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ABSTRACT 

The author presents a detailed description of the components, 

architecture, links, and operations of the ORBCOMM global messaging and 

position determination system. ORBCOMM is the first commercial venture 

to offer worldwide personal communications service (PCS) using non-voice- 

non-geostationary (NVNG) low earth orbit (LEO) satellite technology. Link 

budget analyses of the system's satellite up and down links are presented. 

The author analyzes ORBCOMM's proprietary multiple access scheme for 

random access channel interference and describes how the system's modified 

ALOHA protocol achieves a higher throughput than pure or slotted ALOHA 

based systems. Several commercial and DoD applications of the system are 

discussed, including beaconing, data exchange, tracking, and two way 

messaging. Specific DoD applications of ORBCOMM include combat sea-air 

rescue (CSAR) and deployable communications networks for use in 

operations other than war (OOTW). With DoD taking an active role as a 

cooperative partner, ORBCOMM can satisfy the need for a low-cost, 

commercial space-based system to enhance US military global 

communications. 
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EXECUTIVE SUMMARY 

The availability of commercial worldwide communications capability 

in the form of Personal Communications Services (PCS) will have a great 

impact on DoD in the next decade. Recognizing the potential for these 

satellite-based systems to be cost effective means to satisfy growing 

communications requirements, DoD is pursuing an initiative to determine 

how to integrate PCS into its global architecture. Since it will be the first of 

the PCSs to reach operational status, and therefore may be the first such 

commercial satellite communications system to be integrated into DoD 

communication planning, the focus of this thesis is on the ORBCOMM 'little' 

LEO system. The author's purpose is to present a description and analysis of 

the system, its technology and architecture, and then to provide the reader 

with a discussion of its commercial as well as potential military applications. 

The ORBCOMM data communication and position determining 

system is designed to provide users two-way, on-the-move location and data 

messaging services anywhere on the globe. The system will achieve world- 

wide coverage by using small mobile terminals and a constellation of non- 

voice, non-geostationary low-earth orbiting satellites instead of fixed-site 

terrestrial relays. The satellites will be linked with existing 

telecommunications networks via gateway earth stations and a network 

control center. ORBCOMM employs VHF burst transmissions and digital 

packet switching, store-and-forward data network technology to provide users 

low speed data exchange and alphanumeric messaging capability. 

The author presents an analysis of the operational capabilities and 

expected performance of the ORBCOMM system. Given OBCOMM's defined 

edge-of-coverage for satellite links, the system is designed with adequate link 
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margins to assure required signal-to-noise ratios. ORBCOMM's primary 

constellation of 32 satellites, combined with the four satellite supplemental 

polar planes, incorporates redundancy design and provides the coverage and 

re-visit rates for adequate global messaging and position determination 

services for users. ORBCOMM's dynamic channel activity assignment 

system (DCAAS) has the capability of efficiently managing the frequency 

spectrum used for ORBCOMM subscriber / satellite transmissions. Finally, a 

comparison of standard ALOHA multiple access schemes and the ORBCOMM 

Acquire-Communicate protocol shows how the system achieves a network 

capacity of approximately 60,000 messages per hour. 

ORBCOMM will offer consumers choice of four levels of communication 

services. These include basic emergency alert, tracking, data acquisition 

monitoring, and full two-way on-the-move data transfer and messaging. 

Some of the first commercial applications will be in the shipping industry for 

cargo and container tracking, and in the energy industry for well head and 

pipeline monitoring. 

ORBCOMM represents the first opportunity for DoD to enhance US 

military global communications with commercial PCS. Requirements to 

exchange secure data can be easily accomplished in the ORBCOMM system 

using current DoD encryption techniques (i.e., use of the KL-43 series Digital 

Encryption Device, Digital Encryption Chips, or an encryption method like 

that used in STU-III secure telephones). ORBCOMM's low power, short 

burst transmissions give it low probability of detection / intercept 

characteristics required for some potential DoD applications. Using 

miniaturized transmission devices, DoD could immediately apply 

commercially available ORBCOMM services to meet beaconing and tracking 

requirements. Development of a "fly in" mobile ground station / network 

control center would open a host of potential applications, including filling 



the requirement for a rapidly deployable regional communications 

infrastructure suited for needs encountered in operations other than war. 

With DoD taking an active role as a cooperative partner, ORBCOMM 

can satisfy some of DoD's need to find low-cost commercial space-based 

systems to enhance US military global communications. The Government 

will benefit in the short term by being able to meet urgent requirements; 

DoD would have access to a dual-use communications network, designed, 

developed, and operated by an American company that will provide 

affordable connectivity anywhere in the world. Development of a deployable 

"mini" NCC / GES suitable for use on board a ship, plane, helicopter, or 

mounted on a vehicle such as a HUMVEE, could provide enormous flexibility 

in addressing communications requirements in many situations including 

defense, natural disaster, or humanitarian efforts. 

DoD participation in a dual-use partnership with ORBCOMM would 

be beneficial. Such an arrangement would mean lower costs for the 

Government, since ORBCOMM has been a totally privately developed and 

financed project. Operations and maintenance costs would be largely shared 

by the commercial users, thus reducing annual outlays such as are incurred 

with systems owned and operated solely by DoD. Commercially produced 

equipment (such as mobile subscriber terminals) could be used in many DoD 

applications, taking advantage of the cost reductions from economies of scale 

of the large number of terminals manufactured. 

The commercial sector would also benefit from such a team effort. 

Industry would gain from DoD economic "pump priming'' by spinning on to a 

new commercial technology. Demand for miniaturized beacons / hand-held 

terminals is well documented in DoD; demand for low cost beacons in the 

commercial sector is probably an order of magnitude larger than DoD's. The 

miniaturization of ORBCOMM transmitter beacons, and development of 
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transportable ground stations / network control centers, has the potential for 

huge expansion of the uses of the system, and therefore, to generate a 

number of new commercial ventures. 

Destined to be the first system to offer PCS to users on a global scale, 

ORBCOMM is a pioneer in satellite communications. It is the first 

commercial attempt at worldwide coverage using LEO satellite technology, 

and is one of the first commercial ventures to take advantage of the relatively 

lower costs of the Pegasus launch system to insert satellites into operating 

orbits. The first two ORBCOMM satellites were launched on 13 April, 1995. 

Both the communications industry and DoD are waiting to see how these 

first satellites, and the system overall, perform under actual operational 

conditions. 
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I. INTRODUCTION 

A. BACKGROUND 

1. General 

The availability of commercial personal communications systems 

offering global connectivity will be a reality by the end of this decade. 

Several international consortiums, made up of such leading high technology 

companies as Motorola, Hughes, TRW, Raytheon, Marconi, Loral, 

Aerospatiale, and Orbital Sciences Corporation (OSC), are currently 

developing systems which will compete to offer consumers various levels of 

worldwide personal communications services (PCS). 

PCS is a generic term which encompasses a variety of mobile 

communications services such as voice, data, and facsimile. It is a service, not 

a particular technology, which draws on expanding the technologies of digital 

modulation, cellular and cordless telephone, and sophisticated network 

protocols. 

The Federal Communications Commission defines PCS as " a family of 

mobile or portable radio communications services which could provide service 

to individuals and businesses and be integrated with a variety of competing 

networks. . . the primary focus of PCS will be to meet communications 

requirements for people on the move" [Ref. 1]. PCS will enable us to 

communicate from person to person regardless of physical location. While 

the services cover a wide range, from simple paging to voice and more 

advanced functions, the major benefit will be the capability to communicate 

from virtually anywhere to virtually anywhere on a planet-wide basis. 

Most of the PCS systems envision a similar concept: subscribers with 

portable, lightweight hand-set type instruments providing them with access 

to a ubiquitous network. Although they differ on how they will actually 



perform their functions, the current systems under development all use low 

earth orbit (LEO) communication satellites to provide network connectivity. 

2. LEO versus GEO 

Today's commercial and military communication satellites are 

generally in a geostationary (GEO) orbit some 22,000 miles directly above the 

equator. Each satellite moves in the same direction and at a velocity that 

matches the earth's rotation, making it appear to be stationary directly above 

a point on the equator. GEO satellites offer several distinct advantages for 

communications: 

• Each satellite can view 42% of the earth's surface. 

• Earth station tracking antennas don't require complex and costly 
tracking mechanisms because they remain stationary (pointed at 
the satellite). 

• GEO satellite design has been refined over the past twenty years; 
many standard designs are already in use. 

However, GEO satellites have several disadvantages: 

• Satellites and earth stations require high power transmitters to 
ensure signal propagation across the 22,000 mile distance. 

• GEO Satellites are costly to build, launch and insure. 

• Satellites cannot view latitudes greater than about 77 degrees. 

• Active orientation and stabilization systems are needed to keep the 
satellite pointing correctly. 

In contrast to a GEO satellite, a satellite in low-earth orbit will always 

move relative to an earth station. Therefore, LEO earth station antennas 

must either have tracking mechanisms or be omni-directional. LEO 

satellites, with their orbit altitudes of between 100 -1000 miles, have a much 

smaller portion of the earth (or 'footprint') visible at any given instant in 

time. Complete and continuous global coverage can only be achieved using 

constellations of many LEO satellites in orbital planes inclined about the 

equator. 



The great advantage of LEO, with the relatively low satellite 

altitudes, over geostationary orbits is that the satellite is much closer to the 

user's terminal. This shorter signal path reduces transmission delays from 

230 ms to around 40 ms, and reduces the free-space signal loss by about 21 

dB [Ref. 2]. This allows for the hand-held terminal with an omni-directional 

antenna to communicate with a satellite by transmitting at low enough 

power levels so as to not be dangerous to the user. LEO satellites also 

require lower power transmitters and generally do not need active 

stabilization and orientation, allowing them to be smaller and cheaper to 

build, launch, and insure. On the other hand, LEO systems are more 

complicated to manage because they have a smaller footprint and are moving 

so fast (approximately 7,500 m/s) [Ref 2]. Additionally, to guarantee 

uninterrupted communication LEO systems must include enough satellites to 

ensure that when one sets over the user's horizon there is always another 

rising to take over the call. This satellite-to-satellite hand-off is not a simple 

problem to solve. 

3. Little versus Big LEOs 

There are two distinguishable types of LEO systems in the current 

field of global PCS systems under development. The less sophisticated of the 

two, and closest to being commercially available, are known as 'little' LEOs. 

These systems will provide inexpensive data exchange and short messaging 

services only, primarily to niche markets in commerce, service, and industry. 

Because they are packet switched and employ burst communications, their 

network design does not need to incorporate inter-satellite link or satellite-to- 

satellite hand-off technology. There are currently two 'little' LEOs under 

development: ORBCOMM and STARSYS. 

In contrast, the 'big' LEOs, consisting of IRIDIUM, GLOBALSTAR, 

ODYSSEY, ARIES, ELLIPSO, and PROJECT 21, will use advanced state-of- 



the-art satellite communication, network, and processing technology to 

achieve continuous global coverage. These systems will offer data and voice 

services for a charge of a few dollars per minute to a much broader target 

market of millions of subscribers. While the first of the 'little' LEO satellites 

are now being inserted into orbit and will soon be operational, the first 'big' 

LEO systems are not expected to offer service until 1998 at the earliest. 

B. PURPOSE AND ORGANIZATION 

The availability of a commercial worldwide mobile communications 

capability afforded by these PCSs can have as great an impact on DoD as it 

will in the civilian sector. During the Gulf War the required size, complexity, 

and robustness of the command and control network identified that DoD has 

a clear need for more satellite communication assets. The capacities of the 

US military communication satellites were stretched to their maximum 

limits to support both in-theater (tactical) and long-haul communication nets. 

In the area of data communications, user demand climbed to such a point 

that circuits became so jammed with the backlog of messages that systems 

virtually ground to a standstill [Ref. 3]. According to Rear Admiral Charles 

Saffel, Deputy Director for Unified Command C4 Support, Joint Staff/J-6, 

this growth in military satellite communication requirements is expected to 

continue throughout the decade. As can be seen in Figure 1, it will require a 

combination of military and commercial satellite communication systems to 

meet these future requirements [Ref. 4]. 

In recognition of the need to determine how commercial satellite 

communications systems can be cost effectively used by DoD to satisfy the 

requirements for both fixed and mobile services, Congress directed the 

Secretary of Defense in 1992 to commence a Commercial Satellite 

Communications Initiative (CSCI) study [Ref. 5]. As a result, DoD is today 

pursuing the study of the opportunities of using commercial PCS in 



conjunction with military systems to satisfy the communications need for 

future warfighters. 
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Figure 1. Role of commercial systems in meeting growing DoD 
requirements. After Ref. [4]. 

Since it will be the first of the PCSs to reach operational status, and 

therefore may be the first such commercial satellite communications system 

to be integrated into DoD communication planning, the focus of this thesis is 

on the ORBCOMM 'little1 LEO system. The author's purpose is to present a 

description and analysis of the system, its technology and architecture, and 

then to provide the reader with a discussion of its commercial as well as 

potential military applications. Finally, a review will be offered summarizing 



the system's capabilities, followed by some concluding comments on the 

potential economic benefits of Government participation in the ORBCOMM 

venture. 



II. THE ORBCOMM SYSTEM 

A. SYSTEM OVERVIEW 

The ORBCOMM data communication and position determining 

system is designed to provide users two-way, on-the-move location and data 

messaging services anywhere on the globe.   The system will achieve world- 

wide coverage by using small mobile terminals and a constellation of non- 

voice, non-geostationary (NVNG) low earth orbiting (LEO) satellites instead 

of fixed-site terrestrial relays. The satellites will be linked with existing 

telecommunications networks via gateway earth stations and a network 

control center. Commercial users will be able to select among different 

ORBCOMM services ranging from basic alert and location service to fully 

mobile digital messaging. 

Users of ORBCOMM mobile terminals will be provided location data 

via a Doppler shift technique. In addition, Global Positioning System (GPS) 

time signals, with an accuracy of one millisecond, will be provided free of 

charge to all users as part of the basic package. [Ref. 5] 

The ORBCOMM system employs digital packet switching, store-and- 

forward data network technology to provide users low speed data exchange 

and alphanumeric messaging capability. The ORBCOMM data network uses 

CCITT X.400 (e-mail) and X.25 (packet switch) communication protocols. 

ORBCOMM will be accessible through Internet, public and private data 

networks (i.e., SPRINT), dial-up circuits (fax and voice), or public e-mail 

services. 

1. Components 

The ORBCOMM network consists of three main components - a space 

segment, a ground segment, and mobile terminals. These components will be 

discussed in detail later. The key links in the system are the satellites and 



gateway earth stations (GES), which provide the connectivity between mobile 

subscriber terminals (ST) and the network control centers (NCC). The NCCs 

are the pathways between ORBCOMM and external public network circuits, 

in addition to being the internal routing and forwarding centers for the 

network. A total of 23 countries are currently licensed to build ground 

facilities and offer ORBCOMM services to their local markets. Appendix A 

contains a list of countries which already have an ORBCOMM license in 

place and a listing of those countries currently seeking license agreement. 

There will be only one NCC in each country, but larger nations may require 

several GESs. 

2. Architecture 

When a message is transmitted from a mobile ST, it is received by an 

ORBCOMM satellite, then downlinked to the first available GES. The GES 

relays the message via dedicated terrestrial line or very small aperture 

satellite (VSAT) link to the NCC, where the message recipient's location is 

determined. If the recipient is outside the ORBCOMM network, the NCC 

routes the message to an external gateway. If the recipient is another 

ORBCOMM mobile ST, the NCC routes it to the appropriate GES, which 

uplinks the message to a satellite for transmittal down to the addressee of 

the message.1 

Both the NCCs and satellites have the ability to store messages. The 

NCC may deliver messages via active circuits or store them in memory for 

retrieval at the customer's convenience [Ref. 5]. When communications 

between a satellite and any NCC is not possible, the satellite will 

1 The NCC may or may not have to relay the message to another regional NCC for 
transmission to the GES. 
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acknowledge mobile ST transmissions, but store the messages in memory 

until they can be downlinked to a GES for transmission to an NCC. 

Messages addressed to mobile STs originating from outside the 

ORBCOMM network arrive at the NCC through a gateway and are 

transmitted to the recipient in a similar fashion described above. The end-to- 

end time for transmitting and receipt of a message is approximately three 

seconds, assuming the satellite can communicate with an NCC or the NCC 

does not store the message [Ref. 5]. Figure 2 shows the components of the 

ORBCOMM system and the network architecture. 

• Uplinks 

• Downlinks 

Dedicated Access 

Dial-Up Access • 

E-Mail Services 

Public Switched 
Data Network 

148.0-149.9 MHz 
137.0-138.0 MHz 

400.05-400.15 MHz 

Network 
Control 
Center 

and 
Satellite 
Control 
Center 

Gateway 
Earth 

Station 

H 
Subscriber 

Communicator 

Figure 2. ORBCOMM system architecture. After Ref. [6]. 

3. Links 

ORBCOMM has been licensed by the FCC to utilize the VHF spectrum 

for its operational links. The GPS time broadcast, however, will be in the 

UHF spectrum (400 MHz). All downlink transmissions will be in the 137 - 



138 MHz band, while all system uplink transmissions will be between 148 

and 149.9 MHz. Mobile ST data rates will be 2400 bits per second on the 

uplink and 4800 bits per second on the downlink. Transmissions between 

satellites and mobile STs will employ Symmetric Differential Phase Shift 

Keying (SDPSK) modulation format. Transmissions between satellites and 

GESs will employ Offset Quadrature Phase Shift Keying (OQPSK) 

modulation, achieving a data rate of 56,700 bits per second on both the up 

and downlinks. [Ref. 6] 

4. Position Determination 

As mentioned earlier, ORBCOMM terminals will use a Doppler 

position determination technique to provide mobile users with location data. 

There will be three levels of position resolution available to users who require 

this capability. Capability and complexity of the mobile ST will determine 

how accurate calculation of terminal position will be. Note that the system 

uses the satellite VHF and UHF downlinks to determine position, thus 

minimizing subscriber transmissions and use of scarce spectrum. [Ref. 5] 

Mobile STs will measure Doppler shift on satellite downlink signals. 

Each satellite will use GPS to determine its own position. The combination 

of satellite location via GPS data and Doppler measurement enables STs to 

determine their own position with a general accuracy of between 100 and 

1000 meters; level of accuracy will depend on which frequencies the terminal 

uses to derive location. [Ref. 5] 

Using time and position data from the satellite, the mobile STs will 

use one of three frequency plans to calculate its position: single frequencies of 

137 MHz or 400 MHz, and a dual frequency plan using 137 and 400 MHz 

together [Ref. 5]. The STs internally analyze the satellite downlink 

frequencies and determine the shape of the curve of variance from the known 

carrier frequency to produce a most likely user position. On a single satellite 
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pass basis, least accurate of the three types of mobile STs will be units that 

derive position from a single downlink frequency. Using a single downlink 

frequency for high resolution position determination will require a number of 

discrete measurements to be made over several satellite passes. 

Using a single frequency, the time for an initial position fix will be on 

the order of seven minutes. Mobile STs using the 137 MHz downlink 

frequency will have a single satellite pass resolution of 3600 feet (about 0.7 

miles) for stationary or slow moving users. STs using the 400 MHz downlink 

are projected to have a single pass resolution of 1200 feet (about 0.2 miles) for 

stationary users. Position resolution for both types of mobile STs will 

improve by 30% on the second satellite pass, which will nominally occur 

within 24 minutes. [Ref. 5] 

The top-of-the-line mobile STs will measure Doppler shift from a signal 

derived from the combination of the satellite's 137 MHz and 400 MHz 

carriers [Ref. 5]. Use of the two carriers significantly improves position 

resolution by enabling the ST to remove the propagation path errors caused 

by ionospheric refraction of the radio waves [Ref. 6]. These STs have a 

single pass projected resolution of 120 feet, with second and third pass 

resolution improving to 85 and 70 feet, respectively [Ref. 5]. 

B. SPACE SEGMENT 

1. General Description 

The ORBCOMM system will be the first to make use of a constellation 

of LEO satellites to provide global communications coverage. The system's 

space segment will consist of 36 satellites launched into six orbital planes. 

The satellites will be inserted into 775 km altitude circular orbits. All 

satellites will have an orbital period of 105 minutes. The main constellation 

will be made up of four planes of eight satellites each; each of these four 
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planes will be inclined 45 degrees with respect to the equator. The eight 

satellites in each plane of the main constellation will be spaced 45 degrees 

apart. ORBCOMM will offeer enhanced polar coverage with two 

supplemental, 70 degree inclined orbital planes. Each of the supplemental 

polar planes will contain two satellites which will be spaced 180 degrees 

apart. The configuration of the constellations is designed to allow continuous 

two-way data and message transfer capabilities, in addition to mobile ST 

position determination, over all of the United States and most of the world. 

[Ref. 7] 

2. Spacecraft Description 

The design of all 36 of the ORBCOMM satellites is identical. The 

satellites are engineered to use the maximum capacity of Orbital Science 

Corporation's Pegasus XL low cost launch vehicle [Ref. 6]. Before 

deployment, the satellites are disk shaped - 41 inches in diameter and just 

6.5 inches thick. One full plane (eight satellites) can be simultaneously 

launched to 775 km at 45 degrees inclination on a Pegasus XL [Ref. 6].   After 

insertion into orbit, the solar panels and antenna deploy. Figure 3 shows the 

satellite in its deployed configuration. 

The satellites contain four main subsystems: communication 

subsystem, antenna subsystem, attitude control and station keeping 

subsystem, and the electrical power subsystem. 

a. Communications Subsystem 

The principal payload of the satellites is the communication 

subsystem, which is composed of four sections: subscriber communications 

section, gateway communications section, satellite network computer, and 

UHF transmitter section. [Ref. 6] 
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Figure 3. Deployed ORBCOMM satellite. From Ref. [6]. 
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The largest section of the satellite communication subsystem is 

the subscriber communications section. It consists of seven identical 

receivers, two transmitters, and associated receive / transmit filters and 

hybrid couplers. In normal operations, six of the receivers will be subscriber 

receivers used to process inbound traffic, and the seventh will be the 

Dynamic Channel Activity Assignment System (DCAAS) receiver. Each of 

the receivers are direct conversion Digital Signal Processor (DSP) driven 

receivers. When selected by ground command to function as the DCAAS 

receiver, each receiver is capable of scanning the 148 -149.9 MHz band with 

2.5 kHz resolution in five seconds. (DCAAS will be covered in greater detail 

in a later section.) The subscriber receivers use a single uplink antenna and 

Low Noise Amplifier (LNA) which has been designed to operate linearly in 

the presence of high levels of interference. Analog and digital filters are 

incorporated after the LNA to reduce the impact of VHF transmissions from 

terrestrial mobile communications systems on the subscriber receivers. 

Following SDPSK demodulation, the digital signals are routed to the satellite 

on-board network computer for processing. [Ref. 6] 

The subscriber communication section also includes two 

subscriber transmitters which are capable of transmitting at a nominal 

output power of 11 Watts. The output transmitters receive packets for 

downlink from the satellite on-board network computer, modulate and 

amplify the signals, then feed the signals into the antenna subsystem. To 

protect frequency bands outside 137 -138 MHz from out of band 

transmissions, output filters and diplexers are used.  [Ref. 6] 

The gateway communications section consists of a transmitter 

and receiver in a single package, with separate antennas used for transmit 

and receive functions. The antennas have opposing circular polarization, 

while the nominal power of the transmitter is 5 Watts. Data packets 
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destined for a GES are routed from the satellite network computer to the 

gateway transmitter.  [Ref. 6] 

The 56.7 kbps satellite downlink to the GES is transmitted 

using OQPSK modulation and Time Division Multiple Access (TDMA) 

format. The gateway receiver demodulates OQPSK 56.7 kbps TDMA signal 

uplinks from the GESs and forwards data packets to the satellite network 

computer. [Ref. 7] 

As already described, the satellite network computer processes 

uplinked packets from the subscriber and gateway receivers for distribution 

to the proper downlink transmitters. The satellite network computer 

functions are actually performed by a distributed computer system consisting 

of several microprocessors [Ref. 6]. The computer system is also responsible 

for identifying clear uplink channels using the DCAAS receiver, and for 

interfacing with the satellite GPS receiver to distribute information required 

by the communication subsystem. 

The UHF transmitter section consists of a specially constructed 

1 Watt transmitter which emits a 400 MHz signal coupled to a 2 dB peak 

gain antenna [Ref. 6]. As mentioned earlier, the use of this UHF beacon, 

combined with the normal VHF subscriber downlink, significantly improves 

performance of the position determination function of the mobile STs. 

b. Antenna Subsystem 

The ORBCOMM satellite antenna subsystem consists of a 

deployable, four segment antenna boom and the necessary RF splitters, 

phase shifters, and impedance matching transformers required to feed the 

various antenna elements. The boom contains seven separate circularly 

polarized quadifiler antenna elements which are combined into the following 

five separate antennas [Ref. 6]: 

• Combined Subscriber Receive/Transmit Antenna #1 
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• Subscriber Transmit Antenna #2 

• UHF Transmit Antenna 

• Gateway Receive Antenna 

• Gateway Transmit Antenna 

Prior to satellite deployment, the antenna is folded into a trough 

measuring approximately 6x6x38 inches. The antenna deploys to its full 141 

inch length after the satellite solar panels are released. The antenna boom 

also serves as the mounting point for a 3-axis magnetometer and a gravity 

gradient weight used by the attitude control subsystem. [Ref. 6] 

c. Attitude Control and Station Keeping Subsystem 

The function of the satellite attitude control subsystem (ACS) is 

to keep the antenna pointed toward the earth, as well as solar pointing to 

maximize the efficiency of the solar cells. As mentioned earlier, the ACS 

includes a three axis magnetic control system which operates with a 

combination of sensors. The gravity gradient weight at the nadir-end of the 

antenna boom enhances stabilization. The ACS, in conjunction with the 

antenna subsystem, maintains an average pointing loss of approximately 0.2 

dB for the satellites in the 45 degree inclined planes and within a few tenths 

of a dB for the 70 degree inclined plane polar coverage satellites. [Ref. 6] 

The satellites in the two ORBCOMM constellations will 

maintain their relative positions to within plus/minus five degrees, i.e., 45 + 

5 degrees separation for the main constellation and 180 ± 5 degrees for the 

two supplementary polar planes [Ref. 6]. Separation velocity from the 

Pegasus launch vehicle will be accomplished via springs, then braking will be 

performed using a nitrogen gas (GN2) blowdown system to accomplish the 

required initial spacing within each plane. ORBCOMM will utilize a 

proprietary station-keeping technique to maintain correct intra-plane 

spacing. ORBCOMM technical publications indicate this proprietary 
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technique is "cost free" because it does not require use of satellite fuel 

[Ref. 5]. 

d. Electrical Power Subsystem 

The electrical power system for ORBCOMM satellites will 

produce approximately 70 Watts of power on an orbit average basis at the 

end of a satellite's four year life. This is enough power to operate the full 

payload through the end of satellite life, even under worst-case eclipse 

conditions. Each satellite has enough solar cells to support operation in 

eclipse orbit after four years; the solar array is designed with excess 

capability and generating margin to account for degradation over the 

satellite's lifetime. The batteries are sized for 20,000 discharge cycles, 

approximately equating to an eclipse every 100 minutes for four years. 

Tables 1, 2, and 3 show the satellite power budget, solar array requirements, 

and battery sizing data. [Ref. 6] 

C. GROUND SEGMENT 

ORBCOMM's system design employs relatively simple, inexpensive 

satellites. Therefore, most of the "intelligence" in the ORBCOMM system is 

in its ground network. The ground segment is comprised of gateway earth 

stations (GESs), network control centers (NCCs), and a single satellite 

control center. Each country licensed to provide ORBCOMM service will 

have one NCC and at least one GES. The geographic size of the country will 

determine how many GESs are required to provide the satellite coverage 

needed by the network. For instance, there will be four GESs located near 

the corners of the continental US (New York, Georgia, Washington, and 

Arizona) [Ref. 7]. 

17 



Subsystem Peak Power Orbit Average 
with 

contingency 
Bus (W) (WHr) 

Computer 2.2 3.7 
ACS Subsystem 5.7 5.4 
Power Subsystem 9.2 11.6 
Harness 0.2 0.4 
GPS Receiver 3.7 6.3 

Pavload 
DCAAS Receiver 0.9 1.6 
ST Receivers (6) 5.6 9.4 
GES Receiver 3.3 5.6 
ST Transmitters 33.5 56.2 
GES Transmitter 9.1 15.3 
UHF Transmitter 4.2 2.3 

Peak Power Requirements 77.8 W 
Total Energy per Orbit 117.8 WHr 
Orbit Average Power Requirements 70.2 W 

Table 1. Satellite Power Budget. From Ref. [7]. 
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Required Energy 141 WHr (worst case) 
Average Power 129 W 
Collection Efficiency 90 % (Pointing and 

Shadowing) 
Required Solar Array Power 143 W 
(end-of-life) 
Degradation over Lifetime (4 yrs) 67 % (Radiation, UV, 

Thermal) 
Required Solar Array Power 213 W 
(beginning of life) 
Array Power 236 W 
Margin 11 % 

Table 2. Satellite Solar Array Requirements. From Ref. [7]. 

Maximum Depth of Discharge 35   % (20,000 discharge 
(DOD) cycles) 
Maximum Storage Required 46   WHr 
Battery Sizing 132   AHr 
Bus Voltage 14.0   V(5NiHat2.8 

Volts each) 
Required Cell Sizing 9.4   AHr 
Actual Cells 10.0   AHr 
Actual Maximum DOD 33   % 
DOD Design Margin 2   % 

Table 3. Satellite Battery Sizing. From Ref. [7]. 
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1. Gateway Earth Stations 

The GESs are highly automated, regional gateways linking 

ORBCOMM spacecraft with the NCCs and the satellite control center. It is 

this combination of satellites and GESs that provide the mobile user 

transparent access to the network. GESs are connected to the network 

control center via leased terrestrial or VSAT links. They are designed to be 

unattended, highly redundant, and provide the following functions: 

• Acquire and track satellites (using orbital data received from the 
NCCs). 

Transmit to and receive from satellites. 

Transmit to and receive from NCCs. 

Monitor and report status of GES hardware and software to NCCs. 

Monitor and relay system level performance data of satellites 
"connected" to the GES.  [Ref. 8] 

To track and communicate with the satellites as they cross the horizon, 

each GES uses two steerable, 18 foot aperture high gain VHF antennas. The 

antennas are conical horn with a disc-o-cone feed structure that have 

extremely low side lobes. At ORBCOMM frequencies (VHF), the beamwidth 

of these antennas is approximately 22 degrees. This relatively large 

beamwidth means two or more satellites will be in, or near, the main beam of 

the same GES antenna a large percentage of the time. By using a time 

division multiple access protocol (TDMA), the GESs can communicate with 

multiple satellites simultaneously and seamlessly "hand-off* satellites from 

one GES to another. ORBCOMM mobile subscriber multiple access protocols 

will be discussed in more detail later. Schematic representation of a typical 

GES is shown in Figure 4. [Ref. 6] 
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2. Network Control Centers and Satellite Control Center 

ORBCOMM NCCs provide message routing, satellite control, and 

customer services in each country. The NCC in the US will be operated by 

ORBCOMM; NCCs abroad will be operated under license. The NCC is 

comprised of highly available dual processor computers running 

ORBCOMM's UNIX based proprietary software, automatic switch overs, and 

mirrored disks [Ref. 8]. Figure 5 shows general NCC configuration. 

Customer connectivity to the NCCs from external networks will be 

over leased lines and the public data networks. The NCC will provide the 

following functions [Ref. 8]: 

• Message handling - management of the delivery of data messages 
within and in/out of the ORBCOMM system 

• Network management - statistics, diagnostics, configuration control 

• Message transfer/gateway - delivery of data messages, conversion 
to/from other message delivery receipt formats 

• Customer service - live operators providing a customer service 
interface 

The ORBCOMM system has one satellite control center (SCO which 

will be co-located with the NCC in Dulles, Virginia. The SCC will provide 

satellite control (via any of the GESs) and constellation optimization, in 

addition to satellite management services such as telemetry monitoring, 

analysis, and fault identification [Ref. 7]. 

D. MOBILE SUBSCRIBER TERMINALS 

The ORBCOMM system will utilize several different types of mobile 

STs - ranging from fully integrated personal communicators about the size of 

a flip-top cellular telephone to ruggedized "black box" industrial 

communications engines designed for autonomous remote tracking and data 

reporting [Ref. 8]. Several companies, including Panasonic, Texas 
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Instruments, Torrey Science & Technology, Elisra, and ETA Technologies 

Corporation, are licensed to produce ORBCOMM mobile STs [Ref. 9]. A 

number of different versions of each type are currently under design or in 

pre-production status. 

The personal communicator versions of the mobile STs are full 

function, lightweight devices powered by long life batteries. In addition to 

ORBCOMM transmit and receive electronics, the communicators will consist 

of small alpha-numeric keypads for composing messages and an LCD screen 

to read incoming messages, as shown in Figure 6. The "black box" industrial 

units have ORBCOMM transmit and receive components but no keyboards or 

displays. Designed to integrate with and pass data and/or position reports 

from autonomous equipment anytime, anywhere, these units will interface 

with other systems via RS-232C ports. A third general variation of the 

mobile ST designed for direct (serial port) interface with personal computers 

will also be available; this type of unit will be similar in function to an 

internal/external modem and operate in the same manner as the industrial 

"black box" type units. [Ref. 6] 

All versions of the mobile STs will be able to transmit on any of the 

DCAAS assigned channels between 148 and 149.9 MHz, and receive any of 

the satellite downlink channels between 137 and 138 MHz. Using SDPSK 

modulation, the mobile STs will transmit at 2400 bps and receive at 4800 

bps. As discussed earlier, single satellite pass position accuracy will depend 

on the number of frequencies the mobile ST uses for Doppler shift processing. 

E. OPERATIONS 

1. Frequencies and Channelization 

The ORBCOMM system operates principally in the VHF frequency 

bands. Downlinks from the satellites to both the GESs and mobile STs 
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occur in the 137 -138 MHz band. All transmissions to the satellites (mobile 

ST and GES) use the 148 -149.9 MHz band. The satellites also transmit a 

UHF beacon at 400.1 MHz. Table 4 shows the system frequency and 

channelization plan. 

Link Frequency Channels Channels Data Channel 
Description Band (satellite) (system) Rate Bandwidth 

(MHz) (kbps) (kHz) 

Mobile ST to 148-149.9 6 DCASS2 2.4 10.0 
satellite uplink 
GES to satellite 148-149.9 1 1 57.6 50.0 
uplink 
Satellite to 137-138 2 18 4.8 15.0 
Mobile ST 
downlink 
Satellite to GES 137-138 1 1 57.6 50.0 
downlink 
Satellite to 400.05- 1 1 NA 18.0 
Mobile ST 400.15 
beacon 
Table 4. ORBCOMM Frequency Band and Channelization. From Ref. [6]. 

2. Links 

The following paragraphs discuss ORBCOMM communication links. 

a. Satellite to Mobile ST 

The system uses a total of 18 channels with 15 kHz bandwidth 

for the satellite to mobile ST downlinks. Each satellite will be assigned two 

of the 18 channels for downlinks. This number is a function of the number of 

satellites which will simultaneously be visible to the subscriber population 

and the number of satellites simultaneously visible to each other. 

2 DCAAS can access up to 760 channels [Ref. 6]. See description of DCAAS in sub-section d. 
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ORBCOMM predicts that for 20 percent of the time three satellites, each in 

different orbital planes, will be simultaneously visible to the user population. 

Therefore, to avoid intra-system interference, the three satellites will have to 

use different downlink frequencies. These three satellites will also have to 

avoid frequencies being used by the other two co-planar satellites whose 

footprints overlap with their coverage areas. Thus, the total number of 

satellites that ORBCOMM must consider for intra-system coordination is 

nine - the three satellites simultaneously in view of the population and their 

six co-planar satellite neighbors. With two downlink frequencies per 

satellite, a total of 18 downlink channels are required.  [Ref. 6] 

b. GESI Satellite 

ORBCOMM utilizes TDMA for its GES / satellite links to 

simultaneously use single 50 kHz channels for uplink and downlink. TDMA 

has several advantages, including sharing of the single channel by multiple 

satellites / GESs and "seamless" hand-over of satellites from GES to GES. 

According to ORBCOMM, this assignment is sufficient to service the entire 

constellation of satellites. [Ref. 6] 

c. Mobile ST to Satellite 

The mobile ST to satellite links are designed to operate in the 

high interference environment which exists in the 148 -149.9 MHz band. 

The mobile ST uplinks are designed to be frequency agile. The uplinks will 

be able to access 10 kHz channels on a burst-to-burst basis using 

ORBCOMM's proprietary DCAAS multiple access protocol for channel 

assignment.  [Ref. 6] 
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d. DCAAS 

DCAAS is the "heart" of the system's interference avoidance 

design. DCAAS uses a scanning receiver to sample small bandwidths and 

measure interference power across the spectrum every five seconds or less. 

The interference information is processed by the satellite's onboard computer 

to yield a list of the "best" uplink channels. This list is prioritized based on 

an algorithm which predicts the interference power expected on the next 

scan. DCAAS selects channels to use from the stored set of possible uplink 

channels based on this prioritized list. The satellites distribute the channel 

assignment information to the mobile STs via an order wire during the 

satellite / subscriber handshake procedure which is required before a mobile 

ST is allowed to transmit. [Ref. 61 

3.   Multiple Access 

Multiple access for mobile subscribers in the ORBCOMM system is 

achieved via a satellite / subscriber handshake procedure and use of a 

proprietary multiple access network protocol. 

a. Order Wire 

Before a mobile subscriber terminal can transmit, it must 

receive the satellite downlink order wire transmission. The order wire 

contains packets of information the mobile ST needs to successfully 

transmit and receive message packets with the satellite. Updated every few 

seconds, the order wire distributes the following information [Ref. 6]: 

• Information on the satellite / GES connection being used. 

• Partitioning of the multiple access / messaging uplink and 
downlink channels. 

• The current frequencies selected by DCAAS. 

• Other pertinent system information (i.e., time and synchronization 
data). 
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b. Acquire-Communicate 

The ORBCOMM system uses a proprietary modified ALOHA 

scheme called Acquire-Communicate (A-C) as its multiple access protocol 

[Ref. 5]. A-C is similar to slotted ALOHA multiple access protocol in that a 

common communication channel is used by many subscribers to transmit 

packets, and packet transmissions are made in short bursts since the entire 

channel bandwidth is used [Ref. 10]. Additionally, the channel is slotted in 

time and users are required to synchronize their packet transmissions into 

assigned fixed-length channel time slots [Ref. 5]. 

A-C is a two-phase process; the uplink channel is organized into 

two distinct windows. In the acquisition phase, the satellites provide the 

users with uplink information (i.e., frequency and time correction data) and 

the mobile STs identify communications needs to the satellites. In addition, 

the mobile STs receive the slot assignments for follow-on transmission of 

information packets during this phase. The information packets are then 

transmitted during the communication phase. Figure 7 depicts the sequence 

of events in the A-C process. The length of the communications window 

nominally allows up to 14 short packet transmissions from the mobile ST. 

However, this window can be shortened or lengthened as directed from the 

network control center (NCC).  [Ref. 5] 

When a mobile ST has packets to send, it commences an A-C 

sequence. The sequence begins with the terminal software initiating a 

"random access" process by selecting: 

• A channel from the current list of in-use A-C channels (given to the 
mobile ST by the satellite on the order wire). 

• A number between 1 -127. (This is the burst ID number. It 
identifies a ready user to the satellite, and is used by the satellite to 
assign slots). 

• A start time within its acquisition window. 
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The mobile ST transmits an eight-bit burst at the randomly selected start 

time within its acquisition window. Then it goes back to receive mode to wait 

for slot assignment packets to arrive on the downlink channel. The satellite 

assigns slots by burst ID. If the mobile ST does not receive a slot assignment 

for its burst ID, the A-C process is restarted up to n times. The value of n is 

contained in the uplink information provided on the order wire. [Ref. 5] 

Under the A-C scheme, the satellites use the downlink channels 

to transmit control information and/or message traffic to users. The 

satellites transmit messages to subscribers in a stream of bits that is 

organized into one-second frames. The downlink frames are further 

decomposed into 25 byte segments or time slots. ORBCOMM STs will 

reserve all, or a portion of one, of these time slots for their data traffic. Thus, 

subscribers will only receive messages addressed to them; transmissions 

during the other time slots will not be received by the mobile STs.  [Ref. 7] 

F. SUMMARY 

ORBCOMM is a digital data communications and navigation system 

that provides mobile two-way information exchange and position location 

anywhere in the world. ORBCOMM is the world's first commercial LEO 

satellite system, and is designed to use relatively simple, inexpensive 

satellites and mobile communicators in combination with "intelligent" 

terrestrial stations. ORBCOMM employs VHF burst transmission and 

packet switching, store-and-forward communications network technology. 

The system does not utilize simple "bent-pipe" type satellite communication 

relays. The satellites demodulate and use on-board computers to process 

messages, re-modulating them into message packets for transmission on the 

downlink. 
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III. SYSTEM ANALYSIS 

This chapter presents an analysis of the operational capabilities and 

efficiencies expected from the ORBCOMM system. The analysis focuses on 

system link budgets, orbits and coverage predictions, random access channel 

interference, and network throughput. 

A. LINK BUDGETS 

System link budgets were calculated for edge-of-coverage as defined by 

ORBCOMM. The budgets are based on a geometry with the satellites at five 

degrees elevation angle from the mobile user or GES. Corresponding angle 

at the 775 km altitude satellite is 62.5 degrees off-nadir [Ref. 6]. Appendix B 

contains the details and calculations associated with each of the link budgets. 

Note that ORBCOMM satellites do not use turn-around transponders; all 

packets are demodulated and re-modulated prior to re-transmission. A 

number of worst case conditions are assumed in the link calculations. Actual 

instantaneous link margins on the various paths will depend on a number of 

dynamic conditions (i.e., current geometry, local blockage, multipath losses) 

[Ref. 11]. 

The system bit-error-rate (BER) requirements are based on modulation 

type and bit rates. BER for the GES / satellite links is 1:106, while BER 

required for satellite / subscriber links is 1:105. 

1. GES to Satellite Link Budget 

The GES to satellite link calculation indicates a 2.48 dB excess margin 

for the communication uplink. Contributing to this calculation is the earth 

station's 40 dBW EIRP derived from a 17 dB gain VHF transmit antenna and 

a 330 Watt high power linear amplifier (HPA). Losses between the HPA and 

transmit antenna are predicted at 2.2 dB. The GES receiver on the satellite 

has a noise figure on the order of 7 dB and antenna gain of 1 dB when the 
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source of the inbound GES signal is 62.5 degrees off nadir. The satellite LNA 

to antenna loss is predicted at 1.4 dB. The satellite's calculated G/T is 

reduced approximately 0.9 dB to account for an expected antenna 

temperature above 290 degrees Kelvin caused by sky noise at the operating 

frequencies. [Ref. 6] 

An interference margin of 20 dB is included to account for interference 

from terrestrial mobile communications systems which operate in the VHF 

band. The GES to satellite uplink channel is 50 kHz wide, while terrestrial 

mobile systems are channelized on 25 kHz center frequencies. The 

interference margin accounts for the satellite receiver having to operate in 

the presence of unwanted signals from at least two terrestrial mobile 

channels. [Ref. 6] 

2. Satellite to GES Link Budget 

The 3.6 dB excess margin on the satellite-to-GES communication 

downlink is based on a satellite EIRP of 6.5 dBW for transmissions at 62.5 

degrees off nadir.   This EIRP is derived from a 0.8 dB antenna gain, 

amplifier-to-antenna loss of 1.3 dB, and transmit power of 7 dBW (from a 5 

Watt amplifier) [Ref 6]. At the GES end, G/T is derived from a 17 dB gain 

antenna, antenna-to-LNA loss of 0.9 dB, and effective LNA noise figure of 2.2 

dB [Ref 6]. At VHF and UHF operating frequencies sky temperatures can 

range from a low of 100 degrees Kelvin to over 1000 degrees Kelvin in the 

presence of solar and galactic noise [Ref. 12]. The author uses 400 degrees as 

a mid-range, in addition to allowing a degradation of 2 dB to account for 

expected sky temperature above 400 degrees Kelvin. 

3. Mobile ST to Satellite Link Budget 

The mobile subscriber-to-satellite communication uplink calculations 

show a 4.92 dB excess margin. This is based on a mobile communicator EIRP 
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of 7.5 dBW derived from a 5 Watt transmitter and 0.5 dB gain omni- 

directional whip antenna. The satellite receive antenna gain when mobile 

STs are 62.5 degrees off nadir is 3.6 dB. Satellite antenna-to-LNA loss is 2.3 

dB, and receiver noise figure is 2 dB. Again, a G/T degredation of 0.8 dB 

accounts for higher than 290 degrees Kelvin antenna noise temperature. 

[Ref. 6] 

4. Satellite to Mobile ST Link Budget 

The satellite-to-subscriber communication link calculations indicate a 

1.1 dB surplus margin. This is based on a satellite EIRP of 12.5 dBW, for 

transmissions at 62.5 degrees off nadir. The satellite HPA output is 11 

Watts, with a nominal loss to the antenna of approximately 1 dB, and an 

antenna gain of 3.2 dB. On the receive side, the mobile ST uses a 0 dB gain 

omni-directional whip antenna with a 2 dB receiver noise figure. Losses 

between the antenna and the LNA are on the order of 0.7 dB. A degradation 

allowance of 0.5 dB is included to account for expected sky temperatures 

above 400 degrees Kelvin. [Ref. 6] 

5. Satellite to Mobile ST UHF Link Budget 

The UHF transmissions from the satellite are used for Doppler 

position determination only. Since there is no data being exchanged over this 

channel, received signal-to-noise ratio is the criteria for analysis. 

The UHF downlink budget indicates received signal-to-noise will be on 

the order of 17 dB. The budget is based on a satellite transmit EIRP of 2.5 

dBW derived from a 0 dBW transmitter, HPA to antenna loss of 0.7 dB, and 

an antenna gain of 3.2 dB. The subscriber G/T of-29.8 dB is based on a 0 dB 

gain omni-directional antenna, antenna to receiver loss of 1.0 dB, and a 

receiver noise figure of 3.0 dB. Degradation allowance of 0.5 dB has been 

included to account for sky temperatures greater than 400 degrees Kelvin. 
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B. SATELLITE COVERAGE 

ORBCOMM's primary constellation of 32 satellites is designed to 

permit efficient two-way data and message transfer service and subscriber 

position determination over all coverage areas where satellite access to a 

GES is available. When a GES is not in view or not available for access the 

satellites function in a store-and-forward mode, storing subscriber messages 

until the first GES is available for downlink.   The satellites are configured 

with approximately 512 kilo bytes of memory for storing messages. 

The system will provide near-continuous, high quality coverage to all 

areas of the world between 10 and 55 degrees latitude, with reduced coverage 

at the equator and latitudes up to about 60 degrees. The ORBCOMM 

satellite footprint is 2500 nautical miles in diameter, based on a satellite half 

beamwidth of approximately 60 degrees [Ref. 5]. Figure 8 shows predicted 

daily satellite coverage for different latitudes. Note that the average number 

of satellites simultaneously visible at locations between 10 degrees and 55 

degrees latitude is greater than 1.5, and for significant periods of time 

between two and three satellites will be simultaneously visible. ORBCOMM 

predicts the maximum outage time for locations in the 25 to 50 degree 

latitude range will be on the order of five minutes or less, with 90% of the 

outages less than two minutes in duration [Ref. 7]. The four supplemental 

ORBCOMM satellites in polar orbits will provide polar area coverage every 

one-half hour for 14 minutes [Ref. 5]. 

ORBCOMM is designed with redundancy at the system level. With 36 

satellites in the system, the loss of one, or even several, satellites should not 

seriously impact overall service offered by the system. A lost satellite will 

impact the subscriber in the form of a reduction in coverage. The impact due 

to satellite loss is therefore a function of the total number of satellites in the 

system. If a single satellite is lost, the overall system coverage will be 
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reduced by less than 3 percent, and the loss of two satellites will reduce 

coverage by about 5 percent. ORBCOMM has conducted failure analysis, 

based on the actual design of the satellite components and sub-assemblies, 

which indicates the probability of a single satellite failing, due to random 

part failure, within the four year constellation lifetime is about 30 percent. 

The probability of two satellites failing is approximately 8 percent, and the 

probability of more satellites failing is exceedingly small. [Ref. 6] 

C. CHANNEL INTERFERENCE 

ORBCOMM mobile subscriber message transmissions are based on a 

multiple access scheme that uses burst packet communications over 

frequencies assigned by DCAAS. Each uplink transmission is initiated by a 

short packet burst over one of the assigned random access channels.3 This 

can be simply a "request for service", an acknowledgement, or a short 

message such as terminal geolocation. If the terminal needs to transmit a 

longer message requiring additional packets to be sent, the "request for 

service" burst would be followed by additional coordinated message bursts.4 

Each message transmission includes a period of carrier, a brief data 

preamble, and typically 30 - 50 characters and occurs on uplink frequencies 

at specified slot times directed by the satellite; the satellites can vary mobile 

ST frequency from burst-to-burst. 

Data from ORBCOMM's Capability Demonstration Satellite (CDS) 

shows DCAAS has a 95% success rate in predicting free channels on the next 

scan. Results from the CDS indicate DCAAS is expected to change the 

frequencies of the random access channels on average every 5-15 seconds, 

3 During the acquisition window on the DCAAS assigned channels; see Chapter II, page 29. 
4 The message bursts will also use a short transmission format expected to average about 250 
milliseconds in duration [Ref. 7]. 
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which will ensure avoidance of extended interference to terrestrial mobile 

systems and improve service to subscribers [Ref. 6]. 

If the transmission of each random access "request for service" packet 

burst is treated as an "event" that is either successful or unsuccessful 

(depending on whether it arrives successfully at the satellite), a statistical 

analysis can be developed which examines the efficiency of DCAAS and the 

random access scheme by analyzing the probability of a successful "request 

for service" transmission over available random access channels. 

First, assume the satellite uses the order wire channel to broadcast a 

list of r random access channels from which subscribers may choose to 

initiate a communication sequence.5 

Let q be the number of subscribers that have packets to send and 

attempt to contact the satellite by choosing one of the r channels at random. 

These q subscribers, perhaps a subset of all subscribers with packets to 

transmit, attempt to contact the satellite simultaneously. In such a 

situation, if all q subscribers don't choose different channels, then at least 

two will choose the same channel and will interfere with each other. 

The probability of no interference, i.e., that all q subscribers choose 

different channels from the r available channels, is 

*r-lfr-21..fr-« + l)._rl , 
9 r" (r-q)\r9 

If q > r, that is there are more subscribers than channels, then at least two 

subscribers will interfere. Therefore 

Pq = 0 , q > r. (3-2) 

5 Since the satellite has a total of six subscriber receivers and uses a separate receiver for 
DCAAS, r = 6. See Chapter II, page 14. 
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In addition to choosing different channels, the packets sent by each of 

the q subscribers must arrive and be decoded correctly by the satellite. Let 

Pcs be the probability of a successful packet transmission through each of the 

q chosen channels. Thus the probability of successful transmission through 

all q channels is 

P  , = Pq. (3-3) 1 total cs   " v ' 

Then Ptq, the probability of the q subscribers all making successful 

contact with the satellite, is: 

P = rl PJ  ,   q = 0,l,...r (3-4) 
*     rq(r-q)\ " 

and 

Plq=0  ,   q>r. (3-5) 

Now let Q, the number of users attempting to contact the satellite 

during some time interval t be a random variable. If A is the average arrival 

rate of users, Q may be modeled as a Poisson process. Thus, the probability 

of having q new users attempting to establish contact during time t is 

FT(Q = q) = <M-±l     q>0. (3-6) 
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Thus, the probability of no interference in the system is 

q=0 

which upon combining (3-4), (3-5), and (3-6) becomes 

PNI = 
r\ 

*{r-q)\q\ 

(P     Y 
^Xt 
\r     ) 

e~h, (3-8) 

As expected, this analysis indicates PNI will be a function of traffic 

intensity. Figure 9 shows the relationship between PNI and increasing user 

arrival rates, X. Assuming t = 1 time slot and Pcs = 0.98 6, we see PNI is 

approximately 0.9 at X = 1 and reaches an approximate level of 0.2 at about 

X = 5. Note that the satellite only has r = 6 channels which users can 

simultaneously access. 

Our model assumes each subscriber "request for service" packet burst 

requires one full acquisition window time slot at the satellite. In fact the 

ORBCOMM acquisition window may accommodate several of the short 

"request for service" packets which users transmit at random times within 

the window. In addition, the ORBCOMM NCCs can change the length of the 

acquisition window as traffic level increases. Both of these factors will 

effectively increase PNI for high user arrival rates. However, ORBCOMM 

was not able to provide information predicting actual length of the "request 

for service" packets to the author. 

6 This is ORBCOMM's prediction of Pcs which is based on simulation results. [Ref. 6] 
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D. NETWORK CAPACITY 

In addition to channel allocation, another problem with a multiple- 

user satellite-based messaging system is to resolve the conflict among users 

desiring to transmit on the assigned channels. As mentioned earlier, 

ORBCOMM uses conventional TDMA to manage the single channel access 

between the satellites and GESs, but uses its proprietary A-C protocol to 

preclude potential collisions at the satellite when two or more mobile users 

wish to simultaneously transmit messages on an assigned channel. This 

section will focus on expected per-channel network capacity of the mobile 

subscriber / satellite links. First an understanding of the limitations of 

ALOHA multiple access protocols will be developed, then a comparison of the 

expected channel capacity of A-C, ORBCOMM's proprietary modified ALOHA 

protocol, will be presented. 

1. Pure and Slotted ALOHA 

The ALOHA system was developed in 1971 by the University of 

Hawaii. The system used a random access protocol, communication satellite, 

and radio channels to interconnect several of the university's computers on 

different islands. 

In an ALOHA system a large number of users communicate with a 

central station over a common channel in an uncoordinated manner. 

Generation of information by the users is a random process, which results in 

bursty traffic statistics [Ref. 5]. The common channel is instantaneously 

available to any user that has a packet of information to send, and 

transmissions are made in relatively short bursts since the entire channel 

bandwidth is used [Ref. 10]. 

Using a model and mathematical analysis developed by Sklar [Ref. 13], 

we can evaluate the performance of ALOHA protocols. Sklar's model shows 
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that channel throughput in an ALOHA system will be a function of traffic 

intensity; as traffic levels increase more packets will collide on the network. 

In a pure ALOHA system, 

p = Ge -2G (3-9) 

where p = normalized throughput and G = normalized total traffic. Total 

traffic includes new traffic plus retransmissions of packets that have collided. 

In Figure 10 we see that p increases as G increases until a point is reached 

p(G)0.2 - 

Figure 10. Throughput in pure ALOHA channels. 

where the additional loading on the system starts causing more packet 

collisions and recollisions, and a reduction in throughput occurs. The 

44 



maximum throughput occurs at G = 0.5, where the value of p = l/2e = 0.18. 

So, for a pure ALOHA system, the best we can hope for is a maximum of 18% 

of the channel resource being utilized when the total offered load is 50 

percent. Such a system trades off channel capacity for the simplicity of 

uncoordinated access.  [Ref. 13] 

Slotted ALOHA improves on pure ALOHA by establishing a small 

amount of order in the system. Slotted ALOHA systems require 

synchronization and coordination among users on the network. In a slotted 

ALOHA system, the channels are slotted in time. Users are required to 

synchronize their packet transmissions into fixed length channel time slots. 

Messages can be transmitted only at the beginning of a time slot. This 

simple change has the end result of reducing the rate of collisions by half, 

since the only packets which may interfere with one another are those 

transmitted in the same slot. Sklar uses the same reasoning developed for 

pure ALOHA to show this reduction in the "collision window" changes the 

relationship between normalized throughput and normalized total traffic to 

p = Ge'G . (3-10) 

We see in Figure 11 that for slotted ALOHA the maximum value of p is lie = 

0.37, which is double the maximum throughput available in a pure ALOHA 

system.  [Ref. 13] 

2. Reservation ALOHA (R-ALOHA) 

As we have seen, the best ALOHA-based protocol will never achieve 

channel efficiency above lie. However, to make good use of a single shared 

channel at high channel loads, time-division multiplexing (TDM) can be used 

[Ref. 14]. A significant improvement to the ALOHA protocol was made with 
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the introduction of R-ALOHA, which acts like normal slotted ALOHA at low 

channel utilization and moves over to some kind of TDM as the channel load 

grows. 

P(G)0.2 - 

Figure 11. Throughput in slotted ALOHA channels. 

An R-ALOHA system has two basic modes, which Sklar calls the 

"unreserved mode (or quiescent state)" and "reserved mode" [Ref. 13]. In the 

unreserved mode a frame is established and divided into small subslots. 

Subscribers use these small subslots to transmit requests for reserved 

message slots. After the reservation is requested, the subscriber listens for 

an acknowledgment and slot assignment to transmit message packets. 

In the reserved mode, the time frame is divided into N + 1 slots. This 

occurs whenever a reservation is made. The first N slots are used to transmit 
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message packets; the last slot is utilized to transmit reservation requests. In 

the R-ALOHA system, users can only send message packets during their 

assigned portion of the N message slots. 

Control is distributed throughout the system; all users receive the 

downlink transmission disseminating synchronization and information on 

the reservations and timing format. When there are no reservations for 

message slots, the system reverts back to its unreserved format of subslots 

only. [Ref. 13] 

Sklar evaluates the performance of R-ALOHA by comparing its 

average delay versus throughput curve to that of slotted ALOHA. For 

throughput values of less than approximately 0.20, slotted ALOHA shows 

less average delay than R-ALOHA. The collisions and retransmissions 

inherent in slotted ALOHA increase rapidly for p > 0.20 causing the system 

to reach an unbounded delay at lie = 0.37. For throughput values greater 

than 0.20, the more coordinated structure of R-ALOHA causes the 

degradation to grow in a more orderly fashion, with unbounded delay reached 

at a much higher throughputs. Slotted ALOHA performs somewhat better at 

lower traffic intensity; this is because slotted ALOHA does not require the 

overhead of reservation slots as does R-ALOHA. Therefore, at low 

throughput levels, R-ALOHA pays the price of greater delay due to higher 

overhead.  [Ref. 13] 

3. Acquire - Communicate (A-C) 

ORBCOMM's A-C protocol for coordinating multiple user access to its 

satellite channels appears to function very much like an R-ALOHA scheme. 

Distributed control is provided by the satellites to mobile users via the order 

wire. The apparent net effect of the coordinated partitioning of the 

messaging uplink and downlink channels (TDM), combined with 
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continuously updated frequency and time synchronization, is to greatly 

increase the unbounded limit of the ORBCOMM network. Note that due to 

the proprietary nature of A-C, detailed information about the protocol was 

not available to the author. 

ORBCOMM simulation results indicates their modifications to the 

standard slotted ALOHA scheme will enable the system to achieve 

throughput values ofp = 0.57 for the uplink channels [Ref 6]. This is 

significantly higher throughput than fixed-length packet, purely random or 

slotted ALOHA systems. However, as was shown in the previous section, the 

additional overhead associated with A-C will cause a somewhat higher delay 

at lower traffic intensity levels than would be encountered using a pure or 

slotted ALOHA protocol. 

Based on an average message length of 50 bytes, ORBCOMM predicts 

its satellites will have an inbound and outbound capacity of more than 

60,000 messages per hour [Ref 6]. Tables 5 and 6 show simplified capacity 

calculations for the ORBCOMM system. Both tables use queuing overhead 

values obtained from extensive simulations of the data flow through the 

system. Network overhead values are based on mixtures of expected system 

packets. In both tables packet error rates are conservatively based on 

average expected packet lengths and average expected available link 

margins. In Table 5, five of the six uplink channels are accounted for; the 

sixth channel is used for the signaling channel. The "system overhead" term 

in Table 6 includes order-wire information, as well as satellite ephemeris 

data and uplink channel availability information [Ref. 6]. 

E. SUMMARY 

The author has presented an analysis of the operational capabilities 

and expected performance of the ORBCOMM system. Given ORBCOMM's 
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Data Rate per Channel 2400 bps 

Queuing Overhead at Maximum System Loading 80 % 

Physical Capacity 1920 bps 

Packet Errors (95% success rate) 95 % 

Link Capacity 1824 bps 

System Overhead (25% Overhead) 75 % 

Network Capacity per Channel 1368 bps 

Number of Channels 5 

Network Capacity 6840 bps 

Average Message Length (50 Bytes) 400 bits 

Average Messages per Second 17.1 Messages 

Number of Seconds per Hour 3600 Seconds 

Average Messages per Hour 61560 Messages 

Table 5. Subscriber to satellite channel capacity. After Ref. [6]. 

Data Rate per Channel 4800 bps 

Queuing Overhead at Maximum System Loading 85 % 

Physical Capacity 4080 bps 

Packet Errors (98% Success Rate) 98 % 

Link Capacity 3998 bps 

System Overhead (15% Overhead) 85 % 

Network Capacity per Channel 3399 bps 

Number of Channels 2 

Network Capacity 6797 bps 

Average Message Length (50 Bytes) 400 bits 

Average Messages per Second 16.9925 Messages 

Number of Seconds per Hour 3600 Seconds 

Average Messages per Hour 61173 Messages 

Table 6. Satellite to subscriber channel capacity. After [Ref. 6]. 
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defined "edge-of-coverage" for satellite links, we have seen the system is 

designed with adequate link margins to assure required signal-to-noise 

ratios. ORBCOMM's primary constellation of 32 satellites, combined with 

the four satellite supplemental polar planes, incorporates redundancy design 

and provides the coverage and re-visit rates for adequate global messaging 

and position determination services for users. It was shown that DCAAS has 

the capability of efficiently managing the frequency spectrum used for 

ORBCOMM subscriber / satellite transmissions. Finally, ALOHA multiple 

access schemes and the A-C protocol were compared to show how ORBCOMM 

satellites could achieve a network capacity of approximately 60,000 messages 

per hour. 
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IV. SYSTEM APPLICATIONS 

A. CIVILIAN SERVICES 

The ORBCOMM system will provide four basic categories of service for 

civilian use: emergency services, tracking, data acquisition monitoring, and 

two-way messaging. 

1. Emergency Service 

The most basic service offered by ORBCOMM will be its "SecureNet" 

emergency service. Requiring the least sophisticated type of ORBCOMM 

transceiver, SecureNet will process emergency calls for help, determine the 

user's position, transmit the location to appropriate response agencies, and 

confirm back to the user reception of the emergency signal. The SecureNet 

transceiver will be triggered either by the user, or automatically using sensor 

input, and will continue transmitting a distress signal until acknowledgment. 

In addition to hand-held units, SecureNet transceivers will be available for 

integrated home installation and into a variety of vehicles to send alarm 

messages automatically if trouble is sensed. [Ref. 15] 

2. Tracking Service 

The system's tracking service will be known as "MapNet". MapNet 

will be strictly for transmitting position information and is designed for 

applications where there is a need to know where property, vehicles, or 

personnel are located. MapNet position reports will either be obtained 

through polling of the user terminal or transmitted by a pre-set terminal 

timer. The level of sophistication, cost, and accuracy of the MapNet 
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terminals will be determined by the number of satellite frequencies they 

receive to resolve their location.7 

3. Data Acquisition Monitoring Service 

"DataNet" will be the data acquisition monitoring service provided by 

ORBCOMM. The primary DataNet application will be to communicate 

digital data to and/or from remote, unattended sensors and equipment. The 

DataNet transceivers will be configured with memory to store data to be read 

at time of transmission or to be available for sampling on request. For 

example, a DataNet user could remotely activate machinery or reconfigure 

settings on a remote control device. 

4. Messaging Service 

Two-way personal messaging will be provided by ORBCOMM's most 

extensive service level, "VitalNet". Designed to meet the requirements of 

people who need communication and location reporting from anywhere in the 

world, VitalNet user's will require ORBCOMM's most sophisticated terminal 

units. VitalNet terminals will include the hand-held, fully functional mobile 

STs, as well as units which will connect to other equipment (i.e., laptop and 

personal computers) via an RS-232 data port. 

B. APPLICATIONS 

The author expects that as these general services become readily 

available they will eventually be applied in many different roles, especially 

within the business, commerce, agriculture, and research sectors. The 

demand is expected to be generated by a variety of commercial applications, 

including the following examples [Ref. 16]: 

7 See Chapter II, page 10. 
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• Cargo tracking for commercial ships. 

• Environmental monitoring and reporting. 

• Agricultural uses for irrigation and chemical management. 

• Energy industry uses for well head and pipeline operations. 

• Electronic mail services to services and transportation industries. 

• Use of ORBCOMM in civilian search and rescue applications. 

C. DOD APPLICATIONS OF THE ORBCOMM SYSTEM 

As mentioned in Chapter I, DoD is faced with the compelling issue of 

how to cost effectively meet the growing requirements for space-based 

communications systems needed to support US forces worldwide. 

ORBCOMM presents the first of possibly several opportunities for DoD to 

employ commercial LEO systems to enhance US military global 

communications. The possible DoD applications of ORBCOMM services are 

many and varied; the following sections will present several of those which 

have the most immediate potential for implementation. 

1. Beaconing and Messaging 

ORBCOMM could meet the requirements addressed in the critical 

Mission Needs Statements which were the genesis of Project RADIANT 

SNOW. RADIANT SNOW is a US Navy Tactical Exploitation of National 

Capabilities (TENCAP) research and development project to build and field 

test GPS-based UHF beacons used to covertly and overtly target and track 

high interest targets. The project addresses several critical areas, including: 

Combat Survivor Evader Locator, Logistics Moving and Tracking System, 

Combat Identification, and Joint Law Enforcement Operations. [Ref. 16] 

The RADIANT SNOW development project provides the tactical commander 

with the capability to: 
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• Place a beacon on cooperative and non-cooperative targets. 

• Data relay from ground, surface, and airborne assets. 

• Use ground terminals and airborne receivers to display asset 
position. 

• Use a dissemination and display architecture to transmit beacon 
targeting data worldwide. 

The beacons developed for the project are composed of GPS receivers 

and low-power UHF transmitters about the size of a VHS cassette. Time, 

position, and altitude reports are transmitted by the beacon to low-earth 

orbit UHF satellites, line-of-sight aircraft, or ground stations, and then 

relayed to RADIANT SNOW terminals. [Ref. 16] 

By July 1993, after completion of Phase 9 of its test program, two 

major material deficiencies were encountered with the project. The first 

problem was limited satellite availability; the RADIANT SNOW satellites 

provided coverage for only approximately 5% of the time. The second issue 

was the high cost (approximately $12,000) of each beacon. [Ref. 16] 

The ORBCOMM system can readily resolve these two material 

deficiencies. ORBCOMM offers near continuous worldwide satellite coverage, 

and commercial beacons which integrate GPS with an ORBCOMM 

transceiver are projected to be available for a cost of less than $1000 per unit 

[Ref. 9]. 

The system will also easily accept integration of a DoD approved 

communications security system. ORBCOMM data and message 

transmissions can be encrypted via incorporation of a Digital Encryption 

Standard (DES) computer chip or using the same methodology utilized by 

STU-IIIs to encrypt classified voice and data transmissions over the public 

telephone network. In addition, DoD's KL-43 series Digital Encryption 

Device could be used to encrypt data prior to transmission within the 

ORBCOMM system. [Ref. 8] 
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In addition, according to Naval Air Warfare Center Indianapolis 

(NAWC) engineers, miniaturization and ruggedization of the cellular phone 

size commercial version of the ORBCOMM ST to something the size of a 

pager would not be difficult. While a lengthy micro-miniaturization effort is 

probably not feasible or desirable, the unit could be significantly reduced in 

size through efforts in parts count reduction and circuit board redesigns 

using the following technology: 

• Pin Grid Array packaging (PGA). 

• Fine Pitch Surface Mount (FPSM). 

• Wire-bonded Multichip Modules (MCM). 

• Tape Automated Bonding (TAB). 

.   Chip On Board (COB)and Flip Chip. 

Reducing the size of the transceiver device would enable it to be used in 

special non-cooperative classified operations, by Special Operations Forces, 

and integrated into the survival vests and flight suits of aircrew safety 

equipment. [Ref. 16] 

The smaller ORBCOMM units could have many parallel applications 

in the military and civilian world. They could lead to the spawning of an 

entirely new commercial industry, much as did miniaturized GPS. The 

potential military applications include, but are not limited to: 

• Single vehicle, aircraft, and maritime craft tracking. Tactical 
commanders could receive via satellite near real time location data 
on all assets in an operation area under their control. 

• Target tracking and intercept. Beacons could automatically 
transmit location of high interest targets at specified intervals or 
when polled, enabling commanders more leeway and control in 
executing intercept operations. 

• Logistics tracking. Miniaturized beacons could be employed as 
shipping container "tags" enabling commanders to globally track 
flow of parts, supplies, shipments. 
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• Data relay from environmental buoys. Drift buoys could 
autonomously disseminate multi-sensor data on ocean environment, 
weather, or pollution conditions. 

.   Global VIP / Flag Officer tracking and messaging. Worldwide 
availability of cooperative tracking and secure communication with 
VIP's while on airlines, in staff cars, or engaged in off duty 
activities. 

• Combat Identification (Ground). Cooperative identification of US 
Army units engaged in land-based operations via installation of 
beacons on vehicles and connectivity to command and control (C2) 
dissemination and display architecture. 

• Combat Sea-Air Rescue (CSAR) and Combat Survivor Evader 
Locator (CSEL). Adding small, ruggedized ORBCOMM beacons to 
aircrew survival gear to enable search and rescue units to easily 
target, track, and locate downed aviators for extraction in hostile 
environments. ORBCOMM supports the DoD requirement for low 
probability of detection / intercept (LPD / LPI) CSAR / CSEL. 
ORBCOMM emergency signal / position reports use low power (5 
Watt) burst transmissions of about 15 milliseconds duration. 
ORBCOMM's DCAAS is also a form of burst-to-burst frequency 
agility. Each satellite's footprint is approximately 3,000 miles 
across, with potentially thousands of uplinks broadcast. Thus, 
intercept and triangulation of all transmissions by hostile Electronic 
Support Measures (ESM) is very difficult. 

2. Operations Other Than War (OOTW) 

The unprecedented deployments of US forces in OOTW has created a 

new range of problems for the essential communication support services that 

are critical to mission success. As was the case in Somalia, such operations 

may require a US Joint Task Force (JTF) to establish robust and reliable 

communications facilities in regions resembling a war zone, where there is no 

existing telephone service or basic communications infrastructure of any 

kind. In addition, the very nature of the Somalia and Rwanda relief 

operations has shown a critical requirement for close US coordination with 

the UN, representatives of local government, and a need for communications 
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Connectivity to non-traditional on-scene teams like the Red Cross and other 

private relief organizations. 

Using ORBCOMM to augment DoD's inventory of rapidly deployable 

satellite communications systems is a feasible and potentially cost effective 

solution to the following communications requirements identified in lessons 

learned from OOTW operations in Somalia and Rwanda. 

a. Deployability 

The intense competition for limited airlift resources during the 

early stages of a JTF deployment is a major constraining factor. Therefore, 

communications planning for this phase must incorporate small, lightweight, 

reliable systems that require minimal airlift and, to the degree practical, can 

be moved on the same aircraft as the initial deployment of the JTF 

headquarters. As an example, USPACOM's advanced JTF Component C2 

rapid deployment support package includes [Ref. 17]: 

UHF/SHF/EHF Satcom. 

UHF/SHF Satcom (DAMA). 

Small Switchboard. 

Portable Commercial Band Satellite Terminal. 

Secure VOX. 

Land Mobile Radio. 

HF/SSB Radio. 

UHF/VHF Air/Ground Radio. 

Secure Facsimile. 

Cellular Telephone. 

Information Management System. 

Incorporating ORBCOMM mobile user terminals, in conjunction 

with a deployable, scaled-down version of an integrated ORBCOMM 

NCC/GES, into the rapid deployment package would provide additional 
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satellite communications support to the JTF while enroute and upon initial 

arrival at the projected beddown location in the operation area. 

Some initial work on the deployable, "mini" NCC/GES concept 

has already been completed. NAWC Indianapolis is conducting preliminary 

feasibility study of the optimal way to use the Navy's AN/SMQ-11 local user 

terminal to demodulate ORBCOMM satellite signals. 

The AN/SMQ-11 is a deployable meteorological satellite 

receiving and processing system which was used on the RADIANT SNOW 

project. The VHF capability of the AN/SMQ-11 is optimized for 137 MHz, 

and as of 1993 there were 63 units in the Navy inventory. Currently, the 

system is undergoing planned product improvement. Old, proprietary 

hardware is being replaced with new programmable processing hardware 

based on the TAC-4 computer. The Unix operating system and open system 

architecture of the TAC-4 will enable porting of applications written in such 

languages as C++. Porting vendor-supplied applications to the AN/SMQ-11 

will give it the capability to readily process RF signals from various and 

emerging satellite families such as ORBCOMM. [Ref. 16] 

According to NAWC and ORBCOMM engineers, a deployable, 

fully functional, HUMVEE-mounted hybrid AN/SMQ-11 - NCC/GES would be 

relatively easy to design and build from currently available commercial off- 

the-shelf (COTS) technology [Ref. 16]. 

b. Area coverage 

During the sustained operations phase in Somalia, extreme 

distance between the various echelons of the JTF demonstrated the need for 

more long-range communications. Infantry units commonly operated more 

than 50 miles from their headquarters, while transportation and engineer 

units were often hundreds of miles from their bases. Maintaining long-range 

communications while on the move was especially difficult. Long-haul 
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convoy operations quickly exceeded organic FM radio and Mobile Subscriber 

Equipment (MSE) multi-channel transmission capabilities. Either HF or 

Tactical Satellite (TACSAT) were potential answers, but both equipment and 

available net resources were limited. [Ref. 18] 

After supporting the initial deployment phase, the ORBCOMM 

system could be effectively used to augment the JTF's extended regional 

communications capabilities. As discussed in Chapter II, mid-latitude 

countries will receive an approximate 95% satellite availability rate. With 

the deployment, insertion, and establishment of a "regional" NCC/GES by the 

JTF in-country, any units throughout the operating area equipped with 

ORBCOMM terminals would have virtually continuous, near-real-time, over- 

the-horizon messaging and data exchange service. According to ORBCOMM, 

one "fly-in" NCC/GES deployed in theater rear can service a 3,000 square 

mile area. To put this in perspective, for Operation Desert Storm, deploying 

NCC/GESs to Turkey and Riyadh, Saudi Arabia could have provided service 

for the entire Middle East [Ref. 8]. 

In addition, the NCC/GES would also provide a point of 

connectivity between ORBCOMM and other JTF data networks, creating a 

"JTF internet" based on standard X.25 packet switch and X.400 e-mail 

protocols. Introduction of a Defense Data Network (DDN) e-mail host to the 

JTF network would thus enable messaging and data transfer connectivity to 

CONUS from ORBCOMM-equipped units operating anywhere in the region. 

This could have a potential two-fold benefit: Defense Switched Network 

(DSN) voice lines to CONUS would be freed of data traffic, and field deployed 

personnel would have easy access to a relatively inexpensive alternative 

method to INMARSAT for making morale "calls" back to families in the US. 
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c. Interoperability 

JTF communications planning for OOTW must be prepared to 

support interoperability for various types of forces and organizations. The 

possibilities include [Ref. 19]: 

• A combined command made up of forces from contributing nations. 

• A formal UN command with a Special Representative and JTF 
Commander working together. 

• An ad-hoc coalition. 

In addition to the forces and organizations described above, JTF OOTW 

communications planning should incorporate the flexibility to encompass 

connectivity for other organizations which may be in the operations area 

supporting the mission. These include but are not limited to [Ref. 19]: 

• Other agencies of the US government. 

• UN relief organizations. 

• Non-governmental organizations (NGO). 

• Private voluntary organizations (PVO). 

• Host governments. 

• Media. 

The aforementioned JTF deployable ORBCOMM messaging and 

data exchange network could be expanded to provide an interoperable, 

flexible, and effective communications infrastructure to support these various 

entities. Instead of HF radios, as was the case in Somalia, low cost 

ORBCOMM mobile terminals could be distributed to coalition units and 

representatives from other organizations who are in-country participating in 

the operation. Such a network would enable long-range communications 

interoperability across the spectrum of organizations involved in a 

peacekeeping or humanitarian effort and provide connectivity to even the 

most remote sites. Again, with the "regional" NCC/GES established at JTF 

HQ, US forces would control and manage the network. Message processing 
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and routing would be maintained and centralized at the "mini" NCC/GES, 

providing additional network control to the JTF. 
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V. SUMMARY AND CONCLUSIONS 

A. SUMMARY 

Destined to be the first system to offer PCS to users on a global scale, 

ORBCOMM is a pioneer in satellite communications. It is the first 

commercial attempt at worldwide coverage using NVNG LEO satellite 

technology. ORBCOMM is one of the first commercial ventures to take 

advantage of the lower costs of the Pegasus launch system to insert its 

satellites into operating orbits. This, in the author's opinion, is where 

ORBCOMM presents its highest risk; in pursuit of lower costs, ORBCOMM is 

relying on new, relatively unproven technology for its delivery system. In 

addition ORBCOMM's low cost satellites, designed to be mass produced, are 

operationally unproven. The first two full function ORBCOMM satellites 

were launched on 13 April 1995, and many interested parties in both the 

communications industry and DoD are waiting to see how these first 

satellites, and the system overall, perform under actual operational 

conditions. 

This thesis has presented a description and analysis of the ORBCOMM 

system components and functional architecture. ORBCOMM is designed to 

provide its users with world-wide geolocation as well as on-the-move data 

exchange and messaging services. Several types of mobile user terminals, 

which will vary in sophistication and performance depending on level of 

functionality, will be offered to consumers by ORBCOMM licensed 

manufacturers. ORBCOMM's 36 digital packet switching, store-and-forward 

capable LEO satellites function as the data and message relay points for 

users within the system. GESs and national NCCs form the ground 

component of the network architecture, and are the switching and routing 

"brains" of the system. 
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One view of the system is as a global data network, with connectivity 

to other networks performed at the NCC gateways. ORBCOMM employs 

X.400 and X.25 network protocols; ORBCOMM users will be able to 

seamlessly exchange data and e-mail with users on public data networks and 

the Internet. Human operators at ORBCOMM NCCs will be able to 

transcribe and forward voice messages arriving on the PSTNs to user's 

mobile terminals. 

System connectivity is achieved via a combination of terrestrial and 

satellite links. Leased, high data rate terrestrial (and possibly VSAT) links 

connect the ground components. Four VHF satellite links connect mobile 

users and ground components; the satellites also transmit a UHF beacon 

which is used to increase the geolocating accuracy of the mobile terminals. 

Link budget analysis of the five satellite links indicates the system 

incorporates enough margin to perform at the level needed to meet required 

signal-to-noise ratios. 

DCAAS, ORBCOMM's proprietary frequency sampling and assignment 

scheme, manages subscriber uplink channel allocation in a manner similar to 

demand access multiple assignment (DAMA). DCAAS will ensure mobile 

users are assigned the best available channel for each transmission burst, 

and that the system avoids interference with terrestrial / other satellites 

using the VHF spectrum. 

ORBCOMM's proprietary multiple access technique uses a 

combination of subscriber / satellite handshake procedure and R-ALOHA 

multiple access protocol. This technique introduces order into the purely 

random access system, which enables ORBCOMM to achieve high 

deterministic throughput levels. 

ORBCOMM will offer consumers choice of four levels of communication 

services. These include basic emergency alert, tracking, data acquisition 
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monitoring, and full two-way on-the-move data transfer and messaging. 

Demand for ORBCOMM access will be generated from the many applications 

of these services in business, industry, commerce, and research.   Some of the 

first commercial applications will be in the shipping industry for cargo and 

container tracking and in the energy industry for wellhead and pipeline 

monitoring. 

ORBCOMM represents the first opportunity for DoD to enhance US 

military global communications with commercial PCS. Requirements to 

exchange secure data can be easily accomplished in the ORBCOMM system 

using current DoD encryption techniques (i.e., use of the KL-43 series Digital 

Encryption Device, Digital Encryption Chips, or an encryption method like 

that used in STU-III secure telephones). ORBCOMM's low power, short 

burst transmissions give it the LPD / LPI characteristics required for some 

potential DoD applications.   DoD could immediately apply commercially 

available ORBCOMM services to meet beaconing and tracking requirements. 

Development of a "fly in" mobile GES / NCC would open a host of potential 

applications, including filling the need for a rapid deployment regional 

communications infrastructure suited for needs encountered in OOTW. 

B. CONCLUSIONS 

ORBCOMM's capabilities and global coverage offers both commercial 

opportunity as well as potential enhancements to current DoD space-based 

communications. The commercial applications identified in this thesis 

indicates only a few of the various uses of ORBCOMM by the service and 

industrial sectors. It is expected that once the system becomes operationally 

available and reliable, many more diverse commercial uses of its geolocating, 

beaconing, data transfer, and message exchange capabilities will be applied. 

ORBCOMM can also respond to two critical issues facing DoD: cost 

and availability of space-based communications systems.   With DoD taking 
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an active role as a cooperative partner, ORBCOMM can satisfy some of 

DoD's need to find low-cost commercial space-based systems to enhance US 

military global communications. The Government will benefit in the short 

term by being able to meet urgent requirements; DoD would have access to a 

dual-use communications network, designed, developed, and operated by an 

American company that will provide affordable connectivity anywhere in the 

world. Development of a deployable "mini" NCC / GES suitable for use on 

board a ship, plane, helicopter, or mounted on a vehicle such as a HUMVEE 

could provide enormous flexibility in addressing communications 

requirements in many situations including defense, natural disaster, or 

humanitarian efforts. 

DoD participation in a dual-use partnership would mean lower costs 

for the Government. ORBCOMM has been commercially developed and 

financed, with no Government assistance. Operations and maintenance costs 

would be largely shared by the commercial users, thus reducing annual 

outlays such as would be incurred if the system were owned and operated 

solely by DoD. Commercially produced equipment (such as mobile subscriber 

terminals) could be used in many DoD applications, taking advantage of the 

cost reductions from economies of scale of the large number of terminals 

manufactured. 

The commercial sector and industry would also benefit from such a 

team effort, primarily as a result of economic "pump priming" by DoD. 

Demand for miniaturized beacons / hand-held terminals is well documented 

in DoD; demand in the commercial sector is probably an order of magnitude 

larger but only at a lower cost. The miniaturization of ORBCOMM 

transmitter beacons, along with the development of deployable "mini" GES / 

NCCs, has the potential for greatly expanding the uses of the system. Such 

additional capability would certainly generate a number of new commercial 
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ventures. Using the GPS experience as a parallel, it is easy to see how the 

private sector would "spin on" to new ORBCOMM commercial applications 

derived from DoD related technology . 

In the long-term, a cooperative Government partnership with 

ORBCOMM, and other American companies fielding LEO-based PCS 

systems, will stimulate and maintain US leadership in space-based digital 

information and communications systems design and architecture. These 

systems have the potential to have the same type of parallel positive impact 

in the next decade and beyond as did the development of the telephone in the 

first half of this century. Just as the US has dominated the telephone 

industry, the opportunity now exists to lead and dominate the space-based 

wireless industry. With the Government participating as an interested 

partner, American companies would easily become the world leaders in 

development and implementation of the new PCS technologies. 
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APPENDIX A: ORBCOMM INTERNATIONAL STATUS 

COUNTRIES WITH LICENSE AGREEMENT IN PLACE: 

1. Argentina 10. Honduras                   19. Peru 

2. Bolivia 11. Hungary                    20. Russia 

3. Brazil 12. Indonesia                   21. South Africa 

4. Canada 13. Israel                         22. Uruguay 

5. Chile 14. Japan                         23. Venezuela 

6. China 15. Korea 

7. Columbia 16. Mexico 

8. Ecuador 17. Nigeria 

9. Guatemala 18. Panama 

COUNTRIES SEEKING LICENSE AGREEMENT: 

1. Australia 7. Mozambique                13. Zimbawe 

2. Egypt 8. New Zealand 

3. India 9. Philippines 

4. Malaysia 10. Saudi Arabia 

5. Mongolia 11. Thailand 

6. Morocco 12. West Europe 
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APPENDIX B: ORBCOMM LINK BUDGETS 

GES to Satellite uplink 
Transmit EIRP 40.0 dBW 
Free Space Loss -144.7 dB 
Atmospheric Loss -2.0 dB 
Polarization Loss -0.1 dB 
Satellite Pointing Loss -0.2 dB 
Multipath Fade Loss -5.0 dB 
Power @ Satellite Antenna (IRL) -112.0 dBW 
Satellite G/T -32.02 dB 
G/T Degredation (ant. temp. >290K) -0.9 dB 
Sum -144.92 dBW 
Boltzman's Constant -(-228.6) dBW 
C/No 83.68 dB 
101og(Bit Rate) -47.6 dB 
Eb/No 36.08 dB 
Required Eb/No (QPSK) -10.6 dB 
Modulation Implementation Loss -3.0 dB 
Interference margin -20.0 dB 
Remaining Margin 2.48 dB 

General Information: 
Satellite altitude 
Elevation angle 
Gateway angle from nadir 
Slant range to satellite 
User data rate 
Required BER 
Uplink frequency 

785 km 
5 degrees 
62.5 degrees 
2749 km (edge of coverage, minimum elevation) 
57,600 bps 
1 in 1,000,000 (10A-6) 
149.40 MHz 

Calculations: 
FSL = 32.44 + 201og(2749) + 201og(149.40) = 144.7 dB 

G(ant) = 1.0dB    La =1.4 dB   la = 10A(La/10) = 1.38    NF(rcvr) = 7.0 dB   T(sky) = 290K 
G/T(satellite) = GKnet) - 101og[T(sys)] 
G(net) = 1.0 dB -1.4 dB = -0.4 dB 
T(sys) = T(ant) + T(rcvr) 
T(sys) = 290K + 1163K = 1453K 
G/T(satellite) = -0.4 - 101og(1453) 
G/T(satellite) = ~ 32.02 dB 

T(rcvr) = (NF - l)To 
NF = 10A[NF(dB)/10] = 10A (7.0/10) = 5.0 
T(rcvr) = (5.0 - 1)290 = 1163K 
T(ant) = [(la - D290K + T(sky)]/la 
T(ant) = [(1.38 -1)290 + 290]/1.38 = 290K 
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Satellite to GES downlink 
Satellite Transmit EIRP 
Free Space Loss 
Atmospheric Loss 
Polarization Loss 
Satellite Pointing Loss 
Multipath Fade Loss 
Power @ Gateway Antenna (IRL) 
Gateway G/T 
G/T Degredation (ant. temp. >400K) 
Sum 
Boltzman's Constant 
C/No 
101og(Bit Rate) 
Eb/No 
Required Eb/No (QPSK) 
Modulation Implementation Loss 
Margin 
Required Margin (interference/req'd margin) 
Excess Margin  

6.5 dBW 
-143.97 dB 

-2.0 dB 
-0.1 dB 
-0.2 dB 
-5.0 dB 

-144.7 dBW 
-11.1 dB 
-2.0 dB 

-157.8 dBW 
-(-228.6) dBW 

70.8 dB 
-47.6 dB 
23.2 dB 
-10.6 dB 
-3.0 dB 
9.6 dB 
-6.0 dB 
3.6 dB 

General Information: 
Satellite altitude 785 km 
Elevation angle 5 degrees 
Gateway angle from nadir 62.5 degrees 
Slant range to satellite 2749 km (edge of coverage, minimum elevation) 
User data rate 57,600 bps 
Required BER 1 in 1,000,000 (10*-6) 
Uplink frequency 137.20 MHz 

Calculations: 
FSL = 32.44 + 201og(2749) + 201og(137.20) = 143.97 dB 

Gfant) = 17.0 dB    La = 0.9 dB    la = 10*(La/10) = 1.23    NF(rcvr) = 2.0 dB    T(skv) = 4000k 
GZT(gateway) = GKnet) - 101og[T(sys)] 
G(net) = 17.0 dB - 0.9 dB = 16.1 dB 
T(sys) = T(ant) + T(rcvr) T(rcvr) = (NF - l)To 
T(sys) = 355K + 170K = 525K NF = 10* [NF(dB)/10] = 10* (2.0/10) = 1.585 
G/T(gateway) = 16.1 - 101og(525) T(rcvr) = (1.585 -1)290 = 170K 
G/T (gateway) = -11.1 dB T(ant) = [(la - D290K + T(sky)]/la 

T(ant) = [(1.70 -1)290 + 400]/1.70 = 355K 
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Mobile ST to Satellite uplink 
Transmit EIRP 7.5 dBW 
Free Space Loss -144.68 dB 
Atmospheric Loss -2.0 dB 
Polarization Loss -4.1 dB 
Satellite Pointing Loss -0.2 dB 
Multipath Fade Loss -5.0 dB 
Power @ Satellite Antenna (IRL) -148.48 dBW 
Satellite G/T -25.3 dB 
G/T Depreciation (ant. temp. >290K) -0.8 dB 
Sum -174.58 dBW 
Boltzman's Constant -(-228.6) dBW 
C/No 54.02 dB 
101og(Bit Rate) -33.8 dB 
Eb/No 20.22 dB 
Required Eb/No (DBSK) -10.3 dB 
Modulation Implementation Loss -2.0 dB 
Margin 7.92 dB 
Required Margin -3.0 dB 
Excess Margin 4.92 dB 

General Information: 
Satellite altitude 
User elevation angle 
Subscriber angle from nadir 
Slant range to satellite 
User data rate 
Required BER 
Uplink frequency 

785 km 
5 degrees 
62.5 degrees 
2749 km (edge of coverage, minimum elevation) 
2400 bps 
1 in 100,000 (10A-5) 
148.95 MHz 

Calculations: 
FSL = 32.44 + 201og(2749) + 201og(148.95) = 144.68 dB 

G(ant) = 3.6dB    La = 2.3 dB    la = 10A(La/10) = 1.70    NF(rcvr) = 2.0 dB    T(skv) = 290k 
G/T(satellite) = G(net) - 101og[T(sys)] 
Ginet) = 3.6 dB - 2.3 dB = 1.3 dB 
T(sys) = T(ant) + T(rcvr) T(rcvr) = (NF - l)To 
T(sys) = 290K + 170K = 460K NF = 10A [NF(dB)/10] = 10A (2.0/10) = 1.585 
G/T(satellite) = 1.3 - 101og(460) T(rcvr) = (1.585 -1)290 = 170K 
G/T(satellite) = -25.3 dB T(ant) = [(la - D290K + T(sky)]/la 

T(ant) = [(1.70 -1)290 + 290]/1.70 = 290K 
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Satellite to Mobile ST downlink (VHF) 
Satellite Transmit EIRP 
Free Space Loss 
Atmospheric Loss 
Polarization Loss 
Satellite Pointing Loss 
Multipath Fade Loss 
Power @ Subscriber Antenna (IRL) 
Subscriber G/T 
G/T Degradation (ant. temp. >400K) 
Sum 
Boltzman's Constant 
C/No 
101og(Bit Rate) 
Eb/No 
Required Eb/No (DBSK) 
Modulation Implementation Loss 
Margin 
Required Margin (blockage/interference) 
Excess Margin   

12.5 dBW 
-144.0 dB 

-2.0 dB 
-4.1 dB 
-0.2 dB 
-5.0 dB 

-142.0 dBW 
-28.1 dB 

-0.5 dB dB 
-171.4 dBW 

-(-228.6) dBW 
57.2 dB 
-36.8 dB 
20.4 dB 
-10.3 dB 
-3.0 dB 
7.1 dB 
6.0 dB 
1.1 dB 

General Information: 
Satellite altitude 785 km 
User elevation angle 5 degrees 
Subscriber angle from nadir     62.5 degrees 
Slant range to satellite 2749 km (edge of coverage, minimum elevation) 
User data rate 4800 bps 
Required BER 1 in 100,000 (10A-5) 
Downlink frequency 137.50 MHz 

Calculations: 
FSL = 32.44 + 201og(2749) + 201og(137.50) = 144.00 dB 

G(ant) = 0.0 HB    La = 0.7 dB    la = 10A(La/10) = 1.175    NF(rcvr) = 2.0 dB    T(sky) = 400k 
G/T(susbscriber) = GKnet) - 101og[T(sys)] 
G(net) = 0.0 dB - 0.7 dB = -0.7 dB 
T(sys) = T(ant) + T(rcvr) T(rcvr) = (NF - l)To 
T(sys) = 384K + 170K = 554K NF = 10A [NF(dB)/10] = 10A (2.0/10) = 1.585 
G/T(subscriber) = -0.7dB - 101og(554) T(rcvr) = (1.585 -1)290 = 170.K 
G/T(subscriber) = -28.1 dB T(ant) = [(la - D290K + T(sky)]/la 

T(ant) = [(1.175 -1)290 + 400]/1.175 = 384K 
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Satellite to Mobile ST downlink (UHF) 
Satellite Transmit EIRP 2.5 dBW 
Free Space Loss -153.26 dB 
Atmospheric Loss -2.0 dB 
Polarization Loss -4.1 dB 
Satellite Pointing Loss -0.2 dB 
Multipath Fade Loss -4.0 dB 
Power @ Subscriber Antenna (IRL) -161.06 dBW 
Subscriber G/T -29.8 dB 
G/T Degredation (ant. temp. >400K) -0.5 dB 
Receiver Loop Bandwidth -20.0 dB 
Sum -211.36 dBW 
Boltzman's Constant -(-228.6) dBW 
C/No (Received Signal-to-Noise) 17.24 dB 

General Information: 
Satellite altitude 785 km 
User elevation angle 5 degrees 
Subscriber angle from nadir     62.5 degrees 
Slant range to satellite 2749 km (edge of coverage, minimum elevation) 
User data rate N/A 
Required BER N/A 
Downlink frequency 400.1MHz 

Calculations: 
FSL = 32.44 + 201og(2749) + 201og(400.1) = 153.66 dB 

G(ant) = 0.0dB    La = 1.0 dB    la = 10*(La/10) = 1.25     NF(rcvr) = 3 .0 dB    T(skv) = 400k 
G/T(subscriber) = G(net) - 101og[T(sys)] 
G(net) = 0.0 dB -1.0 dB = -1.0 dB 
T(sys) = T(ant) + T(rcvr) T(rcvr) = (NF - l)To 
T(sys) = 473K + 290K = 763K NF = 10A [NF(dB)/10] = 10A (3.0/10) = 2.0 
G/T(subscriber) = -l.OdB - 101og(473) T(rcvr) = ( 2.0 - 1)290 = 290K 
G/T(subscriber) = -29.8 dB T(ant) = [(la - 1)290K + T(sky)]/la 

T(ant) = [(1.25 -1)290 + 400]/1.0 = 473K 
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