlMENSIONAL MULTI-DIMENSIONAL1) 

axis off 

frm2 = uicontroKgcf,... 
'styie'.texf,... 
■position',[25 40 155 200]); 

tt2 - uicontrottgcf,... 
'style'.texf,... 
'stringVFEATURE ELIMINATION',... 
•position',[25 215 15540]); 

fim4 = uicontrol(gcf,... 
'styieVframe',... 
■position',[25 270155 70]); 

tt4 - uicontrol(gcf,... 
'style'.texf,... 
'stringVFUZZY C MEANS WITH EVALUATION1,... 
Ipositjon'.ps 288 12545]); 

button3 - uk»ntrol(gcf,... 
'styleVpush',... 
■position',[38 275 125 25],... 
'stringVINITlAL TEST,... 
'callbackVmegaJsf); 

frrn * uicontroICgcf,... 
'style','frame',... 
■posiuon',[20540 95185]); 

tt-uicontroKgcf,... 
'style'.texf,... 
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•stringVPOLYGRAPH DATA',... 
■position',[207 165 85 40]); 

buttonB = uicontiol(gcC... 
'style'/push',... 
■position',[210 75 80 25],... 
'stringVDATA3',... 
'callbackVload fW); 

button 14 - uicontrol(gcC... 
'style'/push',... 
■position',121010580 25],... 
'stringVDATAr,... 
'callbacK/load ttxiy, 

buttonl5 = uicontrol(gct... 
'style'/push',... 
•position',1210 135 80 25],... 
'stringVDATA 1',... 
'caübackVload ttxl1); 

buttonl6 = uicontrol(gcC... 
'style'/push',... 
>3sition',[210 45 80 25],... 
'stringVCLEAR',... 
'caHbackVcleaiO; 

buttonl7 - uicontrol(gcC... 
'style'/push',... 
•position',[45 200125 25],... 
'stringVBOTH X0%',... 
'rallback'/megaj'); 

buttonlB * uicontiol(gcC... 
'style'/push',... 
■position',[45150l25 25],... 
'stringV>80% AND >50%',... 
'callback'/niegaji'); 

buttonl9 = uicontrol(gct... 
'style'/push',... 
■position',[45100125 25],.. 
'stringV>50% AND >80%',... 
'callback/mega ja*); 

button20 = uicontrol(gct... 
'style'/push',... 
■position',[45 50 125 25],... 
'sttwgVONE >98%',... 
'ca]lback'/mega_iv'), 

fim3 = uicontrolCgcC... 
'style'/frame',... 
■position',[320 40 165 185]); 

tt3 - uicontrol(gc£... 
'styleVtexf,... 
'stringVSEARCH FOR BEST COMBINATION',... 
■position',[350 150 120 65]); 

button21 =uicontTol(gct... 
'style'/push',... 
■poshion',1318 230192 25],... 
'stringVFEATURE COMBINATION-,... 
'callback'.'mitfasf); 

fim5 - uiconttoKgct... 
'styleVfiame',... 
■position',1318 260140 85]); 

tt5 ■ uicontroKgcE... 
'style'/texf,... 
'stringVFUZZY C MEANS WITHOUT EVALUATION',.. 
Vosition',[332 275115 65D; 

button4 - uicontroI(gct... 
'style'/push',... 
■position',[325 265i2525],... 
'string'/ALGORJTHM',... 
,caHbackVfc_nieans'); 

button22 - uicontrol(gcC... 
'style'/push',... 
■position',[337125100 25],... 
'strijlgVGENETIC',... 
'callbackVgenetic4'); 

button23 ■ uicontroKgcf;... 
'style'/push',... 
■position',[337 95 100 25],... 
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'stringVRANDOM',... 
'«dlbadCrandom1); 

button24 = uicontroKgct... 
'style'^wsh',... 
•position',[337 65 145 25],... 
'stringVPSEUDO-EXHAUSTIVE',. 
'aillba<4Vfeature4'); 

% THIS PROGRAM COMPARES RESULTS BY DIFFERENT SET-UPS 
% OF THE W. AN EXAMPLE: 

w_comp=zeros(l ,669); 
n_comp=zeros(l,669); 

indeHI3""7'9"29303133363738394050]1 

selindex=l:17, 

w_eamp(mdex) - sdw_percent(sdiidoö - w_pereentCmdex); 
iTcompCmdex) = sdn_percent(seliiideO - njercentCmdex); 

Rind<=H70 141 155 177 197 200 202 211 214 216 235 449 450 453 458 462 600]; 
seHndffl=18:34; 

w_comp(Rindex) = sdwj»cent(sdindex) - w_percent(Rindex); 
n_comp(Rmdex) = seln_percHit(sdmdex) - n_percent(Rmdex); 

•/.forllnewis; 

newindKeH4 12 18 52 68 82 176 395 451 459 460 ], 
w_comp(newindices) = w_perccnt(newindic«); 
n_comp(ncwindices) = n_percent(newindices); 

Ml 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 70 82 141 155 ... 
176 177 197 200 202 211 214 216 235 395 449 450 451 453 458 459 460 462 600]; 

[in^n2w_pCTCent^n2n_pCTcnir,w;w_compCm)^_««npCDi)]' 

% ANOTHER EXAMPLE: 

w_comp=z«os(l,669); 
n_comp=zeros(l,669); 

index=(! 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 ... 
70 82 141 155 176 177 197 200 211 214 216 235 395 449 450 451]; 
seKndoc=l:38; 

w_compCmdex) = selw_percent(sdmdcx) - wjxrcentCindex); 
n_comp0ndex) - seln_percent(sdindex) - n_percent(index); 

Rindex-1453 458 459 460 462 600]; 
selind«=40:45; 

w_comp(Rmdtx) - sdw_percent(sdmdex) - w_percHlt(Rindex); 
n3o""P(R"1dex) - «dnjwcentCsdmdex) - n_pocent(Rindex); 

%for 1 newy; 

newindices=(452]; 
w_comp(newindices) = w_percent(newindices); 
n_comp(ncwindices) = n_percent(newindices); 

in=Il 3 4 5 12 15 17 18 19 22 29 30 31 33 36 37 38 39 40 50 52 68 ... 
70 82 141 155 176 177 197200211214 216 235 395449 450 451 452... 
453 458 459 460 462 600]; 

lin^n2w_percent^n2n_percent;w-,w_compCm) jn.compCm)]' 

% THIS PROGRAM SELECT AND EVALUATE FEATURE GROUPS 
% ACCORDING TO THE THRESHOLD. 

dimension=669; 

H>; 
forg*l:dimension 
% ATTENTION: Change p«nini«tos for m=3... 

il( (n_peroent(g)<=40) & (w_perant(g)<-40) ) 

HH; 
gg<i)=g; 
m2wrong_dcps(I)=wiong_dcps(g); 
m2w_peicCTit(l)=wj>ercent(g); 

m2w_ok(l)=100-m2w_percent(l); 
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m2wrong_nons(I)=wrong_nons(g); 
m2n_pcrcent0)=nj)ercent(g); 

ni2n_ok(J)=100-m2n_percent(l); 

m2a3>-z(g); 

ifl (n_percent(g)<=25) | (w_pereait(g)<=25)) 
w(l)=l.llll; 
else 
w(D-0; 
end 

end 

end 
1 

fprimfpm2ft_#, m2wrong_dcps, m2w_olc, m2wrong_nons, m2n ok, m2iterations, bests'); 
h=10; 
[«8(h) 
n>2wrong_dcps(h) 
m2w_ok(h) 
m2wrong_nons(h) 
m2n_ok(h) 
m2z(h) 
w(h)]' 

•/. THIS PROGRAM REPRESENTS ONE THE RANDOM SEARCH 
% FOR 4-TUPLE FEATURE COMBINATIONS. 

indi=0; 
forM:10000 

aaa«round(10"rand(l,4)); •/• **ft-A-sizeofno-14 
% ifaaa(I)>=7,aaa(l)=aaa(l>5;end; 
% ifaaa(2)=7,aaa(2)=aaa(2)-5;end; 
% if aaa(3)>=7, aaa(3)=«aa(3)-5;end; 

if aaa(l)=0, aaa(l)=l 1 ;end; 
if aaa(2)=0, aaa(2)=I2',end; 
if aaa(3>=0, aaa(3)=13;end; 
if aaa(4)=0, aaa(4)=14;end; 

while ( (aaa(l)=aaa(2)) | (aaa(l>=aaa(3)) | (aaa(2)=aM(3))... 
I (aaa(2)=aaa(4)) | (aaa(l)=aaa(4))... 
| (aaa(3)=aaa(4)) ) 

aaa = round(10*rand(l,4)); 
% ifaaa(I)^7,saa(l)=aaaCI)-5;end; 
•/. if aaa(2)>=7, aaa(2)=aaa(2>5;end; 
% if aaa(3)=7, aaa(3)=aaa(3>5;end; 

ifaaa(l)=0, aaa(l)=ll;end; 
if aaa(2)=0, aaa(2)=12;end; 
if aaa(3)=0, aaa(3H3;end; 
if aaa(4)==0, aaa(4>=14;end, 

end, 

i, 
indi, 
aaa, 

dear Xselect; 
Xselect=Xsel(aaa,:); 

initfäst; 

K ATrENTION: LIMITATIONS ■ %if"  

%if(    ((nn^80) & (ww>-80))    |    ((nn>-84)|(ww>-84))   ) 
if (((nn>=81)&{ww>=Sl)) | ((nn>=86)&(ww>=79))) K && 4-ft x3m5m2 
%if ((nn>=70) & (ww>=80)) »4 «*fl xlm5 

indHindr*"1 \ 
a I _combm(indi)» eaa( 1); 
i2_combin(md0 = aaa(2); 
ft3_combmCndi) = aaa(3); 
•4_combm0ndO ■ aaa(4);S 4*ft 
n_combres(mdi) = nn; 
w_combres(indi) - ww, 
§JiintfC»»»»»»»»»»»»»»»>»»^; 
size(al_conibin) 
fyrintfl^»»»»»»»»»»»»»»»»»*); 

end 

end 

>=l3ndi; 
[tI_combin(j) 
i2_combin(j) 
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a3_combin(j) 
a4_combin(j) 
n_combres(i) 
w_combresfj)]' 

% This program exhaustively tests all possible combinations of 
% size eight in x3 from the number of features. It then records the ones 
% that meet the if-then criteria below. 
% clearCinif) for normal initialization. 

loadx3 

featureHSl 111 450 452 197 459 30 ] 
n=length(features) 

forf=l:n 
Xselft 1:100)-x3(features(i), 1:100); 

end 

ifodstCiniO—l 
% program continuation. No need to initialize other variables. 
il-init(l); 
i2=init(2); 
i3=init(3); 
i4=init(4); 
i5=init(5); 
i6=init(6); 
i7=init(7); 
i8=init(8); 

else 
% initialize all variables. 
indi=0; 
record=[]; 

i2-2: 
i3=3; 
i4=4; 
i5=5; 
i6=6; 
i7-7; 
i8=8; 

end 

while il<=n-7 
while i2<=n-6 
while i3<=n-5 
while i4<=n-4 
while i5<=n-3 
while i6<=n-2 
while i7<=n-l 
while i8<=n 

aaa=(ili2i3i4i5i6i7i8] 
indi 

clear Xselect; 
Xselect=Xsel(aaa,:); 

init&st; 

% ATTENTION: LIMITATIONS " %if "- 
ave = (nn+wwy2; 

if( ((nn>-81)&<ww>=81)) | (ave>=83) ) 
indHndi+1; 
record={record; features(aaa) nn ww]; 
rbrintfC»»»»»»»»»»»»»»»»»^; 
(features(aaa) nn ww] 

end 

i8=i8+l; 
end % end i8 loop 
i7=i7+l; 
«47+1; 
end %endi71oop 
J646+I; 
i7-io+l; 
«47+1; 
end % end i6 loop 
i545+l; 
i«45+l; 
i746+l; 
»47+1; 
end % end i5 loop 
i444+l; 
i544+l; 
i<S=i5+l; 
i7-i6+l; 
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i8=i7+l; 
end % end i4 loop 
i3=D+l; 
i4=i3+l; 
iS=*4+l; 
i6=i5+I; 
i7=i6+l; 
i8=i7+l; 
end % end i3 loop 
i2=i2+l; 
i3=i2+l; 
i4=ü+l; 
i5=i4+l; 
i6=i5+l; 
i7=i6+l; 
i8=i7+l; 
end % end i2 loop 
il-il+r, 
i2=il+l; 
i3=ü+l; 
i4-J3+l; 
i5=i4+l; 
J6=i5+1; 
i7=i6+l; 
i8=i7-H; 
end % end il loop 

record 

•/. Genetic algorithm in search of the optimal n-tuple 
% from a gene pool of features. 
% This version records the actual feature numbers in the 
% matrix 'record', not the index!! 
*A x3. Set m in initfast. 
% set init=l for automatic initialization 

comment=\3, m-5,15-tuple.' 
n=15; 
loadx3 
clear Xselect; 
features=[9 11 30 50 39 81 235 358 359 363 «9 197 29 450 453 457 458 478... 

111452 4823611536373286779460] 

•/. features=[4 5 8 9 12 18 19 22 29 30 33 36 39 40 50 56 62 76 79 81 ... 
•/„ 111 114 163 197 235 358 359 361 363 403 449 450 452 453 456 457.. 
•/. 458 477 478 482 534 625 ] 

feature jium=length(features) 

for f=I:feature_num 
Xsel(f, 1:100)=x3(features(f), 1:100); 

end 
clear x3; 
clear average_fitness; 

ifinit=I 

end 

% initialize population size, crossover rate, mutation rate, etc. 
population_size=200; 
mutation_rate=0.001; 
crossover_rate=0.7; 
record=zeros(20,n+3); 
indH); 

% initialize population 
randCuniform'); 
population=£x((feature_num - .0000001) .* rand(popularion_size,n)) + 1; 

% start evolution 
for generations :100000 
generation 

% test the population for fitness 
for f = l:population_size 
Xselect - XseKpopulationCf,:),:);'/* 
initfast; '/»test each individual 

fitness(f) - abs((nn+wwy2 - 20); % subtract 20 to exaggerate the 
% difference in fitness ratio 

%if( ((nn>=70)&(ww>=70)) | (fimess>=56) I ((niK-20)&(ww<-20))) 
if ( (fitness(i)>=65) | ((nn<-20)&<ww<-20)) ) 

indHndH-1 
recordCtndi,:) - [features(populafion(f,:)) generation rm ww];'/. 
[features(population(f;:)) generation nn ww] 

end 
end 

•/. display average fitness in percentage 
•verage_fimess(generation)=rnean(firness) + 20 
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•/.REPRODUCTION!! 
% reorder the fitness values for easier computation 
fit_measure(IHitness(l); 
for f=2T°pulation_size 
fit_measure(i>=fit_nieasure<f-l><-fitness(f); 
end 

for f= 1 :population_size 
% randomly pick one individual to copy into the new population 
% individuals with higher fitness values are more likely to survive 
temp=fit_measure(population_size) .• rand; 
mdex=find(abs(fit_measure-temp) — min(abs(fit_measure-temp))); 

if temp <= fit_mtasure(index(l)) 
newjx>puMor<C:)^pubtion<3ndex(l),:);,/i 

else 
newj»pulation(C:)=popu!atioraindex(l)+l,:);% 

end 
end 
population=new_population; 

•/«CROSSOVER!! 
W; 
while f <= population^size 

if rand <= crossoverjate 
mate = f; 
crossover = 0; 
while (f < population_size) & (crossover=0) 

HH; 
if rand <= crossoverjate 

•/. actual crossover 
crossover = 1; 
temp=fix((n -1.00001) .* rand) + 2;V. 
gme_temp=population(rnate,temp:n),% 
population(mate,temp3i>=population(Ctemp3l);% 
population(f,temp:n)=gene_temp; 

end 
end 

end 
f=f+l; 

end 

% MUTATION« 
•/. Note: Modified Aug. 19 due to a bug 
num_mutation=population_size .* mutation_rate .• n .• (randn + 1); 
forf=ljium mutation 
popuhtiori^(^uhtion_srze^.(K)0001).,rand+l),fix((n-0.0()001)-rand+l))... 

" fix((feature_num - 0.000001) * rand + 1); 
end 

% save record in case of crashing 
save crashrec comment record averagejimess 

% go to next generation 
end 

% display record of good individuals in history 
comment 
record 

% [sort(record(l iufi, 1 :n)7 recordO ±i<h\n+1 :n+3)] 

•/. SELECTION AND INITIALIZATION OF THE DATA CENTERS 
•/. FOR THE LMS FILTER. 

% "inirrain_sess" « Polygraph sessions which are used for 
% INmaBzation of the "data_centers" and TRAINing. 

% The "mitrain" sessions are set in a way that the 1st part 
% (before the •border") represents the non-decptive and the 
% 2nd part (afler the border) the deceptive sessions. 

dear, 
V'Tobesetforeachpolydat i(fbt3,ftx2,rrxl): •••••••••••«•••••• 

%* * 
whichfeatures_3 = [1:30]; 
nondsession5_3 = fl 1:50]; 

%[I 6 8 9 12 16 18 21 24 27 28 32 35 44 48]; 
dcpsessions 3 -[5150]; 

%[51 53 58 59 63 67 72 75 82 85 88 89 93 95 1O0]; 

*• 
whichfeatures_2 «[]; 
nondsessions_2 = U; 
dcpsessions_2 »[]; 

whichfeatures_l«[]; 
nondsessions_l «= []; 
dcpsessions_l = []; 
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•/.* ATTENTION: The DIMENSION of each "whichfeatures_..." is to be equal! 
Vo*(or2ao) 
•/.•••""••"* *  
if Iength(whichfeatures_3) — length(whichfeatures_2) |... 

ler#h(whichfearures_2) — Iength(whichfeatures_l), 

lpnntfC!!!!!!!!!!!!!!!m!!!!!!H!!!!!!!!!!!!!!!!!!!!!W); 
fcrinnTCheck ■whichfeatures"! They are different big!\ji"); 
fprintfCThe dimensions are as followingAn'); 
tprintfCW); 
fprintfT/   1st 2nd 3rd\rf); 
disp( pength(whichfeatures_l), length(whichfeatures_2),... 
length(whichfeatures_3)]) 
fcrintfiSo; 
rprintfCYOU DO NOT NEED TO CHANGE THE EMPTY ONESIW); 
fcrintftTF THATS THE CASE: PRESS ANY KEY TO CONTTNUE.W); 
rprintlC!M!M!!!!!!!H!!!!!!!!!!!!!!!!!!!!!H!!!!!!!!!\ri); 
pause; 

end; 

border=kngrh(nondsessions_3) + length(nondsessions_2).. 
+ kngth(nondsessions_l); 

V.%%porydat_3: 

ifsze(nondsessions_3,l)~=0, 

load c:\users\rarnin\fcrn\rnultidirn\ftx3; 

dim = length(whichfeatures_3); 
rM:dim; 
Ntemp_3(C:) - x3(whichfeatures_3(0, nondsessions_3); 
Dtonp_3(f,:) - x3(whichfeatures_3(f), dcpsessions_3); 

ckarx3; 
end; 

%%*poh/dat_2 

if size<nondsessions_2,l) — 0, 

load c:\iisers\ramin\fcrn\rnultidirn\flx2; 

din - length(whichfearures_2); 
f=l:dim; 
Ntemp_2(f,:) - x2(whichfeatures_2(l), nondsessions_2); 
Dtemp_2(f,:) - x2(whichfeatures_2(0, dcpsessions_2), 

dearx2; 
end; 

•/.•/.% poh/datj 

if size(nondsessions_ 1,1) ~= 0, 

load c:\users\ramin\fcm\rnultidim\flxl; 

dim - length(whichfeatures_l); 
t>l:dim; 
Ntemp_l(t:) = xl(whichfeatures_l(0,nondsessions_l); 
Dtemp_l(t) » xl(whichfearures_l(f), dcpsessions_l); 

cfearxl; 
end; 

mrtrabi sess-tNtemp_3,;Ntemp_2';Ntemp_r;... 
Dtemp_3'; Dtemp_r; Dtemp_ll; 

howmany - sraöriirrain_sess,r); 

rneshOratrain_sess); 

% TWO FEATURES AT A TIME - PLOT EXAMPLE: 
%pk)K5nitrain_sess(l :40,lX>nitrain_sess(l MA,'Y) 
V.holdon 
•z^)ki(Onitram_sess(41:80,l)jnitrain^sess(41:80,4),'jO 

•/. SELECTION AND INITIALIZATION FOR LMS FILTER. 

% The "mitrain' data represents Polygraph sessions which are used for 
% INTTialization and TRAINing of the "data_centers" and input data. 
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% The "initrain" data are set in a way that the 1 st part - before the 
% "CTCJborder" - represents the non-decptive and the second part 
*/. - after the "(TC Jborder" - the deceptive sessions. 

% The prefix "nond" represents the non_decptive, and "dcp" the deceptive 
% elements. 

clear, 

•/. TO BE SET FOR EACH porydatj (ftx3, ftx2, ftxl):  
%' ' 
%" First for the data_centers: * 
•/•• * 

nondsessions_3 = [1:20]; 
V.[l 6 8 9 12 16 18 21 24 27 28 32 35 44 48]; 

dcpsessions 3 = [51:70]; 
" V.[51 53 58 59 63 67 72 75 82 85 88 89 93 95 100); 

%• 
nondsessions_2 - Hi 
dcpsessions_2 " []; 

•/.' ' * 
nondsessions^l = []; 
dcpsessions_l = []; 

•/•• * 
•/•• Now for the input data for which the filter is to be (Twined * 
V." to (C)lassify: * 
%• * 

TC_nondsessions_3 = [1:30]; 
TC_dcpsessions_3 = [51:80]; " 

TC_nondsessions_2 - []; 
TC_dcpsessions_2 = []; 

•/.' 
TC_nondsessions_l - []; 
TC_dcpsessions 1 * []; 

%' 
%- 
•/.* And finally for the selected features: 
%• " 

whichfeatures_3 - [1:30]; 
whichfearures_2 = []; 
whichfeatures_l = []; 

%• * 
•/.• ATTENTION: The DIMENSION of each "whichfearures_..." is to be equal! " 
%• (or zero) 

if length(whichfeatures_3) — length(whichfearures_2) |... 
length(whichfeatures_2) ~= length(whichfeatures_l), 

forintI^!H!!!!!!!!!!UM!M!!U!!!!!!!^!!!N!!!!!HH\n,); 
tprinaTCheck "whichfeatures"! They are different biglVn'); 
fprintfCThe dimensions are as following:^1); 
fprvntiCW); 
fprintfC   1st 2nd 3rdV); 
disp( [length(whichfeatures_l), length(whichfeatures_2),... 
length(whichfearures_3)J) 
tprintfÖn'); 
rprintlTYOU DO NOT NEED TO CHANGE THE EMPTY ONESIta'); 
fprintfClF THAT'S THE CASE: PRESS ANY KEY TO CONTINUEX); 
forintfr!MM!!!l!!!!!!!!!M!!!!!M!!!!!!!!!!!!MM!!!!\n'); 
pause; 

end; 

border = length(nondsessions_3) + length(nondsessions_2)... 
+ kngth(nondsessions_l); 

TC_border ■= lengthCTC_nondsessions_3) + lengthCTC_nondsessions_2)... 
+ kngthCTC_nondsessions_l); 

•/.%•/. porydat_3: 

dim «= kngth(whichfeahires_3); 
if dim —0, 

load c:\users\rarnin\fcrn\multiclirn\ftx3; 
f=l:dim; 

if length(TC_nondsessions_3) ~= 0, 
TC_Ntemp3(t:) ' x3(whichfeatures_3(0, TC_nondsessions_3); 
end; 

if length(TC_dcpsessions_3) -= 0, 
TC_Dtemp_3(f,:) = x3(whichfeatures_3(f), TC_dcpsessions_3); 
end; 
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if length(nondsessions_3) -*= 0, 
Ntemp_3(f,'.) * x3(whichfeahires_3(0, nondsessions_3); 
end; 

if length(dcpsessions_3) ~* 0, 
Dtemp_3(f,:) - x3(whichfeatures_3(f), dcpsessions_3); 
end; 

clear x3; 
end; 

%%Spolydat_2 

dim - length(whichfeatures_2); 
if dim —0, 

toad c:\users\ramin\fcm\multidim\ftx2; 
f=l:dim; 

if length(TC_nondsessions_2) -■ 0, 
TC_Ntemp_2(f,:) - x2(whichfeatures_2(f), TC_nondsessions_2); 
end; 

if length(TC_dcpsessions_2) — 0, 
TC_Dtemp_2(f,:) - x2(whichfeatures_2(f), TC_dcpsessions_2); 
end; 

if length(nondsessions_2) -= 0, 
Ntemp_2(t) = x2(whichfeatures_2(0, nondsessions_2); 
end; 

if length(dcpsessions_2) ~= 0, 
Dtemp_2(f,:) ■= x2(whichfearures_2(i), dcpsessions_2); 
end; 

deaix2, 
end; 

•/.*/.•/. poh/datj 

dim = lengthCwhichfeatures_l); 
ifdrm-=0, 

load c:\users\ramin\fcm\multidim\ftxl; 
f=l:dim; 

if length(TC_nondsessions_l) -= 0, 
TC_Ntemp_l(f,:) = xl(whichfearures_l(f), TC_nondsessionsJ); 
end; 

if length(TC_dcpsessions_!) — 0, 
TCJXempJ(£:)-xl(whichfeaturesJ(ß,TC_dcpsessions_l); 
end; 

if length(nondsessions_l) ~= 0, 
Ntemp_l(f,:) = xl(wruchfearures_l(f), nondsessionsl); 
end; 

if length(dcpsessions_l) -= 0, 
Dtemp_l(C'.)-xl(whichfeatures_!(f)><lcpsessions_l); 
end; 

dearxt; 
end; 

TC_initrain - rrC_Ntemp_3'; TC_Ntemp_2'; TC_Ntemp_l';... 
TC.Dtemp,?; TC_Dtemp_2'; TC_Dtemp_l'J; 

centjnirrain «(Ntemp_3'; Ntemp_2'; NtempJ';... 
Dtemp_3'; Dtemp_2'; Dtemp_l']; 

% LMS FUZZY ADAPTIVE FILTER. 

function [newjheta, new_data_centers, newsigma, outputjabel] -.. 
»daptzzyOheta, data_centers, sigma, input_vect, desire, step) 
HfpiintfCsize(theta)0^ize(theta), 
%rprintffsize(sigma):'),size(sigim), 

% Get the dimensions of matrices and verify their consistency. 
[label_no, fi_no] • size(data_centers); 
if(nabel_no,ß_no]-=size(sigma)) | dl,ft_no]-=sizeCinput_vect)) | 

fllabel_no, 1 ] — size(theta)) 

oiorCmatrix dimensions are wrong! •) 
end; 
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% Evaluate Gaussian membershipfunctions: 

distances - (ones(labeI_no,l) • input_vect) - data_centers; 
%tprintfCsize(distances):');size(distances), 
•/• To creat compatible dimensions: Fill input_vect down into an 
% (label_no x ftno) matrix, so that it is the same input for all 
% Oabel_no) rules, and then subtract data_centers from it 

a - exp(   -0.5 .* sum( ((distances J sigma) "2 )' f   ); 
•/. Without "sum": a - Oil! i.e. membership values 
•/. etc.etc...(conventional way) 
V.+++ 

%tprintfCsize(a):')^ize(»). 

% Centroidal defuzofication: 
b - sum(a);,/.rprintfCsize(b):')^ize(b), 
output_label - sum(theta .* a) / b; 

% Adaption: 

tempi >= step .* (desire - outputJabel) .* a A>; 
new__theta = theta + temp 1; 

temp2 = ((tempi .* (rheta - output_label)) • ones(l, ft_no)) .• .. 
distances J (sigma .A2), 

new_data_centers = data_centers + temp2; 

new sigma = sigma + temp2 . • distances J sigma; 
•/.+++ 

•/. LMS RLTER rSTIALlZATlON (TRAINING AND TESTING) 
•/.FIRST VERSION 

•/. clear everything! 
clear, 

%loading...: 
load c:\users\ranun\fcrn\muludim\flx3; 

which features- 1:100,*/. to change!!! 

% the data from the "person* who is to be tested: 
person = 2; 
testperson = x3(which_features,person)'; 

polysession(l,:) = x3(which_fearures,l)',"/«iondecp 
•/••/.%[x3(81,l), x3(l 11,1), x3(235,l), x3<450,l), x3(452,l)]; 

polysession(16,:) = x3(whichjeatures,100)';%decp 
%%%[x3(81,100), x3(l 11,100), x3(235,100), x3(450,100),.. 
•/.%%x3(452,100)]; V. polygraph data for two sessions, 

% i.e one truthful & one decpetive 

polysession(2,:) - x3(which_features,48)';%nondecp 
porysession(3,:) ■ x3(which_features,5)';*/.nondecp 
poh/session(4,:) - x3(which_features,8)';*/«nondecp 
porysession(5,:) « x3(which_features,9)';*4nondecp 
polysession(6,:) - x3(which_features,12)';'»4nondecp 
poh/session(7,:) « x3(which_features,16)';?4nondecp 
polysessionCS.O-xXwrdch.features.lS/i'/inondecp 
polysession(9,:) = x3<whichJeatures>2iy;V.nondecp 
poh/session(10,:) - x3(which_features,24X;%nondecp 
polysession(l 1,:) - x3(which^eatures,27)';,/.nondecp 
poh/session(l 2,:) - x3(wHchJearures,28)';,/.nondecp 
polvsession(13,:)-x3(which_features^2),;,/4nondecp 
porysession(14,:) - xXwhichJeatures,35y;%nondecp 
porysession(15,:) - xXwhichJeatures,44y;,/.nondecp 

polysessionO 7,:) - x3(whichJeatures^S'ftV.decp 
polysession(18,:) - x3(which_features,93)';,/«äecp 
porysession(19,:) = x3(which_features,89)';%decp 
polysession(20,:) ■= x3(which_features,88)';%decp 
polysession(21,:) - x3(which_features,85)';,^decp 
potysession(22,:) = x3(which_features,82)';%decp 
polysession(23,:) = x3(wruch_features,75)';V.decp 
poh/session(24,:) - x3(which_features,72)';'S4decp 
potysession(25,:) - x3(which_features,67)';%decp 
porysession(26,:) = x3(which_features,63)';,/«lecp 
porysession(27,:) - x3(which_features,59)';,/«iecp 
porysession(28,:) - x3(which_features,58),;,/<decp 
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potysession(29,:) = xXwhich_features,53)';%decp 
polysession(30,:) - x3(which_fearures,51)';%decp 
[howmany, dim] = size(polysession),% "howmany" must be even! 
half= howmany/2; 

dear x3;        %save memory & clear 

•/4+++ 

KinitiaEation & clear 

step-0.005; 
output -zerosO, 2) 

ourput_mean = [1.2f 

input_mean - polysession; 
input_width = 1 * ones<howmany, dim); 

% Testmg(see 100 for des) 

[dummy, dummy, dummy, output] =... 
adaptz^(output_mean, input_mean, input_width, testperson,... 
100, step); 

% Test how good the output is at 
*/t the beginning. 

end, 
output 
pause; 

figure(l);clg 
plot(output,'.'); 
•/•pk>t(output_mean,'.b'); 
hold on; 
%mesh(5nput_width); 

•/. SEE ABOVE - SECOND VERSION. 
•/.User interface to improve! 

% INITIALIZATION: 
% I M I I I II I I I I I I * 

step - 0.5; */• Learning factor 

% The prefix TC" represents the input data for which the filter 
'A a to be (Drained to (C)lassify: 

TC_howmany = size(TC_initrain, 1); 
[howmany, dim] - size<cent_rnitrain); M representing data_centers 

dear output; 
output «zeros([TC_howmany, 1]); 

•/• "+1" represents the nondeceptive and "-1" the deceptive data: 
init_theta_non -+1 * ones(border, 1); 
init_theta_dcp = -1 * ones((howmany-border), 1); 

CTrrpiit_mean = [init_theta_non;init_theta_dcp]; % - datajxnters 

inpuMnean = cenHnitrain; 
input_width - 100 * ones(howmany, dim); 

% Ml I I M M I I I I I I 

% Before any training... 
S Test how good the output is at the beginning: 

for t=l :TC_howmany 

ifk<-TC_border 
des-tl; 
else 
des355-!; 
end 

[dummy, dummy, dummy, ourputOO] ■ 
adaptey(output_mean, inpuMnean,... 
input_width, TC_initrain(k,:),... 
des, step); 

end, 
clear dummy; 
output, 

figure(l);clg 
plotCoutputV); 
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%pIot(output_mean,'*b')", 
hold on; 
pause; 
%mesh(input_width); 

•/.Starting training:  DO A BETTER USERINTERFACE! 
fori-I:30 
forj-l:5 

for fc=l :TC_howmany 

iflc<-TCborder 
des=H; 
else 
des=-l; 
end 

end, 
output, 

end, 

[outputjrtean, input_mean, input_width, outputflc)] = ... 
adaptzzy(output_mean, input_mean, input_width,... 
TC jrutrain(k,:), des, step); 

6gure(l); 
plotfoutput,'.'); Kaasfll 100-0.2 2.1]); 
%plot(output_mean,,"b'); 
•/•mesh(input_width); 
%pause; 

end; 

•/. "•"SAVING THE FILTER CHARACTERISTICS:  

rprmtfC!H!!!!!!!!!!!H!!!!!!!!!!!!!!!!!!!!!!MH!!!!!!!!HH!\n'); 
fprintflTF YOU WANT TO SAVE THE CHARACRERISTICS OF THIS FILTERX); 
rprinnTPLEASE TYPE ANY NUMBERPO FROM l-99!\rf); 
rprinaTTHIS FILTER WILL BE THEN SAVED AS "filtert- Ita1); 

clear numb; 
numb - input(The filter numberW is:1); 
% By default: numb=[], i.e. nothing win be saved. 

if numb -*=[], 
numb = int2str(numb); 
com =('save', 'filter1, numb,... 

' whichfeatures_3', ... 
' whichfeatures_2', ... 
' whichfeatures_r, ... 
' output_mean',' output_mean', ... 
1 input_mean',' input_width']; 

eval(com); 

% CREATING THE ELLIPTICAL CLUSTERS FOR THE VISUAL 
V. INSPECTIONS - AND ALSO FOR STTING THE RULES. 

function [x,y)=ellipse(xcenter,ycenter^t»idth,ywidth) 
angle=(0:0.02'pi:2"pi]; 
x=xwidth .• cos(angle) + xcenter, 
y=ywidth .* sinfangle) + ycenter, 
plottXy,'-') 

V. TEMPORARY LMS SETTING - TEST 

function output UbeWuzztemp0nput_vect) 
theta=( 1 I -1 -If; 
data centers=I-l-0.5;0-0.25;00;10.3]; 
agmH 0.5 0.8; 0.5 0.25; 0.1 0.2 ; 0.6 0.5 ]; 

% Get the dimensions of matrices and verify their consistency: 
[label_no, ft no] - «ze(data_centers); 
if (t>bel_no7ft_no] — size(sigma)) | fll,B_no] —size<mput_vect)) |... 

(Pabel_no, 1] — size(theta)) 

errorCmatrix dimensions ire wrong! ■) 
end; 

% Evaluate Gaussian membershipfunctions: 

distances - (ones(label_no,l) * input_vect) - data_centers; 

a - exp(   -0.5.' sum( ((distances J sigma) .A2 )' )'   ); 
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% Centroidal deruzzification: 
b - suniCa); 
output_label = sum(theta .• a) / b; 
outputjabel = outputjabel .A 2; 

return; 

V.LMS FILTER TESTING. 
% Experimenting with the use of adaptive (uzzy logic 
% in polygraph classification. 

inrHnputCDo you want to initialize all parameters? \V); 
ifinit=-y 
% Initialize the parameters for fuzzy LMS algorithm. 
•/. Output of 1 means nondeceptive 
•/• Output of-1 means deceptive 
% length(output_mean) - # of rules 
rprinnTjnitializingW); 
output_mean=[ 1 1 -1 -IT; 
ttinput meaiH centers of first rule; centers of second rule; etc.], 
input_meaiH -1 -0.5; 0 -0.1; 0 0; 1 0.3 ]; 
•/. input_widfh=[ widths of first rule ; widths of second rule ; etc. ]; 
inpiMwidüH 0.5 1.3; 0.5 0.25; 0.10.2; 0.6 0.5 ]; 

featureH45' *&]> % Select *e features 

step=0.005; */. Select learning rate 

% Select training data 
ndcp_3=l:15; % Nondeceptive sessions in x3 for training 
dcp 3=51:65; */• Deceptive sessions in x3 for training 
ndcp_2=l]; 
dcp_H); 
ndcp 1=[]; 
dcp_7=0; % Note that nondeceptive data in xl, x2, and x3 

% are the same, so ndcp_2 and ndcp_l are really 
% redundant. 

loadx3; 
load x2; 
loadxl; 
Ntrain=(xl(featiires,ndcp_l) x2(featuresjldcp_2) x3(features,ndcp_3)]'; 
Dtrain=[xl(features,dcpJ) x2(features,dcp_2) x3(features,dcp_3)]'; 

% Select testing data 
ndcp 3-0; •/. Nondeceptive sessions in x3 for testing 

dcp 3=66:100; 

ndcpJHh 
dcp.HSl:'00!; 
ndcp_l=16:50; 
dcp_H51:100J; */• Note that nondeceptive data in xl, x2, and X3 

•/. are the same, so ndcp_2 and ndcp_l are really 
% redundant. 

NtesHxI(features,ndcp_l) x2(feattires,ndcp_2) x3(features,ndcp_3)]'; 
Dtest=xl(features,dcp_l)'; 
Dtest2=x2(features,dcp_2)', 
Dtest3=x3(features,dcp_3)'; 
clearxl; 
clear x2; 
clear x3; 
clear record; 
epoch=0; 

end 

% Test fuzzy system before any training 
% Test training data first 
clear Nouiput, 
clear Doutput; 
r>!tr,<hmmy]=5ize(>Itrain);   %Ntr- total« of nondeceptive sessions 
[Dtr!diirrdny)=sizeCDtrain);   % DU-total «of deceptive sessions 
ifNtr —Dtr . 

errorCNumber of nondeceptive and deceptive training data rrasmatcn), 

end 
forr=l:Ntr 

|dummy,dmnmy,(hmimy^output®)=ani0zzy(output_mearunput_niean,... 

input width^trainCvXUtep); 
[c^irrmiy,dunimy,dummy,Doutput©l=adapt2z><output_meanjnput_mea^ 

mput_widrhJ)trainCi,:),-l^tep); 

end 
»4 Record results 
record<epoch+l,l:2H0er^(rmd<Noutput>0)yNtr) (lengtr<nnd(Doutput<0)yDtr) ]; 
squared error(epoch+l,l:2Hniean<(l-Noutput) *2) mean((Doutput+l).A2)); 
fprintfCpereent correct nondeceptive and deceptive detections for training data:«); 
disp(record(epoch+1,1:2)) 

% Now test testing data 
clear Nourput; 
clear Doutput; 
[Nte,dummyHize(Ntest);    % Nte - total * of nondeceptive sessions 
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fori=l:Nte 
[dummy,duiiTOy,duniniy,Noufput(i)H''aP,zzy(ou,Pu,-mean^nPu,-ml:an''' 

input_width,Ntestö,:),Utep); 

end 
[Dte.dummyH'zeCDt«');     *» Dte = total * of deceptive sessions m xl 
fori=l:Dte 

[dummy,dunmiy,dunmy,Doutput®HclaP,zzy<outPi''-'neaiviiput_niean,... 

input_width,DtestCi,:),-Utep); 

end 
squared nror(epoch+U:4Hmean((l-Noutput).^) mean((Doutput+l).A2)]; 
te«OTd(<lp()ch+13:4HOen^(fodl?Joutput>0)yNte)aength(fmd(Doutput<0)yDte)]; 

(Dte,dummy]=^ze(Dtest2);   % Dte - total * of deceptive sessions in x2 
clear Doutput; 
forW:Dte 

[duniniy,durruny,dunmiyJX)utput®)=^daptzzv(output_rneaiunput_mean,... 

input_width,Dtest2(i,0,-l,step); 
end 
squared_error(epoch+1,5:6Hmean((I -Noutput).A2) mean((Doutput+1).A2)], 
re<OTd<epoch+l,5:6MOength(find(Noutput>0))^te)Oer^(find(Doutput<0)yDte)]; 
[Dte,dummy]=si2e(btest3);   % Dte- total # of deceptive sessions fa ^ 

clear Doutput; 
fori=l:Dte 

(dumrny,durrany,dummyJ>3UrputfflHdaptzzy(output_mearynput_rnean,.. 

input_width,Dtest3(i,:),-1 .step); 

end 
squared_error(epoch+l,7:8Hnie«n((1-Nou,Pu|)A2)II"Ml((Doutpu,+1)"2)l; 

record(er^h+lJ:8H0er^(rmd(Noutput>O))^te)(ler^(rmdlPoutput<0)yDte)]; 

rprintf^raming,xl,x2,x3:\n'); 
disp(record(epoch+1,:)) 

•/. Start training and testing 
fprintfCresults after training^1) 
while epocrK 100000 
epoch=epoch+l 
clear Noutput; 
clear Doutput; 
% Training 
forW:Ntr 

[output_meanjnput_meaninput_width,Noutput(i)l=... 
adaptzzy(output_mearynput_meaiUnput_width,... 

NtrainC",:),Mtep); 
[output_mearynput_meanjnput_width,Doutput(ri)=... 

adaptzzy(ourput_mean4nput_meanjnput_width,... 
Dtrain(i,:),-Mtep); 

end 
% end one epoch 

% Test training data 
forW:Ntr 

[dummy,dummy,dummy,NoutputO))=- 
adaptzzy(output_mearuinput_mean4nput_width,... 
Ntrain(i,:),l,step); 

[dummy,dummy,dummy,Doutput(i)}=-.. 
adaptzzy(output_rneaiynput_rnearynput_width,... 

DtrainfcVUtep); 
end 

% Record results of training data at the end of an epoch 
squared_error(epoch+l,l:2Mmean((l-Noutput)."2)niean((Dourput+l)"2)]; 
record(epoch+l,l:2HOength(nnd(Noutput>0)yNtr) Oength(find(Doutput<0)yDtr) ]; 

% Now test testing data 
clear Noutput; 
clear Doutput; 
[Nte,dummyHize(Ntest); 
forM:Nte .    _ 

[durrmy,4rauny,durnrny,Nourput®H<^P'z^0^^-mean^nPu,-Inean'" 
input_width,NtestCi,:),Utep); 

end 
[Dte,dummy]=size(Dtest); 
fori=l:Dte .    _ 

[durrimy,dumrny,durraiiy,Douri)UtC0Hdapt2zy(output_meartmput_niean,... 

inputjMdthJ>test(i,:),-l,step); 

end 
squared enor<epoch+U:4Hniean((l-Noutput).A2)rnean((Doutput+l).A2)]; 
record(epoch+13:4H0enEth(fmd(Noutput>0)yNte) 0ength(6nd(Doutput<0)yDte) ]; 
[Dte,dummyHize(Dtest2);   tt Dte -total« of deceptive sessions mx2 
clear Doutput; 
fori=l;Dte 

|durrraiy,dummy,diirrOTiyJ)ourput©)=adapr2rv(c^ut_meaiwpm_mean,... 
input_width,Dtest2Ci,:),-l^tep); 

end 
squared mor(ep«h+l,5:6Mmean((l-Noutput).''2) mean((Doutput+l).A2)]; 
recor^epoch+lA^OengthCfmdrNoutput^))^ 
(Dte,dummyH>ze<Dtest3);   % Dte - total # of deceptive sessions in x3 
clear Doutput; 
fori=l:Dte 

[dunmy,dunimy,durrunyJ)output(DH^P'z^ou*ut-mKm^nPut-nlean,- 
input_widrh,Dtest3ö,:),-l^tep); 
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end 
squaied_erroi<epoch+l,7:8H™«in((l-NoutPut)"2)nisan((Dou*P'"+l)A2)l; 

recOTd(q>och+l,7:8H0n^(^d(NouVu'><>))^te)0n^(tod<Pou,Put<0)yDte:)l; 

fprindi>aining,xl,x2,x3:\n'); 
disp<Teeord(epoch+1,:)) 

end H Go to next epoch 

•/• Experimenting with the use of adaptive fuzzy logic 
% in polygraph classification. 

fortriaM:l 
% Initialize the parameters for fuzzy LMS algorithm. 
V. Output of 1 means nondeceptive 
•/• Output of-1 means deceptive 
'/% length(output_mean) - * of rules 
fprirrdfinrtializmgW); 
outputjnearH 1 1 -1 -If; 
% input_mean=( centers of first rule; centers of second rule; etc. J; 
input_ineaiH -1 -0.5; 0 -0.25; 0 0; 1 0.3 ]; 
% input width»] widths of first rule ; widths of second rule ; etc. ]; 
input_wTdth=l 0.5 0.8; 0.5 0.25; 0.1 0.2; 0.6 0.5 ]; 

features=(451 452]; % Select the features 
step=0.005; */• Select learning rate 
trainers'lO, */. Select # of training samples from each category 

■/• Select training data 
temp_n=randperm(50); 
temp d=50+randperm(50); 
ndcp~3=[l:57:10 12 13 15 16 18:2022 232526282931 32 343537384041 434446:49]; 
dcp_H51 54 57 60 64 67 70 73 76 79 82 85];'/o Deceptive sessions in x3 for training 
ndcp 2-fl; 
dcp_H51 53 56 59 62 65 68 71 74 78 81 84]; 
ndcp HI; 
dcp H51 54 57 59 62 65 68 71 74 77 80 83); 

% Note that nondeceptive data in xl, x2, and x3 
% are the same, so ndcp_2 and ndcpl are really 
% redundant. 

loadx3; 
loadx2; 
loadxl; 
Ntrain=[xl(features,ndcp_l) x2(features,ndcp_2) x3(features,ndcp_3)]'; 
Dtt»M'!l(features,dcp_l) x2(features,dcp_2) x3(features,dcp_3))'; 

•/. Select testing data 
ndcp 3=[6 11 14 17 21 24 27 30 33 36 39 42 45 50]; 
dcp_H52 535556585961:6365666869 71 72747577788081 838486:100]; 

ndcp HI; 
dcpj=(52 54 55 57 58 60 61 63 64 66 67 69 70 72 73 75:77 79 80 82 83 85:100]; 

ndcp 1=0; 
dcpj=[52 53 55 56 58 60 61 63 64 66 6769 70 72 73 75 76 78 79 81 82 84:100]; 

% Note that nondeceptive data in xl, x2, and x3 
% are the same, so ndcp_2 and ndcpj are really 
% redundant. 

NtesHxl(features,ndcp_l) x2(features,ndcp_2) x3(feahrresjidcp_3)]'; 
Dtest=txl(features,dcp_l) x2(features,dcp_2) x3(features,dcp_3)]'; 
clear xl; 
clear x2; 
clear x3; 
dear record; 
clear temp_n; 
clear temp_d; 
epoch=0; 

% Test fuzzy system before any training 
%Test training data first 
clear Noutput; 
clear Doutput; 
rNMurnmy)-size<Ntrain);   %Ntr-total« of nondeceptive sessions 
[Dtr^rummy]=size(Dtrarn);   % Dtr - total # of deceptive sessions 
ifNtr-=Dtr 

errorCNumber of nondeceptive and deceptive training data mismatch'); 

end 
fccFl:Ntr 

[ftmvmy,<rurnmy,oirnmy^output®H^P<z^OT*uLinraIMnput_mean,.. 
input_widtn,Ntrain(i,:),l,step); 

[durrany,durruny,dirmmy>I^utput®Hdaptzzy(output_mean4nput_mean,.. 

rnput_wid^DtrainCv).-l^tep); 
end 
%% tprintfCResults of training data before training\n'); 
•/.% Noutput 
W4 Doutput 
y. Record results 
recc»d(erw:h+l,l:2HÖ«n8'h(fin*>,ou,Imt>0)>'Nl1) (length(fmd<poutput<0)yDtr) ]; 
rprionTpercent correct nondeceptive and deceptive detections for training data^1); 
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disp(record(epoch+l,l:2)) 

% Now test testing data 
dear Noutput; 
dear Doutput; 
[Nte,dununy]-=size(Ntest);    % Nte »total * of nondeceptive sessions 
for i=l JvTte 

[dunuriy,dunutiy,duinmy,Noutput(t))=adaptzzy(output_nieaiUnput_mean,... 

rnprt_width,Ntest(i,:),l.step); 
end 
[Dte,dummyl=size(Dtest);    % Dte »total * of deceptive sessions 
fori-l:Dte 

[dmrimy,duniiny,duinniy,Doutput(i)]=«daptzzy(output_ineanjnput_mean,... 
rnput_width,E>test(i,:),-t,step); 

end 
if (Nte — 0)&(Dte — 0) 
y.% fprintfCResults of testing data before training^); 
%»4 Noutput 
%% Doutput 
•/•Record results 
record(epoch+ U:4H(length(und(Noutput>0)yNte) aength(find(Doutput<0)yDte) ]; 
fprintfCpercent correct nondeceptive and deceptive detections for testing dataAn1); 
disp(record(epoch+ 1,3:4)) 

end 

•/. Start framing and testing 
fprintfi*resurls after trainingW) 
while epoch<50 
epoch*=epoch+l 
clear Noutput; 
dear Doutput; 

% Training 
forM:Ntr 

[output_meargnput_mean4nput_width,Noutput(i)}=... 
adaptzzy(output_rneanjnput_rnearvnput_width,... 
Ntrain(i,:),l,step); 

[output_mearUnput_meanjnput_widthJDourput(i)]=... 
adaptzzy(output_niearunput_meaivnput_width,... 
Dtrain(v),-l,step); 

end 
% end one epoch 

% Test training data 
fori=l:Ntr 

[dtmimy,dummy,durnmy,Noutput(i)]=... 
adaptzzv(output_meanJnput_niearMnput_width,... 
Nuain(i,:),l,step); 

[dummy ,dummy,dummy,Doutput(i)]=... 
idapt2zy(outpui_nieanjnput_mear^put_width,... 
Dtrainö,:),-l^tep); 

end 
•/.% rprinuTresults of training dataV) 
•/••/• Noutput 
%% Doutput 
V. Record results of training data at the end of an epoch 
record(epoch+l>l:2H0«n8^fcd(>Ioutput><)))^tr)0ength(fmd(Doutput<0)yDri)); 
fprintfCpercent correct nondeceptive and deceptive detections for training dataiW) 
disp(record(epoch+1,1:2)) 

if(Nte-^0)&(Dte-=0) 
% Now test testing data 
dear Noutput; 
dear Doutput; 
forr-l:Nte 

end 
fbri=I:Dte 

{durrüny,(hrmmy,durnmy^output(i)]=«daptay<outpnit_mearynput_rnean.. 
input_widrh,Ntest(i,:),l,step); 

[durnmy,durnmy,(himmyJ>)utput©l^daptzzy(output_mearMnput_rriean,... 
rnput_width,Dtest(i,:),-l,step); 

end 
WS rprintfl>esurts of testing dataW) 
WV. Noutput 
%'/, Doutput 
record(epoch+13:4H0«ig*(find(Noutpuf>0))/Nte) (>sigth(find(Doutput<0)yDte) ]; 
rprinoTpercent correct nondeceptive and deceptive detections for testing data:W) 
ir>(record(epoch+l,3:4)) 
end 
end W Go to next epoch 
maxirnurr<triaI)=niax(record(:3>frecord(:,4)); 
teroHf^(f«OTd(:3)+record(:,4))==^axirnuni(triaI)y 0000 0]; 
maxima(trial,l:5>=ternp(l:5); 

maxima(tiiaU:5) 
rnaxünura/2 
end W Go to next trial 
maximum=maxirnunV2 
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EPILOGUE - Motivation, challenges and risks 

/ was easily fascinated by the idea of a lie-detector at the very first moment I heard about it. I 
thought, 'we are not supposed to lie anyway and a lie-detector can help us find and prevent a 
major part of the crimes committed in our society. I became even more motivated to do this 
research by an innovative way of pattern recognition, namely the fuzzy approach. 

But very soon, I also began to realize its danger - while juggling with numerical data and being 
far from the reality of testing actual human beings and judging them by an.algorithm. 

An example: Too 'good' detection rates! 
In my project, I obtained in certain cases up to 97% correct detection rate. That is, indeed, an 
impressive number. However, the emphasis lies on "certain cases" - not only in this thesis. 
A non-technically oriented user of such a product is tempted to put too much trust into these 
kinds of high rates. Even if we have a stable lie-detector with 99%(!) correct detection, this still 
means that one out of 100 persons will be judged incorrectly. 

In our daily life, we do not have the natural skill to "see" who is deceptive, but some biological 
and psychological features that enable us to estimate whether and to what degree someone is 
lying. This is exactly what I have exploited in this project. In fact, even the fuzzy approach is 
similar to the human way of categorizing someone's deceptiveness in soft terms like "She lies 
seldom" or "He is often deceptive", instead of hard labeling like "She is truthful" or "He is 
deceptive". 

After all, I am convinced that no lie-detector - even if it could work easily with different 
polygraph formats, and is perfect in technical terms - can ever be constructed with such a high 
detection rate63 that one could judge a person without any witnesses or other additional 
inquiries. We may only use a lie-detector as a helpful "objective" tool, but never as an ultimate 
decision maker. 

My initial goal was to be aware of this responsibilty and not to lose the global perspective while 
dealing with technical details.    I hope I have accomplished this. 

I also hope for an environment where we do not judge people who hurt us, but do forgive them. 
In that case, we ourselves are forgiven too, since all of us deserve to be judged, don't we! 

Ramin Djamschidi 
San Jose, September 1994. 

6-*See e.g. chapter 4.3. for "Outlier effect" and "Performance limitations". 
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Appendix E: Errors in the "Relevant Only" Data 

Fuzzy Pattern Recognition of PolyGraph E 12/19/95 



NON-DECEPTIVE DATA 

KEY 
»standard: CODE.OU, 012,013,021 022, 023,031, 032,033 

••Index: error message in MATLAB reads, 

»process 
"Index exceeds matrix dimensions. 

»Error in=>c:\users\ulka\non\extracif.m 
on line 48=> start = begin(i) + 30 ."ümes(first_channeU); 

»Error in=>c:\users\ulka\non\process.m 
on line 6=>feature = extractffz, fearurejist);'' 

*rea<U: CODE.Olc, 02c, .03c, .023, .033, .011, .021, .031, .013 
confusing as to how to READ3 these files 

•**N/A: discs were unable to be processed 

AAejctra: CODE.041, .042, .043 processed as t4  



NEWS.XLS 

NON-DECEPTIVE DATA 

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 
1 2 $$EACOWO standard* none none  ■ 
2 4 $SEAD5LX standard none none 
3 6 $$EANWKF 13 0.005 none 
4 8 $$EAOZD6 standard none none 
5 9 $$EAQWB9 standard none none 
6 11 $$EARKZ6 standard none none 
7 12 $$EARJS0 standard none none 
8 13 $$EA%KR9 standard none index** t3 
9 15 $$EA%H#L standard none none 
10 18 $$EB2lYL standard none none 
11 22 $$EC4QN3 standard none none 
12 26 $$EC7N7X standard none none 
13 33 SSECLMTU standard none none 
14 34 S$ECMA%C standard none none 
15 35 $$ECM7GX standard none none 
16 36 SSECMWB3 standard none none 
17 40 S$EC#G20 standard none none 
18 43 $SEC$O0F standard none none 
19 44 $$ED805U standard none none 
20 45 SSED8LUI standard none none 
21 46 $$ED9439 9 read3A N/A*** 
22 47 $$ED9TCX standard none none 
23 50 $$EDBQR2 standard none none 
24 53 SSEDCZYZ 12 extraAA none 
25 59 $$EDPY4# standard none none 
26 60 $$EDQCY9 standard none none 
27 61 $$EDQ28X standard none none 
28 62 $$EDQOCF standard none index   t1 
29 65 SSEDRKGO standard none none 
30 66 $$EDRMU# standard none none 
31 2 11a $$FZIMEU 13 .005, extra index    t1a 

2 11b $$FZISQ# standard none none 
32 2 12 $$FZIT4L standard none none 
33 2 14 $$FZJ52# standard none index   t1 
34 2 30 $$FZZN1Y 10 0.005 index   t3 
35 2 32 S$FZ#D6J 10 0.005 none 
36 2 33 $SFZ#0HX 13 .005, extra div by zero t3 
37 2 35 SSFZS3A& standard none none 
38 2 36 $$F#8CY9 11 .005..STR none 
39 2 38 $SF#9FJL 10 0.005 index   t2, t3 
40 2 41 SSF#B6SC standard none none 
41 2 42 $SF#B6C# standard none none 
42 2 45 $$F#NMDX standard none index   t1 
43 2 47 $$F#NHQT standard none none 
44 2 48 $SF#&7GC standard none index   t3 
45 2 51 $$F#QJTF standard none none 
46 2 52 S$F#S0KR standard none none 
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NEWS.XLS 

ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 
47 2 53 $$F#RRD5 standard none none 
48 2 54 $$F#RYFR 12 extra index   t3 
49 2 55 $$F#SALQ 10 0.005 index   t3 
50 2 56 $$F$C#2# standard none none 
51 3 2 $$F$D%YR standard none none 
52 3 12 $$F$I41X 11 .005,.STR none 
53 3 25a $$F$IUY0 10 0.005 none 

3 25b $$F$UI3X 11 .005, .STR none 
54 3 31 $$F$WNSF standard none none 
55 3 43 $$F%51&G 10 .STR index  t1 
56 3 46 $$F%5$UF standard none none 
57 3 49 $$F%7K#0 standard none none 
58 3 59 $$F%JAK6 standard none none 
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DECEPTIVE DATA 

KEY 
«standard: CODE.011,012,013,021 022,023,031.032,033 

** Index: error message in MATLAB reads. 

»process 
"Index exceeds matrix dimensions. 

»Error in=>c:\users\ulka\non\extracrijn 
on line 48=> start = begin(i) + 30 ."times! first_channeU); 

»Error in=>c:\users\ulka\non\process.m 
on line 6=>feature = extractftz, featurejist);" 

©format files were unable to be read. Error message in DOS reads: 
>format not linked 
>abnormal program termination 

AAextra: CODE.041, .042, .043 processed as t4 

*read$: CODE.Olc, .02c, .03c, 04c 
contusing as to how to READ3 these riles 



2_ 
3 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
«45 

ERS SUB# 
1a 
1b 
1c 

10 
14 
16 
19 
23 
24 
25 
27 
28 
29 
30 
31 
32 
37 
38 
41 
42 
48 
51 
52 
54 
55 
56 
58 
63 
64 
67 

10 
13 
17 
18 
21 
22 
25 
26 
27 

DECEPTIVE DATA 

CODE 
$$G3#SGD 
$$EACLB6 
$$G3$6HN 
$$EAN#XO 
$$EAOQXV 
$$EAQ%%U 
$$EB0289 
$$EA%%MX 
$$EB2WE$ 
$$EC4%GO 
$$EC77GI 
$$EC76QR 
$$ECIX9# 
$$ECIVB0 
$$ECJHKO 
SSECJVSI 
$$ECJ#Z$ 
$$ECLODC 
$$ECXAPG 
$$ECYCG0 
$$EC#SFA 
$$EC$ANC 
$$ED9$N# 
$$EDB$S3 
$$EDCSRC 
$$EDDBUX 

$$EDDHTI 
SSEDCBSU 

$$EDP26U 
$$EDQYMF 
S$EDR3Xl 
$$EDS3ZL 
$$FZ3Z5S 
$$FZ3XG6 
$$FZ52G6 
$$FZ6&46 
$SFZ7B#C 
$$FZ7GP# 
$$FZIMEU 
$$FZJ358 
$SFZL9ZR 
$$FZLBY& 
SSFZMQ#C 

# OF FILES 

$$FZMWSH 
SSFZWQQC 
$$FZW5T# 
SSFZYCM& 

standard* 
standard 
standard 
standard 
standard 
standard 
standard 

EXTRA FILES 

standard 
standard 

11 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 

12 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 
standard 

17 
10 
10 

standard 
10 
10 

standard 
standard 

13 

none 
none 
none 
none 
none 
none 
none 
none 
none 

.005, .STR 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 

extra AA 

none 
none 
none 
none 
none 
none 
none 
none 
none 

ERRORS 
index**   t3a 

none 
none 
none 
none 
none 
none 

extra, .005, read3A 

0.005 
0.005 
none 
0.005 
0.005 
none 
none 

extra, .005 

none 
index  t3 
format® 

none 
none 
none 
none 
none 

index t1,t2 
index   t3 

none 
none 
none 

index  t3 
none 
none 
none 
none 
none 
none 
none 

index  t1 
none 
none 
none 
none 
none 
none 
none 
none 
none 

index   t1 
none 

index   t2 
none 
none 

index   t2 
index   t1 

none 
index   t3 
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ERS SUB# CODE # OF FILES EXTRA FILES ERRORS 

46 2 31 $$FZZR&C 12 extra index  t2 

(#" 2 44 $$F#NC4B standard none none 

4ß 2 46 $$F#NGH3 10 0.005 none 

fei— 2 49 $$F#&KWF 10 0.005 none 

■to 2 50 $$F#PUDW Standard none none 

51 3 14 $$F$IK&0 standard none none 

52 3 16 $$F$RJK6 standard none none 

53 3 36 $$F%3C19 standard none none 

54 3 40 $$F%4&C9 11 .005, .STR none 

55 3 41 $$F%4V0U standard none none 

56 3 54 S$F%I45# 11 .005, .STR index  t1 

57 3 62 $$F%L350 standard none none 

58 3 66 SSF%LXJ& standard none none 
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